Sample records for innately predict future

  1. Interaction of Antibiotics with Innate Host Defense Factors against Salmonella enterica Serotype Newport

    PubMed Central

    Kumaraswamy, Monika; Kousha, Armin; Nizet, Victor

    2017-01-01

    ABSTRACT This study examines the pharmacodynamics of antimicrobials that are used to treat Salmonella with each other and with key components of the innate immune system. Antimicrobial synergy was assessed using time-kill and checkerboard assays. Antimicrobial interactions with innate immunity were studied by employing cathelicidin LL-37, whole-blood, and neutrophil killing assays. Ceftriaxone and ciprofloxacin were found to be synergistic in vitro against Salmonella enterica serotype Newport. Ceftriaxone, ciprofloxacin, and azithromycin each demonstrated synergy with the human cathelicidin defense peptide LL-37 in killing Salmonella. Exposure of Salmonella to sub-MICs of ceftriaxone resulted in enhanced susceptibility to LL-37, whole blood, and neutrophil killing. The activity of antibiotics in vivo against Salmonella may be underestimated in bacteriologic media lacking components of innate immunity. The pharmacodynamic interactions of antibiotics used to treat Salmonella with each other and with components of innate immunity warrant further study in light of recent findings showing in vivo selection of antimicrobial resistance by single agents in this pathogen. IMPORTANCE It is becoming increasingly understood that the current paradigms of in vitro antimicrobial susceptibility testing may have significant shortcomings in predicting activity in vivo. This study evaluated the activity of several antibiotics alone and in combination against clinical isolates of Salmonella enterica serotype Newport (meningitis case) utilizing both conventional and physiological media. In addition, the interactions of these antibiotics with components of the innate immune system were evaluated. Azithromycin, which has performed quite well clinically despite high MICs in conventional media, was shown to be more active in physiological media and to enhance innate immune system killing. Alternatively, chloramphenicol did not show enhanced immune system killing, paralleling its inferior clinical performance to other antibiotics that have been used to treat Salmonella meningitis. These findings are important additions to the building understanding of current in vitro antimicrobial assay limitations that hopefully will amount to future improvements in these assays to better predict clinical efficacy and activity in vivo. PMID:29242830

  2. Can We Predict Technical Aptitude?: A Systematic Review.

    PubMed

    Louridas, Marisa; Szasz, Peter; de Montbrun, Sandra; Harris, Kenneth A; Grantcharov, Teodor P

    2016-04-01

    To identify background characteristics and cognitive tests that may predict surgical trainees' future technical performance, and therefore be used to supplement existing surgical residency selection criteria. Assessment of technical skills is not commonly incorporated as part of the selection process for surgical trainees in North America. Emerging evidence, however, suggests that not all trainees are capable of reaching technical competence. Therefore, incorporating technical aptitude into selection processes may prove useful. A systematic search was carried out of the MEDLINE, PsycINFO, and Embase online databases to identify all studies that assessed associations between surrogate markers of innate technical abilities in surgical trainees, and whether these abilities correlate with technical performance. The quality of each study was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation system. A total of 8035 records were identified. After screening by title, abstract, and full text, 52 studies were included. Very few surrogate markers were found to predict technical performance. Significant associations with technical performance were seen for 1 of 23 participant-reported surrogate markers, 2 of 25 visual spatial tests, and 2 of 19 dexterity tests. The assessment of trainee Basic Performance Resources predicted technical performance in 62% and 75% of participants. To date, no single test has been shown to reliably predict the technical performance of surgical trainees. Strategies that rely on assessing multiple innate abilities, their interaction, and their relationship with technical skill may ultimately be more likely to serve as reliable predictors of future surgical performance.

  3. Dissecting innate immune responses with the tools of systems biology.

    PubMed

    Smith, Kelly D; Bolouri, Hamid

    2005-02-01

    Systems biology strives to derive accurate predictive descriptions of complex systems such as innate immunity. The innate immune system is essential for host defense, yet the resulting inflammatory response must be tightly regulated. Current understanding indicates that this system is controlled by complex regulatory networks, which maintain homoeostasis while accurately distinguishing pathogenic infections from harmless exposures. Recent studies have used high throughput technologies and computational techniques that presage predictive models and will be the foundation of a systems level understanding of innate immunity.

  4. Experiments with the living dead: Plants as monitors and recorders of Biosphere Geosphere interactions.

    NASA Astrophysics Data System (ADS)

    Lomax, Barry; Fraser, Wesley

    2016-04-01

    Understanding variations in the Earth's climate history will enhance our understanding of and capacity to predict future climate change. Importantly this information can then be used to reduce uncertainty around future climate change predictions. However to achieve this, it is necessary to develop well constrained and robustly tested palaeo-proxies. Plants are innately coupled to the atmosphere requiring both sunlight and CO2 to drive photosynthesis and carbon assimilation. When combined with their resilience and persistence, the study of plant responses to climate change in concert with the analysis of fossil plants offer the opportunity to monitor past atmospheric conditions and infer palaeoclimate change. In this presentation we highlight how this approach is leading to the development of mechanistic palaeoproxies tested on palaeobotanically relevant extant species showing that plant fossils can be used as both monitors and geochemical recorders of atmospheric changes.

  5. Identification and Validation of Ifit1 as an Important Innate Immune Bottleneck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Vartanian, Keri B.; Mitchell, Hugh D.

    The innate immune system plays important roles in a number of disparate processes. Foremost, innate immunity is a first responder to invasion by pathogens and triggers early defensive responses and recruits the adaptive immune system. The innate immune system also responds to endogenous damage signals that arise from tissue injury. Recently it has been found that innate immunity plays an important role in neuroprotection against ischemic stroke through the activation of the primary innate immune receptors, Toll-like receptors (TLRs). Using several large-scale transcriptomic data sets from mouse and mouse macrophage studies we identified targets predicted to be important in controllingmore » innate immune processes initiated by TLR activation. Targets were identified as genes with high betweenness centrality, so-called bottlenecks, in networks inferred from statistical associations between gene expression patterns. A small set of putative bottlenecks were identified in each of the data sets investigated including interferon-stimulated genes (Ifit1, Ifi47, Tgtp and Oasl2) as well as genes uncharacterized in immune responses (Axud1 and Ppp1r15a). We further validated one of these targets, Ifit1, in mouse macrophages by showing that silencing it suppresses induction of predicted downstream genes by lipopolysaccharide (LPS)-mediated TLR4 activation through an unknown direct or indirect mechanism. Our study demonstrates the utility of network analysis for identification of interesting targets related to innate immune function, and highlights that Ifit1 can exert a positive regulatory effect on downstream genes.« less

  6. Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes

    PubMed Central

    Naesens, Maarten; Khatri, Purvesh; Li, Li; Sigdel, Tara K.; Vitalone, Matthew J.; Chen, Rong; Butte, Atul J.; Salvatierra, Oscar; Sarwal, Minnie M.

    2015-01-01

    The degree of progressive chronic histological damage is associated with long-term renal allograft survival. In order to identify promising molecular targets for timely intervention, we examined renal allograft protocol and indication biopsies from 120 low-risk pediatric and adolescent recipients by whole-genome microarray expression profiling. In data-driven analysis, we found a highly regulated pattern of adaptive and innate immune gene expression that correlated with established or ongoing histological chronic injury, and also with development of future chronic histological damage, even in histologically pristine kidneys. Hence, histologically unrecognized immunological injury at a molecular level sets the stage for the development of chronic tissue injury, while the same molecular response is accentuated during established and worsening chronic allograft damage. Irrespective of the hypothesized immune or nonimmune trigger for chronic allograft injury, a highly orchestrated regulation of innate and adaptive immune responses was found in the graft at the molecular level. This occurred months before histologic lesions appear, and quantitatively below the diagnostic threshold of classic T-cell or antibody-mediated rejection. Thus, measurement of specific immune gene expression in protocol biopsies may be warranted to predict the development of subsequent chronic injury in histologically quiescent grafts and as a means to titrate immunosuppressive therapy. PMID:21881554

  7. Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes.

    PubMed

    Naesens, Maarten; Khatri, Purvesh; Li, Li; Sigdel, Tara K; Vitalone, Matthew J; Chen, Rong; Butte, Atul J; Salvatierra, Oscar; Sarwal, Minnie M

    2011-12-01

    The degree of progressive chronic histological damage is associated with long-term renal allograft survival. In order to identify promising molecular targets for timely intervention, we examined renal allograft protocol and indication biopsies from 120 low-risk pediatric and adolescent recipients by whole-genome microarray expression profiling. In data-driven analysis, we found a highly regulated pattern of adaptive and innate immune gene expression that correlated with established or ongoing histological chronic injury, and also with development of future chronic histological damage, even in histologically pristine kidneys. Hence, histologically unrecognized immunological injury at a molecular level sets the stage for the development of chronic tissue injury, while the same molecular response is accentuated during established and worsening chronic allograft damage. Irrespective of the hypothesized immune or nonimmune trigger for chronic allograft injury, a highly orchestrated regulation of innate and adaptive immune responses was found in the graft at the molecular level. This occurred months before histologic lesions appear, and quantitatively below the diagnostic threshold of classic T-cell or antibody-mediated rejection. Thus, measurement of specific immune gene expression in protocol biopsies may be warranted to predict the development of subsequent chronic injury in histologically quiescent grafts and as a means to titrate immunosuppressive therapy.

  8. Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues

    PubMed Central

    Lischinsky, Julieta E; Sokolowski, Katie; Li, Peijun; Esumi, Shigeyuki; Kamal, Yasmin; Goodrich, Meredith; Oboti, Livio; Hammond, Timothy R; Krishnamoorthy, Meera; Feldman, Daniel; Huntsman, Molly; Liu, Judy; Corbin, Joshua G

    2017-01-01

    The medial subnucleus of the amygdala (MeA) plays a central role in processing sensory cues required for innate behaviors. However, whether there is a link between developmental programs and the emergence of inborn behaviors remains unknown. Our previous studies revealed that the telencephalic preoptic area (POA) embryonic niche is a novel source of MeA destined progenitors. Here, we show that the POA is comprised of distinct progenitor pools complementarily marked by the transcription factors Dbx1 and Foxp2. As determined by molecular and electrophysiological criteria this embryonic parcellation predicts postnatal MeA inhibitory neuronal subtype identity. We further find that Dbx1-derived and Foxp2+ cells in the MeA are differentially activated in response to innate behavioral cues in a sex-specific manner. Thus, developmental transcription factor expression is predictive of MeA neuronal identity and sex-specific neuronal responses, providing a potential developmental logic for how innate behaviors could be processed by different MeA neuronal subtypes. DOI: http://dx.doi.org/10.7554/eLife.21012.001 PMID:28244870

  9. Novel innate and adaptive lymphocytes: The new players in the pathogenesis of inflammatory upper airway diseases.

    PubMed

    Liu, Y; Yao, Y; Wang, Z-C; Ning, Q; Liu, Z

    2018-06-01

    Host immunity (innate and adaptive immunity) plays essential roles in the pathogenesis of inflammatory upper airway diseases, including allergic rhinitis and chronic rhinosinusitis. Recently, the discovery of novel innate immune cells, particularly innate lymphoid cells, has renewed our view on the role of innate immunity in inflammatory upper airway diseases. Meanwhile, the identification of new subsets of T helper (Th) cells, including Th22, Th9 and follicular Th cells, and regulatory B cells in the adaptive immunity, has broadened our knowledge on the complex immune networks in inflammatory upper airway diseases. In this review, we focus on these newly identified innate and adaptive lymphocytes with their contributions to the immunological disturbance in allergic rhinitis and chronic rhinosinusitis. We further discuss the perspective for future research and potential clinical utility of regulating these novel lymphocytes for the treatment of allergic rhinitis and chronic rhinosinusitis. © 2018 John Wiley & Sons Ltd.

  10. Reproductive investment is connected to innate immunity in a long-lived animal.

    PubMed

    Neggazi, Sara A; Noreikiene, Kristina; Öst, Markus; Jaatinen, Kim

    2016-10-01

    Life-history theory predicts that organisms optimize their resource allocation strategy to maximize lifetime reproductive success. Individuals can flexibly reallocate resources depending on their life-history stage, and environmental and physiological factors, which lead to variable life-history strategies even within species. Physiological trade-offs between immunity and reproduction are particularly relevant for long-lived species that need to balance current reproduction against future survival and reproduction, but their underlying mechanisms are poorly understood. A major unresolved issue is whether the first-line innate immune function is suppressed by reproductive investment. In this paper, we tested if reproductive investment is associated with the suppression of innate immunity, and how this potential trade-off is resolved depending on physiological state and residual reproductive value. We used long-lived capital-breeding female eiders (Somateria mollissima) as a model. We showed that the innate immune response, measured by plasma bacteria-killing capacity (BKC), was negatively associated with increasing reproductive investment, i.e., with increasing clutch size and advancing incubation stage. Females in a better physiological state, as indexed by low heterophil-to-lymphocyte (H/L) ratios, showed higher BKC during early incubation, but this capacity decreased as incubation progressed, whereas females in poorer state showed low BKC capacity throughout incubation. Although plasma BKC generally declined with increasing H/L ratios, this decrease was most pronounced in young females. Our results demonstrate that reproductive investment can suppress constitutive first-line immune defence in a long-lived bird, but the degree of immunosuppression depends on physiological state and age.

  11. Condition, innate immunity and disease mortality of inbred crows

    PubMed Central

    Townsend, Andrea K.; Clark, Anne B.; McGowan, Kevin J.; Miller, Andrew D.; Buckles, Elizabeth L.

    2010-01-01

    Cooperatively breeding American crows (Corvus brachyrhynchos) suffer a severe disease-mediated survival cost from inbreeding, but the proximate mechanisms linking inbreeding to disease are unknown. Here, we examine indices of nestling body condition and innate immunocompetence in relationship to inbreeding and disease mortality. Using an estimate of microsatellite heterozygosity that predicts inbreeding in this population, we show that inbred crows were in relatively poor condition as nestlings, and that body condition index measured in the first 2–33 days after hatching, in addition to inbreeding index, predicted disease probability in the first 34 months of life. Inbred nestlings also mounted a weaker response along one axis of innate immunity: the proportion of bacteria killed in a microbiocidal assay increased as heterozygosity index increased. Relatively poor body condition and low innate immunocompetence are two mechanisms that might predispose inbred crows to ultimate disease mortality. A better understanding of condition-mediated inbreeding depression can guide efforts to minimize disease costs of inbreeding in small populations. PMID:20444716

  12. Merck Ad5/HIV induces broad innate immune activation that predicts CD8⁺ T-cell responses but is attenuated by preexisting Ad5 immunity.

    PubMed

    Zak, Daniel E; Andersen-Nissen, Erica; Peterson, Eric R; Sato, Alicia; Hamilton, M Kristina; Borgerding, Joleen; Krishnamurty, Akshay T; Chang, Joanne T; Adams, Devin J; Hensley, Tiffany R; Salter, Alexander I; Morgan, Cecilia A; Duerr, Ann C; De Rosa, Stephen C; Aderem, Alan; McElrath, M Juliana

    2012-12-11

    To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.

  13. Innate immunity is not related to the sex of adult Tree Swallows during the nestling period

    USGS Publications Warehouse

    Houdek, Bradley J.; Lombardo, Michael P.; Thorpe, Patrick A.; Hahn, D. Caldwell

    2011-01-01

    Evolutionary theory predicts that exposure to more diverse pathogens will result in the evolution of a more robust immune response. We predicted that during the breeding season the innate immune function of female Tree Swallows (Tachycineta bicolor) should be more effective than that of males because (1) the transmission of sexually transmitted microbes during copulation puts females at greater risk because ejaculates move from males to females, (2) females copulate with multiple males, exposing them to the potentially pathogenic microbes in semen, and (3) females spend more time in the nest than do males so may be more exposed to nest microbes and ectoparasites that can be vectors of bacterial and viral pathogens. In addition, elevated testosterone in males may suppress immune function. We tested our prediction during the 2009 breeding season with microbicidal assays in vitro to assess the ability of the innate immune system to kill Escherichia coli. The sexes did not differ in the ability of their whole blood to kill E. coli. We also found no significant relationships between the ability of whole blood to kill E. coli and the reproductive performance or the physical condition of males or females. These results indicate that during the nestling period there are no sexual differences in this component of the innate immune system. In addition, they suggest that there is little association between this component of innate immunity and the reproductive performance and physical condition during the nestling period of adult Tree Swallows.

  14. Stability and change: Stress responses and the shaping of behavioral phenotypes over the life span.

    PubMed

    Hennessy, Michael B; Kaiser, Sylvia; Tiedtke, Tobias; Sachser, Norbert

    2015-01-01

    In mammals, maternal signals conveyed via influences on hypothalamic-pituitary-adrenal (HPA) activity may shape behavior of the young to be better adapted for prevailing environmental conditions. However, the mother's influence extends beyond classic stress response systems. In guinea pigs, several hours (h) of separation from the mother activates not only the HPA axis, but also the innate immune system, which effects immediate behavioral change, as well as modifies behavioral responsiveness in the future. Moreover, the presence of the mother potently suppresses the behavioral consequences of this innate immune activation. These findings raise the possibility that long-term adaptive behavioral change can be mediated by the mother's influence on immune-related activity of her pups. Furthermore, the impact of social partners on physiological stress responses and their behavioral outcomes are not limited to the infantile period. A particularly crucial period for social development in male guinea pigs is that surrounding the attainment of sexual maturation. At this time, social interactions with adults can dramatically affect circulating cortisol concentrations and social behavior in ways that appear to prepare the male to best cope in its likely future social environment. Despite such multiple social influences on the behavior of guinea pigs at different ages, inter-individual differences in the magnitude of the cortisol response remain surprisingly stable over most of the life span. Together, it appears that throughout the life span, physiological stress responses may be regulated by social stimuli. These influences are hypothesized to adjust behavior for predicted environmental conditions. In addition, stable individual differences might provide a means of facilitating adaptation to less predictable conditions.

  15. Drosophila as a model system to unravel the layers of innate immunity to infection

    PubMed Central

    Kounatidis, Ilias; Ligoxygakis, Petros

    2012-01-01

    Summary Innate immunity relies entirely upon germ-line encoded receptors, signalling components and effector molecules for the recognition and elimination of invading pathogens. The fruit fly Drosophila melanogaster with its powerful collection of genetic and genomic tools has been the model of choice to develop ideas about innate immunity and host–pathogen interactions. Here, we review current research in the field, encompassing all layers of defence from the role of the microbiota to systemic immune activation, and attempt to speculate on future directions and open questions. PMID:22724070

  16. Drosophila as a model system to unravel the layers of innate immunity to infection.

    PubMed

    Kounatidis, Ilias; Ligoxygakis, Petros

    2012-05-01

    Innate immunity relies entirely upon germ-line encoded receptors, signalling components and effector molecules for the recognition and elimination of invading pathogens. The fruit fly Drosophila melanogaster with its powerful collection of genetic and genomic tools has been the model of choice to develop ideas about innate immunity and host-pathogen interactions. Here, we review current research in the field, encompassing all layers of defence from the role of the microbiota to systemic immune activation, and attempt to speculate on future directions and open questions.

  17. A test of life-history theories of immune defence in two ecotypes of the garter snake, Thamnophis elegans.

    PubMed

    Sparkman, Amanda Marie; Palacios, Maria Gabriela

    2009-11-01

    1. Life-history theorists have long observed that fast growth and high reproduction tend to be associated with short life span, suggesting that greater investment in such traits may trade off with self-maintenance. The immune system plays an integral role in self-maintenance and has been proposed as a mediator of life-history trade-offs. 2. Ecoimmunologists have predicted that fast-living organisms should rely more heavily on constitutive innate immunity than slow-living organisms, as constitutive innate defences are thought to be relatively inexpensive to develop and can provide a rapid, general response to pathogens. 3. We present the first study to examine this hypothesis in an ectothermic vertebrate, by testing for differences in three aspects of constitutive innate immunity in replicate populations of two life-history ecotypes of the garter snake Thamnophis elegans, one fast-living and one slow-living. 4. As predicted, free-ranging snakes from the fast-living ecotype had higher levels of all three measures of constitutive innate immunity than the slow-living ecotype. These differences in immunity were not explained by parasite loads measured. Furthermore, both ecotypes exhibited a positive relationship between innate immunity and body size/age, which we discuss in the context of ectotherm physiology and ecotype differences in developmental rates.

  18. Born Knowing: Tentacled Snakes Innately Predict Future Prey Behavior

    PubMed Central

    Catania, Kenneth C.

    2010-01-01

    Background Aquatic tentacled snakes (Erpeton tentaculatus) can take advantage of their prey's escape response by startling fish with their body before striking. The feint usually startles fish toward the snake's approaching jaws. But when fish are oriented at a right angle to the jaws, the C-start escape response translates fish parallel to the snake's head. To exploit this latter response, snakes must predict the future location of the fish. Adult snakes can make this prediction. Is it learned, or are tentacled snakes born able to predict future fish behavior? Methods and Findings Laboratory-born, naïve snakes were investigated as they struck at fish. Trials were recorded at 250 or 500 frames per second. To prevent learning, snakes were placed in a water container with a clear transparency sheet or glass bottom. The chamber was placed over a channel in a separate aquarium with fish below. Thus snakes could see and strike at fish, without contact. The snake's body feint elicited C-starts in the fish below the transparency sheet, allowing strike accuracy to be quantified in relationship to the C-starts. When fish were oriented at a right angle to the jaws, naïve snakes biased their strikes to the future location of the escaping fish's head, such that the snake's jaws and the fish's translating head usually converged. Several different types of predictive strikes were observed. Conclusions The results show that some predators have adapted their nervous systems to directly compensate for the future behavior of prey in a sensory realm that usually requires learning. Instead of behavior selected during their lifetime, newborn tentacled snakes exhibit behavior that has been selected on a different scale—over many generations. Counter adaptations in fish are not expected, as tentacled snakes are rare predators exploiting fish responses that are usually adaptive. PMID:20585384

  19. Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges.

    PubMed

    Cooper, Dustin; Eleftherianos, Ioannis

    2017-01-01

    The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a "loitering" innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed.

  20. Innate Immune Activation in Obesity

    PubMed Central

    Lumeng, Carey N.

    2014-01-01

    The innate immune system is a prewired set of cellular and humoral components that has developed to sense perturbations in normal physiology and trigger responses to restore the system back to baseline. It is now understood that many of these components can also sense the physiologic changes that occur with obesity and be activated. While the exact reasons for this chronic immune response to obesity are unclear, there is strong evidence to suggest that innate inflammatory systems link obesity and disease. Based on this, anti-inflammatory therapies for diseases like type 2 diabetes and metabolic syndrome may form the core of future treatment plans. This review will highlight the components involved in the innate immune response and discuss the evidence that they contribute to the pathogenesis of obesity-associated diseases. PMID:23068074

  1. Man's nature: innate determinants of response to natural environments

    Treesearch

    B. L. Driver; Peter Greene

    1977-01-01

    Man's sensory mechanisms evolved by natural selection in natural settings and humans survived as a species not so much by the "club in the hand" but by the "plan in the head." That plan or ability enabled man to remember, interpret, and predict environmental events. Humans have an innate capacity (but not necessarily a developed ability) to...

  2. Silencing the alarms: innate immune antagonism by rotavirus NSP1 and VP3

    PubMed Central

    Morelli, Marco; Ogden, Kristen M.; Patton, John T.

    2016-01-01

    The innate immune response involves a broad array of pathogen sensors that stimulate the production of interferons (IFN) to induce an antiviral state. Rotavirus, a significant cause of childhood gastroenteritis and a member of the Reoviridae family of segmented, double-stranded RNA viruses, encodes at least two direct antagonists of host innate immunity: NSP1 and VP3. NSP1, a putative E3 ubiquitin ligase, mediates the degradation of cellular factors involved in both IFN induction and downstream signaling. VP3, the viral capping enzyme, utilizes a 2H-phosphodiesterase domain to prevent activation of the cellular oligoadenylate synthase (OAS)-RNase L pathway. Computational, molecular, and biochemical studies have provided key insights into the structural and mechanistic basis of innate immune antagonism by NSP1 and VP3 of group A rotaviruses (RVA). Future studies with non-RVA isolates will be essential to understand how other RV species evade host innate immune responses. PMID:25724417

  3. Protective and destructive immunity in the periodontium: Part 1--innate and humoral immunity and the periodontium.

    PubMed

    Teng, Y-T A

    2006-03-01

    Based on the results of recent research in the field, the present paper will discuss the protective and destructive aspects of the innate vs. adaptive (humoral and cell-mediated) immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) the Toll-like receptors (TLR), the innate immune repertoire for recognizing the unique molecular patterns of microbial components that trigger innate and adaptive immunity for effective host defenses, in some general non-oral vs. periodontal microbial infections; (ii) T-cell-mediated immunity, Th-cytokines, and osteoclastogenesis in periodontal disease progression; and (iii) some molecular techniques developed and used to identify critical microbial virulence factors or antigens associated with host immunity (using Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species). Therefore, further understanding of the molecular interactions and mechanisms associated with the host's innate and adaptive immune responses will facilitate the development of new and innovative therapeutics for future periodontal treatments.

  4. Mechanisms for eco-immunity in a changing enviroment: how does the coral innate immune system contend with climate change?

    NASA Astrophysics Data System (ADS)

    Traylor-Knowles, N. G.

    2016-02-01

    Innate immunity plays a central role in maintaining homeostasis, and within the context of impending climate change scenarios, understanding how this system works is critical. However, the actual mechanisms involved in the evolution of the innate immune system are largely unknown. Cnidaria (including corals, sea anemones and jellyfish) are well suited for studying the fundamental functions of innate immunity because they share a common ancestor with bilaterians. This study will highlight the transcriptomic changes during a heat shock in the coral Acropora hyacinthus of American Samoa, examining the temporal changes, every half an hour for 5 hours. We hypothesize that genes involved in innate immunity, and extracellular matrix maintenance will be key components to the heat stress response. This presentation will highlight the novel role of the tumor necrosis factor receptor gene family as a responder to heat stress and present future directions for this developing field in coral reef research.

  5. Video gaming enhances psychomotor skills but not visuospatial and perceptual abilities in surgical trainees.

    PubMed

    Kennedy, A M; Boyle, E M; Traynor, O; Walsh, T; Hill, A D K

    2011-01-01

    There is considerable interest in the identification and assessment of underlying aptitudes or innate abilities that could potentially predict excellence in the technical aspects of operating. However, before the assessment of innate abilities is introduced for high-stakes assessment (such as competitive selection into surgical training programs), it is essential to determine that these abilities are stable and unchanging and are not influenced by other factors, such as the use of video games. The aim of this study was to investigate whether experience playing video games will predict psychomotor performance on a laparoscopic simulator or scores on tests of visuospatial and perceptual abilities, and to examine the correlation, if any, between these innate abilities. Institutional ethical approval was obtained. Thirty-eight undergraduate medical students with no previous surgical experience were recruited. All participants completed a self-reported questionnaire that asked them to detail their video game experience. They then underwent assessment of their psychomotor, visuospatial, and perceptual abilities using previously validated tests. The results were analyzed using independent samples t tests to compare means and linear regression curves for subsequent analysis. Students who played video games for at least 7 hours per week demonstrated significantly better psychomotor skills than students who did not play video games regularly. However, there was no difference on measures of visuospatial and perceptual abilities. There was no correlation between psychomotor tests and visuospatial or perceptual tests. Regular video gaming correlates positively with psychomotor ability, but it does not seem to influence visuospatial or perceptual ability. This study suggests that video game experience might be beneficial to a future career in surgery. It also suggests that relevant surgical skills may be gained usefully outside the operating room in activities that are not related to surgery. Copyright © 2011 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  6. Immune Responses to HCV and Other Hepatitis Viruses

    PubMed Central

    Park, Su-Hyung; Rehermann, Barbara

    2014-01-01

    Summary Five human hepatitis viruses cause most acute and chronic liver disease worldwide. Over the past 25 years hepatitis C virus (HCV) in particular has received much interest because of its ability to persist in most immunocompetent adults and the lack of a protective vaccine. Here we examine innate and adaptive immune responses to HCV infection. Although HCV activates an innate immune response, it employs an elaborate set of mechanisms to evade interferon (IFN)-based antiviral immunity. By comparing innate and adaptive immune responses to HCV with those to hepatitis A and B viruses, we suggest that prolonged innate immune activation impairs the development of successful adaptive immune responses. Comparative immunology furthermore provides insights into the maintenance of immune protection. We conclude by discussing prospects for an HCV vaccine and future research needs for the hepatitis viruses. PMID:24439265

  7. Kinetic characteristics of euflammation: the induction of controlled inflammation without overt sickness behavior.

    PubMed

    Tarr, Andrew J; Liu, Xiaoyu; Reed, Nathaniel S; Quan, Ning

    2014-11-01

    We found recently that controlled progressive challenge with subthreshold levels of E. coli can confer progressively stronger resistance to future reinfection-induced sickness behavior to the host. We have termed this type of inflammation "euflammation". In this study, we further characterized the kinetic changes in the behavior, immunological, and neuroendocrine aspects of euflammation. Results show euflammatory animals only display transient and subtle sickness behaviors of anorexia, adipsia, and anhedonia upon a later infectious challenge which would have caused much more severe and longer lasting sickness behavior if given without prior euflammatory challenges. Similarly, infectious challenge-induced corticosterone secretion was greatly ameliorated in euflammatory animals. At the site of E.coli priming injections, which we termed euflammation induction locus (EIL), innate immune cells displayed a partial endotoxin tolerant phenotype with reduced expression of innate activation markers and muted inflammatory cytokine expression upon ex vivo LPS stimulation, whereas innate immune cells outside EIL displayed largely opposite characteristics. Bacterial clearance function, however, was enhanced both inside and outside EIL. Finally, sickness induction by an infectious challenge placed outside the EIL was also abrogated. These results suggest euflammation could be used as an efficient method to "train" the innate immune system to resist the consequences of future infectious/inflammatory challenges. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Emerging roles of innate lymphoid cells in inflammatory diseases: Clinical implications.

    PubMed

    Kortekaas Krohn, I; Shikhagaie, M M; Golebski, K; Bernink, J H; Breynaert, C; Creyns, B; Diamant, Z; Fokkens, W J; Gevaert, P; Hellings, P; Hendriks, R W; Klimek, L; Mjösberg, J; Morita, H; Ogg, G S; O'Mahony, L; Schwarze, J; Seys, S F; Shamji, M H; Bal, S M

    2018-04-01

    Innate lymphoid cells (ILC) represent a group of lymphocytes that lack specific antigen receptors and are relatively rare as compared to adaptive lymphocytes. ILCs play important roles in allergic and nonallergic inflammatory diseases due to their location at barrier surfaces within the airways, gut, and skin, and they respond to cytokines produced by activated cells in their local environment. Innate lymphoid cells contribute to the immune response by the release of cytokines and other mediators, forming a link between innate and adaptive immunity. In recent years, these cells have been extensively characterized and their role in animal models of disease has been investigated. Data to translate the relevance of ILCs in human pathology, and the potential role of ILCs in diagnosis, as biomarkers and/or as future treatment targets are also emerging. This review, produced by a task force of the Immunology Section of the European Academy of Allergy and Clinical Immunology (EAACI), encompassing clinicians and researchers, highlights the role of ILCs in human allergic and nonallergic diseases in the airways, gastrointestinal tract, and skin, with a focus on new insights into clinical implications, therapeutic options, and future research opportunities. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  9. Imaging macrophages with nanoparticles

    NASA Astrophysics Data System (ADS)

    Weissleder, Ralph; Nahrendorf, Matthias; Pittet, Mikael J.

    2014-02-01

    Nanomaterials have much to offer, not only in deciphering innate immune cell biology and tracking cells, but also in advancing personalized clinical care by providing diagnostic and prognostic information, quantifying treatment efficacy and designing better therapeutics. This Review presents different types of nanomaterial, their biological properties and their applications for imaging macrophages in human diseases, including cancer, atherosclerosis, myocardial infarction, aortic aneurysm, diabetes and other conditions. We anticipate that future needs will include the development of nanomaterials that are specific for immune cell subsets and can be used as imaging surrogates for nanotherapeutics. New in vivo imaging clinical tools for noninvasive macrophage quantification are thus ultimately expected to become relevant to predicting patients' clinical outcome, defining treatment options and monitoring responses to therapy.

  10. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity.

    PubMed

    Cerliani, Juan P; Stowell, Sean R; Mascanfroni, Iván D; Arthur, Connie M; Cummings, Richard D; Rabinovich, Gabriel A

    2011-02-01

    Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.

  11. Association of variants in innate immune genes with asthma and eczema

    PubMed Central

    Sharma, Sunita; Poon, Audrey; Himes, Blanca E.; Lasky-Su, Jessica; Sordillo, Joanne E.; Belanger, Kathleen; Milton, Donald K.; Bracken, Michael B.; Triche, Elizabeth W.; Leaderer, Brian P.; Gold, Diane R.; Litonjua, Augusto A.

    2012-01-01

    Background The innate immune pathway is important in the pathogenesis of asthma and eczema. However, only a few variants in these genes have been associated with either disease. We investigate the association between polymorphisms of genes in the innate immune pathway with childhood asthma and eczema. In addition, we compare individual associations with those discovered using a multivariate approach. Methods Using a novel method, case control based association testing (C2BAT), 569 single nucleotide polymorphisms (SNPs) in 44 innate immune genes were tested for association with asthma and eczema in children from the Boston Home Allergens and Asthma Study and the Connecticut Childhood Asthma Study. The screening algorithm was used to identify the top SNPs associated with asthma and eczema. We next investigated the interaction of innate immune variants with asthma and eczema risk using Bayesian networks. Results After correction for multiple comparisons, 7 SNPs in 6 genes (CARD25, TGFB1, LY96, ACAA1, DEFB1, and IFNG) were associated with asthma (adjusted p-value<0.02), while 5 SNPs in 3 different genes (CD80, STAT4, and IRAKI) were significantly associated with eczema (adjusted p-value < 0.02). None of these SNPs were associated with both asthma and eczema. Bayesian network analysis identified 4 SNPs that were predictive of asthma and 10 SNPs that predicted eczema. Of the genes identified using Bayesian networks, only CD80 was associated with eczema in the single-SNP study. Using novel methodology that allows for screening and replication in the same population, we have identified associations of innate immune genes with asthma and eczema. Bayesian network analysis suggests that additional SNPs influence disease susceptibility via SNP interactions. Conclusion Our findings suggest that innate immune genes contribute to the pathogenesis of asthma and eczema, and that these diseases likely have different genetic determinants. PMID:22192168

  12. Innate Immune Signaling Activated by MDR Bacteria in the Airway

    PubMed Central

    Parker, Dane; Ahn, Danielle; Cohen, Taylor; Prince, Alice

    2015-01-01

    Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation. PMID:26582515

  13. Trade-offs between acquired and innate immune defenses in humans

    PubMed Central

    McDade, Thomas W.; Georgiev, Alexander V.; Kuzawa, Christopher W.

    2016-01-01

    Immune defenses provide resistance against infectious disease that is critical to survival. But immune defenses are costly, and limited resources allocated to immunity are not available for other physiological or developmental processes. We propose a framework for explaining variation in patterns of investment in two important subsystems of anti-pathogen defense: innate (non-specific) and acquired (specific) immunity. The developmental costs of acquired immunity are high, but the costs of maintenance and activation are relatively low. Innate immunity imposes lower upfront developmental costs, but higher operating costs. Innate defenses are mobilized quickly and are effective against novel pathogens. Acquired responses are less effective against novel exposures, but more effective against secondary exposures due to immunological memory. Based on their distinct profiles of costs and effectiveness, we propose that the balance of investment in innate versus acquired immunity is variable, and that this balance is optimized in response to local ecological conditions early in development. Nutritional abundance, high pathogen exposure and low signals of extrinsic mortality risk during sensitive periods of immune development should all favor relatively higher levels of investment in acquired immunity. Undernutrition, low pathogen exposure, and high mortality risk should favor innate immune defenses. The hypothesis provides a framework for organizing prior empirical research on the impact of developmental environments on innate and acquired immunity, and suggests promising directions for future research in human ecological immunology. PMID:26739325

  14. Double-stranded RNA innate immune response activation from long-term adeno-associated virus vector transduction.

    PubMed

    Shao, Wenwei; Earley, Lauriel F; Chai, Zheng; Chen, Xiaojing; Sun, Junjiang; He, Ting; Deng, Meng; Hirsch, Matthew L; Ting, Jenny; Samulski, R Jude; Li, Chengwen

    2018-06-21

    Data from clinical trials for hemophilia B using adeno-associated virus (AAV) vectors have demonstrated decreased transgenic coagulation factor IX (hFIX) expression 6-10 weeks after administration of a high vector dose. While it is likely that capsid-specific cytotoxic T lymphocytes eliminate vector-transduced hepatocytes, thereby resulting in decreased hFIX, this observation is not intuitively consistent with restored hFIX levels following prednisone application. Although the innate immune response is immediately activated following AAV vector infection via TLR pathways, no studies exist regarding the role of the innate immune response at later time points after AAV vector transduction. Herein, activation of the innate immune response in cell lines, primary human hepatocytes, and hepatocytes in a human chimeric mouse model was observed at later time points following AAV vector transduction. Mechanistic analysis demonstrated that the double-stranded RNA (dsRNA) sensor MDA5 was necessary for innate immune response activation and that transient knockdown of MDA5, or MAVS, decreased IFN-β expression while increasing transgene production in AAV-transduced cells. These results both highlight the role of the dsRNA-triggered innate immune response in therapeutic transgene expression at later time points following AAV transduction and facilitate the execution of effective strategies to block the dsRNA innate immune response in future clinical trials.

  15. Microbiota and innate immunity in intestinal inflammation and neoplasia.

    PubMed

    Cario, Elke

    2013-01-01

    This review focuses on recent advances and novel insights into the mechanistic events that may link commensal microbiota and host innate immunity in the pathophysiology of intestinal inflammation and neoplasia. Unanswered questions are discussed and future perspectives in the field are highlighted. Commensal microbiota, host innate immunity, and genetics form a multidimensional network that controls homeostasis of the mucosal barrier in the intestine. Large-scale sequencing projects have begun to catalog the healthy human microbiome. Converging evidence suggests that alterations in the regulation of the complex host environment [e.g., dysbiosis and overgrowth of select commensal bacterial species, dietary factors, copresence of facultative pathogens (including viruses), and changes in mucus characteristics] may trigger aberrant innate immune signaling, thereby contributing to the development of intestinal inflammation and associated colon cancer in the susceptible individual. Genetically determined innate immune malfunction may create an inflammatory environment that promotes tumor progression (such as the TLR4-D299G mutation). The next challenging steps to be taken are to decipher changes in the human microbiome (and virome) during well defined diseased states, and relate them to intestinal mucosal immune functions and host genotypes.

  16. Odor Discrimination in Drosophila: From Neural Population Codes to Behavior

    PubMed Central

    Parnas, Moshe; Lin, Andrew C.; Huetteroth, Wolf; Miesenböck, Gero

    2013-01-01

    Summary Taking advantage of the well-characterized olfactory system of Drosophila, we derive a simple quantitative relationship between patterns of odorant receptor activation, the resulting internal representations of odors, and odor discrimination. Second-order excitatory and inhibitory projection neurons (ePNs and iPNs) convey olfactory information to the lateral horn, a brain region implicated in innate odor-driven behaviors. We show that the distance between ePN activity patterns is the main determinant of a fly’s spontaneous discrimination behavior. Manipulations that silence subsets of ePNs have graded behavioral consequences, and effect sizes are predicted by changes in ePN distances. ePN distances predict only innate, not learned, behavior because the latter engages the mushroom body, which enables differentiated responses to even very similar odors. Inhibition from iPNs, which scales with olfactory stimulus strength, enhances innate discrimination of closely related odors, by imposing a high-pass filter on transmitter release from ePN terminals that increases the distance between odor representations. PMID:24012006

  17. A correlate of HIV-1 control consisting of both innate and adaptive immune parameters best predicts viral load by multivariable analysis in HIV-1 infected viremic controllers and chronically-infected non-controllers.

    PubMed

    Tomescu, Costin; Liu, Qin; Ross, Brian N; Yin, Xiangfan; Lynn, Kenneth; Mounzer, Karam C; Kostman, Jay R; Montaner, Luis J

    2014-01-01

    HIV-1 infected viremic controllers maintain durable viral suppression below 2000 copies viral RNA/ml without anti-retroviral therapy (ART), and the immunological factor(s) associated with host control in presence of low but detectable viral replication are of considerable interest. Here, we utilized a multivariable analysis to identify which innate and adaptive immune parameters best correlated with viral control utilizing a cohort of viremic controllers (median 704 viral RNA/ml) and non-controllers (median 21,932 viral RNA/ml) that were matched for similar CD4+ T cell counts in the absence of ART. We observed that HIV-1 Gag-specific CD8+ T cell responses were preferentially targeted over Pol-specific responses in viremic controllers (p = 0.0137), while Pol-specific responses were positively associated with viral load (rho = 0.7753, p = 0.0001, n = 23). Viremic controllers exhibited significantly higher NK and plasmacytoid dendritic cells (pDC) frequency as well as retained expression of the NK CD16 receptor and strong target cell-induced NK cell IFN-gamma production compared to non-controllers (p<0.05). Despite differences in innate and adaptive immune function however, both viremic controllers (p<0.05) and non-controller subjects (p<0.001) exhibited significantly increased CD8+ T cell activation and spontaneous NK cell degranulation compared to uninfected donors. Overall, we identified that a combination of innate (pDC frequency) and adaptive (Pol-specific CD8+ T cell responses) immune parameters best predicted viral load (R2 = 0.5864, p = 0.0021, n = 17) by a multivariable analysis. Together, this data indicates that preferential Gag-specific over Pol-specific CD8+ T cell responses along with a retention of functional innate subsets best predict host control over viral replication in HIV-1 infected viremic controllers compared to chronically-infected non-controllers.

  18. Research and Development Strategies for the Current and Future Medical Treatment of Radiation Casualties

    DTIC Science & Technology

    2014-09-01

    M.B. Grace et al., “ 5-AED Enhances Survival of Irradiated Mice in a G-CSF-dependent Manner, Stimulates Innate Immune Cell Function, Reduces Radiation...exposure to a low IR dose, such as that incurred in a routine medical x-ray, cells can often recover utilizing their innate DNA repair pathways. A small...differentiate. In differentiation, HP stem cells become either myeloid or lymphoid progenitors. Once the cells have differentiated, they cannot de

  19. Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists

    PubMed Central

    Beatty, Gregory L.; Li, Yan; Long, Kristen B.

    2017-01-01

    INTRODUCTION CD40 is a promising therapeutic target for cancer immunotherapy. In patients with advanced solid malignancies, CD40 agonists have demonstrated some anti-tumor activity and a manageable toxicity profile. A 2nd generation of CD40 agonists has now been designed with optimized Fc receptor (FcR) binding based on preclinical evidence suggesting a critical role for FcR engagement in defining the potency of CD40 agonists in vivo. AREAS COVERED We provide a comprehensive review using PubMed and Google Patent databases on the current clinical status of CD40 agonists, strategies for applying CD40 agonists in cancer therapy, and the preclinical data that supports and is guiding the future development of CD40 agonists. EXPERT COMMENTARY There is a wealth of preclinical data that provide rationale on several distinct approaches for using CD40 agonists in cancer immunotherapy. This data illustrates the need to strategically combine CD40 agonists with other clinically active treatment regimens in order to realize the full potential of activating CD40 in vivo. Thus, critical to the success of this class of immune-oncology drugs, which have the potential to restore both innate and adaptive immunosurveillance, will be the identification of biomarkers for monitoring and predicting responses as well as informing mechanisms of treatment resistance. PMID:27927088

  20. Migration and Tissue Tropism of Innate Lymphoid Cells

    PubMed Central

    Kim, Chang H.; Hashimoto-Hill, Seika; Kim, Myunghoo

    2016-01-01

    Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research. PMID:26708278

  1. The effects of age and social interactions on innate immunity in a leaf-cutting ant.

    PubMed

    Armitage, Sophie A O; Boomsma, Jacobus J

    2010-07-01

    Both developmental and environmental factors shape investment in costly immune defences. Social insect workers have different selection pressures on their innate immune system compared to non-social insects because workers do not reproduce and their longevity affects the fitness of relatives. Furthermore, hygienic behavioural defences found in social insects can result in increased survival after fungal infection, although it is not known if there is modulation in physiological immune defence associated with group living vs. solitary living. Here we investigated whether physiological immune defence is affected by both age and the short-term presence or absence of nestmates in the leaf-cutting ant Acromyrmex octospinosus. We predicted that older ants would show immune senescence and that group living may result in prophylactic differences in immune defence compared to solitarily kept ants. We kept old and young workers alone or in nestmate groups for 48h and assayed a key innate immune system enzyme, expressing phenoloxidase (PO) and its stored precursor (proPO), a defence that acts immediately, i.e. it is constitutive. Short-term solitary living did not affect PO or proPO levels relative to group living controls and we found no evidence for immunosenescence in proPO. However, we found a significant increase in active PO in older workers, which is consistent with two non-mutually exclusive explanations: it could be an adaptive response or indicative of immunosenescence. Our results suggest that future studies of immunosenescence should consider both active immune effectors in the body, such as PO, and the stored potential to express immune defences, such as proPO. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Complex interplay of body condition, life history, and prevailing environment shapes immune defenses of garter snakes in the wild.

    PubMed

    Palacios, Maria G; Cunnick, Joan E; Bronikowski, Anne M

    2013-01-01

    The immunocompetence "pace-of-life" hypothesis proposes that fast-living organisms should invest more in innate immune defenses and less in adaptive defenses compared to slow-living ones. We found some support for this hypothesis in two life-history ecotypes of the snake Thamnophis elegans; fast-living individuals show higher levels of innate immunity compared to slow-living ones. Here, we optimized a lymphocyte proliferation assay to assess the complementary prediction that slow-living snakes should in turn show stronger adaptive defenses. We also assessed the "environmental" hypothesis that predicts that slow-living snakes should show lower levels of immune defenses (both innate and adaptive) given the harsher environment they live in. Proliferation of B- and T-lymphocytes of free-living individuals was on average higher in fast-living than slow-living snakes, opposing the pace-of-life hypothesis and supporting the environmental hypothesis. Bactericidal capacity of plasma, an index of innate immunity, did not differ between fast-living and slow-living snakes in this study, contrasting the previously documented pattern and highlighting the importance of annual environmental conditions as determinants of immune profiles of free-living animals. Our results do not negate a link between life history and immunity, as indicated by ecotype-specific relationships between lymphocyte proliferation and body condition, but suggest more subtle nuances than those currently proposed.

  3. Genetic contribution to neurodevelopmental outcomes in congenital heart disease: are some patients predetermined to have developmental delay?

    PubMed

    Rollins, Caitlin K; Newburger, Jane W; Roberts, Amy E

    2017-10-01

    Neurodevelopmental impairment is common in children with moderate to severe congenital heart disease (CHD). As children live longer and healthier lives, research has focused on identifying causes of neurodevelopmental morbidity that significantly impact long-term quality of life. This review will address the role of genetic factors in predicting neurodevelopmental outcome in CHD. A robust literature suggests that among children with various forms of CHD, those with known genetic/extracardiac anomalies are at highest risk of neurodevelopmental impairment. Advances in genetic technology have identified genetic causes of CHD in an increasing percentage of patients. Further, emerging data suggest substantial overlap between mutations in children with CHD and those that have previously been associated with neurodevelopmental disorders. Innate and patient factors appear to be more important in predicting neurodevelopmental outcome than medical/surgical variables. Future research is needed to establish a broader understanding of the mutations that contribute to neurodevelopmental disorders and the variations in expressivity and penetrance.

  4. Odor discrimination in Drosophila: from neural population codes to behavior.

    PubMed

    Parnas, Moshe; Lin, Andrew C; Huetteroth, Wolf; Miesenböck, Gero

    2013-09-04

    Taking advantage of the well-characterized olfactory system of Drosophila, we derive a simple quantitative relationship between patterns of odorant receptor activation, the resulting internal representations of odors, and odor discrimination. Second-order excitatory and inhibitory projection neurons (ePNs and iPNs) convey olfactory information to the lateral horn, a brain region implicated in innate odor-driven behaviors. We show that the distance between ePN activity patterns is the main determinant of a fly's spontaneous discrimination behavior. Manipulations that silence subsets of ePNs have graded behavioral consequences, and effect sizes are predicted by changes in ePN distances. ePN distances predict only innate, not learned, behavior because the latter engages the mushroom body, which enables differentiated responses to even very similar odors. Inhibition from iPNs, which scales with olfactory stimulus strength, enhances innate discrimination of closely related odors, by imposing a high-pass filter on transmitter release from ePN terminals that increases the distance between odor representations. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Innate threat-sensitive foraging: black-tailed deer remain more fearful of wolf than of the less dangerous black bear even after 100 years of wolf absence.

    PubMed

    Chamaillé-Jammes, Simon; Malcuit, Hélène; Le Saout, Soizic; Martin, Jean-Louis

    2014-04-01

    Anti-predator behaviors often entail foraging costs, and thus prey response to predator cues should be adjusted to the level of risk (threat-sensitive foraging). Simultaneously dangerous predators (with high hunting success) should engender the evolution of innate predator recognition and appropriate anti-predator behaviors that are effective even upon the first encounter with the predator. The above leads to the prediction that prey might respond more strongly to cues of dangerous predators that are absent, than to cues of less dangerous predators that are actually present. In an applied context this would predict an immediate and stronger response of ungulates to the return of top predators such as wolves (Canis lupus) in many parts of Europe and North America than to current, less threatening, mesopredators. We investigated the existence of innate threat-sensitive foraging in black-tailed deer. We took advantage of a quasi-experimental situation where deer had not experienced wolf predation for ca. 100 years, and were only potentially exposed to black bears (Ursus americanus). We tested the response of deer to the urine of wolf (dangerous) and black bear (less dangerous). Our results support the hypothesis of innate threat-sensitive foraging with clear increased passive avoidance and olfactory investigation of cues from wolf, and surprisingly none to black bear. Prey which have previously evolved under high risk of predation by wolves may react strongly to the return of wolf cues in their environments thanks to innate responses retained during the period of predator absence, and this could be the source of far stronger non-consumptive effects of the predator guild than currently observed.

  6. Anticipating the future: Automatic prediction failures in schizophrenia

    PubMed Central

    Ford, Judith M.; Mathalon, Daniel H.

    2011-01-01

    People with schizophrenia often misperceive sensations and misinterpret experiences, perhaps contributing to psychotic symptoms. These misperceptions and misinterpretations might result from an inability to make valid predictions about expected sensations and experiences. Healthy normal people take advantage of neural mechanisms that allow them to make predictions unconsciously, facilitating processing of expected sensations and distinguishing the expected from the unexpected. In this paper, we focus on two types of automatic, unconscious mechanisms that allow us to predict our perceptions. The first involves predictions made via innate mechanisms basic to all species in the animal kingdom—the efference copy and corollary discharge mechanisms. They accompany our voluntary movements and allow us to suppress sensations resulting from our actions. We study this during talking, and show that auditory cortical response to the speech sounds during talking is reduced compared to when they are played back. This suppression is reduced in schizophrenia, suggesting a failure to predict the sensations resulting from talking. The second mechanism involves implicitly learning what to expect from the current context of events. We study this by observing the brain's response to an unexpected repetition of an event, when a change would have been predicted. That patients have a reduced response suggests they failed to predict that it was time for a change. Both types of predictions should happen automatically and effortlessly, allowing for economic processing of expected events and orientation to unexpected ones. These prediction failures characterize the diagnosis of schizophrenia rather than reflecting specific symptoms. PMID:21959054

  7. Performance on innate behaviour during early development as a function of stress level.

    PubMed

    Ryu, Soojin; De Marco, Rodrigo J

    2017-08-10

    What is the relationship between the level of acute stress and performance on innate behaviour? The diversity of innate behaviours and lack of sufficient data gathered under the same experimental conditions leave this question unresolved. While evidence points to an inverted-U shaped relationship between the level of acute stress and various measures of learning and memory function, it is unknown the extent to which such a non-linear function applies to performance on innate behaviour, which develops without example or practice under natural circumstances. The fundamental prediction of this view is that moderate stress levels will improve performance, while higher levels will not. Testing this proposition has been difficult because it entails an overall effect that must be invariant to the nature of the stressor, the behaviour under scrutiny and the stimulus that drives it. Here, we report new experimental results showing that developing zebrafish (Danio rerio) under moderate but not higher levels of stress improved their performance on instinctive activities driven by visual, hydrodynamic and thermal inputs. Our findings reveal, for the first time, the existence of an inverted-U shaped performance function according to stress level during early development in a series of innate behaviours.

  8. Innate and genetic nature of circadian rhythms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehret, C.F.

    1979-01-01

    The field of Circadian Cybernetics is presented as a major new integrating discipline that deals with biological time constants in the temporal range from minutes to days. The essential generalizations that give the field strong predictive power are presented in the form of 3 sets of rules: (1) The Mode Rules; (2) The Period Rules; and (3) The Phase Rules. Within this context the innate and phylogenetically ubiquitous nature of circadian oscillations is comprehended, along with their responses to a wide variety environmental stimuli.

  9. Pattern recognition receptor-mediated cytokine response in infants across 4 continents.

    PubMed

    Smolen, Kinga K; Ruck, Candice E; Fortuno, Edgardo S; Ho, Kevin; Dimitriu, Pedro; Mohn, William W; Speert, David P; Cooper, Philip J; Esser, Monika; Goetghebuer, Tessa; Marchant, Arnaud; Kollmann, Tobias R

    2014-03-01

    Susceptibility to infection as well as response to vaccination varies among populations. To date, the underlying mechanisms responsible for these clinical observations have not been fully delineated. Because innate immunity instructs adaptive immunity, we hypothesized that differences between populations in innate immune responses may represent a mechanistic link to variation in susceptibility to infection or response to vaccination. Determine whether differences in innate immune responses exist among infants from different continents of the world. We determined the innate cytokine response following pattern recognition receptor (PRR) stimulation of whole blood from 2-year-old infants across 4 continents (Africa, North America, South America, and Europe). We found that despite the many possible genetic and environmental exposure differences in infants across 4 continents, innate cytokine responses were similar for infants from North America, South America, and Europe. However, cells from South African infants secreted significantly lower levels of cytokines than did cells from infants from the 3 other sites, and did so following stimulation of extracellular and endosomal but not cytosolic PRRs. Substantial differences in innate cytokine responses to PRR stimulation exist among different populations of infants that could not have been predicted. Delineating the underlying mechanism(s) for these differences will not only aid in improving vaccine-mediated protection but possibly also provide clues for the susceptibility to infection in different regions of the world. Copyright © 2013 The Authors. Published by Mosby, Inc. All rights reserved.

  10. Are you experienced? Understanding bladder innate immunity in the context of recurrent urinary tract infection

    PubMed Central

    O’Brien, Valerie P.; Hannan, Thomas J.; Schaeffer, Anthony J.; Hultgren, Scott J.

    2015-01-01

    Purpose of review Recurrent urinary tract infection (rUTI) is a serious clinical problem, yet effective therapeutic options are limited, especially against multidrug-resistant uropathogens. In this review, we explore the development of a clinically relevant model of rUTI in previously infected mice and review recent developments in bladder innate immunity that may affect susceptibility to rUTI. Recent findings Chronic bladder inflammation during prolonged bacterial cystitis in mice causes bladder mucosal remodelling that sensitizes the host to rUTI. Although constitutive defenses help prevent bacterial colonization of the urinary bladder, once infection occurs, induced cytokine and myeloid cell responses predominate and the balance of immune cell defense and bladder immunopathology is critical for determining disease outcome, in both naïve and experienced mice. In particular, the maintenance of the epithelial barrier appears to be essential for preventing severe infection. Summary The innate immune response plays a key role in determining susceptibility to rUTI. Future studies should be directed towards understanding how the innate immune response changes as a result of bladder mucosal remodelling in previously infected mice, and validating these findings in human clinical specimens. New therapeutics targeting the immune response should selectively target the induced innate responses that cause bladder immunopathology, while leaving protective defenses intact. PMID:25517222

  11. Are you experienced? Understanding bladder innate immunity in the context of recurrent urinary tract infection.

    PubMed

    O'Brien, Valerie P; Hannan, Thomas J; Schaeffer, Anthony J; Hultgren, Scott J

    2015-02-01

    Recurrent urinary tract infection (rUTI) is a serious clinical problem, yet effective therapeutic options are limited, especially against multidrug-resistant uropathogens. In this review, we explore the development of a clinically relevant model of rUTI in previously infected mice and review recent developments in bladder innate immunity that may affect susceptibility to rUTI. Chronic bladder inflammation during prolonged bacterial cystitis in mice causes bladder mucosal remodelling that sensitizes the host to rUTI. Although constitutive defenses help prevent bacterial colonization of the urinary bladder, once infection occurs, induced cytokine and myeloid cell responses predominate and the balance of immune cell defense and bladder immunopathology is critical for determining disease outcome, in both naïve and experienced mice. In particular, the maintenance of the epithelial barrier appears to be essential for preventing severe infection. The innate immune response plays a key role in determining susceptibility to rUTI. Future studies should be directed towards understanding how the innate immune response changes as a result of bladder mucosal remodelling in previously infected mice, and validating these findings in human clinical specimens. New therapeutics targeting the immune response should selectively target the induced innate responses that cause bladder immunopathology, while leaving protective defenses intact.

  12. Dry Eye Disease and Microbial Keratitis: Is There a Connection?

    PubMed Central

    Narayanan, Srihari; Redfern, Rachel L.; Miller, William L.; Nichols, Kelly K.; McDermott, Alison M.

    2013-01-01

    Dry eye is a common ocular surface disease of multifactorial etiology characterized by elevated tear osmolality and inflammation leading to a disrupted ocular surface. The latter is a risk factor for ocular surface infection, yet overt infection is not commonly seen clinically in the typical dry eye patient. This suggests that important innate mechanisms operate to protect the dry eye from invading pathogens. This article reviews the current literature on epidemiology of ocular surface infection in dry eye patients and laboratory-based studies on innate immune mechanisms operating at the ocular surface and their alterations in human dry eye and animal models. The review highlights current understanding of innate immunity in dry eye and identifies gaps in our knowledge to help direct future studies to further unravel the complexities of dry eye disease and its sequelae. PMID:23583043

  13. Individual differences in bodily freezing predict emotional biases in decision making

    PubMed Central

    Ly, Verena; Huys, Quentin J. M.; Stins, John F.; Roelofs, Karin; Cools, Roshan

    2014-01-01

    Instrumental decision making has long been argued to be vulnerable to emotional responses. Literature on multiple decision making systems suggests that this emotional biasing might reflect effects of a system that regulates innately specified, evolutionarily preprogrammed responses. To test this hypothesis directly, we investigated whether effects of emotional faces on instrumental action can be predicted by effects of emotional faces on bodily freezing, an innately specified response to aversive relative to appetitive cues. We tested 43 women using a novel emotional decision making task combined with posturography, which involves a force platform to detect small oscillations of the body to accurately quantify postural control in upright stance. On the platform, participants learned whole body approach-avoidance actions based on monetary feedback, while being primed by emotional faces (angry/happy). Our data evidence an emotional biasing of instrumental action. Thus, angry relative to happy faces slowed instrumental approach relative to avoidance responses. Critically, individual differences in this emotional biasing effect were predicted by individual differences in bodily freezing. This result suggests that emotional biasing of instrumental action involves interaction with a system that controls innately specified responses. Furthermore, our findings help bridge (animal and human) decision making and emotion research to advance our mechanistic understanding of decision making anomalies in daily encounters as well as in a wide range of psychopathology. PMID:25071491

  14. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  15. Progranulin, lysosomal regulation and neurodegenerative disease.

    PubMed

    Kao, Aimee W; McKay, Andrew; Singh, Param Priya; Brunet, Anne; Huang, Eric J

    2017-06-01

    The discovery that heterozygous and homozygous mutations in the gene encoding progranulin are causally linked to frontotemporal dementia and lysosomal storage disease, respectively, reveals previously unrecognized roles of the progranulin protein in regulating lysosome biogenesis and function. Given the importance of lysosomes in cellular homeostasis, it is not surprising that progranulin deficiency has pleiotropic effects on neural circuit development and maintenance, stress response, innate immunity and ageing. This Progress article reviews recent advances in progranulin biology emphasizing its roles in lysosomal function and brain innate immunity, and outlines future avenues of investigation that may lead to new therapeutic approaches for neurodegeneration.

  16. Systems-Level Analysis of Innate Immunity

    PubMed Central

    Zak, Daniel E.; Tam, Vincent C.; Aderem, Alan

    2014-01-01

    Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology. PMID:24655298

  17. Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments

    NASA Astrophysics Data System (ADS)

    D'Angelo, C.; Smith, E. G.; Oswald, F.; Burt, J.; Tchernov, D.; Wiedenmann, J.

    2012-12-01

    Homologs of the green fluorescent protein (GFP) are a prevalent group of host pigments responsible for the green, red and purple-blue colours of many reef-building corals. They have been suggested to contribute to the striking coloration changes of different corals species in response to wounding and infestation with epibionts/parasites. In order to elucidate the physiological processes underlying the potentially disease-related colour changes, we have analysed spatial and temporal expression patterns of GFP-like proteins and other biomarkers in corals from the Red Sea, the Arabian/Persian Gulf and Fiji both in their natural habitat and under specific laboratory conditions. The expression of distinct GFP-like proteins and the growth marker proliferating cell nuclear antigen was upregulated in growing branch tips and margins of healthy coral colonies as well as in disturbed colony parts. Furthermore, phenoloxidase activity increased in these proliferating tissues. It is thus demonstrated that locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals and, moreover, these processes can be detected utilizing the excellent biomarker properties of GFP-like proteins. Finally, the results of this work suggest an additional vulnerability of corals in predicted future scenarios of increased ocean acidification, warming and eutrophication that are anticipated to reduce coral growth capacity.

  18. The role of extracellular vesicles when innate meets adaptive.

    PubMed

    Groot Kormelink, Tom; Mol, Sanne; de Jong, Esther C; Wauben, Marca H M

    2018-04-03

    Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.

  19. Enhanced innate immune responses in a brood parasitic cowbird species: degranulation and oxidative burst

    USGS Publications Warehouse

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    We examined the relative effectiveness of two innate immune responses in two species of New World blackbirds (Passeriformes, Icteridae) that differ in resistance to West Nile virus (WNV). We measured degranulation and oxidative burst, two fundamental components of phagocytosis, and we predicted that the functional effectiveness of these innate immune responses would correspond to the species' relative resistance to WNV. The brown-headed cowbird (Molothrus ater), an obligate brood parasite, had previously shown greater resistance to infection with WNV, lower viremia and faster recovery when infected, and lower subsequent antibody titers than the red-winged blackbird (Agelaius phoeniceus), a close relative that is not a brood parasite. We found that cowbird leukocytes were significantly more functionally efficient than those of the blackbird leukocytes and 50% more effective at killing the challenge bacteria. These results suggest that further examination of innate immunity in the cowbird may provide insight into adaptations that underlie its greater resistance to WNV. These results support an eco-immunological interpretation that species like the cowbird, which inhabit ecological niches with heightened exposure to parasites, experience evolutionary selection for more effective immune responses.

  20. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response.

    PubMed

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions.

  1. Friend or Foe: Innate Sensing of HIV in the Female Reproductive Tract.

    PubMed

    Roan, Nadia R; Jakobsen, Martin R

    2016-02-01

    The female reproductive tract (FRT) is a major site for human immunodeficiency virus (HIV) infection. There currently exists a poor understanding of how the innate immune system is activated upon HIV transmission and how this activation may affect systemic spread of HIV from the FRT. However, multiple mechanisms for how HIV is sensed have been deciphered using model systems with cell lines and peripheral blood-derived cells. The aim of this review is to summarize recent progress in the field of HIV innate immune sensing and place this in the context of the FRT. Because HIV is somewhat unique as an STD that thrives under inflammatory conditions, the response of cells upon sensing HIV gene products can either promote or limit HIV infection depending on the context. Future studies should include investigations into how FRT-derived primary cells sense and respond to HIV to confirm conclusions drawn from non-mucosal cells. Understanding how cells of the FRT participate in and effect innate immune sensing of HIV will provide a clearer picture of what parameters during the early stages of HIV exposure determine transmission success. Such knowledge could pave the way for novel approaches for preventing HIV acquisition in women.

