Science.gov

Sample records for innovative reactor systems

  1. Integrated nuclear data utilisation system for innovative reactors.

    PubMed

    Yamano, N; Hasegawa, A; Kato, K; Igashira, M

    2005-01-01

    A five-year research and development project on an integrated nuclear data utilisation system was initiated in 2002, for developing innovative nuclear energy systems such as accelerator-driven systems. The integrated nuclear data utilisation system will be constructed as a modular code system, which consists of two sub-systems: the nuclear data search and plotting sub-system, and the nuclear data processing and utilisation sub-system. The system will be operated with a graphical user interface in order to enable easy utilisation through the Internet by both nuclear design engineers and nuclear data evaluators. This paper presents an overview of the integrated nuclear data utilisation system, describes the development of a prototype system to examine the operability of the user interface and discusses specifications of the two sub-systems.

  2. Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems

    EPA Science Inventory

    Slide presentation at Conference: ASCE 7th Civil Engineering Conference in the Asian Region. USEPA in partnership with the Cadmus Group, Carollo Engineers, and other State & Industry collaborators, are evaluating new approaches for validating UV reactors to meet groundwater & sur...

  3. Steam Generator of the International Reactor Innovative and Secure

    SciTech Connect

    Cinotti, L.; Bruzzone, M.; Meda, N.; Corsini, G.; Lombardi, C.V.; Ricotti, M.; Conway, L.E.

    2002-07-01

    IRIS (International Reactor Innovative and Secure) is a light water cooled, 335 MWe power reactor which is being designed by an international consortium as part of the US DOE NERI Program. IRIS features an integral reactor vessel that contains all the main reactor coolant system components including the reactor core, the coolant pumps, the steam generators and the pressurizer. This integral design approach eliminates the large coolant loop piping, and thus eliminates large loss-of-coolant accidents (LOCAs) as well as the individual component pressure vessels and supports. In addition, IRIS is being designed with a long-life core and enhanced safety to address the requirements defined by the US DOE for Generation IV reactors. The design of the steam generators, which are internally contained within the reactor vessel, is a major design effort in the development of the integral IRIS concept. The ongoing design activity about the steam generator is the subject of this paper. (authors)

  4. Reactor surface contamination stabilization. Innovative technology summary report

    SciTech Connect

    1998-11-01

    Contaminated surfaces, such as the face of a nuclear reactor, need to be stabilized (fixed) to avoid airborne contamination during decontamination and decommissioning activities, and to prepare for interim safe storage. The traditional (baseline) method of fixing the contamination has been to spray a coating on the surfaces, but ensuring complete coverage over complex shapes, such as nozzles and hoses, is difficult. The Hanford Site C Reactor Technology Demonstration Group demonstrated innovative technologies to assess stabilization properties of various coatings and to achieve complete coverage of complex surfaces on the reactor face. This demonstration was conducted in two phases: the first phase consisted of a series of laboratory assessments of various stabilization coatings on metal coupons. For the second phase, coatings that passed the laboratory tests were applied to the front face of the C Reactor and evaluated. The baseline coating (Rust-Oleum No. 769) and one of the innovative technologies did not completely cover nozzle assemblies on the reactor face, the most critical of the second-phase evaluation criteria. However, one of the innovative coating systems, consisting of a base layer of foam covered by an outer layer of a polymeric film, was successful. The baseline technology would cost approximately 33% as much as the innovative technology cost of $64,000 to stabilize an entire reactor face (196 m{sup 2} or 2116 ft{sup 2}) with 2,004 nozzle assemblies, but the baseline system failed to provide complete surface coverage.

  5. Innovations and enhancements in neutronic analysis of the Big-10 university research and training reactors based on the AGENT code system

    SciTech Connect

    Hursin, M.; Shanjie, X.; Burns, A.; Hopkins, J.; Satvat, N.; Gert, G.; Tsoukalas, L. H.; Jevremovic, T.

    2006-07-01

    Introduction. This paper summarizes salient aspects of the 'virtual' reactor system developed at Purdue Univ. emphasizing efficient neutronic modeling through AGENT (Arbitrary Geometry Neutron Transport) a deterministic neutron transport code. DOE's Big-10 Innovations in Nuclear Infrastructure and Education (INIE) Consortium was launched in 2002 to enhance scholarship activities pertaining to university research and training reactors (URTRs). Existing and next generation URTRs are powerful campus tools for nuclear engineering as well as a number of disciplines that include, but are not limited to, medicine, biology, material science, and food science. Advancing new computational environments for the analysis and configuration of URTRs is an important Big-10 INIE aim. Specifically, Big-10 INIE has pursued development of a 'virtual' reactor, an advanced computational environment to serve as a platform on which to build operations, utilization (research and education), and systemic analysis of URTRs physics. The 'virtual' reactor computational system will integrate computational tools addressing the URTR core and near core physics (transport, dynamics, fuel management and fuel configuration); thermal-hydraulics; beam line, in-core and near-core experiments; instrumentation and controls; confinement/containment and security issues. Such integrated computational environment does not currently exist. The 'virtual' reactor is designed to allow researchers and educators to configure and analyze their systems to optimize experiments, fuel locations for flux shaping, as well as detector selection and configuration. (authors)

  6. Providing the Basis for Innovative Improvements in Advanced LWR Reactor Passive Safety Systems Design: An Educational R&D Project

    SciTech Connect

    Brian G. Williams; Jim C. P. Liou; Hiral Kadakia; Bill Phoenix; Richard R. Schultz

    2007-02-27

    This project characterizes typical two-phase stratified flow conditions in advanced water reactor horizontal pipe sections, following activation of passive cooling systems. It provides (1) a means to educate nuclear engineering students regarding the importance of two-phase stratified flow in passive cooling systems to the safety of advanced reactor systems and (2) describes the experimental apparatus and process to measure key parameters essential to consider when designing passive emergency core cooling flow paths that may encounter this flow regime. Based on data collected, the state of analysis capabilities can be determined regarding stratified flow in advanced reactor systems and the best paths forward can be identified to ensure that the nuclear industry can properly characterize two-phase stratified flow in passive emergency core cooling systems.

  7. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  8. Improved vortex reactor system

    DOEpatents

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  9. Reactor vessel support system

    DOEpatents

    Golden, Martin P.; Holley, John C.

    1982-01-01

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  10. Innovative approaches to inertial confinement fusion reactors: Final report

    SciTech Connect

    Bourque, R.F.; Schultz, K.R.

    1986-11-01

    Three areas of innovative approaches to inertial confinement fusion (ICF) reactor design are given. First, issues pertaining to the Cascade reactor concept are discussed. Then, several innovative concepts are presented which attempt to directly recover the blast energy from a fusion target. Finally, the Turbostar concept for direct recovery of that energy is evaluated. The Cascade issues discussed are combustion of the carbon granules in the event of air ingress, the use of alternate granule materials, and the effect of changes in carbon flow on details of the heat exchanger. Carbon combustion turns out to be a minor problem. Four ICF innovative concepts were considered: a turbine with ablating surfaces, a liquid piston system, a wave generator, and a resonating pump. In the final analysis, none show any real promise. The Turbostar concept of direct recovery is a very interesting idea and appeared technically viable. However, it shows no efficiency gain or any decrease in capital cost compared to reactors with conventional thermal conversion systems. Attempts to improve it by placing a close-in lithium sphere around the target to increase gas generation increased efficiency only slightly. It is concluded that these direct conversion techniques require thermalization of the x-ray and debris energy, and are Carnot limited. They therefore offer no advantage over existing and proposed methods of thermal energy conversion or direct electrical conversion.

  11. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  12. Reactor water cleanup system

    DOEpatents

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  13. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  14. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Goett, J.J.

    1961-01-24

    A system is described which includes a neutronic reactor containing a dispersion of fissionable material in a liquid moderator as fuel and a conveyor to which a portion of the dispersion may be passed and wherein the self heat of the slurry evaporates the moderator. Means are provided for condensing the liquid moderator and returning it to the reactor and for conveying the dried fissionable material away from the reactor.

  15. Improved vortex reactor system

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  16. REACTOR CONTROL SYSTEM

    DOEpatents

    MacNeill, J.H.; Estabrook, J.Y.

    1960-05-10

    A reactor control system including a continuous tape passing through a first coolant passageway, over idler rollers, back through another parallel passageway, and over motor-driven rollers is described. Discrete portions of fuel or poison are carried on two opposed active sections of the tape. Driving the tape in forward or reverse directions causes both active sections to be simultaneously inserted or withdrawn uniformly, tending to maintain a more uniform flux within the reactor. The system is particularly useful in mobile reactors, where reduced inertial resistance to control rod movement is important.

  17. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1959-02-10

    A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.

  18. Moon base reactor system

    NASA Technical Reports Server (NTRS)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  19. [Stability control of aerobic granules using an innovative reactor].

    PubMed

    Li, Zhi-Hua; Yang, Fan; Li, Sheng; Xie, Lei; Wang, Xiao-Chang

    2012-06-01

    Uncontrolled variation of diameter and density of aerobic granules frequently resulted in instability and thus brought about operation failure. An innovative reactor was therefore developed for the control of diameter and density of aerobic granules. There were two ways to select the sludge, one was the short settling time select the big and dense granules in the reactor, and the other was the hydro cyclone that washed out the big and compact granules preventing big and compact fourthly growth in the reactor. By these means, the diameter of granules could maintained in the range of 300-1 000 microm for a long time, consequently, the long term stability could be obtained. According to the kinetic analysis, it was found that the energy maintenance coefficient was 0.08-0.10, which was much higher than the conventional granular system (0.06), and the ratio of the COD used for maintenance to the influent was higher than the conventional one. Additionally, the removal efficiencies of COD and ammonia were 92% and 60%, respectively.

  20. A brief history of design studies on innovative nuclear reactors

    SciTech Connect

    Sekimoto, Hiroshi

    2014-09-30

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  1. Nuclear reactor sealing system

    DOEpatents

    McEdwards, James A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel.

  2. Nuclear reactor shutdown system

    DOEpatents

    Bhate, Suresh K.; Cooper, Martin H.; Riffe, Delmar R.; Kinney, Calvin L.

    1981-01-01

    An inherent shutdown system for a nuclear reactor having neutron absorbing rods affixed to an armature which is held in an upper position by a magnetic flux flowing through a Curie temperature material. The Curie temperature material is fixedly positioned about the exterior of an inner duct in an annular region through which reactor coolant flows. Elongated fuel rods extending from within the core upwardly toward the Curie temperature material are preferably disposed within the annular region. Upon abnormal conditions which result in high neutron flux and coolant temperature, the Curie material loses its magnetic permeability, breaking the magnetic flux path and allowing the armature and absorber rods to drop into the core, thus shutting down the fissioning reaction. The armature and absorber rods are retrieved by lowering the housing for the electromagnet forming coils which create a magnetic flux path which includes the inner duct wall. The coil housing then is raised, resetting the armature.

  3. Attrition reactor system

    SciTech Connect

    Scott, Charles D.; Davison, Brian H.

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  4. Attrition reactor system

    SciTech Connect

    Scott, C.D.; Davison, B.H.

    1993-09-28

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  5. Thermochemical reactor systems and methods

    SciTech Connect

    Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard

    2016-11-29

    Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.

  6. Reactor vessel support system. [LMFBR

    DOEpatents

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  7. FLOW SYSTEM FOR REACTOR

    DOEpatents

    Zinn, W.H.

    1963-06-11

    A reactor is designed with means for terminating the reaction when returning coolant is below a predetermined temperature. Coolant flowing from the reactor passes through a heat exchanger to a lower reservoir, and then circulates between the lower reservoir and an upper reservoir before being returned to the reactor. Means responsive to the temperature of the coolant in the return conduit terminate the chain reaction when the temperature reaches a predetermined minimum value. (AEC)

  8. NUCLEAR REACTOR FUEL SYSTEMS

    DOEpatents

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  9. Preapplication safety evaluation report for the Power Reactor Innovative Small Module (PRISM) liquid-metal reactor. Final report

    SciTech Connect

    Donoghue, J.E.; Donohew, J.N.; Golub, G.R.; Kenneally, R.M.; Moore, P.B.; Sands, S.P.; Throm, E.D.; Wetzel, B.A.

    1994-02-01

    This preapplication safety evaluation report (PSER) presents the results of the preapplication desip review for die Power Reactor Innovative Small Module (PRISM) liquid-mew (sodium)-cooled reactor, Nuclear Regulatory Commission (NRC) Project No. 674. The PRISM conceptual desip was submitted by the US Department of Energy in accordance with the NRC`s ``Statement of Policy for the Regulation of Advanced Nuclear Power Plants`` (51 Federal Register 24643). This policy provides for the early Commission review and interaction with designers and licensees. The PRISM reactor desip is a small, modular, pool-type, liquid-mew (sodium)-cooled reactor. The standard plant design consists of dim identical power blocks with a total electrical output rating of 1395 MWe- Each power block comprises three reactor modules, each with a thermal rating of 471 MWt. Each module is located in its own below-grade silo and is co to its own intermediate heat transport system and steam generator system. The reactors utilize a metallic-type fuel, a ternary alloy of U-Pu-Zr. The design includes passive reactor shutdown and passive decay heat removal features. The PSER is the NRC`s preliminary evaluation of the safety features in the PRISM design, including the projected research and development programs required to support the design and the proposed testing needs. Because the NRC review was based on a conceptual design, the PSER did not result in an approval of the design. Instead it identified certain key safety issues, provided some guidance on applicable licensing criteria, assessed the adequacy of the preapplicant`s research and development programs, and concluded that no obvious impediments to licensing the PRISM design had been identified.

  10. An Innovative Reactor Technology to Improve Indoor Air Quality

    SciTech Connect

    Rempel, Jane

    2013-03-30

    As residential buildings achieve tighter envelopes in order to minimize energy used for space heating and cooling, accumulation of indoor air pollutants such as volatile organic compounds (VOCs), becomes a major concern causing poor air quality and increased health risks. Current VOC removal methods include sorbents, ultraviolet photocatalytic oxidation (UVPCO), and increased ventilation, but these methods do not capture or destroy all VOCs or are prohibitively expensive to implement. TIAX's objective in this program was to develop a new VOC removal technology for residential buildings. This novel air purification technology is based on an innovative reactor and light source design along with UVPCO properties of the chosen catalyst to purify indoor air and enhance indoor air quality (IAQ). During the program we designed, fabricated and tested a prototype air purifier to demonstrate its feasibility and effectiveness. We also measured kinetics of VOC destruction on photocatalysts, providing deep insight into reactor design.

  11. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Daniels, F.

    1957-10-15

    Gas-cooled solid-moderator type reactors wherein the fissionable fuel and moderator materials are each in the form of solid pebbles, or discrete particles, and are substantially homogeneously mixed in the proper proportion and placed within the core of the reactor are described. The shape of these discrete particles must be such that voids are present between them when mixed together. Helium enters the bottom of the core and passes through the voids between the fuel and moderator particles to absorb the heat generated by the chain reaction. The hot helium gas is drawn off the top of the core and may be passed through a heat exchanger to produce steam.

  12. Reactor core isolation cooling system

    DOEpatents

    Cooke, F.E.

    1992-12-08

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

  13. Reactor core isolation cooling system

    DOEpatents

    Cooke, Franklin E.

    1992-01-01

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

  14. Reactor refueling containment system

    DOEpatents

    Gillett, James E.; Meuschke, Robert E.

    1995-01-01

    A method of refueling a nuclear reactor whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced.

  15. Reactor refueling containment system

    DOEpatents

    Gillett, J.E.; Meuschke, R.E.

    1995-05-02

    A method of refueling a nuclear reactor is disclosed whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced. 2 figs.

  16. Solvent refined coal reactor quench system

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  17. Solvent refined coal reactor quench system

    DOEpatents

    Thorogood, R.M.

    1983-11-08

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

  18. Plasma reactor waste management systems

    NASA Technical Reports Server (NTRS)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  19. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Howard, D.F.; Motta, E.E.

    1961-06-27

    A method for controlling the excess reactivity in a nuclear reactor throughout the core life while maintaining the neutron flux distribution at the desired level is described. The control unit embodies a container having two electrodes of different surface area immersed in an electrolytic solution of a good neutron sbsorbing metal ion such as boron, gadolinium, or cadmium. Initially, the neutron absorber is plated on the larger electrode to control the greater neutron flux of a freshly refueled core. As the fuel burns up, the excess reactivity decreases and the neutron absorber is then plated onto the smaller electrode so that the number of neutrons absorbed also decreases. The excess reactivity in the core may thus be maintained without the introduction of serious perturbations in the neutron flux distributibn.

  20. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  1. Advanced Reactor Innovation Evaluation Study (ARIES) Properties Archive

    DOE Data Explorer

    ARIES stands for Advanced Reactor Innovation Evaluation Study. It is a program and a team that explores the commercial potential of fusion as an energy resource. Though it is a multi-institutional program, ARIES is led by the University of California at San Diego. ARIES studies both magnetic fusion energy (MFE) and inertial fusion energy (IFE), using an approach that integrates theory, experiments, and technology. The ARIES team proposes fusion reactor designs and works to understand how technology, materials and plasma physics processes interact and influence each other. A 2005 report to the Fusion Energy Sciences Advisory Committee ("Scientific Challenges, Opportunities, and Priorities for the U.S. Fusion Energy Sciences Program") noted on page 98 an example of the importance of this materials properties aspect: "For instance, effects on plasma edge by various plasma facing materials and effects on various plasma stabilization and control techniques by highly conducting liquid metal blankets are being considered by physicists." This web page is an archive of material properties collected here for the use of the ARIES Fusion Power Plant Studies Team.

  2. Reactor control rod timing system

    DOEpatents

    Wu, Peter T. K.

    1982-01-01

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  3. Safety of evolutionary and innovative nuclear reactors: IAEA activities and world efforts

    SciTech Connect

    Saito, T.; Gasparini, M.

    2004-07-01

    'Defence in Depth' approach constitutes the basis of the IAEA safety standards for nuclear power plants. Lessons learned from the current generation of reactors suggest that, for the next generation of reactor designs, the Defence in Depth philosophy should be retained, and that its implementation should be guided by the probabilistic insights. Recent developments in the area of general safety requirements based on Defence in Depth approach are examined and summarized. Global efforts to harmonize safety requirements for evolutionary nuclear power plants have involved many countries and organizations such as IAEA, US EPRI and European Utility EUR Organization. In recent years, developments of innovative nuclear power plants are also being discussed. The IAEA is currently developing a safety approach specifically for innovative nuclear reactors. This approach will eventually lead to a proposal of safety requirements for innovative reactors. Such activities related to safety requirements of evolutionary and innovative reactors are introduced. Various evolutionary and innovative reactor designs are reported in the world. The safety design features of evolutionary large LWRs, innovative LWRs, Modular High Temperature Gas Reactors and Small Liquid Metal Cooled LMRs are also introduced. Enhanced safety features proposed in such reactors are discussed and summarized according to the levels of Defence in Depth. For future nuclear plants, international cooperation and harmonization, especially in the area of safety, appear to be inevitable. Based on the past experience with many member states, the IAEA believes itself to be the uniquely positioned international organization to play this key role. (authors)

  4. A Roadmap of Innovative Nuclear Energy System

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2017-01-01

    Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.

  5. Automatically scramming nuclear reactor system

    DOEpatents

    Ougouag, Abderrafi M.; Schultz, Richard R.; Terry, William K.

    2004-10-12

    An automatically scramming nuclear reactor system. One embodiment comprises a core having a coolant inlet end and a coolant outlet end. A cooling system operatively associated with the core provides coolant to the coolant inlet end and removes heated coolant from the coolant outlet end, thus maintaining a pressure differential therebetween during a normal operating condition of the nuclear reactor system. A guide tube is positioned within the core with a first end of the guide tube in fluid communication with the coolant inlet end of the core, and a second end of the guide tube in fluid communication with the coolant outlet end of the core. A control element is positioned within the guide tube and is movable therein between upper and lower positions, and automatically falls under the action of gravity to the lower position when the pressure differential drops below a safe pressure differential.