  2. Emerging concepts and future challenges in innate lymphoid cell biology

    PubMed Central

    Artis, David

    2016-01-01

    Innate lymphoid cells (ILCs) are innate immune cells that are ubiquitously distributed in lymphoid and nonlymphoid tissues and enriched at mucosal and barrier surfaces. Three major ILC subsets are recognized in mice and humans. Each of these subsets interacts with innate and adaptive immune cells and integrates cues from the epithelium, the microbiota, and pathogens to regulate inflammation, immunity, tissue repair, and metabolic homeostasis. Although intense study has elucidated many aspects of ILC development, phenotype, and function, numerous challenges remain in the field of ILC biology. In particular, recent work has highlighted key new questions regarding how these cells communicate with their environment and other cell types during health and disease. This review summarizes new findings in this rapidly developing field that showcase the critical role ILCs play in directing immune responses through their ability to interact with a variety of hematopoietic and nonhematopoietic cells. In addition, we define remaining challenges and emerging questions facing the field. Finally, this review discusses the potential application of basic studies of ILC biology to the development of new treatments for human patients with inflammatory and infectious diseases in which ILCs play a role. PMID:27811053

  3. Accelerated evolution of innate immunity proteins in social insects: adaptive evolution or relaxed constraint?

    PubMed

    Harpur, Brock A; Zayed, Amro

    2013-07-01

    The genomes of eusocial insects have a reduced complement of immune genes-an unusual finding considering that sociality provides ideal conditions for disease transmission. The following three hypotheses have been invoked to explain this finding: 1) social insects are attacked by fewer pathogens, 2) social insects have effective behavioral or 3) novel molecular mechanisms for combating pathogens. At the molecular level, these hypotheses predict that canonical innate immune pathways experience a relaxation of selective constraint. A recent study of several innate immune genes in ants and bees showed a pattern of accelerated amino acid evolution, which is consistent with either positive selection or a relaxation of constraint. We studied the population genetics of innate immune genes in the honey bee Apis mellifera by partially sequencing 13 genes from the bee's Toll pathway (∼10.5 kb) and 20 randomly chosen genes (∼16.5 kb) sequenced in 43 diploid workers. Relative to the random gene set, Toll pathway genes had significantly higher levels of amino acid replacement mutations segregating within A. mellifera and fixed between A. mellifera and A. cerana. However, levels of diversity and divergence at synonymous sites did not differ between the two gene sets. Although we detect strong signs of balancing selection on the pathogen recognition gene pgrp-sa, many of the genes in the Toll pathway show signatures of relaxed selective constraint. These results are consistent with the reduced complement of innate immune genes found in social insects and support the hypothesis that some aspect of eusociality renders canonical innate immunity superfluous.

  4. Innate Immunity against Leishmania Infections

    PubMed Central

    Gurung, Prajwal; Kanneganti, Thirumala-Devi

    2015-01-01

    Leishmaniasis is a major health problem that affects more than 300 million people throughout the world. The morbidity associated with the disease causes serious economic burden in Leishmania endemic regions. Despite the morbidity and economic burden associated with Leishmaniasis, this disease rarely gets noticed and is still categorized under neglected tropical diseases. The lack of research combined with the ability of Leishmania to evade immune recognition has rendered our efforts to design therapeutic treatments or vaccines challenging. Herein, we review the literature on Leishmania from innate immune perspective and discuss potential problems as well as solutions and future directions that could aid in identifying novel therapeutic targets to eliminate this parasite. PMID:26249747

  5. Insights on adaptive and innate immunity in canine leishmaniosis.

    PubMed

    Hosein, Shazia; Blake, Damer P; Solano-Gallego, Laia

    2017-01-01

    Canine leishmaniosis (CanL) is caused by the parasite Leishmania infantum and is a systemic disease, which can present with variable clinical signs, and clinicopathological abnormalities. Clinical manifestations can range from subclinical infection to very severe systemic disease. Leishmaniosis is categorized as a neglected tropical disease and the complex immune responses associated with Leishmania species makes therapeutic treatments and vaccine development challenging for both dogs and humans. In this review, we summarize innate and adaptive immune responses associated with L. infantum infection in dogs, and we discuss the problems associated with the disease as well as potential solutions and the future direction of required research to help control the parasite.

  6. Neurobiology of fear and specific phobias.

    PubMed

    Garcia, René

    2017-09-01

    Fear, which can be expressed innately or after conditioning, is triggered when a danger or a stimulus predicting immediate danger is perceived. Its role is to prepare the body to face this danger. However, dysfunction in fear processing can lead to psychiatric disorders in which fear outweighs the danger or possibility of harm. Although recognized as highly debilitating, pathological fear remains insufficiently treated, indicating the importance of research on fear processing. The neurobiological basis of normal and pathological fear reactions is reviewed in this article. Innate and learned fear mechanisms, particularly those involving the amygdala, are considered. These fear mechanisms are also distinguished in specific phobias, which can indeed be nonexperiential (implicating innate, learning-independent mechanisms) or experiential (implicating learning-dependent mechanisms). Poor habituation and poor extinction are presented as dysfunctional mechanisms contributing to persistence of nonexperiential and experiential phobias, respectively. © 2017 Garcia; Published by Cold Spring Harbor Laboratory Press.

  7. Immunity and fitness in a wild population of Eurasian kestrels Falco tinnunculus

    NASA Astrophysics Data System (ADS)

    Parejo, Deseada; Silva, Nadia

    2009-10-01

    The immune system of vertebrates consists of several components that partly interact and complement each other. Therefore, the assessment of the overall effectiveness of immune defence requires the simultaneous measurement of different immune components. In this study, we investigated intraspecific variability of innate [i.e. natural antibodies (NAb) and complement] and acquired (i.e. leucocyte profiles) immunity and its relationship with fitness correlates (i.e. blood parasite load and reproductive success in adults and body mass and survival until fledging in nestlings) in the Eurasian kestrel Falco tinnunculus. Immunity differed between nestlings and adults and also between adult males and females. Adult kestrels with higher levels of complement were less parasitised by Haemoproteus, and males with higher values of NAbs showed a higher reproductive success. In nestlings, the H/L ratio was negatively related to body mass. Survival until fledging was predicted by all measured immunological variables of nestlings as well as by their fathers' level of complement. This is the first time that innate immunity is linked to survival in a wild bird. Thus, intraspecific variation in different components of immunity predicts variation in fitness prospects in kestrels, which highlights the importance of measuring innate immune components together with components of the acquired immunity in studies assessing the effectiveness of the immune system in wild animals.

  8. The Innate Immune System in Acute and Chronic Wounds

    PubMed Central

    MacLeod, Amanda S.; Mansbridge, Jonathan N.

    2016-01-01

    Significance: This review article provides an overview of the critical roles of the innate immune system to wound healing. It explores aspects of dysregulation of individual innate immune elements known to compromise wound repair and promote nonhealing wounds. Understanding the key mechanisms whereby wound healing fails will provide seed concepts for the development of new therapeutic approaches. Recent Advances: Our understanding of the complex interactions of the innate immune system in wound healing has significantly improved, particularly in our understanding of the role of antimicrobials and peptides and the nature of the switch from inflammatory to reparative processes. This takes place against an emerging understanding of the relationship between human cells and commensal bacteria in the skin. Critical Issues: It is well established and accepted that early local inflammatory mediators in the wound bed function as an immunological vehicle to facilitate immune cell infiltration and microbial clearance upon injury to the skin barrier. Both impaired and excessive innate immune responses can promote nonhealing wounds. It appears that the switch from the inflammatory to the proliferative phase is tightly regulated and mediated, at least in part, by a change in macrophages. Defining the factors that initiate the switch in such macrophage phenotypes and functions is the subject of multiple investigations. Future Directions: The review highlights processes that may be useful targets for further investigation, particularly the switch from M1 to M2 macrophages that appears to be critical as dysregulation of this switch occurs during defective wound healing. PMID:26862464

  9. Biomaterials for mRNA Delivery

    PubMed Central

    Islam, Mohammad Ariful; Reesor, Emma K. G.; Xu, Yingjie; Zope, Harshal R.; Zetter, Bruce R.; Shi, Jinjun

    2015-01-01

    Messenger RNA (mRNA) has recently emerged with remarkable potential as an effective alternative to DNA-based therapies because of several unique advantages. mRNA does not require nuclear entry for transfection activity and has a negligible chance of integrating into the host genome which excludes the possibility of potentially detrimental genomic alternations. Chemical modification of mRNA has further enhanced its stability and decreased its activation of innate immune responses. Additionally, mRNA has been found to have rapid expression and predictable kinetics. Nevertheless, the ubiquitous application of mRNA remains challenging given its unfavorable attributes, such as large size, negative charge and susceptibility to enzymatic degradation. Further refinement of mRNA delivery modalities is therefore essential for its development as a therapeutic tool. This review provides an exclusive overview of current state-of-the-art biomaterials and nanotechnology platforms for mRNA delivery, and discusses future prospects to bring these exciting technologies into clinical practice. PMID:26280625

  10. Innate immunity is sufficient for the clearance of Chlamydia trachomatis from the female mouse genital tract.

    PubMed

    Sturdevant, Gail L; Caldwell, Harlan D

    2014-10-01

    Chlamydia muridarum and Chlamydia trachomatis, mouse and human strains, respectively, have been used to study immunity in a murine model of female genital tract infection. Despite evidence that unique genes of these otherwise genomically similar strains could play a role in innate immune evasion in their respective mouse and human hosts, there have been no animal model findings to directly support this conclusion. Here, we infected C57BL/6 and adaptive immune-deficient Rag1(-/-) female mice with these strains and evaluated their ability to spontaneously resolve genital infection. Predictably, C57BL/6 mice spontaneously cleared infection caused by both chlamydial strains. In contrast, Rag1(-/-) mice which lack mature T and B cell immunity but maintain functional innate immune effectors were incapable of resolving C. muridarum infection but spontaneously cleared C. trachomatis infection. This distinct dichotomy in adaptive and innate immune-mediated clearance between mouse and human strains has important cautionary implications for the study of natural immunity and vaccine development in the mouse model. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Tail loss compromises immunity in the many-lined skink, Eutropis multifasciata

    NASA Astrophysics Data System (ADS)

    Kuo, Chi-Chien; Yao, Chiou-Ju; Lin, Te-En; Liu, Hsu-Che; Hsu, Yu-Cheng; Hsieh, Ming-Kun; Huang, Wen-San

    2013-04-01

    Tail autotomy incurs energetic costs, and thus, a trade-off in resource allocation may lead to compromised immunity in lizards. We tested the hypothesis that tailless lizards will favor constitutive innate immunity responses over an energetically costly inflammatory response. The influence of fasting and colorful ornamentation was also investigated. We experimentally induced tail autotomy in the lizard Eutropis multifasciata and found that inflammation was suppressed by tail loss, but not further affected by fasting; the suppressive effect of colorful ornamentation was manifested only in males, but not in females. Constitutive innate immunity was not affected by any of these factors. As expected, only costly inflammation was compromised, and a less expensive constitutive innate immunity might be favored as a competent first-line defense during energetically demanding periods. After considering conventional trade-offs among tail regeneration and reproduction, further extending these studies to incorporate disease risk and how this influences escape responses to predators and future reproduction would make worthwhile studies.

  12. Probing the evolutionary origins of music perception.

    PubMed

    McDermott, Josh; Hauser, Marc D

    2005-12-01

    Empirical data have recently begun to inform debates on the evolutionary origins of music. In this paper we discuss some of our recent findings and related theoretical issues. We claim that theories of the origins of music will be usefully constrained if we can determine which aspects of music perception are innate, and, of those, which are uniquely human and specific to music. Comparative research in nonhuman animals, particularly nonhuman primates, is thus critical to the debate. In this paper we focus on the preferences that characterize most humans' experience of music, testing whether similar preferences exist in nonhuman primates. Our research suggests that many rudimentary acoustic preferences, such as those for consonant over dissonant intervals, may be unique to humans. If these preferences prove to be innate in humans, they may be candidates for music-specific adaptations. To establish whether such preferences are innate in humans, one important avenue for future research will be the collection of data from different cultures. This may be facilitated by studies conducted over the internet.

  13. Southern Monarchs do not Develop Learned Preferences for Flowers With Pyrrolizidine Alkaloids.

    PubMed

    de Oliveira, Marina Vasconcelos; Trigo, José Roberto; Rodrigues, Daniela

    2015-07-01

    Danaus butterflies sequester pyrrolizidine alkaloids (PAs) from nectar and leaves of various plant species for defense and reproduction. We tested the hypothesis that the southern monarch butterfly Danaus erippus shows innate preferences for certain flower colors and has the capacity to develop learned preferences for artificial flowers presenting advantageous floral rewards such as PAs. We predicted that orange and yellow flowers would be innately preferred by southern monarchs. Another prediction is that flowers with both sucrose and PAs would be preferred over those having sucrose only, regardless of flower color. In nature, males of Danaus generally visit PA sources more often than females, so we expected that males of D. erippus would exhibit a stronger learned preference for PA sources than the females. In the innate preference tests, adults were offered artificial non-rewarding yellow, orange, blue, red, green, and violet flowers. Orange and yellow artificial flowers were most visited by southern monarchs, followed by blue and red ones. No individual visited either green or violet flowers. For assessing learned preferences for PA flowers over flowers with no PAs, southern monarchs were trained to associate orange flowers with sucrose plus the PA monocrotaline vs. yellow flowers with sucrose only; the opposite combination was used to train another set of butterflies. In the tests, empty flowers were offered to trained butterflies. Neither males nor females showed learned preferences for flower colors associated with PAs in the training set. Thus, southern monarchs resemble the sister species Danaus plexippus in their innate preferences for orange and yellow flowers. Southern monarchs, similarly to temperate monarchs, might not be as PA-demanding as are other danaine species.

  14. A comparative study of an innate immune response in Lamprologine cichlid fishes.

    PubMed

    O'Connor, Constance M; Reddon, Adam R; Marsh-Rollo, Susan E; Hellmann, Jennifer K; Ligocki, Isaac Y; Hamilton, Ian M; Balshine, Sigal

    2014-10-01

    Social interactions facilitate pathogen transmission and increase virulence. Therefore, species that live in social groups are predicted to suffer a higher pathogen burden, to invest more heavily in immune defence against pathogens, or both. However, there are few empirical tests of whether social species indeed invest more heavily in immune defence than non-social species. In the current study, we conducted a phylogenetically controlled comparison of innate immune response in Lamprologine cichlid fishes. We focused on three species of highly social cichlids that live in permanent groups and exhibit cooperative breeding (Julidochromis ornatus, Neolamprologus pulcher and Neolamprologus savoryi) and three species of non-social cichlids that exhibit neither grouping nor cooperative behaviour (Telmatochromis temporalis, Neolamprologus tetracanthus and Neolamprologus modestus). We quantified the innate immune response by injecting wild fishes with phytohaemagglutinin (PHA), a lectin that causes a cell-mediated immune response. We predicted that the three highly social species would show a greater immune reaction to the PHA treatment, indicating higher investment in immune defence against parasites relative to the three non-social species. We found significant species-level variation in immune response, but contrary to our prediction, this variation did not correspond to social system. However, we found that immune response was correlated with territory size across the six species. Our results indicate that the common assumption of a positive relationship between social system and investment in immune function may be overly simplistic. We suggest that factors such as rates of both in-group and out-group social interactions are likely to be important mediators of the relationship between sociality and immune function.

  15. A comparative study of an innate immune response in Lamprologine cichlid fishes

    NASA Astrophysics Data System (ADS)

    O'Connor, Constance M.; Reddon, Adam R.; Marsh-Rollo, Susan E.; Hellmann, Jennifer K.; Ligocki, Isaac Y.; Hamilton, Ian M.; Balshine, Sigal

    2014-10-01

    Social interactions facilitate pathogen transmission and increase virulence. Therefore, species that live in social groups are predicted to suffer a higher pathogen burden, to invest more heavily in immune defence against pathogens, or both. However, there are few empirical tests of whether social species indeed invest more heavily in immune defence than non-social species. In the current study, we conducted a phylogenetically controlled comparison of innate immune response in Lamprologine cichlid fishes. We focused on three species of highly social cichlids that live in permanent groups and exhibit cooperative breeding ( Julidochromis ornatus, Neolamprologus pulcher and Neolamprologus savoryi) and three species of non-social cichlids that exhibit neither grouping nor cooperative behaviour ( Telmatochromis temporalis, Neolamprologus tetracanthus and Neolamprologus modestus). We quantified the innate immune response by injecting wild fishes with phytohaemagglutinin (PHA), a lectin that causes a cell-mediated immune response. We predicted that the three highly social species would show a greater immune reaction to the PHA treatment, indicating higher investment in immune defence against parasites relative to the three non-social species. We found significant species-level variation in immune response, but contrary to our prediction, this variation did not correspond to social system. However, we found that immune response was correlated with territory size across the six species. Our results indicate that the common assumption of a positive relationship between social system and investment in immune function may be overly simplistic. We suggest that factors such as rates of both in-group and out-group social interactions are likely to be important mediators of the relationship between sociality and immune function.

  16. Let’s Tie the Knot: Marriage of Complement and Adaptive Immunity in Pathogen Evasion, for Better or Worse

    PubMed Central

    Bennett, Kaila M.; Rooijakkers, Suzan H. M.; Gorham, Ronald D.

    2017-01-01

    The complement system is typically regarded as an effector arm of innate immunity, leading to recognition and killing of microbial invaders in body fluids. Consequently, pathogens have engaged in an arms race, evolving molecules that can interfere with proper complement responses. However, complement is no longer viewed as an isolated system, and links with other immune mechanisms are continually being discovered. Complement forms an important bridge between innate and adaptive immunity. While its roles in innate immunity are well-documented, its function in adaptive immunity is less characterized. Therefore, it is no surprise that the field of pathogenic complement evasion has focused on blockade of innate effector functions, while potential inhibition of adaptive immune responses (via complement) has been overlooked to a certain extent. In this review, we highlight past and recent developments on the involvement of complement in the adaptive immune response. We discuss the mechanisms by which complement aids in lymphocyte stimulation and regulation, as well as in antigen presentation. In addition, we discuss microbial complement evasion strategies, and highlight specific examples in the context of adaptive immune responses. These emerging ties between complement and adaptive immunity provide a catalyst for future discovery in not only the field of adaptive immune evasion but in elucidating new roles of complement. PMID:28197139

  17. The innate immune rheostat: influence on lung inflammatory disease and secondary bacterial pneumonia.

    PubMed

    Hussell, Tracy; Cavanagh, Mary M

    2009-08-01

    The activity of innate immunity is not simply dictated by the presence of an antigen but also by the balance between negative regulatory and immune potentiator pathways. Even in the absence of antigen, innate immunity can 'inflame' if negative regulators are absent. This resting state is adaptable and dictated by environmental influences, host genetics and past infection history. A return to homoeostasis post inflammation may therefore not leave the tissue in an identical state to that prior to the inflammatory event. This adaptability makes us all unique and also explains the variable outcome experienced by a diverse population to the same inflammatory stimulus. Using murine models we have identified that influenza virus causes a long-term modification of the lung microenvironment by a de-sensitization to bacterial products and an increase in the myeloid negative regulator CD200R (CD200 receptor). These two events prevent subsequent inflammatory damage while the lung is healing, but also they may predispose to bacterial colonization of the lower respiratory tract should regulatory mechanisms overshoot. In the extreme, this leads to bacterial pneumonia, sepsis and death. A deeper understanding of the consequences arising from innate immune cell alteration during influenza infection and the subsequent development of bacterial complications has important implications for future drug development.

  18. Let's Tie the Knot: Marriage of Complement and Adaptive Immunity in Pathogen Evasion, for Better or Worse.

    PubMed

    Bennett, Kaila M; Rooijakkers, Suzan H M; Gorham, Ronald D

    2017-01-01

    The complement system is typically regarded as an effector arm of innate immunity, leading to recognition and killing of microbial invaders in body fluids. Consequently, pathogens have engaged in an arms race, evolving molecules that can interfere with proper complement responses. However, complement is no longer viewed as an isolated system, and links with other immune mechanisms are continually being discovered. Complement forms an important bridge between innate and adaptive immunity. While its roles in innate immunity are well-documented, its function in adaptive immunity is less characterized. Therefore, it is no surprise that the field of pathogenic complement evasion has focused on blockade of innate effector functions, while potential inhibition of adaptive immune responses (via complement) has been overlooked to a certain extent. In this review, we highlight past and recent developments on the involvement of complement in the adaptive immune response. We discuss the mechanisms by which complement aids in lymphocyte stimulation and regulation, as well as in antigen presentation. In addition, we discuss microbial complement evasion strategies, and highlight specific examples in the context of adaptive immune responses. These emerging ties between complement and adaptive immunity provide a catalyst for future discovery in not only the field of adaptive immune evasion but in elucidating new roles of complement.

  19. Polysaccharides in Lentinus edodes: isolation, structure, immunomodulating activity and future prospective.

    PubMed

    Xu, Xiaofei; Yan, Huidan; Tang, Jian; Chen, Jian; Zhang, Xuewu

    2014-01-01

    Lentinus edodes has been valued as edible and medical resources. Polysaccharides have been known to be the most potent antitumor and immunomodulating substance in Lentinus edodes. In this review, we summarize the current knowledge of the polysaccharides isolated from Lentinus edodes, including extraction and purification methods, chemical structure and chain conformation, the effects on innate and adaptive immunity and their mechanism, relationship between structure and function, and the future prospects.

  20. New insights into innate immune control of systemic candidiasis

    PubMed Central

    Lionakis, Michail S.

    2014-01-01

    Systemic infection caused by Candida species is the fourth leading cause of nosocomial bloodstream infection in modern hospitals and carries high morbidity and mortality despite antifungal therapy. A recent surge of immunological studies in the mouse models of systemic candidiasis and the parallel discovery and phenotypic characterization of inherited genetic disorders in antifungal immune factors that are associated with enhanced susceptibility or resistance to the infection have provided new insights into the cellular and molecular basis of protective innate immune responses against Candida. In this review, the new developments in our understanding of how the mammalian immune system responds to systemic Candida challenge are synthesized and important future research directions are highlighted. PMID:25023483

  1. Tissue-Specific Transcriptome Profiling of Plutella Xylostella Third Instar Larval Midgut

    PubMed Central

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10-5. Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis indentified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense. As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current sequencing effort greatly enriched the existing P. xylostella EST database, and makes RNAseq a viable option in the future genomic analysis. PMID:23091412

  2. Tissue-specific transcriptome profiling of Plutella xylostella third instar larval midgut.

    PubMed

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416 bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10(-5). Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis identified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense.As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current sequencing effort greatly enriched the existing P. xylostella EST database, and makes RNAseq a viable option in the future genomic analysis.

  3. Innate immune responses against foot-and-mouth disease virus: current understanding and future directions.

    PubMed

    Summerfield, Artur; Guzylack-Piriou, Laurence; Harwood, Lisa; McCullough, Kenneth C

    2009-03-15

    Foot-and-mouth disease (FMD) represents one of the most economically important diseases of farm animals. The basis for the threat caused by this virus is the high speed of replication, short incubation time, high contagiousness, and high mutation rate resulting in constant antigenic changes. Thus, although protective immune responses against FMD virus (FMDV) can be efficacious, the rapidity of virus replication and spread can outpace immune defence development and overrun the immune system. FMDV can also evade innate immune responses through its ability to shut down cellular protein synthesis, including IFN type I, in susceptible epithelial cells. This is important for virus evolution, as FMDV is quite sensitive to the action of IFN. Despite this, innate immune responses are probably induced in vivo, although detailed studies on this subject are lacking. Accordingly, this interaction of FMDV with cells of the innate immune system is of particular interest. Dendritic cells (DC) can be infected by FMDV and support viral RNA replication, and viral protein synthesis but the latter is inefficient or abortive, leading most often to incomplete replication and progeny virus release. As a result DC can be activated, and particularly in the case of plasmacytoid DC (pDC), this is manifest in terms of IFN-alpha release. Our current state of knowledge on innate immune responses induced by FMDV is still only at a relatively early stage of understanding. As we progress, the investigations in this area will help to improve the design of current vaccines and the development of novel control strategies against FMD.

  4. Pneumococcal Capsules and Their Types: Past, Present, and Future

    PubMed Central

    Geno, K. Aaron; Gilbert, Gwendolyn L.; Song, Joon Young; Skovsted, Ian C.; Klugman, Keith P.; Jones, Christopher; Konradsen, Helle B.

    2015-01-01

    SUMMARY Streptococcus pneumoniae (the pneumococcus) is an important human pathogen. Its virulence is largely due to its polysaccharide capsule, which shields it from the host immune system, and because of this, the capsule has been extensively studied. Studies of the capsule led to the identification of DNA as the genetic material, identification of many different capsular serotypes, and identification of the serotype-specific nature of protection by adaptive immunity. Recent studies have led to the determination of capsular polysaccharide structures for many serotypes using advanced analytical technologies, complete elucidation of genetic basis for the capsular types, and the development of highly effective pneumococcal conjugate vaccines. Conjugate vaccine use has altered the serotype distribution by either serotype replacement or switching, and this has increased the need to serotype pneumococci. Due to great advances in molecular technologies and our understanding of the pneumococcal genome, molecular approaches have become powerful tools to predict pneumococcal serotypes. In addition, more-precise and -efficient serotyping methods that directly detect polysaccharide structures are emerging. These improvements in our capabilities will greatly enhance future investigations of pneumococcal epidemiology and diseases and the biology of colonization and innate immunity to pneumococcal capsules. PMID:26085553

  5. Pneumococcal Capsules and Their Types: Past, Present, and Future.

    PubMed

    Geno, K Aaron; Gilbert, Gwendolyn L; Song, Joon Young; Skovsted, Ian C; Klugman, Keith P; Jones, Christopher; Konradsen, Helle B; Nahm, Moon H

    2015-07-01

    Streptococcus pneumoniae (the pneumococcus) is an important human pathogen. Its virulence is largely due to its polysaccharide capsule, which shields it from the host immune system, and because of this, the capsule has been extensively studied. Studies of the capsule led to the identification of DNA as the genetic material, identification of many different capsular serotypes, and identification of the serotype-specific nature of protection by adaptive immunity. Recent studies have led to the determination of capsular polysaccharide structures for many serotypes using advanced analytical technologies, complete elucidation of genetic basis for the capsular types, and the development of highly effective pneumococcal conjugate vaccines. Conjugate vaccine use has altered the serotype distribution by either serotype replacement or switching, and this has increased the need to serotype pneumococci. Due to great advances in molecular technologies and our understanding of the pneumococcal genome, molecular approaches have become powerful tools to predict pneumococcal serotypes. In addition, more-precise and -efficient serotyping methods that directly detect polysaccharide structures are emerging. These improvements in our capabilities will greatly enhance future investigations of pneumococcal epidemiology and diseases and the biology of colonization and innate immunity to pneumococcal capsules. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Integrative Genomics-Based Discovery of Novel Regulators of the Innate Antiviral Response

    PubMed Central

    van der Lee, Robin; ter Horst, Rob; Szklarczyk, Radek; Netea, Mihai G.; Andeweg, Arno C.; van Kuppeveld, Frank J. M.; Huynen, Martijn A.

    2015-01-01

    The RIG-I-like receptor (RLR) pathway is essential for detecting cytosolic viral RNA to trigger the production of type I interferons (IFNα/β) that initiate an innate antiviral response. Through systematic assessment of a wide variety of genomics data, we discovered 10 molecular signatures of known RLR pathway components that collectively predict novel members. We demonstrate that RLR pathway genes, among others, tend to evolve rapidly, interact with viral proteins, contain a limited set of protein domains, are regulated by specific transcription factors, and form a tightly connected interaction network. Using a Bayesian approach to integrate these signatures, we propose likely novel RLR regulators. RNAi knockdown experiments revealed a high prediction accuracy, identifying 94 genes among 187 candidates tested (~50%) that affected viral RNA-induced production of IFNβ. The discovered antiviral regulators may participate in a wide range of processes that highlight the complexity of antiviral defense (e.g. MAP3K11, CDK11B, PSMA3, TRIM14, HSPA9B, CDC37, NUP98, G3BP1), and include uncharacterized factors (DDX17, C6orf58, C16orf57, PKN2, SNW1). Our validated RLR pathway list (http://rlr.cmbi.umcn.nl/), obtained using a combination of integrative genomics and experiments, is a new resource for innate antiviral immunity research. PMID:26485378

  7. Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs)

    PubMed Central

    Ipcho, Simon; Sundelin, Thomas; Erbs, Gitte; Kistler, H. Corby; Newman, Mari-Anne; Olsson, Stefan

    2016-01-01

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal–bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy generation, transport, amino acid production, secondary metabolism, and especially iron uptake were detected for all three. Half of the genes related to iron uptake were predicted MirA type transporters that potentially take up bacterial siderophores. These quick responses can be viewed as a preparation for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals. PMID:27172188

  8. The Social Change Model as Pedagogy: Examining Undergraduate Leadership Growth

    ERIC Educational Resources Information Center

    Buschlen, Eric; Dvorak, Robert

    2011-01-01

    Understanding whether leadership can be learned is important as many colleges and universities attempt to develop future leaders through a variety of programmatic efforts. Historic leadership research argues leadership is an innate skill. While contemporary leadership research tends to argue that leadership can be learned. The purpose of this…

  9. Chalk, What Chalk?

    ERIC Educational Resources Information Center

    Butler, Loren L.

    2004-01-01

    When it comes to technological wizardry in the classroom, interactive whiteboards stand on the cutting edge of the future. Students seem innately able to manipulate any type of computerized equipment, and, more important, they are highly motivated to engage in "techno-discovery." It is the duty of every educator to facilitate further discovery and…

  10. Toll-Like Receptor-3 Is Dispensable for the Innate MicroRNA Response to West Nile Virus (WNV)

    PubMed Central

    Chugh, Pauline E.; Damania, Blossom A.; Dittmer, Dirk P.

    2014-01-01

    The innate immune response to West Nile virus (WNV) infection involves recognition through toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), leading to establishment of an antiviral state. MiRNAs (miRNAs) have been shown to be reliable biomarkers of TLR activation. Here, we sought to evaluate the contribution of TLR3 and miRNAs to the host response to WNV infection. We first analyzed HEK293-NULL and HEK293-TLR3 cells for changes in the innate immune response to infection. The presence of TLR3 did not seem to affect WNV load, infectivity or phosphorylation of IRF3. Analysis of experimentally validated NFκB-responsive genes revealed a WNV-induced signature largely independent of TLR3. Since miRNAs are involved in viral pathogenesis and the innate response to infection, we sought to identify changes in miRNA expression upon infection in the presence or absence of TLR3. MiRNA profiling revealed 70 miRNAs induced following WNV infection in a TLR3-independent manner. Further analysis of predicted gene targets of WNV signature miRNAs revealed genes highly associated with pathways regulating cell death, viral pathogenesis and immune cell trafficking. PMID:25127040

  11. Listeria monocytogenes Induces a Virulence-Dependent microRNA Signature That Regulates the Immune Response in Galleria mellonella

    PubMed Central

    Mannala, Gopala K.; Izar, Benjamin; Rupp, Oliver; Schultze, Tilman; Goesmann, Alexander; Chakraborty, Trinad; Hain, Torsten

    2017-01-01

    microRNAs (miRNAs) coordinate several physiological and pathological processes by regulating the fate of mRNAs. Studies conducted in vitro indicate a role of microRNAs in the control of host-microbe interactions. However, there is limited understanding of miRNA functions in in vivo models of bacterial infections. In this study, we systematically explored changes in miRNA expression levels of Galleria mellonella larvae (greater-wax moth), a model system that recapitulates the vertebrate innate immunity, following infection with L. monocytogenes. Using an insect-specific miRNA microarray with more than 2000 probes, we found differential expression of 90 miRNAs (39 upregulated and 51 downregulated) in response to infection with L. monocytogenes. We validated the expression of a subset of miRNAs which have mammalian homologs of known or predicted function. In contrast, non-pathogenic L. innocua failed to induce these miRNAs, indicating a virulence-dependent miRNA deregulation. To predict miRNA targets using established algorithms, we generated a publically available G. mellonella transcriptome database. We identified miRNA targets involved in innate immunity, signal transduction and autophagy, including spätzle, MAP kinase, and optineurin, respectively, which exhibited a virulence-specific differential expression. Finally, in silico estimation of minimum free energy of miRNA-mRNA duplexes of validated microRNAs and target transcripts revealed a regulatory network of the host immune response to L. monocytogenes. In conclusion, this study provides evidence for a role of miRNAs in the regulation of the innate immune response following bacterial infection in a simple, rapid and scalable in vivo model that may predict host-microbe interactions in higher vertebrates. PMID:29312175

  12. Innate Immune Signalling Genetics of Pain, Cognitive Dysfunction and Sickness Symptoms in Cancer Pain Patients Treated with Transdermal Fentanyl

    PubMed Central

    Barratt, Daniel T.; Klepstad, Pål; Dale, Ola; Kaasa, Stein; Somogyi, Andrew A.

    2015-01-01

    Common adverse symptoms of cancer and chemotherapy are a major health burden; chief among these is pain, with opioids including transdermal fentanyl the mainstay of treatment. Innate immune activation has been implicated generally in pain, opioid analgesia, cognitive dysfunction, and sickness type symptoms reported by cancer patients. We aimed to determine if genetic polymorphisms in neuroimmune activation pathways alter the serum fentanyl concentration-response relationships for pain control, cognitive dysfunction, and other adverse symptoms, in cancer pain patients. Cancer pain patients (468) receiving transdermal fentanyl were genotyped for 31 single nucleotide polymorphisms in 19 genes: CASP1, BDNF, CRP, LY96, IL6, IL1B, TGFB1, TNF, IL10, IL2, TLR2, TLR4, MYD88, IL6R, OPRM1, ARRB2, COMT, STAT6 and ABCB1. Lasso and backward stepwise generalised linear regression were used to identify non-genetic and genetic predictors, respectively, of pain control (average Brief Pain Inventory < 4), cognitive dysfunction (Mini-Mental State Examination ≤ 23), sickness response and opioid adverse event complaint. Serum fentanyl concentrations did not predict between-patient variability in these outcomes, nor did genetic factors predict pain control, sickness response or opioid adverse event complaint. Carriers of the MYD88 rs6853 variant were half as likely to have cognitive dysfunction (11/111) than wild-type patients (69/325), with a relative risk of 0.45 (95% CI: 0.27 to 0.76) when accounting for major non-genetic predictors (age, Karnofsky functional score). This supports the involvement of innate immune signalling in cognitive dysfunction, and identifies MyD88 signalling pathways as a potential focus for predicting and reducing the burden of cognitive dysfunction in cancer pain patients. PMID:26332828

  13. Are Evolution and the Intracellular Innate Immune System Key Determinants in HIV Transmission?

    PubMed Central

    Sumner, Rebecca P.; Thorne, Lucy G.; Fink, Doug L.; Khan, Hataf; Milne, Richard S.; Towers, Greg J.

    2017-01-01

    HIV-1 is the single most important sexually transmitted disease in humans from a global health perspective. Among human lentiviruses, HIV-1 M group has uniquely achieved pandemic levels of human-to-human transmission. The requirement to transmit between hosts likely provides the strongest selective forces on a virus, as without transmission, there can be no new infections within a host population. Our perspective is that evolution of all of the virus–host interactions, which are inherited and perpetuated from host-to-host, must be consistent with transmission. For example, CXCR4 use, which often evolves late in infection, does not favor transmission and is therefore lost when a virus transmits to a new host. Thus, transmission inevitably influences all aspects of virus biology, including interactions with the innate immune system, and dictates the biological niche in which the virus exists in the host. A viable viral niche typically does not select features that disfavor transmission. The innate immune response represents a significant selective pressure during the transmission process. In fact, all viruses must antagonize and/or evade the mechanisms of the host innate and adaptive immune systems that they encounter. We believe that viewing host–virus interactions from a transmission perspective helps us understand the mechanistic details of antiviral immunity and viral escape. This is particularly true for the innate immune system, which typically acts from the very earliest stages of the host–virus interaction, and must be bypassed to achieve successful infection. With this in mind, here we review the innate sensing of HIV, the consequent downstream signaling cascades and the viral restriction that results. The centrality of these mechanisms to host defense is illustrated by the array of countermeasures that HIV deploys to escape them, despite the coding constraint of a 10 kb genome. We consider evasion strategies in detail, in particular the role of the HIV capsid and the viral accessory proteins highlighting important unanswered questions and discussing future perspectives. PMID:29056936

  14. Immunopathology of highly virulent pathogens: insights from Ebola virus.

    PubMed

    Zampieri, Carisa A; Sullivan, Nancy J; Nabel, Gary J

    2007-11-01

    Ebola virus is a highly virulent pathogen capable of inducing a frequently lethal hemorrhagic fever syndrome. Accumulating evidence indicates that the virus actively subverts both innate and adaptive immune responses and triggers harmful inflammatory responses as it inflicts direct tissue damage. The host immune system is ultimately overwhelmed by a combination of inflammatory factors and virus-induced cell damage, particularly in the liver and vasculature, often leading to death from septic shock. We summarize the mechanisms of immune dysregulation and virus-mediated cell damage in Ebola virus-infected patients. Future approaches to prevention and treatment of infection will be guided by answers to unresolved questions about interspecies transmission, molecular mechanisms of pathogenesis, and protective adaptive and innate immune responses to Ebola virus.

  15. Inflammasomes and dermatology*

    PubMed Central

    de Sá, Daniel Coelho; Festa Neto, Cyro

    2016-01-01

    Inflammasomes are intracellular multiprotein complexes that comprise part of the innate immune response. Since their definition, inflammasome disorders have been linked to an increasing number of diseases. Autoinflammatory diseases refer to disorders in which local factors lead to the activation of innate immune cells, causing tissue damage when in the absence of autoantigens and autoantibodies. Skin symptoms include the main features of monogenic inflammasomopathies, such as Cryopyrin-Associated Periodic Syndromes (CAPS), Familial Mediterranean Fever (FMF), Schnitzler Syndrome, Hyper-IgD Syndrome (HIDS), PAPA Syndrome, and Deficiency of IL-1 Receptor Antagonist (DIRA). Concepts from other pathologies have also been reviewed in recent years, such as psoriasis, after the recognition of a combined contribution of innate and adaptive immunity in its pathogenesis. Inflammasomes are also involved in the response to various infections, malignancies, such as melanoma, autoimmune diseases, including vitiligo and lupus erythematosus, atopic and contact dermatitis, acne, hidradenitis suppurativa, among others. Inhibition of the inflammasome pathway may be a target for future therapies, as already occurs in the handling of CAPS, through the introduction of IL-1 inhibitors. This study presents a literature review focusing on the participation of inflammasomes in skin diseases. PMID:27828627

  16. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity

    PubMed Central

    Palm, Noah W.; Rosenstein, Rachel K.; Yu, Shuang; Schenten, Dominik; Florsheim, Esther; Medzhitov, Ruslan

    2013-01-01

    SUMMARY Venoms consist of toxic components that are delivered to their victims via bites or stings. Venoms also represent a major class of allergens in humans. Phospholipase A2 (PLA2) is a conserved component of venoms from multiple species and is the major allergen in bee venom. Here we examined how bee venom PLA2 is sensed by the innate immune system and induces a type 2 immune response in mice. We found that bee venom PLA2 induced a T helper type 2 (Th2) cell-type response and group 2 innate lymphoid cell activation via the enzymatic cleavage of membrane phospholipids and release of interleukin-33. Furthermore, we showed that the IgE response to PLA2 could protect mice from future challenge with a near-lethal dose of PLA2. These data suggest that the innate immune system can detect the activity of a conserved component of venoms and induce a protective immune response against a venom toxin. PMID:24210353

  17. Network Topologies and Dynamics Leading to Endotoxin Tolerance and Priming in Innate Immune Cells

    NASA Astrophysics Data System (ADS)

    Fu, Yan; Glaros, Trevor; Zhu, Meng; Wang, Ping; Wu, Zhanghan; Tyson, John; Li, Liwu; Xing, Jianhua

    2012-01-01

    The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction) and one for tolerance (inhibitor persistence). These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.

  18. The Role of Immune and Inflammatory Cells in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Desai, Omkar; Winkler, Julia; Minasyan, Maksym; Herzog, Erica L.

    2018-01-01

    The contribution of the immune system to idiopathic pulmonary fibrosis (IPF) remains poorly understood. While most sources agree that IPF does not result from a primary immunopathogenic mechanism, evidence gleaned from animal modeling and human studies suggests that innate and adaptive immune processes can orchestrate existing fibrotic responses. This review will synthesize the available data regarding the complex role of professional immune cells in IPF. The role of innate immune populations such as monocytes, macrophages, myeloid suppressor cells, and innate lymphoid cells will be discussed, as will the activation of these cells via pathogen-associated molecular patterns derived from invading or commensural microbes, and danger-associated molecular patterns derived from injured cells and tissues. The contribution of adaptive immune responses driven by T-helper cells and B cells will be reviewed as well. Each form of immune activation will be discussed in the context of its relationship to environmental and genetic factors, disease outcomes, and potential therapies. We conclude with discussion of unanswered questions and opportunities for future study in this area. PMID:29616220

  19. Interaction Between Helminths and Toll-Like Receptors: Possibilities and Potentials for Asthma Therapy.

    PubMed

    Zakeri, Amin; Borji, Hassan; Haghparast, Alireza

    2016-05-03

    Toll-like receptors (TLRs) are essential components of the innate immune system. They play an important role in the pathogenesis of allergic diseases, especially asthma. Since TLRs significantly orchestrate innate and adaptive immune response, their manipulation has widely been considered as a potential approach to control asthma symptoms. It is well established that helminths have immunoregulatory effects on host immune responses, especially innate immunity. They release bioactive molecules such as excretory-secretory (ES) products manipulating TLRs expression and signaling. Thus, given the promising results derived from preclinical studies, harnessing helminth-derived molecules affecting TLRs can be considered as a potential biological therapy for allergic diseases. Prospectively, the data that are available at present suggest that, in the near future, it is possible that helminth antigens will offer new therapeutic strategies and druggable targets for fighting allergic diseases. This review describes the interactions between helminths and TLRs and discusses the potential possibilities for asthma therapy. In this opinion paper, the authors aimed to review the updated literatures on the interplay between helminths, TLRs, and asthma with a view to proposing helminth-based asthma therapy.

  20. Life-history dependent relationships between body condition and immunity, between immunity indices in male Eurasian tree sparrows.

    PubMed

    Zhao, Yuliang; Li, Mo; Sun, Yanfeng; Wu, Wei; Kou, Guanqun; Guo, Lingling; Xing, Danning; Wu, Yuefeng; Li, Dongming; Zhao, Baohua

    2017-08-01

    In free-living animals, recent evidence indicates that innate, and acquired, immunity varies with annual variation in the demand for, and availability of, food resources. However, little is known about how animals adjust the relationships between immunity and body condition, and between innate and acquired immunity to optimize survival over winter and reproductive success during the breeding stage. Here, we measured indices of body condition (size-corrected mass [SCM], and hematocrit [Hct]), constitutive innate immunity (plasma total complement hemolysis activity [CH 50 ]) and acquired immunity (plasma immunoglobulin A [IgA]), plus heterophil/lymphocyte (H/L) ratios, in male Eurasian tree sparrows (Passer montanus) during the wintering and the breeding stages. We found that birds during the wintering stage had higher IgA levels than those from the breeding stage. Two indices of body condition were both negatively correlated with plasma CH 50 activities, and positively with IgA levels in wintering birds, but this was not the case in the breeding birds. However, there was no correlation between CH 50 activities and IgA levels in both stages. These results suggest that the relationships between body condition and immunity can vary across life-history stage, and there are no correlations between innate and acquired immunity independent of life-history stage, in male Eurasian tree sparrows. Therefore, body condition indices predict immunological state, especially during the non-breeding stage, which can be useful indicators of individual immunocompetences for understanding the variations in innate and acquired immunity in free-living animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Dysregulation of innate immunity in ulcerative colitis patients who fail anti-tumor necrosis factor therapy.

    PubMed

    Baird, Angela C; Mallon, Dominic; Radford-Smith, Graham; Boyer, Julien; Piche, Thierry; Prescott, Susan L; Lawrance, Ian C; Tulic, Meri K

    2016-11-07

    To study the innate immune function in ulcerative colitis (UC) patients who fail to respond to anti-tumor necrosis factor (TNF) therapy. Effects of anti-TNF therapy, inflammation and medications on innate immune function were assessed by measuring peripheral blood mononuclear cell (PBMC) cytokine expression from 18 inflammatory bowel disease patients pre- and 3 mo post-anti-TNF therapy. Toll-like receptor (TLR) expression and cytokine production post TLR stimulation was assessed in UC "responders" ( n = 12) and "non-responders" ( n = 12) and compared to healthy controls ( n = 12). Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels were measured in blood to assess disease severity/activity and inflammation. Pro-inflammatory (TNF, IL-1β, IL-6), immuno-regulatory (IL-10), Th1 (IL-12, IFNγ) and Th2 (IL-9, IL-13, IL-17A) cytokine expression was measured with enzyme-linked immunosorbent assay while TLR cellular composition and intracellular signalling was assessed with FACS. Prior to anti-TNF therapy, responders and non-responders had similar level of disease severity and activity. PBMC's ability to respond to TLR stimulation was not affected by TNF therapy, patient's severity of the disease and inflammation or their medication use. At baseline, non-responders had elevated innate but not adaptive immune responses compared to responders ( P < 0.05). Following TLR stimulation, non-responders had consistently reduced innate cytokine responses to all TLRs compared to healthy controls ( P < 0.01) and diminished TNF ( P < 0.001) and IL-1β ( P < 0.01) production compared to responders. This innate immune dysfunction was associated with reduced number of circulating plasmacytoid dendritic cells (pDCs) ( P < 0.01) but increased number of CD4+ regulatory T cells (Tregs) ( P = 0.03) as well as intracellular accumulation of IRAK4 in non-responders following TLR-2, -4 and -7 activation ( P < 0.001). Reduced innate immunity in non-responders may explain reduced efficacy to anti-TNF therapy. These serological markers may prove useful in predicting the outcome of costly anti-TNF therapy.

  2. Learning Science through Computer Games and Simulations

    ERIC Educational Resources Information Center

    Honey, Margaret A., Ed.; Hilton, Margaret, Ed.

    2011-01-01

    At a time when scientific and technological competence is vital to the nation's future, the weak performance of U.S. students in science reflects the uneven quality of current science education. Although young children come to school with innate curiosity and intuitive ideas about the world around them, science classes rarely tap this potential.…

  3. From Risk to Resilience: A Journey with Heart for Our Children, Our Future.

    ERIC Educational Resources Information Center

    Burns, E. Timothy

    This book offers the perspective that healthy child development results from family, school, and community environments that support and elicit the innate resiliency--or "self-righting mechanisms"--within every person. The book draws on and integrates several fields of research that support the movement in emphasis from risk to…

  4. The roles of deliberate practice and innate ability in developing expertise: evidence and implications.

    PubMed

    Kulasegaram, Kulamakan M; Grierson, Lawrence E M; Norman, Geoffrey R

    2013-10-01

    Medical education research focuses extensively on experience and deliberate practice (DP) as key factors in the development of expert performance. The research on DP minimises the role of individual ability in expert performance. This claim ignores a large body of research supporting the importance of innate individual cognitive differences. We review the relationship between DP and an innate individual ability, working memory (WM) capacity, to illustrate how both DP and individual ability predict expert performance. This narrative review examines the relationship between DP and WM in accounting for expert performance. Studies examining DP, WM and individual differences were identified through a targeted search. Although all studies support extensive DP as a factor in explaining expertise, much research suggests individual cognitive differences, such as WM capacity, predict expert performance after controlling for DP. The extent to which this occurs may be influenced by the nature of the task under study and the cognitive processes used by experts. The importance of WM capacity is greater for tasks that are non-routine or functionally complex. Clinical reasoning displays evidence of this task-dependent importance of individual ability. No single factor is both necessary and sufficient in explaining expertise, and individual abilities such as WM can be important. These individual abilities are likely to contribute to expert performance in clinical settings. Medical education research and practice should identify the individual differences in novices and experts that are important to clinical performance. © 2013 John Wiley & Sons Ltd.

  5. Low dose aerosol fitness at the innate phase of murine infection better predicts virulence amongst clinical strains of Mycobacterium tuberculosis.

    PubMed

    Caceres, Neus; Llopis, Isaac; Marzo, Elena; Prats, Clara; Vilaplana, Cristina; de Viedma, Dario Garcia; Samper, Sofía; Lopez, Daniel; Cardona, Pere-Joan

    2012-01-01

    Evaluation of a quick and easy model to determine the intrinsic ability of clinical strains to generate active TB has been set by assuming that this is linked to the fitness of Mycobacterium tuberculosis strain at the innate phase of the infection. Thus, the higher the bacillary load, the greater the possibility of inducting liquefaction, and thus active TB, once the adaptive response is set. The virulence of seven clinical Mycobacterium tuberculosis strains isolated in Spain was tested by determining the bacillary concentration in the spleen and lung of mice at weeks 0, 1 and 2 after intravenous (IV) inoculation of 10⁴ CFU, and by determining the growth in vitro until the stationary phase had been reached. Cord distribution automated analysis showed two clear patterns related to the high and low fitness in the lung after IV infection. This pattern was not seen in the in vitro fitness tests, which clearly favored the reference strain (H37Rv). Subsequent determination using a more physiological low-dose aerosol (AER) inoculation with 10² CFU showed a third pattern in which the three best values coincided with the highest dissemination capacity according to epidemiological data. The fitness obtained after low dose aerosol administration in the presence of the innate immune response is the most predictive factor for determining the virulence of clinical strains. This gives support to a mechanism of the induction of active TB derived from the dynamic hypothesis of latent tuberculosis infection.

  6. Drugs and Crime: An Empirically Based, Interdisciplinary Model

    ERIC Educational Resources Information Center

    Quinn, James F.; Sneed, Zach

    2008-01-01

    This article synthesizes neuroscience findings with long-standing criminological models and data into a comprehensive explanation of the relationship between drug use and crime. The innate factors that make some people vulnerable to drug use are conceptually similar to those that predict criminality, supporting a spurious reciprocal model of the…

  7. Innate Immunity to Respiratory Infection in Early Life

    PubMed Central

    Lambert, Laura; Culley, Fiona J.

    2017-01-01

    Early life is a period of particular susceptibility to respiratory infections and symptoms are frequently more severe in infants than in adults. The neonatal immune system is generally held to be deficient in most compartments; responses to innate stimuli are weak, antigen-presenting cells have poor immunostimulatory activity and adaptive lymphocyte responses are limited, leading to poor immune memory and ineffective vaccine responses. For mucosal surfaces such as the lung, which is continuously exposed to airborne antigen and to potential pathogenic invasion, the ability to discriminate between harmless and potentially dangerous antigens is essential, to prevent inflammation that could lead to loss of gaseous exchange and damage to the developing lung tissue. We have only recently begun to define the differences in respiratory immunity in early life and its environmental and developmental influences. The innate immune system may be of relatively greater importance than the adaptive immune system in the neonatal and infant period than later in life, as it does not require specific antigenic experience. A better understanding of what constitutes protective innate immunity in the respiratory tract in this age group and the factors that influence its development should allow us to predict why certain infants are vulnerable to severe respiratory infections, design treatments to accelerate the development of protective immunity, and design age specific adjuvants to better boost immunity to infection in the lung. PMID:29184555

  8. Innate immunity in renal transplantation: the role of mannose-binding lectin.

    PubMed

    Ibernon, Meritxell; Moreso, Francesc; Serón, Daniel

    2014-01-01

    Innate immune system plays an important role in the modulation of the inflammatory response during infection and tissue injury/repair. Mannose-binding lectin (MBL) is a component of the innate immune system that activates complement via the lectin pathway. Different polymorphisms of the MBL gene are associated with MBL levels and MBL function. The relationship between MBL and disease is rather complex because MBL behaves as a double-edged sword. In the general population, low serum MBL levels are associated with higher risk of infection, type 2 diabetes, autoimmune and cardiovascular disease. However, in patients with diabetes or autoimmune disease, high MBL levels are associated with more severe renal and cardiovascular comorbidities. In renal transplantation, low MBL serum levels constitute a risk factor for infection, low grade inflammation, new onset diabetes after transplantation and subclinical rejection. Despite these associations suggest that low MBL levels should be associated with poorer renal allograft outcome, epidemiological studies evaluating the predictive value of MBL levels on graft survival are controversial. Taken together, these observations suggest that low MBL serum levels modulate chronic inflammatory response that may influence transplant outcome. © 2013.

  9. The role of dehydroepiandrosterone on functional innate immune responses to acute stress.

    PubMed

    Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P

    2017-12-01

    The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.

  10. New Players in Immunity to Tuberculosis: The Host Microbiome, Lung Epithelium, and Innate Immune Cells

    PubMed Central

    Gupta, Nancy; Kumar, Rakesh; Agrawal, Babita

    2018-01-01

    Tuberculosis (TB) is a highly contagious infection and devastating chronic disease, causing 10.4 million new infections and 1.8 million deaths every year globally. Efforts to control and eradicate TB are hampered by the rapid emergence of drug resistance and limited efficacy of the only available vaccine, BCG. Immunological events in the airways and lungs are of major importance in determining whether exposure to Mycobacterium tuberculosis (Mtb) results in successful infection or protective immunity. Several studies have demonstrated that the host microbiota is in constant contact with the immune system, and thus continually directs the nature of immune responses occurring during new infections. However, little is known about its role in the eventual outcome of the mycobacterial infection. In this review, we highlight the changes in microbial composition in the respiratory tract and gut that have been linked to the alteration of immune responses, and to the risk, prevention, and treatment of TB. In addition, we summarize our current understanding of alveolar epithelial cells and the innate immune system, and their interaction with Mtb during early infection. Extensive studies are warranted to fully understand the all-inclusive role of the lung microbiota, its interaction with epithelium and innate immune responses and resulting adaptive immune responses, and in the pathogenesis and/or protection from Mtb infection. Novel interventions aimed at influencing the microbiota, the alveolar immune system and innate immunity will shape future strategies of prevention and treatment for TB. PMID:29692778

  11. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity

    PubMed Central

    Schaible, Ulrich E.; Linnemann, Lara; Redinger, Natalja; Patin, Emmanuel C.; Dallenga, Tobias

    2017-01-01

    The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines. PMID:29312298

  12. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity.

    PubMed

    Schaible, Ulrich E; Linnemann, Lara; Redinger, Natalja; Patin, Emmanuel C; Dallenga, Tobias

    2017-01-01

    The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.

  13. New Players in Immunity to Tuberculosis: The Host Microbiome, Lung Epithelium, and Innate Immune Cells.

    PubMed

    Gupta, Nancy; Kumar, Rakesh; Agrawal, Babita

    2018-01-01

    Tuberculosis (TB) is a highly contagious infection and devastating chronic disease, causing 10.4 million new infections and 1.8 million deaths every year globally. Efforts to control and eradicate TB are hampered by the rapid emergence of drug resistance and limited efficacy of the only available vaccine, BCG. Immunological events in the airways and lungs are of major importance in determining whether exposure to Mycobacterium tuberculosis ( Mtb ) results in successful infection or protective immunity. Several studies have demonstrated that the host microbiota is in constant contact with the immune system, and thus continually directs the nature of immune responses occurring during new infections. However, little is known about its role in the eventual outcome of the mycobacterial infection. In this review, we highlight the changes in microbial composition in the respiratory tract and gut that have been linked to the alteration of immune responses, and to the risk, prevention, and treatment of TB. In addition, we summarize our current understanding of alveolar epithelial cells and the innate immune system, and their interaction with Mtb during early infection. Extensive studies are warranted to fully understand the all-inclusive role of the lung microbiota, its interaction with epithelium and innate immune responses and resulting adaptive immune responses, and in the pathogenesis and/or protection from Mtb infection. Novel interventions aimed at influencing the microbiota, the alveolar immune system and innate immunity will shape future strategies of prevention and treatment for TB.

  14. 2015 Summer Series - Jason Crusan - Pioneering Space - Not Your Great-Great-Grandparent's Manifest Destiny

    NASA Image and Video Library

    2015-07-14

    Exploration is an innate characteristic of the human species. By launching into the unknown, NASA drives our expeditions beyond Earth and embarks in the long-term efforts of 'pioneering space' for this and future generations. NASA will develop the ability for humans to go farther and stay longer in space with an ever-decreasing need to be reliant on Earth. Jason Crusan, Director of Advanced Exploration Systems Division at NASA Headquarters, describes what the future of pioneering space will look like in the galactic Wild West.

  15. The potential of immunostimulatory CpG DNA for inducing immunity against genital herpes: opportunities and challenges.

    PubMed

    Harandi, Ali M

    2004-07-01

    Herpes simplex virus type 2 (HSV-2) invades human genital tract mucosa and following local replications can be rapidly transmitted via peripheral nerve axons to the sacral ganglia where it can establish latency. Reactivation of the latent viral reservoir results in recurrent ulcers in the genital region. Innate immunity, the first line of defence during both primary and recurrent genital herpes infections, is crucial during the period of acute infection to limit early virus replication and to facilitate the development of an appropriate specific acquired immunity. Recent developments in immunology reveal that the mammalian innate immune systems use Toll-like receptor (TLR) to specifically sense evolutionary conserved molecules such as bacterial DNA in pathogens. Recently, local-vaginal delivery of CpG containing oligodeoxynucleotide (ODN), a synthetic mimic of bacterial DNA, holds substantial promise as a strong inducer of innate immunity against genital herpes infections in the animal models of the disease. These preclinical observations provide a scientific ground work for introduction of this novel intervention strategy to clinic. This review aims to highlight recent developments and future challenges in use of immunostimulatory CpG ODN for inducing immunity against genital herpes infection and disease.

  16. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    PubMed

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole-animal model system will contribute greatly to the study of molecular mechanisms involved in the interaction of the host innate immune system with fungal spores during mucormycosis. © 2015. Published by The Company of Biologists Ltd.

  17. Deontic Reasoning with Emotional Content: Evolutionary Psychology or Decision Theory?

    ERIC Educational Resources Information Center

    Perham, Nick; Oaksford, Mike

    2005-01-01

    Three experiments investigated the contrasting predictions of the evolutionary and decision-theoretic approaches to deontic reasoning. Two experiments embedded a hazard management (HM) rule in a social contract scenario that should lead to competition between innate modules. A 3rd experiment used a pure HM task. Threatening material was also…

  18. Neurobiology of Fear and Specific Phobias

    ERIC Educational Resources Information Center

    Garcia, René

    2017-01-01

    Fear, which can be expressed innately or after conditioning, is triggered when a danger or a stimulus predicting immediate danger is perceived. Its role is to prepare the body to face this danger. However, dysfunction in fear processing can lead to psychiatric disorders in which fear outweighs the danger or possibility of harm. Although recognized…

  19. Characterization of performance-emission indices of a diesel engine using ANFIS operating in dual-fuel mode with LPG

    NASA Astrophysics Data System (ADS)

    Chakraborty, Amitav; Roy, Sumit; Banerjee, Rahul

    2018-03-01

    This experimental work highlights the inherent capability of an adaptive-neuro fuzzy inference system (ANFIS) based model to act as a robust system identification tool (SIT) in prognosticating the performance and emission parameters of an existing diesel engine running of diesel-LPG dual fuel mode. The developed model proved its adeptness by successfully harnessing the effects of the input parameters of load, injection duration and LPG energy share on output parameters of BSFCEQ, BTE, NOX, SOOT, CO and HC. Successive evaluation of the ANFIS model, revealed high levels of resemblance with the already forecasted ANN results for the same input parameters and it was evident that similar to ANN, ANFIS also has the innate ability to act as a robust SIT. The ANFIS predicted data harmonized the experimental data with high overall accuracy. The correlation coefficient (R) values are stretched in between 0.99207 to 0.999988. The mean absolute percentage error (MAPE) tallies were recorded in the range of 0.02-0.173% with the root mean square errors (RMSE) in acceptable margins. Hence the developed model is capable of emulating the actual engine parameters with commendable ranges of accuracy, which in turn would act as a robust prediction platform in the future domains of optimization.

  20. PBMC transcriptome profiles identifies potential candidate genes and functional networks controlling the innate and the adaptive immune response to PRRSV vaccine in Pietrain pig

    PubMed Central

    Islam, Md. Aminul; Große-Brinkhaus, Christine; Pröll, Maren Julia; Uddin, Muhammad Jasim; Aqter Rony, Sharmin; Tesfaye, Dawit; Tholen, Ernst; Hoelker, Michael; Schellander, Karl; Neuhoff, Christiane

    2017-01-01

    The porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting swine production, health and welfare throughout the world. A synergistic action of the innate and the adaptive immune system of the host is essential for mounting a durable protective immunity through vaccination. Therefore, the current study aimed to investigate the transcriptome profiles of peripheral blood mononuclear cells (PBMCs) to characterize the innate and the adaptive immune response to PRRS Virus (PRRSV) vaccination in Pietrain pigs. The Affymetrix gene chip porcine gene 1.0 ST array was used for the transcriptome profiling of PBMCs collected at immediately before (D0), at one (D1) and 28 days (D28) post PRRSV vaccination with three biological replications. With FDR <0.05 and log2 fold change ±1.5 as cutoff criteria, 295 and 115 transcripts were found to be differentially expressed in PBMCs during the stage of innate and adaptive response, respectively. The microarray expression results were technically validated by qRT-PCR. The gene ontology terms such as viral life cycle, regulation of lymphocyte activation, cytokine activity and inflammatory response were enriched during the innate immunity; cytolysis, T cell mediated cytotoxicity, immunoglobulin production were enriched during adaptive immunity to PRRSV vaccination. Significant enrichment of cytokine-cytokine receptor interaction, signaling by interleukins, signaling by the B cell receptor (BCR), viral mRNA translation, IFN-gamma pathway and AP-1 transcription factor network pathways were indicating the involvement of altered genes in the antiviral defense. Network analysis revealed that four network modules were functionally involved with the transcriptional network of innate immunity, and five modules were linked to adaptive immunity in PBMCs. The innate immune transcriptional network was found to be regulated by LCK, STAT3, ATP5B, UBB and RSP17. While TGFß1, IL7R, RAD21, SP1 and GZMB are likely to be predictive for the adaptive immune transcriptional response to PRRSV vaccine in PBMCs. Results of the current immunogenomics study advances our understanding of PRRS in term of host-vaccine interaction, and thereby contribute to design a rationale for disease control strategy. PMID:28278192

  1. Low Dose Aerosol Fitness at the Innate Phase of Murine Infection Better Predicts Virulence amongst Clinical Strains of Mycobacterium tuberculosis

    PubMed Central

    Caceres, Neus; Llopis, Isaac; Marzo, Elena; Prats, Clara; Vilaplana, Cristina; de Viedma, Dario Garcia; Samper, Sofía; Lopez, Daniel; Cardona, Pere-Joan

    2012-01-01

    Background Evaluation of a quick and easy model to determine the intrinsic ability of clinical strains to generate active TB has been set by assuming that this is linked to the fitness of Mycobacterium tuberculosis strain at the innate phase of the infection. Thus, the higher the bacillary load, the greater the possibility of inducting liquefaction, and thus active TB, once the adaptive response is set. Methodology/Principal Findings The virulence of seven clinical Mycobacterium tuberculosis strains isolated in Spain was tested by determining the bacillary concentration in the spleen and lung of mice at weeks 0, 1 and 2 after intravenous (IV) inoculation of 104 CFU, and by determining the growth in vitro until the stationary phase had been reached. Cord distribution automated analysis showed two clear patterns related to the high and low fitness in the lung after IV infection. This pattern was not seen in the in vitro fitness tests, which clearly favored the reference strain (H37Rv). Subsequent determination using a more physiological low-dose aerosol (AER) inoculation with 102 CFU showed a third pattern in which the three best values coincided with the highest dissemination capacity according to epidemiological data. Conclusions/Significance The fitness obtained after low dose aerosol administration in the presence of the innate immune response is the most predictive factor for determining the virulence of clinical strains. This gives support to a mechanism of the induction of active TB derived from the dynamic hypothesis of latent tuberculosis infection. PMID:22235258

  2. How to Assess the Real Payoff of a College Degree

    ERIC Educational Resources Information Center

    Carlson, Scott

    2013-01-01

    Just listen to Dimitrius Graham sing. As a music major at Morgan State University, he seems keenly aware of certain realities about his life: His talent is undeniable and probably innate, and his future is promising but uncertain. He could make a career singing on Broadway or climbing the charts as a Billboard phenomenon. Because he went to…

  3. The Immunology of Posttransplant CMV Infection: Potential Effect of CMV Immunoglobulins on Distinct Components of the Immune Response to CMV

    PubMed Central

    Carbone, Javier

    2016-01-01

    Abstract The immune response to cytomegalovirus (CMV) infection is highly complex, including humoral, cellular, innate, and adaptive immune responses. Detection of CMV by the innate immune system triggers production of type I IFNs and inflammatory cytokines which initiate cellular and humoral responses that are critical during the early viremic phase of CMV infection. Sustained control of CMV infection is largely accounted for by cellular immunity, involving various T-cell and B-cell subsets. In solid organ transplant patients, global suppression of innate and adaptive immunities by immunosuppressive agents limits immunological defense, including inhibition of natural killer cell activity with ongoing lowering of Ig levels and CMV-specific antibody titers. This is coupled with a short-term suppression of CMV-specific T cells, the extent and duration of which can predict risk of progression to CMV viremia. CMV immunoglobulin (CMVIG) preparations have the potential to exert immunomodulatory effects as well as providing passive immunization. Specific CMVIG antibodies and virus neutralization might be enhanced by modulation of dendritic cell activity and by a decrease in T-cell activation, effects which are of importance during the initial phase of infection. In summary, the role of CMVIG in reconstituting specific anti-CMV antibodies may be enhanced by some degree of modulation of the innate and adaptive immune responses, which could help to control some of the direct and indirect effects of CMV infection. PMID:26900990

  4. The Immunology of Posttransplant CMV Infection: Potential Effect of CMV Immunoglobulins on Distinct Components of the Immune Response to CMV.

    PubMed

    Carbone, Javier

    2016-03-01

    The immune response to cytomegalovirus (CMV) infection is highly complex, including humoral, cellular, innate, and adaptive immune responses. Detection of CMV by the innate immune system triggers production of type I IFNs and inflammatory cytokines which initiate cellular and humoral responses that are critical during the early viremic phase of CMV infection. Sustained control of CMV infection is largely accounted for by cellular immunity, involving various T-cell and B-cell subsets. In solid organ transplant patients, global suppression of innate and adaptive immunities by immunosuppressive agents limits immunological defense, including inhibition of natural killer cell activity with ongoing lowering of Ig levels and CMV-specific antibody titers. This is coupled with a short-term suppression of CMV-specific T cells, the extent and duration of which can predict risk of progression to CMV viremia. CMV immunoglobulin (CMVIG) preparations have the potential to exert immunomodulatory effects as well as providing passive immunization. Specific CMVIG antibodies and virus neutralization might be enhanced by modulation of dendritic cell activity and by a decrease in T-cell activation, effects which are of importance during the initial phase of infection. In summary, the role of CMVIG in reconstituting specific anti-CMV antibodies may be enhanced by some degree of modulation of the innate and adaptive immune responses, which could help to control some of the direct and indirect effects of CMV infection.

  5. A Systematic Review of Innate Immunomodulatory Effects of Household Air Pollution Secondary to the Burning of Biomass Fuels.

    PubMed

    Lee, Alison; Kinney, Patrick; Chillrud, Steve; Jack, Darby

    2015-01-01

    Household air pollution (HAP)-associated acute lower respiratory infections cause 455,000 deaths and a loss of 39.1 million disability-adjusted life years annually. The immunomodulatory mechanisms of HAP are poorly understood. The aim of this study was to conduct a systematic review of all studies examining the mechanisms underlying the relationship between HAP secondary to solid fuel exposure and acute lower respiratory tract infection to evaluate current available evidence, identify gaps in knowledge, and propose future research priorities. We conducted and report on studies in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. In all, 133 articles were fully reviewed and main characteristics were detailed, namely study design and outcome, including in vivo versus in vitro and pollutants analyzed. Thirty-six studies were included in a nonexhaustive review of the innate immune system effects of ambient air pollution, traffic-related air pollution, or wood smoke exposure of developed country origin. Seventeen studies investigated the effects of HAP-associated solid fuel (biomass or coal smoke) exposure on airway inflammation and innate immune system function. Particulate matter may modulate the innate immune system and increase susceptibility to infection through a) alveolar macrophage-driven inflammation, recruitment of neutrophils, and disruption of barrier defenses; b) alterations in alveolar macrophage phagocytosis and intracellular killing; and c) increased susceptibility to infection via upregulation of receptors involved in pathogen invasion. HAP secondary to the burning of biomass fuels alters innate immunity, predisposing children to acute lower respiratory tract infections. Data from biomass exposure in developing countries are scarce. Further study is needed to define the inflammatory response, alterations in phagocytic function, and upregulation of receptors important in bacterial and viral binding. These studies have important public health implications and may lead to the design of interventions to improve the health of billions of people daily. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Opinion: Interactions of innate and adaptive lymphocytes

    PubMed Central

    Gasteiger, Georg; Rudensky, Alexander Y.

    2015-01-01

    Innate lymphocytes, including natural killer (NK) cells and the recently discovered innate lymphoid cells (ILCs) have crucial roles during infection, tissue injury and inflammation. Innate signals regulate the activation and homeostasis of innate lymphocytes. Less well understood is the contribution of the adaptive immune system to the orchestration of innate lymphocyte responses. We review our current understanding of the interactions between adaptive and innate lymphocytes, and propose a model in which adaptive T cells function as antigen-specific sensors for the activation of innate lymphocytes to amplify and instruct local immune responses. We highlight the potential role of regulatory and helper T cells in these processes and discuss major questions in the emerging area of crosstalk between adaptive and innate lymphocytes. PMID:25132095

  7. The Potential for Emerging Microbiome-Mediated Therapeutics in Asthma.

    PubMed

    Ozturk, Ayse Bilge; Turturice, Benjamin Arthur; Perkins, David L; Finn, Patricia W

    2017-08-10

    In terms of immune regulating functions, analysis of the microbiome has led the development of therapeutic strategies that may be applicable to asthma management. This review summarizes the current literature on the gut and lung microbiota in asthma pathogenesis with a focus on the roles of innate molecules and new microbiome-mediated therapeutics. Recent clinical and basic studies to date have identified several possible therapeutics that can target innate immunity and the microbiota in asthma. Some of these drugs have shown beneficial effects in the treatment of certain asthma phenotypes and for protection against asthma during early life. Current clinical evidence does not support the use of these therapies for effective treatment of asthma. The integration of the data regarding microbiota with technologic advances, such as next generation sequencing and omics offers promise. Combining comprehensive bioinformatics, new molecules and approaches may shape future asthma treatment.

  8. Interactions between Innate Immunity, Microbiota, and Probiotics

    PubMed Central

    Giorgetti, GianMarco; Brandimarte, Giovanni; Fabiocchi, Federica; Ricci, Salvatore; Flamini, Paolo; Sandri, Giancarlo; Trotta, Maria Cristina; Elisei, Walter; Penna, Antonio; Lecca, Piera Giuseppina; Picchio, Marcello

    2015-01-01

    The term “microbiota” means genetic inheritance associated with microbiota, which is about 100 times larger than the guest. The tolerance of the resident bacterial flora is an important key element of immune cell function. A key role in the interaction between the host and the microbiota is played by Paneth cell, which is able to synthesize and secrete proteins and antimicrobial peptides, such as α/β defensins, cathelicidin, 14 β-glycosidases, C-type lectins, and ribonuclease, in response to various stimuli. Recent studies found probiotics able to preserve intestinal homeostasis by downmodulating the immune response and inducing the development of T regulatory cells. Specific probiotic strain, as well as probiotic-driven metabolic products called “postbiotics,” has been recently recognized and it is able to influence innate immunity. New therapeutic approaches based on probiotics are now available, and further treatments based on postbiotics will come in the future. PMID:26090492

  9. Innate lymphoid cells in atherosclerosis.

    PubMed

    Engelbertsen, Daniel; Lichtman, Andrew H

    2017-12-05

    The family of innate lymphoid cells (ILCs) consisting of NK cells, lymphoid tissue inducer cells and the 'helper'-like ILC subsets ILC1, ILC2 and ILC3 have been shown to have important roles in protection against microbes, regulation of inflammatory diseases and involved in allergic reactions. ILC1s produce IFN-γ upon stimulation with IL-12 and IL-18, ILC2s produce IL-5 and IL-13 responding to IL-33 and IL-25 while ILC3s produce IL-17 and IL-22 after stimulation with IL-23 or IL-1. Although few studies have directly investigated the role for ILCs in atherosclerosis, several studies have investigated transcription factors and cytokines shared by ILCs and T helper cells. In this review we summarize our current understanding of the role of ILC in atherosclerosis and discuss future directions. Copyright © 2017. Published by Elsevier B.V.

  10. Methods to study Drosophila immunity.

    PubMed

    Neyen, Claudine; Bretscher, Andrew J; Binggeli, Olivier; Lemaitre, Bruno

    2014-06-15

    Innate immune mechanisms are well conserved throughout evolution, and many theoretical concepts, molecular pathways and gene networks are applicable to invertebrate model organisms as much as vertebrate ones. Drosophila immunity research benefits from an easily manipulated genome, a fantastic international resource of transgenic tools and over a quarter century of accumulated techniques and approaches to study innate immunity. Here we present a short collection of ways to challenge the fruit fly immune system with various pathogens and parasites, as well as read-outs to assess its functions, including cellular and humoral immune responses. Our review covers techniques for assessing the kinetics and efficiency of immune responses quantitatively and qualitatively, such as survival analysis, bacterial persistence, antimicrobial peptide gene expression, phagocytosis and melanisation assays. Finally, we offer a toolkit of Drosophila strains available to the research community for current and future research. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The Innate and Adaptive Immune System as Targets for Biologic Therapies in Inflammatory Bowel Disease.

    PubMed

    Holleran, Grainne; Lopetuso, Loris; Petito, Valentina; Graziani, Cristina; Ianiro, Gianluca; McNamara, Deirdre; Gasbarrini, Antonio; Scaldaferri, Franco

    2017-09-21

    Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition causing inflammation of gastrointestinal and systemic cells, with an increasing prevalence worldwide. Many factors are known to trigger and maintain inflammation in IBD including the innate and adaptive immune systems, genetics, the gastrointestinal microbiome and several environmental factors. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents. The initial focus of these agents was directed against the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) leading to dramatic changes in the disease course for a proportion of patients with IBD. However, more recently, it has been shown that a significant proportion of patients do not respond to anti-TNF-α directed therapies, leading a shift to other inflammatory pathways and targets, including those of both the innate and adaptive immune systems, and targets linking both systems including anti-leukocyte trafficking agents-integrins and adhesion molecules. This review briefly describes the molecular basis of immune based gastrointestinal inflammation in IBD, and then describes how several current and future biologic agents work to manipulate these pathways, and their clinical success to date.

  12. Systematic Review of the Relation Between Intestinal Microbiota and Toll-Like Receptors in the Metabolic Syndrome: What Do We Know So Far?

    PubMed

    Portela-Cidade, José Pedro; Borges-Canha, Marta; Leite-Moreira, Adelino Ferreira; Pimentel-Nunes, Pedro

    2015-01-01

    Metabolic syndrome is an emerging problem in developed countries and presents itself as a potential threat worldwide. The role of diabetes, dyslipidaemia and hepatic steatosis as pivotal components of the metabolic syndrome is well known. However, their common persistent chronic inflammation and its potential cause still elude. This systematic review aims to present evidence of the mechanisms that link the intestinal microbioma, innate immunity and metabolic syndrome. A comprehensive research was made using PubMed database and 35 articles were selected. We found that metabolic syndrome is associated to increased levels of innate immunity receptors, namely, Toll-like receptors, both in intestine and systemically and its polymorphisms may change the risk of metabolic syndrome development. Microbioma dysbiosis is also present in metabolic syndrome, with lower prevalence of Bacteroidetes and increased prevalence of Firmicutes populations. The data suggest that the link between intestinal microbiota and Toll-like receptors can negatively endanger the metabolic homeostasis. Current evidence suggests that innate immunity and intestinal microbiota may be the hidden link in the metabolic syndrome development mechanisms. In the near future, this can be the key in the development of new prophylactic and therapeutic strategies to treat metabolic syndrome patients.

  13. Immunopathology of inflammatory bowel disease

    PubMed Central

    Wallace, Kori L; Zheng, Li-Bo; Kanazawa, Yoshitake; Shih, David Q

    2014-01-01

    Inflammatory bowel disease (IBD) results from a complex series of interactions between susceptibility genes, the environment, and the immune system. The host microbiome, as well as viruses and fungi, play important roles in the development of IBD either by causing inflammation directly or indirectly through an altered immune system. New technologies have allowed researchers to be able to quantify the various components of the microbiome, which will allow for future developments in the etiology of IBD. Various components of the mucosal immune system are implicated in the pathogenesis of IBD and include intestinal epithelial cells, innate lymphoid cells, cells of the innate (macrophages/monocytes, neutrophils, and dendritic cells) and adaptive (T-cells and B-cells) immune system, and their secreted mediators (cytokines and chemokines). Either a mucosal susceptibility or defect in sampling of gut luminal antigen, possibly through the process of autophagy, leads to activation of innate immune response that may be mediated by enhanced toll-like receptor activity. The antigen presenting cells then mediate the differentiation of naïve T-cells into effector T helper (Th) cells, including Th1, Th2, and Th17, which alter gut homeostasis and lead to IBD. In this review, the effects of these components in the immunopathogenesis of IBD will be discussed. PMID:24415853

  14. Immunopathology of inflammatory bowel disease.

    PubMed

    Wallace, Kori L; Zheng, Li-Bo; Kanazawa, Yoshitake; Shih, David Q

    2014-01-07

    Inflammatory bowel disease (IBD) results from a complex series of interactions between susceptibility genes, the environment, and the immune system. The host microbiome, as well as viruses and fungi, play important roles in the development of IBD either by causing inflammation directly or indirectly through an altered immune system. New technologies have allowed researchers to be able to quantify the various components of the microbiome, which will allow for future developments in the etiology of IBD. Various components of the mucosal immune system are implicated in the pathogenesis of IBD and include intestinal epithelial cells, innate lymphoid cells, cells of the innate (macrophages/monocytes, neutrophils, and dendritic cells) and adaptive (T-cells and B-cells) immune system, and their secreted mediators (cytokines and chemokines). Either a mucosal susceptibility or defect in sampling of gut luminal antigen, possibly through the process of autophagy, leads to activation of innate immune response that may be mediated by enhanced toll-like receptor activity. The antigen presenting cells then mediate the differentiation of naïve T-cells into effector T helper (Th) cells, including Th1, Th2, and Th17, which alter gut homeostasis and lead to IBD. In this review, the effects of these components in the immunopathogenesis of IBD will be discussed.

  15. Graft-versus-host disease: regulation by microbe-associated molecules and innate immune receptors.

    PubMed

    Penack, Olaf; Holler, Ernst; van den Brink, Marcel R M

    2010-03-11

    Acute graft-versus-host disease (GVHD) remains the major obstacle to a more favorable therapeutic outcome of allogeneic hematopoietic stem cell transplantation (HSCT). GVHD is characterized by tissue damage in gut, liver, and skin, caused by donor T cells that are critical for antitumor and antimicrobial immunity after HSCT. One obstacle in combating GVHD used to be the lack of understanding the molecular mechanisms that are involved in the initiation phase of this syndrome. Recent research has demonstrated that interactions between microbial-associated molecules (pathogen-associated molecular patterns [PAMPs]) and innate immune receptors (pathogen recognition receptors [PRRs]), such as NOD-like receptors (NLRs) and Toll-like receptors (TLRs), control adaptive immune responses in inflammatory disorders. Polymorphisms of the genes encoding NOD2 and TLR4 are associated with a higher incidence of GVHD in HSC transplant recipients. Interestingly, NOD2 regulates GVHD through its inhibitory effect on antigen-presenting cell (APC) function. These insights identify important mechanisms regarding the induction of GVHD through the interplay of microbial molecules and innate immunity, thus opening a new area for future therapeutic approaches. This review covers current knowledge of the role of PAMPs and PRRs in the control of adaptive immune responses during inflammatory diseases, particularly GVHD.

  16. Activity of Fusion Prophenoloxidase-GFP and Its Potential Applications for Innate Immunity Study

    PubMed Central

    Yang, Bing; Lu, Anrui; Peng, Qin; Ling, Qing-Zhi; Ling, Erjun

    2013-01-01

    Insect prophenoloxidase (PPO) is essential for physiological functions such as melanization of invading pathogens, wound healing and cuticle sclerotization. The insect PPO activation pathway is well understood. However, it is not very clear how PPO is released from hemocytes and how PPO takes part in cellular immunity. To begin to assess this, three Drosophila melanogaster PPO genes were separately fused with GFP at the C-terminus (rPPO-GFP) and were over-expressed in S2 cells. The results of staining and morphological observation show that rPPO-GFP expressed in S2 cells has green fluorescence and enzyme activity if Cu2+ was added during transfection. Each rPPO-GFP has similar properties as the corresponding rPPO. However, cells with rPPO-GFP over-expressed are easier to trace without PO activation and staining. Further experiments show that rPPO1-GFP is cleaved and activated by Drosophila serine protease, and rPPO1-GFP binds to Micrococcus luteus and Beauveria bassiana spores as silkworm plasma PPO. The above research indicates that the GFP-tag has no influence on the fusion enzyme activation and PPO-involved innate immunity action in vitro. Thus, rPPO-GFP may be a convenient tool for innate immunity study in the future if it can be expressed in vivo. PMID:23717543

  17. The Innate and Adaptive Immune System as Targets for Biologic Therapies in Inflammatory Bowel Disease

    PubMed Central

    Holleran, Grainne; Lopetuso, Loris; Petito, Valentina; Graziani, Cristina; Ianiro, Gianluca; McNamara, Deirdre; Gasbarrini, Antonio; Scaldaferri, Franco

    2017-01-01

    Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition causing inflammation of gastrointestinal and systemic cells, with an increasing prevalence worldwide. Many factors are known to trigger and maintain inflammation in IBD including the innate and adaptive immune systems, genetics, the gastrointestinal microbiome and several environmental factors. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents. The initial focus of these agents was directed against the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) leading to dramatic changes in the disease course for a proportion of patients with IBD. However, more recently, it has been shown that a significant proportion of patients do not respond to anti-TNF-α directed therapies, leading a shift to other inflammatory pathways and targets, including those of both the innate and adaptive immune systems, and targets linking both systems including anti-leukocyte trafficking agents-integrins and adhesion molecules. This review briefly describes the molecular basis of immune based gastrointestinal inflammation in IBD, and then describes how several current and future biologic agents work to manipulate these pathways, and their clinical success to date. PMID:28934123

  18. Effects of mannose-binding lectin on pulmonary gene expression and innate immune inflammatory response to ozone

    PubMed Central

    Ciencewicki, Jonathan M.; Verhein, Kirsten C.; Gerrish, Kevin; McCaw, Zachary R.; Li, Jianying; Bushel, Pierre R.

    2016-01-01

    Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood. Ozone-induced lung inflammation is mediated, in part, by the innate immune system. We hypothesized that mannose-binding lectin (MBL), an innate immunity serum protein, contributes to the proinflammatory events caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl+/+) and MBL-deficient (Mbl−/−) mice were exposed to ozone (0.3 ppm) for up to 72 h, and bronchoalveolar lavage fluid was examined for inflammatory markers. Mean numbers of eosinophils and neutrophils and levels of the neutrophil attractants C-X-C motif chemokines 2 [Cxcl2 (major intrinsic protein 2)] and 5 [Cxcl5 (limb expression, LIX)] in the bronchoalveolar lavage fluid were significantly lower in Mbl−/− than Mbl+/+ mice exposed to ozone. Using genome-wide mRNA microarray analyses, we identified significant differences in transcript response profiles and networks at baseline [e.g., nuclear factor erythroid-related factor 2 (NRF2)-mediated oxidative stress response] and after exposure (e.g., humoral immune response) between Mbl+/+ and Mbl−/− mice. The microarray data were further analyzed to discover several informative differential response patterns and subsequent gene sets, including the antimicrobial response and the inflammatory response. We also used the lists of gene transcripts to search the LINCS L1000CDS2 data sets to identify agents that are predicted to perturb ozone-induced changes in gene transcripts and inflammation. These novel findings demonstrate that targeted deletion of Mbl caused differential levels of inflammation-related gene sets at baseline and after exposure to ozone and significantly reduced pulmonary inflammation, thus indicating an important innate immunomodulatory role of the gene in this model. PMID:27106289

  19. Innate immune function and mortality in critically ill children with influenza: a multicenter study.

    PubMed

    Hall, Mark W; Geyer, Susan M; Guo, Chao-Yu; Panoskaltsis-Mortari, Angela; Jouvet, Philippe; Ferdinands, Jill; Shay, David K; Nateri, Jyotsna; Greathouse, Kristin; Sullivan, Ryan; Tran, Tram; Keisling, Shannon; Randolph, Adrienne G

    2013-01-01

    To prospectively evaluate relationships among serum cytokine levels, innate immune responsiveness, and mortality in a multicenter cohort of critically ill children with influenza infection. Prospective, multicenter, observational study. Fifteen pediatric ICUs among members of the Pediatric Acute Lung Injury and Sepsis Investigators network. Patients ≤18 yrs old admitted to a PICU with community-acquired influenza infection. A control group of outpatient children was also evaluated. ICU patients underwent sampling within 72 hrs of ICU admission for measurement of a panel of 31 serum cytokine levels and quantification of whole blood ex vivo lipopolysaccharide-stimulated tumor necrosis factor-α production capacity using a standardized stimulation protocol. Outpatient control subjects also underwent measurement of tumor necrosis factor-α production capacity. Fifty-two patients (44 survivors, eight deaths) were sampled. High levels of serum cytokines (granulocyte macrophage colony-stimulating factor, interleukin-6, interleukin-8, interferon-inducible protein-10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1α) were associated with mortality (p < 0.0016 for each comparison) as was the presence of secondary infection with Staphylococcus aureus (p = 0.007), particularly methicillin-resistant S. aureus (p < 0.0001). Nonsurvivors were immunosuppressed with leukopenia and markedly reduced tumor necrosis factor-α production capacity compared with outpatient control subjects (n = 21, p < 0.0001) and to ICU survivors (p < 0.0001). This association remained after controlling for multiple covariables. A tumor necrosis factor-α response <250 pg/mL was highly predictive of death and longer duration of ICU stay (p < 0.0001). Patients with S. aureus coinfection demonstrated the greatest degree of immunosuppression (p < 0.0001). High serum levels of cytokines can coexist with marked innate immune suppression in children with critical influenza. Severe, early innate immune suppression is highly associated with both S. aureus coinfection and mortality in this population. Multicenter innate immune function testing is feasible and can identify these high-risk children.

  20. Transcriptomics of cortical gray matter thickness decline during normal aging

    PubMed Central

    Kochunov, P; Charlesworth, J; Winkler, A; Hong, LE; Nichols, T; Curran, JE; Sprooten, E; Jahanshad, N; Thompson, PM; Johnson, MP; Kent, JW; Landman, BA; Mitchell, B; Cole, SA; Dyer, TD; Moses, EK; Goring, HHH; Almasy, L; Duggirala, R; Olvera, RL; Glahn, DC; Blangero, J

    2013-01-01

    Introduction We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathways analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging Methods Transcriptome and GMT data were availabe for 379 individuals (age range=28–85) community-dwelling members of large extended Mexican-American families. Collection of transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800µm) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. Results Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p<10−6) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT. Conclusion Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation. PMID:23707588

  1. Transcriptomics of cortical gray matter thickness decline during normal aging.

    PubMed

    Kochunov, P; Charlesworth, J; Winkler, A; Hong, L E; Nichols, T E; Curran, J E; Sprooten, E; Jahanshad, N; Thompson, P M; Johnson, M P; Kent, J W; Landman, B A; Mitchell, B; Cole, S A; Dyer, T D; Moses, E K; Goring, H H H; Almasy, L; Duggirala, R; Olvera, R L; Glahn, D C; Blangero, J

    2013-11-15

    We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathway analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging. Transcriptome and GMT data were available for 379 individuals (age range=28-85) community-dwelling members of large extended Mexican American families. Collection of transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800 μm) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, and HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p<10(-6)) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT. Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Probing safety of nanoparticles by outlining sea urchin sensing and signaling cascades.

    PubMed

    Alijagic, Andi; Pinsino, Annalisa

    2017-10-01

    Among currently identified issues presenting risks and benefits to human and ocean health, engineered nanoparticles (ENP) represent a priority. Predictions of their economic and social impact appear extraordinary, but their release in the environment at an uncontrollable rate is in striking contrast with the extremely limited number of studies on environmental impact, especially on the marine environment. The sea urchin has a remarkable sensing environmental system whose function and diversity came into focus during the recent years, after sea urchin genome sequencing. The complex immune system may be the basis wherefore sea urchins can adapt to a dynamic environment and survive even in hazardous conditions both in the adult and in the embryonic life. This review is aimed at discussing the literature in nanotoxicological/ecotoxicological studies with a focus on stress and innate immune signaling in sea urchins. In addition, here we introduce our current development of in vitro-driven probes that could be used to dissect ENP aftermaths, suggesting their future use in immune-nanotoxicology. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Extracellular nucleotide signaling in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, Gary

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogenmore » fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.« less

  4. The use of dermal fibroblasts as a predictive tool of the TLR4 response pathway and its development in Holstein heifers

    USDA-ARS?s Scientific Manuscript database

    The innate immune system comprises the host’s first line of defense against invading pathogens, and variation in the magnitude of this response between animals has been shown to affect susceptibility to mastitis. The toll-like receptor (TLR) family of proteins initiates the response to invading bact...

  5. Development of Antimicrobial Peptide Prediction Tool for Aquaculture Industries.

    PubMed

    Gautam, Aditi; Sharma, Asuda; Jaiswal, Sarika; Fatma, Samar; Arora, Vasu; Iquebal, M A; Nandi, S; Sundaray, J K; Jayasankar, P; Rai, Anil; Kumar, Dinesh

    2016-09-01

    Microbial diseases in fish, plant, animal and human are rising constantly; thus, discovery of their antidote is imperative. The use of antibiotic in aquaculture further compounds the problem by development of resistance and consequent consumer health risk by bio-magnification. Antimicrobial peptides (AMPs) have been highly promising as natural alternative to chemical antibiotics. Though AMPs are molecules of innate immune defense of all advance eukaryotic organisms, fish being heavily dependent on their innate immune defense has been a good source of AMPs with much wider applicability. Machine learning-based prediction method using wet laboratory-validated fish AMP can accelerate the AMP discovery using available fish genomic and proteomic data. Earlier AMP prediction servers are based on multi-phyla/species data, and we report here the world's first AMP prediction server in fishes. It is freely accessible at http://webapp.cabgrid.res.in/fishamp/ . A total of 151 AMPs related to fish collected from various databases and published literature were taken for this study. For model development and prediction, N-terminus residues, C-terminus residues and full sequences were considered. Best models were with kernels polynomial-2, linear and radial basis function with accuracy of 97, 99 and 97 %, respectively. We found that performance of support vector machine-based models is superior to artificial neural network. This in silico approach can drastically reduce the time and cost of AMP discovery. This accelerated discovery of lead AMP molecules having potential wider applications in diverse area like fish and human health as substitute of antibiotics, immunomodulator, antitumor, vaccine adjuvant and inactivator, and also for packaged food can be of much importance for industries.

  6. Innate humoural immunity is related to eggshell bacterial load of European birds: a comparative analysis.

    PubMed

    Soler, Juan José; Peralta-Sánchez, Juan Manuel; Flensted-Jensen, Einar; Martín-Platero, Antonio Manuel; Møller, Anders Pape

    2011-09-01

    Fitness benefits associated with the development of a costly immune system would include not only self-protection against pathogenic microorganisms but also protection of host offspring if it reduces the probability and the rate of vertical transmission of microorganisms. This possibility predicts a negative relationship between probabilities of vertical transmission of symbionts and level of immune response that we here explore inter-specifically. We estimated eggshell bacterial loads by culturing heterotrophic bacteria, Enterococcus, Staphylococcus and Enterobacteriaceae on the eggshells of 29 species of birds as a proxy of vertical transmission of bacteria from mother to offspring. For this pool of species, we also estimated innate immune response (natural antibody and complement (lysis)) of adults, which constitute the main defence against bacterial infection. Multivariate general linear models revealed the predicted negative association between natural antibodies and density of bacteria on the eggshell of 19 species of birds for which we sampled the eggs in more than one nest. Univariate analyses revealed significant associations for heterotrophic bacteria and for Enterobacteriaceae, a group of bacteria that includes important pathogens of avian embryos. Therefore, these results suggest a possible trans-generational benefit of developing a strong immune system by reducing vertical transmission of pathogens.

  7. Innate humoural immunity is related to eggshell bacterial load of European birds: a comparative analysis

    NASA Astrophysics Data System (ADS)

    Soler, Juan José; Peralta-Sánchez, Juan Manuel; Flensted-Jensen, Einar; Martín-Platero, Antonio Manuel; Møller, Anders Pape

    2011-09-01

    Fitness benefits associated with the development of a costly immune system would include not only self-protection against pathogenic microorganisms but also protection of host offspring if it reduces the probability and the rate of vertical transmission of microorganisms. This possibility predicts a negative relationship between probabilities of vertical transmission of symbionts and level of immune response that we here explore inter-specifically. We estimated eggshell bacterial loads by culturing heterotrophic bacteria, Enterococcus, Staphylococcus and Enterobacteriaceae on the eggshells of 29 species of birds as a proxy of vertical transmission of bacteria from mother to offspring. For this pool of species, we also estimated innate immune response (natural antibody and complement (lysis)) of adults, which constitute the main defence against bacterial infection. Multivariate general linear models revealed the predicted negative association between natural antibodies and density of bacteria on the eggshell of 19 species of birds for which we sampled the eggs in more than one nest. Univariate analyses revealed significant associations for heterotrophic bacteria and for Enterobacteriaceae, a group of bacteria that includes important pathogens of avian embryos. Therefore, these results suggest a possible trans-generational benefit of developing a strong immune system by reducing vertical transmission of pathogens.

  8. Ambient ozone and pulmonary innate immunity

    PubMed Central

    Al-Hegelan, Mashael; Tighe, Robert M.; Castillo, Christian; Hollingsworth, John W.

    2013-01-01

    Ambient ozone is a criteria air pollutant that impacts both human morbidity and mortality. The effect of ozone inhalation includes both toxicity to lung tissue and alteration of the host immunologic response. The innate immune system facilitates immediate recognition of both foreign pathogens and tissue damage. Emerging evidence supports that ozone can modify the host innate immune response and that this response to inhaled ozone is dependent on genes of innate immunity. Improved understanding of the complex interaction between environmental ozone and host innate immunity will provide fundamental insight into the pathogenesis of inflammatory airways disease. We review the current evidence supporting that environmental ozone inhalation: (1) modifies cell types required for intact innate immunity, (2) is partially dependent on genes of innate immunity, (3) primes pulmonary innate immune responses to LPS, and (4) contributes to innate-adaptive immune system cross-talk. PMID:21132467

  9. Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications.

    PubMed

    Hartman, Zachary C; Appledorn, Daniel M; Amalfitano, Andrea

    2008-03-01

    Extensively characterized, modified, and employed for a variety of purposes, adenovirus (Ad) vectors are generally regarded as having great potential by many applied virologists who wish to manipulate and use viral biology to achieve beneficial clinical outcomes. Despite widespread functional prominence and utility (i.e., Ad-based clinical trials have begun to progress to critical Phase III levels, it has recently become apparent that investigations regarding the innate immune response to Ads may reveal not only reasons behind previous failures, but also reveal novel insights that will allow for safer, more efficacious uses of this important gene transfer platform. Insights gained by the exploration of Ad induced innate immune responses will likely be most important to the fields of vaccine development, since Ad-based vaccines are regarded as one of the more promising vaccine platforms in development today. Adenovirus is currently known to interact with several different extracellular, intracellular, and membrane-bound innate immune sensing systems. Past and recent studies involving manipulation of the Ad infectious cycle as well as use of different mutants have shed light on some of the initiation mechanisms underlying Ad induced immune responses. More recent studies using microarray-based analyses, genetically modified cell lines and/or mouse mutants, and advanced generation Ad vectors have revealed important new insights into the scope and mechanism of this cellular defensive response. This review is an attempt to synthesize these studies, update Ad biologists to the current knowledge surrounding these increasingly important issues, as well as highlight areas where future research should be directed. It should also serve as a sobering reality to researchers exploring the use of any gene transfer vector, as to the complexities potentially involved when contemplating use of such vectors for human applications.

  10. Adenovirus vector induced Innate Immune responses: Impact upon efficacy and toxicity in gene therapy and vaccine applications

    PubMed Central

    Hartman, Zachary C.; Appledorn, Daniel M.; Amalfitano, Andrea

    2013-01-01

    Extensively characterized, modified, and employed for a variety of purposes, Adenovirus (Ad) vectors are generally regarded as having great potential by many applied virologists who wish to manipulate and use viral biology to achieve beneficial clinical outcomes. Despite widespread functional prominence and utility, (i.e.: Ad based clinical trials have begun to progress to critical Phase III levels, it has recently become apparent that investigations regarding the innate immune response to Ads may reveal not only reasons behind previous failures, but also reveal novel insights that will allow for safer, more efficacious uses of this important gene transfer platform. Insights gained by the exploration of Ad induced innate immune responses will likely be most important to the fields of vaccine development, since Ad based vaccines are highly acknowledged as one of the more promising vaccine platforms in development today. Adenovirus is currently known to interact with several different extracellular, intracellular, and membrane bound innate immune sensing systems. Past and recent studies involving manipulation of the Ad infectious cycle as well as use of different mutants have shed light on some of the initiation mechanisms underlying Ad induced immune responses. More recent studies using microarray based analyses, genetically modified cell lines and/or mouse mutants, and advanced generation Ad vectors have revealed important new insights into the scope and mechanism of this cellular defensive response. This review is an attempt to synthesize these studies, update Ad biologists to the current knowledge surrounding these increasingly important issues, as well point areas where future research should be directed. It should also serve as a sobering reality to researchers exploring the use of any gene transfer vector, as to the complexities potentially involved when contemplating use of such vectors for human applications. PMID:18036698

  11. Innate Immunity and Breast Milk.

    PubMed

    Cacho, Nicole Theresa; Lawrence, Robert M

    2017-01-01

    Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant's optimal growth and development. The growing infant's immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant's innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk's effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant's intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs) have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant's gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system and the developing infant.

  12. The correlation between fundamental characteristics and first-time performance in laparoscopic tasks.

    PubMed

    Harrington, Cuan M; Bresler, Richard; Ryan, Donncha; Dicker, Patrick; Traynor, Oscar; Kavanagh, Dara O

    2018-04-01

    The ability of characteristics to predict first time performance in laparoscopic tasks is not well described. Videogame experience predicts positive performance in laparoscopic experiences but its mechanism and confounding-association with aptitude remains to be elucidated. This study sought to evaluate for innate predictors of laparoscopic performance in surgically naive individuals with minimal videogame exposure. Participants with no prior laparoscopic exposure and minimal videogaming experience were recruited consecutively from preclinical years at a medical university. Participants completed four visuospatial, one psychomotor aptitude test and an electronic survey, followed by four laparoscopic tasks on a validated Virtual Reality simulator (LAP Mentor™). Twenty eligible individuals participated with a mean age of 20.8 (±3.8) years. Significant intra-aptitude performance correlations were present amongst 75% of the visuospatial tests. These visuospatial aptitudes correlated significantly with multiple laparoscopic task metrics: number of movements of a dominant instrument (r s  ≥ -0.46), accuracy rate of clip placement (r s  ≥ 0.50) and time taken (r s  ≥ -0.47) (p < 0.05). Musical Instrument experience predicted higher average speed of instruments (r s  ≥ 0.47) (p < 0.05). Participant's revised competitive index level predicted lower proficiency in laparoscopic metrics including: pathlength, economy and number of movements of dominant instrument (r s  ≥ 0.46) (p < 0.05). Multiple visuospatial aptitudes and innate competitive level influenced baseline laparoscopic performances across several tasks in surgically naïve individuals. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Immunotherapy for pancreatic cancer: present and future.

    PubMed

    Aroldi, Francesca; Zaniboni, Alberto

    2017-06-01

    Despite the identification of some efficient drugs for the treatment of metastatic pancreatic cancer, this tumor remains one of the most lethal cancers and is characterized by a strong resistance to therapies. Pancreatic cancer has some unique features including the presence of a microenvironment filled with immunosuppressive mediators and a dense stroma, which is both a physical barrier to drug penetration and a dynamic entity involved in immune system control. Therefore, the immune system has been hypothesized to play an important role in pancreatic cancer. Thus, therapies acting on innate or adaptive immunity are being investigated. Here, we review the literature, report the most interesting results and hypothesize future treatment directions.

  14. Innate and Conditioned Responses to Chemosensory and Visual Cues in Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae), Vector of Huanglongbing Pathogens

    PubMed Central

    Patt, Joseph M.; Stockton, Dara; Meikle, William G.; Sétamou, Mamoudou; Mafra-Neto, Agenor; Adamczyk, John J.

    2014-01-01

    Asian citrus psyllid (Diaphorina citri) transmits Huanglongbing, a devastating disease that threatens citrus trees worldwide. A better understanding of the psyllid’s host-plant selection process may lead to the development of more efficient means of monitoring it and predicting its movements. Since behavioral adaptations, such as associative learning, may facilitate recognition of suitable host-plants, we examined whether adult D. citri could be conditioned to visual and chemosensory stimuli from host and non-host-plant sources. Response was measured as the frequency of salivary sheaths, the residue of psyllid probing activity, in a line of emulsified wax on the surface of a test arena. The psyllids displayed both appetitive and aversive conditioning to two different chemosensory stimuli. They could also be conditioned to recognize a blue-colored probing substrate and their response to neutral visual cues was enhanced by chemosensory stimuli. Conditioned psyllids were sensitive to the proportion of chemosensory components present in binary mixtures. Naïve psyllids displayed strong to moderate innate biases to several of the test compounds. While innate responses are probably the psyllid’s primary behavioral mechanism for selecting host-plants, conditioning may enhance its ability to select host-plants during seasonal transitions and dispersal. PMID:26462949

  15. Innate and Conditioned Responses to Chemosensory and Visual Cues in Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae), Vector of Huanglongbing Pathogens.

    PubMed

    Patt, Joseph M; Stockton, Dara; Meikle, William G; Sétamou, Mamoudou; Mafra-Neto, Agenor; Adamczyk, John J

    2014-11-19

    Asian citrus psyllid (Diaphorina citri) transmits Huanglongbing, a devastating disease that threatens citrus trees worldwide. A better understanding of the psyllid's host-plant selection process may lead to the development of more efficient means of monitoring it and predicting its movements. Since behavioral adaptations, such as associative learning, may facilitate recognition of suitable host-plants, we examined whether adult D. citri could be conditioned to visual and chemosensory stimuli from host and non-host-plant sources. Response was measured as the frequency of salivary sheaths, the residue of psyllid probing activity, in a line of emulsified wax on the surface of a test arena. The psyllids displayed both appetitive and aversive conditioning to two different chemosensory stimuli. They could also be conditioned to recognize a blue-colored probing substrate and their response to neutral visual cues was enhanced by chemosensory stimuli. Conditioned psyllids were sensitive to the proportion of chemosensory components present in binary mixtures. Naïve psyllids displayed strong to moderate innate biases to several of the test compounds. While innate responses are probably the psyllid's primary behavioral mechanism for selecting host-plants, conditioning may enhance its ability to select host-plants during seasonal transitions and dispersal.

  16. Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons

    PubMed Central

    Aizenberg, Mark; Mwilambwe-Tshilobo, Laetitia; Briguglio, John J.; Natan, Ryan G.; Geffen, Maria N.

    2015-01-01

    The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination. PMID:26629746

  17. Emerging Concepts in Innate Immunity.

    PubMed

    Pelka, Karin; De Nardo, Dominic

    2018-01-01

    This review introduces recent concepts in innate immunity highlighting some of the latest exciting findings. These include: the discovery of the initiator of pyroptosis, Gasdermin D, and mechanisms of inflammatory caspases in innate immune signaling; the formation of oligomeric signalosomes downstream of innate immune receptors; mechanisms that shape innate immune responses, such as cellular homeostasis, cell metabolism, and pathogen viability; rapid methods of cell-to-cell communication; the interplay between the host and its microbiome and the concept of innate immunological memory. Furthermore, we discuss open questions and illustrate how technological advances, such as CRISPR/Cas9, may provide important answers for outstanding questions in the field of innate immunity.

  18. The Innate Immune Database (IIDB)

    PubMed Central

    Korb, Martin; Rust, Aistair G; Thorsson, Vesteinn; Battail, Christophe; Li, Bin; Hwang, Daehee; Kennedy, Kathleen A; Roach, Jared C; Rosenberger, Carrie M; Gilchrist, Mark; Zak, Daniel; Johnson, Carrie; Marzolf, Bruz; Aderem, Alan; Shmulevich, Ilya; Bolouri, Hamid

    2008-01-01

    Background As part of a National Institute of Allergy and Infectious Diseases funded collaborative project, we have performed over 150 microarray experiments measuring the response of C57/BL6 mouse bone marrow macrophages to toll-like receptor stimuli. These microarray expression profiles are available freely from our project web site . Here, we report the development of a database of computationally predicted transcription factor binding sites and related genomic features for a set of over 2000 murine immune genes of interest. Our database, which includes microarray co-expression clusters and a host of web-based query, analysis and visualization facilities, is available freely via the internet. It provides a broad resource to the research community, and a stepping stone towards the delineation of the network of transcriptional regulatory interactions underlying the integrated response of macrophages to pathogens. Description We constructed a database indexed on genes and annotations of the immediate surrounding genomic regions. To facilitate both gene-specific and systems biology oriented research, our database provides the means to analyze individual genes or an entire genomic locus. Although our focus to-date has been on mammalian toll-like receptor signaling pathways, our database structure is not limited to this subject, and is intended to be broadly applicable to immunology. By focusing on selected immune-active genes, we were able to perform computationally intensive expression and sequence analyses that would currently be prohibitive if applied to the entire genome. Using six complementary computational algorithms and methodologies, we identified transcription factor binding sites based on the Position Weight Matrices available in TRANSFAC. For one example transcription factor (ATF3) for which experimental data is available, over 50% of our predicted binding sites coincide with genome-wide chromatin immnuopreciptation (ChIP-chip) results. Our database can be interrogated via a web interface. Genomic annotations and binding site predictions can be automatically viewed with a customized version of the Argo genome browser. Conclusion We present the Innate Immune Database (IIDB) as a community resource for immunologists interested in gene regulatory systems underlying innate responses to pathogens. The database website can be freely accessed at . PMID:18321385

  19. Limits on determining the skill of North Atlantic Ocean decadal predictions.

    PubMed

    Menary, Matthew B; Hermanson, Leon

    2018-04-27

    The northern North Atlantic is important globally both through its impact on the Atlantic Meridional Overturning Circulation (AMOC) and through widespread atmospheric teleconnections. The region has been shown to be potentially predictable a decade ahead with the skill of decadal predictions assessed against reanalyses of the ocean state. Here, we show that the prediction skill in this region is strongly dependent on the choice of reanalysis used for validation, and describe the causes. Multiannual skill in key metrics such as Labrador Sea density and the AMOC depends on more than simply the choice of the prediction model. Instead, this skill is related to the similarity between the nature of interannual density variability in the underlying climate model and the chosen reanalysis. The climate models used in these decadal predictions are also used in climate projections, which raises questions about the sensitivity of these projections to the models' innate North Atlantic density variability.

  20. An Evaluation of Universal Grammar and the Phonological Mind1

    PubMed Central

    Everett, Daniel L.

    2016-01-01

    This paper argues against the hypothesis of a “phonological mind” advanced by Berent. It establishes that there is no evidence that phonology is innate and that, in fact, the simplest hypothesis seems to be that phonology is learned like other human abilities. Moreover, the paper fleshes out the original claim of Philip Lieberman that Universal Grammar predicts that not everyone should be able to learn every language, i.e., the opposite of what UG is normally thought to predict. The paper also underscores the problem that the absence of recursion in Pirahã represents for Universal Grammar proposals. PMID:26903889

  1. Human nutrition, the gut microbiome, and immune system: envisioning the future

    PubMed Central

    Kau, Andrew L.; Ahern, Philip P.; Griffin, Nicholas W.; Goodman, Andrew L.; Gordon, Jeffrey I.

    2012-01-01

    Summary Paragraph Dramatic changes in socioeconomic status, cultural traditions, population growth, and agriculture are affecting diets worldwide. Understanding how our diet and nutritional status influence the composition and dynamic operations of our gut microbial communities, and the innate and adaptive arms of our immune system, represents an area of scientific need, opportunity and challenge. The insights gleaned should help address a number of pressing global health problems. PMID:21677749

  2. Oral innate immunity in HIV infection in HAART era

    PubMed Central

    Nittayananta, Wipawee; Tao, Renchuan; Jiang, Lanlan; Peng, Yuanyuan; Huang, Yuxiao

    2015-01-01

    Oral innate immunity, an important component in host defense and immune surveillance in the oral cavity, plays a crucial role in the regulation of oral health. As part of the innate immune system, epithelial cells lining oral mucosal surfaces provide not only a physical barrier but also produce different antimicrobial peptides, including human β-defensins (hBDs), secretory leukocyte protease inhibitor (SLPI), and various cytokines. These innate immune mediators help in maintaining oral homeostasis. When they are impaired either by local or systemic causes, various oral infections and malignancies may be developed. Human immunodeficiency virus (HIV) infection and other co-infections appear to have both direct and indirect effects on systemic and local innate immunity leading to the development of oral opportunistic infections and malignancies. Highly active antiretroviral therapy (HAART), the standard treatment of HIV infection contributed to a global reduction of HIV-associated oral lesions. However, prolonged treatment by HAART may lead to adverse effects on the oral innate immunity resulting in the relapse of oral lesions. This review article focused on the roles of oral innate immunity in HIV infection in HAART era. The following five key questions were addressed: 1) What are the roles of oral innate immunity in health and disease?, 2) What are the effects of HIV infection on oral innate immunity?, 3) What are the roles of oral innate immunity against other co-infections?, 4) What are the effects of HAART on oral innate immunity?, and 5) Is oral innate immunity enhanced by HAART? PMID:25639844

  3. Panel 5: Immunology.

    PubMed

    Kyd, Jennelle M; Hotomi, Muneki; Kono, Masamitsu; Kurabi, Arwa; Pichichero, Michael; Ryan, Allen; Swords, W Edward; Thornton, Ruth

    2017-04-01

    Objective To perform a state-of-the-art review of the literature from January 2012 through May 2015 on studies that advanced our knowledge of the innate and adaptive immunology related to otitis media. This review also proposes future directions for research in this area. Data Sources PubMed database of the National Library of Medicine. Review Methods Three subpanels comprising experts in the field focused on sections relevant to cytokines, innate immunity, and adaptive immunity. The review focused on animal, cell line, and human studies and was critical in relation to the recommendations from the previous publication and for determination of the proposed goals and priorities. The panel met at the 18th International Symposium on Recent Advances in Otitis Media in June 2015 to consolidate its prior search results and discuss, plan, and refine the review. The panel approved the final draft. Conclusion From 2012 to 2014, tremendous progresses in immunology of otitis media were established-especially in the areas of innate immunity associated with the pathogenesis of otitis media. Implications for Practice The advances of the past 4 years formed the basis for a series of short- and long-term research goals in an effort to guide the field. Accomplishing these goals will provide opportunities for the development of novel interventions, including new ways to better treat and prevent otitis media, especially for recurrent otitis media.

  4. ‘Trained immunity’: consequences for lymphoid malignancies

    PubMed Central

    Stevens, Wendy B.C.; Netea, Mihai G.; Kater, Arnon P.; van der Velden, Walter J.F.M.

    2016-01-01

    In hematological malignancies complex interactions exist between the immune system, microorganisms and malignant cells. On one hand, microorganisms can induce cancer, as illustrated by specific infection-induced lymphoproliferative diseases such as Helicobacter pylori-associated gastric mucosa-associated lymphoid tissue lymphoma. On the other hand, malignant cells create an immunosuppressive environment for their own benefit, but this also results in an increased risk of infections. Disrupted innate immunity contributes to the neoplastic transformation of blood cells by several mechanisms, including the uncontrolled clearance of microbial and autoantigens resulting in chronic immune stimulation and proliferation, chronic inflammation, and defective immune surveillance and anti-cancer immunity. Restoring dysfunction or enhancing responsiveness of the innate immune system might therefore represent a new angle for the prevention and treatment of hematological malignancies, in particular lymphoid malignancies and associated infections. Recently, it has been shown that cells of the innate immune system, such as monocytes/macrophages and natural killer cells, harbor features of immunological memory and display enhanced functionality long-term after stimulation with certain microorganisms and vaccines. These functional changes rely on epigenetic reprogramming and have been termed ‘trained immunity’. In this review the concept of ‘trained immunity’ is discussed in the setting of lymphoid malignancies. Amelioration of infectious complications and hematological disease progression can be envisioned to result from the induction of trained immunity, but future studies are required to prove this exciting new hypothesis. PMID:27903713

  5. Understanding Autoimmunity of Vitiligo and Alopecia Areata

    PubMed Central

    Rork, Jillian F.; Rashighi, Mehdi; Harris, John E.

    2016-01-01

    Purpose of review Vitiligo and alopecia areata are common, disfiguring skin diseases. Treatment options are limited and include non-targeted approaches such as corticosteroids, topical calcineurin inhibitors, narrow band UVB phototherapy, and other immune-modifying agents. The purpose of this article is to review shared, novel mechanisms between vitiligo and alopecia areata, as well as discuss how they inform the development of future targeted treatments. Recent findings Vitiligo and alopecia areata are both autoimmune diseases, and striking similarities in pathogenesis have been identified at the level of both the innate and adaptive immune system. Increased reactive oxygen species and high cellular stress level have been suggested as the initiating trigger of the innate immune system in both diseases, and genome-wide association studies have implicated risk alleles that influence both innate and adaptive immunity. Most importantly, mechanistic studies in mouse models of vitiligo and alopecia areata have specifically implicated an IFN-γ-driven immune response, including IFN-γ, IFN-γ-induced chemokines, and cytotoxic CD8+ T cells as the main drivers of disease pathogenesis. These recent discoveries may reveal an effective strategy to develop new treatments, and several proof-of-concept clinical studies support this hypothesis. Summary The identification of IFN-γ-driven immune signaling pathways has enabled discoveries of potential new treatments for vitiligo and alopecia areata, and supports initiation of larger clinical trials. PMID:27191524

  6. Quantifying Adaptive and Innate Immune Responses in HIV-Infected Participants Using a Novel High Throughput Assay.

    PubMed

    Yong, Michelle K; Cameron, Paul U; Spelman, Tim; Elliott, Julian H; Fairley, Christopher K; Boyle, Jeffrey; Miyamasu, Misato; Lewin, Sharon R

    2016-01-01

    HIV infection is characterised by persistent immune dysfunction of both the adaptive and innate immune responses. The aim of this study was to evaluate these responses using a novel high throughput assay in healthy controls and HIV-infected individuals prior to and following anti-retroviral treatment (ART). Cross-sectional study. Whole blood was assessed using the QuantiFERON Monitor® (QFM) assay containing adaptive and innate immunostimulants. Interferon (IFN)-γ levels (IU/mL) were measured by enzyme-linked immunosorbent assay (ELISA). We recruited HIV-infected participants (n = 20 off ART and viremic; n = 59 on suppressive ART) and HIV-uninfected controls (n = 229). Median IFN-γ production was significantly higher in HIV-infected participants compared to controls (IFN-γ 512 vs 223 IU/ml, p<0.0001), but within the HIV-infected participants there was no difference between those on or off ART (median IFN-γ 512 vs 593 IU/ml p = 0.94). Amongst the HIV-infected participants, IFN-γ production was higher in individuals with CD4 count>350 compared to <350 cells/μL (IFN-γ IU/ml 561 vs 259 p = 0.02) and in males compared to females (IFN-γ 542 vs 77 IU/ml p = 0.04). There were no associations between IFN-γ production and age, plasma HIV RNA, nadir CD4 count or duration of HIV infection. Using a multivariable analysis, neither CD4 nor sex were independently predictive of IFN-γ production. Using a high throughput assay which assesses both adaptive and innate immune function, we showed elevated IFN-γ production in HIV-infected patients both on and off ART. Further research is warranted to determine if changes in QuantiFERON Monitor® are associated with clinical outcomes.

  7. Ethnicity-dependent influence of innate immune genetic markers on morphine PCA requirements and adverse effects in postoperative pain.

    PubMed

    Somogyi, Andrew A; Sia, Alex T; Tan, Ene-Choo; Coller, Janet K; Hutchinson, Mark R; Barratt, Daniel T

    2016-11-01

    Although several genetic factors have been associated with postsurgical morphine requirements, those involving the innate immune system and cytokines have not been well investigated. The aim of this study was to investigate the contribution of genetic variability in innate immune signalling pathways to variability in morphine dosage after elective caesarean section under spinal anaesthesia in 133 Indian, 230 Malay, and 598 Han Chinese women previously studied. Twenty single nucleotide polymorphisms in 14 genes involved in glial activation (TLR2, TLR4, MYD88, MD2), inflammatory signalling (IL2, IL6, IL10, IL1B, IL6R, TNFA, TGFB1, CRP, CASP1), and neuronal regulation (BDNF) were newly investigated, in addition to OPRM1, COMT, and ABCB1 genetic variability identified previously. Postsurgical patient-controlled analgesia morphine use (mg/24 hours) was binned into 6 normally distributed groups and scored 0 to 5 to facilitate step-down multiple linear regression analysis of genetic predictors, controlling for ethnicity and nongenetic variables. Ethnicity, OPRM1 rs1799971 (increased), TLR2 rs3804100 (decreased), and an interaction between ethnicity and IL1B rs1143634 (increased), predicted 9.8% of variability in morphine use scores in the entire cohort. In the Indian cohort, 14.5% of the variance in morphine use score was explained by IL1B rs1143634 (increased) and TGFB1 rs1800469 (decreased). In Chinese patients, the incidence of postsurgical pain was significantly higher in variant COMT rs4680 genotypes (P = 0.0007) but not in the Malay or Indian cohorts. Innate immune genetics may contribute to variability in postsurgical opioid requirements in an ethnicity-dependent manner.

  8. Testing the carotenoid trade-off hypothesis in the polychromatic Midas cichlid, Amphilophus citrinellus.

    PubMed

    Lin, Susan M; Nieves-Puigdoller, Katherine; Brown, Alexandria C; McGraw, Kevin J; Clotfelter, Ethan D

    2010-01-01

    Many animals use carotenoid pigments derived from their diet for coloration and immunity. The carotenoid trade-off hypothesis predicts that, under conditions of carotenoid scarcity, individuals may be forced to allocate limited carotenoids to either coloration or immunity. In polychromatic species, the pattern of allocation may differ among individuals. We tested the carotenoid trade-off hypothesis in the Midas cichlid, Amphilophus citrinellus, a species with two ontogenetic color morphs, barred and gold, the latter of which is the result of carotenoid expression. We performed a diet-supplementation experiment in which cichlids of both color morphs were assigned to one of two diet treatments that differed only in carotenoid content (beta-carotene, lutein, and zeaxanthin). We measured integument color using spectrometry, quantified carotenoid concentrations in tissue and plasma, and assessed innate immunity using lysozyme activity and alternative complement pathway assays. In both color morphs, dietary carotenoid supplementation elevated plasma carotenoid circulation but failed to affect skin coloration. Consistent with observable differences in integument coloration, we found that gold fish sequestered more carotenoids in skin tissue than barred fish, but barred fish had higher concentrations of carotenoids in plasma than gold fish. Neither measure of innate immunity differed between gold and barred fish, or as a function of dietary carotenoid supplementation. Lysozyme activity, but not complement activity, was strongly affected by body condition. Our data show that a diet low in carotenoids is sufficient to maintain both coloration and innate immunity in Midas cichlids. Our data also suggest that the developmental transition from the barred to gold morph is not accompanied by a decrease in innate immunity in this species.

  9. Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk

    PubMed Central

    Czirják, Gábor Á.; Volokhov, Dmitriy V.; Carrera, Jorge E.; Camus, Melinda S.; Navara, Kristen J.; Chizhikov, Vladimir E.; Fenton, M. Brock; Simmons, Nancy B.; Recuenco, Sergio E.; Gilbert, Amy T.

    2018-01-01

    Human activities create novel food resources that can alter wildlife–pathogen interactions. If resources amplify or dampen, pathogen transmission probably depends on both host ecology and pathogen biology, but studies that measure responses to provisioning across both scales are rare. We tested these relationships with a 4-year study of 369 common vampire bats across 10 sites in Peru and Belize that differ in the abundance of livestock, an important anthropogenic food source. We quantified innate and adaptive immunity from bats and assessed infection with two common bacteria. We predicted that abundant livestock could reduce starvation and foraging effort, allowing for greater investments in immunity. Bats from high-livestock sites had higher microbicidal activity and proportions of neutrophils but lower immunoglobulin G and proportions of lymphocytes, suggesting more investment in innate relative to adaptive immunity and either greater chronic stress or pathogen exposure. This relationship was most pronounced in reproductive bats, which were also more common in high-livestock sites, suggesting feedbacks between demographic correlates of provisioning and immunity. Infection with both Bartonella and haemoplasmas were correlated with similar immune profiles, and both pathogens tended to be less prevalent in high-livestock sites, although effects were weaker for haemoplasmas. These differing responses to provisioning might therefore reflect distinct transmission processes. Predicting how provisioning alters host–pathogen interactions requires considering how both within-host processes and transmission modes respond to resource shifts. This article is part of the theme issue ‘Anthropogenic resource subsidies and host–parasite dynamics in wildlife’. PMID:29531144

  10. Serum S100A8 and S100A9 Enhance Innate Immune Responses in the Pathogenesis of Baker's Asthma.

    PubMed

    Pham, Duy Le; Yoon, Moon-Guyng; Ban, Ga-Young; Kim, Seung-Hyun; Kim, Mi-Ae; Ye, Young-Min; Shin, Yoo Seob; Park, Hae-Sim

    2015-01-01

    S100A8 and S100A9 can be produced by lipopolysaccharide-stimulated granulocytes and provoke an innate immune-mediated airway inflammation. Involvement of S100A8 and S100A9 has been implicated in asthma. To further understand the role of S100A8 and S100A9 during innate immune responses in baker's asthma, we investigated the associations of serum S100A8 and S100A9 with exposure to bakery allergens and polymorphisms of the Toll-like receptor 4 (TLR4) gene. Totally, 381 bakery workers and 100 unexposed healthy controls were recruited. Skin prick tests for bakery allergens were performed. Serum levels of S100A8, S100A9, myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, and interleukin (IL)-8 were measured using ELISA. Predictive values of serum S100A8 and S100A9 in bakery workers were evaluated by receiver-operating characteristic (ROC) curves. Polymorphisms of TLR4 -2027Ax2192;G and -1608Tx2192;C were genotyped. Higher serum levels of S100A8 and S100A9 were noted in bakery workers compared to the normal controls (p < 0.001); however, no significant differences were noted according to work-related symptoms. The area under the ROC curve of serum S100A8 was 0.886 for occupational exposure (p < 0.001). The TLR4 -1608CC genotype was significantly associated with a higher serum S100A8 level (p = 0.025). Serum S100A8 and S100A9 levels were correlated with serum levels of MPO (r = 0.396 and 0.189, respectively), TNF-α (r = 0.536 and 0.280, respectively), and IL-8 (r = 0.540 and 0.205, respectively; p < 0.001 for all). S100A8 and S100A9 are involved in innate immune responses under the regulation of TLR4 polymorphisms in baker's asthma pathogenesis. Serum S100A8 could be a potential biomarker for predicting occupational exposure to wheat flour in bakery workers. © 2016 S. Karger AG, Basel.

  11. Innate immunity in the control of HIV/AIDS: recent advances and open questions.

    PubMed

    Ploquin, Mickaël J-Y; Jacquelin, Béatrice; Jochems, Simon P; Barré-Sinoussi, Françoise; Müller-Trutwin, Michaela C

    2012-06-19

    From the publication of the first AIDS issue onwards, major advances have been made in the field of innate immunity during HIV infection. Innate immunity can be defined as the first and unspecific lines of defense constitutively present and ready to be mobilized upon infection. Although a large body of literature adamantly highlights that innate immunity is a critical weapon of defense against HIV and its simian parents (simian immunodeficiency virus, SIV), innate immunity is still underexplored. Focusing on innate immunity may open new paths for the development of innovative therapeutics and vaccine strategies against HIV. Understanding innate immunity may shed light on the natural protection occurring in rare HIV-1-infected individuals who control their infection. This review focuses on innate mechanisms sensing HIV-1 entry and controlling HIV-1 infection, as well as promoting inflammation and shaping adaptive immunity.

  12. Oral innate immunity in HIV infection in HAART era.

    PubMed

    Nittayananta, Wipawee; Tao, Renchuan; Jiang, Lanlan; Peng, Yuanyuan; Huang, Yuxiao

    2016-01-01

    Oral innate immunity, an important component in host defense and immune surveillance in the oral cavity, plays a crucial role in the regulation of oral health. As part of the innate immune system, epithelial cells lining oral mucosal surfaces not only provide a physical barrier but also produce different antimicrobial peptides, including human β-defensins (hBDs), secretory leukocyte protease inhibitor (SLPI), and various cytokines. These innate immune mediators help in maintaining oral homeostasis. When they are impaired either by local or systemic causes, various oral infections and malignancies may be developed. Human immunodeficiency virus (HIV) infection and other co-infections appear to have both direct and indirect effects on systemic and local innate immunity leading to the development of oral opportunistic infections and malignancies. Highly active antiretroviral therapy (HAART), the standard treatment of HIV infection, contributed to a global reduction of HIV-associated oral lesions. However, prolonged use of HAART may lead to adverse effects on the oral innate immunity resulting in the relapse of oral lesions. This review article focused on the roles of oral innate immunity in HIV infection in HAART era. The following five key questions were addressed: (i) What are the roles of oral innate immunity in health and disease?, (ii) What are the effects of HIV infection on oral innate immunity?, (iii) What are the roles of oral innate immunity against other co-infections?, (iv) What are the effects of HAART on oral innate immunity?, and (v) Is oral innate immunity enhanced by HAART? © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Cutting Edge: Molecular Structure of the IL-1R-Associated Kinase-4 Death Domain and Its Implications for TLR Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasker, Michael V.; Gajjar, Mark M.; Nair, Satish K.

    2010-07-19

    IL-1R-associated kinase (IRAK) 4 is an essential component of innate immunity. IRAK-4 deficiency in mice and humans results in severe impairment of IL-1 and TLR signaling. We have solved the crystal structure for the death domain of Mus musculus IRAK-4 to 1.7 {angstrom} resolution. This is the first glimpse of the structural details of a mammalian IRAK family member. The crystal structure reveals a six-helical bundle with a prominent loop, which among IRAKs and Pelle, a Drosophila homologue, is unique to IRAK-4. This highly structured loop contained between helices two and three, comprises an 11-aa stretch. Although innate immune domainmore » recognition is thought to be very similar between Drosophila and mammals, this structural component points to a drastic difference. This structure can be used as a framework for future mutation and deletion studies and potential drug design.« less

  14. Novel Strategies in the Prevention and Treatment of Urinary Tract Infections

    PubMed Central

    Lüthje, Petra; Brauner, Annelie

    2016-01-01

    Urinary tract infections are one of the most common bacterial infections, especially in women and children, frequently treated with antibiotics. The alarming increase in antibiotic resistance is a global threat to future treatment of infections. Therefore, alternative strategies are urgently needed. The innate immune system plays a fundamental role in protecting the urinary tract from infections. Antimicrobial peptides form an important part of the innate immunity. They are produced by epithelial cells and neutrophils and defend the urinary tract against invading bacteria. Since efficient resistance mechanisms have not evolved among bacterial pathogens, much effort has been put into exploring the role of antimicrobial peptides and possibilities to utilize them in clinical practice. Here, we describe the impact of antimicrobial peptides in the urinary tract and ways to enhance the production by hormones like vitamin D and estrogen. We also discuss the potential of medicinal herbs to be used in the prophylaxis and the treatment of urinary tract infections. PMID:26828523

  15. Foot-and-mouth disease virus 5’-terminal S fragment is required for replication and modulation of the innate immune response in host cells

    USDA-ARS?s Scientific Manuscript database

    The foot-and-mouth disease virus (FMDV) contains a 5’ untranslated region (5’UTR) with multiple structural domains that regulate viral genome replication, translation, and virus-host interactions. At its 5’terminus, the S fragment of over 360 bp is predicted to form a stable stem-loop that is separ...

  16. Deontic reasoning with emotional content: evolutionary psychology or decision theory?

    PubMed

    Perham, Nick; Oaksford, Mike

    2005-09-10

    Three experiments investigated the contrasting predictions of the evolutionary and decision-theoretic approaches to deontic reasoning. Two experiments embedded a hazard management (HM) rule in a social contract scenario that should lead to competition between innate modules. A 3rd experiment used a pure HM task. Threatening material was also introduced into the antecedent, p, of a deontic rule, if p then must q. According to the evolutionary approach, more HM responses (Cosmides & Tooby, 2000) are predicted when p is threatening, whereas decision theory predicts fewer. All 3 experiments were consistent with decision theory. Other theories are discussed, and it is concluded that they cannot account for the behavior observed in these experiments. 2005 Lawrence Erlbaum Associates, Inc.