  6. Innovative Approach to Validation of Ultraviolet (UV) Reactors ...

    EPA Pesticide Factsheets

    Slide presentation at Conference: ASCE 7th Civil Engineering Conference in the Asian Region. USEPA in partnership with the Cadmus Group, Carollo Engineers, and other State & Industry collaborators, are evaluating new approaches for validating UV reactors to meet groundwater & surface water pathogen inactivation including viruses for low-pressure and medium-pressure UV systems. Evaluation objectives of the study: Practical approach for validating LP and MP UV reactors for virus & cryptosporidium inactivation using various test microbes, i.e., MS2, B. pumilus, AD2, T1; Apply UV dose algorithms based on theory vs empirical that predict log-I and RED as a function of the UV sensitivity of the microbe (combined variable criteria), flow, lamp-sensor output, DL-ASCFs, w/wo UVT; Assess capabilities of test microbe for predicting target pathogen, assess credibility with second test microbe vs bracketing; Evaluate UV lamp sensor technology that accounts for germicidal contributions of low-and high-wavelength UV light within MP reactors; Address approaches for propagating and assaying AD2, B. pumilus, MS2, and methods for determining low and high wavelength ASCFs using collimated beam LP & MP UV lamps; Determine & apply low and high wavelength ASCFs to predict cryptosporidium and adenovirus credit using MS2, or B. pumilus, T1 test data; Simplify Validation-Factor (VF) analysis of uncertainties/biases; Develop recommendations document from recent lessons learned applicabl

  7. Reactor vessel annealing system

    DOEpatents

    Miller, Phillip E.; Katz, Leonoard R.; Nath, Raymond J.; Blaushild, Ronald M.; Tatch, Michael D.; Kordalski, Frank J.; Wykstra, Donald T.; Kavalkovich, William M.

    1991-01-01

    A system for annealing a vessel (14) in situ by heating the vessel (14) to a defined temperature, composed of: an electrically operated heater assembly (10) insertable into the vessel (14) for heating the vessel (14) to the defined temperature; temperature monitoring components positioned relative to the heater assembly (10) for monitoring the temperature of the vessel (14); a controllable electric power supply unit (32-60) for supplying electric power required by the heater assembly (10); a control unit (80-86) for controlling the power supplied by the power supply unit (32-60); a first vehicle (2) containing the power supply unit (32-60); a second vehicle (4) containing the control unit (80-86); power conductors (18,22) connectable between the power supply unit (32-60) and the heater unit (10) for delivering the power supplied by the power supply unit (32-60) to the heater assembly (10); signal conductors (20,24) connectable between the temperature monitoring components and the control unit (80-86) for delivering temperature indicating signals from the temperature monitoring components to the control unit (80-86); and control conductors (8) connectable between the control unit (80-86) and the power supply unit (32-60) for delivering to the power supply unit (32-60) control signals for controlling the level of power supplied by the power supply unit (32-60) to the heater assembly (10).

  8. Liquid metal cooled nuclear reactor plant system

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  9. System thinking shaping innovation ecosystems

    NASA Astrophysics Data System (ADS)

    Abreu, António; Urze, Paula

    2016-11-01

    Over the last few decades, there has been a trend to build innovation platforms as enablers for groups of companies to jointly develop new products and services. As a result, the notion of co-innovation is getting wider acceptance. However, a critical issue that is still open, despite some efforts in this area, is the lack of tools and models that explain the synergies created in a co-innovation process. In this context, the present paper aims at discussing the advantages of applying a system thinking approach to understand the mechanisms associated with co-innovation processes. Finally, based on experimental results from a Portuguese co-innovation network, a discussion on the benefits, challenges and difficulties found are presented and discussed.

  10. Fast breeder reactor protection system

    DOEpatents

    van Erp, J.B.

    1973-10-01

    Reactor protection is provided for a liquid-metal-fast breeder reactor core by measuring the coolant outflow temperature from each of the subassemblies of the core. The outputs of the temperature sensors from a subassembly region of the core containing a plurality of subassemblies are combined in a logic circuit which develops a scram alarm if a predetermined number of the sensors indicate an over temperature condition. The coolant outflow from a single subassembly can be mixed with the coolant outflow from adjacent subassemblies prior to the temperature sensing to increase the sensitivity of the protection system to a single subassembly failure. Coherence between the sensors can be required to discriminate against noise signals. (Official Gazette)

  11. POWER GENERATING NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Vernon, H.C.

    1958-03-01

    This patent relates to reactor systems of the type wherein the cooiing medium is a liquid which is converted by the heat of the reaction to steam which is conveyed directly to a pnime mover such as a steam turbine driving a generatore after which it is condensed and returred to the coolant circuit. In this design, the reactor core is disposed within a tank for containing either a slurry type fuel or an aggregation of solid fuel elements such as elongated rods submerged in a liquid moderator such as heavy water. The top of the tank is provided with a nozzle which extends into an expansion chamber connected with the upper end of the tank, the coolant being maintained in the expansion chamber at a level above the nozzle and the steam being formed in the expansion chamber.

  12. Design requirements for innovative homogeneous reactor, lesson learned from Fukushima accident

    NASA Astrophysics Data System (ADS)

    Arbie, Bakri; Pinem, Suryan; Sembiring, Tagor; Subki, Iyos

    2012-06-01

    The Fukushima disaster is the largest nuclear accident since the 1986 Chernobyl disaster, but it is more complex as multiple reactors and spent fuel pools are involved. The severity of the nuclear accident is rated 7 in the International Nuclear Events Scale. Expert said that "Fukushima is the biggest industrial catastrophe in the history of mankind". According to Mitsuru Obe, in The Wall Street Journal, May 16th of 2011, TEPCO estimates the nuclear fuel was exposed to the air less than five hours after the earthquake struck. Fuel rods melted away rapidly as the temperatures inside the core reached 2800 C within six hours. In less than 16 hours, the reactor core melted and dropped to the bottom of the pressure vessel. The information should be evaluated in detail. In Germany several nuclear power plant were shutdown, Italy postponed it's nuclear power program and China reviewed their nuclear power program. Different news come from Britain, in October 11, 2011, the Safety Committee said all clear for nuclear power in Britain, because there are no risk of strong earthquake and tsunami in the region. Due to this severe fact, many nuclear scientists and engineer from all over the world are looking for a new approach, such as homogeneous reactor which was developed in Oak Ridge National Laboratory in 1960-ies, during Dr. Alvin Weinberg tenure as the Director of ORNL. The paper will describe the design requirement that will be used as the basis for innovative homogeneous reactor. Innovative Homogeneous Reactor is expected to reduce core melt by two decades (4), since the fuel is intermix homogeneously with coolant and secondly we eliminate the used fuel rod which need to be cooled for a long period of time. In order to be successful for its implementation of the innovative system, testing and validation, three phases of development will be introduced. The first phase is Low Level Goals is really the proof of concept;the Medium Level Goal is Technical Goalsand the High

  13. Shutdown system for a nuclear reactor

    DOEpatents

    Groh, Edward F.; Olson, Arne P.; Wade, David C.; Robinson, Bryan W.

    1984-01-01

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

  14. Shutdown system for a nuclear reactor

    DOEpatents

    Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

    1984-06-05

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

  15. CONTROL SYSTEM FOR NEUTRONIC REACTORS

    DOEpatents

    Crever, F.E.

    1962-05-01

    BS>A slow-acting shim rod for control of major variations in reactor neutron flux and a fast-acting control rod to correct minor flux variations are employed to provide a sensitive, accurate control system. The fast-acting rod is responsive to an error signal which is produced by changes in the neutron flux from a predetermined optimum level. When the fast rod is thus actuated in a given direction, means is provided to actuate the slow-moving rod in that direction to return the fast rod to a position near the midpoint of its control range. (AEC)

  16. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  17. Options Study Documenting the Fast Reactor Fuels Innovative Design Activity

    SciTech Connect

    Jon Carmack; Kemal Pasamehmetoglu

    2010-07-01

    This document provides presentation and general analysis of innovative design concepts submitted to the FCRD Advanced Fuels Campaign by nine national laboratory teams as part of the Innovative Transmutation Fuels Concepts Call for Proposals issued on October 15, 2009 (Appendix A). Twenty one whitepapers were received and evaluated by an independent technical review committee.

  18. Fission control system for nuclear reactor

    DOEpatents

    Conley, G.H.; Estes, G.P.

    Control system for nuclear reactor comprises a first set of reactivity modifying rods fixed in a reactor core with their upper ends stepped in height across the core, and a second set of reactivity modifying rods movable vertically within the reactor core and having their lower ends stepped to correspond with the stepped arrangement of the first set of rods, pairs of the rods of the first and second sets being in coaxial alignment.

  19. The 5-kwe reactor thermoelectric system summary

    NASA Technical Reports Server (NTRS)

    Vanosdol, J. H. (Editor)

    1973-01-01

    Design of the 5-kwe reactor thermoelectric system was initiated in February 1972 and extended through the conceptual design phase into the preliminary design phase. Design effort was terminated in January, 1973. This report documents the system and component requirements, design approaches, and performance and design characteristics for the 5-kwe system. Included is summary information on the reactor, radiation shields, power conversion systems, thermoelectric pump, radiator/structure, liquid metal components, and the control system.

  20. Self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  1. Cooling system for a nuclear reactor

    DOEpatents

    Amtmann, Hans H.

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  2. Reactor power system/spacecraft integration

    NASA Technical Reports Server (NTRS)

    Elms, R. V.

    1985-01-01

    The new national initiative in space reactor technology evaluation and development is strongly tied to mission applications and to spacecraft and space transportation system (STS) compatibility. This paper discusses the power system integration interfaces with potential using spacecraft and the STS, and the impact of these requirements on the design. The integration areas of interest are mechanical, thermal, electrical, attitude control, and mission environments. The mission environments include space vacuum, solar input, heat sink, space radiation, weapons effects, and reactor power system radiation environments. The natural, reactor, and weapons effects radiation must be evaluated and combined to define the design requirements for spacecraft electronic equipment.

  3. The secure, transportable, autonomous reactor (STAR): a small proliferation-resistant reactor system for developing countries

    SciTech Connect

    Brown, N W; Hassberger, J A; Smith, C F

    1999-05-27

    The Secure, Transportable, Autonomous Reactor (STAR), is an integrated concept for a small, proliferation-resistant nuclear power system capable of meeting the growing power demands of many regions of the developing world. The STAR approach builds on earlier work investigating the features required for implementation of such a system. The STAR approach includes establishing overall system requirements, conducting research into issues common to four reactor concepts (gas, liquid metal, light water and molten salt), and defining and performing the down-selection to a preferred concept that will serve as the basis for continued development leading to an eventual prototype. The paper indicates that a number of unique and distinguishing innovations are needed to both meet the energy demands of most of the world's developing regions and address growing nuclear proliferation concerns. These technical innovations form much of the basis underlying the STAR concept and include: eliminating on-site refueling and fuel access; incorporating a systems approach to nuclear energy supply and infrastructure design, with all aspects of equipment life, fuel and waste cycles included; small unit size enabling transportability; replaceable standardized modular design; resilient and robust design concepts leading to large safety margins, high reliability and reduced maintenance; simplicity in operation with reliance on autonomous control and remote monitoring; and waste minimization and waste form optimization.

  4. SIMPLIFIED SODIUM GRAPHITE REACTOR SYSTEM

    DOEpatents

    Dickinson, R.W.

    1963-03-01

    This patent relates to a nuclear power reactor comprising a reactor vessel, shielding means positioned at the top of said vessel, means sealing said reactor vessel to said shielding means, said vessel containing a quantity of sodium, a core tank, unclad graphite moderator disposed in said tank, means including a plurality of process tubes traversing said tank for isolating said graphite from said sodium, fuel elements positioned in said process tubes, said core tank being supported in spaced relation to the walls and bottom of said reactor vessel and below the level of said sodium, neutron shielding means positioned adjacent said core tank between said core tank and the walls of said vessel, said neutron shielding means defining an annuiar volume adjacent the inside wall of said reactor vessel, inlet plenum means below said core tank for providing a passage between said annular volume and said process tubes, heat exchanger means removably supported from the first-named shielding means and positioned in said annular volume, and means for circulating said sodium over said neutron shielding means down through said heat exchanger, across said inlet plenum and upward through said process tubes, said last-named means including electromagnetic pumps located outside said vessel and supported on said vessel wall between said heat exchanger means and said inlet plenum means. (AEC)

  5. Scanning tunneling microscope assembly, reactor, and system

    SciTech Connect

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  6. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  7. REACTOR CONTROL ROD OPERATING SYSTEM

    DOEpatents

    Miller, G.

    1961-12-12

    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)

  8. Control system for a small fission reactor

    DOEpatents

    Burelbach, James P.; Kann, William J.; Saiveau, James G.

    1986-01-01

    A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired. In another embodiment, a plurality of flexible hollow tubes each containing a neutron absorber are positioned adjacent to one another in spaced relation around the periphery of the reactor vessel and inside the outer neutron reflector with reactivity controlled by the extension and compression of all or some of the coiled hollow tubes. Yet another embodiment of the invention envisions the neutron reflector in the form of an expandable coil spring positioned in an annular space between the reactor vessel and an outer neutron absorbing structure for controlling the neutron flux reflected back into the reactor vessel.

  9. Control system for a small fission reactor

    DOEpatents

    Burelbach, J.P.; Kann, W.J.; Saiveau, J.G.

    1985-02-08

    A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired.

  10. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    DOEpatents

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  11. Transients in reactors for power systems compensation

    NASA Astrophysics Data System (ADS)

    Abdul Hamid, Haziah

    This thesis describes new models and investigations into switching transient phenomena related to the shunt reactors and the Mechanically Switched Capacitor with Damping Network (MSCDN) operations used for reactive power control in the transmission system. Shunt reactors and MSCDN are similar in that they have reactors. A shunt reactor is connected parallel to the compensated lines to absorb the leading current, whereas the MSCDN is a version of a capacitor bank designed as a C-type filter for use in the harmonic-rich environment. In this work, models have been developed and transient overvoltages due to shunt reactor deenergisation were estimated analytically using MathCad, a mathematical program. Computer simulations used the ATP/EMTP program to reproduce both single-phase and three-phase shunt reactor switching at 275 kV operational substations. The effect of the reactor switching on the circuit breaker grading capacitor was also examined by considering various switching conditions.. The main original achievement of this thesis is the clarification of failure mechanisms occurring in the air-core filter reactor due to MSCDN switching operations. The simulation of the MSCDN energisation was conducted using the ATP/EMTP program in the presence of surge arresters. The outcome of this simulation shows that extremely fast transients were established across the air-core filter reactor. This identified transient event has led to the development of a detailed air-core reactor model, which accounts for the inter-turn RLC parameters as well as the stray capacitances-to-ground. These parameters are incorporated into the transient simulation circuit, from which the current and voltage distribution across the winding were derived using electric field and equivalent circuit modelling. Analysis of the results has revealed that there are substantial dielectric stresses imposed on the winding insulation that can be attributed to a combination of three factors. (i) First, the

  12. Pressure Vessel and Internals of the International Reactor Innovative and Secure

    SciTech Connect

    Lombardi, C.V.; Padovani, E.; Cammi, A.; Collado, J.M.; Santoro, R.T.; Barnes, J.M.

    2002-07-01

    IRIS (International Reactor Innovative and Secure) is a modular, integral light water cooled, low-to-medium power reactor, which addresses the requirements defined by the US DOE for Generation IV reactors. Its integrated layout features a pressure vessel containing all the main primary circuit components: the internals and the biological shield, here described together with the pressure vessel, plus the steam generators, the pressurizer, and the main coolant pumps described in companion papers. For this reason the pressure vessel is a crucial component of the plant, which deserves the most demanding design effort. The wide inner annulus around the core is exploited to insert steel plates, in order to improve the inner shielding capability up to the elimination of the external biological shielding and to simplify decommissioning activities by having all the irradiated components inside the vessel. (authors)

  13. An Innovative Hybrid Loop-Pool Design for Sodium Cooled Fast Reactor

    SciTech Connect

    Haihua Zhao; Hongbin Zhang

    2007-11-01

    The existing sodium cooled fast reactors (SFR) have two types of designs – loop type and pool type. In the loop type design, such as JOYO (Japan) [1] and MONJU (Japan), the primary coolant is circulated through intermediate heat exchangers (IHX) external to the reactor tank. The major advantages of loop design include compactness and easy maintenance. The disadvantage is higher possibility of sodium leakage. In the pool type design such as EBR-II (USA), BN-600M(Russia), Superphénix (France) and European Fast Reactor [2], the reactor core, primary pumps, IHXs and direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) all are immersed in a pool of sodium coolant within the reactor vessel, making a loss of primary coolant extremely unlikely. However, the pool type design makes primary system large. In the latest ANL’s Advanced Burner Test Reactor (ABTR) design [3], the primary system is configured in a pool-type arrangement. The hot sodium at core outlet temperature in hot pool is separated from the cold sodium at core inlet temperature in cold pool by a single integrated structure called Redan. Redan provides the exchange of the hot sodium from hot pool to cold pool through IHXs. The IHXs were chosen as the traditional tube-shell design. This type of IHXs is large in size and hence large reactor vessel is needed.

  14. Rodded shutdown system for a nuclear reactor

    DOEpatents

    Golden, Martin P.; Govi, Aldo R.

    1978-01-01

    A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core.

  15. NON-CORROSIVE REACTOR FUEL SYSTEM

    DOEpatents

    Herrick, C.C.

    1962-08-14

    A non-corrosive nuclear reactor fuel system was developed utilizing a molten plutonium-- iron alloy fuel having about 2 at.% carbon and contained in a tantalum vessel. This carbon reacts with the interior surface of the tantalum vessel to form a plutonium resistant self-healing tantalum carbide film. (AEC)

  16. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  17. Reactor control rod timing system. [LMFBR

    DOEpatents

    Wu, P.T.K.

    1980-03-18

    A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  18. Reliability Assessment of SMART Reactor Protection System

    SciTech Connect

    Won Young, Yun; Choong Heui, Jeong; Seong Hun, Kim; Sang Yong, Lee

    2006-07-01

    Component failure rates and integrated system reliability of the SMART reactor protection system were analyzed. The analysis tool of the study was the RELEX 7 computer program developed by Relex Software Corporation. The RELEX software is a PC based computer program which includes the part stress analysis models and the RBD analysis model to calculate component and system reliability. The component failure rate data for the study was selected from the MIL-HDBK-217F. (authors)

  19. The Secure, Transportable, Autonomous Reactor System

    SciTech Connect

    Brown, N.W.; Hassberger, J.A.; Smith, C.; Carelli, M.; Greenspan, E.; Peddicord, K.L.; Stroh, K.; Wade, D.C.; Hill, R.N.

    1999-05-27

    The Secure, Transportable, Autonomous Reactor (STAR) system is a development architecture for implementing a small nuclear power system, specifically aimed at meeting the growing energy needs of much of the developing world. It simultaneously provides very high standards for safety, proliferation resistance, ease and economy of installation, operation, and ultimate disposition. The STAR system accomplishes these objectives through a combination of modular design, factory manufacture, long lifetime without refueling, autonomous control, and high reliability.

  20. Fault-tolerant reactor protection system

    DOEpatents

    Gaubatz, Donald C.

    1997-01-01

    A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Each division performs independently of the others (asynchronous operation). All communications between the divisions are asynchronous. Each chassis substitutes its own spare sensor reading in the 2/3 vote if a sensor reading from one of the other chassis is faulty or missing. Therefore the presence of at least two valid sensor readings in excess of a set point is required before terminating the output to the hardware logic of a scram inhibition signal even when one of the four sensors is faulty or when one of the divisions is out of service.

  1. Fault-tolerant reactor protection system

    DOEpatents

    Gaubatz, D.C.

    1997-04-15

    A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Each division performs independently of the others (asynchronous operation). All communications between the divisions are asynchronous. Each chassis substitutes its own spare sensor reading in the 2/3 vote if a sensor reading from one of the other chassis is faulty or missing. Therefore the presence of at least two valid sensor readings in excess of a set point is required before terminating the output to the hardware logic of a scram inhibition signal even when one of the four sensors is faulty or when one of the divisions is out of service. 16 figs.

  2. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems...

  3. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems...

  4. Dynamic Impregnator Reactor System (Poster)

    SciTech Connect

    Not Available

    2012-09-01

    IBRF poster developed for the IBRF showcase. Describes the multifarious system designed for complex feedstock impregnation and processing. IBRF feedstock system has several unit operations combined into one robust system that provides for flexible and staged process configurations, such as spraying, soaking, low-severity pretreatment, enzymatic hydrolysis, fermentation, concentration/evaporation, and distillation.

  5. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Nakae, Nobuo; Ozawa, Takayuki; Ohta, Hirokazu; Ogata, Takanari; Sekimoto, Hiroshi

    2014-03-01

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria.

  6. Parallel reactor systems for bioprocess development.

    PubMed

    Weuster-Botz, Dirk

    2005-01-01

    Controlled parallel bioreactor systems allow fed-batch operation at early stages of process development. The characteristics of shaken bioreactors operated in parallel (shake flask, microtiter plate), sparged bioreactors (small-scale bubble column) and stirred bioreactors (stirred-tank, stirred column) are briefly summarized. Parallel fed-batch operation is achieved with an intermittent feeding and pH-control system for up to 16 bioreactors operated in parallel on a scale of 100 ml. Examples of the scale-up and scale-down of pH-controlled microbial fed-batch processes demonstrate that controlled parallel reactor systems can result in more effective bioprocess development. Future developments are also outlined, including units of 48 parallel stirred-tank reactors with individual pH- and pO2-controls and automation as well as liquid handling system, operated on a scale of ml.