  17. Chapter 2: Innate Immunity

    PubMed Central

    Turvey, Stuart E.; Broide, David H.

    2009-01-01

    Recent years have witnessed an explosion of interest in the innate immune system. Questions about how the innate immune system senses infection and empowers a protective immune response are being answered at the molecular level. These basic science discoveries are being translated into a more complete understanding of the central role innate immunity plays in the pathogenesis of many human infectious and inflammatory diseases. It is particularly exciting that we are already seeing a return on these scientific investments with the emergence of novel therapies to harness the power of the innate immune system. In this review we explore the defining characteristics of the innate immune system, and through more detailed examples, we highlight recent breakthroughs that have advanced our understanding of the role of innate immunity in human health and disease. PMID:19932920

  18. Myeloid-Derived Suppressor Cells in Bacterial Infections

    PubMed Central

    Ost, Michael; Singh, Anurag; Peschel, Andreas; Mehling, Roman; Rieber, Nikolaus; Hartl, Dominik

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) comprise monocytic and granulocytic innate immune cells with the capability of suppressing T- and NK-cell responses. While the role of MDSCs has been studied in depth in malignant diseases, the understanding of their regulation and function in infectious disease conditions has just begun to evolve. Here we summarize and discuss the current view how MDSCs participate in bacterial infections and how this knowledge could be exploited for potential future therapeutics. PMID:27066459

  19. The Yin and Yang of innate immunity in stroke.

    PubMed

    Xu, Xiaomeng; Jiang, Yongjun

    2014-01-01

    Immune system plays an elementary role in the pathophysiological progress of ischemic stroke. It consists of innate and adaptive immune system. Activated within minutes after ischemic onset, innate immunity is responsible for the elimination of necrotic cells and tissue repair, while it is critically involved in the initiation and amplification of poststroke inflammation that amplifies ischemic damage to the brain tissue. Innate immune response requires days to be fully developed, providing a considerable time window for therapeutic intervention, suggesting prospect of novel immunomodulatory therapies against poststroke inflammation-induced brain injury. However, obstacles still exist and a comprehensive understanding of ischemic stroke and innate immune reaction is essential. In this review, we highlighted the current experimental and clinical data depicting the innate immune response following ischemic stroke, mainly focusing on the recognition of damage-associated molecular patterns, activation and recruitment of innate immune cells, and involvement of various cytokines. In addition, clinical trials targeting innate immunity were also documented regardless of the outcome, stressing the requirements for further investigation.

  20. Programming and memory dynamics of innate leukocytes during tissue homeostasis and inflammation.

    PubMed

    Lee, Christina; Geng, Shuo; Zhang, Yao; Rahtes, Allison; Li, Liwu

    2017-09-01

    The field of innate immunity is witnessing a paradigm shift regarding "memory" and "programming" dynamics. Past studies of innate leukocytes characterized them as first responders to danger signals with no memory. However, recent findings suggest that innate leukocytes, such as monocytes and neutrophils, are capable of "memorizing" not only the chemical nature but also the history and dosages of external stimulants. As a consequence, innate leukocytes can be dynamically programmed or reprogrammed into complex inflammatory memory states. Key examples of innate leukocyte memory dynamics include the development of primed and tolerant monocytes when "programmed" with a variety of inflammatory stimulants at varying signal strengths. The development of innate leukocyte memory may have far-reaching translational implications, as programmed innate leukocytes may affect the pathogenesis of both acute and chronic inflammatory diseases. This review intends to critically discuss some of the recent studies that address this emerging concept and its implication in the pathogenesis of inflammatory diseases. © Society for Leukocyte Biology.

  1. ID’ing Innate and Innate-like Lymphoid Cells

    PubMed Central

    Verykokakis, Mihalis; Zook, Erin C.; Kee, Barbara L.

    2014-01-01

    Summary The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins. PMID:25123285

  2. ID'ing innate and innate-like lymphoid cells.

    PubMed

    Verykokakis, Mihalis; Zook, Erin C; Kee, Barbara L

    2014-09-01

    The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B- and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Innate immunity of fish (overview).

    PubMed

    Magnadóttir, Bergljót

    2006-02-01

    The innate immune system is the only defence weapon of invertebrates and a fundamental defence mechanism of fish. The innate system also plays an instructive role in the acquired immune response and homeostasis and is therefore equally important in higher vertebrates. The innate system's recognition of non-self and danger signals is served by a limited number of germ-line encoded pattern recognition receptors/proteins, which recognise pathogen associated molecular patterns like bacterial and fungal glycoproteins and lipopolysaccharides and intracellular components released through injury or infection. The innate immune system is divided into physical barriers, cellular and humoral components. Humoral parameters include growth inhibitors, various lytic enzymes and components of the complement pathways, agglutinins and precipitins (opsonins, primarily lectins), natural antibodies, cytokines, chemokines and antibacterial peptides. Several external and internal factors can influence the activity of innate immune parameters. Temperature changes, handling and crowding stress can have suppressive effects on innate parameters, whereas several food additives and immunostimulants can enhance different innate factors. There is limited data available about the ontogenic development of the innate immunological system in fish. Active phagocytes, complement components and enzyme activity, like lysozyme and cathepsins, are present early in the development, before or soon after hatching.

  4. Alterations of Innate Immunity Reactants in Transition Dairy Cows before Clinical Signs of Lameness

    PubMed Central

    Zhang, Guanshi; Hailemariam, Dagnachew; Dervishi, Elda; Deng, Qilan; Goldansaz, Seyed A.; Dunn, Suzanna M.; Ametaj, Burim N.

    2015-01-01

    Simple Summary Lameness is prevalent in dairy cows and early diagnosis and timely treatment of the disease can lower animal suffering, improve recovery rate, increase longevity, and minimize cow loss. However, there are no indications of disease until it appears clinically, and presently the only approach to deal with the sick cow is intensive treatment or culling. The results suggest that lameness affected serum concentrations of the several parameters related to innate immunity and carbohydrate metabolism that might be used to monitor health status of transition dairy cows in the near future. Abstract The objectives of this study were to evaluate metabolic and innate immunity alterations in the blood of transition dairy cows before, during, and after diagnosis of lameness during periparturient period. Blood samples were collected from the coccygeal vain once per week before morning feeding from 100 multiparous Holstein dairy cows during −8, −4, disease diagnosis, and +4 weeks (wks) relative to parturition. Six healthy cows (CON) and six cows that showed clinical signs of lameness were selected for intensive serum analyses. Concentrations of interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor (TNF), haptoglobin (Hp), serum amyloid A (SAA), lipopolysaccharide binding protein (LBP), lactate, non-esterified fatty acids (NEFA), and β-hydroxybutyrate (BHBA) were measured in serum by ELISA or colorimetric methods. Health status, DMI, rectal temperature, milk yield, and milk composition also were monitored for each cow during the whole experimental period. Results showed that cows affected by lameness had greater concentrations of lactate, IL-6, and SAA in the serum vs. CON cows. Concentrations of TNF tended to be greater in cows with lameness compared with CON. In addition, there was a health status (Hs) by time (week) interaction for IL-1, TNF, and Hp in lameness cows vs. CON ones. Enhanced serum concentrations of lactate, IL-6, and SAA at −8 and −4 wks before parturition were different in cows with lameness as compared with those of the CON group. The disease was also associated with lowered overall milk production and DMI as well as milk fat and fat-to-protein ratio. In conclusion, cows affected postpartum by lameness had alterations in several serum variables related to innate immunity and carbohydrate metabolism that give insights into the etiopathogenesis of the disease and might serve to monitor health status of transition dairy cows in the near future. PMID:26479383

  5. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators

    PubMed Central

    Reverté, Sara; Retana, Javier; Gómez, José M.; Bosch, Jordi

    2016-01-01

    Background and aims Colour is one of the main floral traits used by pollinators to locate flowers. Although pollinators show innate colour preferences, the view that the colour of a flower may be considered an important predictor of its main pollinators is highly controversial because flower choice is highly context-dependent, and initial innate preferences may be overridden by subsequent associative learning. Our objective is to establish whether there is a relationship between flower colour and pollinator composition in natural communities. Methods We measured the flower reflectance spectrum and pollinator composition in four plant communities (85 plant species represented by 109 populations, and 32 305 plant–pollinator interactions in total). Pollinators were divided into six taxonomic groups: bees, ants, wasps, coleopterans, dipterans and lepidopterans. Key Results We found consistent associations between pollinator groups and certain colours. These associations matched innate preferences experimentally established for several pollinators and predictions of the pollination syndrome theory. However, flowers with similar colours did not attract similar pollinator assemblages. Conclusions The explanation for this paradoxical result is that most flower species are pollination generalists. We conclude that although pollinator colour preferences seem to condition plant–pollinator interactions, the selective force behind these preferences has not been strong enough to mediate the appearance and maintenance of tight colour-based plant–pollinator associations. PMID:27325897

  6. Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens.

    PubMed

    Grayfer, Leon; Andino, Francisco De Jesús; Chen, Guangchun; Chinchar, Gregory V; Robert, Jacques

    2012-07-01

    Ranaviruses (RV, Iridoviridae) are large double-stranded DNA viruses that infect fish, amphibians and reptiles. For ecological and commercial reasons, considerable attention has been drawn to the increasing prevalence of ranaviral infections of wild populations and in aquacultural settings. Importantly, RVs appear to be capable of crossing species barriers of numerous poikilotherms, suggesting that these pathogens possess a broad host range and potent immune evasion mechanisms. Indeed, while some of the 95-100 predicted ranavirus genes encode putative evasion proteins (e.g., vIFα, vCARD), roughly two-thirds of them do not share significant sequence identity with known viral or eukaryotic genes. Accordingly, the investigation of ranaviral virulence and immune evasion strategies is promising for elucidating potential antiviral targets. In this regard, recombination-based technologies are being employed to knock out gene candidates in the best-characterized RV member, Frog Virus (FV3). Concurrently, by using animal infection models with extensively characterized immune systems, such as the African clawed frog, Xenopus laevis, it is becoming evident that components of innate immunity are at the forefront of virus-host interactions. For example, cells of the macrophage lineage represent important combatants of RV infections while themselves serving as targets for viral infection, maintenance and possibly dissemination. This review focuses on the recent advances in the understanding of the RV immune evasion strategies with emphasis on the roles of the innate immune system in ranaviral infections.

  7. The metabolic pace-of-life model: incorporating ectothermic organisms into the theory of vertebrate ecoimmunology.

    PubMed

    Sandmeier, Franziska C; Tracy, Richard C

    2014-09-01

    We propose a new heuristic model that incorporates metabolic rate and pace of life to predict a vertebrate species' investment in adaptive immune function. Using reptiles as an example, we hypothesize that animals with low metabolic rates will invest more in innate immunity compared with adaptive immunity. High metabolic rates and body temperatures should logically optimize the efficacy of the adaptive immune system--through rapid replication of T and B cells, prolific production of induced antibodies, and kinetics of antibody--antigen interactions. In current theory, the precise mechanisms of vertebrate immune function oft are inadequately considered as diverse selective pressures on the evolution of pathogens. We propose that the strength of adaptive immune function and pace of life together determine many of the important dynamics of host-pathogen evolution, namely, that hosts with a short lifespan and innate immunity or with a long lifespan and strong adaptive immunity are expected to drive the rapid evolution of their populations of pathogens. Long-lived hosts that rely primarily on innate immune functions are more likely to use defense mechanisms of tolerance (instead of resistance), which are not expected to act as a selection pressure for the rapid evolution of pathogens' virulence. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  8. Dysregulation of Innate and Adaptive Serum Mediators Precedes Systemic Lupus Erythematosus Classification and Improves Prognostic Accuracy of Autoantibodies

    PubMed Central

    Guthridge, Joel M.; Bean, Krista M.; Fife, Dustin A.; Chen, Hua; Slight-Webb, Samantha R.; Keith, Michael P.; Harley, John B.; James, Judith A.

    2016-01-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a poorly understood preclinical stage of immune dysregulation and symptom accrual. Accumulation of antinuclear autoantibody (ANA) specificities is a hallmark of impending clinical disease. Yet, many ANA-positive individuals remain healthy, suggesting that additional immune dysregulation underlies SLE pathogenesis. Indeed, we have recently demonstrated that interferon (IFN) pathways are dysregulated in preclinical SLE. To determine if other forms of immune dysregulation contribute to preclinical SLE pathogenesis, we measured SLE-associated autoantibodies and soluble mediators in samples from 84 individuals collected prior to SLE classification (average timespan = 5.98 years), compared to unaffected, healthy control samples matched by race, gender, age (± 5 years), and time of sample procurement. We found that multiple soluble mediators, including interleukin (IL)-5, IL-6, and IFN-γ, were significantly elevated in cases compared to controls more than 3.5 years pre-classification, prior to or concurrent with autoantibody positivity. Additional mediators, including innate cytokines, IFN-associated chemokines, and soluble tumor necrosis factor (TNF) superfamily mediators increased longitudinally in cases approaching SLE classification, but not in controls. In particular, levels of B lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) were comparable in cases and controls until less than 10 months pre-classification. Over the entire pre-classification period, random forest models incorporating ANA and anti-Ro/SSA positivity with levels of IL-5, IL-6, and the IFN-γ-induced chemokine, MIG, distinguished future SLE patients with 92% (± 1.8%) accuracy, compared to 78% accuracy utilizing ANA positivity alone. These data suggest that immune dysregulation involving multiple pathways contributes to SLE pathogenesis. Importantly, distinct immunological profiles are predictive for individuals who will develop clinical SLE and may be useful for delineating early pathogenesis, discovering therapeutic targets, and designing prevention trials. PMID:27338520

  9. Homeostasis of the gut barrier and potential biomarkers.

    PubMed

    Wells, Jerry M; Brummer, Robert J; Derrien, Muriel; MacDonald, Thomas T; Troost, Freddy; Cani, Patrice D; Theodorou, Vassilia; Dekker, Jan; Méheust, Agnes; de Vos, Willem M; Mercenier, Annick; Nauta, Arjen; Garcia-Rodenas, Clara L

    2017-03-01

    The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts. Copyright © 2017 the American Physiological Society.

  10. Homeostasis of the gut barrier and potential biomarkers

    PubMed Central

    Brummer, Robert J.; Derrien, Muriel; MacDonald, Thomas T.; Troost, Freddy; Cani, Patrice D.; Theodorou, Vassilia; Dekker, Jan; Méheust, Agnes; de Vos, Willem M.; Mercenier, Annick; Nauta, Arjen; Garcia-Rodenas, Clara L.

    2017-01-01

    The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts. PMID:27908847

  11. Acute ingestion of beetroot juice increases exhaled nitric oxide in healthy individuals

    PubMed Central

    Werchan, Chelsey A.; Rosenfield, David; Ritz, Thomas

    2018-01-01

    Background and objective Nitric oxide (NO) plays an important role in the airways’ innate immune response, and the fraction of exhaled NO at a flow rate of 50mL per second (FENO50) has been utilized to capture NO. Deficits in NO are linked to loss of bronchoprotective effects in airway challenges and predict symptoms of respiratory infection. While beetroot juice supplements have been proposed to enhance exercise performance by increasing dietary nitrate consumption, few studies have examined the impact of beetroot juice or nitrate supplementation on airway NO in contexts beyond an exercise challenge, which we know influences FENO50. Methods We therefore examined the influence of a beetroot juice supplement on FENO50 in healthy males and females (n = 38) during periods of rest and in normoxic conditions. FENO50, heart rate, blood pressure, and state affect were measured at baseline, 45 minutes, and 90 minutes following ingestion of 70ml beetroot juice (6.5 mmol nitrate). Identical procedures were followed with ingestion of 70ml of water on a control day. Results After beetroot consumption, average values of the natural log of FENO50 (lnFENO50) increased by 21.3% (Cohen’s d = 1.54, p < .001) 45 minutes after consumption and by 20.3% (Cohen’s d = 1.45, p < .001) 90 min after consumption. On the other hand, only very small increases in FENO50 were observed after consumption of the control liquid (less than 1% increase). A small subset (n = 4) of participants completed an extended protocol lasting over 3 hours, where elevated levels of FENO50 persisted. No significant changes in cardiovascular measures were observed with this small single dose of beetroot juice. Conclusion As NO serves a key role in innate immunity, future research is needed to explore the potential clinical utility of beetroot and dietary nitrate to elevate FENO50 and prevent respiratory infection. PMID:29370244

  12. Innateness Claims in Psycholinguistics.

    ERIC Educational Resources Information Center

    Lamendella, John T.

    While agreeing with psycholinguistic and neurolinguistic theories that suggest that innate language-related cognitive structures are the basis of language development, the author seeks to establish what it is that is innate and what is meant by innateness in the first place. The author considers the claims of psychological relevance made on behalf…

  13. A Virtual Infection Model Quantifies Innate Effector Mechanisms and Candida albicans Immune Escape in Human Blood

    PubMed Central

    Bieber, Kristin; Martin, Ronny; Figge, Marc Thilo; Kurzai, Oliver

    2014-01-01

    Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment–model–experiment cycles allowed quantitative analyses of the interplay between host and pathogen in a complex environment like human blood. PMID:24586131

  14. A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood.

    PubMed

    Hünniger, Kerstin; Lehnert, Teresa; Bieber, Kristin; Martin, Ronny; Figge, Marc Thilo; Kurzai, Oliver

    2014-02-01

    Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost [Formula: see text] of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment-model-experiment cycles allowed quantitative analyses of the interplay between host and pathogen in a complex environment like human blood.

  15. Towards an integrated network of coral immune mechanisms

    PubMed Central

    Palmer, C. V.; Traylor-Knowles, N.

    2012-01-01

    Reef-building corals form bio-diverse marine ecosystems of high societal and economic value, but are in significant decline globally due, in part, to rapid climatic changes. As immunity is a predictor of coral disease and thermal stress susceptibility, a comprehensive understanding of this new field will likely provide a mechanistic explanation for ecological-scale trends in reef declines. Recently, several strides within coral immunology document defence mechanisms that are consistent with those of both invertebrates and vertebrates, and which span the recognition, signalling and effector response phases of innate immunity. However, many of these studies remain discrete and unincorporated into the wider fields of invertebrate immunology or coral biology. To encourage the rapid development of coral immunology, we comprehensively synthesize the current understanding of the field in the context of general invertebrate immunology, and highlight fundamental gaps in our knowledge. We propose a framework for future research that we hope will stimulate directional studies in this emerging field and lead to the elucidation of an integrated network of coral immune mechanisms. Once established, we are optimistic that coral immunology can be effectively applied to pertinent ecological questions, improve current prediction tools and aid conservation efforts. PMID:22896649

  16. Innate cell communication kick-starts pathogen-specific immunity

    PubMed Central

    Rivera, Amariliz; Siracusa, Mark C.; Yap, George S.; Gause, William C.

    2016-01-01

    Innate cells are responsible for the rapid recognition of infection and mediate essential mechanisms of pathogen elimination, and also facilitate adaptive immune responses. We review here the numerous intricate interactions among innate cells that initiate protective immunity. The efficient eradication of pathogens depends on the coordinated actions of multiple cells, including innate cells and epithelial cells. Rather than acting as isolated effector cells, innate cells are in constant communication with other responding cells of the immune system, locally and distally. These interactions are critically important for the efficient control of primary infections as well for the development of ‘trained’ innate cells that facilitate the rapid elimination of homologous or heterologous infections. PMID:27002843

  17. Cellular Innate Immunity: An Old Game with New Players.

    PubMed

    Gasteiger, Georg; D'Osualdo, Andrea; Schubert, David A; Weber, Alexander; Bruscia, Emanuela M; Hartl, Dominik

    2017-01-01

    Innate immunity is a rapidly evolving field with novel cell types and molecular pathways being discovered and paradigms changing continuously. Innate and adaptive immune responses are traditionally viewed as separate from each other, but emerging evidence suggests that they overlap and mutually interact. Recently discovered cell types, particularly innate lymphoid cells and myeloid-derived suppressor cells, are gaining increasing attention. Here, we summarize and highlight current concepts in the field, focusing on innate immune cells as well as the inflammasome and DNA sensing which appear to be critical for the activation and orchestration of innate immunity, and may provide novel therapeutic opportunities for treating autoimmune, autoinflammatory, and infectious diseases. © 2016 S. Karger AG, Basel.

  18. Sex and death: the effects of innate immune factors on the sexual reproduction of malaria parasites.

    PubMed

    Ramiro, Ricardo S; Alpedrinha, João; Carter, Lucy; Gardner, Andy; Reece, Sarah E

    2011-03-01

    Malaria parasites must undergo a round of sexual reproduction in the blood meal of a mosquito vector to be transmitted between hosts. Developing a transmission-blocking intervention to prevent parasites from mating is a major goal of biomedicine, but its effectiveness could be compromised if parasites can compensate by simply adjusting their sex allocation strategies. Recently, the application of evolutionary theory for sex allocation has been supported by experiments demonstrating that malaria parasites adjust their sex ratios in response to infection genetic diversity, precisely as predicted. Theory also predicts that parasites should adjust sex allocation in response to host immunity. Whilst data are supportive, the assumptions underlying this prediction - that host immune responses have differential effects on the mating ability of males and females - have not yet been tested. Here, we combine experimental work with theoretical models in order to investigate whether the development and fertility of male and female parasites is affected by innate immune factors and develop new theory to predict how parasites' sex allocation strategies should evolve in response to the observed effects. Specifically, we demonstrate that reactive nitrogen species impair gametogenesis of males only, but reduce the fertility of both male and female gametes. In contrast, tumour necrosis factor-α does not influence gametogenesis in either sex but impairs zygote development. Therefore, our experiments demonstrate that immune factors have complex effects on each sex, ranging from reducing the ability of gametocytes to develop into gametes, to affecting the viability of offspring. We incorporate these results into theory to predict how the evolutionary trajectories of parasite sex ratio strategies are shaped by sex differences in gamete production, fertility and offspring development. We show that medical interventions targeting offspring development are more likely to be 'evolution-proof' than interventions directed at killing males or females. Given the drive to develop medical interventions that interfere with parasite mating, our data and theoretical models have important implications.

  19. Sex and Death: The Effects of Innate Immune Factors on the Sexual Reproduction of Malaria Parasites

    PubMed Central

    Ramiro, Ricardo S.; Alpedrinha, João; Carter, Lucy; Gardner, Andy; Reece, Sarah E.

    2011-01-01

    Malaria parasites must undergo a round of sexual reproduction in the blood meal of a mosquito vector to be transmitted between hosts. Developing a transmission-blocking intervention to prevent parasites from mating is a major goal of biomedicine, but its effectiveness could be compromised if parasites can compensate by simply adjusting their sex allocation strategies. Recently, the application of evolutionary theory for sex allocation has been supported by experiments demonstrating that malaria parasites adjust their sex ratios in response to infection genetic diversity, precisely as predicted. Theory also predicts that parasites should adjust sex allocation in response to host immunity. Whilst data are supportive, the assumptions underlying this prediction – that host immune responses have differential effects on the mating ability of males and females – have not yet been tested. Here, we combine experimental work with theoretical models in order to investigate whether the development and fertility of male and female parasites is affected by innate immune factors and develop new theory to predict how parasites' sex allocation strategies should evolve in response to the observed effects. Specifically, we demonstrate that reactive nitrogen species impair gametogenesis of males only, but reduce the fertility of both male and female gametes. In contrast, tumour necrosis factor-α does not influence gametogenesis in either sex but impairs zygote development. Therefore, our experiments demonstrate that immune factors have complex effects on each sex, ranging from reducing the ability of gametocytes to develop into gametes, to affecting the viability of offspring. We incorporate these results into theory to predict how the evolutionary trajectories of parasite sex ratio strategies are shaped by sex differences in gamete production, fertility and offspring development. We show that medical interventions targeting offspring development are more likely to be ‘evolution-proof’ than interventions directed at killing males or females. Given the drive to develop medical interventions that interfere with parasite mating, our data and theoretical models have important implications. PMID:21408620

  20. Prenatal attitudes and parity predict selection into a U.S. child health program: a short report.

    PubMed

    Martin-Anderson, Sarah

    2013-10-01

    Public policies are a determinant of child health disparities; sound evaluation of these programs is essential for good governance. It is impossible in most countries to randomize assignment into child health programs that directly offer benefits. In the absence of this, researchers face the threat of selection bias-the idea that there are innate, immeasurable differences between those who take-up treatment and those who don't. In the field of Program Evaluation we are most concerned with the differences between the eligible people who take-up a program and the eligible people who choose not to enroll. Using a case study of a large U.S. nutrition program, this report illustrates how the perceived benefits of participation may affect the decision to take-up a program. In turn, this highlights sources of potential selection bias. Using data from a longitudinal study of mothers and infants conducted between May and December of 2005, I show that attitudes and beliefs prenatally toward breastfeeding determine enrollment in a U.S nutrition program that offers free Infant Formula. I also find that the significance of the selection bias differs by parity. Analysis reveals that maternal attitudinal responses are more highly predictive of future behavior, compared to standard demographic variables. In sum, this paper makes a case for rigorously understanding the factors that determine take-up of a program and how those factors can modify the results of a program evaluation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer

    PubMed Central

    2014-01-01

    Background While the treatment of HER2 over-expressing breast cancer with recent HER-targeted drugs has been highly effective for some patients, primary (also known as innate) or acquired resistance limits the success of these drugs. microRNAs have potential as diagnostic, prognostic and predictive biomarkers, as well as replacement therapies. Here we investigated the role of microRNA-630 (miR-630) in breast cancer progression and as a predictive biomarker for response to HER-targeting drugs, ultimately yielding potential as a therapeutic approach to add value to these drugs. Methods We investigated the levels of intra- and extracellular miR-630 in cells and conditioned media from breast cancer cell lines with either innate- or acquired- resistance to HER-targeting lapatinib and neratinib, compared to their corresponding drug sensitive cell lines, using qPCR. To support the role of miR-630 in breast cancer, we examined the clinical relevance of this miRNA in breast cancer tumours versus matched peritumours. Transfection of miR-630 mimics and inhibitors was used to manipulate the expression of miR-630 to assess effects on response to HER-targeting drugs (lapatinib, neratinib and afatinib). Other phenotypic changes associated with cellular aggressiveness were evaluated by motility, invasion and anoikis assays. TargetScan prediction software, qPCR, immunoblotting and ELISAs, were used to assess miR-630’s regulation of mRNA, proteins and their phosphorylated forms. Results We established that introducing miR-630 into cells with innate- or acquired- resistance to HER-drugs significantly restored the efficacy of lapatinib, neratinib and afatinib; through a mechanism which we have determined to, at least partly, involve miR-630’s regulation of IGF1R. Conversely, we demonstrated that blocking miR-630 induced resistance/insensitivity to these drugs. Cellular motility, invasion, and anoikis were also observed as significantly altered by miR-630 manipulation, whereby introducing miR-630 into cells reduced cellular aggression while inhibition of miR-630 induced a more aggressive cellular phenotype. Conclusions Taken together, our findings suggest miR-630 as a key regulator of cancer cell progression in HER2 over-expressing breast cancer, through targeting of IGF1R. This study supports miR-630 as a diagnostic and a predictive biomarker for response to HER-targeted drugs and indicates that the therapeutic addition of miR-630 may enhance and improve patients’ response to HER-targeting drugs. PMID:24655723

  2. miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer.

    PubMed

    Corcoran, Claire; Rani, Sweta; Breslin, Susan; Gogarty, Martina; Ghobrial, Irene M; Crown, John; O'Driscoll, Lorraine

    2014-03-24

    While the treatment of HER2 over-expressing breast cancer with recent HER-targeted drugs has been highly effective for some patients, primary (also known as innate) or acquired resistance limits the success of these drugs. microRNAs have potential as diagnostic, prognostic and predictive biomarkers, as well as replacement therapies. Here we investigated the role of microRNA-630 (miR-630) in breast cancer progression and as a predictive biomarker for response to HER-targeting drugs, ultimately yielding potential as a therapeutic approach to add value to these drugs. We investigated the levels of intra- and extracellular miR-630 in cells and conditioned media from breast cancer cell lines with either innate- or acquired- resistance to HER-targeting lapatinib and neratinib, compared to their corresponding drug sensitive cell lines, using qPCR. To support the role of miR-630 in breast cancer, we examined the clinical relevance of this miRNA in breast cancer tumours versus matched peritumours. Transfection of miR-630 mimics and inhibitors was used to manipulate the expression of miR-630 to assess effects on response to HER-targeting drugs (lapatinib, neratinib and afatinib). Other phenotypic changes associated with cellular aggressiveness were evaluated by motility, invasion and anoikis assays. TargetScan prediction software, qPCR, immunoblotting and ELISAs, were used to assess miR-630's regulation of mRNA, proteins and their phosphorylated forms. We established that introducing miR-630 into cells with innate- or acquired- resistance to HER-drugs significantly restored the efficacy of lapatinib, neratinib and afatinib; through a mechanism which we have determined to, at least partly, involve miR-630's regulation of IGF1R. Conversely, we demonstrated that blocking miR-630 induced resistance/insensitivity to these drugs. Cellular motility, invasion, and anoikis were also observed as significantly altered by miR-630 manipulation, whereby introducing miR-630 into cells reduced cellular aggression while inhibition of miR-630 induced a more aggressive cellular phenotype. Taken together, our findings suggest miR-630 as a key regulator of cancer cell progression in HER2 over-expressing breast cancer, through targeting of IGF1R. This study supports miR-630 as a diagnostic and a predictive biomarker for response to HER-targeted drugs and indicates that the therapeutic addition of miR-630 may enhance and improve patients' response to HER-targeting drugs.

  3. An Evolutionarily Conserved Innate Immunity Protein Interaction Network*

    PubMed Central

    De Arras, Lesly; Seng, Amara; Lackford, Brad; Keikhaee, Mohammad R.; Bowerman, Bruce; Freedman, Jonathan H.; Schwartz, David A.; Alper, Scott

    2013-01-01

    The innate immune response plays a critical role in fighting infection; however, innate immunity also can affect the pathogenesis of a variety of diseases, including sepsis, asthma, cancer, and atherosclerosis. To identify novel regulators of innate immunity, we performed comparative genomics RNA interference screens in the nematode Caenorhabditis elegans and mouse macrophages. These screens have uncovered many candidate regulators of the response to lipopolysaccharide (LPS), several of which interact physically in multiple species to form an innate immunity protein interaction network. This protein interaction network contains several proteins in the canonical LPS-responsive TLR4 pathway as well as many novel interacting proteins. Using RNAi and overexpression studies, we show that almost every gene in this network can modulate the innate immune response in mouse cell lines. We validate the importance of this network in innate immunity regulation in vivo using available mutants in C. elegans and mice. PMID:23209288

  4. Post-Translational Modification Control of Innate Immunity.

    PubMed

    Liu, Juan; Qian, Cheng; Cao, Xuetao

    2016-07-19

    A coordinated balance between the positive and negative regulation of pattern-recognition receptor (PRR)-initiated innate inflammatory responses is required to ensure the most favorable outcome for the host. Post-translational modifications (PTMs) of innate sensors and downstream signaling molecules influence their activity and function by inducing their covalent linkage to new functional groups. PTMs including phosphorylation and polyubiquitination have been shown to potently regulate innate inflammatory responses through the activation, cellular translocation, and interaction of innate receptors, adaptors, and downstream signaling molecules in response to infectious and dangerous signals. Other PTMs such as methylation, acetylation, SUMOylation, and succinylation are increasingly implicated in the regulation of innate immunity and inflammation. In this review, we focus on the roles of PTMs in controlling PRR-triggered innate immunity and inflammatory responses. The emerging roles of PTMs in the pathogenesis and potential treatment of infectious and inflammatory immune diseases are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Interplay between the Hepatitis B Virus and Innate Immunity: From an Understanding to the Development of Therapeutic Concepts

    PubMed Central

    Faure-Dupuy, Suzanne; Lucifora, Julie; Durantel, David

    2017-01-01

    The hepatitis B virus (HBV) infects hepatocytes, which are the main cell type composing a human liver. However, the liver is enriched with immune cells, particularly innate cells (e.g., myeloid cells, natural killer and natural killer T-cells (NK/NKT), dendritic cells (DCs)), in resting condition. Hence, the study of the interaction between HBV and innate immune cells is instrumental to: (1) better understand the conditions of establishment and maintenance of HBV infections in this secondary lymphoid organ; (2) define the role of these innate immune cells in treatment failure and pathogenesis; and (3) design novel immune-therapeutic concepts based on the activation/restoration of innate cell functions and/or innate effectors. This review will summarize and discuss the current knowledge we have on this interplay between HBV and liver innate immunity. PMID:28452930

  6. Structural analysis of an innate immunostimulant from broccoli, Brassica oleracea var. italica.

    PubMed

    Urai, Makoto; Kataoka, Keiko; Nishida, Satoshi; Sekimizu, Kazuhisa

    2017-11-22

    Vegetables are eaten as part of a healthy diet throughout the world, and some are also applied topically as a traditional medicine. We evaluated the innate immunostimulating activities of hot water extracts of various vegetables using the silkworm muscle contraction assay system, and found that broccoli, Brassica oleracea var. italica, contains a strong innate immunostimulant. We purified the innate immunostimulant from broccoli, and characterized the chemical structure by chemical analyses and NMR spectroscopy. The innate immunostimulant comprised galacturonic acid, galactose, glucose, arabinose, and rhamnose, and had a pectic-like polysaccharide structure. To determine the structural motif involved in the innate immunostimulating activity, we modified the structure by chemical and enzymatic treatment, and found that the activity was attenuated by pectinase digestion. These findings suggest that a pectic-like polysaccharide purified from broccoli has innate immune-stimulating activity, for which the polygalacturonic acid structure is necessary.

  7. Toll-like receptors in the pathogenesis of chemotherapy-induced gastrointestinal toxicity.

    PubMed

    Cario, Elke

    2016-06-01

    Intestinal mucositis represents a common complication and dose-limiting toxicity of cancer chemotherapy. So far chemotherapy-induced intestinal mucositis remains poorly treatable resulting in significant morbidity and reduced quality of life in cancer patients. This review discusses recent insights into the pathophysiology of chemotherapy-induced intestinal mucositis. Novel mechanisms linking gut microbiota, host innate immunity and anticancer drug metabolism are highlighted. Gut microbiota may affect xenobiotic metabolism by direct and indirect mechanisms, critically modulating gut toxicity of chemotherapy drugs. Composition and metabolic function of the gut microbiome as well as innate immune responses of the intestinal mucosa are severely altered during chemotherapy. Commensal-mediated innate immune signaling via Toll-like receptors (TLRs) ambiguously shapes chemotherapy-induced genotoxic damage in the gastrointestinal tract. TLR2 may accelerate host detoxification by activating the multidrug transporter ATP-binding cassette 1 (ABCB1)/MDR1 P-glycoprotein to efflux harmful drugs, thus controlling the severity of cancer therapy-induced mucosal damage in the gastrointestinal tract. In contrast, selective chemotherapy drugs may drive LPS hyperresponsiveness via TLR4, which exacerbates mucosal injury through aberrant cytokine storms. Broad-spectrum antibiotic treatment does not seem to represent a valid therapeutic option, as drastic reduction in global gut microbiota may enhance risk of gastrointestinal toxicity and reduce efficacy of some chemotherapy drugs, at least in murine models. Several variables (environment, metabolism, dysbiosis, infections and/or genetics) influence the outcome of mucosal TLR signaling during cancer treatment. Differences in innate immune responses also reflect chemotherapy drug-specific effects. Future studies must investigate in more detail whether manipulating the delicate balance between gut microbiota and host immune responses by either monotherapy or combinations of different TLR agonists and antagonists may be indeed useful to limit the toxic side-effects of complex chemotherapy regimens, accelerate mucosal tissue regeneration and improve the anticancer treatment response.

  8. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes

    PubMed Central

    Itoh, Arata; Ridgway, William M

    2017-01-01

    Type 1 diabetes (T1D) is characterized by specific destruction of pancreatic insulin-producing beta cells accompanied by evidence of beta-cell-directed autoimmunity such as autoreactive T cells and islet autoantibodies (IAAs). Currently, T1D cannot be prevented or reversed in humans. T1D is easy to prevent in the nonobese diabetic (NOD) spontaneous mouse model but reversing new-onset T1D in mice is more difficult. Since the discovery of the T-cell receptor in the 1980s and the subsequent identification of autoreactive T cells directed toward beta-cell antigens (eg, insulin, glutamic acid decarboxylase), the dream of antigen-specific immunotherapy has dominated the field with its promise of specificity and limited side effects. While such approaches have worked in the NOD mouse, however, dozens of human trials have failed. Broader immunosuppressive approaches (originally cyclosporine, subsequently anti-CD3 antibody) have shown partial successes (e.g., prolonged C peptide preservation) but no major therapeutic efficacy or disease reversal. Human prevention trials have failed, despite the ease of such approaches in the NOD mouse. In the past 50 years, the incidence of T1D has increased dramatically, and one explanation is the “hygiene hypothesis”, which suggests that decreased exposure of the innate immune system to environmental immune stimulants (e.g., bacterial products such as Toll-like receptor (TLR) 4-stimulating lipopolysaccharide [LPS]) dramatically affects the adaptive immune system and increases subsequent autoimmunity. We have tested the role of innate immunity in autoimmune T1D by treating acute-onset T1D in NOD mice with anti-TLR4/MD-2 agonistic antibodies and have shown a high rate of disease reversal. The TLR4 antibodies do not directly stimulate T cells but induce tolerogenic antigen-presenting cells (APCs) that mediate decreased adaptive T-cell responses. Here, we review our current knowledge and suggest future prospects for targeting innate immunity in T1D immunotherapy. PMID:28580341

  9. Innate Immunity and Breast Milk

    PubMed Central

    Cacho, Nicole Theresa; Lawrence, Robert M.

    2017-01-01

    Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant’s optimal growth and development. The growing infant’s immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant’s innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk’s effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant’s intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs) have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant’s gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system and the developing infant. PMID:28611768

  10. Transcriptome Analysis Reveals Markers of Aberrantly Activated Innate Immunity in Vitiligo Lesional and Non-Lesional Skin

    PubMed Central

    Huang, Yuanshen; Wang, Yang; Yu, Jie; Gao, Min; Levings, Megan; Wei, Shencai; Zhang, Shengquan; Xu, Aie; Su, Mingwan; Dutz, Jan; Zhang, Xuejun; Zhou, Youwen

    2012-01-01

    Background Vitiligo is characterized by the death of melanocytes in the skin. This is associated with the presence of T cell infiltrates in the lesional borders. However, at present, there is no detailed and systematic characterization on whether additional cellular or molecular changes are present inside vitiligo lesions. Further, it is unknown if the normal appearing non-lesional skin of vitiligo patients is in fact normal. The purpose of this study is to systematically characterize the molecular and cellular characteristics of the lesional and non-lesional skin of vitiligo patients. Methods and Materials Paired lesional and non-lesional skin biopsies from twenty-three vitiligo patients and normal skin biopsies from sixteen healthy volunteers were obtained with informed consent. The following aspects were analyzed: (1) transcriptome changes present in vitiligo skin using DNA microarrays and qRT-PCR; (2) abnormal cellular infiltrates in vitiligo skin explant cultures using flow cytometry; and (3) distribution of the abnormal cellular infiltrates in vitiligo skin using immunofluorescence microscopy. Results Compared with normal skin, vitiligo lesional skin contained 17 genes (mostly melanocyte-specific genes) whose expression was decreased or absent. In contrast, the relative expression of 13 genes was up-regulated. The up-regulated genes point to aberrant activity of the innate immune system, especially natural killer cells in vitiligo. Strikingly, the markers of heightened innate immune responses were also found to be up-regulated in the non-lesional skin of vitiligo patients. Conclusions and Clinical Implications As the first systematic transcriptome characterization of the skin in vitiligo patients, this study revealed previously unknown molecular markers that strongly suggest aberrant innate immune activation in the microenvironment of vitiligo skin. Since these changes involve both lesional and non-lesional skin, our results suggest that therapies targeting the entire skin surface may improve treatment outcomes. Finally, this study revealed novel mediators that may facilitate future development of vitiligo therapies. PMID:23251420

  11. Drosophila as a Model for Human Diseases-Focus on Innate Immunity in Barrier Epithelia.

    PubMed

    Bergman, P; Seyedoleslami Esfahani, S; Engström, Y

    2017-01-01

    Epithelial immunity protects the host from harmful microbial invaders but also controls the beneficial microbiota on epithelial surfaces. When this delicate balance between pathogen and symbiont is disturbed, clinical disease often occurs, such as in inflammatory bowel disease, cystic fibrosis, or atopic dermatitis, which all can be in part linked to impairment of barrier epithelia. Many innate immune receptors, signaling pathways, and effector molecules are evolutionarily conserved between human and Drosophila. This review describes the current knowledge on Drosophila as a model for human diseases, with a special focus on innate immune-related disorders of the gut, lung, and skin. The discovery of antimicrobial peptides, the crucial role of Toll and Toll-like receptors, and the evolutionary conservation of signaling to the immune systems of both human and Drosophila are described in a historical perspective. Similarities and differences between human and Drosophila are discussed; current knowledge on receptors, signaling pathways, and effectors are reviewed, including antimicrobial peptides, reactive oxygen species, as well as autophagy. We also give examples of human diseases for which Drosophila appears to be a useful model. In addition, the limitations of the Drosophila model are mentioned. Finally, we propose areas for future research, which include using the Drosophila model for drug screening, as a validation tool for novel genetic mutations in humans and for exploratory research of microbiota-host interactions, with relevance for infection, wound healing, and cancer. © 2017 Elsevier Inc. All rights reserved.

  12. Downregulation of mucosal mast cell activation and immune response in diarrhoea-irritable bowel syndrome by oral disodium cromoglycate: A pilot study

    PubMed Central

    Lobo, Beatriz; Ramos, Laura; Martínez, Cristina; Guilarte, Mar; González-Castro, Ana M; Alonso-Cotoner, Carmen; Pigrau, Marc; de Torres, Inés; Rodiño-Janeiro, Bruno K; Salvo-Romero, Eloisa; Fortea, Marina; Pardo-Camacho, Cristina; Guagnozzi, Danila; Azpiroz, Fernando

    2017-01-01

    Background and goal Diarrhoea-predominant irritable bowel syndrome (IBS-D) exhibits intestinal innate immune and mucosal mast cell (MC) activation. MC stabilisers have been shown to improve IBS symptoms but the mechanism is unclear. Our primary aim was to investigate the effect of oral disodium cromoglycate (DSCG) on jejunal MC activation and specific innate immune signalling pathways in IBS-D, and secondarily, its potential clinical benefit. Study Mucosal MC activation (by ultrastructural changes, tryptase release and gene expression) and innate immune signalling (by protein and gene expression) were quantified in jejunal biopsies from healthy (HS; n = 16) and IBS-D subjects after six months of either treatment with DSCG (600 mg/day, IBS-D-DSCG group; n = 18) or without treatment (IBS-D-NT group; n = 25). All IBS-D patients recorded abdominal pain and bowel habits at baseline and in the last 10 days prior to jejunal sampling. Results IBS-D-NT exhibited significant MC activation and over-expression of immune-related genes as compared to HS, whereas in IBS-D-DSCG MC activity and gene expression were similar to HS. Furthermore, DSCG significantly reduced abdominal pain and improved stool consistency. Conclusion Oral DSCG modulates mucosal immune activity and improves gut symptoms in IBS-D patients. Future placebo-controlled clinical trials are needed for confirmation of clinical benefit of DSCG for IBS-D. PMID:29026603

  13. Toll-like Receptors in the Vascular System: Sensing the Dangers Within

    PubMed Central

    McCarthy, Cameron G.; Webb, R. Clinton

    2016-01-01

    Toll-like receptors (TLRs) are components of the innate immune system that respond to exogenous infectious ligands (pathogen-associated molecular patterns, PAMPs) and endogenous molecules that are released during host tissue injury/death (damage-associated molecular patterns, DAMPs). Interaction of TLRs with their ligands leads to activation of downstream signaling pathways that induce an immune response by producing inflammatory cytokines, type I interferons (IFN), and other inflammatory mediators. TLR activation affects vascular function and remodeling, and these molecular events prime antigen-specific adaptive immune responses. Despite the presence of TLRs in vascular cells, the exact mechanisms whereby TLR signaling affects the function of vascular tissues are largely unknown. Cardiovascular diseases are considered chronic inflammatory conditions, and accumulating data show that TLRs and the innate immune system play a determinant role in the initiation and development of cardiovascular diseases. This evidence unfolds a possibility that targeting TLRs and the innate immune system may be a novel therapeutic goal for these conditions. TLR inhibitors and agonists are already in clinical trials for inflammatory conditions such as asthma, cancer, and autoimmune diseases, but their study in the context of cardiovascular diseases is in its infancy. In this article, we review the current knowledge of TLR signaling in the cardiovascular system with an emphasis on atherosclerosis, hypertension, and cerebrovascular injury. Furthermore, we address the therapeutic potential of TLR as pharmacological targets in cardiovascular disease and consider intriguing research questions for future study. PMID:26721702

  14. Translational environmental biology: cell biology informing conservation.

    PubMed

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Reproductive immunology: current status and future directions (part I).

    PubMed

    Peeva, Elena

    2010-12-01

    Extensive research work over the past couple of decades has indicated a series of intricate relations between immune and reproductive systems. A range of reproductive immunology topics including the roles of adoptive and innate immunity in infertility and pregnancy, the immune system's role in induction of labor and preterm delivery, and immuno-modulatory effects of the female sex hormones will be discussed in this and the next issue of the Journal. The implications of this research on the development of novel therapeutic approaches are also addressed.

  16. Phenotype of NK-Like CD8(+) T Cells with Innate Features in Humans and Their Relevance in Cancer Diseases

    PubMed Central

    Barbarin, Alice; Cayssials, Emilie; Jacomet, Florence; Nunez, Nicolas Gonzalo; Basbous, Sara; Lefèvre, Lucie; Abdallah, Myriam; Piccirilli, Nathalie; Morin, Benjamin; Lavoue, Vincent; Catros, Véronique; Piaggio, Eliane; Herbelin, André; Gombert, Jean-Marc

    2017-01-01

    Unconventional T cells are defined by their capacity to respond to signals other than the well-known complex of peptides and major histocompatibility complex proteins. Among the burgeoning family of unconventional T cells, innate-like CD8(+) T cells in the mouse were discovered in the early 2000s. This subset of CD8(+) T cells bears a memory phenotype without having encountered a foreign antigen and can respond to innate-like IL-12 + IL-18 stimulation. Although the concept of innate memory CD8(+) T cells is now well established in mice, whether an equivalent memory NK-like T-cell population exists in humans remains under debate. We recently reported that CD8(+) T cells responding to innate-like IL-12 + IL-18 stimulation and co-expressing the transcription factor Eomesodermin (Eomes) and KIR/NKG2A membrane receptors with a memory/EMRA phenotype may represent a new, functionally distinct innate T cell subset in humans. In this review, after a summary on the known innate CD8(+) T-cell features in the mouse, we propose Eomes together with KIR/NKG2A and CD49d as a signature to standardize the identification of this innate CD8(+) T-cell subset in humans. Next, we discuss IL-4 and IL-15 involvement in the generation of innate CD8(+) T cells and particularly its possible dependency on the promyelocytic leukemia zinc-finger factor expressing iNKT cells, an innate T cell subset well documented for its susceptibility to tumor immune subversion. After that, focusing on cancer diseases, we provide new insights into the potential role of these innate CD8(+) T cells in a physiopathological context in humans. Based on empirical data obtained in cases of chronic myeloid leukemia, a myeloproliferative syndrome controlled by the immune system, and in solid tumors, we observe both the possible contribution of innate CD8(+) T cells to cancer disease control and their susceptibility to tumor immune subversion. Finally, we note that during tumor progression, innate CD8(+) T lymphocytes could be controlled by immune checkpoints. This study significantly contributes to understanding of the role of NK-like CD8(+) T cells and raises the question of the possible involvement of an iNKT/innate CD8(+) T cell axis in cancer. PMID:28396661

  17. Immune response

    MedlinePlus

    Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... normal and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense ...

  18. Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response.

    PubMed

    Paramo, Teresa; Tomasio, Susana M; Irvine, Kate L; Bryant, Clare E; Bond, Peter J

    2015-12-09

    Bacterial outer membrane lipopolysaccharide (LPS) potently stimulates the mammalian innate immune system, and can lead to sepsis, the primary cause of death from infections. LPS is sensed by Toll-like receptor 4 (TLR4) in complex with its lipid-binding coreceptor MD-2, but subtle structural variations in LPS can profoundly modulate the response. To better understand the mechanism of LPS-induced stimulation and bacterial evasion, we have calculated the binding affinity to MD-2 of agonistic and antagonistic LPS variants including lipid A, lipid IVa, and synthetic antagonist Eritoran, and provide evidence that the coreceptor is a molecular switch that undergoes ligand-induced conformational changes to appropriately activate or inhibit the receptor complex. The plasticity of the coreceptor binding cavity is shown to be essential for distinguishing between ligands, whilst similar calculations for a model bacterial LPS bilayer reveal the "membrane-like" nature of the protein cavity. The ability to predict the activity of LPS variants should facilitate the rational design of TLR4 therapeutics.

  19. Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response

    PubMed Central

    Paramo, Teresa; Tomasio, Susana M.; Irvine, Kate L.; Bryant, Clare E.; Bond, Peter J.

    2015-01-01

    Bacterial outer membrane lipopolysaccharide (LPS) potently stimulates the mammalian innate immune system, and can lead to sepsis, the primary cause of death from infections. LPS is sensed by Toll-like receptor 4 (TLR4) in complex with its lipid-binding coreceptor MD-2, but subtle structural variations in LPS can profoundly modulate the response. To better understand the mechanism of LPS-induced stimulation and bacterial evasion, we have calculated the binding affinity to MD-2 of agonistic and antagonistic LPS variants including lipid A, lipid IVa, and synthetic antagonist Eritoran, and provide evidence that the coreceptor is a molecular switch that undergoes ligand-induced conformational changes to appropriately activate or inhibit the receptor complex. The plasticity of the coreceptor binding cavity is shown to be essential for distinguishing between ligands, whilst similar calculations for a model bacterial LPS bilayer reveal the “membrane-like” nature of the protein cavity. The ability to predict the activity of LPS variants should facilitate the rational design of TLR4 therapeutics. PMID:26647780

  20. Ovarian Tumor (OTU)-domain Containing Viral Proteases Evade Ubiquitin- and ISG15-dependent Innate Immune Responses

    PubMed Central

    Frias-Staheli, Natalia; Giannakopoulos, Nadia V.; Kikkert, Marjolein; Taylor, Shannon L.; Bridgen, Anne; Paragas, Jason J.; Richt, Juergen A.; Rowland, Raymond R.; Schmaljohn, Connie S.; Lenschow, Deborah J.; Snijder, Eric J.; García-Sastre, Adolfo; Virgin, Herbert Whiting

    2007-01-01

    Summary Ubiquitin (Ub) and interferon stimulated gene product 15 (ISG15) reversibly conjugate to proteins via a conserved LRLRGG C-terminal motif, mediating important innate antiviral responses. The ovarian tumor (OTU) domain represents a superfamily of predicted proteases found in eukaryotic, bacterial and viral proteins, some of which have Ub-deconjugating activity. We show that the OTU domain-containing proteases of nairoviruses and arteriviruses hydrolyze Ub and ISG15 from cellular target proteins. This broad activity contrasts with the target specificity of known mammalian OTU domain-containing proteins. The biological significance of this activity of viral OTU domain-containing proteases was evidenced by their capacity to inhibit NF-κB dependent signaling and to antagonize the antiviral effects of ISG15 during Sindbis virus infection in vivo. The deconjugating activity of viral OTU proteases represents a novel viral immune evasion mechanism that inhibits Ub-and ISG15-dependent antiviral pathways. PMID:18078692

  1. Bitterness prediction in-silico: A step towards better drugs.

    PubMed

    Bahia, Malkeet Singh; Nissim, Ido; Niv, Masha Y

    2018-02-05

    Bitter taste is innately aversive and thought to protect against consuming poisons. Bitter taste receptors (Tas2Rs) are G-protein coupled receptors, expressed both orally and extra-orally and proposed as novel targets for several indications, including asthma. Many clinical drugs elicit bitter taste, suggesting the possibility of drugs re-purposing. On the other hand, the bitter taste of medicine presents a major compliance problem for pediatric drugs. Thus, efficient tools for predicting, measuring and masking bitterness of active pharmaceutical ingredients (APIs) are required by the pharmaceutical industry. Here we highlight the BitterDB database of bitter compounds and survey the main computational approaches to prediction of bitter taste based on compound's chemical structure. Current in silico bitterness prediction methods provide encouraging results, can be constantly improved using growing experimental data, and present a reliable and efficient addition to the APIs development toolbox. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Close Encounters of Lymphoid Cells and Bacteria

    PubMed Central

    Cruz-Adalia, Aranzazu; Veiga, Esteban

    2016-01-01

    During infections, the first reaction of the host against microbial pathogens is carried out by innate immune cells, which recognize conserved structures on pathogens, called pathogen-associated molecular patterns. Afterward, some of these innate cells can phagocytose and destroy the pathogens, secreting cytokines that would modulate the immune response to the challenge. This rapid response is normally followed by the adaptive immunity, more specific and essential for a complete pathogen clearance in many cases. Some innate immune cells, usually named antigen-presenting cells, such as macrophages or dendritic cells, are able to process internalized invaders and present their antigens to lymphocytes, triggering the adaptive immune response. Nevertheless, the traditional boundary of separated roles between innate and adaptive immunity has been blurred by several studies, showing that very specialized populations of lymphocytes (cells of the adaptive immunity) behave similarly to cells of the innate immunity. These “innate-like” lymphocytes include γδ T cells, invariant NKT cells, B-1 cells, mucosal-associated invariant T cells, marginal zone B cells, and innate response activator cells, and together with the newly described innate lymphoid cells are able to rapidly respond to bacterial infections. Strikingly, our recent data suggest that conventional CD4+ T cells, the paradigm of cells of the adaptive immunity, also present innate-like behavior, capturing bacteria in a process called transinfection. Transinfected CD4+ T cells digest internalized bacteria like professional phagocytes and secrete large amounts of proinflammatory cytokines, protecting for further bacterial challenges. In the present review, we will focus on the data showing such innate-like behavior of lymphocytes following bacteria encounter. PMID:27774092

  3. A nursing theory-guided framework for genetic and epigenetic research.

    PubMed

    Maki, Katherine A; DeVon, Holli A

    2018-04-01

    The notion that genetics, through natural selection, determines innate traits has led to much debate and divergence of thought on the impact of innate traits on the human phenotype. The purpose of this synthesis was to examine how innate theory informs genetic research and how understanding innate theory through the lens of Martha Rogers' theory of unitary human beings can offer a contemporary view of how innate traits can inform epigenetic and genetic research. We also propose a new conceptual model for genetic and epigenetic research. The philosophical, theoretical, and research literatures were examined for this synthesis. We have merged philosophical and conceptual phenomena from innate theory with the theory of unitary beings into the University of Illinois at Chicago model for genetic and epigenetic research. Innate traits are the cornerstone of the framework but may be modified epigenetically by biological, physiological, psychological, and social determinants as they are transcribed. These modifiers serve as important links between the concept of innate traits and epigenetic modifications, and, like the theory of unitary human beings, the process is understood in the context of individual and environmental interaction that has the potential to evolve as the determinants change. © 2018 John Wiley & Sons Ltd.

  4. Addiction, Adolescence, and Innate Immune Gene Induction

    PubMed Central

    Crews, Fulton T.; Vetreno, Ryan Peter

    2011-01-01

    Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control, and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB) facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g., negative affect-anxiety and loss of frontal–cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy. PMID:21629837

  5. Induction of innate immunity in control of mucosal transmission of HIV.

    PubMed

    Wang, Yufei; Lehner, Thomas

    2011-09-01

    To present evidence of the role of innate mucosal immunity and to harness this arm of immunity in protection against HIV infection. Dendritic cells, monocytes, natural killer (NK) cells and γδ T cells are critical in innate immunity, which is mediated by Toll-like receptor (TLR) and recently identified stress pathways. Complement factors, cytokines and chemokines have diverse functions usually affecting HIV infection indirectly. A novel group of innate intracellular HIV restriction factors has been identified - APOBEC3G, TRIM5α and tetherin - all of which are upregulated by type I interferons and some by vaccination and TLR agonists. Whereas innate immunity conventionally lacks memory, recent evidence suggests that some of the cells and intracellular factors may express immunological memory-like features. Innate mucosal immunity may provide early effective control of HIV transmission and replication. Some vaccines can enhance innate immune factors, such as APOBEC3G and control HIV during the eclipse period, allowing full weight of neutralizing and/or cytotoxic T cells to develop and prevent mucosal HIV infection. The next generation of vaccines should be designed to target both innate and adaptive immune memory responses.

  6. Innate Immune Sensing and Response to Influenza

    PubMed Central

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  7. Innate immune sensing and response to influenza.

    PubMed

    Pulendran, Bali; Maddur, Mohan S

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocompromised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza.

  8. The participation of cortical amygdala in innate, odour-driven behaviour.

    PubMed

    Root, Cory M; Denny, Christine A; Hen, René; Axel, Richard

    2014-11-13

    Innate behaviours are observed in naive animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviours are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centres have been anatomically defined, but the specific pathways responsible for innate responses to volatile odours have not been identified. Here we devise genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviours. Moreover, we use the promoter of the activity-dependent gene arc to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odours that elicit innate behaviours. Optical activation of these neurons leads to appropriate behaviours that recapitulate the responses to innate odours. These data indicate that the cortical amygdala plays a critical role in generating innate odour-driven behaviours but do not preclude its participation in learned olfactory behaviours.

  9. The Role of TOX in the Development of Innate Lymphoid Cells.

    PubMed

    Seehus, Corey R; Kaye, Jonathan

    2015-01-01

    TOX, an evolutionarily conserved member of the HMG-box family of proteins, is essential for the development of various cells of both the innate and adaptive immune system. TOX is required for the development of CD4(+) T lineage cells in the thymus, including natural killer T and T regulatory cells, as well as development of natural killer cells and fetal lymphoid tissue inducer cells, the latter required for lymph node organogenesis. Recently, we have identified a broader role for TOX in the innate immune system, demonstrating that this nuclear protein is required for generation of bone marrow progenitors that have potential to give rise to all innate lymphoid cells. Innate lymphoid cells, classified according to transcription factor expression and cytokine secretion profiles, derive from common lymphoid progenitors in the bone marrow and require Notch signals for their development. We discuss here the role of TOX in specifying CLP toward an innate lymphoid cell fate and hypothesize a possible role for TOX in regulating Notch gene targets during innate lymphoid cell development.

  10. Bruton's Tyrosine Kinase: An Emerging Key Player in Innate Immunity.

    PubMed

    Weber, Alexander N R; Bittner, Zsofia; Liu, Xiao; Dang, Truong-Minh; Radsak, Markus Philipp; Brunner, Cornelia

    2017-01-01

    Bruton's tyrosine kinase (BTK) was initially discovered as a critical mediator of B cell receptor signaling in the development and functioning of adaptive immunity. Growing evidence also suggests multiple roles for BTK in mononuclear cells of the innate immune system, especially in dendritic cells and macrophages. For example, BTK has been shown to function in Toll-like receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. Most recently, BTK was additionally identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome. BTK has thus attracted interest not only for gaining a more thorough basic understanding of the human innate immune system but also as a target to therapeutically modulate innate immunity. We here review the latest developments on the role of BTK in mononuclear innate immune cells in mouse versus man, with specific emphasis on the sensing of infectious agents and the induction of inflammation. Therapeutic implications for modulating innate immunity and critical open questions are also discussed.

  11. Innate immunity against HIV-1 infection.

    PubMed

    Altfeld, Marcus; Gale, Michael

    2015-06-01

    During acute HIV-1 infection, viral pathogen-associated molecular patterns are recognized by pathogen-recognition receptors (PRRs) of infected cells, which triggers a signaling cascade that initiates innate intracellular antiviral defenses aimed at restricting the replication and spread of the virus. This cell-intrinsic response propagates outward via the action of secreted factors such as cytokines and chemokines that activate innate immune cells and attract them to the site of infection and to local lymphatic tissue. Antiviral innate effector cells can subsequently contribute to the control of viremia and modulate the quality of the adaptive immune response to HIV-1. The concerted actions of PRR signaling, specific viral-restriction factors, innate immune cells, innate-adaptive immune crosstalk and viral evasion strategies determine the outcome of HIV-1 infection and immune responses.

  12. Evolution and plasticity: Divergence of song discrimination is faster in birds with innate song than in song learners in Neotropical passerine birds.

    PubMed

    Freeman, Benjamin G; Montgomery, Graham A; Schluter, Dolph

    2017-09-01

    Plasticity is often thought to accelerate trait evolution and speciation. For example, plasticity in birdsong may partially explain why clades of song learners are more diverse than related clades with innate song. This "song learning" hypothesis predicts that (1) differences in song traits evolve faster in song learners, and (2) behavioral discrimination against allopatric song (a proxy for premating reproductive isolation) evolves faster in song learners. We tested these predictions by analyzing acoustic traits and conducting playback experiments in allopatric Central American sister pairs of song learning oscines (N = 42) and nonlearning suboscines (N = 27). We found that nonlearners evolved mean acoustic differences slightly faster than did leaners, and that the mean evolutionary rate of song discrimination was 4.3 times faster in nonlearners than in learners. These unexpected results may be a consequence of significantly greater variability in song traits in song learners (by 54-79%) that requires song-learning oscines to evolve greater absolute differences in song before achieving the same level of behavioral song discrimination as nonlearning suboscines. This points to "a downside of learning" for the evolution of species discrimination, and represents an important example of plasticity reducing the rate of evolution and diversification by increasing variability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  13. Innate control of adaptive immunity: Beyond the three-signal paradigm

    PubMed Central

    Jain, Aakanksha; Pasare, Chandrashekhar

    2017-01-01

    Activation of cells in the adaptive immune system is a highly orchestrated process dictated by multiples cues from the innate immune system. Although the fundamental principles of innate control of adaptive immunity are well established, it is not fully understood how innate cells integrate qualitative pathogenic information in order to generate tailored protective adaptive immune responses. In this review, we discuss complexities involved in the innate control of adaptive immunity that extend beyond T cell receptor engagement, co-stimulation and priming cytokine production but are critical for generation of protective T cell immunity. PMID:28483987

  14. Innate immunity against HIV: a priority target for HIV prevention research.

    PubMed

    Borrow, Persephone; Shattock, Robin J; Vyakarnam, Annapurna

    2010-10-11

    This review summarizes recent advances and current gaps in understanding of innate immunity to human immunodeficiency virus (HIV) infection, and identifies key scientific priorities to enable application of this knowledge to the development of novel prevention strategies (vaccines and microbicides). It builds on productive discussion and new data arising out of a workshop on innate immunity against HIV held at the European Commission in Brussels, together with recent observations from the literature.Increasing evidence suggests that innate responses are key determinants of the outcome of HIV infection, influencing critical events in the earliest stages of infection including the efficiency of mucosal HIV transmission, establishment of initial foci of infection and local virus replication/spread as well as virus dissemination, the ensuing acute burst of viral replication, and the persisting viral load established. They also impact on the subsequent level of ongoing viral replication and rate of disease progression. Modulation of innate immunity thus has the potential to constitute a powerful effector strategy to complement traditional approaches to HIV prophylaxis and therapy. Importantly, there is increasing evidence to suggest that many arms of the innate response play both protective and pathogenic roles in HIV infection. Consequently, understanding the contributions made by components of the host innate response to HIV acquisition/spread versus control is a critical pre-requisite for the employment of innate immunity in vaccine or microbicide design, so that appropriate responses can be targeted for up- or down-modulation. There is also an important need to understand the mechanisms via which innate responses are triggered and mediate their activity, and to define the structure-function relationships of individual innate factors, so that they can be selectively exploited or inhibited. Finally, strategies for achieving modulation of innate functions need to be developed and subjected to rigorous testing to ensure that they achieve the desired level of protection without stimulation of immunopathological effects. Priority areas are identified where there are opportunities to accelerate the translation of recent gains in understanding of innate immunity into the design of improved or novel vaccine and microbicide strategies against HIV infection.