  7. Integral reactor system and method for fuel cells

    DOEpatents

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  8. Integral reactor system and method for fuel cells

    DOEpatents

    Fernandes, Neil Edward; Brown, Michael S.; Cheekatamaria, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F.

    2017-03-07

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  9. Containment system for supercritical water oxidation reactor

    DOEpatents

    Chastagner, Philippe

    1994-01-01

    A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

  10. Containment system for supercritical water oxidation reactor

    DOEpatents

    Chastagner, P.

    1994-07-05

    A system is described for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary. 2 figures.

  11. Innovative power conversion system for the French SFR prototype, ASTRID

    SciTech Connect

    Cachon, L.; Biscarrat, C.; Morin, F.; Haubensack, D.; Rigal, E.; Moro, I.; Baque, F.; Madeleine, S.; Rodriguez, G.; Laffont, G.

    2012-07-01

    In the framework of the French Act of 28 June 2006 about nuclear materials and waste management, the prototype ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), foreseen in operation by the 20's, will have to demonstrate not only the minor actinide transmutation capability, but also the progress made in Sodium Fast Reactor (SFR) technology on an industrial scale, by qualifying innovative options. Some of these options still require improvements, especially in the field of operability and safety. In fact, one of the main issues with the standard steam/water Power Conversion System (PCS) of SFR is the fast and energetic chemical reaction between water and sodium, which could occur in steam generators in case of tube failure. To manage the sodium/water reaction, one way consists in minimizing the impact of such event: hence studies are carried out on steam generator design, improvement of the physical knowledge of this phenomenon, development of numerical simulation to predict the reaction onset and consequences, and associated detection improvement. On the other hand, the other way consists in eliminating sodium/water reaction. In this frame, the CEA contribution to the feasibility evaluation of an alternative innovative PCS (replacing steam/water by 180 bar pressurised nitrogen) is focused on the following main topics: - The parametric study leading to nitrogen selection: the thermodynamic cycle efficiency optimisation on Brayton cycles is performed with several gases at different pressures. - The design of innovative compact heat exchangers for the gas loop: here the key points are the nuclear codification associated with inspection capability, the innovative welding process and the thermal-hydraulic and thermal-mechanic optimisations. After a general introduction of the ASTRID project, this paper presents in detail these different feasibility studies being led on the innovative gas PCS for an SFR. (authors)

  12. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  13. Static conversion systems. [for space power reactors

    NASA Technical Reports Server (NTRS)

    Ewell, R.; Mondt, J.

    1985-01-01

    Historically, all space power systems that have actually flown in space have relied on static energy conversion technology. Thus, static conversion is being considered for space nuclear power systems as well. There are four potential static conversion technologies which should be considered. These include: the alkali metal thermoelectric converter (AMTEC), the thermionic converter, the thermoelectric converter, and the thermophotovoltaic converter (TPV). These four conversion technologies will be described in brief detail along with their current status and development needs. In addition, the systems implications of using each of these conversion technologies with a space nuclear reactor power system will be evaluated and some comparisons made.

  14. Plasma generators, reactor systems and related methods

    SciTech Connect

    Kong, Peter C.; Pink, Robert J.; Lee, James E.

    2007-06-19

    A plasma generator, reactor and associated systems and methods are provided in accordance with the present invention. A plasma reactor may include multiple sections or modules which are removably coupled together to form a chamber. Associated with each section is an electrode set including three electrodes with each electrode being coupled to a single phase of a three-phase alternating current (AC) power supply. The electrodes are disposed about a longitudinal centerline of the chamber and are arranged to provide and extended arc and generate an extended body of plasma. The electrodes are displaceable relative to the longitudinal centerline of the chamber. A control system may be utilized so as to automatically displace the electrodes and define an electrode gap responsive to measure voltage or current levels of the associated power supply.

  15. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    NASA Astrophysics Data System (ADS)

    Harto, Andang Widi

    2012-06-01

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  16. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    SciTech Connect

    Harto, Andang Widi

    2012-06-06

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  17. Core Monitoring System for TSN EPR Reactors

    SciTech Connect

    Pfeiffer, Maxime

    2015-07-01

    In the context of Chinese (TSN) EPR reactors project, a new on-line support system was introduced to give information, either continuously or upon request, to the plant operators about some advanced physics parameters corresponding to the current state of the nuclear core. This document provides a description of the functions that are available and the advantages provided by using their results. For each function the Human Machine Interface (HMI) is illustrated. (authors)

  18. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  19. Staged membrane oxidation reactor system

    DOEpatents

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2014-05-20

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  20. Staged membrane oxidation reactor system

    DOEpatents

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2013-04-16

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  1. Staged membrane oxidation reactor system

    DOEpatents

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  2. Nuclear reactor pressure vessel support system

    DOEpatents

    Sepelak, George R.

    1978-01-01

    A support system for nuclear reactor pressure vessels which can withstand all possible combinations of stresses caused by a postulated core disrupting accident during reactor operation. The nuclear reactor pressure vessel is provided with a flange around the upper periphery thereof, and the flange includes an annular vertical extension formed integral therewith. A support ring is positioned atop of the support ledge and the flange vertical extension, and is bolted to both members. The plug riser is secured to the flange vertical extension and to the top of a radially outwardly extension of the rotatable plug. This system eliminates one joint through which fluids contained in the vessel could escape by making the fluid flow path through the joint between the flange and the support ring follow the same path through which fluid could escape through the plug risers. In this manner, the sealing means to prohibit the escape of contained fluids through the plug risers can also prohibit the escape of contained fluid through the securing joint.

  3. NEUTRONIC REACTOR OPERATIONAL METHOD AND CORE SYSTEM

    DOEpatents

    Winters, C.E.; Graham, C.B.; Culver, J.S.; Wilson, R.H.

    1960-07-19

    Homogeneous neutronic reactor systems are described wherein an aqueous fuel solution is continuously circulated through a spherical core tank. The pumped fuel solution-is injected tangentially into the hollow spherical interior, thereby maintaining vigorous rotation of the solution within the tank in the form of a vortex; gaseous radiolytic decomposition products concentrate within the axial vortex cavity. The evolved gas is continuously discharged through a gas- outlet port registering with an extremity of the vortex cavity. and the solution stream is discharged through an annular liquid outlet port concentrically encircling the gas outlet by virtue of which the vortex and its cavity are maintained precisely axially aligned with the gas outlet. A primary heat exchanger extracts useful heat from the hot effluent fuel solution before its recirculation into the core tank. Hollow cylinders and other alternative core- tank configurations defining geometric volumes of revolution about a principal axis are also covered. AEC's Homogeneous Reactor Experiment No. 1 is a preferred embodiment.

  4. Fuel handling system for a nuclear reactor

    DOEpatents

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  5. Fuel handling system for a nuclear reactor

    DOEpatents

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-12-02

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  6. Nuclear reactor insulation and preheat system

    DOEpatents

    Wampole, Nevin C.

    1978-01-01

    An insulation and preheat system for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the compartment. An external surface of the compartment or enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair.

  7. Development of a system model for advanced small modular reactors.

    SciTech Connect

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandias concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  8. Systems analysis of the CANDU 3 Reactor

    SciTech Connect

    Wolfgong, J.R.; Linn, M.A.; Wright, A.L.; Olszewski, M.; Fontana, M.H.

    1993-07-01

    This report presents the results of a systems failure analysis study of the CANDU 3 reactor design; the study was performed for the US Nuclear Regulatory Commission. As part of the study a review of the CANDU 3 design documentation was performed, a plant assessment methodology was developed, representative plant initiating events were identified for detailed analysis, and a plant assessment was performed. The results of the plant assessment included classification of the CANDU 3 event sequences that were analyzed, determination of CANDU 3 systems that are ``significant to safety,`` and identification of key operator actions for the analyzed events.

  9. Reactor coolant pump monitoring and diagnostic system

    SciTech Connect

    Singer, R.M.; Gross, K.C.; Walsh, M. ); Humenik, K.E. )

    1990-01-01

    In order to reliably and safely operate a nuclear power plant, it is necessary to continuously monitor the performance of numerous subsystems to confirm that the plant state is within its prescribed limits. An important function of a properly designed monitoring system is the detection of incipient faults in all subsystems (with the avoidance of false alarms) coupled with an information system that provides the operators with fault diagnosis, prognosis of fault progression and recommended (either automatic or prescriptive) corrective action. In this paper, such a system is described that has been applied to reactor coolant pumps. This system includes a sensitive pattern-recognition technique based upon the sequential probability ratio test (SPRT) that detects incipient faults from validated signals, an expert system embodying knowledge bases on pump and sensor performance, extensive hypertext files containing operating and emergency procedures as well as pump and sensor information and a graphical interface providing the operator with easily perceived information on the location and character of the fault as well as recommended corrective action. This system is in the prototype stage and is currently being validated utilizing data from a liquid-metal cooled fast reactor (EBR-II). 3 refs., 4 figs.

  10. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  11. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  12. Comparing the new generation accelerator driven subcritical reactor system (ADS) to traditional critical reactors

    NASA Astrophysics Data System (ADS)

    Kemah, Elif; Akkaya, Recep; Tokgöz, Seyit Rıza

    2017-02-01

    In recent years, the accelerator driven subcritical reactors have taken great interest worldwide. The Accelerator Driven System (ADS) has been used to produce neutron in subcritical state by the external proton beam source. These reactors, which are hybrid systems, are important in production of clean and safe energy and conversion of radioactive waste. The ADS with the selection of reliability and robust target materials have been the new generation of fission reactors. In addition, in the ADS Reactors the problems of long-lived radioactive fission products and waste actinides encountered in the fission process of the reactor during incineration can be solved, and ADS has come to the forefront of thorium as fuel for the reactors.

  13. SoLid: An innovative anti-neutrino detector for searching oscillations at the SCK•CEN BR2 reactor

    NASA Astrophysics Data System (ADS)

    Abreu, Yamiel

    2017-02-01

    The SoLid experiment intends to search for active-to-sterile anti-neutrino oscillations at a very short baseline from the SCK•CEN BR2 research reactor (Mol, Belgium). A novel detector approach to measure reactor anti-neutrinos was developed based on an innovative sandwich of composite polyvinyl-toluene and 6LiF:ZnS(Ag) scintillators. The system is highly segmented and read out by a network of wavelength shifting fibers and SiPM. High experimental sensitivity can be achieved compared to other standard technologies thanks to the combination of high granularity, good neutron-gamma discrimination using 6LiF:ZnS(Ag) scintillator and precise localisation of the Inverse Beta Decay products. This technology can be considered as a new generation of an anti-neutrino detector. This compact system requires limited passive shielding and relies on spatial topology to determine the different classes of backgrounds. We will describe the principle of detection and the detector design. Particular focus on the neutron discrimination will be made, as well as on the capability to use cosmic muons for channel equalisation and energy calibration. The performance of the first 288 kg SoLid module (SM1), based on the data taken at BR2 from February to September 2015, will be presented. We will conclude with the next phase, which will start in 2016, and the future plans of the experiment.

  14. Nuclear reactor fuel rod attachment system

    DOEpatents

    Not Available

    1980-09-17

    A reusable system is described for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member. The locking cap has two opposing fingers shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed.

  15. Dynamic simulation platform to verify the performance of the reactor regulating system for a research reactor

    SciTech Connect

    2015-07-01

    Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of research reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)

  16. Integrated systems analysis of the PIUS reactor

    SciTech Connect

    Fullwood, F.; Kroeger, P.; Higgins, J.

    1993-11-01

    Results are presented of a systems failure analysis of the PIUS plant systems that are used during normal reactor operation and postulated accidents. This study was performed to provide the NRC with an understanding of the behavior of the plant. The study applied two diverse failure identification methods, Failure Modes Effects & Criticality Analysis (FMECA) and Hazards & Operability (HAZOP) to the plant systems, supported by several deterministic analyses. Conventional PRA methods were also used along with a scheme for classifying events by initiator frequency and combinations of failures. Principal results of this study are: (a) an extensive listing of potential event sequences, grouped in categories that can be used by the NRC, (b) identification of support systems that are important to safety, and (c) identification of key operator actions.

  17. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  18. Auxiliary reactor for a hydrocarbon reforming system

    DOEpatents

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  19. Lessons learned from the tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    SciTech Connect

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-07-01

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety, and health (ES&H) characteristics of projected tokamak power plants. Summarized herein are the composite conclusions and lessons developed in the course of four conceptual tokamak power-plant designs. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances in both physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advances in materials are also needed for the exploitation of environmental advantages otherwise inherent in fusion power.

  20. Nuclear reactor cooling system decontamination reagent regeneration

    DOEpatents

    Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.

    1985-01-01

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  1. Innovative Design of Complex Engineering Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2004-01-01

    The document contains the proceedings of the training workshop on Innovative Design of Complex Engineering Systems. The workshop was held at the Peninsula Higher Education Center, Hampton, Virginia, March 23 and 24, 2004. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to a) provide broad overviews of the diverse activities related to innovative design of high-tech engineering systems; and b) identify training needs for future aerospace work force development in the design area. The format of the workshop included fifteen, half-hour overview-type presentations, a panel discussion on how to teach and train engineers in innovative design, and three exhibits by commercial vendors.

  2. Proceedings of a Symposium on Advanced Compact Reactor Systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Reactor system technologies suitable for a variety of aerospace and terrestrial applications are considered. Technologies, safety and regulatory considerations, potential applications, and research and development opportunities are covered.

  3. Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model''

    SciTech Connect

    Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes

    2003-08-04

    OAK (B204) Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model'' The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.

  4. A UASB reactor coupled to a hybrid aerobic MBR as innovative plant configuration to enhance the removal of organic micropollutants.

    PubMed

    Alvarino, T; Suárez, S; Garrido, M; Lema, J M; Omil, F

    2016-02-01

    An innovative plant configuration based in an UASB reactor coupled to a hybrid aerobic membrane bioreactor designed for sustainable treatment of municipal wastewater at ambient temperatures and low hydraulic retention time was studied in terms of organic micropollutants (OMPs) removal. OMPs removal mechanisms, as well as the potential influence of biomass activity and physical conformation were assessed. Throughout all periods of operation (150 days) high organic matter removals were maintained (>95%) and, regarding OMPs removal, this innovative system has shown to be more efficient than conventional technologies for those OMPs which are prone to be biotransformed under anaerobic conditions. For instance, sulfamethoxazole and trimethoprim have both shown to be biodegradable under anaerobic conditions with similar efficiencies (removal efficiencies above 84%). OMPs main removal mechanism was found to be biotransformation, except in the case of musk fragrances which showed medium sorption onto sludge. OMPs removal was strongly dependent on the efficiency of the primary metabolism (organic matter degradation and nitrification) and the type of biomass.

  5. Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies

    NASA Astrophysics Data System (ADS)

    Dixon, David D.; Hiatt, Matthew T.; Poston, David I.; Kapernick, Richard J.

    2006-01-01

    A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.

  6. Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies

    SciTech Connect

    Dixon, David D.; Hiatt, Matthew T.; Poston, David I.; Kapernick, Richard J.

    2006-01-20

    A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.

  7. Comparing Three Innovative Instructional Systems.

    ERIC Educational Resources Information Center

    Dunn, Rita; Waggoner, Barbara

    1995-01-01

    Examines the differences between three instructional systems: learning styles, neuro-linguistic programming, and "Suggestopoedia." Topics include the philosophical basis of each system; teaching methodologies; the use of multimedia; the use of time; environmental settings; and approaches to human emotion, individual sociological differences, and…

  8. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    SciTech Connect

    Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E.; Lovera, P.; Fleche, J. L.; Lacroix, M.; Carra, O.; Prele, G.

    2012-07-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

  9. What Is a Complex Innovation System?

    PubMed

    Katz, J Sylvan

    2016-01-01

    Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x) = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too.

  10. What Is a Complex Innovation System?

    PubMed Central

    Katz, J. Sylvan

    2016-01-01

    Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x) = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too. PMID:27258040

  11. Systems Innovation and Education Management Systems (EMS)

    ERIC Educational Resources Information Center

    Rao, Nageswararao A. V.

    2006-01-01

    Many researchers and practitioners contend that all institutions respond to changing market need and can create competitive advantage through innovation and creativity. Each year, institutions expend significant resources developing new products and processes and yet research shows that more than half these initiatives fail. Successful…

  12. Innovative shotcreting system in Japan

    SciTech Connect

    Okada, Takashi

    1995-12-31

    Robotization of shotcreting has advanced remarkably in Japan in a short span of time for the purpose of avoiding exposure of human workers to adverse conditions. This paper provides an overview of various devices used in shotcreting and discusses the development of improved systems which ensure higher safety and larger productivity.

  13. Using Innovative Information Systems Techniques To Teach Information Systems.

    ERIC Educational Resources Information Center

    Chimi, Carl J.; Gordon, Gene M.

    This paper discusses a number of innovative techniques that were used to teach courses in Information Systems to undergraduate and graduate students. While none of these techniques is individually innovative, the combination of techniques provides a true "hands-on" environment for students; because of the way that the components of the…

  14. Systems aspects of a space nuclear reactor power system

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  15. DNA-Based Enzyme Reactors and Systems

    PubMed Central

    Linko, Veikko; Nummelin, Sami; Aarnos, Laura; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.

    2016-01-01

    During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme) cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications. PMID:28335267

  16. Nuclear reactor fuel rod attachment system

    DOEpatents

    Christiansen, David W.

    1982-01-01

    A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.

  17. Fluid sampling system for a nuclear reactor

    DOEpatents

    Lau, Louis K.; Alper, Naum I.

    1994-01-01

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  18. Fluid sampling system for a nuclear reactor

    DOEpatents

    Lau, L.K.; Alper, N.I.

    1994-11-22

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  19. Exhaust system with emissions storage device and plasma reactor

    DOEpatents

    Hoard, John W.

    1998-01-01

    An exhaust system for a combustion system, comprising a storage device for collecting NO.sub.x, hydrocarbon, or particulate emissions, or mixture of these emissions, and a plasma reactor for destroying the collected emissions is described. After the emission is collected in by the storage device for a period of time, the emission is then destroyed in a non-thermal plasma generated by the plasma reactor. With respect to the direction of flow of the exhaust stream, the storage device must be located before the terminus of the plasma reactor, and it may be located wholly before, overlap with, or be contained within the plasma reactor.

  20. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  1. Applications of plasma core reactors to terrestrial energy systems

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-

  2. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  3. SP-100 Space Reactor Power System readiness

    NASA Astrophysics Data System (ADS)

    Josloff, A. T.; Matteo, D. N.; Bailey, H. S.

    The SP-100 Space Reactor Power System is being developed by GE, under contract to the U.S. Department of Energy, to provide electrical power in the range of 10's to 100's of kW. The system represents an enabling technology for a wide variety of earth orbital and interplanetary science missions, nuclear electric propulsion (NEP) stages, and lunar/Mars surface power for the Space Exploration Initiative (SEI). An effective infrastructure of Industry, National Laboratories and Government agencies has made substantial progress since the 1988 System Design Review. Hardware development and testing has progressed to the point of resolving all key technical feasibility issues. The technology and design is now at a state of readiness to support the definition of early flight demonstration missions. Of particular importance is that SP-100 meets the demanding U.S. safety, performance, reliability and life requirements. The system is scalable and flexible and can be configured to provide 10's to 100's of kWe without repeating development work and can meet DoD goals for an early, low-power demonstration flight in the 1996 - 1997 time frame.

  4. The Rockwell SR-100G reactor turboelectric space power system

    NASA Technical Reports Server (NTRS)

    Anderson, R. V.

    1985-01-01

    During FY 1982 and 1983, Rockwell International performed system and subsystem studies for space reactor power systems. These studies drew on the expertise gained from the design and flight of the SNAP-10A space nuclear reactor system. These studies, performed for the SP-100 Program, culminated in the selection of a reactor-turboelectric (gas Brayton) system for the SP-100 application; this system is called the SR-100G. This paper describes the features of the system and provides references where more detailed information can be obtained.

  5. High-Temperature Gas-cooled Reactor steam-cycle/cogeneration lead plant reactor vessel: system design description

    SciTech Connect

    Not Available

    1983-01-01

    The Reactor Vessel System contains the primary coolant inventory within a gas-tight pressure boundary, and provides the necessary flow paths and overpressure protection for this pressure boundary. The Reactor Vessel System also houses the components of the Reactor System, the Heat Transport System, and the Auxiliary Heat Removal System. The scope of the Reactor Vessel System includes the prestressed concrete reactor vessel (PCRV) structure with its reinforcing steel and prestressing components; liners, penetrations, closures, and cooling water tubes attached to the concrete side of the liner; the thermal barrier (insulation) on the primary coolant side of the liner; instrumentation for structural monitoring; and a pressure relief system. Specifications are presented.