  15. Contribution of vascular cell-derived cytokines to innate and inflammatory pathways in atherogenesis

    PubMed Central

    Loppnow, Harald; Buerke, Michael; Werdan, Karl; Rose-John, Stefan

    2011-01-01

    Abstract Inflammation is a central element of atherogenesis. Innate pathways contribute to vascular inflammation. However, the initial molecular process(es) starting atherogenesis remain elusive. The various risk factors, represented by particular compounds (activators), may cause altered cellular functions in the endothelium (e.g. vascular endothelial cell activation or -dysfunction), in invading cells (e.g. inflammatory mediator production) or in local vessel wall cells (e.g. inflammatory mediators, migration), thereby triggering the innate inflammatory process. The cellular components of innate immunology include granulocytes, natural killer cells and monocytes. Among the molecular innate constituents are innate molecules, such as the toll-like receptors or innate cytokines. Interleukin-1 (IL-1) and IL-6 are among the innate cytokines. Cytokines are potent activators of a great number of cellular functions relevant to maintain or commove homeostasis of the vessel wall. Within the vessel wall, vascular smooth muscle cells (SMCs) can significantly contribute to the cytokine-dependent inflammatory network by: (i) production of cytokines, (ii) response to cytokines and (iii) cytokine-mediated interaction with invading leucocytes. The cytokines IL-1 and IL-6 are involved in SMC-leucocyte interaction. The IL-6 effects are proposed to be mediated by trans-signalling. Dysregulated cellular functions resulting from dysregulated cytokine production may be the cause of cell accumulation, subsequent low-density lipoprotein accumulation and deposition of extracellular matrix (ECM). The deposition of ECM, increased accumulation of leucocytes and altered levels of inflammatory mediators may constitute an ‘innate-immunovascular-memory’ resulting in an ever-growing response to anew invasion. Thus, SMC-fostered inflammation, promoted by invading innate cells, may be a potent component for development and acceleration of atherosclerosis. PMID:21199323

  16. Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)-deficient mice.

    PubMed

    Verhoef, Philip A; Constantinides, Michael G; McDonald, Benjamin D; Urban, Joseph F; Sperling, Anne I; Bendelac, Albert

    2016-02-01

    The transcription factor promyelocytic leukemia zinc finger (PLZF) is transiently expressed during development of type 2 innate lymphoid cells (ILC2s) but is not present at the mature stage. We hypothesized that PLZF-deficient ILC2s have functional defects in the innate allergic response and represent a tool for studying innate immunity in a mouse with a functional adaptive immune response. We determined the consequences of PLZF deficiency on ILC2 function in response to innate and adaptive immune stimuli by using PLZF(-/-) mice and mixed wild-type:PLZF(-/-) bone marrow chimeras. PLZF(-/-) mice, wild-type littermates, or mixed bone marrow chimeras were treated with the protease allergen papain or the cytokines IL-25 and IL-33 or infected with the helminth Nippostrongylus brasiliensis to induce innate type 2 allergic responses. Mice were sensitized with intraperitoneal ovalbumin-alum, followed by intranasal challenge with ovalbumin alone, to induce adaptive TH2 responses. Lungs were analyzed for immune cell subsets, and alveolar lavage fluid was analyzed for ILC2-derived cytokines. In addition, ILC2s were stimulated ex vivo for their capacity to release type 2 cytokines. PLZF-deficient lung ILC2s exhibit a cell-intrinsic defect in the secretion of IL-5 and IL-13 in response to innate stimuli, resulting in defective recruitment of eosinophils and goblet cell hyperplasia. In contrast, the adaptive allergic inflammatory response to ovalbumin and alum was unimpaired. PLZF expression at the innate lymphoid cell precursor stage has a long-range effect on the functional properties of mature ILC2s and highlights the importance of these cells for innate allergic responses in otherwise immunocompetent mice. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  17. Chaos and the Double Function of Communication

    NASA Astrophysics Data System (ADS)

    Aula, P. S.

    Since at least the needle model age, communication researchers have systematically sought means to explain, control and predict communication behavior between people. For many reasons, the accuracy of constructed models and the studies based upon them has not risen very high. It can be claimed that the reasons for the inaccuracy of communication models, and thus the poor predictability of everyday action, originate from the processes' innate chaos, apparent beneath their behavior. This leads to the argument that communication systems, which appear stable and have precisely identical starting points and identical operating environments, can nevertheless behave in an exceptional and completely different manner, despite the fact that their behavior is ruled or directed by the same rules or laws.

  18. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses.

    PubMed

    de Torres Zabala, Marta; Bennett, Mark H; Truman, William H; Grant, Murray R

    2009-08-01

    The importance of phytohormone balance is increasingly recognized as central to the outcome of plant-pathogen interactions. Recently it has been demonstrated that abscisic acid signalling pathways are utilized by the bacterial phytopathogen Pseudomonas syringae to promote pathogenesis. In this study, we examined the dynamics, inter-relationship and impact of three key acidic phytohormones, salicylic acid, abscisic acid and jasmonic acid, and the bacterial virulence factor, coronatine, during progression of P. syringae infection of Arabidopsis thaliana. We show that levels of SA and ABA, but not JA, appear to play important early roles in determining the outcome of the infection process. SA is required in order to mount a full innate immune responses, while bacterial effectors act rapidly to activate ABA biosynthesis. ABA suppresses inducible innate immune responses by down-regulating SA biosynthesis and SA-mediated defences. Mutant analyses indicated that endogenous ABA levels represent an important reservoir that is necessary for effector suppression of plant-inducible innate defence responses and SA synthesis prior to subsequent pathogen-induced increases in ABA. Enhanced susceptibility due to loss of SA-mediated basal resistance is epistatically dominant over acquired resistance due to ABA deficiency, although ABA also contributes to symptom development. We conclude that pathogen-modulated ABA signalling rapidly antagonizes SA-mediated defences. We predict that hormonal perturbations, either induced or as a result of environmental stress, have a marked impact on pathological outcomes, and we provide a mechanistic basis for understanding priming events in plant defence.

  19. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity.

    PubMed

    Anderson, David A; Walz, Marcus E; Weil, Ernesto; Tonellato, Peter; Smith, Matthew C

    2016-01-01

    Climate change-driven coral disease outbreaks have led to widespread declines in coral populations. Early work on coral genomics established that corals have a complex innate immune system, and whole-transcriptome gene expression studies have revealed mechanisms by which the coral immune system responds to stress and disease. The present investigation expands bioinformatic data available to study coral molecular physiology through the assembly and annotation of a reference transcriptome of the Caribbean reef-building coral, Orbicella faveolata. Samples were collected during a warm water thermal anomaly, coral bleaching event and Caribbean yellow band disease outbreak in 2010 in Puerto Rico. Multiplex sequencing of RNA on the Illumina GAIIx platform and de novo transcriptome assembly by Trinity produced 70,745,177 raw short-sequence reads and 32,463 O. faveolata transcripts, respectively. The reference transcriptome was annotated with gene ontologies, mapped to KEGG pathways, and a predicted proteome of 20,488 sequences was generated. Protein families and signaling pathways that are essential in the regulation of innate immunity across Phyla were investigated in-depth. Results were used to develop models of evolutionarily conserved Wnt, Notch, Rig-like receptor, Nod-like receptor, and Dicer signaling. O. faveolata is a coral species that has been studied widely under climate-driven stress and disease, and the present investigation provides new data on the genes that putatively regulate its immune system.

  20. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity

    PubMed Central

    Walz, Marcus E.; Weil, Ernesto; Smith, Matthew C.

    2016-01-01

    Climate change-driven coral disease outbreaks have led to widespread declines in coral populations. Early work on coral genomics established that corals have a complex innate immune system, and whole-transcriptome gene expression studies have revealed mechanisms by which the coral immune system responds to stress and disease. The present investigation expands bioinformatic data available to study coral molecular physiology through the assembly and annotation of a reference transcriptome of the Caribbean reef-building coral, Orbicella faveolata. Samples were collected during a warm water thermal anomaly, coral bleaching event and Caribbean yellow band disease outbreak in 2010 in Puerto Rico. Multiplex sequencing of RNA on the Illumina GAIIx platform and de novo transcriptome assembly by Trinity produced 70,745,177 raw short-sequence reads and 32,463 O. faveolata transcripts, respectively. The reference transcriptome was annotated with gene ontologies, mapped to KEGG pathways, and a predicted proteome of 20,488 sequences was generated. Protein families and signaling pathways that are essential in the regulation of innate immunity across Phyla were investigated in-depth. Results were used to develop models of evolutionarily conserved Wnt, Notch, Rig-like receptor, Nod-like receptor, and Dicer signaling. O. faveolata is a coral species that has been studied widely under climate-driven stress and disease, and the present investigation provides new data on the genes that putatively regulate its immune system. PMID:26925311

  1. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators.

    PubMed

    Reverté, Sara; Retana, Javier; Gómez, José M; Bosch, Jordi

    2016-08-01

    Colour is one of the main floral traits used by pollinators to locate flowers. Although pollinators show innate colour preferences, the view that the colour of a flower may be considered an important predictor of its main pollinators is highly controversial because flower choice is highly context-dependent, and initial innate preferences may be overridden by subsequent associative learning. Our objective is to establish whether there is a relationship between flower colour and pollinator composition in natural communities. We measured the flower reflectance spectrum and pollinator composition in four plant communities (85 plant species represented by 109 populations, and 32 305 plant-pollinator interactions in total). Pollinators were divided into six taxonomic groups: bees, ants, wasps, coleopterans, dipterans and lepidopterans. We found consistent associations between pollinator groups and certain colours. These associations matched innate preferences experimentally established for several pollinators and predictions of the pollination syndrome theory. However, flowers with similar colours did not attract similar pollinator assemblages. The explanation for this paradoxical result is that most flower species are pollination generalists. We conclude that although pollinator colour preferences seem to condition plant-pollinator interactions, the selective force behind these preferences has not been strong enough to mediate the appearance and maintenance of tight colour-based plant-pollinator associations. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Dairy cows affected by ketosis show alterations in innate immunity and lipid and carbohydrate metabolism during the dry off period and postpartum.

    PubMed

    Zhang, Guanshi; Hailemariam, Dagnachew; Dervishi, Elda; Goldansaz, Seyed Ali; Deng, Qilan; Dunn, Suzanna M; Ametaj, Burim N

    2016-08-01

    The objective of this investigation was to search for alterations in blood variables related to innate immunity and carbohydrate and lipid metabolism during the transition period in cows affected by ketosis. One hundred multiparous Holstein dairy cows were involved in the study. Blood samples were collected at -8, -4, week of disease diagnosis (+1 to +3weeks), and +4weeks relative to parturition from 6 healthy cows (CON) and 6 cows with ketosis and were analyzed for serum variables. Results showed that cows with ketosis had greater concentrations of serum β-hydroxybutyric acid (BHBA), interleukin (IL)-6, tumor necrosis factor (TNF), serum amyloid A (SAA), and lactate in comparison with the CON animals. Serum concentrations of BHBA, IL-6, TNF, and lactate were greater starting at -8 and -4weeks prior to parturition in cows with ketosis vs those of CON group. Cows with ketosis also had lower DMI and milk production vs CON cows. Milk fat also was lower in ketotic cows at diagnosis of disease. Cows affected by ketosis showed an activated innate immunity and altered carbohydrate and lipid metabolism several weeks prior to diagnosis of disease. Serum IL-6 and lactate were the strongest discriminators between ketosis cows and CON ones before the occurrence of ketosis, which might be useful as predictive biomarkers of the disease state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure

    PubMed Central

    Duan, Qiming; McMahon, Sarah; Anand, Priti; Shah, Hirsh; Thomas, Sean; Salunga, Hazel T.; Huang, Yu; Zhang, Rongli; Sahadevan, Aarathi; Lemieux, Madeleine E.; Brown, Jonathan D.; Srivastava, Deepak; Bradner, James E.; McKinsey, Timothy A.; Haldar, Saptarsi M.

    2017-01-01

    Despite current standard of care, the average 5-year mortality after an initial diagnosis of heart failure (HF) is about 40%, reflecting an urgent need for new therapeutic approaches. Previous studies demonstrated that the epigenetic reader protein bromodomain-containing protein 4 (BRD4), an emerging therapeutic target in cancer, functions as a critical coactivator of pathologic gene transactivation during cardiomyocyte hypertrophy. However, the therapeutic relevance of these findings to human disease remained unknown. We demonstrate that treatment with the BET bromodomain inhibitor JQ1 has therapeutic effects during severe, preestablished HF from prolonged pressure overload, as well as after a massive anterior myocardial infarction in mice. Furthermore, JQ1 potently blocks agonist-induced hypertrophy in human induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs). Integrated transcriptomic analyses across animal models and human iPSC-CMs reveal that BET inhibition preferentially blocks transactivation of a common pathologic gene regulatory program that is robustly enriched for NFκB and TGF-β signaling networks, typified by innate inflammatory and profibrotic myocardial genes. As predicted by these specific transcriptional mechanisms, we found that JQ1 does not suppress physiological cardiac hypertrophy in a mouse swimming model. These findings establish that pharmacologically targeting innate inflammatory and profibrotic myocardial signaling networks at the level of chromatin is effective in animal models and human cardiomyocytes, providing the critical rationale for further development of BET inhibitors and other epigenomic medicines for HF. PMID:28515341

  4. 1H, 15N, and 13C resonance assignments of the third domain from the S. aureus innate immune evasion protein Eap.

    PubMed

    Herrera, Alvaro I; Ploscariu, Nicoleta T; Geisbrecht, Brian V; Prakash, Om

    2018-04-01

    Staphylococcus aureus is a widespread and persistent pathogen of humans and livestock. The bacterium expresses a wide variety of virulence proteins, many of which serve to disrupt the host's innate immune system from recognizing and clearing bacteria with optimal efficiency. The extracellular adherence protein (Eap) is a multidomain protein that participates in various protein-protein interactions that inhibit the innate immune response, including both the complement system (Woehl et al in J Immunol 193:6161-6171, 2014) and Neutrophil Serine Proteases (NSPs) (Stapels et al in Proc Natl Acad Sci USA 111:13187-13192, 2014). The third domain of Eap, Eap3, is an ~ 11 kDa protein that was recently shown to bind complement component C4b (Woehl et al in Protein Sci 26:1595-1608, 2017) and therefore play an essential role in inhibiting the classical and lectin pathways of complement (Woehl et al in J Immunol 193:6161-6171, 2014). Since structural characterization of Eap3 is still incomplete, we acquired a series of 2D and 3D NMR spectra of Eap3 in solution. Here we report the backbone and side-chain 1 H, 15 N, and 13 C resonance assignments of Eap3 and its predicted secondary structure via the TALOS-N server. The assignment data have been deposited in the BMRB data bank under accession number 27087.

  5. Dehydroepiandrosterone and multiple measures of functional immunity in young adults.

    PubMed

    Prall, Sean P; Muehlenbein, Michael P

    2015-01-01

    Human immune function is strongly influenced by variation in hormone concentrations. The adrenal androgens dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEA-S) are thought to be beneficial to immune function and disease resistance, but physiologically interact with testosterone and cortisol. We predict that DHEA and DHEA-S will interact with these other hormones in determining immunological outcomes. Understanding the interactive effects of these hormones will aid in understanding variability in immunocompetence and clarify discrepancies in human studies of androgen-immune interactions. Thirty-eight participants collected morning saliva over three days, from which concentrations of DHEA, DHEA-S, testosterone, and cortisol were measured, as well as salivary bacteria killing ability to measure innate immune function. From blood collection, serum was collected to measure innate immune function via a hemolytic complement assay, and whole blood collected and processed to measure proliferative responses of lymphocytes in the presence of mitogens. DHEA was negatively correlated with T cell proliferation, and positively correlated with salivary bacteria killing in male participants. Additionally, using regression models, DHEA-S was negatively associated with hemolytic complement activity, but interaction variables did not yield statistically significant relationships for any other outcome measure. While interactions with other hormones did not significantly relate with immune function measures in this sample, DHEA and DHEA-S did differentially impact multiple branches of the immune system. Generally characterized as immunosupportive in action, DHEA is shown to inhibit certain facets of innate and cell-mediated immunity, suggesting a more complex role in regulating immunocompetence. © 2015 Wiley Periodicals, Inc.

  6. Immune Response in Thyroid Cancer: Widening the Boundaries

    PubMed Central

    Ward, Laura Sterian

    2014-01-01

    The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy. PMID:25328756

  7. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung

    PubMed Central

    Florez‐Sampedro, Laura; Song, Shanshan

    2018-01-01

    Abstract In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents, and even ageing can dysregulate immune responses after injury. This dysregulation can lead to a chronic repair mechanism known as fibrosis. Alterations in wound healing can occur in many organs, but our focus lies with the lung as it requires highly regulated immune and repair responses with its continuous exposure to airborne threats. Dysregulated repair responses can lead to pulmonary fibrosis but the exact reason for its development is often not known. Here, we review the diversity of innate immune cells of myeloid origin that are involved in tissue repair and we illustrate how these cell types can contribute to the development of pulmonary fibrosis. Moreover, we briefly discuss the effect of age on innate immune responses and therefore on wound healing and we conclude with the implications of current knowledge on the avenues for future research. PMID:29721324

  8. Immunomodulatory effect of prolactin on Atlantic salmon (Salmo salar) macrophage function.

    PubMed

    Paredes, Marco; Gonzalez, Katerina; Figueroa, Jaime; Montiel-Eulefi, Enrique

    2013-10-01

    The in vitro and in vivo effect of prolactin (PRL) on kidney macrophages from Atlantic salmon (Salmo salar) was investigated under the assumption that PRL stimulates immune innate response in mammals. Kidney macrophages were treated two ways: first, cultured in RPMI 1640 medium containing 10, 25, 50 and 100 ng/mL of PRL and second, isolated from a fish with a PRL-injected dose of 100 ng/Kg. Reduced nitro blue tetrazolium (formazan) was used to produce intracellular superoxide anion. Phagocytic activity of PRL was determined in treated cells by optical microscopy observation of phagocytized Congo red-stained yeast. Kidney lysozyme activity was measured in PRL-injected fish. In vitro and in vivo macrophages treated with PRL presented an enhanced superoxide anion production, elevated phagocytic index and increased phagocytic activity. Treated fish showed higher levels of lysozyme activity in the head kidney compared to the control. These results indicate that PRL-stimulated innate immune response in Atlantic salmon and future studies will allow us to assess the possibility of using PRL as an immunostimulant in the Chilean salmon industry.

  9. Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines

    PubMed Central

    Levy, Ofer; Netea, Mihai G.

    2014-01-01

    Unique features of immunity early in life include a distinct immune system particularly reliant on innate immunity, with weak T helper (Th)1-polarizing immune responses, and impaired responses to certain vaccines leading to a heightened susceptibility to infection. To these important aspects, we now add an increasingly appreciated concept that the innate immune system displays epigenetic memory of an earlier infection or vaccination, a phenomenon that has been named “trained immunity”. Exposure of neonatal leukocytes in vitro or neonatal animals or humans in vivo to specific innate immune stimuli results in an altered innate immune set point. Given the particular importance of innate immunity early in life, trained immunity to early life infection and/or immunization may play an important role in modulating both acute and chronic diseases. PMID:24352476

  10. Innate immunity and chronic rhinosinusitis: What we have learned from animal models.

    PubMed

    London, Nyall R; Lane, Andrew P

    2016-06-01

    Chronic rhinosinusitis (CRS) is a heterogeneous and multifactorial disease characterized by dysregulated inflammation. Abnormalities in innate immune function including sinonasal epithelial cell barrier function, mucociliary clearance, response to pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs), and the contribution of innate immune cells will be highlighted in this review. PubMed literature review. A review of the literature was conducted to determine what we have learned from animal models in relation to innate immunity and chronic rhinosinusitis. Dysregulation of innate immune mechanisms including sinonasal barrier function, mucociliary clearance, PAMPs, and innate immune cells such as eosinophils, mast cells, and innate lymphoid cells may contribute to CRS pathogenesis. Sinonasal inflammation has been studied using mouse, rat, rabbit, pig, and sheep explant or in vivo models. Study using these models has allowed for analysis of experimental therapeutics and furthered our understanding of the aforementioned aspects of the innate immune mechanism as it relates to sinonasal inflammation. These include augmenting mucociliary clearance through activation of the cystic fibrosis transmembrane conductance regulator (CFTR) and study of drug toxicity on ciliary beat frequency. Knockout models of Toll-like receptors (TLR) have demonstrated the critical role these PRRs play in allergic inflammation as loss of TLR2 and TLR4 leads to decreased lower airway inflammation. Mast cell deficient mice are less susceptible to ovalbumin-induced sinonasal inflammation. Animal models have shed light as to the potential contribution of dysregulated innate immunity in chronic sinonasal inflammation.

  11. Innate Immunity Dysregulation in Myelodysplastic Syndromes

    DTIC Science & Technology

    2014-10-01

    the CD34+ enriched MDS bone marrow hematopoietic stem/ progenitor cells . We also demonstrated that interference of the TLR2-JMJD3 innate immunity...able to demonstrate that TLR2 innate immune signaling is excessively activated in MDS bone marrow stem/ progenitor cells and that inhibiting this...evidence that the deregulation of innate immune and inflammatory signaling also 13 affects other cells from the immune system and the bone marrow

  12. Dynamic modulation of innate immunity programming and memory.

    PubMed

    Yuan, Ruoxi; Li, Liwu

    2016-01-01

    Recent progress harkens back to the old theme of immune memory, except this time in the area of innate immunity, to which traditional paradigm only prescribes a rudimentary first-line defense function with no memory. However, both in vitro and in vivo studies reveal that innate leukocytes may adopt distinct activation states such as priming, tolerance, and exhaustion, depending upon the history of prior challenges. The dynamic programming and potential memory of innate leukocytes may have far-reaching consequences in health and disease. This review aims to provide some salient features of innate programing and memory, patho-physiological consequences, underlying mechanisms, and current pressing issues.

  13. Innate T cell responses in human gut.

    PubMed

    Meresse, Bertrand; Cerf-Bensussan, Nadine

    2009-06-01

    One arm of the gut-associated immune system is represented by a vast collection of T lymphocytes which participate in the subtle interplay between innate and adaptive immune mechanisms and maintain homeostasis at the main body external surface. Mounting data are providing exciting new insight into the innate-like mechanisms which enable intestinal T cells to rapidly sense local conditions and which broaden the spectrum of their functions and regulation at this strategic location. Herein we discuss how innate-like T cell recognition by unconventional T cell subsets and expression of innate NK receptors might modulate immune T cell responses in the human normal or diseased intestine.

  14. The participation of cortical amygdala in innate, odor-driven behavior

    PubMed Central

    Root, Cory M.; Denny, Christine A.; Hen, René; Axel, Richard

    2014-01-01

    Innate behaviors are observed in naïve animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviors are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centers have been anatomically defined1-3 but the specific pathways responsible for innate responses to volatile odors have not been identified. We have devised genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviors. Moreover, we have employed the promoter of the activity-dependent gene, arc, to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odors that elicit innate behaviors. Optical activation of these neurons leads to appropriate behaviors that recapitulate the responses to innate odors. These data indicate that the cortical amygdala plays a critical role in the generation of innate odor-driven behaviors but do not preclude the participation of cortical amygdala in learned olfactory behaviors. PMID:25383519

  15. The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes?

    PubMed

    Wang, Weijun; Zhang, Yaxing; Yang, Ling; Li, Hongliang

    2017-02-28

    The innate immune system is responsible for sensing pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) by several types of germline-encoded pattern-recognition receptors (PRRs). It has the capacity to help the human body maintain homeostasis under normal conditions. However, in pathological conditions, PAMPs or DAMPs trigger aberrant innate immune and inflammatory responses and thus negatively or positively influence the progression of cancer and cardiometabolic diseases. Interestingly, we found that some elements of innate immune signaling are involved in these diseases partially via immune-independent manners, indicating a deeper understanding of the function of innate immune signaling in these diseases is urgent. In this review, we summarize the primary innate immune signaling pathways and their association with cancer and cardiometabolic diseases, with the aim of providing effective therapies for these diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Prebiotics as immunostimulants in aquaculture: a review.

    PubMed

    Song, Seong Kyu; Beck, Bo Ram; Kim, Daniel; Park, John; Kim, Jungjoon; Kim, Hyun Duk; Ringø, Einar

    2014-09-01

    Prebiotics are indigestible fibers that increase beneficial gut commensal bacteria resulting in improvements of the host's health. The beneficial effects of prebiotics are due to the byproducts generated from their fermentation by gut commensal bacteria. In this review, the direct effects of prebiotics on the innate immune system of fish are discussed. Prebiotics, such as fructooligosaccharide, mannanoligosaccharide, inulin, or β-glucan, are called immunosaccharides. They directly enhance innate immune responses including: phagocytic activation, neutrophil activation, activation of the alternative complement system, increased lysozyme activity, and more. Immunosaccharides directly activate the innate immune system by interacting with pattern recognition receptors (PRR) expressed on innate immune cells. They can also associate with microbe associated molecular patterns (MAMPs) to activate innate immune cells. However, the underlying mechanisms involved in innate immune cell activation need to be further explored. Many studies have indicated that immunosaccharides are beneficial to both finfish and shellfish. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Innate immune response development in nestling tree swallows

    USGS Publications Warehouse

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  18. Type 2 Innate Lymphoid Cells: Friends or Foes—Role in Airway Allergic Inflammation and Asthma

    PubMed Central

    Pishdadian, Abbas; Varasteh, Abdol-Reza; Sankian, Mojtaba

    2012-01-01

    Innate-like lymphocytes (ILLs) and innate lymphoid cells (ILCs) are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2) are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13) in response to antigen-induced IL-25/33 and by recruiting type 2 “immune franchise.” Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma. PMID:23209480

  19. Type 2 innate lymphoid cells: friends or foes-role in airway allergic inflammation and asthma.

    PubMed

    Pishdadian, Abbas; Varasteh, Abdol-Reza; Sankian, Mojtaba

    2012-01-01

    Innate-like lymphocytes (ILLs) and innate lymphoid cells (ILCs) are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2) are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13) in response to antigen-induced IL-25/33 and by recruiting type 2 "immune franchise." Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma.

  20. Regulatory Innate Lymphoid Cells Control Innate Intestinal Inflammation.

    PubMed

    Wang, Shuo; Xia, Pengyan; Chen, Yi; Qu, Yuan; Xiong, Zhen; Ye, Buqing; Du, Ying; Tian, Yong; Yin, Zhinan; Xu, Zhiheng; Fan, Zusen

    2017-09-21

    An emerging family of innate lymphoid cells (termed ILCs) has an essential role in the initiation and regulation of inflammation. However, it is still unclear how ILCs are regulated in the duration of intestinal inflammation. Here, we identify a regulatory subpopulation of ILCs (called ILCregs) that exists in the gut and harbors a unique gene identity that is distinct from that of ILCs or regulatory T cells (Tregs). During inflammatory stimulation, ILCregs can be induced in the intestine and suppress the activation of ILC1s and ILC3s via secretion of IL-10, leading to protection against innate intestinal inflammation. Moreover, TGF-β1 is induced by ILCregs during the innate intestinal inflammation, and autocrine TGF-β1 sustains the maintenance and expansion of ILCregs. Therefore, ILCregs play an inhibitory role in the innate immune response, favoring the resolution of intestinal inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Innate immunity in vertebrates: an overview.

    PubMed

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  2. Pattern recognition receptor immunomodulation of innate immunity as a strategy to limit the impact of influenza virus.

    PubMed

    Pizzolla, Angela; Smith, Jeffery M; Brooks, Andrew G; Reading, Patrick C

    2017-04-01

    Influenza remains a major global health issue and the effectiveness of current vaccines and antiviral drugs is limited by the continual evolution of influenza viruses. Therefore, identifying novel prophylactic or therapeutic treatments that induce appropriate innate immune responses to protect against influenza infection would represent an important advance in efforts to limit the impact of influenza. Cellular pattern recognition receptors (PRRs) recognize conserved structures expressed by pathogens to trigger intracellular signaling cascades, promoting expression of proinflammatory molecules and innate immunity. Therefore, a number of approaches have been developed to target specific PRRs in an effort to stimulate innate immunity and reduce disease in a variety of settings, including during influenza infections. Herein, we discuss progress in immunomodulation strategies designed to target cell-associated PRRs of the innate immune system, thereby, modifying innate responses to IAV infection and/or augmenting immune responses to influenza vaccines. © Society for Leukocyte Biology.

  3. Functional changes in neutrophils and psychoneuroendocrine responses during 105 days of confinement.

    PubMed

    Strewe, C; Muckenthaler, F; Feuerecker, M; Yi, B; Rykova, M; Kaufmann, I; Nichiporuk, I; Vassilieva, G; Hörl, M; Matzel, S; Schelling, G; Thiel, M; Morukov, B; Choukèr, A

    2015-05-01

    The innate immune system as one key element of immunity and a prerequisite for an adequate host defense is of emerging interest in space research to ensure crew health and thus mission success. In ground-based studies, spaceflight-associated specifics such as confinement caused altered immune functions paralleled by changes in stress hormone levels. In this study, six men were confined for 105 days to a space module of ~500 m(3) mimicking conditions of a long-term space mission. Psychic stress was surveyed by different questionnaires. Blood, saliva, and urine samples were taken before, during, and after confinement to determine quantitative and qualitative immune responses by analyzing enumerative assays and quantifying microbicide and phagocytic functions. Additionally, expression and shedding of L-selectin (CD62L) on granulocytes and different plasma cytokine levels were measured. Cortisol and catecholamine levels were analyzed in saliva and urine. Psychic stress or an activation of the psychoneuroendocrine system could not be testified. White blood cell counts were not significantly altered, but innate immune functions showed increased cytotoxic and reduced microbicide capabilities. Furthermore, a significantly enhanced shedding of CD62L might be a hint at increased migratory capabilities. However, this was observed in the absence of any acute inflammatory state, and no rise in plasma cytokine levels was detected. In summary, confinement for 105 days caused changes in innate immune functions. Whether these changes result from an alert immune state in preparation for further immune challenges or from a normal adaptive process during confinement remains to be clarified in future research. Copyright © 2015 the American Physiological Society.

  4. BCG vaccination drives accumulation and effector function of innate lymphoid cells in murine lungs.

    PubMed

    Steigler, Pia; Daniels, Naomi J; McCulloch, Tim R; Ryder, Brin M; Sandford, Sarah K; Kirman, Joanna R

    2018-04-01

    The tuberculosis (TB) vaccine bacille Calmette-Guérin (BCG) prevents disseminated childhood TB; however, it fails to protect against the more prevalent pulmonary TB. Limited understanding of the immune response to Mycobacterium tuberculosis, the causative agent of TB, has hindered development of improved vaccines. Although memory CD4 T cells are considered the main mediators of protection against TB, recent studies suggest there are other key subsets that contribute to antimycobacterial immunity. To that end, innate cells may be involved in the protective response. In this study, we investigated the primary response of innate lymphoid cells (ILCs) to BCG exposure. Using a murine model, we showed that ILCs increased in number in the lungs and lymph nodes in response to BCG vaccination. Additionally, there was significant production of the antimycobacterial cytokine IFN-γ by ILCs. As ILCs are located at mucosal sites, it was investigated whether mucosal vaccination (intranasal) stimulated an enhanced response compared to the traditional vaccination approach (intradermal or subcutaneous). Indeed, in response to intranasal vaccination, the number of ILCs, and IFN-γ production in NK cells and ILC1s in the lungs and lymph nodes, were higher than that provoked through intradermal or subcutaneous vaccination. This work provides the first evidence that BCG vaccination activates ILCs, paving the way for future research to elucidate the protective potential of ILCs against mycobacterial infection. Additionally, the finding that lung ILCs respond rigorously to mucosal vaccination may have implications for the delivery of novel TB vaccines. © 2018 Australasian Society for Immunology Inc.

  5. Systemic Inflammatory Response Syndrome After Major Abdominal Surgery Predicted by Early Upregulation of TLR4 and TLR5.

    PubMed

    Lahiri, Rajiv; Derwa, Yannick; Bashir, Zora; Giles, Edward; Torrance, Hew D T; Owen, Helen C; O'Dwyer, Michael J; O'Brien, Alastair; Stagg, Andrew J; Bhattacharya, Satyajit; Foster, Graham R; Alazawi, William

    2016-05-01

    To study innate immune pathways in patients undergoing hepatopancreaticobiliary surgery to understand mechanisms leading to enhanced inflammatory responses and identifying biomarkers of adverse clinical consequences. Patients undergoing major abdominal surgery are at risk of life-threatening systemic inflammatory response syndrome (SIRS) and sepsis. Early identification of at-risk patients would allow tailored postoperative care and improve survival. Two separate cohorts of patients undergoing major hepatopancreaticobiliary surgery were studied (combined n = 69). Bloods were taken preoperatively, on day 1 and day 2 postoperatively. Peripheral blood mononuclear cells and serum were separated and immune phenotype and function assessed ex vivo. Early innate immune dysfunction was evident in 12 patients who subsequently developed SIRS (postoperative day 6) compared with 27 who did not, when no clinical evidence of SIRS was apparent (preoperatively or days 1 and 2). Serum interleukin (IL)-6 concentration and monocyte Toll-like receptor (TLR)/NF-κB/IL-6 functional pathways were significantly upregulated and overactive in patients who developed SIRS (P < 0.0001). Interferon α-mediated STAT1 phosphorylation was higher preoperatively in patients who developed SIRS. Increased TLR4 and TLR5 gene expression in whole blood was demonstrated in a separate validation cohort of 30 patients undergoing similar surgery. Expression of TLR4/5 on monocytes, particularly intermediate CD14CD16 monocytes, on day 1 or 2 predicted SIRS with accuracy 0.89 to 1.0 (areas under receiver operator curves). These data demonstrate the mechanism for IL-6 overproduction in patients who develop postoperative SIRS and identify markers that predict patients at risk of SIRS 5 days before the onset of clinical signs.

  6. Stroma: the forgotten cells of innate immune memory.

    PubMed

    Crowley, Thomas; Buckley, Christopher D; Clark, Andrew R

    2018-05-05

    All organisms are constantly exposed to a variety of infectious and injurious stimuli. These induce inflammatory responses tailored to the threat posed. Whilst the innate immune system is the front line of response to each stimulant, it has been traditionally considered to lack memory, acting in a generic fashion until the adaptive immune arm can take over. This outmoded simplification of the roles of innate and acquired arms of the immune system has been challenged by evidence of myeloid cells altering their response to subsequent encounters based on earlier exposure. This concept of "innate immune memory" has been known for nearly a century, and is accepted amongst myeloid biologists. In recent years, other innate immune cells, such as natural killer cells, have been shown to display memory, suggesting innate immune memory is a trait common to several cell types. Over the last thirty years, evidence has slowly accumulated in favour of not only haematopoietic cells, but also stromal cells, being imbued with memory following inflammatory episodes. A recent publication showing this also to be true in epithelial cells suggests innate immune memory to be widespread, if underappreciated, in non-haematopoietic cells. In this review, we will examine the evidence supporting the existence of innate immune memory in stromal cells. We will also discuss the ramifications of memory in long-lived tissue-resident cells. Finally, we will pose questions we feel to be important in the understanding of these forgotten cells in the field of innate memory. This article is protected by copyright. All rights reserved. © 2018 British Society for Immunology.

  7. Bacterial flagellin—a potent immunomodulatory agent

    PubMed Central

    Hajam, Irshad A; Dar, Pervaiz A; Shahnawaz, Imam; Jaume, Juan Carlos; Lee, John Hwa

    2017-01-01

    Flagellin is a subunit protein of the flagellum, a whip-like appendage that enables bacterial motility. Traditionally, flagellin was viewed as a virulence factor that contributes to the adhesion and invasion of host cells, but now it has emerged as a potent immune activator, shaping both the innate and adaptive arms of immunity during microbial infections. In this review, we summarize our understanding of bacterial flagellin and host immune system interactions and the role flagellin as an adjuvant, anti-tumor and radioprotective agent, and we address important areas of future research interests. PMID:28860663

  8. Peripheral inflammation and cognitive aging.

    PubMed

    Lim, Alvin; Krajina, Katarina; Marsland, Anna L

    2013-01-01

    Evidence suggests that inflammation, an innate immune response facilitating recovery from injury and pathogenic invasion, is positively associated with age-related cognitive decline and may play a role in risk for dementia. Physiological pathways linking the peripheral immune and central nervous systems are outlined, and studies linking inflammation with neurocognitive function are overviewed. We also present recent studies from our laboratory showing that midlife inflammation is related to cognitive function and brain morphology. Finally, potential implications for treatment, future directions, and limitations are discussed. Copyright © 2013 S. Karger AG, Basel.

  9. New thinking, innateness and inherited representation.

    PubMed

    Shea, Nicholas

    2012-08-05

    The New Thinking contained in this volume rejects an Evolutionary Psychology that is committed to innate domain-specific psychological mechanisms: gene-based adaptations that are unlearnt, developmentally fixed and culturally universal. But the New Thinking does not simply deny the importance of innate psychological traits. The problem runs deeper: the concept of innateness is not suited to distinguishing between the New Thinking and Evolutionary Psychology. That points to a more serious problem with the concept of innateness as it is applied to human psychological phenotypes. This paper argues that the features of recent human evolution highlighted by the New Thinking imply that the concept of inherited representation, set out here, is a better tool for theorizing about human cognitive evolution.

  10. Innate lymphoid cells and asthma.

    PubMed

    Yu, Sanhong; Kim, Hye Young; Chang, Ya-Jen; DeKruyff, Rosemarie H; Umetsu, Dale T

    2014-04-01

    Asthma is a complex and heterogeneous disease with several phenotypes, including an allergic asthma phenotype characterized by TH2 cytokine production and associated with allergen sensitization and adaptive immunity. Asthma also includes nonallergic asthma phenotypes, such as asthma associated with exposure to air pollution, infection, or obesity, that require innate rather than adaptive immunity. These innate pathways that lead to asthma involve macrophages, neutrophils, natural killer T cells, and innate lymphoid cells, newly described cell types that produce a variety of cytokines, including IL-5 and IL-13. We review the recent data regarding innate lymphoid cells and their role in asthma. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  11. [Innate immunity in neuroimmunological disorders].

    PubMed

    Miyake, Sachiko

    2013-05-01

    Exogeneous pathogen-associated molecular patterns and endogenous danger signals bind to pattern recognition receptors and activate innate immunity cells, leading to proinflammatory cytokine production and activation of acquired immue cells. These are important factors in the pathogenesis of autoimmune-mediated neuroimmunological disorders such as multiple sclerosis. Furthermore, recent advances in the study of innate immunity revealed that innate immunity is a major players in the pathogenesis of some neuroimmunological diseases such as Behçet's disease and herpes simplex virus encephalitis.

  12. Innate immunity and the sensing of infection, damage and danger in the female genital tract.

    PubMed

    Sheldon, Iain Martin; Owens, Siân-Eleri; Turner, Matthew Lloyd

    2017-02-01

    Tissue homeostasis in the female genital tract is challenged by infection, damage, and even physiological events during reproductive cycles. We propose that the evolutionarily ancient system of innate immunity is sufficient to sense and respond to danger in the non-pregnant female genital tract. Innate immunity produces a rapidly inducible, non-specific response when cells sense danger. Here we provide a primer on innate immunity and discuss what is known about how danger signals are sensed in the endometrium and ovary, the impact of inflammatory responses on reproduction, and how endocrinology and innate immunity are integrated. Endometrial epithelial and stromal cells, and ovarian granulosa cells express pattern recognition receptors, similar to cells of the innate immune system. These pattern recognition receptors, such as the Toll-like receptors, bind pathogen-associated or damage-associated molecular patterns. Activation of pattern recognition receptors leads to inflammation, recruitment of immune cells from the peripheral circulation, and phagocytosis. Although the inflammatory response helps maintain or restore endometrial health, there may also be negative consequences for fertility, including perturbation of oocyte competence. The intensity of the inflammatory response reflects the balance between the level of danger and the systems that regulate innate immunity, including the endocrine environment. Understanding innate immunity is important because disease and inappropriate inflammatory responses in the endometrium or ovary cause infertility. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Network representations of immune system complexity

    PubMed Central

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  14. Innate immune reconstitution with suppression of HIV-1.

    PubMed

    Scully, Eileen P; Lockhart, Ainsley; Garcia-Beltran, Wilfredo; Palmer, Christine D; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M; Chang, J Judy; Bosch, Ronald J; Altfeld, Marcus

    2016-03-17

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4 + T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses.

  15. Innate immune reconstitution with suppression of HIV-1

    PubMed Central

    Scully, Eileen P.; Garcia-Beltran, Wilfredo; Palmer, Christine D.; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M.; Bosch, Ronald J.

    2016-01-01

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4+ T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses. PMID:27158667

  16. Habitat odor can alleviate innate stress responses in mice.

    PubMed

    Matsukawa, Mutsumi; Imada, Masato; Aizawa, Shin; Sato, Takaaki

    2016-01-15

    Predatory odors, which can induce innate fear and stress responses in prey species, are frequently used in the development of animal models for several psychiatric diseases including post-traumatic stress disorder (PTSD) following a life-threatening event. We have previously shown that odors can be divided into at least three types; odors that act as (1) innate stressors, (2) as innate relaxants, or (3) have no innate effects on stress responses. Here, we attempted to verify whether an artificial odor, which had no innate effect on predatory odor-induced stress, could alleviate stress if experienced in early life as a habitat odor. In the current study, we demonstrated that the innate responses were changed to counteract stress following a postnatal experience. Moreover, we suggest that inhibitory circuits involved in stress-related neuronal networks and the concentrations of norepinephrine in the hippocampus may be crucial in alleviating stress induced by the predatory odor. Overall, these findings may be important for understanding the mechanisms involved in differential odor responses and also for the development of pharmacotherapeutic interventions that can alleviate stress in illnesses like PTSD. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Characterization of the chemical structure and innate immune-stimulating activity of an extracellular polysaccharide from Rhizobium sp. strain M2 screened using a silkworm muscle contraction assay.

    PubMed

    Urai, Makoto; Aizawa, Tomoko; Imamura, Katsutoshi; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2017-11-22

    We screened innate immunostimulant-producing bacteria using a silkworm muscle contraction assay, and isolated Rhizobium sp. strain M2 from soil. We purified the innate immunostimulant from strain M2, and characterized the chemical structure by nuclear magnetic resonance spectroscopy and chemical analyses. The innate immunostimulant (M2 EPS) comprised glucose, galactose, pyruvic acid, and succinic acid with a molar ratio of 6.8:1.0:0.9:0.4, and had a succinoglycan-like high molecular-weight heteropolysaccharide structure. To determine the structural motif involved in the innate immunostimulating activity, we modified the M2 EPS structure chemically, and found that the activity was increased by removal of the succinic and pyruvic acid substitutions. Strong acid hydrolysis completely inactivated the M2 EPS. Unmasking of the β-1,3/6-glucan structure of the side-chain by deacylation and depyruvylation may enhance the innate immune-stimulating activity of M2 EPS. These findings suggest that the succinoglycan-like polysaccharide purified from strain M2 has innate immune-stimulating activity, and its glycan structure is necessary for the activity.

  18. Evaluation of the innate immune-stimulating activity of amazake using a silkworm muscle contraction assay.

    PubMed

    Maruki-Uchida, Hiroko; Sai, Masahiko; Sekimizu, Kazuhisa

    2017-11-22

    We evaluated the innate immune-stimulating activity of amazake using a silkworm muscle contraction assay. Sake cake, a raw material used to make amazake, had high innate immunity-stimulating activity, whereas rice malt, another raw material used to make amazake, did not, even after fermentation. These results suggest that the silkworm muscle contraction assay is a useful tool to screen foods with high innate immune-stimulating activity and that amazake made from sake cake has immunomodulatory potential.

  19. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women.

    PubMed

    Martin, Genevieve E; Gouillou, Maelenn; Hearps, Anna C; Angelovich, Thomas A; Cheng, Allen C; Lynch, Fiona; Cheng, Wan-Jung; Paukovics, Geza; Palmer, Clovis S; Novak, Richard M; Jaworowski, Anthony; Landay, Alan L; Crowe, Suzanne M

    2013-01-01

    Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women. This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+) T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays. HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001), soluble CD163 (sCD163, p = 0.001), sCD14 (p = 0.022), neopterin (p = 0.029) and an increased proportion of CD16(+) monocytes (p = 0.009) compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+) monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002) suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+) T lymphocytes. Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.

  20. New thinking, innateness and inherited representation

    PubMed Central

    Shea, Nicholas

    2012-01-01

    The New Thinking contained in this volume rejects an Evolutionary Psychology that is committed to innate domain-specific psychological mechanisms: gene-based adaptations that are unlearnt, developmentally fixed and culturally universal. But the New Thinking does not simply deny the importance of innate psychological traits. The problem runs deeper: the concept of innateness is not suited to distinguishing between the New Thinking and Evolutionary Psychology. That points to a more serious problem with the concept of innateness as it is applied to human psychological phenotypes. This paper argues that the features of recent human evolution highlighted by the New Thinking imply that the concept of inherited representation, set out here, is a better tool for theorizing about human cognitive evolution. PMID:22734066

  1. Innate immunity, insulin resistance and type 2 diabetes.

    PubMed

    Fernández-Real, José Manuel; Pickup, John C

    2008-01-01

    Recent evidence has disclosed previously unrecognized links among insulin resistance, obesity, circulating immune markers, immunogenetic susceptibility, macrophage function and chronic infection. Genetic variations leading to altered production or function of circulating innate immune proteins, cellular pattern-recognition receptors and inflammatory cytokines have been linked with insulin resistance, type 2 diabetes, obesity and atherosclerosis. Cellular innate immune associations with obesity and insulin resistance include increased white blood cell count and adipose tissue macrophage numbers. The innate immune response is modulated possibly by both predisposition (genetic or fetal programming), perhaps owing to evolutionary pressures caused by acute infections at the population level (pandemics), and chronic low exposure to environmental products or infectious agents. The common characteristics shared among innate immunity activation, obesity and insulin resistance are summarized.

  2. Commensal-innate immune miscommunication in IBD pathogenesis.

    PubMed

    Cario, Elke

    2012-01-01

    Commensal microbiota plays a key role in the health and disease of the host. The innate immune system comprises an essential functional component of the intestinal mucosal barrier, maintaining hyporesponsiveness to omnipresent harmless commensals in the lumen, but rapidly recognizing and combating invading bacteria through diverse antimicrobial mechanisms. Interactions between commensals and innate immune cells are constant, multidimensional and entirely context-dependent. Environment, genetics and host defense differentially modulate commensal-innate immune effects and functions in the intestinal mucosa. In IBD, dysbiosis, mucus layer disruption, impairment in bacterial clearance, intestinal epithelial cell barrier dysfunction and/or immune cell deregulation may lead to commensal-innate immune miscommunication, which critically drives mucosal inflammation and associated cancer. Copyright © 2012 S. Karger AG, Basel.

  3. Dissecting the hypothalamic pathways that underlie innate behaviors.

    PubMed

    Zha, Xi; Xu, Xiaohong

    2015-12-01

    Many complex behaviors that do not require learning are displayed and are termed innate. Although traditionally the subject matter of ethology, innate behaviors offer a unique entry point for neuroscientists to dissect the physiological mechanisms governing complex behaviors. Since the last century, converging evidence has implicated the hypothalamus as the central brain area that controls innate behaviors. Recent studies using cutting-edge tools have revealed that genetically-defined populations of neurons residing in distinct hypothalamic nuclei and their associated neural pathways regulate the initiation and maintenance of diverse behaviors including feeding, sleep, aggression, and parental care. Here, we review the newly-defined hypothalamic pathways that regulate each innate behavior. In addition, emerging general principles of the neural control of complex behaviors are discussed.

  4. Evaluation of innate immune stimulating activity of polysaccharides using a silkworm (Bombyx mori) muscle contraction assay.

    PubMed

    Fujiyuki, T; Hamamoto, H; Ishii, K; Urai, M; Kataoka, K; Takeda, T; Shibata, S; Sekimizu, K

    2012-04-01

    In silkworm larvae, the mature form of paralytic peptide (PP), an insect cytokine, is produced from pro-PP in association with activation of innate immune responses, resulting in slow muscle contraction. We utilized this reaction, muscle contraction in silkworms coupled with innate immunity stimulation, to quantitatively measure the innate immune stimulating activity of various natural polysaccharides. β-Glucan of Gyrophora esculenta (GE-3), fucoidan from sporophyll of Undaria pinnatifida, and curldan induced silkworm muscle contraction. We further demonstrated that GE-3 had therapeutic effects on silkworms infected by baculovirus. Based on these findings, we propose that the silkworm muscle contraction assay is useful for screening substances that stimulate innate immunity before evaluating therapeutic effectiveness in mammals.

  5. Foot-and-mouth disease virus 5'-terminal S fragment is required for replication and modulation of the innate immune response in host cells.

    PubMed

    Kloc, Anna; Diaz-San Segundo, Fayna; Schafer, Elizabeth A; Rai, Devendra K; Kenney, Mary; de Los Santos, Teresa; Rieder, Elizabeth

    2017-12-01

    The S fragment of the FMDV 5' UTR is predicted to fold into a long stem-loop structure and it has been implicated in virus-host protein interactions. In this study, we report the minimal S fragment sequence required for virus viability and show a direct correlation between the extent of the S fragment deletion mutations and attenuated phenotypes. Furthermore, we provide novel insight into the role of the S fragment in modulating the host innate immune response. Importantly, in an FMDV mouse model system, all animals survive the inoculation with the live A 24 FMDV-S 4 mutant, containing a 164 nucleotide deletion in the upper S fragment loop, at a dose 1000 higher than the one causing lethality by parental A 24 FMDV, indicating that the A 24 FMDV-S 4 virus is highly attenuated in vivo. Additionally, mice exposed to high doses of live A 24 FMDV-S 4 virus are fully protected when challenged with parental A 24 FMDV virus. Published by Elsevier Inc.

  6. Rational design of small molecules as vaccine adjuvants.

    PubMed

    Wu, Tom Y-H; Singh, Manmohan; Miller, Andrew T; De Gregorio, Ennio; Doro, Francesco; D'Oro, Ugo; Skibinski, David A G; Mbow, M Lamine; Bufali, Simone; Herman, Ann E; Cortez, Alex; Li, Yongkai; Nayak, Bishnu P; Tritto, Elaine; Filippi, Christophe M; Otten, Gillis R; Brito, Luis A; Monaci, Elisabetta; Li, Chun; Aprea, Susanna; Valentini, Sara; Calabrό, Samuele; Laera, Donatello; Brunelli, Brunella; Caproni, Elena; Malyala, Padma; Panchal, Rekha G; Warren, Travis K; Bavari, Sina; O'Hagan, Derek T; Cooke, Michael P; Valiante, Nicholas M

    2014-11-19

    Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants. Copyright © 2014, American Association for the Advancement of Science.

  7. The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB.

    PubMed

    Schneider, Monika; Zimmermann, Albert G; Roberts, Reid A; Zhang, Lu; Swanson, Karen V; Wen, Haitao; Davis, Beckley K; Allen, Irving C; Holl, Eda K; Ye, Zhengmao; Rahman, Adeeb H; Conti, Brian J; Eitas, Timothy K; Koller, Beverly H; Ting, Jenny P-Y

    2012-09-01

    Several members of the NLR family of sensors activate innate immunity. In contrast, we found here that NLRC3 inhibited Toll-like receptor (TLR)-dependent activation of the transcription factor NF-κB by interacting with the TLR signaling adaptor TRAF6 to attenuate Lys63 (K63)-linked ubiquitination of TRAF6 and activation of NF-κB. We used bioinformatics to predict interactions between NLR and TRAF proteins, including interactions of TRAF with NLRC3. In vivo, macrophage expression of Nlrc3 mRNA was diminished by the administration of lipopolysaccharide (LPS) but was restored when cellular activation subsided. To assess biologic relevance, we generated Nlrc3(-/-) mice. LPS-treated Nlrc3(-/-) macrophages had more K63-ubiquitinated TRAF6, nuclear NF-κB and proinflammatory cytokines. Finally, LPS-treated Nlrc3(-/-) mice had more signs of inflammation. Thus, signaling via NLRC3 and TLR constitutes a negative feedback loop. Furthermore, prevalent NLR-TRAF interactions suggest the formation of a 'TRAFasome' complex.

  8. Alternatives to conventional vaccines--mediators of innate immunity.

    PubMed

    Eisen, D P; Liley, H G; Minchinton, R M

    2004-01-01

    Vaccines have been described as "weapons of mass protection". The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.

  9. A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold.

    PubMed

    Marsden, Kurt C; Jain, Roshan A; Wolman, Marc A; Echeverry, Fabio A; Nelson, Jessica C; Hayer, Katharina E; Miltenberg, Ben; Pereda, Alberto E; Granato, Michael

    2018-04-17

    Sensory experiences dynamically modify whether animals respond to a given stimulus, but it is unclear how innate behavioral thresholds are established. Here, we identify molecular and circuit-level mechanisms underlying the innate threshold of the zebrafish startle response. From a forward genetic screen, we isolated five mutant lines with reduced innate startle thresholds. Using whole-genome sequencing, we identify the causative mutation for one line to be in the fragile X mental retardation protein (FMRP)-interacting protein cyfip2. We show that cyfip2 acts independently of FMRP and that reactivation of cyfip2 restores the baseline threshold after phenotype onset. Finally, we show that cyfip2 regulates the innate startle threshold by reducing neural activity in a small group of excitatory hindbrain interneurons. Thus, we identify a selective set of genes critical to establishing an innate behavioral threshold and uncover a circuit-level role for cyfip2 in this process. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. A face only an investor could love: CEOs' facial structure predicts their firms' financial performance.

    PubMed

    Wong, Elaine M; Ormiston, Margaret E; Haselhuhn, Michael P

    2011-12-01

    Researchers have theorized that innate personal traits are related to leadership success. Although links between psychological characteristics and leadership success have been well established, research has yet to identify any objective physical traits of leaders that predict organizational performance. In the research reported here, we identified leaders' facial structure as a specific physical trait that correlates with organizational performance. Specifically, we found that firms whose male CEOs have wider faces (relative to facial height) achieve superior financial performance. Decision-making dynamics within a firm's leadership team moderate this effect, such that the relationship between a given CEO's facial measurements and his firm's financial performance is stronger in firms with cognitively simple leadership teams.

  11. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral.

    PubMed

    Pinzón, Jorge H; Kamel, Bishoy; Burge, Colleen A; Harvell, C Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D

    2015-04-01

    Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs.

  12. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral

    PubMed Central

    Pinzón, Jorge H.; Kamel, Bishoy; Burge, Colleen A.; Harvell, C. Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D.

    2015-01-01

    Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs. PMID:26064625

  13. Uveitis associated with juvenile idiopathic arthritis.

    PubMed

    Sen, Ethan S; Dick, Andrew D; Ramanan, Athimalaipet V

    2015-06-01

    Uveitis is a potentially sight-threatening complication of juvenile idiopathic arthritis (JIA). JIA-associated uveitis is recognized to have an autoimmune aetiology characterized by activation of CD4(+) T cells, but the underlying mechanisms might overlap with those of autoinflammatory conditions involving activation of innate immunity. As no animal model recapitulates all the features of JIA-associated uveitis, questions remain regarding its pathogenesis. The most common form of JIA-associated uveitis is chronic anterior uveitis, which is usually asymptomatic initially. Effective screening is, therefore, essential to detect early disease and commence treatment before the development of visually disabling complications, such as cataracts, glaucoma, band keratopathy and cystoid macular oedema. Complications can result from uncontrolled intraocular inflammation as well as from its treatment, particularly prolonged use of high-dose topical corticosteroids. Accumulating evidence supports the early introduction of systemic immunosuppressive drugs, such as methotrexate, as steroid-sparing agents. Prospective randomized controlled trials of TNF inhibitors and other biologic therapies are underway or planned. Future research should aim to identify biomarkers to predict which children are at high risk of developing JIA-associated uveitis or have a poor prognosis. Such biomarkers could help to ensure that patients receive earlier interventions and more-potent therapy, with the ultimate aim of reducing loss of vision and ocular morbidity.

  14. Early Subretinal Allograft Rejection Is Characterized by Innate Immune Activity.

    PubMed

    Kennelly, Kevin P; Holmes, Toby M; Wallace, Deborah M; O'Farrelly, Cliona; Keegan, David J

    2017-06-09

    Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, nonimmunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7, and 28 days postoperatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b and F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ɛ) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using the Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p < 0.001) reduced between postoperative day (POD) 3 (90 ± 4%) and POD 7 (20 ± 7%). CD11b+, F4/80+, and Gr1 Ly-6G+ cells increased significantly (p < 0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Colabeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7, and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ɛ was low and did not differ significantly between time points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal, for the first time, a critical role for innate immune mechanisms early in subretinal graft rejection. The future success of subretinal transplantation will require more emphasis on techniques to limit innate immune-mediated graft loss, rather than focusing exclusively on suppression of the adaptive immune response.

  15. Anticipating Their Future: Adolescent Values for the Future Predict Adult Behaviors

    PubMed Central

    Finlay, Andrea; Wray-Lake, Laura; Warren, Michael; Maggs, Jennifer L.

    2014-01-01

    Adolescent future values – beliefs about what will matter to them in the future – may shape their adult behavior. Utilizing a national longitudinal British sample, this study examined whether adolescent future values in six domains (i.e., family responsibility, full-time job, personal responsibility, autonomy, civic responsibility, and hedonistic privilege) predicted adult social roles, civic behaviors, and alcohol use. Future values positively predicted behaviors within the same domain; fewer cross-domain associations were evident. Civic responsibility positively predicted adult civic behaviors, but negatively predicted having children. Hedonistic privilege positively predicted adult alcohol use and negatively predicted civic behaviors. Results suggest that attention should be paid to how adolescents are thinking about their futures due to the associated links with long-term social and health behaviors. PMID:26279595

  16. Changes in bone marrow innate lymphoid cell subsets in monoclonal gammopathy: target for IMiD therapy.

    PubMed

    Kini Bailur, Jithendra; Mehta, Sameet; Zhang, Lin; Neparidze, Natalia; Parker, Terri; Bar, Noffar; Anderson, Tara; Xu, Mina L; Dhodapkar, Kavita M; Dhodapkar, Madhav V

    2017-11-28

    Altered number, subset composition, and function of bone marrow innate lymphoid cells are early events in monoclonal gammopathies.Pomalidomide therapy leads to reduction in Ikzf1 and Ikzf3 and enhanced human innate lymphoid cell function in vivo.

  17. Personality and innate immune defenses in a wild bird: Evidence for the pace-of-life hypothesis.

    PubMed

    Jacques-Hamilton, Rowan; Hall, Michelle L; Buttemer, William A; Matson, Kevin D; Gonҫalves da Silva, Anders; Mulder, Raoul A; Peters, Anne

    2017-02-01

    We tested the two main evolutionary hypotheses for an association between immunity and personality. The risk-of-parasitism hypothesis predicts that more proactive (bold, exploratory, risk-taking) individuals have more vigorous immune defenses because of increased risk of parasite exposure. In contrast, the pace-of-life hypothesis argues that proactive behavioral styles are associated with shorter lifespans and reduced investment in immune function. Mechanistically, associations between immunity and personality can arise because personality differences are often associated with differences in condition and stress responsiveness, both of which are intricately linked with immunity. Here we investigate the association between personality (measured as proactive exploration of a novel environment) and three indices of innate immune function (the non-specific first line of defense against parasites) in wild superb fairy-wrens Malurus cyaneus. We also quantified body condition, hemoparasites (none detected), chronic stress (heterophil:lymphocyte ratio) and circulating corticosterone levels at the end of the behavioral test (CORT, in a subset of birds). We found that fast explorers had lower titers of natural antibodies. This result is consistent with the pace-of-life hypothesis, and with the previously documented higher mortality of fast explorers in this species. There was no interactive effect of exploration score and duration in captivity on immune indices. This suggests that personality-related differences in stress responsiveness did not underlie differences in immunity, even though behavioral style did modulate the effect of captivity on CORT. Taken together these results suggest reduced constitutive investment in innate immune function in more proactive individuals. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Duck MDA5 functions in innate immunity against H5N1 highly pathogenic avian influenza virus infections

    PubMed Central

    2014-01-01

    Melanoma differentiation-associated gene 5 (MDA5) is an important intracellular receptor that recognizes long molecules of viral double-stranded RNA in innate immunity. To understand the mechanism of duck MDA5-mediated innate immunity, we cloned the MDA5 cDNA from the Muscovy duck (Cairina moschata). Quantitative real-time PCR analysis indicates that duck MDA5 mRNA was constitutively expressed in all sampled tissues. A significant increase of MDA5 mRNA was detected in the brain, spleen and lungs of ducks after infection with an H5N1 highly pathogenic avian influenza virus (HPAIV). We investigated the role of the predicted functional domains of MDA5. The results indicate the caspase activation and recruitment domain (CARD) of duck MDA5 had a signal transmission function through IRF-7-dependent signaling pathway. Overexpression of the CARD strongly activated the chicken IFN-β promoter and upregulated the mRNA expression of antiviral molecules (such as OAS, PKR and Mx), proinflammatory cytokines (such as IL-2, IL-6, IFN-α and IFN-γ, but not IL-1β and IL-8) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) (RIG-I and LGP2) without exogenous stimulation. We also demonstrate the NS1 of the H5N1 HPAIV inhibited the duck MDA5-mediated signaling pathway in vitro. These results suggest that duck MDA5 is an important receptor for inducing antiviral activity in the host immune response of ducks. PMID:24939427

  19. The innate and adaptive immune response to avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  20. The Role of mDia1 in the Aberrant Innate Immune Signaling in del(5q) Myelodysplastic Syndromes

    DTIC Science & Technology

    2017-10-01

    especially in cells with sensitized innate immune signaling8,9,20. To analyze whether treatment of DAMPs could induce the over-production of pro...AWARD NUMBER: W81XWH-15-1-0335 TITLE: The Role of mDia1 in the Aberrant Innate Immune Signaling in del(5q) Myelodysplastic Syndromes...TITLE AND SUBTITLE 5a. CONTRACT NUMBER WThe Role of mDia1 in the Aberrant Innate Immune Signaling in del(5q) Myelodysplastic Syndromes 5b. GRANT

  1. Arguing about innateness.

    PubMed

    Valian, Virginia

    2014-07-01

    This paper lays out the components of a language acquisition model, the interconnections among the components, and the differing stances of nativism and empiricism about syntax. After demonstrating that parsimony cannot decide between the two stances, the paper analyzes nine examples of evidence that have been used to argue for or against nativism, concluding that most pieces of evidence are either irrelevant or suggest that language is special but need not invoke innate ideas. Two pieces of evidence - the development of home sign languages and the acquisition of Determiners - do show not just that language is special but that the child has innate syntactic content. The existential claim that nativism makes - there is at least one innate syntactic idea - is an easier claim to verify than the universal claim that empiricism makes - there are no innate syntactic ideas.

  2. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System

    PubMed Central

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell–cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system. PMID:29163497

  3. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    PubMed

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  4. γ-Oryzanol-Rich Black Rice Bran Extract Enhances the Innate Immune Response.

    PubMed

    Shin, Soon Young; Kim, Heon-Woong; Jang, Hwan-Hee; Hwang, Yu-Jin; Choe, Jeong-Sook; Lim, Yoongho; Kim, Jung-Bong; Lee, Young Han

    2017-09-01

    The innate immune response is an important host primary defense system against pathogens. γ-Oryzanol is one of the nutritionally important phytoceutical components in rice bran oil. The goal of this study was to investigate the effect of γ-oryzanol-rich extract from black rice bran (γORE) on the activation of the innate immune system. In this study, we show that γORE increased the expression of CD14 and Toll-like receptor 4 and enhanced the phagocytic activity of RAW264.7 macrophages. Furthermore, γORE and its active ingredient γ-oryzanol promoted the secretion of innate cytokines, interleukin-8, and CCL2, which facilitate phagocytosis by RAW264.7 cells. These findings suggest that γ-oryzanol in the γORE enhances innate immune responses.

  5. Evasion and Interactions of the Humoral Innate Immune Response in Pathogen Invasion, Autoimmune Disease, and Cancer

    PubMed Central

    Rettig, Trisha A.; Harbin, Julie N.; Harrington, Adelaide; Dohmen, Leonie; Fleming, Sherry D.