  6. The Integrated Library System: From Innovation to Relegation to Innovation Again

    ERIC Educational Resources Information Center

    Primich, Tracy; Richardson, Caroline

    2006-01-01

    The Integrated Library System remains a true innovation that forms the baseline of service provided by the contemporary library. The purpose of this paper is to take a moment and reflect upon this innovation, and also to comment about ways to boost and revive innovative endeavors that can further develop the ILS. (Contains 1 table.)

  7. REACTOR - a Concept for establishing a System-of-Systems

    NASA Astrophysics Data System (ADS)

    Haener, Rainer; Hammitzsch, Martin; Wächter, Joachim

    2014-05-01

    REACTOR is a working title for activities implementing reliable, emergent, adaptive, and concurrent collaboration on the basis of transactional object repositories. It aims at establishing federations of autonomous yet interoperable systems (Systems-of-Systems), which are able to expose emergent behaviour. Following the principles of event-driven service-oriented architectures (SOA 2.0), REACTOR enables adaptive re-organisation by dynamic delegation of responsibilities and novel yet coherent monitoring strategies by combining information from different domains. Thus it allows collaborative decision-processes across system, discipline, and administrative boundaries. Interoperability is based on two approaches that implement interconnection and communication between existing heterogeneous infrastructures and information systems: Coordinated (orchestration-based) communication and publish/subscribe (choreography-based) communication. Choreography-based communication ensures the autonomy of the participating systems to the highest possible degree but requires the implementation of adapters, which provide functional access to information (publishing/consuming events) via a Message Oriented Middleware (MOM). Any interconnection of the systems (composition of service and message cascades) is established on the basis of global conversations that are enacted by choreographies specifying the expected behaviour of the participating systems with respect to agreed Service Level Agreements (SLA) required by e.g. national authorities. The specification of conversations, maintained in commonly available repositories also enables the utilisation of systems for purposes (evolving) other than initially intended. Orchestration-based communication additionally requires a central component that controls the information transfer via service requests or event processing and also takes responsibility of managing business processes. Commonly available transactional object repositories are

  8. The Integral Fast Reactor

    SciTech Connect

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab.

  9. The PCAST Energy Technology Innovation System Study

    NASA Astrophysics Data System (ADS)

    Savitz, M.; Fri, R.

    2010-12-01

    The President's Council of Advisors on Science and Technology (PCAST) recently made recommendations for strengthening the nation's energy innovation system. The PCAST report builds in part on earlier work at the National Research Council (NRC) and elsewhere. For example, PCAST largely adopted the description of the energy innovation system that appeared in the NRC report on 'Limiting the Magnitude of Future Climate Change'. Similarly, the 'Limiting' report provided examples of the importance of social science research in crafting energy policy, a recommendation of the PCAST report. And both the 'Limiting' report and an earlier report on 'America's Energy Future' recommended an aggressive commercial demonstration program for carbon capture and storage and new nuclear power plants. The PCAST report discusses the need for new approaches for federal demonstration projects. This session traces these relationships and suggests how similar synergies might be encouraged in the future.

  10. Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design

    SciTech Connect

    Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

    2004-10-06

    The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal

  11. 78 FR 28896 - Design Limits and Loading Combinations for Metal Primary Reactor Containment System Components

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... COMMISSION Design Limits and Loading Combinations for Metal Primary Reactor Containment System Components... Combinations for Metal Primary Reactor Containment System Components,'' in which there are no substantive... loading combinations for metal primary reactor containment system components. ADDRESSES: Please refer...

  12. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2012-05-15

    A self-powered submersible microbial electrolysis cell (SMEC), in which a specially designed anode chamber and external electricity supply were not needed, was developed for in situ biohydrogen production from anaerobic reactors. In batch experiments, the hydrogen production rate reached 17.8 mL/L/d at the initial acetate concentration of 410 mg/L (5 mM), while the cathodic hydrogen recovery ( [Formula: see text] ) and overall systemic coulombic efficiency (CE(os)) were 93% and 28%, respectively, and the systemic hydrogen yield ( [Formula: see text] ) peaked at 1.27 mol-H(2)/mol-acetate. The hydrogen production increased along with acetate and buffer concentration. The highest hydrogen production rate of 32.2 mL/L/d and [Formula: see text] of 1.43 mol-H(2)/mol-acetate were achieved at 1640 mg/L (20 mM) acetate and 100 mM phosphate buffer. Further evaluation of the reactor under single electricity-generating or hydrogen-producing mode indicated that further improvement of voltage output and reduction of electron losses were essential for efficient hydrogen generation. In addition, alternate exchanging the electricity-assisting and hydrogen-producing function between the two cell units of the SMEC was found to be an effective approach to inhibit methanogens. Furthermore, 16S rRNA genes analysis showed that this special operation strategy resulted same microbial community structures in the anodic biofilms of the two cell units. The simple, compact and in situ applicable SMEC offers new opportunities for reactor design for a microbial electricity-assisted biohydrogen production system.

  13. Monitoring circuit for reactor safety systems

    DOEpatents

    Keefe, Donald J.

    1976-01-01

    The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned.

  14. Gas-cooled reactor for space power systems

    SciTech Connect

    Walter, C.E.; Pearson, J.S.

    1987-05-01

    Reactor characteristics based on extensive development work on the 500-MWt reactor for the Pluto nuclear ramjet are described for space power systems useful in the range of 2 to 20 MWe for operating times of 1 y. The modest pressure drop through the prismatic ceramic core is supported at the outlet end by a ceramic dome which also serves as a neutron reflector. Three core materials are considered which are useful at temperatures up to about 2000 K. Most of the calculations are based on a beryllium oxide with uranium dioxide core. Reactor control is accomplished by use of a burnable poison, a variable-leakage reflector, and internal control rods. Reactivity swings of 20% are obtained with a dozen internal boron-10 rods for the size cores studied. Criticality calculations were performed using the ALICE Monte Carlo code. The inherent high-temperature capability of the reactor design removes the reactor as a limiting condition on system performance. The low fuel inventories required, particularly for beryllium oxide reactors, make space power systems based on gas-cooled near-thermal reactors a lesser safeguard risk than those based on fast reactors.

  15. SP-100 Program: space reactor system and subsystem investigations

    SciTech Connect

    Harty, R.B.

    1983-09-30

    For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. This report summarizes the nuclear safety review/approval process that will be required for a space reactor system. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that can be expected and to provide information that could be usable in future programs.

  16. Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems

    NASA Astrophysics Data System (ADS)

    Was, Gary S.

    2007-08-01

    The management of materials in power reactor systems has become a critically important activity in assuring the safe, reliable and economical operation of these facilities. Over the years, the commercial nuclear power reactor industry has faced numerous 'surprises' and unexpected occurrences in materials. Mitigation strategies have sometimes solved one problem at the expense of creating another. Other problems have been solved successfully and have motivated the development of techniques to foresee problems before they occur. This paper focuses on three aspects of fission reactor experience that may benefit future fusion systems. The first is identification of parameters and processes that have had a large impact on the behavior of materials in fission systems such as temperature, dose rate, surface condition, gradients, metallurgical variability and effects of the environment. The second is the development of materials performance and failure models to provide a basis for assuring component integrity. Last is the development of proactive materials management programs that identify and pre-empt degradation processes before they can become problems. These aspects of LWR experience along with the growing experience with materials in the more demanding advanced fission reactor systems form the basis for a set of 'lessons learned' to aid in the successful management of materials in fusion reactor systems.

  17. Tutoring System Innovations: Past Practice to Future Prototypes

    ERIC Educational Resources Information Center

    Gardner, Ralph; Nobel, Michele M.; Hessler, Terri; Yawn, Christopher D.; Heron, Timothy E.

    2007-01-01

    This article discusses the progression of tutoring system innovations from informal, dyadic, and subjectively evaluated arrangements to more formally arranged configurations that emphasize training, application, and evaluation. Suggestions for future innovations, based on existing prototypes, are discussed.

  18. Pilot-scale tests of an innovative 'serial self-turning reactor' composting technology in Thailand.

    PubMed

    Sungsomboon, Praj-ya; Chaisomphob, Taweep; Bongochgetsakul, Nattakorn; Ishida, Tetsuya

    2013-02-01

    Composting facilities in Thailand have faced various operational problems, resulting in the emission of odours, incomplete digestion of waste organics, and higher than desired costs. Composting technologies imported from developed countries tend to be sized for larger communities and are otherwise not suited for the rural communities that comprise more than 80% of all communities in Thailand. This article addresses the research and development of a novel composting technology aimed at filling this observed need. The study was divided into two parts: (1) the development of a new composting technology and fabrication of a prototype configuration of equipment; and (2) scale-up and study on a pilot-scale using real rubbish. The proposed technology, called 'serial self-turning reactor (STR)', entailed a vertical flow composting system that consisted of a set of aerobic reactors stacked on a set of gravity fed turning units. In-vessel bioreactor technology enables the operator to control composting conditions. The researchers found that a tower-like STR results in flexibility in size scale and waste processing residence time. The pilot-scale experiments showed that the proposed system can produce good quality compost while consuming comparatively little energy and occupying a compact space, compared to traditional land-intensive windrow composting facilities.

  19. Reactor Lithium Heat Pipes for HP-STMCs Space Reactor Power System

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2004-02-01

    Design and performance analysis of the nuclear reactor's lithium heat pipes for a 110-kWe Heat Pipes-Segmented Thermoelectric Module Converters (HP-STMCs) Space Reactor Power system (SRPS) are presented. The evaporator length of the heat pipes is the same as the active core height (0.45 m) and the C-C finned condenser is of the same length as the STMC panels (1.5 m). The C-C finned condenser section is radiatively coupled to the collector shoes of the STMCs placed on both sides. The lengths of the adiabatic section, the values of the power throughput and the evaporator wall temperature depend on the radial location of the heat pipe in the reactor core and the number and dimensions of the potassium heat pipes in the heat rejection radiator. The reactor heat pipes have a total length that varies from 7.57 to 7.73 m, and a 0.2 mm thick Mo-14%Re wick with an average pore radius of 12 μm. The wick is separated from the Mo-14%Re wall by a 0.5 mm annulus filled with liquid lithium, to raise the prevailing capillary limit. The nominal evaporator (or reactor) temperature varies from 1513 to 1591 K and the thermal power of the reactor is 1.6 MW, which averages 12.7 kW for each of the 126 reactor heat pipes. The power throughput per heat pipe increase to a nominal 15.24 kW at the location of the peak power in the core and to 20.31 kW when an adjacent heat pipe fails. The prevailing capillary limit of the reactor heat pipes is 28.3 kW, providing a design margin >= 28%.

  20. Robotic system for remote maintenance of a pulsed nuclear reactor

    SciTech Connect

    Thunborg, S.

    1986-01-01

    Guidelines recently established for occupational radiation exposure specify that exposure should be as low as reasonably achievable. In conformance with these guidelines, SNL has developed a remote maintenance robot (RMR) system for use in the Sandia Pulse Reactor III (SPR III) facility. The RMR should reduce occupational radiation exposure by a factor of 4 and decrease reactor downtime. Other goals include developing a technology base for a more advanced pulse reactor and for the nuclear fuel cycle programs of the US Department of Energy and US Nuclear Regulatory Commission. The RMR has five major subsystems: (a) a chain-driven cart to bring the system into the reactor room; (b) a Puma 560 robot to perform dextrous operations; (c) a programmable turntable to orient the robot to any of the reactor's four sides; (d) a programmable overhead hoist for lifting components weighing up to 400 lb onto or off of the reactor; and (e) a supervisory control console for the system operator. Figure 1 is a schematic diagram of the turntable, hoist, and robot system in position around the SPR III reactor.

  1. Structural Conditions for Collaboration and Learning in Innovation Networks: Using an Innovation System Performance Lens to Analyse Agricultural Knowledge Systems

    ERIC Educational Resources Information Center

    Hermans, Frans; Klerkx, Laurens; Roep, Dirk

    2015-01-01

    Purpose: We investigate how the structural conditions of eight different European agricultural innovation systems can facilitate or hinder collaboration and social learning in multidisciplinary innovation networks. Methodology: We have adapted the Innovation System Failure Matrix to investigate the main barriers and enablers eight countries…

  2. Emergency heat removal system for a nuclear reactor

    DOEpatents

    Dunckel, Thomas L.

    1976-01-01

    A heat removal system for nuclear reactors serving as a supplement to an Emergency Core Cooling System (ECCS) during a Loss of Coolant Accident (LOCA) comprises a plurality of heat pipes having one end in heat transfer relationship with either the reactor pressure vessel, the core support grid structure or other in-core components and the opposite end located in heat transfer relationship with a heat exchanger having heat transfer fluid therein. The heat exchanger is located external to the pressure vessel whereby excessive core heat is transferred from the above reactor components and dissipated within the heat exchanger fluid.

  3. Autonomous Control and Diagnostics of Space Reactor Systems

    SciTech Connect

    Upadhyaya, B.R.; Xu, X.; Perillo, S.R.P.; Na, M.G.

    2006-07-01

    This paper describes three key features of the development of an autonomous control strategy for space reactor systems. These include the development of a reactor simulation model for transient analysis, development of model-predictive control as part of the autonomous control strategy, and a fault detection and isolation module. The latter is interfaced with the control supervisor as part of a hierarchical control system. The approach has been applied to the nodal model of the SP-100 reactor with a thermo-electric generator. The results of application demonstrate the effectiveness of the control approach and its ability to reconfigure the control mode under fault conditions. (authors)

  4. Microprocessor tester for the treat upgrade reactor trip system

    SciTech Connect

    Lenkszus, F.R.; Bucher, R.G.

    1984-01-01

    The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.

  5. Innovative Approach to Establish Root Causes for Cracking in Aggressive Reactor Environments

    SciTech Connect

    Bruemmer, Stephen M.; Thomas, Larry E.; Vetrano, John S.; Simonen, Edward P.

    2003-10-31

    The research focuses on the high-resolution characterization of degradation microstructures and microchemistries in specimens tested under controlled conditions for the environment and for the material where in-service complexities can be minimized. Thermodynamic and kinetic modeling of crack-tip processes is employed to analyze corrosion-induced structures and gain insights into degradation mechanisms. Novel mechanistic ''fingerprinting'' of crack-tip structures is used to isolate causes of environmental cracking in tandem with quantitative measurements of crack growth. Sample preparation methods and advanced analytical techniques are used to characterize corrosion/oxidation reactions and crack-tip structures at near atomic dimensions in order to gain insight into fundamental environmental cracking mechanisms. Reactions at buried interfaces, not accessible by conventional approaches, are being systematically interrogated. Crack-growth experiments in high-temperature water environments are evaluating and isolating the effects of material condition (matrix strength, grain boundary composition and precipitation) on stress corrosion cracking (SCC). The fundamental understanding of crack advance mechanisms will establish the basis to design new corrosion-resistant alloys for current light-water reactors and advanced reactor systems.

  6. System innovations for aerosol MOCVD of YBCO superconducting thin films

    NASA Astrophysics Data System (ADS)

    Nelms, David Martin

    System innovations were developed for metallo-organic chemical vapor deposition (MOCVD) in order to achieve two main objectives: to fully characterize a novel feed system while and to demonstrate uniform, superconducting thin films over a 2 inch diameter. The novel aerosol feed system was fully characterized and improved by performing solubility and carbon tests with different metallo-organic solvents and by thermally mapping the heating section. The gas flow profiles in the reactor chamber were modeled with a finite-element software package called Fluent. This enabled us to study different nozzles for improving the uniformity of the velocity near the substrate and the uniformity of the depositions. Depositions were then performed to test the validity of the computer model and to determine correct molar feed ratios. The uniformity was measured with a scanning electron microscope (SEM) while the film compositions were analyzed with a X-Ray photoelectron spectroscopy system (XPS). Once the correct feed compositions were determined, this ratio was used along with the feed nozzle designed to deposit uniform, superconducting thin films.

  7. Metrology/viewing system for next generation fusion reactors

    SciTech Connect

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-02-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system.

  8. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  9. Code System for Reactor Physics and Fuel Cycle Simulation.

    SciTech Connect

    TEUCHERT, E.

    1999-04-21

    Version 00 VSOP94 (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shut-down features, in-core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterative processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. In addition to its use in research and development work for the High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors.

  10. Autonomous Control of Space Reactor Systems

    SciTech Connect

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  11. Reference Reactor Module for the Affordable Fission Surface Power System

    NASA Astrophysics Data System (ADS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Amiri, Benjamin W.; Marcille, Thomas F.

    2008-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The requirements of many surface power applications allow the consideration of systems with much less development risk than most other space reactor applications, because of modest power (10s of kWe) and no driving need for minimal mass (allowing temperatures <1000 K). The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. This paper describes the reference AFSPS reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based, UO2-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. One of the important ``affordability'' attributes is that the concept has been designed to minimize both the technical and programmatic safety risk.

  12. Gas-cooled reactor power systems for space

    SciTech Connect

    Walter, C.E.

    1987-01-01

    In this paper the characteristics of six designs for power levels of 2, 10, and 20 MWe for operating times of 1 and 7 y are described. The operating conditions for these arbitrary designs were chosen to minimize system specific mass. The designs are based on recent work which benefits from earlier analyses of nuclear space power systems conducted at our Laboratory. Both gas- and liquid-cooled reactors had been considered. Pitts and Walter (1970) reported on the results of a detailed study of a 10-MWe lithium-cooled reactor in a potassium Rankine system. Unpublished results (1966) of a computer analysis provide details of an argon-cooled reactor in an argon Brayton system. The gas-cooled reactor design was based on extensive development work on the 500-MWth reactor for the nuclear ramjet (Pluto) as described by Walter (1964). The designs discussed here draw heavily on the Pluto project experience, which culminated in a successful full-power ground test as reported by Reynolds (1964). At higher power levels gas-cooled reactors coupled with Brayton systems with advanced radiator designs become attractive.

  13. Reference Reactor Module for the Affordable Fission Surface Power System

    SciTech Connect

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Amiri, Benjamin W.; Marcille, Thomas F.

    2008-01-21

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The requirements of many surface power applications allow the consideration of systems with much less development risk than most other space reactor applications, because of modest power (10s of kWe) and no driving need for minimal mass (allowing temperatures <1000 K). The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. This paper describes the reference AFSPS reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based, UO{sub 2}-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. One of the important 'affordability' attributes is that the concept has been designed to minimize both the technical and programmatic safety risk.

  14. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  15. An innovative gas-solid torbed reactor for the recycling industries

    NASA Astrophysics Data System (ADS)

    Dodson, C. E.; Lakshmanan, V. I.

    1998-07-01

    Gas-solid Torbed reactors have been developed for processing a wide range of materials. The reactors have facilitated several novel recycling projects in countries where they are used. One of the major advantages of these reactors when applied to the recycling industries is the compactness of the plant and its inherent ability to be scaled down and fully automated to better match the volume requirements of this sector.

  16. Innovative ventilation system for animal anatomy laboratory

    SciTech Connect

    Lacey, D.R.; Smith, D.C.

    1997-04-01

    A unique ventilation system was designed and built to reduce formaldehyde fumes in the large animal anatomy lab at the Vet Medical Center at Cornell University. The laboratory includes four rooms totaling 5,500 ft{sup 2}. The main room has 2,300 ft{sup 2} and houses the laboratory where up to 60 students dissect as many as 12 horses at a time. Other rooms are a cold storage locker, an animal preparation room and a smaller lab for specialized instruction. The large animal anatomy laboratory has a history of air quality complaints despite a fairly high ventilation rate of over 10 air changes/hour. The horses are embalmed, creating a voluminous source of formaldehyde and phenol vapors. Budget constraints and increasingly stringent exposure limits for formaldehyde presented a great challenge to design a ventilation system that yields acceptable air quality. The design solution included two innovative elements: air-to-air heat recovery, and focused ventilation.

  17. Natural circulating passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  18. Passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  19. Innovation

    EPA Pesticide Factsheets

    EPA frames innovation as critical to the protection of human health and the environment through initiatives such as sustainable practices, innovative research, prize competitions, innovation awards, partnerships, and community activities.

  20. Dual annular rotating "windowed" nuclear reflector reactor control system

    DOEpatents

    Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.

    1994-01-01

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

  1. Simulation of the modified K reactor supplementary safety system

    SciTech Connect

    Paik, I.K.; Canas, L.R. ); Peterson, P.F. )

    1991-01-01

    The supplementary safety system (SSS) of the K reactor provides a second line of defense to shut down the reactor if the safety and control rods fail to scram. The SSS was originally designed to inject a neutron poison solution (ink) into the reactor tank via spargers. Recently, concerns arose that the ink inventory might run out before the ink front returned to the moderator during a loss-of-ac-power transient in which the coolant pumps coast down. Thus, a new system has been added to inject additional ink through the pump suctions so that ink will arrive in the core before depletion of the sparger ink. The MODFLOW code was developed to calculate the moderator flow distribution in Savannah River site (SRS) reactors, including the effects of inertia and stratification from buoyancy forces.

  2. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  3. CONCEPTUAL DESIGN OF A LUNAR REGOLITH CLUSTERED-REACTOR SYSTEM

    SciTech Connect

    John Darrell Bess

    2009-06-01

    It is proposed that a fast-fission, heatpipe-cooled, lunar-surface power reactor system be divided into subcritical units that could be launched safely without the incorporation of additional spectral shift absorbers or other complex means of control. The reactor subunits are to be emplaced directly into the lunar regolith utilizing the regolith not just for shielding but as the reflector material to increase the neutron economy of the system. While a single subunit cannot achieve criticality by itself, coordinated placement of additional subunits will provide a critical reactor system for lunar surface power generation. A lunar regolith clustered-reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of a slight increase in launch mass per rated power level and an overall reduction in neutron economy when compared to a single-reactor system. Additional subunits may be launched with future missions to increase the cluster size and power according to desired lunar base power demand and lifetime. The results address the potential uncertainties associated with the lunar regolith material and emplacement of the subunit systems. Physical distance between subunits within the clustered emplacement exhibits the most significant feedback regarding changes in overall system reactivity. Narrow, deep holes will be the most effective in reducing axial neutron leakage from the core. The variation in iron concentration in the lunar regolith can directly influence the overall system reactivity although its effects are less than the more dominant factors of subunit emplacement.

  4. Pressurized reactor system and a method of operating the same

    DOEpatents

    Isaksson, J.M.

    1996-06-18

    A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Super-atmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gasification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor. 2 figs.

  5. Pressurized reactor system and a method of operating the same

    DOEpatents

    Isaksson, Juhani M.

    1996-01-01

    A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Superatmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gassification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor.

  6. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  7. Reference reactor module for NASA's lunar surface fission power system

    SciTech Connect

    Poston, David I; Kapernick, Richard J; Dixon, David D; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  8. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  9. Open Innovation, Triple Helix and Regional Innovation Systems: Exploring CATAPULT Centres in the UK

    ERIC Educational Resources Information Center

    Kerry, Christopher; Danson, Michael

    2016-01-01

    Through the lens of UK CATAPULT Centres this conceptual paper presents an examination of the links between open innovation, the Triple Helix model and regional innovation systems. Highlighting the importance of boundary-spanning intermediaries, the combined role of these concepts is explored in detail. A conceptual model is then proposed which…

  10. The combined hybrid system: A symbiotic thermal reactor/fast reactor system for power generation and radioactive waste toxicity reduction

    SciTech Connect

    Hollaway, W.R.

    1991-08-01

    If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issue through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW{sub e} IFR capacity for every three MW{sub e} Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years).

  11. Enhancing the Reflexivity of System Innovation Projects with System Analyses

    ERIC Educational Resources Information Center

    van Mierlo, Barbara; Arkesteijn, Marlen; Leeuwis, Cees

    2010-01-01

    Networks aiming for fundamental changes bring together a variety of actors who are part and parcel of a problematic context. These system innovation projects need to be accompanied by a monitoring and evaluation approach that supports and maintains reflexivity to be able to deal with uncertainties and conflicts while challenging current practices…

  12. Integrated intelligent systems in advanced reactor control rooms

    SciTech Connect

    Beckmeyer, R.R.

    1989-01-01

    An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.

  13. Design of virtual SCADA simulation system for pressurized water reactor

    NASA Astrophysics Data System (ADS)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-02-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  14. Design of virtual SCADA simulation system for pressurized water reactor

    SciTech Connect

    Wijaksono, Umar Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-02-08

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  15. Small space reactor power systems for unmanned solar system exploration missions

    SciTech Connect

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.

  16. Small space reactor power systems for unmanned solar system exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.

  17. Hydraulic characteristics simulation of an innovative self-agitation anaerobic baffled reactor (SA-ABR).

    PubMed

    Qi, Wei-Kang; Hojo, Toshimasa; Li, Yu-You

    2013-05-01

    An investigation was conducted on a self-agitation anaerobic baffled reactor (SA-ABR) with agitation caused solely by the release of stored gas. The compound in the reactor is mixed without the use of any mechanical equipment and electricity. The computational fluid dynamics (CFD) simulation used to provide details of the flow pattern and information about the agitation process and a solid basis for design and optimization purposes. Every self-agitation cycle could be separated into the pressure energy storage process, the exergonic process and the buffer stage. The reactor is regarded as the combination of continuous stirred tank reactor and a small plug flow reactor. The liquid level and diffusion varies widely depending on the length of the U-tube. The compound transition phenomenon in the 1st chamber mainly occurs during the energy exergonic process and buffer stage. The fluid-diffusion in the 3rd and 4th chambers mainly happens after the buffer period.

  18. Prospects for development of an innovative water-cooled nuclear reactor for supercritical parameters of coolant

    NASA Astrophysics Data System (ADS)

    Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.

    2014-08-01

    The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.

  19. Data acquisition system for segmented reactor antineutrino detector

    NASA Astrophysics Data System (ADS)

    Hons, Z.; Vlášek, J.

    2017-01-01

    This paper describes the data acquisition system used for data readout from the PMT channels of a segmented detector of reactor antineutrinos with active shielding. Theoretical approach to the data acquisition is described and two possible solutions using QDCs and digitizers are discussed. Also described are the results of the DAQ performance during routine data taking operation of DANSS. DANSS (Detector of the reactor AntiNeutrino based on Solid Scintillator) is a project aiming to measure a spectrum of reactor antineutrinos using inverse beta decay (IBD) in a plastic scintillator. The detector is located close to an industrial nuclear reactor core and is covered by passive and active shielding. It is expected to have about 15000 IBD interactions per day. Light from the detector is sensed by PMT and SiPM.

  20. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    SciTech Connect

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  1. Reactor technology assessment and selection utilizing systems engineering approach

    SciTech Connect

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-12

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  2. Reactor technology assessment and selection utilizing systems engineering approach

    NASA Astrophysics Data System (ADS)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-01

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  3. Software reliability and safety in nuclear reactor protection systems

    SciTech Connect

    Lawrence, J.D.

    1993-11-01

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

  4. NEUTRONIC REACTOR COUNTER METHOD AND SYSTEM

    DOEpatents

    Graham, C.B.; Spiewak, I.

    1960-05-31

    An improved method is given for controlling the rate of fission in circulating-fuel neutronic reactors in which the fuel is a homogeneous liquid containing fissionable material and a neutron moderator. A change in the rate of flssion is effected by preferentially retaining apart from the circulating fuel a variable amount of either fissionable material or moderator, thereby varying the concentration of fissionable material in the fuel. In the case of an aqueous fuel solution a portion of the water may be continuously vaporized from the circulating solution and the amount of condensate, or condensate plus make-up water, returned to the solution is varied to control the fission rate.

  5. AQUABOX 50 AND MARABU PACKED BIOLOGICAL REACTOR SYSTEM TECHNOLOGY EVALUATION, STADTWERKE DUESSELDORF AG SITE, DUESSELDORF, GERMANY

    EPA Science Inventory

    This ITER summarizes the results of an evaluation of the AQUABOX 50 and MARABU Packed Biological Reactor technologies. The evaluation was conducted under a bilateral agreement between the United States (U.S.) Environmental Protection Agency (EPA) Superfund Innovative Technology ...

  6. Small reactor power systems for manned planetary surface bases

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  7. Reactor protection system with automatic self-testing and diagnostic

    DOEpatents

    Gaubatz, D.C.

    1996-12-17

    A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically ``identical`` values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic. 16 figs.

  8. Reactor protection system with automatic self-testing and diagnostic

    DOEpatents

    Gaubatz, Donald C.

    1996-01-01

    A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically "identical" values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic.

  9. Bimodal, Low Power Pellet Bed Reactor System Design Concept

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Liscum-Powell, Jennifer; Pelaccio, Dennis G.

    1994-07-01

    A conceptual design is presented of a bimodal system that employs a pellet bed reactor heat source, helium-xenon Closed Brayton Cycle (CBC) engines, UC fuel, super-alloy structure materials, and hydrogen for propulsion operation. In addition to incorporating state-of-the-art, low risk technologies, and as much off-the-shelf hardware as possible in order to meet a near-term flight demonstration date, the system offers unique design and safety features. These design features include: (a) modularity to support a wide range of electric power and thermal propulsion requirements, (b) sectored, annular reactor core and multiple CBC engines for redundancy and to eliminate a single point failure in the coolant loop, (c) efficient CBC engines, (d) low maximum fuel temperature (<1600 K) that is maintained almost constant during power and propulsion modes, (e) spherical fuel mini-spheres or pellets that provide full retention of fission products and scalability to higher power levels, (f) two independent reactor control systems with built-in redundancy, (h) passive decay heat removal from the reactor core, (g) ground testing of the fully assembled system using electric heaters and unfueled mini-spheres or pellets, (h) negative temperature reactivity feedback for improved reactor operation and safety, (i) high specific impulse (650s-750s) and specific power (11.0- 21.9 We/kg), at relatively low power levels (10-40 kWe).

  10. Small reactor power systems for manned planetary surface bases

    SciTech Connect

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  11. Method for passive cooling liquid metal cooled nuclear reactors, and system thereof

    DOEpatents

    Hunsbedt, Anstein; Busboom, Herbert J.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

  12. Analysis of reactor trips originating in balance of plant systems

    SciTech Connect

    Stetson, F.T.; Gallagher, D.W.; Le, P.T.; Ebert, M.W. )

    1990-09-01

    This report documents the results of an analysis of balance-of-plant (BOP) related reactor trips at commercial US nuclear power plants of a 5-year period, from January 1, 1984, through December 31, 1988. The study was performed for the Plant Systems Branch, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission. The objectives of the study were: to improve the level of understanding of BOP-related challenges to safety systems by identifying and categorizing such events; to prepare a computerized data base of BOP-related reactor trip events and use the data base to identify trends and patterns in the population of these events; to investigate the risk implications of BOP events that challenge safety systems; and to provide recommendations on how to address BOP-related concerns in regulatory context. 18 refs., 2 figs., 27 tabs.

  13. Schooling Redesigned: Towards Innovative Learning Systems

    ERIC Educational Resources Information Center

    Istance, David

    2015-01-01

    What does redesigning schools and schooling through innovation mean in practice? How might it be brought about? These questions have inspired an influential international reflection on "Innovative Learning Environments" (ILE) led by the OECD. This reflection has already resulted in publications on core design principles and frameworks…

  14. System aspects of a Space Nuclear Reactor Power System

    SciTech Connect

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, altitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly. The power system design evolved during the study and has continued to evolve; the current design differs somewhat from that examined in this paper.

  15. Nuclear reactor heat transport system component low friction support system

    DOEpatents

    Wade, Elman E.

    1980-01-01

    A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.

  16. Optimized Battery-Type Reactor Primary System Design Utilizing Lead

    SciTech Connect

    Yu, Yong H.; Son, Hyoung M.; Lee, Il S.; Suh, Kune Y.

    2006-07-01

    A number of small and medium size reactors are being developed worldwide as well as large electricity generation reactors for co-generation, district heating or desalination. The Seoul National University has started to develop 23 MWth BORIS (Battery Optimized Reactor Integral System) as a multi-purpose reactor. BORIS is an integral-type optimized fast reactor with an ultra long life core. BORIS is being designed to meet the Generation IV nuclear energy system goals of sustainability, safety, reliability and economics. Major features of BORIS include 20 consecutive years of operation without refueling; elimination of an intermediate heat transport loop and main coolant pump; open core without individual subassemblies; inherent negative reactivity feedback; and inherent load following capability. Its one mission is to provide incremental electricity generation to match the needs of developing nations and especially remote communities without major electrical grid connections. BORIS consists of a reactor module, heat exchanger, coolant module, guard vessel, reactor vessel auxiliary cooling system (RVACS), secondary system, containment and the seismic isolation. BORIS is designed to generate 10 MWe with the resulting thermal efficiency of 45 %. BORIS uses lead as the primary system coolant because of the inherent safety of the material. BORIS is coupled with a supercritical carbon dioxide Brayton cycle as the secondary system to gain a high cycle efficiency in the range of 45 %. The reference core consists of 757 fuel rods without assembly with an active core height of 0.8 m. The BORIS core consists of single enrichment zone composed of a Pu-MA (minor actinides)-U-N fuel and a ferritic-martensitic stainless steel clad. This study is intended to set up appropriate reactor vessel geometry by performing thermal hydraulic analysis on RVACS using computational fluid dynamics codes; to examine the liquid metal coolant behavior along the subchannels; to find out whether the

  17. System Study: Reactor Core Isolation Cooling 1998–2013

    SciTech Connect

    Schroeder, John Alton

    2015-01-31

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RCIC results.

  18. System Study: Reactor Core Isolation Cooling 1998–2012

    SciTech Connect

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trend was identified in the HPCI results. Statistically significant decreasing trends were identified for RCIC start-only and 8-hour trends.

  19. System Study: Reactor Core Isolation Cooling 1998-2014

    SciTech Connect

    Schroeder, John Alton

    2015-12-01

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RCIC results.

  20. Dynamic analysis of gas-core reactor system

    NASA Technical Reports Server (NTRS)

    Turner, K. H., Jr.

    1973-01-01

    A heat transfer analysis was incorporated into a previously developed model CODYN to obtain a model of open-cycle gaseous core reactor dynamics which can predict the heat flux at the cavity wall. The resulting model was used to study the sensitivity of the model to the value of the reactivity coefficients and to determine the system response for twenty specified perturbations. In addition, the model was used to study the effectiveness of several control systems in controlling the reactor. It was concluded that control drums located in the moderator region capable of inserting reactivity quickly provided the best control.

  1. Westinghouse Small Modular Reactor nuclear steam supply system design

    SciTech Connect

    Memmott, M. J.; Harkness, A. W.; Van Wyk, J.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development and integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam

  2. Building a Healthcare System's Innovation Program.

    PubMed

    Conger, Michelle D

    2016-01-01

    OSF HealthCare, based in Peoria, Illinois, has developed an innovative strategy to adapt to the changes and forces disrupting the healthcare environment. This strategy evolved organically from the performance improvement efforts we began more than 15 years ago, as well as from the lessons we learned from years of research into the innovative practices and platforms of other healthcare institutions and of companies in other industries. More important, the strategy reflects our mission "to serve persons with the greatest care and love."The OSF innovation model has three components: internal innovations, partnering with external entities, and validating innovations through simulation. OSF has an ongoing and comprehensive commitment to innovation. Examples include our initiative to transform our model of care in primary care clinics by expanding access, reducing costs, and increasing efficiency; our partnerships with outside entities to find revolutionary solutions and products in which we can invest; and our establishment of a world-class simulation and education center.OSF HealthCare could not do any of this if it lacked the support of its people. To that end, we continue to work on embedding a culture of innovation across all of our facilities. Ours is a culture in which everyone is encouraged to voice creative ideas and no one is afraid to fail-all for the betterment of our organization and the patients we serve.

  3. Incipient Transient Detection in Reactor Systems: Experimental and Theoretical Investigation

    SciTech Connect

    Lefteri H. Tsoukalas; S.T. Revankar; X Wang; R. Sattuluri

    2005-09-27

    The main goal of this research was to develop a method for detecting reactor system transients at the earliest possible time through a comprehensive experimental, testing and benchmarking program. This approach holds strong promise for developing new diagnostic technologies that are non-intrusive, generic and highly portable across different systems. It will help in the design of new generation nuclear power reactors, which utilize passive safety systems with a reliable and non-intrusive multiphase flow diagnostic system to monitor the function of the passive safety systems. The main objective of this research was to develop an improved fuzzy logic based detection method based on a comprehensive experimental testing program to detect reactor transients at the earliest possible time, practically at their birth moment. A fuzzy logic and neural network based transient identification methodology and implemented in a computer code called PROTREN was considered in this research and was compared with SPRT (Sequentially Probability Ratio Testing) decision and Bayesian inference. The project involved experiment, theoretical modeling and a thermal-hydraulic code assessment. It involved graduate and undergraduate students participation providing them with exposure and training in advanced reactor concepts and safety systems. In this final report, main tasks performed during the project period are summarized and the selected results are presented. Detailed descriptions for the tasks and the results are presented in previous yearly reports (Revankar et al 2003 and Revankar et al 2004).

  4. INNOVATIVE URBAN WET-WEATHER FLOW MANAGEMENT SYSTEMS

    EPA Science Inventory

    This report describes innovative methods to improve wet weather flow (WWF) management systems, that provide drainage services at the same time as decreasing stormwater pollutant discharges, for urban developments of the 21st century. Traditionally, wet-weather collection systems...

  5. Options for enhanced performance of pellet bed reactor bimodal systems

    NASA Astrophysics Data System (ADS)

    Liscum-Powell, Jennifer; El-Genk, Mohamed S.

    1995-01-01

    Recently reported Bimodal Pellet Bed Reactor (BM-PeBR) system concepts utilize efficient Closed Brayton Cycle (CBC) engines and maintain the maximum fuel temperature almost constant below 1600 K during power and propulsion modes. Because the reactor thermal power is quite low, ranging from 44 kW to 176 kW for the 10 kWe and 40 kWe BM-PeBR, respectively, the propulsion performance parameters are modest: 3.5 and 16 N of thrust for these systems, respectively, at a specific impulse (Isp) of 750 s. This paper investigates the effect of increasing the reactor thermal power and maximum fuel temperature during the propulsion mode to improve the propulsion performance of these systems. Options considered include: (a) using ex-core heating versus in-core heating of the hydrogen propellant, and (b) ramping reactor thermal power in the propulsion mode versus operating at a constant thermal power level during both power and propulsion modes and radiating excess heat during power mode using a high temperature radiator. Results showed that with these options the 40 kWe BM-PeBR system can deliver 40 N to 212 N of thrust and corresponding Isp of 885 s and 760 s, respectively, when operating at a maximum fuel temperature of 2000 K. Similarly, the 10 kWe system can deliver a thrust of 2 N to 40 N at corresponding Isp of 860 and 740 s, respectively.

  6. Computer study of emergency shutdowns of a 60-kilowatt reactor Brayton space power system

    NASA Technical Reports Server (NTRS)

    Tew, R. C.; Jefferies, K. S.

    1974-01-01

    A digital computer study of emergency shutdowns of a 60-kWe reactor Brayton power system was conducted. Malfunctions considered were (1) loss of reactor coolant flow, (2) loss of Brayton system gas flow, (3)turbine overspeed, and (4) a reactivity insertion error. Loss of reactor coolant flow was the most serious malfunction for the reactor. Methods for moderating the reactor transients due to this malfunction are considered.

  7. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  8. System and method for temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M.

    2017-02-21

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  9. ANDES Measurements for Advanced Reactor Systems

    NASA Astrophysics Data System (ADS)

    Plompen, A. J. M.; Hambsch, F.-J.; Kopecky, S.; Nyman, M.; Rouki, C.; Salvador Castiñeira, P.; Schillebeeckx, P.; Belloni, F.; Berthoumieux, E.; Gunsing, F.; Lampoudis, C.; Calviani, M.; Guerrero, C.; Cano-Ott, D.; Gonzalez Romero, E.; Aïche, M.; Jurado, B.; Mathieu, L.; Derckx, X.; Farget, F.; Rodrigues Tajes, C.; Bacquias, A.; Dessagne, Ph.; Kerveno, M.; Borcea, C.; Negret, A.; Colonna, N.; Goncalves, I.; Penttilä, H.; Rinta-Antila, S.; Kolhinen, V. S.; Jokinen, A.

    2014-05-01

    A significant number of new measurements was undertaken by the ANDES “Measurements for advanced reactor systems” initiative. These new measurements include neutron inelastic scattering from 23Na, Mo, Zr, and 238U, neutron capture cross sections of 238U, 241Am, neutron induced fission cross sections of 240Pu, 242Pu, 241Am, 243Am and 245Cm, and measurements that explore the limits of the surrogate technique. The latter study the feasibility of inferring neutron capture cross sections for Cm isotopes, the neutron-induced fission cross section of 238Pu and fission yields and fission probabilities through full Z and A identification in inverse kinematics for isotopes of Pu, Am, Cm and Cf. Finally, four isotopes are studied which are important to improve predictions for delayed neutron precursors and decay heat by total absorption gamma-ray spectrometry (88Br, 94Rb, 95Rb, 137I). The measurements which are performed at state-of-the-art European facilities have the ambition to achieve the lowest possible uncertainty, and to come as close as is reasonably achievable to the target uncertainties established by sensitivity studies. An overview is presented of the activities and achievements, leaving detailed expositions to the various parties contributing to the conference.