    2015-01-01

    The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases. This review will examine how gram positive bacteria, viruses, cancer, and the autoimmune conditions Systemic Lupus Erythematosus and Anti-phospholipid syndrome, interact with these immune system components. Through examining evasion techniques it becomes clear that interplay between these three systems exists. By exploring the interplay and the evasion/disruption of the humoral innate immune system, we can develop a better understanding of pathogenic infections, cancer, and autoimmune disease development. PMID:26145788

  6. Innate and adaptive immunity at Mucosal Surfaces of the Female Reproductive Tract: Stratification and Integration of Immune Protection against the Transmission of Sexually Transmitted Infections

    PubMed Central

    Hickey, DK; Patel, MV; Fahey, JV; Wira, CR

    2011-01-01

    This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract. PMID:21353708

  7. Adaptive and Innate Transforming Growth Factor β Signaling Impact Herpes Simplex Virus 1 Latency and Reactivation▿

    PubMed Central

    Allen, Sariah J.; Mott, Kevin R.; Wechsler, Steven L.; Flavell, Richard A.; Town, Terrence; Ghiasi, Homayon

    2011-01-01

    Innate and adaptive immunity play important protective roles by combating herpes simplex virus 1 (HSV-1) infection. Transforming growth factor β (TGF-β) is a key negative cytokine regulator of both innate and adaptive immune responses. Yet, it is unknown whether TGF-β signaling in either immune compartment impacts HSV-1 replication and latency. We undertook genetic approaches to address these issues by infecting two different dominant negative TGF-β receptor type II transgenic mouse lines. These mice have specific TGF-β signaling blockades in either T cells or innate cells. Mice were ocularly infected with HSV-1 to evaluate the effects of restricted innate or adaptive TGF-β signaling during acute and latent infections. Limiting innate cell but not T cell TGF-β signaling reduced virus replication in the eyes of infected mice. On the other hand, blocking TGF-β signaling in either innate cells or T cells resulted in decreased latency in the trigeminal ganglia of infected mice. Furthermore, inhibiting TGF-β signaling in T cells reduced cell lysis and leukocyte infiltration in corneas and trigeminal ganglia during primary HSV-1 infection of mice. These findings strongly suggest that TGF-β signaling, which generally functions to dampen immune responses, results in increased HSV-1 latency. PMID:21880769

  8. Innate and adaptive immune correlates of vaccine and adjuvant-induced control of mucosal transmission of SIV in macaques.

    PubMed

    Sui, Yongjun; Zhu, Qing; Gagnon, Susan; Dzutsev, Amiran; Terabe, Masaki; Vaccari, Monica; Venzon, David; Klinman, Dennis; Strober, Warren; Kelsall, Brian; Franchini, Genoveffa; Belyakov, Igor M; Berzofsky, Jay A

    2010-05-25

    Adjuvant effects on innate as well as adaptive immunity may be critical for inducing protection against mucosal HIV and simian immunodeficiency virus (SIV) exposure. We therefore studied effects of Toll-like receptor agonists and IL-15 as mucosal adjuvants on both innate and adaptive immunity in a peptide/poxvirus HIV/SIV mucosal vaccine in macaques, and made three critical observations regarding both innate and adaptive correlates of protection: (i) adjuvant-alone without vaccine antigen impacted the intrarectal SIVmac251 challenge outcome, correlating with surprisingly long-lived APOBEC3G (A3G)-mediated innate immunity; in addition, even among animals receiving vaccine with adjuvants, viral load correlated inversely with A3G levels; (ii) a surprising threshold-like effect existed for vaccine-induced adaptive immunity control of viral load, and only antigen-specific polyfunctional CD8(+) T cells correlated with protection, not tetramer(+) T cells, demonstrating the importance of T-cell quality; (iii) synergy was observed between Toll-like receptor agonists and IL-15 for driving adaptive responses through the up-regulation of IL-15Ralpha, which can present IL-15 in trans, as well as for driving the innate A3G response. Thus, strategic use of molecular adjuvants can provide better mucosal protection through induction of both innate and adaptive immunity.

  9. Induction of innate immune genes in brain create the neurobiology of addiction.

    PubMed

    Crews, F T; Zou, Jian; Qin, Liya

    2011-06-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Induction of Innate Immune Genes in Brain Create the Neurobiology of Addiction

    PubMed Central

    Crews, FT; Zou, Jian; Qin, Liya

    2013-01-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. PMID:21402143

  11. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens.

    PubMed

    Ordonez, Soledad R; Veldhuizen, Edwin J A; van Eijk, Martin; Haagsman, Henk P

    2017-01-01

    Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that form the first barrier of defense against fungal infections. These include host defense peptides, like LL-37 and defensins that can neutralize fungi by direct killing of the pathogen, and collectins, such as surfactant protein A and D, that can aggregate fungi and stimulate phagocytosis. In addition, these molecules have immunomodulatory activities which can aid in fungal clearance from the lung. However, existing observations are based on in vitro studies which do not reflect the complexity of the lung and its airway surface liquid. Ionic strength, pH, and the presence of mucus can have strong detrimental effects on antifungal activity, while the potential synergistic interplay between soluble effector molecules is largely unknown. In this review, we describe the current knowledge on soluble effector molecules that contribute to antifungal activity, the importance of environmental factors and discuss the future directions required to understand the innate antifungal defense in the lung.

  12. Viral infections in allergy and immunology: How allergic inflammation influences viral infections and illness.

    PubMed

    Edwards, Michael R; Strong, Katherine; Cameron, Aoife; Walton, Ross P; Jackson, David J; Johnston, Sebastian L

    2017-10-01

    Viral respiratory tract infections are associated with asthma inception in early life and asthma exacerbations in older children and adults. Although how viruses influence asthma inception is poorly understood, much research has focused on the host response to respiratory viruses and how viruses can promote; or how the host response is affected by subsequent allergen sensitization and exposure. This review focuses on the innate interferon-mediated host response to respiratory viruses and discusses and summarizes the available evidence that this response is impaired or suboptimal. In addition, the ability of respiratory viruses to act in a synergistic or additive manner with T H 2 pathways will be discussed. In this review we argue that these 2 outcomes are likely linked and discuss the available evidence that shows reciprocal negative regulation between innate interferons and T H 2 mediators. With the renewed interest in anti-T H 2 biologics, we propose a rationale for why they are particularly successful in controlling asthma exacerbations and suggest ways in which future clinical studies could be used to find direct evidence for this hypothesis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens

    PubMed Central

    Ordonez, Soledad R.; Veldhuizen, Edwin J. A.; van Eijk, Martin; Haagsman, Henk P.

    2017-01-01

    Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that form the first barrier of defense against fungal infections. These include host defense peptides, like LL-37 and defensins that can neutralize fungi by direct killing of the pathogen, and collectins, such as surfactant protein A and D, that can aggregate fungi and stimulate phagocytosis. In addition, these molecules have immunomodulatory activities which can aid in fungal clearance from the lung. However, existing observations are based on in vitro studies which do not reflect the complexity of the lung and its airway surface liquid. Ionic strength, pH, and the presence of mucus can have strong detrimental effects on antifungal activity, while the potential synergistic interplay between soluble effector molecules is largely unknown. In this review, we describe the current knowledge on soluble effector molecules that contribute to antifungal activity, the importance of environmental factors and discuss the future directions required to understand the innate antifungal defense in the lung. PMID:29163395

  14. Toward a multifactorial model of expertise: beyond born versus made.

    PubMed

    Hambrick, David Z; Burgoyne, Alexander P; Macnamara, Brooke N; Ullén, Fredrik

    2018-02-15

    The debate over the origins of individual differences in expertise has raged for over a century in psychology. The "nature" view holds that expertise reflects "innate talent"-that is, genetically determined abilities. The "nurture" view counters that, if talent even exists, its effects on ultimate performance are negligible. While no scientist takes seriously a strict nature-only view of expertise, the nurture view has gained tremendous popularity over the past several decades. This environmentalist view holds that individual differences in expertise reflect training history, with no important contribution to ultimate performance by innate ability ("talent"). Here, we argue that, despite its popularity, this view is inadequate to account for the evidence concerning the origins of expertise that has accumulated since the view was first proposed. More generally, we argue that the nature versus nurture debate in research on expertise is over-or certainly should be, as it has been in other areas of psychological research for decades. We describe a multifactorial model for research on the nature and nurture of expertise, which we believe will provide a progressive direction for future research on expertise. © 2018 New York Academy of Sciences.

  15. Domain Selectivity in the Parahippocampal Gyrus Is Predicted by the Same Structural Connectivity Patterns in Blind and Sighted Individuals.

    PubMed

    Wang, Xiaoying; He, Chenxi; Peelen, Marius V; Zhong, Suyu; Gong, Gaolang; Caramazza, Alfonso; Bi, Yanchao

    2017-05-03

    Human ventral occipital temporal cortex contains clusters of neurons that show domain-preferring responses during visual perception. Recent studies have reported that some of these clusters show surprisingly similar domain selectivity in congenitally blind participants performing nonvisual tasks. An important open question is whether these functional similarities are driven by similar innate connections in blind and sighted groups. Here we addressed this question focusing on the parahippocampal gyrus (PHG), a region that is selective for large objects and scenes. Based on the assumption that patterns of long-range connectivity shape local computation, we examined whether domain selectivity in PHG is driven by similar structural connectivity patterns in the two populations. Multiple regression models were built to predict the selectivity of PHG voxels for large human-made objects from white matter (WM) connectivity patterns in both groups. These models were then tested using independent data from participants with similar visual experience (two sighted groups) and using data from participants with different visual experience (blind and sighted groups). Strikingly, the WM-based predictions between blind and sighted groups were as successful as predictions between two independent sighted groups. That is, the functional selectivity for large objects of a PHG voxel in a blind participant could be accurately predicted by its WM pattern using the connection-to-function model built from the sighted group data, and vice versa. Regions that significantly predicted PHG selectivity were located in temporal and frontal cortices in both sighted and blind populations. These results show that the large-scale network driving domain selectivity in PHG is independent of vision. SIGNIFICANCE STATEMENT Recent studies have reported intriguingly similar domain selectivity in sighted and congenitally blind individuals in regions within the ventral visual cortex. To examine whether these similarities originate from similar innate connectional roots, we investigated whether the domain selectivity in one population could be predicted by the structural connectivity pattern of the other. We found that the selectivity for large objects of a PHG voxel in a blind participant could be predicted by its structural connectivity pattern using the connection-to-function model built from the sighted group data, and vice versa. These results reveal that the structural connectivity underlying domain selectivity in the PHG is independent of visual experience, providing evidence for nonvisual representations in this region. Copyright © 2017 the authors 0270-6474/17/374706-12$15.00/0.

  16. [Pneumonia -- historical development, current status, future prospects].

    PubMed

    Welte, T

    2010-09-01

    Pneumonia is one of the oldest and best known diseases in mankind. Morbidity and mortality of this disease are remarkable. This has not been changed with the development of modern antibiotic therapy. On the contrary new challenges have arisen, more elderly and comorbid patients are involved and an increase in antibiotic resistance has appeared. An improvement in diagnosis and the introduction of risk stratification approaches has led to a standardisation in therapy. Vaccination strategies for special pathogens like S. PNEUMONIAE have reduced the burden of disease. For decades research was focused on the development of new antibiotics. The failure of this strategy has directed more attention to the host-pathogen interaction. Modulation of innate immunity is one of the key issues to overcome the future challenges in this field. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  17. Targeting Antitumor Immune Response for Enhancing the Efficacy of Photodynamic Therapy of Cancer: Recent Advances and Future Perspectives

    PubMed Central

    2016-01-01

    Photodynamic therapy (PDT) is a minimally invasive therapeutic strategy for cancer treatment, which can destroy local tumor cells and induce systemic antitumor immune response, whereas, focusing on improving direct cytotoxicity to tumor cells treated by PDT, there is growing interest in developing approaches to further explore the immune stimulatory properties of PDT. In this review we summarize the current knowledge of the innate and adaptive immune responses induced by PDT against tumors, providing evidence showing PDT facilitated-antitumor immunity. Various immunotherapeutic approaches on different cells are reviewed for their effectiveness in improving the treatment efficiency in concert with PDT. Future perspectives are discussed for further enhancing PDT efficiency via intracellular targetable drug delivery as well as optimized experimental model development associated with the study of antitumor immune response. PMID:27672421

  18. Exploring the Innate Immune System: Using Complement-Medicated Cell Lysis in the Classroom

    ERIC Educational Resources Information Center

    Fuller, Kevin G.

    2008-01-01

    The protein complement pathway comprises an important part of the innate immunity. The use of serum to demonstrate complement-mediated destruction across a series of bacterial dilutions allows an instructor to introduce a number of important biological concepts such as bacterial growth, activation cascades, and adaptive versus innate immunity.

  19. Recent progress in the understanding of host immunity to avian coccidiosis: IL-17 family cytokines as the sentinels on the intestinal mucosa

    USDA-ARS?s Scientific Manuscript database

    Host-pathogen interaction leading to protection against coccidiosis is complex, involving many aspects of innate and adaptive immunity to intracellular parasites. Innate immunity is mediated by various subpopulations of innate immune cells through the secretion of soluble factors with diverse functi...

  20. Innate immune response of channel catfish (Ictalurus punctatus) mannose-binding lectin to channel catfish virus

    USDA-ARS?s Scientific Manuscript database

    The channel catfish virus (CCV) is a pathogenic herpesvirus that infects channel catfish (Ictalurus punctatus) in pond aquaculture in the Southeast USA. The innate immune protein mannose-binding lectin (MBL) could play an important role in the innate response of channel catfish by binding to the CC...

  1. S1P dependent inter organ trafficking of group 2 innate lymphoid cells suppots host defense

    USDA-ARS?s Scientific Manuscript database

    Innate lymphoid cells (ILCs) are considered to be the innate counterparts of adaptive T lymphocytes and play important roles in host defense, tissue repair, metabolic homeostasis, and inflammatory diseases. ILCs are generally thought of as tissue-resident cells, but whether ILCs strictly behave in a...

  2. Innate immunological function of TH2 cells in vivo

    USDA-ARS?s Scientific Manuscript database

    Th2 cells produce IL-13 when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response of cells of the adaptive immune system is dependent on IL-33-, not T cell receptor-, based stimulation. While type 2 innate lymphoid cells (ILC2s) are the dominant ...

  3. Innatism, Concept Formation, Concept Mastery and Formal Education

    ERIC Educational Resources Information Center

    Winch, Christopher

    2015-01-01

    This article will consider the claim that the possession of concepts is innate rather than learned. Innatism about concept learning is explained through consideration of the work of Fodor and Chomsky. First, an account of concept formation is developed. Second the argument against the claim that concepts are learned through the construction of a…

  4. Infectious Agents as Stimuli of Trained Innate Immunity.

    PubMed

    Rusek, Paulina; Wala, Mateusz; Druszczyńska, Magdalena; Fol, Marek

    2018-02-03

    The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells) after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin) as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.

  5. Postnatal Innate Immune Development: From Birth to Adulthood

    PubMed Central

    Georgountzou, Anastasia; Papadopoulos, Nikolaos G.

    2017-01-01

    It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed. PMID:28848557

  6. PQBP1 Is a Proximal Sensor of the cGAS-Dependent Innate Response to HIV-1.

    PubMed

    Yoh, Sunnie M; Schneider, Monika; Seifried, Janna; Soonthornvacharin, Stephen; Akleh, Rana E; Olivieri, Kevin C; De Jesus, Paul D; Ruan, Chunhai; de Castro, Elisa; Ruiz, Pedro A; Germanaud, David; des Portes, Vincent; García-Sastre, Adolfo; König, Renate; Chanda, Sumit K

    2015-06-04

    Dendritic cells (DCs) play a critical role in the immune response to viral infection through the facilitation of cell-intrinsic antiviral activity and the activation of adaptive immunity. HIV-1 infection of DCs triggers an IRF3-dependent innate immune response, which requires the activity of cyclic GAMP synthase (cGAS). We report the results of a targeted RNAi screen utilizing primary human monocyte-derived DCs (MDDCs) to identify immune regulators that directly interface with HIV-1-encoded features to initiate this innate response. Polyglutamine binding protein 1 (PQBP1) emerged as a strong candidate through this analysis. We found that PQBP1 directly binds to reverse-transcribed HIV-1 DNA and interacts with cGAS to initiate an IRF3-dependent innate response. MDDCs derived from Renpenning syndrome patients, who harbor mutations in the PQBP1 locus, possess a severely attenuated innate immune response to HIV-1 challenge, underscoring the role of PQBP1 as a proximal innate sensor of a HIV-1 infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A Shift from Cellular to Humoral Responses Contributes to Innate Immune Memory in the Vector Snail Biomphalaria glabrata

    PubMed Central

    Pinaud, Silvain; Portela, Julien; Duval, David; Nowacki, Fanny C.; Olive, Marie-Aude; Allienne, Jean-François; Galinier, Richard; Dheilly, Nolwenn M.; Kieffer-Jaquinod, Sylvie; Mitta, Guillaume; Théron, André; Gourbal, Benjamin

    2016-01-01

    Discoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called “immune priming” or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biomphalaria/Schistosoma system was undertaken to reconcile mechanisms with phenomena, opening the way to a better comprehension of innate immune memory in invertebrates. This prompted us to revisit the artificial dichotomy between innate and memory immunity in invertebrate systems. PMID:26735307

  8. Cigarette Smoke Modulates Repair and Innate Immunity following Injury to Airway Epithelial Cells.

    PubMed

    Amatngalim, Gimano D; Broekman, Winifred; Daniel, Nadia M; van der Vlugt, Luciën E P M; van Schadewijk, Annemarie; Taube, Christian; Hiemstra, Pieter S

    2016-01-01

    Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding. Upon mechanical injury CS caused a delayed recovery in the epithelial barrier integrity and wound closure. Furthermore CS enhanced innate immune responses, as demonstrated by increased expression of the antimicrobial protein RNase 7. These differential effects on epithelial repair and innate immunity were both mediated by CS-induced oxidative stress. Overall, our findings demonstrate modulation of wound repair and innate immune responses of injured airway epithelial cells that may contribute to COPD development and progression.

  9. Drug repositioning for enzyme modulator based on human metabolite-likeness.

    PubMed

    Lee, Yoon Hyeok; Choi, Hojae; Park, Seongyong; Lee, Boah; Yi, Gwan-Su

    2017-05-31

    Recently, the metabolite-likeness of the drug space has emerged and has opened a new possibility for exploring human metabolite-like candidates in drug discovery. However, the applicability of metabolite-likeness in drug discovery has been largely unexplored. Moreover, there are no reports on its applications for the repositioning of drugs to possible enzyme modulators, although enzyme-drug relations could be directly inferred from the similarity relationships between enzyme's metabolites and drugs. We constructed a drug-metabolite structural similarity matrix, which contains 1,861 FDA-approved drugs and 1,110 human intermediary metabolites scored with the Tanimoto similarity. To verify the metabolite-likeness measure for drug repositioning, we analyzed 17 known antimetabolite drugs that resemble the innate metabolites of their eleven target enzymes as the gold standard positives. Highly scored drugs were selected as possible modulators of enzymes for their corresponding metabolites. Then, we assessed the performance of metabolite-likeness with a receiver operating characteristic analysis and compared it with other drug-target prediction methods. We set the similarity threshold for drug repositioning candidates of new enzyme modulators based on maximization of the Youden's index. We also carried out literature surveys for supporting the drug repositioning results based on the metabolite-likeness. In this paper, we applied metabolite-likeness to repurpose FDA-approved drugs to disease-associated enzyme modulators that resemble human innate metabolites. All antimetabolite drugs were mapped with their known 11 target enzymes with statistically significant similarity values to the corresponding metabolites. The comparison with other drug-target prediction methods showed the higher performance of metabolite-likeness for predicting enzyme modulators. After that, the drugs scored higher than similarity score of 0.654 were selected as possible modulators of enzymes for their corresponding metabolites. In addition, we showed that drug repositioning results of 10 enzymes were concordant with the literature evidence. This study introduced a method to predict the repositioning of known drugs to possible modulators of disease associated enzymes using human metabolite-likeness. We demonstrated that this approach works correctly with known antimetabolite drugs and showed that the proposed method has better performance compared to other drug target prediction methods in terms of enzyme modulators prediction. This study as a proof-of-concept showed how to apply metabolite-likeness to drug repositioning as well as potential in further expansion as we acquire more disease associated metabolite-target protein relations.

  10. Innate immune memory in plants.

    PubMed

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of engineered nanoparticles on the innate immune system.

    PubMed

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Approaching archetypes: reconsidering innateness.

    PubMed

    Goodwyn, Erik

    2010-09-01

    The question of innateness has hounded Jungian psychology since Jung originally postulated the archetype as an a priori structure within the psyche. During his life and after his death he was continually accused of Lamarckianism and criticized for his theory that the archetypes existed as prior structures. More recently, with the advent of genetic research and the human genome project, the idea that psychological structures can be innate has come under even harsher criticism even within Jungian thought. There appears to be a growing consensus that Jung's idea of innate psychological structures was misguided, and that perhaps the archetype-as-such should be abandoned for more developmental and 'emergent' theories of the psyche. The purpose of this essay is to question this conclusion, and introduce some literature on psychological innateness that appears relevant to this discussion. © 2010, The Society of Analytical Psychology.

  13. Testicular defense systems: immune privilege and innate immunity

    PubMed Central

    Zhao, Shutao; Zhu, Weiwei; Xue, Shepu; Han, Daishu

    2014-01-01

    The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune privilege have been investigated for a long time. Increasing evidence shows that both a local immunosuppressive milieu and systemic immune tolerance are involved in maintaining testicular immune privilege status. The mechanisms underlying testicular innate immunity are emerging based on the investigation of the pattern recognition receptor-mediated innate immune response in testicular cells. This review summarizes our current understanding of testicular defense mechanisms and identifies topics that merit further investigation. PMID:24954222

  14. Role of autofluorescence in inflammatory/infective diseases of the retina and choroid.

    PubMed

    Samy, Ahmed; Lightman, Sue; Ismetova, Filis; Talat, Lazha; Tomkins-Netzer, Oren

    2014-01-01

    Fundus autofluorescence (FAF) has recently emerged as a novel noninvasive imaging technique that uses the fluorescent properties of innate fluorophores accumulated in the retinal pigment epithelium (RPE) to assess the health and viability of the RPE/photoreceptor complex. Recent case reports suggest FAF as a promising tool for monitoring eyes with posterior uveitis helping to predict final visual outcome. In this paper we review the published literature on FAF in these disorders, specifically patterns in infectious and noninfectious uveitis, and illustrate some of these with short case histories.

  15. The Anopheles innate immune system in the defense against malaria infection

    PubMed Central

    Clayton, April M.; Dong, Yuemei; Dimopoulos, George

    2014-01-01

    The multifaceted innate immune system of insects is capable of fighting infection by a variety of pathogens including those causing human malaria. Malaria transmission by the Anopheles mosquito depends on the Plasmodium parasite’s successful completion of its lifecycle in the insect vector, a process that involves interactions with several tissues and cell types as well as with the mosquito’s innate immune system. This review will discuss our current understanding of the Anopheles mosquito’s innate immune responses against the malaria parasite Plasmodium and the influence of the insect’s intestinal microbiota on parasite infection. PMID:23988482

  16. Innate immunity and gut-microbe mutualism in Drosophila.

    PubMed

    Ryu, Ji-Hwan; Ha, Eun-Mi; Lee, Won-Jae

    2010-04-01

    Metazoan guts face a wide variety of microorganisms upon exposure to the environment, including beneficial symbionts, non-symbionts, food-borne microbes and life-threatening pathogens. Recent evidence has shown that the innate immunity of gut epithelia, such as anti-microbial peptide- and reactive oxygen species-based immune systems, actively participate in gut-microbe homeostasis by shaping the commensal community while efficiently eliminating unwanted bacteria. Therefore, elucidation of the regulatory mechanism by which gut innate immunity occurs at the molecular level will provide a novel perspective of gut-microbe mutualisms as well as of gut diseases caused by alterations in the innate immunity.

  17. Invisible engineering of holographic illusion

    NASA Astrophysics Data System (ADS)

    Richardson, Martin J.

    1993-03-01

    Recent developments in production techniques of pulsed holograms and holographic stereograms have ameliorated to provide high quality three dimensional illusions that echo the apparently innate need of society to replicate itself through artificial means. A commercial platform has been found for these archetypical illusions through the mass production and distribution of embossed stereograms that depict popular celebrities from the music industry. As pulse recordings of the rich and famous become better known, and as former presidents queue to join the holographic hall of fame, the author asks `is it documentation or entertainment that is shaping the future of holography?'

  18. Natural Killer T Cells in Cancer Immunotherapy

    PubMed Central

    Nair, Shiny; Dhodapkar, Madhav V.

    2017-01-01

    Natural killer T (NKT) cells are specialized CD1d-restricted T cells that recognize lipid antigens. Following stimulation, NKT cells lead to downstream activation of both innate and adaptive immune cells in the tumor microenvironment. This has impelled the development of NKT cell-targeted immunotherapies for treating cancer. In this review, we provide a brief overview of the stimulatory and regulatory functions of NKT cells in tumor immunity as well as highlight preclinical and clinical studies based on NKT cells. Finally, we discuss future perspectives to better harness the potential of NKT cells for cancer therapy. PMID:29018445

  19. The virology, epidemiology, and clinical impact of West Nile virus: a decade of advancements in research since its introduction into the Western Hemisphere.

    PubMed

    Murray, K O; Walker, C; Gould, E

    2011-06-01

    West Nile virus (WNV) is now endemic in the USA. After the widespread surge of virus activity across the USA, research has flourished, and our knowledge base has significantly expanded over the past 10 years since WNV was first recognized in New York City. This article provides a review of the virology of WNV, history, epidemiology, clinical features, pathology of infection, the innate and adaptive immune response, host risk factors for developing severe disease, clinical sequelae following severe disease, chronic infection, and the future of prevention.

  20. The Australian and New Zealand regional neurology training survey.

    PubMed

    McAulay-Powell, C; Ranta, A

    2016-06-01

    There is inequitably poorer access to specialist neurologists in regional areas. Recruitment could be improved if more neurology trainees chose to spend some time at regional training sites, which they currently appear to avoid for unclear reasons. We surveyed neurology advanced trainees to assess their attitudes and perceptions about regional training. Aside from innate geographical challenges, there are concerning negative perceptions of the impact of regional training on future metropolitan employment prospects. Minimisation of bias against regional trainees or even rewarding regional exposure would likely improve regional trainee and subsequent specialist recruitment. © 2016 Royal Australasian College of Physicians.

  1. Progress in understanding the immunopathogenesis of psoriasis

    PubMed Central

    Mak, R.K.H.; Hundhausen, C.; Nestle, F.O.

    2010-01-01

    This review emphasizes how translation from bench research to clinical knowledge and vice versa has resulted in considerable progress in understanding the immunopathogenesis of psoriasis. First, the journey in understanding the pathogenic mechanisms behind psoriasis is described. The roles of different components of the adaptive and innate immune systems involved in driving the inflammatory response are explained. Discovery of new immune pathways i.e. the IL23/Th17 axis and its subsequent impact on the development of novel biological therapies is highlighted. Identification of potential targets warranting further research for future therapeutic development are also discussed. PMID:20096156

  2. Tolerance-like innate immunity and spleen injury: a novel discovery via the weekly administrations and consecutive injections of PEGylated emulsions

    PubMed Central

    Wang, Long; Wang, Chunling; Jiao, Jiao; Su, Yuqing; Cheng, Xiaobo; Huang, Zhenjun; Liu, Xinrong; Deng, Yihui

    2014-01-01

    There has been an increasing interest in the study of the innate immune system in recent years. However, few studies have focused on whether innate immunity can acquire tolerance. Therefore, in this study, we investigated tolerance in the innate immune system via the consecutive weekly and daily injections of emulsions modified with polyethylene glycol (PEG), referred to as PEGylated emulsions (PE). The effects of these injections of PE on pharmacokinetics and biodistribution were studied in normal and macrophage-depleted rats. Additionally, we evaluated the antigenic specificity of immunologic tolerance. Immunologic tolerance against PE developed after 21 days of consecutive daily injections or the fourth week of PE administration. Compared with a single administration, it was observed that the tolerant rats had a lower rate of PE clearance from the blood, which was independent of the stress response. In addition, weekly PE injections caused injury to the spleen. Furthermore, the rats tolerant to PEs with the methoxy group (–OCH3) of PEG, failed to respond to the PEs with a different terminal group of PEG or to non-PEG emulsions. Innate immunity tolerance was induced by PE, regardless of the mode of administration. Further study of this mechanism suggested that monocytes play an essential role in the suppression of innate immunity. These findings provide novel insights into the understanding of the innate immune system. PMID:25120362

  3. Regulation of the Prostate Cancer Tumor Microenvironment

    DTIC Science & Technology

    2015-04-01

    growth can be altered through modulating the composition of TILs through innate immunity . Body Pathogens or cancerous cells alike can produce danger... innate immunity , including Toll-like receptors (TLRs). Thirteen mammalian TLRs have been identified to date with ligands ranging from...damage-associated molecular patterns (DAMPs) released by the tumor stimulate the innate immune pathways through pattern recognition receptors (PRRs

  4. The bovine spleen: Interactions among splenic cell populations in the innate immunologic control of hemoparasitic infections

    USDA-ARS?s Scientific Manuscript database

    Over the past several years, innate immunity has been recognized as having an important role as a front-line defense mechanism and as an integral part of the adaptive immune response. Innate immunity in cattle exposed to hemoparasites is spleen-dependent and age-related. In this review, we discuss g...

  5. Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions

    PubMed Central

    Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-01-01

    Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely stratification of sepsis patients by distinguishing hyper-inflammatory from paralytic phases in immune dysregulation. PMID:26150807

  6. Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions.

    PubMed

    Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-01-01

    Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely stratification of sepsis patients by distinguishing hyper-inflammatory from paralytic phases in immune dysregulation.

  7. Innate inflammation in Type 1 diabetes

    PubMed Central

    Cabrera, Susanne M.; Henschel, Angela M.; Hessner, Martin J.

    2015-01-01

    Type 1 diabetes mellitus (T1D) is an autoimmune disease often diagnosed in childhood that results in pancreatic β-cell destruction and life-long insulin dependence. T1D susceptibility involves a complex interplay of genetic and environmental factors and has historically been attributed to adaptive immunity, though there is now increasing evidence for a role of innate inflammation. Here, we review studies that define a heightened age-dependent innate inflammatory state in T1D families that is paralleled with high fidelity by the T1D-susceptible BioBreeding rat. Innate inflammation may be driven by changes in interactions between the host and environment, such as through an altered microbiome, intestinal hyper-permeability, or viral exposures. Special focus is placed on the temporal measurement of plasma induced transcriptional signatures of recent onset T1D patients and their siblings as well as in the Biobreeding rat as it defines the natural history of innate inflammation. These sensitive and comprehensive analyses have also revealed that those who successfully managed T1D risk develop an age-dependent immunoregulatory state, providing a possible mechanism for the juvenile nature of T1D. Therapeutic targeting of innate inflammation has been proven effective in preventing and delaying T1D in rat models. Clinical trials of agents that suppress innate inflammation have had more modest success, but efficacy is improved by the addition of combinatorial approaches that target other aspects of T1D pathogenesis. An understanding of innate inflammation and mechanisms by which this susceptibility is both potentiated and mitigated offers important insight into T1D progression and avenues for therapeutic intervention. PMID:25980926

  8. c-di-GMP enhances protective innate immunity in a murine model of pertussis.

    PubMed

    Elahi, Shokrollah; Van Kessel, Jill; Kiros, Tedele G; Strom, Stacy; Hayakawa, Yoshihiro; Hyodo, Mamoru; Babiuk, Lorne A; Gerdts, Volker

    2014-01-01

    Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required.

  9. c-di-GMP Enhances Protective Innate Immunity in a Murine Model of Pertussis

    PubMed Central

    Elahi, Shokrollah; Van Kessel, Jill; Kiros, Tedele G.; Strom, Stacy; Hayakawa, Yoshihiro; Hyodo, Mamoru; Babiuk, Lorne A.; Gerdts, Volker

    2014-01-01

    Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required. PMID:25333720

  10. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps.

    PubMed

    Shaw, Joanne L; Fakhri, Samer; Citardi, Martin J; Porter, Paul C; Corry, David B; Kheradmand, Farrah; Liu, Yong-Jun; Luong, Amber

    2013-08-15

    Chronic rhinosinusitis (CRS) without nasal polyps (CRSsNP) and CRS with nasal polyps (CRSwNP) are associated with Th1 and Th2 cytokine polarization, respectively; however, the pathophysiology of CRS remains unclear. The importance of innate lymphoid cells in Th2-mediated inflammatory disease has not been clearly defined. The objective of this study was to investigate the role of the epithelial cell-derived cytokine IL-33 and IL-33-responsive innate lymphoid cells in the pathophysiology of CRS. Relative gene expression was evaluated using quantitative real-time polymerase chain reaction. Innate lymphoid cells in inflamed ethmoid sinus mucosa from patients with CRSsNP and CRSwNP were characterized using flow cytometry. Cytokine production from lymphoid cells isolated from inflamed mucosa of patients with CRS was examined using ELISA and intracellular cytokine staining. Elevated expression of ST2, the ligand-binding chain of the IL-33 receptor, was observed in inflamed sinonasal mucosa from CRSwNP compared with CRSsNP and healthy control subjects. An increased percentage of innate lymphoid cells was observed in inflamed sinonasal mucosa from CRSwNP compared with CRSsNP. ST2(+) innate lymphoid cells are a consistent source of IL-13 in response to IL-33 stimulation. Significant induction of IL-33 was observed in epithelial cells derived from patients with CRSwNP compared with patients with CRSsNP in response to stimulation with Aspergillus fumigatus extract. These data suggest a role for sinonasal epithelial cell-derived IL-33 and an IL-33-responsive innate lymphoid cell population in the pathophysiology of CRSwNP demonstrating the functional importance of innate lymphoid cells in Th2-mediated inflammatory disease.

  11. Enhanced innate immune responsiveness and intolerance to intestinal endotoxins in human biliary epithelial cells contributes to chronic cholangitis.

    PubMed

    Mueller, Tobias; Beutler, Claudia; Picó, Almudena Hurtado; Shibolet, Oren; Pratt, Daniel S; Pascher, Andreas; Neuhaus, Peter; Wiedenmann, Bertram; Berg, Thomas; Podolsky, Daniel K

    2011-11-01

    Pattern recognition receptors (PRRs) orchestrate the innate immune defence in human biliary epithelial cells (BECs). Tight control of PRR signalling provides tolerance to physiological amounts of intestinal endotoxins in human bile to avoid constant innate immune activation in BECs. We wanted to determine whether inappropriate innate immune responses to intestinal endotoxins contribute to the development and perpetuation of chronic biliary inflammation. We examined PRR-mediated innate immune responses and protective endotoxin tolerance in primary BECs isolated from patients with primary sclerosing cholangitis (PSC), alcoholic liver disease and patients without chronic liver disease. Expression studies comprised northern blots, RT-PCR, Western blots and immunocytochemistry. Functional studies comprised immuno-precipitation Western blots, FACS for endotoxin uptake, and NF-κB activation assays and ELISA for secreted IL-8 and tumour necrosis factor (TNF)-α. Primary BECs from explanted PSC livers showed reversibly increased TLR and NOD protein expression and activation of the MyD88/IRAK signalling complex. Consecutively, PSC BECs exhibited inappropriate innate immune responses to endotoxins and did not develop immune tolerance after repeated endotoxin exposures. This endotoxin hyper-responsiveness was probably because of the stimulatory effect of abundantly expressed IFN-γ and TNF-α in PSC livers, which stimulated TLR4-mediated endotoxin signalling in BECs, leading to increased TLR4-mediated endotoxin incorporation and impaired inactivation of the TLR4 signalling cascade. As TNF-α inhibition partly restored protective innate immune tolerance, endogenous TNF-α secretion probably contributed to inappropriate endotoxin responses in BECs. Inappropriate innate immune responses to intestinal endotoxins and subsequent endotoxin intolerance because of enhanced PRR signalling in BECs probably contribute to chronic cholangitis. © 2011 John Wiley & Sons A/S.

  12. HIV-1 evades innate immune recognition through specific cofactor recruitment

    NASA Astrophysics Data System (ADS)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  13. Exploring the read-write genome: mobile DNA and mammalian adaptation.

    PubMed

    Shapiro, James A

    2017-02-01

    The read-write genome idea predicts that mobile DNA elements will act in evolution to generate adaptive changes in organismal DNA. This prediction was examined in the context of mammalian adaptations involving regulatory non-coding RNAs, viviparous reproduction, early embryonic and stem cell development, the nervous system, and innate immunity. The evidence shows that mobile elements have played specific and sometimes major roles in mammalian adaptive evolution by generating regulatory sites in the DNA and providing interaction motifs in non-coding RNA. Endogenous retroviruses and retrotransposons have been the predominant mobile elements in mammalian adaptive evolution, with the notable exception of bats, where DNA transposons are the major agents of RW genome inscriptions. A few examples of independent but convergent exaptation of mobile DNA elements for similar regulatory rewiring functions are noted.

  14. Mechanistic Modelling of Drug-Induced Liver Injury: Investigating the Role of Innate Immune Responses.

    PubMed

    Shoda, Lisl Km; Battista, Christina; Siler, Scott Q; Pisetsky, David S; Watkins, Paul B; Howell, Brett A

    2017-01-01

    Drug-induced liver injury (DILI) remains an adverse event of significant concern for drug development and marketed drugs, and the field would benefit from better tools to identify liver liabilities early in development and/or to mitigate potential DILI risk in otherwise promising drugs. DILIsym software takes a quantitative systems toxicology approach to represent DILI in pre-clinical species and in humans for the mechanistic investigation of liver toxicity. In addition to multiple intrinsic mechanisms of hepatocyte toxicity (ie, oxidative stress, bile acid accumulation, mitochondrial dysfunction), DILIsym includes the interaction between hepatocytes and cells of the innate immune response in the amplification of liver injury and in liver regeneration. The representation of innate immune responses, detailed here, consolidates much of the available data on the innate immune response in DILI within a single framework and affords the opportunity to systematically investigate the contribution of the innate response to DILI.

  15. Fungal mediated innate immune memory, what have we learned?

    PubMed

    Quintin, Jessica

    2018-05-30

    The binary classification of mammalian immune memory is now obsolete. Innate immune cells carry memory characteristics. The overall capacity of innate immune cells to remember and alter their responses is referred as innate immune memory and the induction of a non-specific memory resulting in an enhanced immune status is termed "trained immunity". Historically, trained immunity was first described as triggered by the human fungal pathogen Candida albicans. Since, numerous studies have accumulated and deciphered the main characteristics of trained immunity mediated by fungi and fungal components. This review aims at presenting the newly described aspect of memory in innate immunity with an emphasis on the historically fungal mediated one, covering the known molecular mechanisms associated with training. In addition, the review uncovers the numerous non-specific effect that β-glucans trigger in the context of infectious diseases and septicaemia, inflammatory diseases and cancer. Copyright © 2018. Published by Elsevier Ltd.

  16. Innate intelligence: its origins and problems

    PubMed Central

    Morgan, Lon

    1998-01-01

    Animal Magnetism and Radionics were among several occult practices used during the 19th century for the treatment of disease. D.D. Palmer was exposed to these teachings and derived many of his ideas about health from the folk medicine practices of his time. As a ‘magnetic healer’ Palmer believed he was correcting an undefined fifth force in the body that is otherwise unknown to science. Palmer believed he could influence this fifth force, termed Innate Intelligence, and that it was the explanation for the presence or absence of health. Today, Innate Intelligence remains an untestable enigma that isolates chiropractic and impedes its acceptance as a legitimate health science. The concept of Innate is derived directly from the occult practices of another era. It carries a high penalty in divisiveness and lack of logical coherence. The chiropractic profession must decide whether the concept of Innate should be retained.

  17. Synthetic RNAs Mimicking Structural Domains in the Foot-and-Mouth Disease Virus Genome Elicit a Broad Innate Immune Response in Porcine Cells Triggered by RIG-I and TLR Activation.

    PubMed

    Borrego, Belén; Rodríguez-Pulido, Miguel; Revilla, Concepción; Álvarez, Belén; Sobrino, Francisco; Domínguez, Javier; Sáiz, Margarita

    2015-07-17

    The innate immune system is the first line of defense against viral infections. Exploiting innate responses for antiviral, therapeutic and vaccine adjuvation strategies is being extensively explored. We have previously described, the ability of small in vitro RNA transcripts, mimicking the sequence and structure of different domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs), to trigger a potent and rapid innate immune response. These synthetic non-infectious molecules have proved to have a broad-range antiviral activity and to enhance the immunogenicity of an FMD inactivated vaccine in mice. Here, we have studied the involvement of pattern-recognition receptors (PRRs) in the ncRNA-induced innate response and analyzed the antiviral and cytokine profiles elicited in swine cultured cells, as well as peripheral blood mononuclear cells (PBMCs).

  18. Control of adaptive immunity by the innate immune system.

    PubMed

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-04-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.

  19. Interactions of the innate and adaptive arms of the immune system in the pathogenesis of spondyloarthritis

    PubMed Central

    Stoll, Matthew L

    2011-01-01

    The immune system can be divided into the innate and adaptive arms. Historically, most of the research into the pathogenesis of spondyloarthritis (SpA) and other types of chronic arthritis focused on the adaptive immune system. Recently, the pendulum has shifted, and much current work in SpA focuses on innate immunity. Herein, I summarize evidence demonstrating that both the innate and the adaptive arms of the immune system are involved in the pathogenesis of SpA, propose a mechanism in which both arms interact to maintain chronic arthritis, and discuss potential research directions. PMID:21269576

  20. Innate Immune sensing of DNA viruses

    PubMed Central

    Rathinam, Vijay A. K.; Fitzgerald, Katherine A.

    2011-01-01

    DNA viruses are a significant contributor to human morbidity and mortality. The immune system protects against viral infections through coordinated innate and adaptive immune responses. While the antigen-specific adaptive mechanisms have been extensively studied, the critical contributions of innate immunity to anti-viral defenses have only been revealed in the very recent past. Central to these anti-viral defenses is the recognition of viral pathogens by a diverse set of germ-line encoded receptors that survey nearly all cellular compartments for the presence of pathogens. In this review, we discuss the recent advances in the innate immune sensing of DNA viruses and focus on the recognition mechanisms involved. PMID:21334037

  1. Innateness and the instinct to learn.

    PubMed

    Marler, Peter

    2004-06-01

    Concepts of innateness were at the heart of Darwin's approach to behavior and central to the ethological theorizing of Lorenz and, at least to start with, of Tinbergen. Then Tinbergen did an about face, and for some twenty years the term 'innate' became highly suspect. He attributed the change to Lehrman's famous 1953 critique in which he asserted that classifying behaviors as innate tells us nothing about how they develop. Although Lehrman made many valid points, I will argue that this exchange also led to profound misunderstandings that were ultimately damaging to progress in research on the development of behavior. The concept of 'instincts to learn', receiving renewed support from current theorizing among geneticists about phenotypic plasticity, provides a potential resolution of some of the controversies that Lehrman created. Bioacoustical studies, particularly on song learning in birds, serve both to confirm some of Lehrman's anxieties about the term 'innate', but also to make a case that he threw out the genetic baby with the bathwater. The breathtaking progress in molecular and developmental genetics has prepared the way for a fuller understanding of the complexities underlying even the simplest notions of innate behavior, necessary before we can begin to comprehend the ontogeny of behavior.

  2. Innate immune signalling at intestinal mucosal surfaces: a fine line between host protection and destruction.

    PubMed

    Cario, Elke

    2008-11-01

    Emerging evidence underscores that inappropriate innate immune responses driven by commensals contribute to the pathogenesis of chronic inflammatory bowel diseases in genetically susceptible hosts. The present review focuses on defining the recently described mechanistic functions through which the innate immune signalling apparatus shapes mucosal homeostasis of the intestine in health and disease. Commensal-induced innate immune signalling actively drives at least six major interdependent functions to control homeostasis in the healthy intestinal mucosa: 1) barrier preservation, 2) inhibition of apoptosis and inflammation, 3) acceleration of wound repair and tissue regeneration, 4) exclusion of harmful pathogens through autophagy and other antimicrobial defenses, while 5) maintaining immune tolerance towards harmless commensals, and 6) linkage to adaptive immunity. Any disturbance of this peaceful and mutually beneficial host-commensal relationship may imbalance innate immune signalling, which predisposes to chronic intestinal inflammation and associated tumourigenesis in inflammatory bowel diseases. Recent advances have highlighted the complex mechanistics and functional diversity of innate immunity that paradoxically mediate both protective and destructive responses in the intestinal mucosa. Related signalling targets may offer novel therapeutic approaches in the treatment of inflammatory bowel diseases and inflammation-related cancer.

  3. Evolution of complement as an effector system in innate and adaptive immunity.

    PubMed

    Sunyer, J Oriol; Boshra, Hani; Lorenzo, Gema; Parra, David; Freedman, Bruce; Bosch, Nina

    2003-01-01

    For a long time, the complement system in mammals has been regarded as a biological system that plays an essential role in innate immunity. More recently, it has been recognized that the complement system contributes heavily to the generation and development of an acquired immune response. In fact, this ancient mechanism of defense has evolved from a primitive mechanism of innate immune recognition in invertebrate species to that of an effector system that bridges the innate with the adaptive immune response in vertebrate species. When and how did complement evolve into a shared effector system between innate and adaptive immunity? To answer this question, our group is interested in understanding the role of complement in innate and adaptive immune responses in an evolutionary relevant species: the teleost fish. The attractiveness of this species as an animal model is based on two important facts. First, teleost fish are one of the oldest animal species to have developed an adaptive immune response. Second, the complement system of teleost fish offers a unique feature, which is the structural and functional diversity of its main effector protein, C3, the third component of the complement system.

  4. Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway.

    PubMed

    Troutwine, B R; Ghezzi, A; Pietrzykowski, A Z; Atkinson, N S

    2016-04-01

    A growing body of evidence has shown that alcohol alters the activity of the innate immune system and that changes in innate immune system activity can influence alcohol-related behaviors. Here, we show that the Toll innate immune signaling pathway modulates the level of alcohol resistance in Drosophila. In humans, a low level of response to alcohol is correlated with increased risk of developing an alcohol use disorder. The Toll signaling pathway was originally discovered in, and has been extensively studied in Drosophila. The Toll pathway is a major regulator of innate immunity in Drosophila, and mammalian Toll-like receptor signaling has been implicated in alcohol responses. Here, we use Drosophila-specific genetic tools to test eight genes in the Toll signaling pathway for effects on the level of response to ethanol. We show that increasing the activity of the pathway increases ethanol resistance whereas decreasing the pathway activity reduces ethanol resistance. Furthermore, we show that gene products known to be outputs of innate immune signaling are rapidly induced following ethanol exposure. The interaction between the Toll signaling pathway and ethanol is rooted in the natural history of Drosophila melanogaster. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Molecular characterization and expression analysis of Lily-type lectin ( SmLTL) in turbot Scophthalmus maximus, and its response to Vibrio anguillarum

    NASA Astrophysics Data System (ADS)

    Xia, Dandan; Ma, Aijun; Huang, Zhihui; Shang, Xiaomei; Cui, Wenxiao; Yang, Zhi; Qu, Jiangbo

    2018-03-01

    A full-length lily-type lectin ( SmLTL) was identified from turbot ( Scophthalmus maximus) in this study. By searching database for protein identification and function prediction, SmLTL were confirmed. The full-length cDNA of SmLTL is composed of 569 bp and contains a 339 bp ORF that encodes 112 amino acid residues. The SmLTL peptide is characterized by a specific β-prism architecture and contains three mannose binding sites in a three-fold internal repeat between amino acids 30-99; two of the repeats share the classical mannose binding domain (QxDxNxVxY) while the third binding site was similar to other fish-specific binding motifs (TxTxGxRxV). The primary, secondary, and tertiary structures of SmLTL were predicted and analyzed, indicating that the SmLTL protein was hydrophilic, contained 5.36% α-helices, 39.29% extended strands, 16.07% β-folds, and 39.29% random coils, and three β-folds. Quantitative realtime polymerase chain reaction (qPCR) analysis revealed that the SmLTL mRNA was abundantly expressed in skin, gill, and intestine. Low levels of SmLTL expression were observed in other tissues. The expression of SmLTL in gill, skin and intestine increased at mRNA level after stimulation of Vibrio anguillarum, our results suggest that SmLTL serve as the first line of defence against microbial infections and play a pivotal role in the innate mucosal immune system. The current study indicates that SmLTL is a member of the lilytype lectin family and the information reported here will provide an important foundation for future research on the role of this protein.

  6. Immune Recognition of Gene Transfer Vectors: Focus on Adenovirus as a Paradigm

    PubMed Central

    Aldhamen, Yasser Ali; Seregin, Sergey S.; Amalfitano, Andrea

    2011-01-01

    Recombinant Adenovirus (Ad) based vectors have been utilized extensively as a gene transfer platform in multiple pre-clinical and clinical applications. These applications are numerous, and inclusive of both gene therapy and vaccine based approaches to human or animal diseases. The widespread utilization of these vectors in both animal models, as well as numerous human clinical trials (Ad-based vectors surpass all other gene transfer vectors relative to numbers of patients treated, as well as number of clinical trials overall), has shed light on how this virus vector interacts with both the innate and adaptive immune systems. The ability to generate and administer large amounts of this vector likely contributes not only to their ability to allow for highly efficient gene transfer, but also their elicitation of host immune responses to the vector and/or the transgene the vector expresses in vivo. These facts, coupled with utilization of several models that allow for full detection of these responses has predicted several observations made in human trials, an important point as lack of similar capabilities by other vector systems may prevent detection of such responses until only after human trials are initiated. Finally, induction of innate or adaptive immune responses by Ad vectors may be detrimental in one setting (i.e., gene therapy) and be entirely beneficial in another (i.e., prophylactic or therapeutic vaccine based applications). Herein, we review the current understanding of innate and adaptive immune responses to Ad vectors, as well some recent advances that attempt to capitalize on this understanding so as to further broaden the safe and efficient use of Ad-based gene transfer therapies in general. PMID:22566830

  7. Concholepas concholepas Ferritin H-like subunit (CcFer): Molecular characterization and single nucleotide polymorphism associated to innate immune response.

    PubMed

    Chávez-Mardones, Jacqueline; Valenzuela-Muñoz, Valentina; Núñez-Acuña, Gustavo; Maldonado-Aguayo, Waleska; Gallardo-Escárate, Cristian

    2013-09-01

    Ferritin has been identified as the principal protein of iron storage and iron detoxification, playing a pivotal role for the cellular homeostasis in living organisms. However, recent studies in marine invertebrates have suggested its association with innate immune system. In the present study, one Ferritin subunit was identified from the gastropod Concholepas concholepas (CcFer), which was fully characterized by Rapid Amplification of cDNA Ends technique. Simultaneously, a challenge test was performed to evaluate the immune response against Vibrio anguillarum. The full length of cDNA Ccfer was 1030 bp, containing 513 bp of open reading frame that encodes to 170 amino acid peptide, which was similar to the Ferritin H subunit described in vertebrates. Untranslated Regions (UTRs) were identified with a 5'UTR of 244 bp that contains iron responsive element (IRE), and a 3'UTR of 273 bp. The predicted molecular mass of deduced amino acid of CcFer was 19.66 kDa and isoelectric point of 4.92. Gene transcription analysis revealed that CcFer increases against infections with V. anguillarum, showing a peak expression at 6 h post-infection. Moreover, a single nucleotide polymorphism was detected at -64 downstream 5'UTR sequence (SNP-64). Quantitative real time analysis showed that homozygous mutant allele (TT) was significantly associated with higher expression levels of the challenged group compared to wild (CC) and heterozygous (CT) variants. Our findings suggest that CcFer is associated to innate immune response in C. concholepas and that the presence of SNPs may involve differential transcriptional expression of CcFer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Natural innate cytokine response to immunomodulators and adjuvants in human precision-cut lung slices.

    PubMed

    Switalla, S; Lauenstein, L; Prenzler, F; Knothe, S; Förster, C; Fieguth, H-G; Pfennig, O; Schaumann, F; Martin, C; Guzman, C A; Ebensen, T; Müller, M; Hohlfeld, J M; Krug, N; Braun, A; Sewald, K

    2010-08-01

    Prediction of lung innate immune responses is critical for developing new drugs. Well-established immune modulators like lipopolysaccharides (LPS) can elicit a wide range of immunological effects. They are involved in acute lung diseases such as infections or chronic airway diseases such as COPD. LPS has a strong adjuvant activity, but its pyrogenicity has precluded therapeutic use. The bacterial lipopeptide MALP-2 and its synthetic derivative BPPcysMPEG are better tolerated. We have compared the effects of LPS and BPPcysMPEG on the innate immune response in human precision-cut lung slices. Cytokine responses were quantified by ELISA, Luminex, and Meso Scale Discovery technology. The initial response to LPS and BPPcysMPEG was marked by coordinated and significant release of the mediators IL-1β, MIP-1β, and IL-10 in viable PCLS. Stimulation of lung tissue with BPPcysMPEG, however, induced a differential response. While LPS upregulated IFN-γ, BPPcysMPEG did not. This traces back to their signaling pathways via TLR4 and TLR2/6. The calculated exposure doses selected for LPS covered ranges occurring in clinical studies with human beings. Correlation of obtained data with data from human BAL fluid after segmental provocation with endotoxin showed highly comparable effects, resulting in a coefficient of correlation >0.9. Furthermore, we were interested in modulating the response to LPS. Using dexamethasone as an immunosuppressive drug for anti-inflammatory therapy, we found a significant reduction of GM-CSF, IL-1β, and IFN-γ. The PCLS-model offers the unique opportunity to test the efficacy and toxicity of biological agents intended for use by inhalation in a complex setting in humans. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. The Transcriptional Regulator CpsY Is Important for Innate Immune Evasion in Streptococcus pyogenes

    PubMed Central

    Vega, Luis A.; Valdes, Kayla M.; Sundar, Ganesh S.; Belew, Ashton T.; Islam, Emrul; Berge, Jacob; Curry, Patrick; Chen, Steven

    2016-01-01

    ABSTRACT As an exclusively human pathogen, Streptococcus pyogenes (the group A streptococcus [GAS]) has specifically adapted to evade host innate immunity and survive in multiple tissue niches, including blood. GAS can overcome the metabolic constraints of the blood environment and expresses various immunomodulatory factors necessary for survival and immune cell resistance. Here we present our investigation of one such factor, the predicted LysR family transcriptional regulator CpsY. The encoding gene, cpsY, was initially identified as being required for GAS survival in a transposon-site hybridization (TraSH) screen in whole human blood. CpsY is homologous with transcriptional regulators of Streptococcus mutans (MetR), Streptococcus iniae (CpsY), and Streptococcus agalactiae (MtaR) that regulate methionine transport, amino acid metabolism, resistance to neutrophil-mediated killing, and survival in vivo. Our investigation indicated that CpsY is involved in GAS resistance to innate immune cells of its human host. However, GAS CpsY does not manifest the in vitro phenotypes of its homologs in other streptococcal species. GAS CpsY appears to regulate a small set of genes that is markedly different from the regulons of its homologs. The differential expression of these genes depends on the growth medium, and CpsY modestly influences their expression. The GAS CpsY regulon includes known virulence factors (mntE, speB, spd, nga [spn], prtS [SpyCEP], and sse) and cell surface-associated factors of GAS (emm1, mur1.2, sibA [cdhA], and M5005_Spy0500). Intriguingly, the loss of CpsY in GAS does not result in virulence defects in murine models of infection, suggesting that CpsY function in immune evasion is specific to the human host. PMID:27993974

  10. Natural innate cytokine response to immunomodulators and adjuvants in human precision-cut lung slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Switalla, S.; Lauenstein, L.; Prenzler, F.

    Prediction of lung innate immune responses is critical for developing new drugs. Well-established immune modulators like lipopolysaccharides (LPS) can elicit a wide range of immunological effects. They are involved in acute lung diseases such as infections or chronic airway diseases such as COPD. LPS has a strong adjuvant activity, but its pyrogenicity has precluded therapeutic use. The bacterial lipopeptide MALP-2 and its synthetic derivative BPPcysMPEG are better tolerated. We have compared the effects of LPS and BPPcysMPEG on the innate immune response in human precision-cut lung slices. Cytokine responses were quantified by ELISA, Luminex, and Meso Scale Discovery technology. Themore » initial response to LPS and BPPcysMPEG was marked by coordinated and significant release of the mediators IL-1{beta}, MIP-1{beta}, and IL-10 in viable PCLS. Stimulation of lung tissue with BPPcysMPEG, however, induced a differential response. While LPS upregulated IFN-{gamma}, BPPcysMPEG did not. This traces back to their signaling pathways via TLR4 and TLR2/6. The calculated exposure doses selected for LPS covered ranges occurring in clinical studies with human beings. Correlation of obtained data with data from human BAL fluid after segmental provocation with endotoxin showed highly comparable effects, resulting in a coefficient of correlation > 0.9. Furthermore, we were interested in modulating the response to LPS. Using dexamethasone as an immunosuppressive drug for anti-inflammatory therapy, we found a significant reduction of GM-CSF, IL-1{beta}, and IFN-{gamma}. The PCLS-model offers the unique opportunity to test the efficacy and toxicity of biological agents intended for use by inhalation in a complex setting in humans.« less

  11. Short- and long-term effects of nicotine and the histone deacetylase inhibitor phenylbutyrate on novel object recognition in zebrafish.

    PubMed

    Faillace, M P; Pisera-Fuster, A; Medrano, M P; Bejarano, A C; Bernabeu, R O

    2017-03-01

    Zebrafish have a sophisticated color- and shape-sensitive visual system, so we examined color cue-based novel object recognition in zebrafish. We evaluated preference in the absence or presence of drugs that affect attention and memory retention in rodents: nicotine and the histone deacetylase inhibitor (HDACi) phenylbutyrate (PhB). The objective of this study was to evaluate whether nicotine and PhB affect innate preferences of zebrafish for familiar and novel objects after short- and long-retention intervals. We developed modified object recognition (OR) tasks using neutral novel and familiar objects in different colors. We also tested objects which differed with respect to the exploratory behavior they elicited from naïve zebrafish. Zebrafish showed an innate preference for exploring red or green objects rather than yellow or blue objects. Zebrafish were better at discriminating color changes than changes in object shape or size. Nicotine significantly enhanced or changed short-term innate novel object preference whereas PhB had similar effects when preference was assessed 24 h after training. Analysis of other zebrafish behaviors corroborated these results. Zebrafish were innately reluctant or prone to explore colored novel objects, so drug effects on innate preference for objects can be evaluated changing the color of objects with a simple geometry. Zebrafish exhibited recognition memory for novel objects with similar innate significance. Interestingly, nicotine and PhB significantly modified innate object preference.

  12. Functional Differences between Human NKp44(-) and NKp44(+) RORC(+) Innate Lymphoid Cells.

    PubMed

    Hoorweg, Kerim; Peters, Charlotte P; Cornelissen, Ferry; Aparicio-Domingo, Patricia; Papazian, Natalie; Kazemier, Geert; Mjösberg, Jenny M; Spits, Hergen; Cupedo, Tom

    2012-01-01

    Human RORC(+) lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC(+) innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distinct subsets of human RORC(+) innate lymphoid cells are enriched for secretion of IL-17a or IL-22. Both subsets have an activated phenotype and can be distinguished based on the presence or absence of the natural cytotoxicity receptor NKp44. NKp44(+) IL-22 producing cells are present in tonsils while NKp44(-) IL-17a producing cells are present in fetal developing lymph nodes. Development of human intestinal NKp44(+) ILC is a programmed event that is independent of bacterial colonization and these cells colonize the fetal intestine during the first trimester. In the adult intestine, NKp44(+) ILC are the main ILC subset producing IL-22. NKp44(-) ILC remain present throughout adulthood in peripheral non-inflamed lymph nodes as resting, non-cytokine producing cells. However, upon stimulation lymph node ILC can swiftly initiate cytokine transcription suggesting that secondary human lymphoid organs may function as a reservoir for innate lymphoid cells capable of participating in inflammatory responses.

  13. Zika Virus Infects Early- and Midgestation Human Maternal Decidual Tissues, Inducing Distinct Innate Tissue Responses in the Maternal-Fetal Interface.

    PubMed

    Weisblum, Yiska; Oiknine-Djian, Esther; Vorontsov, Olesya M; Haimov-Kochman, Ronit; Zakay-Rones, Zichria; Meir, Karen; Shveiky, David; Elgavish, Sharona; Nevo, Yuval; Roseman, Moshe; Bronstein, Michal; Stockheim, David; From, Ido; Eisenberg, Iris; Lewkowicz, Aya A; Yagel, Simcha; Panet, Amos; Wolf, Dana G

    2017-02-15

    Zika virus (ZIKV) has emerged as a cause of congenital brain anomalies and a range of placenta-related abnormalities, highlighting the need to unveil the modes of maternal-fetal transmission. The most likely route of vertical ZIKV transmission is via the placenta. The earliest events of ZIKV transmission in the maternal decidua, representing the maternal uterine aspect of the chimeric placenta, have remained unexplored. Here, we show that ZIKV replicates in first-trimester human maternal-decidual tissues grown ex vivo as three-dimensional (3D) organ cultures. An efficient viral spread in the decidual tissues was demonstrated by the rapid upsurge and continued increase of tissue-associated ZIKV load and titers of infectious cell-free virus progeny, released from the infected tissues. Notably, maternal decidual tissues obtained at midgestation remained similarly susceptible to ZIKV, whereas fetus-derived chorionic villi demonstrated reduced ZIKV replication with increasing gestational age. A genome-wide transcriptome analysis revealed that ZIKV substantially upregulated the decidual tissue innate immune responses. Further comparison of the innate tissue response patterns following parallel infections with ZIKV and human cytomegalovirus (HCMV) revealed that unlike HCMV, ZIKV did not induce immune cell activation or trafficking responses in the maternal-fetal interface but rather upregulated placental apoptosis and cell death molecular functions. The data identify the maternal uterine aspect of the human placenta as a likely site of ZIKV transmission to the fetus and further reveal distinct patterns of innate tissue responses to ZIKV. Our unique experimental model and findings could further serve to study the initial stages of congenital ZIKV transmission and pathogenesis and evaluate the effect of new therapeutic interventions. In view of the rapid spread of the current ZIKV epidemic and the severe manifestations of congenital ZIKV infection, it is crucial to learn the fundamental mechanisms of viral transmission from the mother to the fetus. Our studies of ZIKV infection in the authentic tissues of the human maternal-fetal interface unveil a route of transmission whereby virus originating from the mother could reach the fetal compartment via efficient replication within the maternal decidual aspect of the placenta, coinhabited by maternal and fetal cells. The identified distinct placental tissue innate immune responses and damage pathways could provide a mechanistic basis for some of the placental developmental abnormalities associated with ZIKV infection. The findings in the unique model of the human decidua should pave the way to future studies examining the interaction of ZIKV with decidual immune cells and to evaluation of therapeutic interventions aimed at the earliest stages of transmission. Copyright © 2017 American Society for Microbiology.

  14. Tracing of the fecal microbiota of commercial pigs at five growth stages from birth to shipment.

    PubMed

    Han, Geon Goo; Lee, Jun-Yeong; Jin, Gwi-Deuk; Park, Jongbin; Choi, Yo Han; Kang, Sang-Kee; Chae, Byung Jo; Kim, Eun Bae; Choi, Yun-Jaie

    2018-04-16

    The intestinal microbiota affect various physiological traits of host animals such as brain development, obesity, age, and the immune system. In the swine industry, understanding the relationship between intestinal microbiota and growth stage is essential because growth stage is directly related to the feeding system of pigs, thus we studied the intestinal microbiota of 32 healthy pigs across five sows at 10, 21, 63, 93, and 147 d of ages. The intestinal microbiota were altered with growth of pigs and were separated into three distinct clusters. The relative abundance of several phyla and genera were significantly different between growth stages. We observed co-occurrence pattern of the intestinal microbiota at each growth stage. In addition, we predicted the functions of the intestinal microbiota and confirmed that several KEGG pathways were significantly different between growth stages. We also explored the relationship between the intestinal microbiota and innate factors such as the maternal effect and gender. When pigs were young, innate factors affected on construction of intestinal microbiota, however this tendency was disappeared with growth. Our findings broaden the understanding of microbial ecology, and the results will be used as a reference for investigating host-microbe interactions in the swine industry.