  10. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  11. Fault detection system for Argentine Research Reactor instrumentation

    SciTech Connect

    Polenta, H.P. ); Bernard, J.A. ); Ray, A. )

    1993-01-20

    The design and implementation of a redundancy management scheme for the on-line detection and isolation of faulty sensors is presented. Such a device is potentially useful in reactor-powered spacecraft for enhancing the processing capabilities of the main computer. The fault detection device can be used as an integral part of intelligent instrumentation systems. The device has been built using an 8-bit microcontroller and commercially available electronic hardware. The software is completely portable. The operation of this device has been successfully demonstrated for real-time validation of sensor data on Argentina's RA-1 Research Reactor.

  12. Species selection in a reactor-settler system.

    PubMed

    Sheintuch, M

    1987-10-05

    The competition between flocculating and nonflocculating microorganisms was investigated in a continuous reactor-settler system (e.g. activated sludge). Co existence states were found to be possible, over a certain domain of operating conditions, even with simple monotonic kinetics and simple competition. Multiple solutions exist when coexistence states are unstable. Coexistence solutions are stable when the flocculating bacteria grow faster at feed conditions as in the activated sludge problem. The analysis applies to one or several mixed or plug flow reactors. Other effects, such as enrichment of the recycle stream by the flocculating microorganism or substrate adsorption and storage, may change the structure of solution.

  13. Space-reactor electric systems: subsystem technology assessment

    SciTech Connect

    Anderson, R.V.; Bost, D.; Determan, W.R.

    1983-03-29

    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified.

  14. Inertial fusion energy power reactor fuel recovery system

    SciTech Connect

    Gentile, C. A.; Kozub, T.; Langish, S. W.; Ciebiera, L. P.; Nobile, A.; Wermer, J.; Sessions, K.

    2008-07-15

    A conceptual design is proposed to support the recovery of un-expended fuel, ash, and associated post-detonation products resident in plasma exhaust from a {approx}2 GWIFE direct drive power reactor. The design includes systems for the safe and efficient collection, processing, and purification of plasma exhaust fuel components. The system has been conceptually designed and sized such that tritium bred within blankets, lining the reactor target chamber, can also be collected, processed, and introduced into the fuel cycle. The system will nominally be sized to process {approx}2 kg of tritium per day and is designed to link directly to the target chamber vacuum pumping system. An effort to model the fuel recovery system (FRS) using the Aspen Plus engineering code has commenced. The system design supports processing effluent gases from the reactor directly from the exhaust of the vacuum pumping system or in batch mode, via a buffer vessel in the Receiving and Analysis System. Emphasis is on nuclear safety, reliability, and redundancy as to maximize availability. The primary goal of the fuel recovery system design is to economically recycle components of direct drive IFE fuel. The FRS design is presented as a facility sub-system in the context of supporting the larger goal of producing safe and economical IFE power. (authors)

  15. A Gas-Cooled Reactor Surface Power System

    SciTech Connect

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  16. A gas-cooled reactor surface power system

    SciTech Connect

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-22

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  17. A gas-cooled reactor surface power system

    SciTech Connect

    Lipinski, R.J.; Wright, S.A.; Lenard, R.X.; Harms, G.A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1{percent}Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars. {copyright} {ital 1999 American Institute of Physics.}

  18. An innovative fuel design concept for improved light water reactor performance and safety. Final technical report

    SciTech Connect

    Tulenko, J.S.; Connell, R.G.

    1995-07-01

    Light water reactor (LWR) fuel performance is limited by thermal and mechanical constraints associated with the design, fabrication, and operation of fuel in a nuclear reactor. The purpose of this research was to explore a technique for extending fuel performance by thermally bonding LWR fuel with a non-alkaline liquid metal alloy. Current LWR fuel rod designs consist of enriched uranium oxide (UO{sub 2}) fuel pellets enclosed in a zirconium alloy cylindrical clad. The space between the pellets and the clad is filled by an inert gas. Due to the thermal conductivity of the gas, the gas space thermally insulates the fuel pellets from the reactor coolant outside the fuel rod, elevating the fuel temperatures. Filling the gap between the fuel and clad with a high conductivity liquid metal thermally bonds the fuel to the cladding, and eliminates the large temperature change across the gap, while preserving the expansion and pellet loading capabilities. The resultant lower fuel temperature directly impacts fuel performance limit margins and also core transient performance. The application of liquid bonding techniques to LWR fuel was explored for the purposes of increasing LWR fuel performance and safety. A modified version of the ESCORE fuel performance code (ESBOND) has been developed under the program to analyze the in-reactor performance of the liquid metal bonded fuel. An assessment of the technical feasibility of this concept for LWR fuel is presented, including the results of research into materials compatibility testing and the predicted lifetime performance of Liquid Metal Bonded LWR fuel.

  19. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  20. A lithium-cooled reactor - Brayton turboelectric power converter design for 100-kWe class space reactor electric systems

    SciTech Connect

    Anderson, R.V.

    1984-08-01

    The conceptual design of a 100-kWe space reactor electric system to satisfy the design goals of the Tri-Agency SP-100 Program has been completed. The system was selected from an initial field of over 500 potential choices covering a wide range of reactor, power converter, shield, heat transport, and radiator subsystems. The selected system -- a lithium-cooled, UN-fueled, refractory-clad reactor coupled to a redundant pair of 110-kWe (gross) Brayton turboelectric power converters -shows strong promise of not only meeting the SP-100 Program design goals but also of providing for substantial growth in power levels for potential future needs.

  1. Expert system for online surveillance of nuclear reactor coolant pumps

    DOEpatents

    Gross, Kenny C.; Singer, Ralph M.; Humenik, Keith E.

    1993-01-01

    An expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  2. Operation of staged membrane oxidation reactor systems

    SciTech Connect

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  3. SUBSURFACE VOLATIZATION AND VENTILATION SYSTEM (SVVS) - INNOVATIVE TECHNOLOGY REPORT

    EPA Science Inventory

    This report summarizes the findings associated with a Demonstration Test of Environmental Improvement Technologies’ (EIT) Subsurface Volatilization and Ventilation System (SVVS) process. The technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) ...

  4. Innovators.

    ERIC Educational Resources Information Center

    NEA Today, 2001

    2001-01-01

    Describes various innovations that have been developed to enhance education. These innovations include: helping educators help at-risk students succeed; promoting high school journalism; ensuring quality online learning experiences; developing a student performing group that uses theater to address social issues; and having students design their…

  5. A Spouted Bed Reactor Monitoring System for Particulate Nuclear Fuel

    SciTech Connect

    D. S. Wendt; R. L. Bewley; W. E. Windes

    2007-06-01

    Conversion and coating of particle nuclear fuel is performed in spouted (fluidized) bed reactors. The reactor must be capable of operating at temperatures up to 2000°C in inert, flammable, and coating gas environments. The spouted bed reactor geometry is defined by a graphite retort with a 2.5 inch inside diameter, conical section with a 60° included angle, and a 4 mm gas inlet orifice diameter through which particles are removed from the reactor at the completion of each run. The particles may range from 200 µm to 2 mm in diameter. Maintaining optimal gas flow rates slightly above the minimum spouting velocity throughout the duration of each run is complicated by the variation of particle size and density as conversion and/or coating reactions proceed in addition to gas composition and temperature variations. In order to achieve uniform particle coating, prevent agglomeration of the particle bed, and monitor the reaction progress, a spouted bed monitoring system was developed. The monitoring system includes a high-sensitivity, low-response time differential pressure transducer paired with a signal processing, data acquisition, and process control unit which allows for real-time monitoring and control of the spouted bed reactor. The pressure transducer is mounted upstream of the spouted bed reactor gas inlet. The gas flow into the reactor induces motion of the particles in the bed and prevents the particles from draining from the reactor due to gravitational forces. Pressure fluctuations in the gas inlet stream are generated as the particles in the bed interact with the entering gas stream. The pressure fluctuations are produced by bulk movement of the bed, generation and movement of gas bubbles through the bed, and the individual motion of particles and particle subsets in the bed. The pressure fluctuations propagate upstream to the pressure transducer where they can be monitored. Pressure fluctuation, mean differential pressure, gas flow rate, reactor

  6. Summary of space nuclear reactor power systems, 1983--1992

    SciTech Connect

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  7. Monitoring system for a liquid-cooled nuclear fission reactor

    DOEpatents

    DeVolpi, Alexander

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  8. Understanding healthcare innovation systems: the Stockholm region case.

    PubMed

    Larisch, Lisa-Marie; Amer-Wåhlin, Isis; Hidefjäll, Patrik

    2016-11-21

    Purpose There is an increasing interest in understanding how innovation processes can address current challenges in healthcare. The purpose of this paper is to analyze the wider socio-economic context and conditions for such innovation processes in the Stockholm region, using the functional dynamics approach to innovation systems (ISs). Design/methodology/approach The analysis is based on triangulation using data from 16 in-depth interviews, two workshops, and additional documents. Using the functional dynamics approach, critical structural and functional components of the healthcare IS were analyzed. Findings The analysis revealed several mechanisms blocking innovation processes such as fragmentation, lack of clear leadership, as well as insufficient involvement of patients and healthcare professionals. Furthermore, innovation is expected to occur linearly as a result of research. Restrictive rules for collaboration with industry, reimbursement, and procurement mechanisms limit entrepreneurial experimentation, commercialization, and spread of innovations. Research limitations/implications In this study, the authors analyzed how certain functions of the functional dynamics approach to ISs related to each other. The authors grouped knowledge creation, resource mobilization, and legitimacy as they jointly constitute conditions for needs articulation and entrepreneurial experimentation. The economic effects of entrepreneurial experimentation and needs articulation are mainly determined by the stage of market formation and existence of positive externalities. Social implications Stronger user involvement; a joint innovation strategy for healthcare, academia, and industry; and institutional reform are necessary to remove blocking mechanisms that today prevent innovation from occurring. Originality/value This study is the first to provide an analysis of the system of innovation in healthcare using a functional dynamics approach, which has evolved as a tool for public

  9. Sulfide-oxidizing bacteria establishment in an innovative microaerobic reactor with an internal silicone membrane for sulfur recovery from wastewater.

    PubMed

    Valdés, F; Camiloti, P R; Rodriguez, R P; Delforno, T P; Carrillo-Reyes, J; Zaiat, M; Jeison, D

    2016-06-01

    A novel bioreactor, employing a silicone membrane for microaeration, was studied for partial sulfide oxidation to elemental sulfur. The objective of this study was to assess the feasibility of using an internal silicone membrane reactor (ISMR) to treat dissolved sulfide and to characterize its microbial community. The ISMR is an effective system to eliminate sulfide produced in anaerobic reactors. Sulfide removal efficiencies reached 96 % in a combined anaerobic/microaerobic reactor and significant sulfate production did not occur. The oxygen transfer was strongly influenced by air pressure and flow. Pyrosequencing analysis indicated various sulfide-oxidizing bacteria (SOB) affiliated to the species Acidithiobacillus thiooxidans, Sulfuricurvum kujiense and Pseudomonas stutzeri attached to the membrane and also indicated similarity between the biomass deposited on the membrane wall and the biomass drawn from the material support, supported the establishment of SOB in an anaerobic sludge under microaerobic conditions. Furthermore, these results showed that the reactor configuration can develop SOB under microaerobic conditions and can improve and reestablish the sulfide conversion to elemental sulfur.

  10. Disk MHD Conversion System for Nerva Reactor

    DTIC Science & Technology

    2007-11-02

    connection thyristor and diode operation in high voltage ( HVDC ) transmission systems and no difficulty is foreseen in applying this to the specific...conditions of the space environment. Further, experience is now being gained with the series operation of GTOs, both for HVDC and other large scale

  11. Common cause analysis of the TREAT upgrade reactor protection system

    SciTech Connect

    Page, R.J.; Kamis, G.J.; Marbach, R.A.; Mueller, C.J.

    1984-09-01

    A triply redundant reactor scram system (RSS) has been designed for the upgraded TREAT facility. The independent failures reliability goal for the RSS is <10/sup -9/ failures per demand. An independent failures analysis indicated that this goal would be met. In addition, however, recognizing that in heavily redundant systems common-cause failures dominate, a common cause analysis of the TREAT upgrade RSS was done. The objective was to identify those common-cause initiators which could affect the functioning of the RSS, and to subsequently modify the design of the RSS so that the effect was minimized. A number of common-cause initiators were identified which were capable of defeating the triple redundancy feature of the reactor scram system. By means of a systematic analysis of the effect these initiators could have on the system, it was possible to identify seven necessary design and procedural modifications that would greatly reduce the probability of the reactor being run while the RSS was in a faulted condition.

  12. Completely modular Thermionic Reactor Ion Propulsion System (TRIPS)

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.; Kikin, G. M.; Sawyer, C. D.

    1972-01-01

    The nuclear reactor powered ion propulsion system described is an advanced completely modularized system which lends itself to development of prototype and/or flight type components without the need for complete system tests until late in the development program. This modularity is achieved in all of the subsystems and components of the electric propulsion system including (1) the thermionic fuel elements, (2) the heat rejection subsystem (heat pipes), (3) the power conditioning modules, and (4) the ion thrusters. Both flashlight and external fuel type in-core thermionic reactors are considered as the power source. The thermionic fuel elements would be useful over a range of reactor power levels. Electrical heated acceptance testing in their flight configuration is possible for the external fuel case. Nuclear heated testing by sampling methods could be used for acceptance testing of flashlight fuel elements. The use of heat pipes for cooling the collectors and as a means of heat transport to the radiator allows early prototype or flight configuration testing of a small module of the heat rejection subsystem as opposed to full scale liquid metal pumps and radiators in a large vacuum chamber. The power conditioner (p/c) is arranged in modules with passive cooling.

  13. Systems and methods for dismantling a nuclear reactor

    DOEpatents

    Heim, Robert R; Adams, Scott Ryan; Cole, Matthew Denver; Kirby, William E; Linnebur, Paul Damon

    2014-10-28

    Systems and methods for dismantling a nuclear reactor are described. In one aspect the system includes a remotely controlled heavy manipulator ("manipulator") operatively coupled to a support structure, and a control station in a non-contaminated portion of a workspace. The support structure provides the manipulator with top down access into a bioshield of a nuclear reactor. At least one computing device in the control station provides remote control to perform operations including: (a) dismantling, using the manipulator, a graphite moderator, concrete walls, and a ceiling of the bioshield, the manipulator being provided with automated access to all internal portions of the bioshield; (b) loading, using the manipulator, contaminated graphite blocks from the graphite core and other components from the bioshield into one or more waste containers; and (c) dispersing, using the manipulator, dust suppression and contamination fixing spray to contaminated matter.

  14. Designing visual displays and system models for safe reactor operations

    SciTech Connect

    Brown-VanHoozer, S.A.

    1995-12-31

    The material presented in this paper is based on two studies involving the design of visual displays and the user`s prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator`s perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors.

  15. Component and system simulation models for High Flux Isotope Reactor

    SciTech Connect

    Sozer, A.

    1989-08-01

    Component models for the High Flux Isotope Reactor (HFIR) have been developed. The models are HFIR core, heat exchangers, pressurizer pumps, circulation pumps, letdown valves, primary head tank, generic transport delay (pipes), system pressure, loop pressure-flow balance, and decay heat. The models were written in FORTRAN and can be run on different computers, including IBM PCs, as they do not use any specific simulation languages such as ACSL or CSMP. 14 refs., 13 figs.

  16. A small, 1400 K, reactor for Brayton space power systems.

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Mayo, W.

    1972-01-01

    An investigation was conducted to determine minimum dimensions and minimum weight obtainable in a design for a reactor using uranium-233 nitride or plutonium-239 nitride as fuel. Such a reactor had been considered by Krasner et al. (1971). Present space power status is discussed, together with questions of reactor design and power distribution in the reactor. The characteristics of various reactor types are compared, giving attention also to a zirconium hydride reactor.

  17. THERMAL STRESS CALCULATIONS FOR HEATPIPE-COOLED REACTOR POWER SYSTEMS.

    SciTech Connect

    Kapernick, R. J.; Guffee, R. M.

    2001-01-01

    A heatpipe-cooled fast reactor concept has been under development at Los Alamos National Laboratory for the past several years, to be used as a power source for nuclear electric propulsion (NEP) or as a planetary surface power system. The reactor core consists of an array of modules that are held together by a core lateral restraint system. Each module comprises a single heatpipe surrounded by 3-6 clad fuel pins. As part of the design development and performance assessment activities for these reactors, specialized methods and models have been developed to perform thermal and stress analyses of the core modules. The methods have been automated so that trade studies can be readily performed, looking at design options such as module size, heatpipe and clad thickness, use of sleeves to contain the fuel, material type, etc. This paper describes the methods and models that have been developed, and presents thermal and stress analysis results for a Mars surface power system and a NEP power source.

  18. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    SciTech Connect

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  19. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    SciTech Connect

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates

  20. Systems of innovation, the urban order and sustainable development.

    PubMed

    Johnson, Björn

    2007-06-01

    Innovative cities are essential for the economic growth and development of countries. At the same time, however, social and environmental problems related to city growth can be serious threats to the full realisation of the socio-economic contribution that cities can make. City environments thus often provide both new problems and the creative and diverse environments, which make it possible to solve them. The question of whether or not sustainable development is possible largely will be answered in cities. This is also the case for problems related to waste management. Landfills may be located in the countryside, but if a country is to reduce environmental costs, the results will rest on the innovation power of cities. In this paper it is argued that the notion of a 'system of innovation' is helpful in understanding the factors that shape the processes of innovation and that determine the extent to which environmental problems may be solved. In this context, institutional innovation and political innovation as compared to technical innovation are of special importance.

  1. Enabling autonomous control for space reactor power systems

    SciTech Connect

    Wood, R. T.

    2006-07-01

    The application of nuclear reactors for space power and/or propulsion presents some unique challenges regarding the operations and control of the power system. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a space reactor power system (SRPS) employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. Thus, a SRPS control system must provide for operational autonomy. Oak Ridge National Laboratory (ORNL) has conducted an investigation of the state of the technology for autonomous control to determine the experience base in the nuclear power application domain, both for space and terrestrial use. It was found that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and basic control for a SRPS is clearly feasible under optimum circumstances. However, autonomous control is primarily intended to account for the non optimum circumstances when degradation, failure, and other off-normal events challenge the performance of the reactor and near-term human intervention is not possible. Thus, the development and demonstration of autonomous control capabilities for the specific domain of space nuclear power operations is needed. This paper will discuss the findings of the ORNL study and provide a description of the concept of autonomy, its key characteristics, and a prospective

  2. Autonomous Control Capabilities for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  3. Autonomous Control Capabilities for Space Reactor Power Systems

    SciTech Connect

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-04

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  4. Advanced High Temperature Reactor Systems and Economic Analysis

    SciTech Connect

    Holcomb, David Eugene; Peretz, Fred J; Qualls, A L

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with

  5. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOEpatents

    Lau, Louis K. S.

    1990-01-01

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  6. Removal of copper in an integrated sulfate reducing bioreactor-crystallization reactor system.

    PubMed

    Sierra-Alvarez, Reyes; Hollingsworth, Jeremy; Zhou, Michael S

    2007-02-15

    Removal of copper was investigated using an innovative water treatment system integrating a sulfidogenic bioreactor with a fluidized-bed crystallization reactor containing fine sand to facilitate the recovery of copper as a purified copper-sulfide mineral. The performance of the system was tested using a simulated semiconductor manufacturing wastewater containing high levels of Cu2+ (4-66 mg/L), sulfate, and a mixture of citrate, isopropanol, and polyethylene glycol (Mn 300). Soluble copper removal efficiencies exceeding 99% and effluent copper concentrations averaging 89 micog/L were demonstrated in the two-stage system, with near complete metal removal occurring in the crystallizer. Copper crystals deposited on sand grains were identified as covellite (CuS). The removal of organic constituents did not exceed 70% of the initial chemical oxygen demand due to incomplete degradation of isopropanol and its breakdown product (acetone). Taken as a whole, these results indicate the potential of this novel reactor configuration for the simultaneous removal of heavy metals and organic constituents. The ability of this process to recover heavy metals in a purified form makes it particularly attractive for the treatment of contaminated aqueous streams, including industrial wastewaters and acid mine drainage.