  15. Plasticity and Awareness of Bodily Distortion

    PubMed Central

    Zantedeschi, Marta

    2016-01-01

    Knowledge of the body is filtered by perceptual information, recalibrated through predominantly innate stored information, and neurally mediated by direct sensory motor information. Despite multiple sources, the immediate prediction, construction, and evaluation of one's body are distorted. The origins of such distortions are unclear. In this review, we consider three possible sources of awareness that inform body distortion. First, the precision in the body metric may be based on the sight and positioning sense of a particular body segment. This view provides information on the dual nature of body representation, the reliability of a conscious body image, and implicit alterations in the metrics and positional correspondence of body parts. Second, body awareness may reflect an innate organizational experience of unity and continuity in the brain, with no strong isomorphism to body morphology. Third, body awareness may be based on efferent/afferent neural signals, suggesting that major body distortions may result from changes in neural sensorimotor experiences. All these views can be supported empirically, suggesting that body awareness is synthesized from multimodal integration and the temporal constancy of multiple body representations. For each of these views, we briefly discuss abnormalities and therapeutic strategies for correcting the bodily distortions in various clinical disorders. PMID:27630779

  16. Dissecting and Targeting Latent Metastasis

    DTIC Science & Technology

    2015-09-01

    distinct class of stem-like cancer cells , which primed to enter quiescence and evade innate immunity after infiltrating distant organs. LCC cells express...state and actively silencing WNT signaling, LCC cells can enter quiescence and evade innate immunity to remain latent for extended periods. These...mutation in Foxn1 renders the mice athymic, severely blunting the maturation of effector T cells but preserving innate immunity components including

  17. Tumor-Associated Neutrophils in Human Lung Cancer

    DTIC Science & Technology

    2017-10-01

    tumor inflammation, anti-tumor neutrophils, anti-tumor innate immune response. anti-tumor adaptive immune response, neutrophil and T cell interaction...Ottonello, 1992; van Egmond and Bakema, 2013) and by producing factors to recruit and acti- vate cells of the innate and adaptive immune system...dependent cell -mediated cytotoxicity (ADCC) [16], (iii) produce factors to recruit and activate cells of the innate and adaptive immune systems [17], and

  18. Acute and Subacute Oral Toxicity of Periodate in Rats

    DTIC Science & Technology

    2014-11-17

    presence of decreased TSH, a pattern associated with uremia. Sodium periodate exposed rats exhibited both activation of the innate immune system and...associated with kidney disease are characterized by activation of the innate immune system coupled with immune deficiency. Sodium periodate exposed rats...exhibited both activation of the innate immune system and lymphocyte depletion; however, the pattern of effects was more indicative of a stress leukogram

  19. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3.

    PubMed

    Song, Jing; Win, Joe; Tian, Miaoying; Schornack, Sebastian; Kaschani, Farnusch; Ilyas, Muhammad; van der Hoorn, Renier A L; Kamoun, Sophien

    2009-02-03

    Current models of plant-pathogen interactions stipulate that pathogens secrete effector proteins that disable plant defense components known as virulence targets. Occasionally, the perturbations caused by these effectors trigger innate immunity via plant disease resistance proteins as described by the "guard hypothesis." This model is nicely illustrated by the interaction between the fungal plant pathogen Cladosporium fulvum and tomato. C. fulvum secretes a protease inhibitor Avr2 that targets the tomato cysteine protease Rcr3(pim). In plants that carry the resistance protein Cf2, Rcr3(pim) is required for resistance to C. fulvum strains expressing Avr2, thus fulfilling one of the predictions of the guard hypothesis. Another prediction of the guard hypothesis has not yet been tested. Considering that virulence targets are important components of defense, different effectors from unrelated pathogens are expected to evolve to disable the same host target. In this study we confirm this prediction using a different pathogen of tomato, the oomycete Phytophthora infestans that is distantly related to fungi such as C. fulvum. This pathogen secretes an array of protease inhibitors including EPIC1 and EPIC2B that inhibit tomato cysteine proteases. Here we show that, similar to Avr2, EPIC1 and EPIC2B bind and inhibit Rcr3(pim). However, unlike Avr2, EPIC1 and EPIC2B do not trigger hypersensitive cell death or defenses on Cf-2/Rcr3(pim) tomato. We also found that the rcr3-3 mutant of tomato that carries a premature stop codon in the Rcr3 gene exhibits enhanced susceptibility to P. infestans, suggesting a role for Rcr3(pim) in defense. In conclusion, our findings fulfill a key prediction of the guard hypothesis and suggest that the effectors Avr2, EPIC1, and EPIC2B secreted by two unrelated pathogens of tomato target the same defense protease Rcr3(pim). In contrast to C. fulvum, P. infestans appears to have evolved stealthy effectors that carry inhibitory activity without triggering plant innate immunity.

  20. Mathematical Models for Immunology: Current State of the Art and Future Research Directions.

    PubMed

    Eftimie, Raluca; Gillard, Joseph J; Cantrell, Doreen A

    2016-10-01

    The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years.

  1. Costs and Difficulties of Interstellar 'Messaging' and the Need for International Debate on Potential Risks

    NASA Astrophysics Data System (ADS)

    Billingham, J.; Benford, James

    We advocate international consultations on societal and technical issues to address the risk of Messaging to Extraterrestrial Intelligence (METI) transmissions, and a moratorium on future transmissions until such issues are resolved. Instead, we recommend continuing to conduct SETI by listening, with no innate risk, while using powerful new search systems to give a better total probability of detection of beacons and messages than METI for the same cost, and with no need for a long obligatory wait for a response. Realistically, beacons are costly. In light of recent work on the economics of contact by radio, we offer alternatives to the current standard methods of SETI searches. METI transmissions to date are faint and very unlikely to be detected, even by nearby stars. We show that historical leakage from Earth has been undetectable for Earth-scale receiver systems. Future space microwave and laser power systems will likely be more detectable.

  2. Bitter or not? BitterPredict, a tool for predicting taste from chemical structure.

    PubMed

    Dagan-Wiener, Ayana; Nissim, Ido; Ben Abu, Natalie; Borgonovo, Gigliola; Bassoli, Angela; Niv, Masha Y

    2017-09-21

    Bitter taste is an innately aversive taste modality that is considered to protect animals from consuming toxic compounds. Yet, bitterness is not always noxious and some bitter compounds have beneficial effects on health. Hundreds of bitter compounds were reported (and are accessible via the BitterDB http://bitterdb.agri.huji.ac.il/dbbitter.php ), but numerous additional bitter molecules are still unknown. The dramatic chemical diversity of bitterants makes bitterness prediction a difficult task. Here we present a machine learning classifier, BitterPredict, which predicts whether a compound is bitter or not, based on its chemical structure. BitterDB was used as the positive set, and non-bitter molecules were gathered from literature to create the negative set. Adaptive Boosting (AdaBoost), based on decision trees machine-learning algorithm was applied to molecules that were represented using physicochemical and ADME/Tox descriptors. BitterPredict correctly classifies over 80% of the compounds in the hold-out test set, and 70-90% of the compounds in three independent external sets and in sensory test validation, providing a quick and reliable tool for classifying large sets of compounds into bitter and non-bitter groups. BitterPredict suggests that about 40% of random molecules, and a large portion (66%) of clinical and experimental drugs, and of natural products (77%) are bitter.

  3. Group 2 innate lymphoid cells in disease

    PubMed Central

    2016-01-01

    Abstract Group 2 innate lymphoid cells (ILC2) are now recognized as an important innate source of type-2 effector cytokines. Although initially associated with mucosal tissues, it is clear that ILC2 are present in diverse anatomical locations. The function of ILC2 at these sites is equally varied, and although ILC2 represent a relatively minor population, they are fundamentally important regulators of innate and adaptive immune processes. As such, there is much interest to understand the role of ILC2 in diseases with a type-2 inflammatory component. This review explores the known roles of ILC2 in disease, and the diseases that show associations or other strong evidence for the involvement of ILC2. PMID:26306498

  4. Through-Thickness Residual Stress Profiles in Austenitic Stainless Steel Welds: A Combined Experimental and Prediction Study

    NASA Astrophysics Data System (ADS)

    Mathew, J.; Moat, R. J.; Paddea, S.; Francis, J. A.; Fitzpatrick, M. E.; Bouchard, P. J.

    2017-12-01

    Economic and safe management of nuclear plant components relies on accurate prediction of welding-induced residual stresses. In this study, the distribution of residual stress through the thickness of austenitic stainless steel welds has been measured using neutron diffraction and the contour method. The measured data are used to validate residual stress profiles predicted by an artificial neural network approach (ANN) as a function of welding heat input and geometry. Maximum tensile stresses with magnitude close to the yield strength of the material were observed near the weld cap in both axial and hoop direction of the welds. Significant scatter of more than 200 MPa was found within the residual stress measurements at the weld center line and are associated with the geometry and welding conditions of individual weld passes. The ANN prediction is developed in an attempt to effectively quantify this phenomenon of `innate scatter' and to learn the non-linear patterns in the weld residual stress profiles. Furthermore, the efficacy of the ANN method for defining through-thickness residual stress profiles in welds for application in structural integrity assessments is evaluated.

  5. Control of antiviral immunity by pattern recognition and the microbiome

    PubMed Central

    Pang, Iris K.; Iwasaki, Akiko

    2013-01-01

    Summary Human skin and mucosal surfaces are in constant contact with resident and invasive microbes. Recognition of microbial products by receptors of the innate immune system triggers rapid innate defense and transduces signals necessary for initiating and maintaining the adaptive immune responses. Microbial sensing by innate pattern recognition receptors is not restricted to pathogens. Rather, proper development, function, and maintenance of innate and adaptive immunity rely on continuous recognition of products derived from the microorganisms indigenous to the internal and external surfaces of mammalian host. Tonic immune activation by the resident microbiota governs host susceptibility to intestinal and extra-intestinal infections including those caused by viruses. This review highlights recent developments in innate viral recognition leading to adaptive immunity, and discusses potential link between viruses, microbiota and the host immune system. Further, we discuss the possible roles of microbiome in chronic viral infection and pathogenesis of autoimmune disease, and speculate on the benefit for probiotic therapies against such diseases. PMID:22168422

  6. Cancer Immunosurveillance by Tissue-resident Innate Lymphoid Cells and Innate-like T Cells

    PubMed Central

    Dadi, Saïda; Chhangawala, Sagar; Whitlock, Benjamin M.; Franklin, Ruth A.; Luo, Chong T.; Oh, Soyoung A.; Toure, Ahmed; Pritykin, Yuri; Huse, Morgan; Leslie, Christina S.; Li, Ming O.

    2016-01-01

    Summary Malignancy can be suppressed by the immune system in a process termed immunosurveillance. However, to what extent immunosurveillance occurs in spontaneous cancers and the composition of participating cell types remain obscure. Here we show that cell transformation triggers a tissue-resident lymphocyte response in oncogene-induced murine cancer models. Non-circulating cytotoxic lymphocytes, derived from innate, TCRαβ and TCRγδ lineages, expand in early tumors. Characterized by high expression of NK1.1, CD49a and CD103, these cells share a gene expression signature distinct from those of conventional NK cells, T cells and invariant NKT cells. Generation of these lymphocytes is dependent on the cytokine IL-15, but not the transcription factor Nfil3 that is required for the differentiation of tumor-infiltrating NK cells, and IL-15, but not Nfil3, deficiency results in accelerated tumor growth. These findings reveal a tumor-elicited immunosurveillance mechanism that engages unconventional type 1-like innate lymphoid cells and type 1 innate-like T cells. PMID:26806130

  7. Innate lymphoid cells: the new kids on the block.

    PubMed

    Withers, David R; Mackley, Emma C; Jones, Nick D

    2015-08-01

    The purpose of this article is to review recent advances in our understanding of innate lymphoid cell function and to speculate on how these cells may become activated and influence the immune response to allogeneic tissues and cells following transplantation. Innate lymphoid cells encompass several novel cell types whose wide-ranging roles in the immune system are only now being uncovered. Through cytokine production, cross-talk with both haematopoietic and nonhaematopoietic populations and antigen presentation to T cells, these cells have been shown to be key regulators in maintaining tissue integrity, as well as initiating and then sustaining immune responses. It is now clear that innate lymphoid cells markedly contribute to immune responses and tissue repair in a number of disease contexts. Although experimental and clinical data on the behaviour of these cells following transplantation are scant, it is highly likely that innate lymphoid cells will perform similar functions in the alloimmune response following transplantation and therefore may be potential therapeutic targets for manipulation to prevent allograft rejection.

  8. The role of neuroimmune signaling in alcoholism.

    PubMed

    Crews, Fulton T; Lawrimore, Colleen J; Walter, T Jordan; Coleman, Leon G

    2017-08-01

    Alcohol consumption and stress increase brain levels of known innate immune signaling molecules. Microglia, the innate immune cells of the brain, and neurons respond to alcohol, signaling through Toll-like receptors (TLRs), high-mobility group box 1 (HMGB1), miRNAs, pro-inflammatory cytokines and their associated receptors involved in signaling between microglia, other glia and neurons. Repeated cycles of alcohol and stress cause a progressive, persistent induction of HMGB1, miRNA and TLR receptors in brain that appear to underlie the progressive and persistent loss of behavioral control, increased impulsivity and anxiety, as well as craving, coupled with increasing ventral striatal responses that promote reward seeking behavior and increase risk of developing alcohol use disorders. Studies employing anti-oxidant, anti-inflammatory, anti-depressant, and innate immune antagonists further link innate immune gene expression to addiction-like behaviors. Innate immune molecules are novel targets for addiction and affective disorders therapies. This article is part of the Special Issue entitled "Alcoholism". Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Interplay between Candida albicans and the Mammalian Innate Host Defense

    PubMed Central

    Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan

    2012-01-01

    Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867

  10. Regulation of Mitochondria Function by TRAF3 in B Lymphocytes and B Cell Malignancies

    DTIC Science & Technology

    2015-10-01

    1, 2014. 2. Chair, Block Symposia of Innate Immune Responses in Monocytes/Macrophages, Dendritic Cells , and Myeloid Cells , the Annual Meeting of...Xie P. TRAF3-mediated regulation of innate immunity and inflammation. Research Forum, Department of Cell Biology and Neuroscience, Rutgers...TRAF3: a regulator of innate immunity and inflammation. Department of Cell & Molecular Physiology, University of Loyola, Chicago, IL. Aug. 27, 2014 9

  11. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events

    PubMed Central

    Llewellyn, Amy; Foey, Andrew

    2017-01-01

    There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology. PMID:29065562

  12. Innate Immunity and Resistance to Tolerogenesis in Allotransplantation

    PubMed Central

    Benichou, Gilles; Tonsho, Makoto; Tocco, Georges; Nadazdin, Ognjenka; Madsen, Joren C.

    2012-01-01

    The development of immunosuppressive drugs to control adaptive immune responses has led to the success of transplantation as a therapy for end-stage organ failure. However, these agents are largely ineffective in suppressing components of the innate immune system. This distinction has gained in clinical significance as mounting evidence now indicates that innate immune responses play important roles in the acute and chronic rejection of whole organ allografts. For instance, whereas clinical interest in natural killer (NK) cells was once largely confined to the field of bone marrow transplantation, recent findings suggest that these cells can also participate in the acute rejection of cardiac allografts and prevent tolerance induction. Stimulation of Toll-like receptors (TLRs), another important component of innate immunity, by endogenous ligands released in response to ischemia/reperfusion is now known to cause an inflammatory milieu favorable to graft rejection and abrogation of tolerance. Emerging data suggest that activation of complement is linked to acute rejection and interferes with tolerance. In summary, the conventional wisdom that the innate immune system is of little importance in whole organ transplantation is no longer tenable. The addition of strategies that target TLRs, NK cells, complement, and other components of the innate immune system will be necessary to eventually achieve long-term tolerance to human allograft recipients. PMID:22566954

  13. Innate Immune Cytokines, Fibroblast Phenotypes, and Regulation of Extracellular Matrix in Lung.

    PubMed

    Richards, Carl D

    2017-02-01

    Chronic inflammation can be caused by adaptive immune responses in autoimmune and allergic conditions, driven by a T lymphocyte subset balance (TH1, TH2, Th17, Th22, and/or Treg) and skewed cellular profiles in an antigen-specific manner. However, several chronic inflammatory diseases have no clearly defined adaptive immune mechanisms that drive chronicity. These conditions include those that affect the lung such as nonatopic asthma or idiopathic pulmonary fibrosis comprising significant health problems. The remodeling of extracellular matrix (ECM) causes organ dysfunction, and it is largely generated by fibroblasts as the major cell controlling net ECM. As such, these are potential targets of treatment approaches in the context of ECM pathology. Fibroblast phenotypes contribute to ECM and inflammatory cell accumulation, and they are integrated into chronic disease mechanisms including cancer. Evidence suggests that innate cytokine responses may be critical in nonallergic/nonautoimmune disease, and they enable environmental agent exposure mechanisms that are independent of adaptive immunity. Innate immune cytokines derived from macrophage subsets (M1/M2) and innate lymphoid cell (ILC) subsets can directly regulate fibroblast function. We also suggest that STAT3-activating gp130 cytokines can sensitize fibroblasts to the innate cytokine milieu to drive phenotypes and exacerbate existing adaptive responses. Here, we review evidence exploring innate cytokine regulation of fibroblast behavior.

  14. Viral degradasome hijacks mitochondria to suppress innate immunity

    PubMed Central

    Goswami, Ramansu; Majumdar, Tanmay; Dhar, Jayeeta; Chattopadhyay, Saurabh; Bandyopadhyay, Sudip K; Verbovetskaya, Valentina; Sen, Ganes C; Barik, Sailen

    2013-01-01

    The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named “NS-degradasome” (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity. PMID:23877405

  15. Herpes simplex virus-2 in the genital mucosa: insights into the mucosal host response and vaccine development.

    PubMed

    Lee, Amanda J; Ashkar, Ali A

    2012-02-01

    Herpes simplex virus (HSV)-2 is the predominant cause of genital herpes and has been implicated in HIV infection and transmission. Thus far, vaccines developed against HSV-2 have been clinically ineffective in preventing infection. This review aims to summarize the innate and adaptive immune responses against HSV-2 and examines the current status of vaccine development. Both innate and adaptive immune responses are essential for an effective primary immune response and the generation of immunity. The innate response involves Toll-like receptors, natural killer cells, plasmacytoid dendritic cells, and type I, II, and III interferons. The adaptive response requires a balance between CD4+ and CD8+ T-cells for optimal viral clearance. T-regulatory cells may be involved, although their exact function has yet to be determined. Current vaccine development involves the use of HSV-2 peptides or attenuated/replication-defective HSV-2 to generate adaptive anti-HSV-2 immune responses, however the generation of innate responses may also be an important consideration. Although vaccine development has primarily focused on the adaptive response, arguments for innate involvement are emerging. A greater understanding of the innate and adaptive processes underlying the response to HSV-2 infection will provide the foundation for the development of an effective vaccine.

  16. Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis

    PubMed Central

    Qian, Yongqiang; Tan, Dun-Xian; Reiter, Russel J.; Shi, Haitao

    2015-01-01

    Melatonin is an important secondary messenger in plant innate immunity against the bacterial pathogen Pseudomonas syringe pv. tomato (Pst) DC3000 in the salicylic acid (SA)- and nitric oxide (NO)-dependent pathway. However, the metabolic homeostasis in melatonin-mediated innate immunity is unknown. In this study, comparative metabolomic analysis found that the endogenous levels of both soluble sugars (fructose, glucose, melibose, sucrose, maltose, galatose, tagatofuranose and turanose) and glycerol were commonly increased after both melatonin treatment and Pst DC3000 infection in Arabidopsis. Further studies showed that exogenous pre-treatment with fructose, glucose, sucrose, or glycerol increased innate immunity against Pst DC3000 infection in wild type (Col-0) Arabidopsis plants, but largely alleviated their effects on the innate immunity in SA-deficient NahG plants and NO-deficient mutants. This indicated that SA and NO are also essential for sugars and glycerol-mediated disease resistance. Moreover, exogenous fructose, glucose, sucrose and glycerol pre-treatments remarkably increased endogenous NO level, but had no significant effect on the endogenous melatonin level. Taken together, this study highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in SA and NO-dependent pathway in Arabidopsis. PMID:26508076

  17. Recent advances targeting innate immunity-mediated therapies against HIV-1 infection.

    PubMed

    Shankar, Esaki Muthu; Velu, Vijayakumar; Vignesh, Ramachandran; Vijayaraghavalu, Sivakumar; Rukumani, Devi Velayuthan; Sabet, Negar Shafiei

    2012-08-01

    Early defence mechanisms of innate immunity respond rapidly to infection against HIV-1 in the genital mucosa. Additionally, innate immunity optimises effective adaptive immune responses against persistent HIV infection. Recent research has highlighted the intrinsic roles of apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G, tripartite motif-containing protein 5, tetherin, sterile α-motif and histidine/aspartic acid domain-containing protein 1 in restricting HIV-1 replication. Likewise, certain endogenously secreted antimicrobial peptides, namely α/β/θ-defensins, lactoferrins, secretory leukocyte protease inhibitor, trappin-2/elafin and macrophage inflammatory protein-3α are reportedly protective. Whilst certain factors directly inhibit HIV, others can be permissive. Interferon-λ3 exerts an anti-HIV function by activating Janus kinase-signal transducer and activator of transcription-mediated innate responses. Morphine has been found to impair intracellular innate immunity, contributing to HIV establishment in macrophages. Interestingly, protegrin-1 could be used therapeutically to inhibit early HIV-1 establishment. Moreover, chloroquine inhibits plasmacytoid dendritic cell activation and improves effective T-cell responses. This minireview summarizes the recently identified targets for innate immunity-mediated therapies and outlines the challenges that lie ahead in improving treatment of HIV infection. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.

  18. Innate immunity in the small intestine

    PubMed Central

    Santaolalla, Rebeca; Abreu, Maria T.

    2012-01-01

    Purpose of review This manuscript reviews the most recent publications on innate immunity in the small intestine. We will go over the innate immune receptors that act as sensors of microbial presence or cell injury, Paneth cells as the main epithelial cell type that secrete antimicrobial peptides, and mucosal production of IgA. In addition, we will give an update on examples of imbalance of the innate immune response resulting in clinical disease with the most relevant example being Crohn’s disease. Recent findings Toll-like receptors (TLRs) are involved in B-cell homing to the intestine, rejection of small intestinal allografts and recruitment of mast cells. The TLR adaptor TRIF is necessary to activate innate immunity after Yersinia enterocolitica infection. Moreover, MyD88 is required to keep the intestinal microbiota under control and physically separated from the epithelium and RegIIIγ is responsible for the bacterial segregation from the lining epithelial cells. In Crohn’s disease, ATG16L1 T300A variant promotes a pro-inflammatory response; and miR-196 downregulates a protective IRGM polymorphism leading to impaired clearance of adherent Escherichia coli in the intestine. Summary The intestine is continuously exposed to dietary and microbial antigens. The host has to maintain intestinal homeostasis to keep the commensal and pathogenic bacteria under control. Some of the mechanisms to do so are by expression of innate immune receptors, production of antimicrobial peptides, secretion of IgA or autophagy of intracellular bacteria. Unfortunately, in some cases the innate immune response fails to protect the host and chronic inflammation, transplant rejection, or other pathologies may occur. PMID:22241076

  19. Intermittent Metronomic Drug Schedule Is Essential for Activating Antitumor Innate Immunity and Tumor Xenograft Regression12

    PubMed Central

    Chen, Chong-Sheng; Doloff, Joshua C; Waxman, David J

    2014-01-01

    Metronomic chemotherapy using cyclophosphamide (CPA) is widely associated with antiangiogenesis; however, recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered intermittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA administered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished, by a moderate (25%) reduction in CPA dose. Moreover, an ∼20% increase in CPA dose eliminated the partial tumor regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus, metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from optimization designed to maximize antitumor immune responses. PMID:24563621

  20. CXCR3 expression defines a novel subset of innate CD8+ T cells that enhance immunity against bacterial infection and cancer upon stimulation with IL-15

    PubMed Central

    Oghumu, Steve; Terrazas, Cesar A.; Varikuti, Sanjay; Kimble, Jennifer; Vadia, Stephen; Yu, Lianbo; Seveau, Stephanie; Satoskar, Abhay R.

    2015-01-01

    Innate CD8+ T cells are a heterogeneous population with developmental pathways distinct from conventional CD8+ T cells. However, their biology, classification, and functions remain incompletely understood. We recently demonstrated the existence of a novel population of chemokine (C-X-C motif) receptor 3 (CXCR3)-positive innate CD8+ T cells. Here, we investigated the functional properties of this subset and identified effector molecules and pathways which mediate their function. Adoptive transfer of IL-15 activated CXCR3+ innate CD8+ T cells conferred increased protection against Listeria monocytogenes infection in susceptible IFN-γ−/− mice compared with similarly activated CXCR3− subset. This was associated with enhanced proliferation and IFN-γ production in CXCR3+ cells. Further, CXCR3+ innate cells showed enhanced cytotoxicity against a tumor cell line in vitro. In depth analysis of the CXCR3+ subset showed increased gene expression of Ccl5, Klrc1, CtsW, GP49a, IL-2Rβ, Atp5e, and Ly6c but reduced IFN-γR2 and Art2b. Ingenuity pathway analysis revealed an up-regulation of genes associated with T-cell activation, proliferation, cytotoxicity, and translational initiation in CXCR3+ populations. Our results demonstrate that CXCR3 expression in innate CD8+ T cells defines a subset with enhanced cytotoxic potential and protective antibacterial immune functions. Immunotherapeutic approaches against infectious disease and cancer could utilize CXCR3+ innate CD8+ T-cell populations as novel clinical intervention strategies.—Oghumu, S., Terrazas, C. A., Varikuti, S., Kimble, J., Vadia, S., Yu, L., Seveau, S., Satoskar, A. R. CXCR3 expression defines a novel subset of innate CD8+ T cells that enhance immunity against bacterial infection and cancer upon stimulation with IL-15. PMID:25466888

  1. Amygdala EphB2 Signaling Regulates Glutamatergic Neuron Maturation and Innate Fear.

    PubMed

    Zhu, Xiao-Na; Liu, Xian-Dong; Zhuang, Hanyi; Henkemeyer, Mark; Yang, Jing-Yu; Xu, Nan-Jie

    2016-09-28

    The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB-ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions in the postnatal developing brain. Copyright © 2016 the authors 0270-6474/16/3610151-12$15.00/0.

  2. Amygdala EphB2 Signaling Regulates Glutamatergic Neuron Maturation and Innate Fear

    PubMed Central

    Zhu, Xiao-Na; Liu, Xian-Dong; Zhuang, Hanyi; Henkemeyer, Mark

    2016-01-01

    The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. SIGNIFICANCE STATEMENT Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB–ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions in the postnatal developing brain. PMID:27683910

  3. Immune Responses to Bacillus Calmette–Guérin Vaccination: Why Do They Fail to Protect against Mycobacterium tuberculosis?

    PubMed Central

    Moliva, Juan I.; Turner, Joanne; Torrelles, Jordi B.

    2017-01-01

    Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is the current leading cause of death due to a single infectious organism. Although curable, the broad emergence of multi-, extensive-, extreme-, and total-drug resistant strains of M.tb has hindered eradication efforts of this pathogen. Furthermore, computational models predict a quarter of the world’s population is infected with M.tb in a latent state, effectively serving as the largest reservoir for any human pathogen with the ability to cause significant morbidity and mortality. The World Health Organization has prioritized new strategies for improved vaccination programs; however, the lack of understanding of mycobacterial immunity has made it difficult to develop new successful vaccines. Currently, Mycobacterium bovis bacillus Calmette–Guérin (BCG) is the only vaccine approved for use to prevent TB. BCG is highly efficacious at preventing meningeal and miliary TB, but is at best 60% effective against the development of pulmonary TB in adults and wanes as we age. In this review, we provide a detailed summary on the innate immune response of macrophages, dendritic cells, and neutrophils in response to BCG vaccination. Additionally, we discuss adaptive immune responses generated by BCG vaccination, emphasizing their specific contributions to mycobacterial immunity. The success of future vaccines against TB will directly depend on our understanding of mycobacterial immunity. PMID:28424703

  4. Why do animals differ in their susceptibility to geometrical illusions?

    PubMed

    Feng, Lynna C; Chouinard, Philippe A; Howell, Tiffani J; Bennett, Pauleen C

    2017-04-01

    In humans, geometrical illusions are thought to reflect mechanisms that are usually helpful for seeing the world in a predictable manner. These mechanisms deceive us given the right set of circumstances, correcting visual input where a correction is not necessary. Investigations of non-human animals' susceptibility to geometrical illusions have yielded contradictory results, suggesting that the underlying mechanisms with which animals see the world may differ across species. In this review, we first collate studies showing that different species are susceptible to specific illusions in the same or reverse direction as humans. Based on a careful assessment of these findings, we then propose several ecological and anatomical factors that may affect how a species perceives illusory stimuli. We also consider the usefulness of this information for determining whether sight in different species might be more similar to human sight, being influenced by contextual information, or to how machines process and transmit information as programmed. Future testing in animals could provide new theoretical insights by focusing on establishing dissociations between stimuli that may or may not alter perception in a particular species. This information could improve our understanding of the mechanisms behind illusions, but also provide insight into how sight is subjectively experienced by different animals, and the degree to which vision is innate versus acquired, which is difficult to examine in humans.

  5. The response of the anterior striatum during adult human vocal learning

    PubMed Central

    Leech, Robert; Iverson, Paul; Wise, Richard J. S.

    2014-01-01

    Research on mammals predicts that the anterior striatum is a central component of human motor learning. However, because vocalizations in most mammals are innate, much of the neurobiology of human vocal learning has been inferred from studies on songbirds. Essential for song learning is a pathway, the homolog of mammalian cortical-basal ganglia “loops,” which includes the avian striatum. The present functional magnetic resonance imaging (fMRI) study investigated adult human vocal learning, a skill that persists throughout life, albeit imperfectly given that late-acquired languages are spoken with an accent. Monolingual adult participants were scanned while repeating novel non-native words. After training on the pronunciation of half the words for 1 wk, participants underwent a second scan. During scanning there was no external feedback on performance. Activity declined sharply in left and right anterior striatum, both within and between scanning sessions, and this change was independent of training and performance. This indicates that adult speakers rapidly adapt to the novel articulatory movements, possibly by using motor sequences from their native speech to approximate those required for the novel speech sounds. Improved accuracy correlated only with activity in motor-sensory perisylvian cortex. We propose that future studies on vocal learning, using different behavioral and pharmacological manipulations, will provide insights into adult striatal plasticity and its potential for modification in both educational and clinical contexts. PMID:24805076

  6. Influenza-Omics and the Host Response: Recent Advances and Future Prospects

    PubMed Central

    Powell, Joshua D.; Waters, Katrina M.

    2017-01-01

    Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. The various-omics infection systems that include but are not limited to ferrets, mice, pigs, and even the controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infection outcomes. PMID:28604586

  7. Toll-like receptor-associated keratitis and strategies for its management.

    PubMed

    Kaur, Amandeep; Kumar, Vijay; Singh, Simranjeet; Singh, Joginder; Upadhyay, Niraj; Datta, Shivika; Singla, Sourav; Kumar, Virender

    2015-10-01

    Keratitis is an inflammatory condition, characterized by involvement of corneal tissues. Most recurrent challenge of keratitis is infection. Bacteria, virus, fungus and parasitic organism have potential to cause infection. TLR are an important class of protein which has a major role in innate immune response to combat with pathogens. In last past years, extensive research efforts have provided considerable abundance information regarding the role of TLR in various types of keratitis. This paper focuses to review the recent literature illustrating amoebic, bacterial, fungal and viral keratitis associated with Toll-like receptor molecules and summarize existing thoughts on pathogenesis and treatment besides future probabilities for prevention against TLR-associated keratitis.

  8. Influenza-Omics and the Host Response: Recent Advances and Future Prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Joshua D.; Waters, Katrina M.

    Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. Here, the various –omics infection systems that include but are not limited to ferrets, mice, pigs and even controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infectionmore » outcomes.« less

  9. Influenza-Omics and the Host Response: Recent Advances and Future Prospects

    DOE PAGES

    Powell, Joshua D.; Waters, Katrina M.

    2017-06-10

    Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. Here, the various –omics infection systems that include but are not limited to ferrets, mice, pigs and even controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infectionmore » outcomes.« less

  10. A Synergistic Transcriptional Regulation of Olfactory Genes Drives Blood-Feeding Associated Complex Behavioral Responses in the Mosquito Anopheles culicifacies.

    PubMed

    Das De, Tanwee; Thomas, Tina; Verma, Sonia; Singla, Deepak; Chauhan, Charu; Srivastava, Vartika; Sharma, Punita; Kumari, Seena; Tevatiya, Sanjay; Rani, Jyoti; Hasija, Yasha; Pandey, Kailash C; Dixit, Rajnikant

    2018-01-01

    Decoding the molecular basis of host seeking and blood feeding behavioral evolution/adaptation in the adult female mosquitoes may provide an opportunity to design new molecular strategy to disrupt human-mosquito interactions. Although there is a great progress in the field of mosquito olfaction and chemo-detection, little is known about the sex-specific evolution of the specialized olfactory system of adult female mosquitoes that enables them to drive and manage the complex blood-feeding associated behavioral responses. A comprehensive RNA-Seq analysis of prior and post blood meal olfactory system of An. culicifacies mosquito revealed a minor but unique change in the nature and regulation of key olfactory genes that may play a pivotal role in managing diverse behavioral responses. Based on age-dependent transcriptional profiling, we further demonstrated that adult female mosquito's chemosensory system gradually learned and matured to drive the host-seeking and blood feeding behavior at the age of 5-6 days. A time scale expression analysis of Odorant Binding Proteins (OBPs) unravels unique association with a late evening to midnight peak biting time. Blood meal-induced switching of unique sets of OBP genes and Odorant Receptors (Ors) expression coincides with the change in the innate physiological status of the mosquitoes. Blood meal follows up experiments further provide enough evidence that how a synergistic and concurrent action of OBPs-Ors may drive "prior and post blood meal" associated complex behavioral events. A dominant expression of two sensory appendages proteins (SAP-1 & SAP2) in the legs of An. culicifacies suggests that this mosquito species may draw an extra advantage of having more sensitive appendages than An. stephensi , an urban malarial vector in the Indian subcontinents. Finally, our molecular modeling analysis predicts crucial amino acid residues for future functional characterization of the sensory appendages proteins which may play a central role in regulating multiple behaviors of An. culicifacies mosquito. SIGNIFICANCE   Evolution and adaptation of blood feeding behavior not only favored the reproductive success of adult female mosquitoes but also make them important disease-transmitting vectors. An environmental exposure after emergence may favor the broadly tuned olfactory system of mosquitoes to drive complex behavioral responses. But, how these olfactory derived genetic factors manage female specific "pre and post" blood meal associated complex behavioral responses are not well known. Our findings suggest that a synergistic action of olfactory factors may govern an innate to prime learning strategy to facilitate rapid blood meal acquisition and downstream behavioral activities. A species-specific transcriptional profiling and an in-silico analysis predict that "sensory appendages protein" may be a unique target to design disorientation strategy against the mosquito Anopheles culicifacies .

  11. Toll-like receptor signaling: a perspective to develop vaccine against leishmaniasis.

    PubMed

    Singh, Rakesh K; Srivastava, Ankita; Singh, Nisha

    2012-09-06

    The toll-like receptors (TLRs) are the sentinel factor of the innate immunity, which are essential for host defense. These receptors detect the presence of conserved molecular patterns of potentially pathogenic microorganisms and contribute in both, cellular as well as humoral immune responses. Leishmania is an intracellular pathogen that silently invades host immune system. After phagocytosis, it divides and proliferates in the harmful environment of host macrophages by down-regulating its vital effector functions. In leishmaniasis, the outcome of the infection basically relies on the skewed balance between Th1/Th2 immune responses. Lots of work have been done and on progress but still characterization of either preventive or prophylactic candidate antigen/s is far from satisfactory. How does Leishmania regulate host innate immune system? Still it is unanswered. TLRs play very important role during inflammatory process of various diseases such as cancer, bacterial and viral infections but TLR signaling is comparatively less explained in leishmanial infection. In the context to Th1/Th2 dichotomy, identification of leishmanial antigens that modulate toll-like receptor signaling will certainly help in the development of future vaccine. This review will initially describe global properties of TLRs, and later will discuss their role in the pathogenesis of leishmaniasis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Toll-like receptor-4 signaling pathway in aorta aging and diseases: "its double nature".

    PubMed

    Balistreri, Carmela Rita; Ruvolo, Giovanni; Lio, Domenico; Madonna, Rosalinda

    2017-09-01

    Recent advances in the field of innate immunity have revealed a complex role of innate immune signaling pathways in both tissue homeostasis and disease. Among them, the Toll-like receptor 4 (TLR-4) pathways has been linked to various pathophysiological conditions, such as cardiovascular diseases (CVDs). This has been interrogated by developing multiple laboratory tools that have shown in animal models and clinical conditions, the involvement of the TLR-4 signaling pathway in the pathophysiology of different CVDs, such as atherosclerosis, ischemic heart disease, heart failure, ischemia-reperfusion injury and aorta aneurysm. Among these, aorta aneurysm, a very complex pathological condition with uncertain etiology and fatal complications (i.e. dissection and rupture), has been associated with the occurrence of high risk cardiovascular conditions, including thrombosis and embolism. In this review, we discuss the possible role of TLR-4 signaling pathway in the development of aorta aneurysm, considering the emerging evidence from ongoing investigations. Our message is that emphasizing the role of TLR-4 signaling pathway in aorta aneurysm may serve as a starting point for future studies, leading to a better understanding of the pathophysiological basis and perhaps the effective treatment of this difficult human disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Immunology in the liver--from homeostasis to disease.

    PubMed

    Heymann, Felix; Tacke, Frank

    2016-02-01

    The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.

  14. Chimeric antigen receptor-engineered natural killer and natural killer T cells for cancer immunotherapy.

    PubMed

    Bollino, Dominique; Webb, Tonya J

    2017-09-01

    Natural killer (NK) cells of the innate immune system and natural killer T (NKT) cells, which have roles in both the innate and adaptive responses, are unique lymphocyte subsets that have similarities in their functions and phenotypes. Both cell types can rapidly respond to the presence of tumor cells and participate in immune surveillance and antitumor immune responses. This has incited interest in the development of novel cancer therapeutics based on NK and NKT cell manipulation. Chimeric antigen receptors (CARs), generated through the fusion of an antigen-binding region of a monoclonal antibody or other ligand to intracellular signaling domains, can enhance lymphocyte targeting and activation toward diverse malignancies. Most of the CAR studies have focused on their expression in T cells; however, the functional heterogeneity of CAR T cells limits their therapeutic potential and is associated with toxicity. CAR-modified NK and NKT cells are becoming more prevalent because they provide a method to direct these cells more specifically to target cancer cells, with less risk of adverse effects. This review will outline current NK and NKT cell CAR constructs and how they compare to conventional CAR T cells, and discuss future modifications that can be explored to advance adoptive cell transfer of NK and NKT cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Alpha-2-macroglobulin loaded microcapsules enhance human leukocyte functions and innate immune response

    PubMed Central

    Canova, Donata Federici; Pavlov, Anton M.; Norling, Lucy V.; Gobbetti, Thomas; Brunelleschi, Sandra; Le Fauder, Pauline; Cenac, Nicolas; Sukhorukov, Gleb B.; Perretti, Mauro

    2015-01-01

    Synthetic microstructures can be engineered to deliver bioactive compounds impacting on their pharmacokinetics and pharmacodynamics. Herein, we applied dextran-based layer-by-layer (LbL) microcapsules to deliver alpha-2-macroglobulin (α2MG), a protein with modulatory properties in inflammation. Extending recent observations made with dextran-microcapsules loaded with α2MG in experimental sepsis, we focused on the physical and chemical characteristics of these microstructures and determined their biology on rodent and human cells. We report an efficient encapsulation of α2MG into microcapsules, which enhanced i) human leukocyte recruitment to inflamed endothelium and ii) human macrophage phagocytosis: in both settings microcapsules were more effective than soluble α2MG or empty microcapsules (devoid of active protein). Translation of these findings revealed that intravenous administration of α2MG-microcapsules (but not empty microcapsules) promoted neutrophil migration into peritoneal exudates and augmented macrophage phagocytic functions, the latter response being associated with alteration of bioactive lipid mediators as assessed by mass spectrometry. The present study indicates that microencapsulation can be an effective strategy to harness the complex biology of α2MG with enhancing outcomes on fundamental processes of the innate immune response paving the way to potential future development in the control of sepsis. PMID:26385167

  16. Induction of Food Allergy in Mice by Allergen Inhalation

    DTIC Science & Technology

    2016-12-01

    innate lymphoid cells , basophils and/or mast cells 293 may be required to maintain a sufficient type 2 cytokine response to permit FA 294 persistence...stimulation of 292 type 2 cytokine production by type 2 innate lymphoid cells , basophils and/or mast cells 293 may be required to maintain a sufficient...Artis D. Welcome to the neighborhood: epithelial cell -385 derived cytokines license innate and adaptive immune responses at mucosal sites. 386

  17. CpG-STAT3siRNA for Castration-Resistant Prostate Cancer Therapy

    DTIC Science & Technology

    2015-12-01

    RESULTS TLR9 promotes prostate cancer cell engraftment and progression in vivo Previous studies reported expression of the innate immune receptor...cancer cells express innate immune receptors, such as TLR9, normally restricted to the hematopoietic cell lineage [2, 5, 7]. Rather than becoming... innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells . Cancer Res. 2012; 72:3948–3957. 7. Ilvesaro JM

  18. Immune Modules Shared by Innate Lymphoid Cells and T Cells

    PubMed Central

    Robinette, Michelle L.; Colonna, Marco

    2016-01-01

    In recent years, innate lymphoid cells (ILCs) have emerged as innate correlates to T cells. The similarities between ILCs and T cells indicate that lymphocytes of fundamentally distinct lineages can share core “immune modules” that encompass transcriptional circuitry and effector functions, while utilizing non-redundant, complementary mechanisms of pattern recognition to enact these functions. We review modules currently recognized to be shared between ILCs and T cells. PMID:27817796

  19. Pellino enhances innate immunity in Drosophila.

    PubMed

    Haghayeghi, Amirhossein; Sarac, Amila; Czerniecki, Stefan; Grosshans, Jörg; Schöck, Frieder

    2010-01-01

    The innate immune response is a defense mechanism against infectious agents in both vertebrates and invertebrates, and is in part mediated by the Toll pathway. Toll receptor activation upon exposure to bacteria causes stimulation of Pelle/IRAK kinase, eventually resulting in translocation of the transcription factor NF-kappaB to the nucleus. Here we show that Pellino, a highly conserved protein interacting with activated Pelle/IRAK, acts as a positive regulator of innate immunity in Drosophila.

  20. Can partisan voting lead to truth?

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki; Redner, S.

    2011-02-01

    We study an extension of the voter model in which each agent is endowed with an innate preference for one of two states that we term as 'truth' or 'falsehood'. Due to interactions with neighbors, an agent that innately prefers truth can be persuaded to adopt a false opinion (and thus be discordant with its innate preference) or the agent can possess an internally concordant 'true' opinion. Parallel states exist for agents that inherently prefer falsehood. We determine the conditions under which a population of such agents can ultimately reach a consensus for the truth, reach a consensus for falsehood, or reach an impasse where an agent tends to adopt the opinion that is in internal concordance with its innate preference with the outcome that consensus is never achieved.

  1. Innateness and culture in the evolution of language

    PubMed Central

    Kirby, Simon; Dowman, Mike; Griffiths, Thomas L.

    2007-01-01

    Human language arises from biological evolution, individual learning, and cultural transmission, but the interaction of these three processes has not been widely studied. We set out a formal framework for analyzing cultural transmission, which allows us to investigate how innate learning biases are related to universal properties of language. We show that cultural transmission can magnify weak biases into strong linguistic universals, undermining one of the arguments for strong innate constraints on language learning. As a consequence, the strength of innate biases can be shielded from natural selection, allowing these genes to drift. Furthermore, even when there is no natural selection, cultural transmission can produce apparent adaptations. Cultural transmission thus provides an alternative to traditional nativist and adaptationist explanations for the properties of human languages. PMID:17360393

  2. Innate predator recognition in giant pandas.

    PubMed

    Du, Yiping; Huang, Yan; Zhang, Hemin; Li, Desheng; Yang, Bo; Wei, Ming; Zhou, Yingmin; Liu, Yang

    2012-02-01

    Innate predator recognition confers a survival advantage to prey animals. We investigate whether giant pandas exhibit innate predator recognition. We analyzed behavioral responses of 56 naive adult captive giant pandas (Ailuropoda melanoleuca), to urine from predators and non-predators and water control. Giant pandas performed more chemosensory investigation and displayed flehmen behaviors more frequently in response to predator urine compared to both non-predator urine and water control. Subjects also displayed certain defensive behaviors, as indicated by vigilance, and in certain cases, fleeing behaviors. Our results suggest that there is an innate component to predator recognition in captive giant pandas, although such recognition was only slight to moderate. These results have implications that may be applicable to the conservation and reintroduction of this endangered species.

  3. Gut-liver axis: gut microbiota in shaping hepatic innate immunity.

    PubMed

    Wu, Xunyao; Tian, Zhigang

    2017-11-01

    Gut microbiota play an essential role in shaping immune cell responses. The liver was continuously exposed to metabolic products of intestinal commensal bacterial through portal vein and alteration of gut commensal bateria was always associated with increased risk of liver inflammation and autoimmune disease. Considered as a unique immunological organ, the liver is enriched with a large number of innate immune cells. Herein, we summarize the available literature of gut microbiota in shaping the response of hepatic innate immune cells including NKT cells, NK cells, γδ T cells and Kupffer cells during health and disease. Such knowledge might help to develop novel and innovative strategies for the prevention and therapy of innate immune cell-related liver disease.

  4. The Innate Lymphoid Cell Precursor.

    PubMed

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  5. Prediction of future uniform milk prices in Florida federal milk marketing order 6 from milk futures markets.

    PubMed

    De Vries, A; Feleke, S

    2008-12-01

    This study assessed the accuracy of 3 methods that predict the uniform milk price in Federal Milk Marketing Order 6 (Florida). Predictions were made for 1 to 12 mo into the future. Data were from January 2003 to May 2007. The CURRENT method assumed that future uniform milk prices were equal to the last announced uniform milk price. The F+BASIS and F+UTIL methods were based on the milk futures markets because the futures prices reflect the market's expectation of the class III and class IV cash prices that are announced monthly by USDA. The F+BASIS method added an exponentially weighted moving average of the difference between the class III cash price and the historical uniform milk price (also known as basis) to the class III futures price. The F+UTIL method used the class III and class IV futures prices, the most recently announced butter price, and historical utilizations to predict the skim milk prices, butterfat prices, and utilizations in all 4 classes. Predictions of future utilizations were made with a Holt-Winters smoothing method. Federal Milk Marketing Order 6 had high class I utilization (85 +/- 4.8%). Mean and standard deviation of the class III and class IV cash prices were $13.39 +/- 2.40/cwt (1 cwt = 45.36 kg) and $12.06 +/- 1.80/cwt, respectively. The actual uniform price in Tampa, Florida, was $16.62 +/- 2.16/cwt. The basis was $3.23 +/- 1.23/cwt. The F+BASIS and F+UTIL predictions were generally too low during the period considered because the class III cash prices were greater than the corresponding class III futures prices. For the 1- to 6-mo-ahead predictions, the root of the mean squared prediction errors from the F+BASIS method were $1.12, $1.20, $1.55, $1.91, $2.16, and $2.34/cwt, respectively. The root of the mean squared prediction errors ranged from $2.50 to $2.73/cwt for predictions up to 12 mo ahead. Results from the F+UTIL method were similar. The accuracies of the F+BASIS and F+UTIL methods for all 12 fore-cast horizons were not significantly different. Application of the modified Mariano-Diebold tests showed that no method included all the information contained in the other methods. In conclusion, both F+BASIS and F+UTIL methods tended to more accurately predict the future uniform milk prices than the CURRENT method, but prediction errors could be substantial even a few months into the future. The majority of the prediction error was caused by the inefficiency of the futures markets to predict the class III cash prices.

  6. Predicting fear of heights, snakes, and public speaking from multimodal classical conditioning events.

    PubMed

    Wu, Ning Ying; Conger, Anthony J; Dygdon, Judith A

    2006-04-01

    Two hundred fifty one men and women participated in a study of the prediction of fear of heights, snakes, and public speaking by providing retrospective accounts of multimodal classical conditioning events involving those stimuli. The fears selected for study represent those believed by some to be innate (i.e., heights), prepared (i.e., snakes), and purely experientially learned (i.e., public speaking). This study evaluated the extent to which classical conditioning experiences in direct, observational, and verbal modes contributed to the prediction of the current level of fear severity. Subjects were asked to describe their current level of fear and to estimate their experience with fear response-augmenting events (first- and higher-order aversive pairings) and fear response-moderating events (first- and higher-order appetitive pairings, and pre- and post-conditioning neutral presentations) in direct, observational, and verbal modes. For each stimulus, fear was predictable from direct response-augmenting events and prediction was enhanced by the inclusion of response-moderating events. Furthermore, for each fear, maximum prediction was attained by the addition of variables tapping experiences in the observational and/or verbal modes. Conclusions are offered regarding the importance of including response-augmenting and response-moderating events in all three modes in both research and clinical applications of classical conditioning.

  7. Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins.

    PubMed

    Griffiths, M; Neal, J W; Gasque, P

    2007-01-01

    Brain inflammation due to infection, hemorrhage, and aging is associated with activation of the local innate immune system as expressed by infiltrating cells, resident glial cells, and neurons. The innate immune response relies on the detection of "nonself" and "danger-self" ligands behaving as "eat me signals" by a plethora of pattern recognition receptors (PRRs) expressed by professional and amateur phagocytes to promote the clearance of pathogens, toxic cell debris (amyloid fibrils, aggregated synucleins, prions), and apoptotic cells accumulating within the brain parenchyma and the cerebrospinal fluid (CSF). These PRRs (e.g., complement, TLR, CD14, scavenger receptors) are highly conserved between vertebrates and invertebrates and may represent the most ancestral innate scavenging system involved in tissue homeostasis. However, in some diseases, these protective mechanisms lead to neurodegeneration on the ground that several innate immune molecules have neurocytotoxic activities. The response is a "double-edged sword" representing a fine balance between protective and detrimental effects. Several key regulatory mechanisms have now been evidenced in the control of CNS innate immunity, and these could be harnessed to explore novel therapeutic avenues. We will herein provide new emphasis on the role of neuroimmune regulatory proteins (NIRegs), such as CD95L, TNF, CD200, CD47, sialic acids, CD55, CD46, fH, C3a, HMGB1, which are involved in silencing innate immunity at the cellular and molecular levels and suppression of inflammation. For instance, NIRegs may play an important role in controlling lymphocyte/macrophage/microglia hyperinflammatory responses, while sparing host defense and repair mechanisms. Moreover, NIRegs have direct beneficial effects on neurogenesis and contributing to brain tissue remodeling.

  8. Genomic Signatures of Selective Pressures and Introgression from Archaic Hominins at Human Innate Immunity Genes

    PubMed Central

    Deschamps, Matthieu; Laval, Guillaume; Fagny, Maud; Itan, Yuval; Abel, Laurent; Casanova, Jean-Laurent; Patin, Etienne; Quintana-Murci, Lluis

    2016-01-01

    Human genes governing innate immunity provide a valuable tool for the study of the selective pressure imposed by microorganisms on host genomes. A comprehensive, genome-wide study of how selective constraints and adaptations have driven the evolution of innate immunity genes is missing. Using full-genome sequence variation from the 1000 Genomes Project, we first show that innate immunity genes have globally evolved under stronger purifying selection than the remainder of protein-coding genes. We identify a gene set under the strongest selective constraints, mutations in which are likely to predispose individuals to life-threatening disease, as illustrated by STAT1 and TRAF3. We then evaluate the occurrence of local adaptation and detect 57 high-scoring signals of positive selection at innate immunity genes, variation in which has been associated with susceptibility to common infectious or autoimmune diseases. Furthermore, we show that most adaptations targeting coding variation have occurred in the last 6,000–13,000 years, the period at which populations shifted from hunting and gathering to farming. Finally, we show that innate immunity genes present higher Neandertal introgression than the remainder of the coding genome. Notably, among the genes presenting the highest Neandertal ancestry, we find the TLR6-TLR1-TLR10 cluster, which also contains functional adaptive variation in Europeans. This study identifies highly constrained genes that fulfill essential, non-redundant functions in host survival and reveals others that are more permissive to change—containing variation acquired from archaic hominins or adaptive variants in specific populations—improving our understanding of the relative biological importance of innate immunity pathways in natural conditions. PMID:26748513

  9. The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes

    PubMed Central

    Tai, Ningwen; Wong, F. Susan; Wen, Li

    2016-01-01

    Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by T cell-mediated destruction of the insulin-producing pancreatic β cells. A combination of genetic and environmental factors eventually leads to the loss of functional β cells mass and hyperglycemia. Both innate and adaptive immunity are involved in the development of T1D. In this review, we have highlighted the most recent findings on the role of innate immunity, especially the pattern recognition receptors (PRRs), in disease development. In murine models and human studies, different PRRs, such as toll-like receptors (TLRs) and nucleotide-binding domain, leucine-rich repeat-containing (or NOD-like) receptors (NLRs), have different roles in the pathogenesis of T1D. These PRRs play a critical role in defending against infection by sensing specific ligands derived from exogenous microorganisms to induce innate immune responses and shape adaptive immunity. Animal studies have shown that TLR7, TLR9, MyD88 and NLPR3 play a disease-predisposing role in T1D, while controversial results have been found with other PRRs, such as TLR2, TLR3, TLR4, TLR5 and others. Human studies also shown that TLR2, TLR3 and TLR4 are expressed in either islet β cells or infiltrated immune cells, indicating the innate immunity plays a role in β cell autoimmunity. Furthermore, some human genetic studies showed a possible association of TLR3, TLR7, TLR8 or NLRP3 genes, at single nucleotide polymorphism (SNP) level, with human T1D. Increasing evidence suggest that the innate immunity modulates β cell autoimmunity. Thus, targeting pathways of innate immunity may provide novel therapeutic strategies to fight this disease. PMID:27021275

  10. CXCR3+CD4+ T cells mediate innate immune function in the pathophysiology of liver ischemia/reperfusion injury.

    PubMed

    Zhai, Yuan; Shen, Xiu-da; Hancock, Wayne W; Gao, Feng; Qiao, Bo; Lassman, Charles; Belperio, John A; Strieter, Robert M; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W

    2006-05-15

    Ischemia-reperfusion injury (IRI), an innate immune-dominated inflammatory response, develops in the absence of exogenous Ags. The recently highlighted role of T cells in IRI raises a question as to how T lymphocytes interact with the innate immune system and function with no Ag stimulation. This study dissected the mechanism of innate immune-induced T cell recruitment and activation in rat syngeneic orthotopic liver transplantation (OLT) model. Liver IRI was induced after cold storage (24-36 h) at 4 degrees C in University of Wisconsin solution. Gene products contributing to IRI were identified by cDNA microarray at 4-h posttransplant. IRI triggered increased intrahepatic expression of CXCL10, along with CXCL9 and 11. The significance of CXCR3 ligand induction was documented by the ability of neutralizing anti-CXCR3 Ab treatment to ameliorate hepatocellular damage and improve 14-day survival of 30-h cold-stored OLTs (95 vs 40% in controls; p < 0.01). Immunohistology analysis confirmed reduced CXCR3+ and CD4+ T cell infiltration in OLTs after treatment. Interestingly, anti-CXCR3 Ab did not suppress innate immune activation in the liver, as evidenced by increased levels of IL-1beta, IL-6, inducible NO synthase, and multiple neutrophil/monokine-targeted chemokine programs. In conclusion, this study demonstrates a novel mechanism of T cell recruitment and function in the absence of exogenous Ag stimulation. By documenting that the execution of innate immune function requires CXCR3+CD4+ T cells, it highlights the critical role of CXCR3 chemokine biology for the continuum of innate to adaptive immunity in the pathophysiology of liver IRI.

  11. Controlled Human Malaria Infection Leads to Long-Lasting Changes in Innate and Innate-like Lymphocyte Populations.

    PubMed

    Mpina, Maxmillian; Maurice, Nicholas J; Yajima, Masanao; Slichter, Chloe K; Miller, Hannah W; Dutta, Mukta; McElrath, M Juliana; Stuart, Kenneth D; De Rosa, Stephen C; McNevin, John P; Linsley, Peter S; Abdulla, Salim; Tanner, Marcel; Hoffman, Stephen L; Gottardo, Raphael; Daubenberger, Claudia A; Prlic, Martin

    2017-07-01

    Animal model studies highlight the role of innate-like lymphocyte populations in the early inflammatory response and subsequent parasite control following Plasmodium infection. IFN-γ production by these lymphocytes likely plays a key role in the early control of the parasite and disease severity. Analyzing human innate-like T cell and NK cell responses following infection with Plasmodium has been challenging because the early stages of infection are clinically silent. To overcome this limitation, we examined blood samples from a controlled human malaria infection (CHMI) study in a Tanzanian cohort, in which volunteers underwent CHMI with a low or high dose of Plasmodium falciparum sporozoites. The CHMI differentially affected NK, NKT (invariant NKT), and mucosal-associated invariant T cell populations in a dose-dependent manner, resulting in an altered composition of this innate-like lymphocyte compartment. Although these innate-like responses are typically thought of as short-lived, we found that changes persisted for months after the infection was cleared, leading to significantly increased frequencies of mucosal-associated invariant T cells 6 mo postinfection. We used single-cell RNA sequencing and TCR αβ-chain usage analysis to define potential mechanisms for this expansion. These single-cell data suggest that this increase was mediated by homeostatic expansion-like mechanisms. Together, these data demonstrate that CHMI leads to previously unappreciated long-lasting alterations in the human innate-like lymphocyte compartment. We discuss the consequences of these changes for recurrent parasite infection and infection-associated pathologies and highlight the importance of considering host immunity and infection history for vaccine design. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. SAP is required for the development of innate phenotype in H2-M3-restricted CD8+ T cells1

    PubMed Central

    Bediako, Yaw; Bian, Yao; Zhang, Hong; Cho, Hoonsik; Stein, Paul L.; Wang, Chyung-Ru

    2012-01-01

    H2-M3-restricted T cells have a pre-activated surface phenotype, rapidly expand and produce cytokines upon stimulation and as such, are classified as innate T cells. Unlike most innate T cells, M3-restricted T cells also express CD8αβ co-receptors and a diverse TCR repertoire: hallmarks of conventional MHC Ia-restricted CD8+ T cells. Although iNKT cells are also innate lymphocytes, they are selected exclusively on hematopoietic cells (HC), while M3-restricted T cells can be selected on either hematopoietic or thymic epithelial cells (TEC). Moreover, their phenotypes differ depending on what cells mediate their selection. Though there is a clear correlation between selection on HC and development of innate phenotype, the underlying mechanism remains unclear. SAP is required for the development of iNKT cells and mediates signals from SLAM receptors that are exclusively expressed on HC. Based on their dual selection pathway, M3-restricted T cells present a unique model for studying the development of innate T cell phenotype. Using both polyclonal and transgenic mouse models we demonstrate that while M3-restricted T cells are capable of developing in the absence of SAP, SAP is required for HC-mediated selection, development of pre-activated phenotype and heightened effector functions of M3-restricted T cells. These findings are significant because they directly demonstrate the need for SAP in HC-mediated acquisition of innate T cell phenotype and suggest that due to their SAP-dependent HC-mediated selection, M3-restricted T cells develop a pre-activated phenotype and an intrinsic ability to proliferate faster upon stimulation, allowing for an important role in the early response to infection. PMID:23041566

  13. Habenula and interpeduncular nucleus differentially modulate predator odor-induced innate fear behavior in rats.

    PubMed

    Vincenz, Daniel; Wernecke, Kerstin E A; Fendt, Markus; Goldschmidt, Jürgen

    2017-08-14

    Fear is an important behavioral system helping humans and animals to survive potentially dangerous situations. Fear can be innate or learned. Whereas the neural circuits underlying learned fear are already well investigated, the knowledge about the circuits mediating innate fear is still limited. We here used a novel, unbiased approach to image in vivo the spatial patterns of neural activity in odor-induced innate fear behavior in rats. We intravenously injected awake unrestrained rats with a 99m-technetium labeled blood flow tracer (99mTc-HMPAO) during ongoing exposure to fox urine or water as control, and mapped the brain distribution of the trapped tracer using single-photon emission computed tomography (SPECT). Upon fox urine exposure blood flow increased in a number of brain regions previously associated with odor-induced innate fear such as the amygdala, ventromedial hypothalamus and dorsolateral periaqueductal grey, but, unexpectedly, decreased at higher significance levels in the interpeduncular nucleus (IPN). Significant flow changes were found in regions monosynaptically connected to the IPN. Flow decreased in the dorsal tegmentum and entorhinal cortex. Flow increased in the habenula (Hb) and correlated with odor effects on behavioral defensive strategy. Hb lesions reduced avoidance of but increased approach to the fox urine while IPN lesions only reduced avoidance behavior without approach behavior. Our study identifies a new component, the IPN, of the neural circuit mediating odor-induced innate fear behavior in mammals and suggests that the evolutionarily conserved Hb-IPN system, which has recently been implicated in cued fear, also forms an integral part of the innate fear circuitry. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. The impact of odor–reward memory on chemotaxis in larval Drosophila

    PubMed Central

    Schleyer, Michael; Reid, Samuel F.; Pamir, Evren; Saumweber, Timo; Paisios, Emmanouil; Davies, Alexander

    2015-01-01

    How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the Drosophila larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii) where to direct a turn. We first report how odor-source intensities modulate these decisions to bring about higher levels of chemotactic performance for higher odor-source intensities during innate chemotaxis. We then examine whether the same modulations are responsible for alterations of chemotactic performance by learned odor “valence” (understood throughout as level of attractiveness). We find that run speed (i) is neither modulated by the innate nor by the learned valence of an odor. Turn rate (ii), however, is modulated by both: the higher the innate or learned valence of the odor, the less often larvae turn whenever heading toward the odor source, and the more often they turn when heading away. Likewise, turning direction (iii) is modulated concordantly by innate and learned valence: turning is biased more strongly toward the odor source when either innate or learned valence is high. Using numerical simulations, we show that a modulation of both turn rate and of turning direction is sufficient to account for the empirically found differences in preference scores across experimental conditions. Our results suggest that innate and learned valence organize adaptive olfactory search behavior by their summed effects on turn rate and turning direction, but not on run speed. This work should aid studies into the neural mechanisms by which memory impacts specific aspects of behavior. PMID:25887280

  15. Regulation of contact sensitivity in non-obese diabetic (NOD) mice by innate immunity.

    PubMed

    Szczepanik, Marian; Majewska-Szczepanik, Monika; Wong, Florence S; Kowalczyk, Paulina; Pasare, Chandrashekhar; Wen, Li

    2018-06-25

    Genetic background influences allergic immune responses to environmental stimuli. Non-obese diabetic (NOD) mice are highly susceptible to environmental stimuli. Little is known about the interaction of autoimmune genetic factors with innate immunity in allergies, especially skin hypersensitivity. To study the interplay of innate immunity and autoimmune genetic factors in contact hypersensitivity (CHS) by using various innate immunity-deficient NOD mice. Toll-like receptor (TLR) 2-deficient, TLR9-deficient and MyD88-deficient NOD mice were used to investigate CHS. The cellular mechanism was determined by flow cytometry in vitro and adoptive cell transfer in vivo. To investigate the role of MyD88 in dendritic cells (DCs) in CHS, we also used CD11c MyD88+  MyD88 -/- NOD mice, in which MyD88 is expressed only in CD11c + cells. We found that innate immunity negatively regulates CHS, as innate immunity-deficient NOD mice developed exacerbated CHS accompanied by increased numbers of skin-migrating CD11c + DCs expressing higher levels of major histocompatibility complex II and CD80. Moreover, MyD88 -/- NOD mice had increased numbers of CD11c +  CD207 -  CD103 + DCs and activated T effector cells in the skin-draining lymph nodes. Strikingly, re-expression of MyD88 in CD11c + DCs (CD11c MyD88+  MyD88 -/- NOD mice) restored hyper-CHS to a normal level in MyD88 -/- NOD mice. Our results suggest that the autoimmune-prone NOD genetic background aggravates CHS regulated by innate immunity, through DCs and T effector cells. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. In Depth Analysis of Citrulline Specific CD4 T Cells in Rheumatoid Arthritis

    DTIC Science & Technology

    2018-01-01

    activation of lymphoid , myeloid and mast cells , indicating MALT1’s crucial role in innate and adaptive signaling. Therefore, MALT1 is regarded a...Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in RA Jane Buckner...IFRA) Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in

  17. Novel Target for Ameliorating Pain and Other Problems after SCI: Spontaneous Activity in Nociceptors

    DTIC Science & Technology

    2016-06-01

    BSCB will permit blood-borne mye- loid and lymphoid immune cells to enter the spinal cord parenchyma and exert direct inflammatory actions on central...primitive innate immune system is the first line of defense against pathogens and toxins; it is always present and it depends upon diverse cell types that...adaptive immune system, the innate immune system does not em- ploy antigen-specific humoral and cell -mediated immunity mecha- nisms. Two innate immune

  18. In-Depth Analysis of Citrulline-Specific CD4 T-Cells in Rheumatoid Arthritis

    DTIC Science & Technology

    2018-01-01

    player in the activation of lymphoid , myeloid and mast cells , indicating MALT1’s crucial role in innate and adaptive signaling. Therefore, MALT1 is...for RA (IFRA) Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell ...Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in RA

  19. A key requirement for CD300f in innate immune responses of eosinophils in colitis.

    PubMed

    Moshkovits, I; Reichman, H; Karo-Atar, D; Rozenberg, P; Zigmond, E; Haberman, Y; Ben Baruch-Morgenstern, N; Lampinen, M; Carlson, M; Itan, M; Denson, L A; Varol, C; Munitz, A

    2017-01-01

    Eosinophils are traditionally studied in the context of type 2 immune responses. However, recent studies highlight key innate immune functions for eosinophils especially in colonic inflammation. Surprisingly, molecular pathways regulating innate immune activities of eosinophil are largely unknown. We have recently shown that the CD300f is highly expressed by colonic eosinophils. Nonetheless, the role of CD300f in governing innate immune eosinophil activities is ill-defined. RNA sequencing of 162 pediatric Crohn's disease patients revealed upregulation of multiple Cd300 family members, which correlated with the presence of severe ulcerations and inflammation. Increased expression of CD300 family receptors was also observed in active ulcerative colitis (UC) and in mice following induction of experimental colitis. Specifically, the expression of CD300f was dynamically regulated in monocytes and eosinophils. Dextran sodium sulfate (DSS)-treated Cd300f -/- mice exhibit attenuated disease activity and histopathology in comparison with DSS-treated wild type (WT). Decreased disease activity in Cd300f -/- mice was accompanied with reduced inflammatory cell infiltration and nearly abolished production of pro-inflammatory cytokines. Monocyte depletion and chimeric bone marrow transfer experiments revealed a cell-specific requirement for CD300f in innate immune activation of eosinophils. Collectively, we uncover a new pathway regulating innate immune activities of eosinophils, a finding with significant implications in eosinophil-associated gastrointestinal diseases.