  7. Politics of innovation in multi-level water governance systems

    NASA Astrophysics Data System (ADS)

    Daniell, Katherine A.; Coombes, Peter J.; White, Ian

    2014-11-01

    Innovations are being proposed in many countries in order to support change towards more sustainable and water secure futures. However, the extent to which they can be implemented is subject to complex politics and powerful coalitions across multi-level governance systems and scales of interest. Exactly how innovation uptake can be best facilitated or blocked in these complex systems is thus a matter of important practical and research interest in water cycle management. From intervention research studies in Australia, China and Bulgaria, this paper seeks to describe and analyse the behind-the-scenes struggles and coalition-building that occurs between water utility providers, private companies, experts, communities and all levels of government in an effort to support or block specific innovations. The research findings suggest that in order to ensure successful passage of the proposed innovations, champions for it are required from at least two administrative levels, including one with innovation implementation capacity, as part of a larger supportive coalition. Higher governance levels can play an important enabling role in facilitating the passage of certain types of innovations that may be in competition with currently entrenched systems of water management. Due to a range of natural biases, experts on certain innovations and disciplines may form part of supporting or blocking coalitions but their evaluations of worth for water system sustainability and security are likely to be subject to competing claims based on different values and expertise, so may not necessarily be of use in resolving questions of "best courses of action". This remains a political values-based decision to be negotiated through the receiving multi-level water governance system.

  8. System for fuel rod removal from a reactor module

    DOEpatents

    Matchett, R.L.; Fodor, G.; Kikta, T.J.; Bacvinsicas, W.S.; Roof, D.R.; Nilsen, R.J.; Wilczynski, R.

    1988-07-28

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system. 7 figs.

  9. System for fuel rod removal from a reactor module

    DOEpatents

    Matchett, Richard L.; Roof, David R.; Kikta, Thomas J.; Wilczynski, Rosemarie; Nilsen, Roy J.; Bacvinskas, William S.; Fodor, George

    1990-01-01

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system.

  10. Nuclear safety as applied to space power reactor systems

    SciTech Connect

    Cummings, G.E.

    1987-01-01

    To develop a strategy for incorporating and demonstrating safety, it is necessary to enumerate the unique aspects of space power reactor systems from a safety standpoint. These features must be differentiated from terrestrial nuclear power plants so that our experience can be applied properly. Some ideas can then be developed on how safe designs can be achieved so that they are safe and perceived to be safe by the public. These ideas include operating only after achieving a stable orbit, developing an inherently safe design, ''designing'' in safety from the start and managing the system development (design) so that it is perceived safe. These and other ideas are explored further in this paper.

  11. Ongoing Development of a Series Bosch Reactor System

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B; Mansell, J. Matthew; Stanley, Christine; Edmunson, Jennifer; DuMez, Samuel J.; Chen, Kevin

    2013-01-01

    Future manned missions to deep space or planetary surfaces will undoubtedly incorporate highly robust, efficient, and regenerable life support systems that require minimal consumables. To meet this requirement, NASA continues to explore a Bosch-based carbon dioxide reduction system to recover oxygen from CO2. In order to improve the equivalent system mass of Bosch systems, we seek to design and test a "Series Bosch" system in which two reactors in series are optimized for the two steps of the reaction, as well as to explore the use of in situ materials as carbon deposition catalysts. Here we report recent developments in this effort including assembly and initial testing of a Reverse Water-Gas Shift reactor (RWGSr) and initial testing of two gas separation membranes. The RWGSr was sized to reduce CO2 produced by a crew of four to carbon monoxide as the first stage in a Series Bosch system. The gas separation membranes, necessary to recycle unreacted hydrogen and CO2, were similarly sized. Additionally, we report results of preliminary experiments designed to determine the catalytic properties of Martian regolith simulant for the carbon formation step.

  12. Ongoing Development of a Series Bosch Reactor System

    NASA Technical Reports Server (NTRS)

    Abney, Morgan; Mansell, Matt; DuMez, Sam; Thomas, John; Cooper, Charlie; Long, David

    2013-01-01

    Future manned missions to deep space or planetary surfaces will undoubtedly require highly robust, efficient, and regenerable life support systems that require minimal consumables. To meet this requirement, NASA continues to explore a Bosch-based carbon dioxide reduction system to recover oxygen from CO2. In order to improve the equivalent system mass of Bosch systems, we seek to design and test a "Series Bosch" system in which two reactors in series are optimized for the two steps of the reaction, as well as to explore the use of in situ materials as carbon deposition catalysts. Here we report recent developments in this effort including assembly and initial testing of a Reverse Water-Gas Shift reactor (RWGSr) and initial testing of two gas separation membranes. The RWGSr was sized to reduce CO2 produced by a crew of four to carbon monoxide as the first stage in a Series Bosch system. The gas separation membranes, necessary to recycle unreacted hydrogen and CO2, were similarly sized. Additionally, we report results of preliminary experiments designed to determine the catalytic properties of Martian and Lunar regolith simulant for the carbon deposition step.

  13. Conceptual Design of Passive Safety System for Lead-Bismuth Cooled Fast Reactor

    NASA Astrophysics Data System (ADS)

    Abdullah, A. G.; Nandiyanto, A. B. D.

    2016-04-01

    This paper presents the results of the conceptual design of passive safety systems for reactor power 225 MWth using Pb-Bi coolant. Main purpose of this research is to design of heat removal system from the reactor wall. The heat from the reactor wall is removed by RVACS system using the natural circulation from the atmosphere around the reactor at steady state. The calculation is performed numerically using Newton-Raphson method. The analysis involves the heat transfer systems in a radiation, conduction and natural convection. Heat transfer calculations is performed on the elements of the reactor vessel, outer wall of guard vessel and the separator plate. The simulation results conclude that the conceptual design is able to remove heat 1.33% to 4.67% from the thermal reactor power. It’s can be hypothesized if the reactor had an accident, the system can still overcome the heat due to decay.

  14. The detector system of the Daya Bay reactor neutrino experiment

    SciTech Connect

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 213 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  15. Development of alternate extractant systems for fast reactor fuel cycle

    SciTech Connect

    Vasudeva Rao, P.R.; Suresh, A.; Venkatesan, K.A.; Srinivasan, T.G.; Raj, Baldev

    2007-07-01

    Due to the limitations of TBP in processing of high burn-up, Pu-rich fast reactor fuels, there is a need to develop alternate extractants for fast reactor fuel processing. In this context, our Centre has been examining the suitability of alternate tri-alkyl phosphates. Third phase formation in the extraction of Th(IV) by TBP, tri-n-amyl phosphate (TAP) and tri-2-methyl-butyl phosphate (T2MBP) from nitric acid media has been investigated under various conditions to derive conclusions on their application for extraction of Pu at macro levels. The chemical and radiolytic degradation of tri-n-amyl-phosphate (TAP) diluted in normal paraffin hydrocarbon (NPH) in the presence of nitric acid has been investigated by the measurement of plutonium retention in organic phase. The potential application of room temperature ionic liquids (RTILs) for reprocessing of spent nuclear fuel has been explored. Extraction of uranium (VI) and palladium (II) from nitric acid medium by commercially available RTIL and tri-n-butyl phosphate solution in RTIL have been studied and the feasibility of electrodeposition of uranium as uranium oxide (UO{sub 2}) and palladium (II) as metallic palladium from the loaded organic phase have been demonstrated. This paper describes results of the above studies and discusses the suitability of the systems for fast reactor fuel reprocessing. (authors)

  16. The detector system of the Daya Bay reactor neutrino experiment

    DOE PAGES

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 22θ13 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrinomore » mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.« less

  17. The detector system of the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    An, F. P.; Bai, J. Z.; Balantekin, A. B.; Band, H. R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. L.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Carr, R.; Cen, W. R.; Chan, W. T.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chasman, C.; Chen, H. Y.; Chen, H. S.; Chen, M. J.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, X. S.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chidzik, S.; Chow, K.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dong, L.; Dove, J.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fang, S. D.; Fu, J. Y.; Fu, Z. W.; Ge, L. Q.; Ghazikhanian, V.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gornushkin, Y. A.; Grassi, M.; Greenler, L. S.; Gu, W. Q.; Guan, M. Y.; Guo, R. P.; Guo, X. H.; Hackenburg, R. W.; Hahn, R. L.; Han, R.; Hans, S.; He, M.; He, Q.; He, W. S.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hinrichs, P.; Ho, T. H.; Hoff, M.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. Z.; Huang, H. X.; Huang, P. W.; Huang, X.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiang, H. J.; Jiang, W. Q.; Jiao, J. B.; Johnson, R. A.; Joseph, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, C. Y.; Lai, W. C.; Lai, W. H.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, M. K. P.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Lewis, C. A.; Li, B.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, J.; Li, N. Y.; Li, Q. J.; Li, S. F.; Li, S. C.; Li, W. D.; Li, X. B.; Li, X. N.; Li, X. Q.; Li, Y.; Li, Y. F.; Li, Z. B.; Liang, H.; Liang, J.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. X.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, B. J.; Liu, C.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S.; Liu, S. S.; Liu, X.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, A.; Luk, K. B.; Luo, T.; Luo, X. L.; Ma, L. H.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Mayes, B.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Monari Kebwaro, J.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Nie, Y. B.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pagac, A.; Pan, H.-R.; Patton, S.; Pearson, C.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Sands, W. R.; Seilhan, B.; Shao, B. B.; Shih, K.; Song, W. Y.; Steiner, H.; Stoler, P.; Stuart, M.; Sun, G. X.; Sun, J. L.; Tagg, N.; Tam, Y. H.; Tanaka, H. K.; Tang, W.; Tang, X.; Taychenachev, D.; Themann, H.; Torun, Y.; Trentalange, S.; Tsai, O.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, T.; Wang, W.; Wang, W. W.; Wang, X. T.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Wenman, D. L.; Whisnant, K.; White, C. G.; Whitehead, L.; Whitten, C. A.; Wilhelmi, J.; Wise, T.; Wong, H. C.; Wong, H. L. H.; Wong, J.; Wong, S. C. F.; Worcester, E.; Wu, F. F.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xiang, S. T.; Xiao, Q.; Xing, Z. Z.; Xu, G.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, W.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Yip, K.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, H. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. X.; Zhang, Q. M.; Zhang, S. H.; Zhang, X. T.; Zhang, Y. C.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhou, Z. Y.; Zhuang, H. L.; Zimmerman, S.; Zou, J. H.

    2016-03-01

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of νbare oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin2 2θ13 and the effective mass splitting Δ mee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  18. Research in Modeling and Simulation for Airspace Systems Innovation

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Kimmel, William M.; Welch, Sharon S.

    2007-01-01

    This viewgraph presentation provides an overview of some of the applied research and simulation methodologies at the NASA Langley Research Center that support aerospace systems innovation. Risk assessment methodologies, complex systems design and analysis methodologies, and aer ospace operations simulations are described. Potential areas for future research and collaboration using interactive and distributed simula tions are also proposed.

  19. [Innovative ET cover system and its hydrologic evaluation].

    PubMed

    Liu, Chuan-shun; Cai, Jun-xiong; Wang, Jing-zhai; Rong, Yu

    2010-07-01

    The evapotranspiration (ET) cover system,as an alternative cover system of landfill, has been used in many remediation projects since 2003. It is an inexpensive, practical,and easily maintained biological system, but is mainly favorable in arid and semiarid sites due to limited water-holding capacity of the single loam layer and limited transpiration of grass. To improve the effectiveness of percolation control, an innovative scheme of ET was suggested in this paper: (1) a clay liner was added under the single loam layer to increase the water-holding capacity; (2) combined vegetation consisting of shrub and grass was used to replace the grass cover. Hydrologic evaluation of conventional cover,ET cover and the innovative ET cover under the same condition was performed using the computer program HELP, which showed the performance of the innovative ET cover is obviously superior to that of ET cover and conventional cover.

  20. The application of an innovative continuous multiple tube reactor as a strategy to control the specific organic loading rate for biohydrogen production by dark fermentation.

    PubMed

    Gomes, Simone D; Fuess, Lucas T; Penteado, Eduardo D; Lucas, Shaiane D M; Gotardo, Jackeline T; Zaiat, Marcelo

    2015-12-01

    Biohydrogen production in fixed-bed reactors often leads to unstable and decreasing patterns because the excessive accumulation of biomass in the bed negatively affects the specific organic loading rate (SOLR) applied to the reactor. In this context, an innovative reactor configuration, i.e., the continuous multiple tube reactor (CMTR), was assessed in an attempt to better control the SOLR for biohydrogen production. The CMTR provides a continuous discharge of biomass, preventing the accumulation of solids in the long-term. Sucrose was used as the carbon source and mesophilic temperature conditions (25°C) were applied in three continuous assays. The reactor showed better performance when support material was placed in the outlet chamber to enhance biomass retention within the reactor. Although the SOLR could not be effectively controlled, reaching values usually higher than 10gsucroseg(-1)VSSd(-1), the volumetric hydrogen production and molar hydrogen production rates peaked, respectively, at 1470mLH2L(-1)d(-1) and 45mmolH2d(-1), indicating that the CMTR was a suitable configuration for biohydrogen production.

  1. Designing a SCADA system simulator for fast breeder reactor

    NASA Astrophysics Data System (ADS)

    Nugraha, E.; Abdullah, A. G.; Hakim, D. L.

    2016-04-01

    SCADA (Supervisory Control and Data Acquisition) system simulator is a Human Machine Interface-based software that is able to visualize the process of a plant. This study describes the results of the process of designing a SCADA system simulator that aims to facilitate the operator in monitoring, controlling, handling the alarm, accessing historical data and historical trend in Nuclear Power Plant (NPP) type Fast Breeder Reactor (FBR). This research used simulation to simulate NPP type FBR Kalpakkam in India. This simulator was developed using Wonderware Intouch software 10 and is equipped with main menu, plant overview, area graphics, control display, set point display, alarm system, real-time trending, historical trending and security system. This simulator can properly simulate the principle of energy flow and energy conversion process on NPP type FBR. This SCADA system simulator can be used as training media for NPP type FBR prospective operators.

  2. Aging study of boiling water reactor high pressure injection systems

    SciTech Connect

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  3. Parametric systems analysis of the Modular Stellarator Reactor (MSR)

    SciTech Connect

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.

    1982-05-01

    The close coupling in the stellarator/torsatron/heliotron (S/T/H) between coil design (peak field, current density, forces), magnetics topology (transform, shear, well depth), and plasma performance (equilibrium, stability, transport, beta) complicates the reactor assessment more so than for most magnetic confinement systems. In order to provide an additional degree of resolution of this problem for the Modular Stellarator Reactor (MSR), a parametric systems model has been developed and applied. This model reduces key issues associted ith plasma performance, first-wall/blanket/shield (FW/B/S), and coil design to a simple relationship between beta, system geometry, and a number of indicators of overall plant performance. The results of this analysis can then be used to guide more detailed, multidimensional plasma, magnetics, and coil design efforts towards technically and economically viable operating regimes. In general, it is shown that beta values > 0.08 may be needed if the MSR approach is to be substantially competitive with other approaches to magnetic fusion in terms of system power density, mass utilization, and cost for total power output around 4.0 GWt; lower powers will require even higher betas.

  4. Oxidative decomposition of atrazine in water in the presence of hydrogen peroxide using an innovative microwave photochemical reactor.

    PubMed

    Chen, Huilun; Bramanti, Emilia; Longo, Iginio; Onor, Massimo; Ferrari, Carlo

    2011-02-28

    The simultaneous application of microwave (MW) power and UV light leads to improved results in photochemical processes. This study investigates the oxidative decomposition of atrazine in water using an innovative MW and UV photochemical reactor, which activates a chemical reaction with MW and UV radiation using an immersed source without the need for a MW oven. We investigated the influence of reaction parameters such as initial H(2)O(2) concentrations, reaction temperatures and applied MW power and identified the optimal conditions for the oxidative decomposition of atrazine. Atrazine was completely degraded by MW/UV/H(2)O(2) in a very short time (i.e. t(1/2) = 1.1 min for 20.8 mg/L in optimal conditions). From the kinetic study, the disappearance rate of atrazine can be expressed as dX/dt = k(PH)[M](0)(b-X)(1-X), where b ≡ [H(2)O(2)](0)/[M](0)+k(OH)[·OH]/k(PH)[M](0), and X is the atrazine conversion, which correlates well with the experimental data. The kinetic analysis also showed that an indirect reaction of atrazine with an OH radical is dominant at low concentrations of H(2)O(2) and a direct reaction of atrazine with H(2)O(2) is dominant when the concentration of H(2)O(2) is more than 200 mg/L.

  5. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  6. Sustainability Analysis of Innovative Transport System

    NASA Astrophysics Data System (ADS)

    Meiere, Ieva; Bazbauers, Gatis

    2011-01-01

    The focus of the research is to develop a new approach to transport solution based on the use of a conveyortype system and to compare the environmental impact of the new system with the existing ones. The new transport system consists of a conveyor driven by an electric motor, with a wind power plant supplying electricity, hydrogen storage and a fuel cell for matching the wind power production with the motor load. The research tasks included the evaluation of the consumption of fossil fuels and the associated environmental impact of existing transport system and a comparison with energy consumption and associated environmental impact of the new system. The energy balance of the conveyor transport system was modelled on an hourly basis by using the EnergyPLAN computer program [1] which allows to analyze a combination of intermittent renewable energy technologies, storage and transport systems. The results show that the existing transport system has greater impact on the environment than the proposed one.

  7. Thermoelectric converter for SP-100 space reactor power system

    NASA Technical Reports Server (NTRS)

    Terrill, W. R.; Haley, V. F.

    1986-01-01

    Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested.

  8. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  9. Innovations in dynamic test restraint systems

    NASA Technical Reports Server (NTRS)

    Fuld, Christopher J.

    1990-01-01

    Recent launch system development programs have led to a new generation of large scale dynamic tests. The variety of test scenarios share one common requirement: restrain and capture massive high velocity flight hardware with no structural damage. The Space Systems Lab of McDonnell Douglas developed a remarkably simple and cost effective approach to such testing using ripstitch energy absorbers adapted from the sport of technical rockclimbing. The proven system reliability of the capture system concept has led to a wide variety of applications in test system design and in aerospace hardware design.

  10. Coil system for a mirror-based hybrid reactor

    SciTech Connect

    Hagnestal, A.; Agren, O.; Moiseenko, V. E.

    2012-06-19

    Two different superconducting coil systems for the SFLM Hybrid study - a quadrupolar mirror based fusion-fission reactor study - are presented. One coil system is for a magnetic field with 2 T at the midplane and a mirror ratio of four. This coil set consists of semiplanar coils in two layers. The alternative coil system is for a downscaled magnetic field of 1.25 T at the midplane and a mirror ratio of four, where a higher {beta} is required to achieve sufficient the neutron production. This coil set has one layer of twisted 3D coils. The 3D coils are expected to be considerably cheaper than the semiplanar, since NbTi superconductors can be used for most coils instead of Nb3Sn due to the lower magnetic field.

  11. Innovations in an Accounting Information Systems Course.

    ERIC Educational Resources Information Center

    Shaoul, Jean

    A new approach to teaching an introductory accounting information systems course is outlined and the potential of this approach for integrating computers into the accounting curriculum at Manchester University (England) is demonstrated. Specifically, the use of a small inventory recording system and database in an accounting information course is…

  12. Innovations in Educational System: Mobile Learning Applications

    ERIC Educational Resources Information Center

    Rokhvadze, Roza F.; Yelashkina, Natalya V.

    2013-01-01

    This article presents the analysis of the current changes in the higher educational system of the Russian Federation. The stated issues are accompanied with the advice and possible solutions. Authors offer their own approaches and techniques for the academic staff of higher educational institutions in order to adapt to the new system.

  13. The MAUS nuclear space reactor with ion propulsion system

    NASA Astrophysics Data System (ADS)

    Mainardi, Enrico

    2006-06-01

    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long-lasting, low-mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermoionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome "La Sapienza" starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA.

  14. High Flux Isotope Reactor system RELAP5 input model

    SciTech Connect

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  15. Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR

    DOEpatents

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

    1980-06-06

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  16. Chemical Looping Combustion System-Fuel Reactor Modeling

    SciTech Connect

    Gamwo, I.K.; Jung, J.; Anderson, R.R.; Soong, Y.

    2007-04-01

    Chemical looping combustion (CLC) is a process in which an oxygen carrier is used for fuel combustion instead of air or pure oxygen as shown in the figure below. The combustion is split into air and fuel reactors where the oxidation of the oxygen carrier and the reduction of the oxidized metal occur respectively. The CLC system provides a sequestration-ready CO2 stream with no additional energy required for separation. This major advantage places combustion looping at the leading edge of a possible shift in strict control of CO2 emissions from power plants. Research in this novel technology has been focused in three distinct areas: techno-economic evaluations, integration of the system into power plant concepts, and experimental development of oxygen carrier metals such as Fe, Ni, Mn, Cu, and Ca. Our recent thorough literature review shows that multiphase fluid dynamics modeling for CLC is not available in the open literature. Here, we have modified the MFIX code to model fluid dynamic in the fuel reactor. A computer generated movie of our simulation shows bubble behavior consistent with experimental observations.