  20. Inflammatory Monocytes Orchestrate Innate Antifungal Immunity in the Lung

    PubMed Central

    Dutta, Orchi; Kasahara, Shinji; Donnelly, Robert; Du, Peicheng; Rosenfeld, Jeffrey; Leiner, Ingrid; Chen, Chiann-Chyi; Ron, Yacov; Hohl, Tobias M.; Rivera, Amariliz

    2014-01-01

    Aspergillus fumigatus is an environmental fungus that causes invasive aspergillosis (IA) in immunocompromised patients. Although -CC-chemokine receptor-2 (CCR2) and Ly6C-expressing inflammatory monocytes (CCR2+Mo) and their derivatives initiate adaptive pulmonary immune responses, their role in coordinating innate immune responses in the lung remain poorly defined. Using conditional and antibody-mediated cell ablation strategies, we found that CCR2+Mo and monocyte-derived dendritic cells (Mo-DCs) are essential for innate defense against inhaled conidia. By harnessing fluorescent Aspergillus reporter (FLARE) conidia that report fungal cell association and viability in vivo, we identify two mechanisms by which CCR2+Mo and Mo-DCs exert innate antifungal activity. First, CCR2+Mo and Mo-DCs condition the lung inflammatory milieu to augment neutrophil conidiacidal activity. Second, conidial uptake by CCR2+Mo temporally coincided with their differentiation into Mo-DCs, a process that resulted in direct conidial killing. Our findings illustrate both indirect and direct functions for CCR2+Mo and their derivatives in innate antifungal immunity in the lung. PMID:24586155

  1. Linking innate to adaptive immunity through dendritic cells.

    PubMed

    Steinman, Ralph M

    2006-01-01

    The function of dendritic cells (DCs) in linking innate to adaptive immunity is often summarized with two terms. DCs are sentinels, able to capture, process and present antigens and to migrate to lymphoid tissues to select rare, antigen-reactive T cell clones. DCs are also sensors, responding to a spectrum of environmental cues by extensive differentiation or maturation. The type of DC and the type of maturation induced by different stimuli influences the immunological outcome, such as the differentiation of Thl vs. Th2 T cells. Here we summarize the contributions of DCs to innate defences, particularly the production of immune enhancing cytokines and the activation of innate lymphocytes. Then we outline three innate features of DCs that influence peripheral tolerance and lead to adaptive immunity: a specialized endocytic system for antigen capture and processing, location and movements in vivo, and maturation in response to an array of stimuli. A new approach to the analysis of DC biology is to target antigens selectively to maturing DCs in vivo. This leads to stronger, more prolonged and broader (many immunogenic peptides) immunity by both T cells and B cells.

  2. IL-10+ innate-like B cells are part of the skin immune system and require α4β1 integrin to migrate between the peritoneum and inflamed skin1

    PubMed Central

    Glabman, Raisa A.; Ruthel, Gordon; Hamann, Alf; Debes, Gudrun F.

    2016-01-01

    The skin is an important barrier organ and frequent target of autoimmunity and allergy. Here we found innate-like B cells that expressed the anti-inflammatory cytokine IL-10 in the skin of humans and mice. Unexpectedly, innate-like B1 and conventional B2 cells showed differential homing capacities with peritoneal B1 cells preferentially migrating into the inflamed skin of mice. Importantly, the skin-homing B1 cells included IL-10 secreting cells. B1 cell homing into the skin was independent of typical skin-homing trafficking receptors and instead required α4β1-integrin. Moreover, B1 cells constitutively expressed activated β1 integrin and relocated from the peritoneum to the inflamed skin and intestine upon innate stimulation, indicating an inherent propensity to extravasate into inflamed and barrier sites. We conclude that innate-like B cells migrate from central reservoirs into skin, adding an important cell type with regulatory and protective functions to the skin immune system. PMID:26851219

  3. Cancer immunoediting by the innate immune system in the absence of adaptive immunity

    PubMed Central

    O’Sullivan, Timothy; Saddawi-Konefka, Robert; Vermi, William; Koebel, Catherine M.; Arthur, Cora; White, J. Michael; Uppaluri, Ravi; Andrews, Daniel M.; Ngiow, Shin Foong; Teng, Michele W.L.; Smyth, Mark J.; Schreiber, Robert D.

    2012-01-01

    Cancer immunoediting is the process whereby immune cells protect against cancer formation by sculpting the immunogenicity of developing tumors. Although the full process depends on innate and adaptive immunity, it remains unclear whether innate immunity alone is capable of immunoediting. To determine whether the innate immune system can edit tumor cells in the absence of adaptive immunity, we compared the incidence and immunogenicity of 3′methylcholanthrene-induced sarcomas in syngeneic wild-type, RAG2−/−, and RAG2−/−x γc−/− mice. We found that innate immune cells could manifest cancer immunoediting activity in the absence of adaptive immunity. This activity required natural killer (NK) cells and interferon γ (IFN-γ), which mediated the induction of M1 macrophages. M1 macrophages could be elicited by administration of CD40 agonists, thereby restoring editing activity in RAG2−/−x γc−/− mice. Our results suggest that in the absence of adaptive immunity, NK cell production of IFN-γ induces M1 macrophages, which act as important effectors during cancer immunoediting. PMID:22927549

  4. Helminth Infections: Recognition and Modulation of the Immune Response by Innate Immune Cells

    PubMed Central

    Motran, Claudia Cristina; Silvane, Leonardo; Chiapello, Laura Silvina; Theumer, Martin Gustavo; Ambrosio, Laura Fernanda; Volpini, Ximena; Celias, Daiana Pamela; Cervi, Laura

    2018-01-01

    The survival of helminths in the host over long periods of time is the result of a process of adaptation or dynamic co-evolution between the host and the parasite. However, infection with helminth parasites causes damage to the host tissues producing the release of danger signals that induce the recruitment of various cells, including innate immune cells such as macrophages (Mo), dendritic cells (DCs), eosinophils, basophils, and mast cells. In this scenario, these cells are able to secrete soluble factors, which orchestrate immune effector mechanisms that depend on the different niches these parasites inhabit. Here, we focus on recent advances in the knowledge of excretory-secretory products (ESP), resulting from helminth recognition by DCs and Mo. Phagocytes and other cells types such as innate lymphocyte T cells 2 (ILC2), when activated by ESP, participate in an intricate cytokine network to generate innate and adaptive Th2 responses. In this review, we also discuss the mechanisms of innate immune cell-induced parasite killing and the tissue repair necessary to assure helminth survival over long periods of time. PMID:29670630

  5. Whey acidic proteins (WAPs): novel modulators of innate immunity to HIV infection.

    PubMed

    Reading, James L; Meyers, Adrienne F A; Vyakarnam, Annapurna

    2012-03-01

    To discuss how whey acidic proteins (WAPs), a new class of immunomodulatory soluble mediators, impact innate immunity to HIV infection. Innate immunity to HIV infection is increasingly being recognized as critical in determining initial virus transmission and dissemination and may, therefore, be exploited in vaccine and microbicide intervention strategies to combat HIV infection. Several important innate immune mediators have recently been shown to regulate HIV infection in vitro and are, thus, implicated in in vivo immunity to the virus. These include soluble mediators, such as type I interferon, the defensins and more recently WAPs. Recent evidence is discussed, which show that WAPs are pleiotropic soluble mediators that may impact the course of HIV infection in two ways: as regulators of HIV replication and as regulators of innate and adaptive immunity. A better understanding of host factors that regulate HIV transmission is essential in the development of novel therapeutic strategies. This review focuses on recent findings that highlight the HIV regulatory and anti-inflammatory function of WAPs and assesses their potential to be exploited as novel therapeutics.

  6. Integrated Omics and Computational Glycobiology Reveal Structural Basis for Influenza A Virus Glycan Microheterogeneity and Host Interactions.

    PubMed

    Khatri, Kshitij; Klein, Joshua A; White, Mitchell R; Grant, Oliver C; Leymarie, Nancy; Woods, Robert J; Hartshorn, Kevan L; Zaia, Joseph

    2016-06-01

    Despite sustained biomedical research effort, influenza A virus remains an imminent threat to the world population and a major healthcare burden. The challenge in developing vaccines against influenza is the ability of the virus to mutate rapidly in response to selective immune pressure. Hemagglutinin is the predominant surface glycoprotein and the primary determinant of antigenicity, virulence and zoonotic potential. Mutations leading to changes in the number of HA glycosylation sites are often reported. Such genetic sequencing studies predict at best the disruption or creation of sequons for N-linked glycosylation; they do not reflect actual phenotypic changes in HA structure. Therefore, combined analysis of glycan micro and macro-heterogeneity and bioassays will better define the relationships among glycosylation, viral bioactivity and evolution. We present a study that integrates proteomics, glycomics and glycoproteomics of HA before and after adaptation to innate immune system pressure. We combined this information with glycan array and immune lectin binding data to correlate the phenotypic changes with biological activity. Underprocessed glycoforms predominated at the glycosylation sites found to be involved in viral evolution in response to selection pressures and interactions with innate immune-lectins. To understand the structural basis for site-specific glycan microheterogeneity at these sites, we performed structural modeling and molecular dynamics simulations. We observed that the presence of immature, high-mannose type glycans at a particular site correlated with reduced accessibility to glycan remodeling enzymes. Further, the high mannose glycans at sites implicated in immune lectin recognition were predicted to be capable of forming trimeric interactions with the immune-lectin surfactant protein-D. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation.

    PubMed

    West, A Phillip

    2017-11-01

    A growing literature indicates that mitochondria are key participants in innate immune pathways, functioning as both signaling platforms and contributing to effector responses. In addition to regulating antiviral signaling and antibacterial immunity, mitochondria are also important drivers of inflammation caused by sterile injury. Much research on mitochondrial control of immunity now centers on understanding how mitochondrial constituents released during cellular damage simulate the innate immune system. When mitochondrial integrity is compromised, mitochondrial damage-associated molecular patterns engage pattern recognition receptors, trigger inflammation, and promote pathology in an expanding list of diseases. Here, I review the emerging knowledge of mitochondrial dysfunction in innate immune responses and discuss how environmental exposures may induce mitochondrial damage to potentiate inflammation and human disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. GPCRs in invertebrate innate immunity.

    PubMed

    Reboul, Jerome; Ewbank, Jonathan J

    2016-08-15

    G-protein coupled receptors (GPCRs) represent a privileged point of contact between cells and their surrounding environment. They have been widely adopted in vertebrates as mediators of signals involved in both innate and adaptive immunity. Invertebrates rely on innate immune defences to resist infection. We review here evidence from a number of different species, principally the genetically tractable Caenorhabditis elegans and Drosophila melanogaster that points to an important role for GPCRs in modulating innate immunity in invertebrates too. In addition to examples of GPCRs involved in regulating the expression of defence genes, we discuss studies in C. elegans addressing the role of GPCR signalling in pathogen aversive behaviour. Despite the many lacunae in our current knowledge, it is clear that GPCR signalling contributes to host defence across the animal kingdom. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Innate Lymphoid Cells: A Promising New Regulator in Fibrotic Diseases.

    PubMed

    Zhang, Yi; Tang, Jun; Tian, Zhiqiang; van Velkinburgh, Jennifer C; Song, Jianxun; Wu, Yuzhang; Ni, Bing

    2016-09-02

    Fibrosis is a consequence of chronic inflammation and the persistent accumulation of extracellular matrix, for which the cycle of tissue injury and repair becomes a predominant feature. Both the innate and adaptive immune systems play key roles in the progress of fibrosis. The recently identified subsets of innate lymphoid cells (ILCs), which are mainly localize to epithelial surfaces, have been characterized as regulators of chronic inflammation and tissue remodeling, representing a functional bridge between the innate and adaptive immunity. Moreover, recent research has implicated ILCs as potential contributing factors to several kinds of fibrosis diseases, such as hepatic fibrosis and pulmonary fibrosis. Here, we will summarize and discuss the key roles of ILCs and their related factors in fibrotic diseases and their potential for translation to the clinic.

  10. Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells.

    PubMed

    Upadhyay, Vaibhav; Fu, Yang-Xin

    2014-04-01

    The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome. The role of the LT-pathway may lay the foundation for a bridge between host immune response, microbiota, and metabolic syndrome. The contribution of the LT-pathway to innate lymphoid cell function and metabolic syndrome will be visited in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Innate lymphoid cells in autoimmunity and chronic inflammatory diseases.

    PubMed

    Xiong, Tingting; Turner, Jan-Eric

    2018-03-22

    Abnormal activation of the innate immune system is a common feature of autoimmune and chronic inflammatory diseases. Since their identification as a separate family of leukocytes, innate lymphoid cells (ILCs) have emerged as important effector cells of the innate immune system. Alterations in ILC function and subtype distribution have been observed in a variety of immune-mediated diseases in humans and evidence from experimental models suggests a subtype specific role of ILCs in the pathophysiology of autoimmune inflammation. In this review, we discuss recent advances in the understanding of ILC biology in autoimmune and chronic inflammatory disorders, including multiple sclerosis, inflammatory bowel diseases, psoriasis, and rheumatic diseases, with a special focus on the potential of ILCs as therapeutic targets for the development of novel treatment strategies in humans.

  12. CD22 and Siglec-G in B cell function and tolerance

    PubMed Central

    Poe, Jonathan C.; Tedder, Thomas F.

    2012-01-01

    The immune system has evolved into two main arms, the primitive innate arm that is the first line of defense but relatively short-lived and broad acting, and the advanced adaptive arm that generates immunologic “memory” allowing rapid, specific recall responses. T cell-independent type-2 (TI-2) antigens (Ags) invoke innate immune responses. However, due to its “at the ready” nature, how the innate arm of the immune system maintains tolerance to potentially abundant host TI-2 Ags remains elusive. Therefore, it is important to define the mechanisms that establish innate immune tolerance. This review highlights recent insights into B cell tolerance to theoretical self TI-2 Ags, and examines how the B cell-restricted Siglecs, CD22 and Siglec-G, might contribute to this process. PMID:22677186

  13. Differential Effect of Lactobacillus johnsonii BFE 6128 on Expression of Genes Related to TLR Pathways and Innate Immunity in Intestinal Epithelial Cells.

    PubMed

    Seifert, Stephanie; Rodriguez Gómez, Manuel; Watzl, Bernhard; Holzapfel, Wilhelm H; Franz, Charles M A P; Vizoso Pinto, María G

    2010-12-01

    Probiotics have been shown to enhance immune defenses, but their mechanisms of action are only partially understood. We investigated the modulation of signal pathways involved in innate immunity in enterocytes by Lactobacillus johnsonii BFE 6128 isolated from 'Kule naoto', a Maasai traditional fermented milk product. This lactobacillus sensitized HT29 intestinal epithelial cells toward recognition of Salmonella enterica serovar Typhimurium by increasing the IL-8 levels released after challenge with this pathogen and by differentially modulating genes related to toll-like receptor (TLR) pathways and innate immunity. Thus, the modulation of pro-inflammatory mediators and TLR-pathway-related molecules may be an important mechanism contributing to the potential stimulation of innate immunity by lactobacilli at the intestinal epithelial level.

  14. The cognitive bases of the development of past and future episodic cognition in preschoolers.

    PubMed

    Ünal, Gülten; Hohenberger, Annette

    2017-10-01

    The aim of this study was to use a minimalist framework to examine the joint development of past and future episodic cognition and their underlying cognitive abilities in 3- to 5-year-old Turkish preschoolers. Participants engaged in two main tasks, a what-where-when (www) task to measure episodic memory and a future prediction task to measure episodic future thinking. Three additional tasks were used for predicting children's performance in the two main tasks: a temporal language task, an executive function task, and a spatial working memory task. Results indicated that past and future episodic tasks were significantly correlated with each other even after controlling for age. Hierarchical multiple regressions showed that, after controlling for age, the www task was predicted by executive functions, possibly supporting binding of episodic information and by linguistic abilities. The future prediction task was predicted by linguistic abilities alone, underlining the importance of language for episodic past and future thinking. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Candidate innate immune system gene expression in the ecological model Daphnia

    PubMed Central

    Decaestecker, Ellen; Labbé, Pierrick; Ellegaard, Kirsten; Allen, Judith E.; Little, Tom J.

    2011-01-01

    The last ten years have witnessed increasing interest in host–pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host–pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia–pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia–Pasteuria system will need to balance a candidate gene approach with more comprehensive approaches to de novo identify immune system genes specific to the Daphnia–Pasteuria interaction. PMID:21550363

  16. Candidate innate immune system gene expression in the ecological model Daphnia.

    PubMed

    Decaestecker, Ellen; Labbé, Pierrick; Ellegaard, Kirsten; Allen, Judith E; Little, Tom J

    2011-10-01

    The last ten years have witnessed increasing interest in host-pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host-pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia-pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia-Pasteuria system will need to balance a candidate gene approach with more comprehensive approaches to de novo identify immune system genes specific to the Daphnia-Pasteuria interaction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Immune modules shared by innate lymphoid cells and T cells.

    PubMed

    Robinette, Michelle L; Colonna, Marco

    2016-11-01

    In recent years, innate lymphoid cells (ILCs) have emerged as innate correlates to T cells. The similarities between ILCs and T cells indicate that lymphocytes of fundamentally distinct lineages can share core "immune modules" that encompass transcriptional circuitry and effector functions while using nonredundant complementary mechanisms of pattern recognition to enact these functions. We review modules currently recognized to be shared between ILCs and T cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. IL-9-Producing Mast Cell Precursors and Food Allergy

    DTIC Science & Technology

    2016-10-01

    that Stat6-/- BM progenitors in sensitized wild type recipients that were competent in GFP- CD4+ST2+TH2 and ILC2s ( innate lymphoid cells ) generation, and...report demonstrated that type 2 innate lymphoid cells (ILC2s) lack cell lineage markers and have the potential to pro- duce IL-9 (Wilhelm et al., 2011...Fujii, H., and Koyasu, S. (2010). Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells . Nature 463, 540–544

  19. Single Cell Dissection of Human Pancreatic Islet Dysfunction in Diabetes

    DTIC Science & Technology

    2017-06-01

    of memory T cells , innate cells and the differentiation potential of naive T cells during ME/CFS; and 3) To determine the T cell and innate cell ...apoptosis and the innate immune response in human pancreatic β- cells . Diabetes 64: 3808–3817. Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir...interactive nature of CellView aids in cell doublet identification. In the PBMC data, ‘Subcluster-analysis’ reveals a mixture of lymphoid and myeloid

  20. The Use of Filariae as a Therapeutic Agent for Hypersensitivity Diseases

    DTIC Science & Technology

    2014-12-01

    come into contact with the allergen. These cytokines activate innate lymphoid cells (ILCs) and help dendritic cells (DCs) polarize a Th2 environment...Experimental Allergy 40:299-306 58. Filbey KJ, Grainger JR, Smith KA, Boon L, van Rooijen N, et al. 2014. Innate and adaptive type 2 immune cell ...105. Kamijo S, Takeda H, Tokura T, Suzuki M, Inui K, et al. 2013. IL-33–mediated innate response and adaptive immune cells contribute to maximum

  1. Prevention of Trauma/Hemorrhagic Shock-Induced Mortality, Apoptosis, Inflammation and Mitochondrial Dysfunction

    DTIC Science & Technology

    2015-02-01

    strongly suggesting a contribution to prevention of pulmonary cell apoptosis (Table 1).Discussion To investigate the impact of T/HS on the innate host...we hypothesized that loss of these cells may contribute to impaired innate host defense of the lung following T/HS. We began to address the role of the...intervention involves restoration of impaired innate epithelial cell immunity within the lung. Within the first category is the use of IL-6 as a resus

  2. Different Adjuvants Induce Common Innate Pathways That Are Associated with Enhanced Adaptive Responses against a Model Antigen in Humans

    PubMed Central

    Burny, Wivine; Callegaro, Andrea; Bechtold, Viviane; Clement, Frédéric; Delhaye, Sophie; Fissette, Laurence; Janssens, Michel; Leroux-Roels, Geert; Marchant, Arnaud; van den Berg, Robert A.; Garçon, Nathalie; van der Most, Robbert; Didierlaurent, Arnaud M.; Bechtold, Viviane

    2017-01-01

    To elucidate the role of innate responses in vaccine immunogenicity, we compared early responses to hepatitis B virus (HBV) surface antigen (HBsAg) combined with different Adjuvant Systems (AS) in healthy HBV-naïve adults, and included these parameters in multi-parametric models of adaptive responses. A total of 291 participants aged 18–45 years were randomized 1:1:1:1:1 to receive HBsAg with AS01B, AS01E, AS03, AS04, or Alum/Al(OH)3 at days 0 and 30 (ClinicalTrials.gov: NCT00805389). Blood protein, cellular, and mRNA innate responses were assessed at early time-points and up to 7 days after vaccination, and used with reactogenicity symptoms in linear regression analyses evaluating their correlation with HBs-specific CD4+ T-cell and antibody responses at day 44. All AS induced transient innate responses, including interleukin (IL)-6 and C-reactive protein (CRP), mostly peaking at 24 h post-vaccination and subsiding to baseline within 1–3 days. After the second but not the first injection, median interferon (IFN)-γ levels were increased in the AS01B group, and IFN-γ-inducible protein-10 levels and IFN-inducible genes upregulated in the AS01 and AS03 groups. No distinct marker or signature was specific to one particular AS. Innate profiles were comparable between AS01B, AS01E, and AS03 groups, and between AS04 and Alum groups. AS group rankings within adaptive and innate response levels and reactogenicity prevalence were similar (AS01B ≥ AS01E > AS03 > AS04 > Alum), suggesting an association between magnitudes of inflammatory and vaccine responses. Modeling revealed associations between adaptive responses and specific traits of the innate response post-dose 2 (activation of the IFN-signaling pathway, CRP and IL-6 responses). In conclusion, the ability of AS01 and AS03 to enhance adaptive responses to co-administered HBsAg is likely linked to their capacity to activate innate immunity, particularly the IFN-signaling pathway. PMID:28855902

  3. Anatomy of scientific evolution.

    PubMed

    Yun, Jinhyuk; Kim, Pan-Jun; Jeong, Hawoong

    2015-01-01

    The quest for historically impactful science and technology provides invaluable insight into the innovation dynamics of human society, yet many studies are limited to qualitative and small-scale approaches. Here, we investigate scientific evolution through systematic analysis of a massive corpus of digitized English texts between 1800 and 2008. Our analysis reveals great predictability for long-prevailing scientific concepts based on the levels of their prior usage. Interestingly, once a threshold of early adoption rates is passed even slightly, scientific concepts can exhibit sudden leaps in their eventual lifetimes. We developed a mechanistic model to account for such results, indicating that slowly-but-commonly adopted science and technology surprisingly tend to have higher innate strength than fast-and-commonly adopted ones. The model prediction for disciplines other than science was also well verified. Our approach sheds light on unbiased and quantitative analysis of scientific evolution in society, and may provide a useful basis for policy-making.

  4. Genetic association studies in β-hemoglobinopathies.

    PubMed

    Thein, Swee Lay

    2013-01-01

    Characterization of the molecular basis of the β-thalassemias and sickle cell disease (SCD) clearly showed that individuals with the same β-globin genotypes can have extremely diverse clinical severity. Two key modifiers, an innate ability to produce fetal hemoglobin and coinheritance of α-thalassemia, both derived from family and population studies, affect the pathophysiology of both disorders at the primary level. In the past 2 decades, scientific research had applied genetic approaches to identify additional genetic modifiers. The review summarizes recent genetic studies and key genetic modifiers identified and traces the story of fetal hemoglobin genetics, which has led to an emerging network of globin gene regulation. The discoveries have provided insights on new targets for therapeutic intervention and raise possibilities of developing fetal hemoglobin predictive diagnostics for predicting disease severity in the newborn and for integration into prenatal diagnosis to better inform genetic counseling.

  5. Anatomy of Scientific Evolution

    PubMed Central

    Yun, Jinhyuk; Kim, Pan-Jun; Jeong, Hawoong

    2015-01-01

    The quest for historically impactful science and technology provides invaluable insight into the innovation dynamics of human society, yet many studies are limited to qualitative and small-scale approaches. Here, we investigate scientific evolution through systematic analysis of a massive corpus of digitized English texts between 1800 and 2008. Our analysis reveals great predictability for long-prevailing scientific concepts based on the levels of their prior usage. Interestingly, once a threshold of early adoption rates is passed even slightly, scientific concepts can exhibit sudden leaps in their eventual lifetimes. We developed a mechanistic model to account for such results, indicating that slowly-but-commonly adopted science and technology surprisingly tend to have higher innate strength than fast-and-commonly adopted ones. The model prediction for disciplines other than science was also well verified. Our approach sheds light on unbiased and quantitative analysis of scientific evolution in society, and may provide a useful basis for policy-making. PMID:25671617

  6. Genetic Factors of the Disease Course After Sepsis: Rare Deleterious Variants Are Predictive.

    PubMed

    Taudien, Stefan; Lausser, Ludwig; Giamarellos-Bourboulis, Evangelos J; Sponholz, Christoph; Schöneweck, Franziska; Felder, Marius; Schirra, Lyn-Rouven; Schmid, Florian; Gogos, Charalambos; Groth, Susann; Petersen, Britt-Sabina; Franke, Andre; Lieb, Wolfgang; Huse, Klaus; Zipfel, Peter F; Kurzai, Oliver; Moepps, Barbara; Gierschik, Peter; Bauer, Michael; Scherag, André; Kestler, Hans A; Platzer, Matthias

    2016-10-01

    Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection. For its clinical course, host genetic factors are important and rare genomic variants are suspected to contribute. We sequenced the exomes of 59 Greek and 15 German patients with bacterial sepsis divided into two groups with extremely different disease courses. Variant analysis was focusing on rare deleterious single nucleotide variants (SNVs). We identified significant differences in the number of rare deleterious SNVs per patient between the ethnic groups. Classification experiments based on the data of the Greek patients allowed discrimination between the disease courses with estimated sensitivity and specificity>75%. By application of the trained model to the German patients we observed comparable discriminatory properties despite lower population-specific rare SNV load. Furthermore, rare SNVs in genes of cell signaling and innate immunity related pathways were identified as classifiers discriminating between the sepsis courses. Sepsis patients with favorable disease course after sepsis, even in the case of unfavorable preconditions, seem to be affected more often by rare deleterious SNVs in cell signaling and innate immunity related pathways, suggesting a protective role of impairments in these processes against a poor disease course. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Predicted disease susceptibility in a Panamanian amphibian assemblage based on skin peptide defenses.

    PubMed

    Woodhams, Douglas C; Voyles, Jamie; Lips, Karen R; Carey, Cynthia; Rollins-Smith, Louise A

    2006-04-01

    Chytridiomycosis is an emerging infectious disease of amphibians caused by a chytrid fungus, Batrachochytrium dendrobatidis. This panzootic does not equally affect all amphibian species within an assemblage; some populations decline, others persist. Little is known about the factors that affect disease resistance. Differences in behavior, life history, biogeography, or immune function may impact survival. We found that an innate immune defense, antimicrobial skin peptides, varied significantly among species within a rainforest stream amphibian assemblage that has not been exposed to B. dendrobatidis. If exposed, all amphibian species at this central Panamanian site are at risk of population declines. In vitro pathogen growth inhibition by peptides from Panamanian species compared with species with known resistance (Rana pipiens and Xenopus laevis) or susceptibility (Bufo boreas) suggests that of the nine species examined, two species (Centrolene prosoblepon and Phyllomedusa lemur) may demonstrate strong resistance, and the other species will have a higher risk of disease-associated population declines. We found little variation among geographically distinct B. dendrobatidis isolates in sensitivity to an amphibian skin peptide mixture. This supports the hypothesis that B. dendrobatidis is a generalist pathogen and that species possessing an innate immunologic defense at the time of disease emergence are more likely to survive.

  8. Structural characterization and evolutionary analysis of fish-specific TLR27.

    PubMed

    Wang, Jinlan; Zhang, Zheng; Liu, Jing; Li, Fang; Chang, Fen; Fu, Hui; Zhao, Jing; Yin, Deling

    2015-08-01

    Toll-like receptors (TLRs) are critical components of the innate immune response of fish. In a phylogenetic analysis, TLR27 from three fish species, which belongs to TLR family 1, clustered with TLR14/18 and TLR25 on the evolutionary tree. The ectodomain of TLR27 is predicted to include 19 leucine-rich repeat (LRR) modules. Structural modeling showed that the TLR27 ectodomain can be divided into three distinctive sections. The lack of conserved asparagines on the concave surface of the central subdomain causes a structural transition in the middle of the ectodomain, forming a distinct hydrophobic pocket at the border between the central subdomain and the C-terminal subdomain. We infer that, like other functionally characterized TLRs in family 1, the hydrophobic pocket located between LRR11 and LRR12 participates in ligand recognition by TLR27. An evolutionary analysis showed that the dN/dS value at the TLR27 locus was very low. Approximately one quarter of the total number of TLR27 sites are under significant negatively selection pressure, whereas only two sites are under positive selection. Consequently, TLR27 is highly evolutionarily conserved and probably plays an extremely important role in the innate immune systems of fishes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations

    PubMed Central

    Jeremiah, Nadia; Neven, Bénédicte; Gentili, Matteo; Callebaut, Isabelle; Maschalidi, Sophia; Stolzenberg, Marie-Claude; Goudin, Nicolas; Frémond, Marie-Louis; Nitschke, Patrick; Molina, Thierry J.; Blanche, Stéphane; Picard, Capucine; Rice, Gillian I.; Crow, Yanick J.; Manel, Nicolas; Fischer, Alain; Bader-Meunier, Brigitte; Rieux-Laucat, Frédéric

    2014-01-01

    Innate immunity to viral infection involves induction of the type I IFN response; however, dysfunctional regulation of this pathway leads to inappropriate inflammation. Here, we evaluated a nonconsanguineous family of mixed European descent, with 4 members affected by systemic inflammatory and autoimmune conditions, including lupus, with variable clinical expression. We identified a germline dominant gain-of-function mutation in TMEM173, which encodes stimulator of type I IFN gene (STING), in the affected individuals. STING is a key signaling molecule in cytosolic DNA-sensing pathways, and STING activation normally requires dimerization, which is induced by 2′3′ cyclic GMP-AMP (cGAMP) produced by the cGAMP synthase in response to cytosolic DNA. Structural modeling supported constitutive activation of the mutant STING protein based on stabilized dimerization. In agreement with the model predictions, we found that the STING mutant spontaneously localizes in the Golgi of patient fibroblasts and is constitutively active in the absence of exogenous 2′3′-cGAMP in vitro. Accordingly, we observed elevated serum IFN activity and a type I IFN signature in peripheral blood from affected family members. These findings highlight the key role of STING in activating both the innate and adaptive immune responses and implicate aberrant STING activation in features of human lupus. PMID:25401470

  10. The expression of inflammatory cytokines, TAM tyrosine kinase receptors and their ligands is upregulated in venous leg ulcer patients: a novel insight into chronic wound immunity.

    PubMed

    Filkor, Kata; Németh, Tibor; Nagy, István; Kondorosi, Éva; Urbán, Edit; Kemény, Lajos; Szolnoky, Győző

    2016-08-01

    The systemic host defence mechanisms, especially innate immunity, in venous leg ulcer patients are poorly investigated. The aim of the current study was to measure Candida albicans killing activity and gene expressions of pro- and anti-inflammatory cytokines and innate immune response regulators, TAM receptors and ligands of peripheral blood mononuclear cells separated from 69 venous leg ulcer patients and 42 control probands. Leg ulcer patients were stratified into responder and non-responder groups on the basis of wound healing properties. No statistical differences were found in Candida killing among controls, responders and non-responders. Circulating blood mononuclear cells of patients overexpress pro-inflammatory (IL-1α, TNFα, CXCL-8) and anti-inflammatory (IL-10) cytokines as well as TAM receptors (Tyro, Axl, MerTK) and their ligands Gas6 and Protein S compared with those of control individuals. IL-1α is notably overexpressed in venous leg ulcer treatment non-responders; in contrast, Axl gene expression is robustly stronger among responders. These markers may be considered as candidates for the prediction of treatment response among venous leg ulcer patients. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  11. Intrinsic disorder in pathogen effectors: protein flexibility as an evolutionary hallmark in a molecular arms race.

    PubMed

    Marín, Macarena; Uversky, Vladimir N; Ott, Thomas

    2013-09-01

    Effector proteins represent a refined mechanism of bacterial pathogens to overcome plants' innate immune systems. These modular proteins often manipulate host physiology by directly interfering with immune signaling of plant cells. Even if host cells have developed efficient strategies to perceive the presence of pathogenic microbes and to recognize intracellular effector activity, it remains an open question why only few effectors are recognized directly by plant resistance proteins. Based on in-silico genome-wide surveys and a reevaluation of published structural data, we estimated that bacterial effectors of phytopathogens are highly enriched in long-disordered regions (>50 residues). These structurally flexible segments have no secondary structure under physiological conditions but can fold in a stimulus-dependent manner (e.g., during protein-protein interactions). The high abundance of intrinsic disorder in effectors strongly suggests positive evolutionary selection of this structural feature and highlights the dynamic nature of these proteins. We postulate that such structural flexibility may be essential for (1) effector translocation, (2) evasion of the innate immune system, and (3) host function mimicry. The study of these dynamical regions will greatly complement current structural approaches to understand the molecular mechanisms of these proteins and may help in the prediction of new effectors.

  12. Commensal Bacteria Modulate Innate Immune Responses of Vaginal Epithelial Cell Multilayer Cultures

    PubMed Central

    Rose, William A.; McGowin, Chris L.; Spagnuolo, Rae Ann; Eaves-Pyles, Tonyia D.; Popov, Vsevolod L.; Pyles, Richard B.

    2012-01-01

    The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives. PMID:22412914

  13. Taking a Toll on Self-Renewal: TLR-Mediated Innate Immune Signaling in Stem Cells.

    PubMed

    Alvarado, Alvaro G; Lathia, Justin D

    2016-07-01

    Innate immunity has evolved as the front-line cellular defense mechanism to acutely sense and decisively respond to microenvironmental alterations. The Toll-like receptor (TLR) family activates signaling pathways in response to stimuli and is well-characterized in both resident and infiltrating immune cells during neural inflammation, injury, and degeneration. Innate immune signaling has also been observed in neural cells during development and disease, including in the stem and progenitor cells that build the brain and are responsible for its homeostasis. Recently, the activation of developmental programs in malignant brain tumors has emerged as a driver for growth via cancer stem cells. In this review we discuss how innate immune signaling interfaces with stem cell maintenance in the normal and neoplastic brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Tribbles role in reproduction.

    PubMed

    Basatvat, Shaghayegh; Carter, Deborah Angela Louise; Kiss-Toth, Endre; Fazeli, Alireza

    2015-10-01

    Tribbles (TRIB) proteins, a family of evolutionary conserved psuedokinase proteins, modulate various signalling pathways within the cell. The regulatory roles of TRIB make them an important part of a number of biological processes ranging from cell proliferation to metabolism, immunity, inflammation and carcinogenesis. Innate immune system plays a pivotal role during the regulation of reproductive processes that allows successful creation of an offspring. Its involvement initiates from fertilization of the oocyte by spermatozoon and lasts throughout early embryonic development, pregnancy and labour. Therefore, there is a close cooperation between the reproductive system and the innate immune system. Evidence from our lab has demonstrated that improper activation of the innate immune system can reduce embryo implantation, thus leading to infertility. Therefore, control mechanisms regulating the innate immune system function can be critical for successful reproductive events. © 2015 Authors; published by Portland Press Limited.

  15. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.

    PubMed

    Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U

    2016-11-30

    The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

  16. Natural History of Innate Host Defense Peptides.

    PubMed

    Linde, A; Wachter, B; Höner, O P; Dib, L; Ross, C; Tamayo, A R; Blecha, F; Melgarejo, T

    2009-12-01

    Host defense peptides act on the forefront of innate immunity, thus playing a central role in the survival of animals and plants. Despite vast morphological changes in species through evolutionary history, all animals examined to date share common features in their innate immune defense strategies, hereunder expression of host defense peptides (HDPs). Most studies on HDPs have focused on humans, domestic and laboratory animals. More than a thousand different sequences have been identified, yet data on HDPs in wild-living animals are sparse. The biological functions of HDPs include broad-spectrum antimicrobial activity and immunomodulation. Natural selection and coevolutionary host-pathogen arms race theory suggest that the extent and specificity of the microbial load influences the spectrum and potency of HDPs in different species. Individuals of extant species-that have lived for an extended period in evolutionary history amid populations with intact processes of natural selection-likely possess the most powerful and well-adapted "natural antibiotics". Research on the evolutionary history of the innate defense system and the host in context of the consequences of challenges as well as the efficacy of the innate immune system under natural conditions is therefore of immediate interest. This review focuses on evolutionary aspects of immunophysiology, with emphasis on innate effector molecules. Studies on host defense in wild-living animals may significantly enhance our understanding of inborn immune mechanisms, and help identify molecules that may assist us to cope better with the increasing microbial challenges that likely follow from the continuous amplification of biodiversity levels on Earth.

  17. Mitochondrial reactive oxygen species modulate innate immune response to influenza A virus in human nasal epithelium.

    PubMed

    Kim, Sujin; Kim, Min-Ji; Park, Do Yang; Chung, Hyo Jin; Kim, Chang-Hoon; Yoon, Joo-Heon; Kim, Hyun Jik

    2015-07-01

    The innate immune system of the nasal epithelium serves as a first line of defense against invading respiratory viruses including influenza A virus (IAV). Recently, it was verified that interferon (IFN)-related immune responses play a critical role in local antiviral innate immunity. Reactive oxygen species (ROS) generation by exogenous pathogens has also been demonstrated in respiratory epithelial cells and modulation of ROS has been reported to be important for respiratory virus-induced innate immune mechanisms. Passage-2 normal human nasal epithelial (NHNE) cells were inoculated with IAV (WS/33, H1N1) to assess the sources of IAV-induced ROS and the relationship between ROS and IFN-related innate immune responses. Both STAT1 and STAT2 phosphorylation and the mRNA levels of IFN-stimulated genes, including Mx1, 2,5-OAS1, IFIT1, and CXCL10, were induced after IAV infection up to three days post infection. Similarly, we observed that mitochondrial ROS generation increased maximally at 2 days after IAV infection. After suppression of mitochondrial ROS generation, IAV-induced phosphorylation of STAT and mRNA levels of IFN-stimulated genes were attenuated and actually, viral titers of IAV were significantly higher in cases with scavenging ROS. Our findings suggest that mitochondrial ROS might be responsible for controlling IAV infection and may be potential sources of ROS generation, which is required to initiate an innate immune response in NHNE cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The innate immune response to RSV: Advances in our understanding of critical viral and host factors.

    PubMed

    Sun, Yan; López, Carolina B

    2017-01-11

    Respiratory syncytial virus (RSV) causes mild to severe respiratory illness in humans and is a major cause of hospitalizations of infants and the elderly. Both the innate and the adaptive immune responses contribute to the control of RSV infection, but despite successful viral clearance, protective immunity against RSV re-infection is usually suboptimal and infections recur. Poor understanding of the mechanisms limiting the induction of long-lasting immunity has delayed the development of an effective vaccine. The innate immune response plays a critical role in driving the development of adaptive immunity and is thus a crucial determinant of the infection outcome. Advances in recent years have improved our understanding of cellular and viral factors that influence the onset and quality of the innate immune response to RSV. These advances include the identification of a complex system of cellular sensors that mediate RSV detection and stimulate transcriptome changes that lead to virus control and the discovery that cell stress and apoptosis participate in the control of RSV infection. In addition, it was recently demonstrated that defective viral genomes (DVGs) generated during RSV replication are the primary inducers of the innate immune response. Newly discovered host pathways involved in the innate response to RSV, together with the potential generation of DVG-derived oligonucleotides, present various novel opportunities for the design of vaccine adjuvants able to induce a protective response against RSV and similar viruses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. iRhom2 is essential for innate immunity to RNA virus by antagonizing ER- and mitochondria-associated degradation of VISA.

    PubMed

    Luo, Wei-Wei; Li, Shu; Li, Chen; Zheng, Zhou-Qin; Cao, Pan; Tong, Zhen; Lian, Huan; Wang, Su-Yun; Shu, Hong-Bing; Wang, Yan-Yi

    2017-11-01

    VISA (also known as MAVS, IPS-1 and Cardif) is an essential adaptor protein in innate immune response to RNA virus. The protein level of VISA is delicately regulated before and after viral infection to ensure the optimal activation and timely termination of innate antiviral response. It has been reported that several E3 ubiquitin ligases can mediate the degradation of VISA, but how the stability of VISA is maintained before and after viral infection remains enigmatic. In this study, we found that the ER-associated inactive rhomboid protein 2 (iRhom2) plays an essential role in mounting an efficient innate immune response to RNA virus by maintaining the stability of VISA through distinct mechanisms. In un-infected and early infected cells, iRhom2 mediates auto-ubiquitination and degradation of the E3 ubiquitin ligase RNF5 and impairs the assembly of VISA-RNF5-GP78 complexes, thereby antagonizes ER-associated degradation (ERAD) of VISA. In the late phase of viral infection, iRhom2 mediates proteasome-dependent degradation of the E3 ubiquitin ligase MARCH5 and impairs mitochondria-associated degradation (MAD) of VISA. Maintenance of VISA stability by iRhom2 ensures efficient innate antiviral response at the early phase of viral infection and ready for next round of response. Our findings suggest that iRhom2 acts as a checkpoint for the ERAD/MAD of VISA, which ensures proper innate immune response to RNA virus.

  20. Innate Immunity and the Pathogenicity of Inhaled Microbial Particles

    PubMed Central

    Wolff, C. Henrik J.

    2011-01-01

    Non-infectious inhaled microbial particles can cause illness by triggering an inappropriate immunological response. From the pathogenic point of view these illnesses can be seen to be related to on one hand autoimmune diseases and on the other infectious diseases. In this review three such illnesses are discussed in some detail. Hypersensitivity pneumonitis (HP) is the best known of these illnesses and it has also been widely studied in animal models and clinically. In contrast to HP Pulmonary mycotoxicosis (PM) is not considered to involve immunological memory, it is an acute self-limiting condition is caused by an immediate "toxic" effect. Damp building related illness (DBRI) is a controversial and from a diagnostic point poorly defined entity that is however causing, or attributed to cause, much more morbidity than the two other diseases. In the recent decade there has been a shift in the focus of immunology from the lymphocyte centered, adaptive immunity towards innate immunity. The archetypal cell in innate immunity is the macrophage although many other cell types participate. Innate immunity relies on a limited number of germline coded receptors for the recognition of pathogens and signs of cellular damage. The focus on innate immunity has opened new paths for the understanding of many chronic inflammatory diseases. The purpose of this review is to discuss the impact of some recent studies, that include aspects concerning innate immunity, on our understanding of the pathogenesis of inflammatory diseases associated with exposure to inhaled microbial matter. PMID:21448336

  1. Why do Manduca sexta feed from white flowers? Innate and learnt colour preferences in a hawkmoth

    NASA Astrophysics Data System (ADS)

    Goyret, Joaquín; Pfaff, Michael; Raguso, Robert A.; Kelber, Almut

    2008-06-01

    Flower colour is an important signal used by flowering plants to attract pollinators. Many anthophilous insects have an innate colour preference that is displayed during their first foraging bouts and which could help them locate their first nectar reward. Nevertheless, learning capabilities allow insects to switch their colour preferences with experience and thus, to track variation in floral nectar availability. Manduca sexta, a crepuscular hawkmoth widely studied as a model system for sensory physiology and behaviour, visits mostly white, night-blooming flowers lacking UV reflectance throughout its range in the Americas. Nevertheless, the spectral sensitivity of the feeding behaviour of naïve moths shows a narrow peak around 450 nm wavelengths, suggesting an innate preference for the colour blue. Under more natural conditions (i.e. broader wavelength reflectance) than in previous studies, we used dual choice experiments with blue- and white-coloured feeders to investigate the innate preference of naïve moths and trained different groups to each colour to evaluate their learning capabilities. We confirmed the innate preference of M. sexta for blue and found that these moths were able to switch colour preferences after training experience. These results unequivocally demonstrate that M. sexta moths innately prefer blue when presented against white flower models and offer novel experimental evidence supporting the hypothesis that learning capabilities could be involved in their foraging preferences, including their widely observed attraction to white flowers in nature.

  2. Histomorphology and innate immunity during the progression of osteoarthritis: Does synovitis affect cartilage degradation?

    PubMed

    Wang, Huan; Wang, Qingguo; Yang, Meijuan; Yang, Lili; Wang, Weili; Ding, Haobin; Zhang, Dong; Xu, Jing; Tang, Xuezhang; Ding, Haitao; Wang, Qingfu

    2018-02-01

    Osteoarthritis (OA) is a common chronic degenerative disease that affects all joints. At present, the pathological processes and mechanisms of OA are still unclear. Innate immunity, a key player in damage to the structure of the joint and the mechanism by which the host attempts to repair OA, affects all pathological stages of the disease. In the present study, our aim was to assess changes in innate immunity during the pathological processes of OA in articular cartilage (AC) and the synovial membrane (SM), which are the major structures in joints, and to systematically examine the histological changes in AC and SM in mild, moderate and severe cases of OA, in order to further speculate about the manner in which the interactions of AC and SM are facilitated by innate immunity. Histological methods (including HE and Safranin O-fast green staining), immunofluorescent double staining, TUNEL stain, and Western blots were used to assess the morphological changes within AC and SM tissues in healthy and mild, moderate, or severe OA rats. Our results showed that the damage to AC and SM within the joints progressively worsened in different degrees during the course of the disease, and that the innate immune system was closely involved in the AC and SM during each stage of OA. These findings also confirmed that SM may affect the pathological changes in AC through the innate immune system, and therefore affect the progress of OA. © 2017 Wiley Periodicals, Inc.

  3. Alcohol, aging, and innate immunity.

    PubMed

    Boule, Lisbeth A; Kovacs, Elizabeth J

    2017-07-01

    The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals. © Society for Leukocyte Biology.

  4. iRhom2 is essential for innate immunity to RNA virus by antagonizing ER- and mitochondria-associated degradation of VISA

    PubMed Central

    Luo, Wei-Wei; Li, Shu; Cao, Pan; Tong, Zhen; Lian, Huan; Wang, Su-Yun; Shu, Hong-Bing

    2017-01-01

    VISA (also known as MAVS, IPS-1 and Cardif) is an essential adaptor protein in innate immune response to RNA virus. The protein level of VISA is delicately regulated before and after viral infection to ensure the optimal activation and timely termination of innate antiviral response. It has been reported that several E3 ubiquitin ligases can mediate the degradation of VISA, but how the stability of VISA is maintained before and after viral infection remains enigmatic. In this study, we found that the ER-associated inactive rhomboid protein 2 (iRhom2) plays an essential role in mounting an efficient innate immune response to RNA virus by maintaining the stability of VISA through distinct mechanisms. In un-infected and early infected cells, iRhom2 mediates auto-ubiquitination and degradation of the E3 ubiquitin ligase RNF5 and impairs the assembly of VISA-RNF5-GP78 complexes, thereby antagonizes ER-associated degradation (ERAD) of VISA. In the late phase of viral infection, iRhom2 mediates proteasome-dependent degradation of the E3 ubiquitin ligase MARCH5 and impairs mitochondria-associated degradation (MAD) of VISA. Maintenance of VISA stability by iRhom2 ensures efficient innate antiviral response at the early phase of viral infection and ready for next round of response. Our findings suggest that iRhom2 acts as a checkpoint for the ERAD/MAD of VISA, which ensures proper innate immune response to RNA virus. PMID:29155878

  5. Why do Manduca sexta feed from white flowers? Innate and learnt colour preferences in a hawkmoth.

    PubMed

    Goyret, Joaquín; Pfaff, Michael; Raguso, Robert A; Kelber, Almut

    2008-06-01

    Flower colour is an important signal used by flowering plants to attract pollinators. Many anthophilous insects have an innate colour preference that is displayed during their first foraging bouts and which could help them locate their first nectar reward. Nevertheless, learning capabilities allow insects to switch their colour preferences with experience and thus, to track variation in floral nectar availability. Manduca sexta, a crepuscular hawkmoth widely studied as a model system for sensory physiology and behaviour, visits mostly white, night-blooming flowers lacking UV reflectance throughout its range in the Americas. Nevertheless, the spectral sensitivity of the feeding behaviour of naïve moths shows a narrow peak around 450 nm wavelengths, suggesting an innate preference for the colour blue. Under more natural conditions (i.e. broader wavelength reflectance) than in previous studies, we used dual choice experiments with blue- and white-coloured feeders to investigate the innate preference of naïve moths and trained different groups to each colour to evaluate their learning capabilities. We confirmed the innate preference of M. sexta for blue and found that these moths were able to switch colour preferences after training experience. These results unequivocally demonstrate that M. sexta moths innately prefer blue when presented against white flower models and offer novel experimental evidence supporting the hypothesis that learning capabilities could be involved in their foraging preferences, including their widely observed attraction to white flowers in nature.

  6. Innate immunity and HIV-1 infection.

    PubMed

    Lehner, T; Wang, Y; Whittall, T; Seidl, T

    2011-04-01

    HIV-1 is predominantly transmitted through mucosal tissues, targeting CD4(+)CCR5(+) T cells, 50% of which are destroyed within 2 weeks of infection. Conventional vaccination strategies have so far failed to prevent HIV-1 infection. Neither antibodies nor cytotoxic lymphocytes are capable of mounting a sufficiently rapid immune response to prevent early destruction of these cells. However, innate immunity is an early-response system, largely independent of prior encounter with a pathogen. Innate immunity can be classified into cellular, extracellular, and intracellular components, each of which is exemplified in this review by γδ T cells, CC chemokines, and APOBEC3G, respectively. First, γδ T cells are found predominantly in mucosal tissues and produce cytokines, CC chemokines, and antiviral factors. Second, the CC chemokines CCL-3, CCL-4, and CCL-5 can be upregulated by immunization of macaques with SIVgp120 and gag p27, and these can bind and downmodulate CCR5, thereby inhibiting HIV-1 entry into the host cells. Third, APOBEC3G is generated and maintained following rectal mucosal immunization in rhesus macaques for over 17 weeks, and the innate anti-SIV factor is generated by CD4(+)CD95(+)CCR7(-) effector memory T cells. Thus, innate anti-HIV-1 or SIV immunity can be linked with immune memory, mediated by CD4(+) T cells generating APOBEC3G. The multiple innate functions may mount an early anti-HIV-1 response and either prevent viral transmission or contain the virus until an effective adaptive immune response develops.

  7. Systemic lupus erythematosus biomarkers: the challenging quest

    PubMed Central

    Wren, Jonathan D.; Munroe, Melissa E.; Mohan, Chandra

    2017-01-01

    Abstract SLE, a multisystem heterogeneous disease, is characterized by production of antibodies to cellular components, with activation of both the innate and the adaptive immune system. Decades of investigation of blood biomarkers has resulted in incremental improvements in the understanding of SLE. Owing to the heterogeneity of immune dysregulation, no single biomarker has emerged as a surrogate for disease activity or prediction of disease. Beyond identification of surrogate biomarkers, a multitude of clinical trials have sought to inhibit elevated SLE biomarkers for therapeutic benefit. Armed with new -omics technologies, the necessary yet daunting quest to identify better surrogate biomarkers and successful therapeutics for SLE continues with tenacity. PMID:28013203

  8. Buried treasure: evolutionary perspectives on microbial iron piracy

    PubMed Central

    Barber, Matthew F.; Elde, Nels C.

    2015-01-01

    Host-pathogen interactions provide valuable systems for the study of evolutionary genetics and natural selection. The sequestration of essential iron has emerged as a critical innate defense system termed nutritional immunity, leading pathogens to evolve mechanisms of `iron piracy' to scavenge this metal from host proteins. This battle for iron carries numerous consequences not only for host-pathogen evolution, but also microbial community interactions. Here we highlight recent and potential future areas of investigation on the evolutionary implications of microbial iron piracy in relation to molecular arms races, host range, competition, and virulence. Applying evolutionary genetic approaches to the study of microbial iron acquisition could also provide new inroads for understanding and combating infectious disease. PMID:26431675

  9. The suppression of apoptosis by α-herpesvirus

    PubMed Central

    You, Yu; Cheng, An-Chun; Wang, Ming-Shu; Jia, Ren-Yong; Sun, Kun-Feng; Yang, Qiao; Wu, Ying; Zhu, Dekang; Chen, Shun; Liu, Ma-Feng; Zhao, Xin-Xin; Chen, Xiao-Yue

    2017-01-01

    Apoptosis, an important innate immune mechanism that eliminates pathogen-infected cells, is primarily triggered by two signalling pathways: the death receptor pathway and the mitochondria-mediated pathway. However, many viruses have evolved various strategies to suppress apoptosis by encoding anti-apoptotic factors or regulating apoptotic signalling pathways, which promote viral propagation and evasion of the host defence. During its life cycle, α-herpesvirus utilizes an elegant multifarious anti-apoptotic strategy to suppress programmed cell death. This progress article primarily focuses on the current understanding of the apoptosis-inhibition mechanisms of α-herpesvirus anti-apoptotic genes and their expression products and discusses future directions, including how the anti-apoptotic function of herpesvirus could be targeted therapeutically. PMID:28406478

  10. Anti-inflammatory Agents: Present and Future

    PubMed Central

    Dinarello, Charles A.

    2012-01-01

    Inflammation involving the innate and adaptive immune systems is a normal response to infection. However, when allowed to continue unchecked, inflammation may result in autoimmune or autoinflammatory disorders, neurodegenerative disease, or cancer. A variety of safe and effective anti-inflammatory agents are available, including aspirin and other nonsteroidal anti-inflammatories, with many more drugs under development. In particular, the new era of anti-inflammatory agents includes “biologicals” such as anticytokine therapies and small molecules that block the activity of kinases. Other anti-inflammatories currently in use or under development include statins, histone deacetylase inhibitors, PPAR agonists, and small RNAs. This Review discusses the current status of anti-inflammatory drug research and the development of new anti-inflammatory therapeutics. PMID:20303881

  11. Generation of natural killer cells from hematopoietic stem cells in vitro for immunotherapy

    PubMed Central

    Luevano, Martha; Madrigal, Alejandro; Saudemont, Aurore

    2012-01-01

    Natural killer (NK) cells are part of the innate immune system and are an alluring option for immunotherapy due to their ability to kill infected cells or cancer cells without prior sensitization. Throughout the past 20 years, different groups have been able to reproduce NK cell development in vitro, and NK cell ontogeny studies have provided the basis for the establishment of protocols to produce NK cells in vitro for immunotherapy. Here, we briefly discuss NK cell development and NK cell immunotherapy approaches. We review the factors needed for NK cell differentiation in vitro, which stem cell sources have been used, published protocols, challenges and future directions for Good Manufacturing Practice protocols. PMID:22705914

  12. Characterization of host immune responses in Ebola virus infections.

    PubMed

    Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo

    2014-06-01

    Ebola causes highly lethal hemorrhagic fever in humans with no licensed countermeasures. Its virulence can be attributed to several immunoevasion mechanisms: an early inhibition of innate immunity started by the downregulation of type I interferon, epitope masking and subversion of the adaptive humoural immunity by secreting a truncated form of the viral glycoprotein. Deficiencies in specific and non-specific antiviral responses result in unrestricted viral replication and dissemination in the host, causing death typically within 10 days after the appearance of symptoms. This review summarizes the host immune response to Ebola infection, and highlights the short- and long-term immune responses crucial for protection, which holds implications for the design of future vaccines and therapeutics.

  13. Requirement for interleukin-1 to drive brain inflammation reveals tissue-specific mechanisms of innate immunity

    PubMed Central

    Giles, James A; Greenhalgh, Andrew D; Davies, Claire L; Denes, Adam; Shaw, Tovah; Coutts, Graham; Rothwell, Nancy J; McColl, Barry W; Allan, Stuart M

    2015-01-01

    The immune system is implicated in a wide range of disorders affecting the brain and is, therefore, an attractive target for therapy. Interleukin-1 (IL-1) is a potent regulator of the innate immune system important for host defense but is also associated with injury and disease in the brain. Here, we show that IL-1 is a key mediator driving an innate immune response to inflammatory challenge in the mouse brain but is dispensable in extracerebral tissues including the lung and peritoneum. We also demonstrate that IL-1α is an important ligand contributing to the CNS dependence on IL-1 and that IL-1 derived from the CNS compartment (most likely microglia) is the major source driving this effect. These data reveal previously unknown tissue-specific requirements for IL-1 in driving innate immunity and suggest that IL-1-mediated inflammation in the brain could be selectively targeted without compromising systemic innate immune responses that are important for resistance to infection. This property could be exploited to mitigate injury- and disease-associated inflammation in the brain without increasing susceptibility to systemic infection, an important complication in several neurological disorders. PMID:25367678

  14. Infections in MS: An innate immunity perspective.

    PubMed

    Hänninen, A

    2017-11-01

    Multiple sclerosis is a multifaceted inflammatory-autoimmune disease, which shows remarkable heterogeneity in its clinical presentation, disease progression and in tissue lesions in the CNS. Focal lesions in white matter consist of immune effector cells, antibodies, and complement deposits in varying combinations, suggesting that immune mechanisms related to CNS pathology are multiple. Although adaptive immunity to myelin antigens is essential in MS pathogenesis, innate immune mechanisms are likely involved in its initiation and perpetuation. One key question is if recognition of infectious agents and microbial products by innate immune mechanisms impacts on MS and if so, how and where? This short review aims at conceptualizing how interactions between microbes and innate immune mechanisms could contribute to MS pathogenesis. Consideration is given to initiation of local inflammation and to myelin-specific immune responses, and how innate immunity and microbes may contribute to these. Recent advances in our understanding of lymphatic drainage of CNS, its immune surveillance and effects of gut microbiota and obesity on systemic endotoxin levels and T-cell priming may open new perspectives to understanding the roles that infectious agents and microbes may have in MS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The role of innate immunity in acute allograft rejection after lung transplantation.

    PubMed

    Palmer, Scott M; Burch, Lauranell H; Davis, R Duane; Herczyk, Walter F; Howell, David N; Reinsmoen, Nancy L; Schwartz, David A

    2003-09-15

    Although innate immunity is crucial to pulmonary host defense and can initiate immune and inflammatory responses independent of adaptive immunity, it remains unstudied in the context of transplant rejection. To investigate the role of innate immunity in the development of allograft rejection, we assessed the impact of two functional polymorphisms in the toll-like receptor 4 (TLR4) associated with endotoxin hyporesponsiveness on the development of acute rejection after human lung transplantation. Patients and donors were screened for the TLR4 Asp299Gly and Thr399Ile polymorphisms by polymerase chain reaction using sequence-specific primers. The rate of acute rejection at 6 months was significantly reduced in recipients, but not in donors, with the Asp299Gly or Thr399Ile alleles as compared with wild type (29 vs. 56%, respectively, p = 0.05). This association was confirmed in Cox proportional hazards and multivariate logistic regression models. Our results suggest activation of innate immunity in lung transplant recipients through TLR4 contributes to the development acute rejection after lung transplantation. Therapies directed at inhibition of innate immune responses mediated by TLR4 may represent a novel and effective means to prevent acute rejection after lung transplantation.

  16. Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents.

    PubMed

    Tschirren, B; Råberg, L; Westerdahl, H

    2011-06-01

    Patterns of selection acting on immune defence genes have recently been the focus of considerable interest. Yet, when it comes to vertebrates, studies have mainly focused on the acquired branch of the immune system. Consequently, the direction and strength of selection acting on genes of the vertebrate innate immune defence remain poorly understood. Here, we present a molecular analysis of selection on an important receptor of the innate immune system of vertebrates, the Toll-like receptor 2 (TLR2), across 17 rodent species. Although purifying selection was the prevalent evolutionary force acting on most parts of the rodent TLR2, we found that codons in close proximity to pathogen-binding and TLR2-TLR1 heterodimerization sites have been subject to positive selection. This indicates that parasite-mediated selection is not restricted to acquired immune system genes like the major histocompatibility complex, but also affects innate defence genes. To obtain a comprehensive understanding of evolutionary processes in host-parasite systems, both innate and acquired immunity thus need to be considered. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  17. Human innate lymphoid cells.

    PubMed

    Mjösberg, Jenny; Spits, Hergen

    2016-11-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune responses. As such, ILCs make up interesting therapeutic targets for several diseases. In patients with allergy and asthma, group 2 innate lymphoid cells produce high amounts of IL-5 and IL-13, thereby contributing to type 2-mediated inflammation. Group 3 innate lymphoid cells are implicated in intestinal homeostasis and psoriasis pathology through abundant IL-22 production, whereas group 1 innate lymphoid cells are accumulated in chronic inflammation of the gut (inflammatory bowel disease) and lung (chronic obstructive pulmonary disease), where they contribute to IFN-γ-mediated inflammation. Although the ontogeny of mouse ILCs is slowly unraveling, the development of human ILCs is far from understood. In addition, the growing complexity of the human ILC family in terms of previously unrecognized functional heterogeneity and plasticity has generated confusion within the field. Here we provide an updated view on the function and plasticity of human ILCs in tissue homeostasis and disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis.

    PubMed

    Mindt, Barbara C; Fritz, Jörg H; Duerr, Claudia U

    2018-01-01

    Group 2 innate lymphoid cells (ILC2) represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.

  19. Innate immune response to Burkholderia mallei.

    PubMed

    Saikh, Kamal U; Mott, Tiffany M

    2017-06-01

    Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei.

  20. Lung Epithelial Cells Coordinate Innate Lymphocytes and Immunity against Pulmonary Fungal Infection.

    PubMed

    Hernández-Santos, Nydiaris; Wiesner, Darin L; Fites, J Scott; McDermott, Andrew J; Warner, Thomas; Wüthrich, Marcel; Klein, Bruce S

    2018-04-11

    Lung epithelial cells (LECs) are strategically positioned in the airway mucosa to provide barrier defense. LECs also express pattern recognition receptors and a myriad of immune genes, but their role in immunity is often concealed by the activities of "professional" immune cells, particularly in the context of fungal infection. Here, we demonstrate that NF-κB signaling in LECs is essential for immunity against the pulmonary fungal pathogen Blastomyces dermatitidis. LECs orchestrate innate antifungal immunity by augmenting the numbers of interleukin-17A (IL-17A)- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing innate lymphocytes, specifically "natural" Th17 (nTh17) cells. Innate lymphocyte-derived IL-17A and GM-CSF in turn enable phagocyte-driven fungal killing. LECs regulate the numbers of nTh17 cells via the production of chemokines such as CCL20, a process dependent on IL-1α-IL-1 receptor (IL-1R) signaling on LECs. Therefore, LECs orchestrate IL-17A- and GM-CSF-mediated immunity in an IL-1R-dependent manner and represent an essential component of innate immunity to pulmonary fungal pathogens. Copyright © 2018 Elsevier Inc. All rights reserved.

Top