  17. Innovations and Neutralizations in the Warlpiri Pronominal System.

    ERIC Educational Resources Information Center

    Bavin, E. L.; Shopen, T.

    1987-01-01

    Discusses the progress in the number of innovations and neutralizations in the pronominal system of Warlpiri, an aboriginal language spoken in central Australia. The changes are analyzed by age-group usage, and patterns of the changes are suggested. Part of a sample interview in presented. (Author/LMO)

  18. Small Business Innovation Research Award Success Story: Proton Energy Systems

    SciTech Connect

    2011-04-01

    This success story describes Proton Energy Systems, a small business that designs and manufactures proton exchange membrane (PEM) electrolysis sytems to produce hydrogen from water. The U.S. Department of Energy's Fuel Cell Technologies Program has supported much of Proton's technology development through Small Business Innovation Research (SBIR) Awards and other non-SBIR funding.

  19. Information, Education, Communication--Developing an Innovative System.

    ERIC Educational Resources Information Center

    Cohen, Karen C.; Klensin, John C.

    This paper describes an innovative information system known as PROCEED (Program for Continuing Engineering Education) which is being developed to assist engineers in coping with mid-career crisis. Research involving components of mid-career crisis indicates that obsolescence or fear of obsolescence is a primary factor. It seemed reasonable that a…

  20. First in-core simultaneous measurements of nuclear heating and thermal neutron flux obtained with the innovative mobile calorimeter CALMOS inside the OSIRIS reactor

    SciTech Connect

    Lepeltier, Valerie; Bubendorff, Jacques; Carcreff, Hubert; Salmon, Laurent

    2015-07-01

    Nuclear heating inside a MTR reactor has to be known in order to design and to run irradiation experiments which have to fulfill target temperature constraints. This measurement is usually carried out by calorimetry. The innovative calorimetric system, CALMOS, has been studied and built in 2011 for the 70 MWth OSIRIS reactor operated by CEA. Thanks to a new type of calorimetric probe, associated to a specific displacement system, it provides measurements along the fissile height and above the core. This development required preliminary modelling and irradiation of mock-ups of the calorimetric probe in the ex-core area, where nuclear heating rate does not exceed 2 W.g{sup -1}. The calorimeter working modes, the different measurement procedures allowed with such a new probe, the main modeling and experimental results and expected advantages of this new technique have been already presented. However, these first in-core measurements were not performed beyond 6 W.g{sup -1}, due to an inside temperature limitation imposed by a safety authority requirement. In this paper, we present the first in-core simultaneous measurements of nuclear heating and conventional thermal neutron flux obtained by the CALMOS device at the 70 MW nominal reactor power. For the first time, this experimental system was operated in nominal in-core conditions, with nominal neutron flux up to 2.7 10{sup 14} n.cm{sup -2}.s{sup -1} and nuclear heating up to 12 W.g{sup -1}. A comprehensive measurement campaign carried out from 2013 to 2015 inside all accessible irradiation locations of the core, allowed to qualify definitively this new device, not only in terms of measurement ability but also in terms of reliability. After a brief reminder of the calorimetric cell configuration and displacement system specificities, first nuclear heating distributions at nominal power are presented and discussed. In order to reinforce the heating evaluation, a systematic comparison is made between results obtained by

  1. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  2. Reactor/Brayton power systems for nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    Layton, J. P.

    1980-01-01

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  3. Nuclear safety as applied to space power reactor systems

    SciTech Connect

    Cummings, G.E.

    1987-01-01

    Current space nuclear power reactor safety issues are discussed with respect to the unique characteristics of these reactors. An approach to achieving adequate safety and a perception of safety is outlined. This approach calls for a carefully conceived safety program which makes uses of lessons learned from previous terrestrial power reactor development programs. This approach includes use of risk analyses, passive safety design features, and analyses/experiments to understand and control off-design conditions. The point is made that some recent accidents concerning terrestrial power reactors do not imply that space power reactors cannot be operated safety.

  4. Level monitoring system with pulsating sensor--application to online level monitoring of dashpots in a fast breeder reactor.

    PubMed

    Malathi, N; Sahoo, P; Ananthanarayanan, R; Murali, N

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control & Safety Rod Drive Mechanism during reactor operation.

  5. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    NASA Astrophysics Data System (ADS)

    Malathi, N.; Sahoo, P.; Ananthanarayanan, R.; Murali, N.

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ˜100 Hz/mm, ˜1 s, and ˜0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control & Safety Rod Drive Mechanism during reactor operation.

  6. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    SciTech Connect

    Malathi, N.; Sahoo, P. Ananthanarayanan, R.; Murali, N.

    2015-02-15

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control and Safety Rod Drive Mechanism during reactor operation.

  7. Innovation in Extraterrestrial Service Systems - A Challenge for Service Science

    NASA Technical Reports Server (NTRS)

    Bergner, David

    2010-01-01

    This presentation was prepared at the invitation of Professor Yukio Ohsawa, Department of Systems Innovation, School of Engineering, The University of Tokyo, for delivery at the International Workshop on Innovating Service Systems, sponsored by the Japanese Society of Artificial Intelligence (JSAI) as part of the JSAI Internation Symposium on AI, 2010. It offers several challenges for Service Science and Service Innovation. the goal of the presentation is to stimulate thinking about how service systems viII evolve in the future, as human society advances from its terrestrial base toward a permanent presence in space. First we will consider the complexity of the International Space Station (ISS) as it is today, with particular emphasis of its research facilities, and focus on a current challenge - to maximize the utilization of ISS research facilities for the benefit of society. After briefly reviewing the basic principles of Service Science, we will discuss the potential application of Service Innovation methodology to this challenge. Then we viII consider how game-changing technologies - in particular Synthetic Biology - could accelerate the pace of sociocultural evolution and consequently, the progression of human society into space. We will use this provocative vision to advance thinking about how the emerging field of Service Science, Management, and Engineering (SSME) might help us anticipate and better handle the challenges of this inevitable evolutionary process.

  8. The influenza vaccine innovation system and lessons for PDPs.

    PubMed

    Huzair, Farah

    2012-03-01

    As Product Development Partnerships (PDPs) emerge and evolve in response to the need for vaccines, this paper re-examines the oldest and most successful PDP in the vaccine field; that which year after year, produces and reinvents influenza vaccines. This paper describes the influenza vaccine production and innovation system and reviews some of its most recent major innovations. Innovation in this system is a result of collaborative partnerships between various actors from both the public and private sector. It is argued that the influenza vaccine innovation system is a Product Development Partnership (PDP), be it an unconventional one, with a central coordination role allocated to the WHO rather than a private company or charitable/not for profit entity. The unusual structure of this PDP overcomes some of the organizational issues surrounding vaccine research and production faced by other documented PDPs. These are first, the need to coordinate knowledge flow via an effective knowledge broker. Second, the need to build in-house capacity and fund essential research and elements of production where private partners find involvement too risky or costly.

  9. Reliability of digital reactor protection system based on extenics.

    PubMed

    Zhao, Jing; He, Ya-Nan; Gu, Peng-Fei; Chen, Wei-Hua; Gao, Feng

    2016-01-01

    After the Fukushima nuclear accident, safety of nuclear power plants (NPPs) is widespread concerned. The reliability of reactor protection system (RPS) is directly related to the safety of NPPs, however, it is difficult to accurately evaluate the reliability of digital RPS. The method is based on estimating probability has some uncertainties, which can not reflect the reliability status of RPS dynamically and support the maintenance and troubleshooting. In this paper, the reliability quantitative analysis method based on extenics is proposed for the digital RPS (safety-critical), by which the relationship between the reliability and response time of RPS is constructed. The reliability of the RPS for CPR1000 NPP is modeled and analyzed by the proposed method as an example. The results show that the proposed method is capable to estimate the RPS reliability effectively and provide support to maintenance and troubleshooting of digital RPS system.

  10. FAFTRCS: an experiment in computerized reactor safety systems

    SciTech Connect

    Chisholm, G.H.

    1985-01-01

    Nuclear Power Plant availability and reliability could be improved by the integration of computers into the control environment. However, computer-based systems are historically viewed as being unreliable. This places a burden upon the designer to demonstrate adequate reliability and availability for the computer. The complexity associated with computers coupled with the manual nature of these demonstrations results in a high cost which typically has been justified for critical applications only. This paper investigates a methodology for automating this process and discusses a project which intends to apply this methodology to design verification and validation for a control system which will be installed and tested in an actual reactor control environment. 7 refs., 4 figs., 1 tab.

  11. MOLECULAR BONDING SYSTEM - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This document presents an evaluation of the Molecular Bonding System (MBS) and its ability to chemically stabilize three metals-contaminated wstes/soils during a SITe demo. The MBS process treated approximately 500 tons each of soil/Fill, Slag, and Miscellaneous Smelter Waste wit...

  12. Review of Innovative Sediment Delivery Systems

    DTIC Science & Technology

    2013-04-01

    Alternative conveyor belt systems appear to be available from the growing hydraulic fracturing ( fracking , shale gas recovery) industry, which use...tons of aggregate material (with diameters up to 2 in.) per hour. This equates to roughly 150 cu yd per hr, de- pending on sand density. As fracking

  13. N-reactor charge-discharge system analysis

    SciTech Connect

    Tokarz, R.D.; Marr, G.D.; Nesbitt, J.F.

    1982-09-01

    This report documents an analysis of the existing systems in the N-Reactor fuel flow path. It recommends equipment improvements and changes in that path to allow the charge-discharge rates to be increased to 500 tubes per outage without increasing reactor outage time. The estimated program cost of $14 million is projected over an estimated 3-year period. It does not include costs detailed as part of the existing restoration program or any costs that are considered as normal maintenance. The recommendations contained in this report provide a direction and goal for every critical aspect of the fuel flow path. The way in which these recommendations are implemented may greatly affect the schedule and costs. Previous studies by UNC have shown that enhanced fuel element handling has the potential of increasing productivity by 33 days at a cost benefit estimated at $18 million per year. Enhanced fuel handling provides the greatest potential for productivity improvement of any of the areas considered in these studies.

  14. Technological implications of SNAP reactor power system development on future space nuclear power systems

    SciTech Connect

    Anderson, R.V.

    1982-11-16

    Nuclear reactor systems are one method of satisfying space mission power needs. The development of such systems must proceed on a path consistent with mission needs and schedules. This path, or technology roadmap, starts from the power system technology data base available today. Much of this data base was established during the 1960s and early 1970s, when government and industry developed space nuclear reactor systems for steady-state power and propulsion. One of the largest development programs was the Systems for Nuclear Auxiliary Power (SNAP) Program. By the early 1970s, a technology base had evolved from this program at the system, subsystem, and component levels. There are many implications of this technology base on future reactor power systems. A review of this base highlights the need for performing a power system technology and mission overview study. Such a study is currently being performed by Rockwell's Energy Systems Group for the Department of Energy and will assess power system capabilities versus mission needs, considering development, schedule, and cost implications. The end product of the study will be a technology roadmap to guide reactor power system development.

  15. Development of toroid-type HTS DC reactor series for HVDC system

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  16. RVACS/RACS (reactor vessel auxiliary cooling system/reactor air cooling system) shutdown heat removal in a modular sized LMR (liquid metal reactor)

    SciTech Connect

    Dunn, F.E.; Wigeland, R.A.; Lo, R.K.

    1988-01-01

    Shutdown heat removal by a RVACS for an unprotected loss of flow case in a modular sized LMR has been analyzed with the SASSYS-1 LMR systems analysis code. For this case it was assumed that all power was lost to the primary and intermediate sodium pumps, and feedwater flow to the steam generators was lost. The control rods failed to scram, but reactivity feedback shut down the power to decay heat levels. The only heat removal was by sodium natural circulation from the core to the vessel wall and by cooling of the vessel wall by radiation and air natural circulation in the Reactor Air Cooling System. The case was run until the system temperatures peaked when the decay heat power level dropped below the heat removal rate.

  17. A Review of Innovation Systems Framework as a Tool for Gendering Agricultural Innovations: Exploring Gender Learning and System Empowerment

    ERIC Educational Resources Information Center

    Kingiri, Ann N.

    2013-01-01

    Purpose: To reflect on the opportunities that a systems understanding of innovation provides for addressing gender issues relevant to women, and to provide some insight on how these might be tackled. Approach: Review of literature relating to gender issues and how they relate to achieving, on the one hand, equity and efficiency goals, and on the…

  18. Teams as innovative systems: multilevel motivational antecedents of innovation in R&D teams.

    PubMed

    Chen, Gilad; Farh, Jiing-Lih; Campbell-Bush, Elizabeth M; Wu, Zhiming; Wu, Xin

    2013-11-01

    Integrating theories of proactive motivation, team innovation climate, and motivation in teams, we developed and tested a multilevel model of motivators of innovative performance in teams. Analyses of multisource data from 428 members of 95 research and development (R&D) teams across 33 Chinese firms indicated that team-level support for innovation climate captured motivational mechanisms that mediated between transformational leadership and team innovative performance, whereas members' motivational states (role-breadth self-efficacy and intrinsic motivation) mediated between proactive personality and individual innovative performance. Furthermore, individual motivational states and team support for innovation climate uniquely promoted individual innovative performance, and, in turn, individual innovative performance linked team support for innovation climate to team innovative performance.

  19. Innovative boiler master design improves system response

    SciTech Connect

    Keller, G.; Baker, B.; Jones, R.J.

    2007-02-15

    A quick and nimble boiler distributed control system can end up moving at the speed of molasses in winter after a low-NOx retrofit. In one utility fleet, several units, despite being equipped with a modern DCS, were experiencing firing system time lags and degraded dynamic loading capability. Swinging steam pressures and opacity excursions were forcing operators to constantly remove the unit from the load dispatch. Following a discussion of the new boiler control strategy, this article presents three studies detailing its installation at four coal-fired units owned and operated by the Kentucky Utilities (KU) subsidiary of E.ON US. The 495-MW Unit 3 of E.W. Brown Generating Station; the 75-MW Unit 3 of Tyrone Generating Station and the 75-MW Unit 3 and 100-MW Unit 4 of Green River Generating Station. Coal-fired plants produce about 95% of Kentucky's total generation. 4 figs.

  20. Executive Support Systems: An Innovation Decision Perspective

    DTIC Science & Technology

    1990-01-01

    account . The exception and annotation ability of MIDS alerted the executives to what was happening and prevented a ripple effect of overreactions...information directly to these executives, an executive support system (ESS) allows more effective analysis, control, planning, and decision making...Automated improve- ments to the management process have the potential to highly leverage the executive’s effectiveness . An ESS is a concept, a clustered IT

  1. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    NASA Technical Reports Server (NTRS)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  2. Ultrasonic processing of dairy systems in large scale reactors.

    PubMed

    Zisu, Bogdan; Bhaskaracharya, Raman; Kentish, Sandra; Ashokkumar, Muthupandian

    2010-08-01

    High intensity low frequency ultrasound was used to process dairy ingredients to improve functional properties. Based on a number of lab-scale experiments, several experimental parameters were optimised for processing large volumes of whey and casein-based dairy systems in pilot scale ultrasonic reactors. A continuous sonication process at 20 kHz capable of delivering up to 4 kW of power with a flow-through reactor design was used to treat dairy ingredients at flow rates ranging from 200 to 6000 mL/min. Dairy ingredients treated by ultrasound included reconstituted whey protein concentrate (WPC), whey protein and milk protein retentates and calcium caseinate. The sonication of solutions with a contact time of less than 1 min and up to 2.4 min led to a significant reduction in the viscosity of materials containing 18% to 54% (w/w) solids. The viscosity of aqueous dairy ingredients treated with ultrasound was reduced by between 6% and 50% depending greatly on the composition, processing history, acoustic power and contact time. A notable improvement in the gel strength of sonicated and heat coagulated dairy systems was also observed. When sonication was combined with a pre-heat treatment of 80 degrees C for 1 min or 85 degrees C for 30s, the heat stability of the dairy ingredients containing whey proteins was significantly improved. The effect of sonication was attributed mainly to physical forces generated through acoustic cavitation as supported by particle size reduction in response to sonication. As a result, the gelling properties and heat stability aspects of sonicated dairy ingredients were maintained after spray drying and reconstitution. Overall, the sonication procedure for processing dairy systems may be used to improve process efficiency, improve throughput and develop value added ingredients with the potential to deliver economical benefits to the dairy industry.

  3. Innovative technology summary report: Transportable vitrification system

    SciTech Connect

    1998-09-01

    At the end of the cold war, many of the Department of Energy`s (DOE`s) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned.

  4. Supervisory Control System Architecture for Advanced Small Modular Reactors

    SciTech Connect

    Cetiner, Sacit M; Cole, Daniel L; Fugate, David L; Kisner, Roger A; Melin, Alexander M; Muhlheim, Michael David; Rao, Nageswara S; Wood, Richard Thomas

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  5. The liquid annular reactor system (LARS) for deep space exploration

    NASA Astrophysics Data System (ADS)

    Maise, George; Paniagua, John; Powell, James R.; Ludewig, Hans; Todosow, Michael

    1999-05-01

    A new propulsion concept for high Δ V space missions, termed LARS (Liquid Annular Reactor System), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (-6000 K). The molten fuel is contained in a lower-temperature solid container which rotates to stabilize and hold in the liquid layer by centripetal force. Containment of ultra high temperature molten refractories, using this method, has been experimentally demonstrated by A.V. Grosse. The specific impulse of a rocket exhausting hydrogen at 6000 K is 2000 seconds, approximately double that of solid-core nuclear rockets. A LARS-powered space probe could accomplish extra-solar missions to 550 A.U. in approximately 35 years.

  6. Compatibility of refractory materials for nuclear reactor poison control systems

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.

    1974-01-01

    Metal-clad poison rods have been considered for the control system of an advanced space power reactor concept studied at the NASA Lewis Research Center. Such control rods may be required to operate at temperatures of about 140O C. Selected poison materials (including boron carbide and the diborides of zirconium, hafnium, and tantalum) were subjected to 1000-hour screening tests in contact with candidate refractory metal cladding materials (including tungsten and alloys of tantalum, niobium, and molybdenum) to assess the compatibility of these materials combinations at the temperatures of interest. Zirconium and hafnium diborides were compatible with refractory metals at 1400 C, but boron carbide and tantalum diboride reacted with the refractory metals at this temperature. Zirconium diboride also showed promise as a reaction barrier between boron carbide and tungsten.

  7. Winding insulation in electromagnetic systems for Tokamak reactor plants

    NASA Astrophysics Data System (ADS)

    Maslov, V. V.; Trubachev, S. G.

    1985-01-01

    Magnetic containment of the plasma in nuclear fusion reactors of the Tokamak type requires electromagnets with insulation which must withstand high temperatures and thermal shocks as well as ionizing radiation in various forms and electric fields, and mechanical loads. Insulation materials to ensure adequate thermophysical and mechanical properties are evaluated, followed by design of insulation systems with satisfactory performance characteristics. Data on neutron fluence energy characteristics and radiation absorption doses during neutron interactions are essential for such an evaluation. Materials considered for insulation in electromagnets with superconductor and cryoresistance windings are glass mica tape with epoxy compound impregnation, glass cloth with epoxy compound impregnation (STE), polyimide glass cloth with adhesive coating (LSNL), glass Textolite with epoxy phenolic binder (STEN), epoxy resin paste with mineral fillers (PE), and polyurethane compound modified by epoxy resin with mineral filler (KPU).

  8. Sociotechnical systems as innovation systems in the medical and health domain.

    PubMed

    Lindgren, Helena

    2013-01-01

    It is argued that a development of healthcare systems should emerge within a healthcare providing organization and as part of daily practice instead of something implemented by a third party, in order to become successful. This sociotechnical view on system development is shared with new methods developed in the end-user development field. However, is it possible to realize this in practice? This paper explores the obstacles and potentials in the realization, leading to a discussion about sociotechnical systems as innovation systems. We describe two examples of sociotechnical innovation systems, and discuss the results from an end user driven innovation process perspective.

  9. 75 FR 70741 - Innovative Energy Systems, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Innovative Energy Systems, LLC; Supplemental Notice That Initial Market... supplemental notice in the above-referenced proceeding Innovative Energy Systems, LLC's application for...

  10. Development of a differential volume reactor system for soil biodegradation studies

    SciTech Connect

    Webb, O.F.; Bienkowski, P.R.; Reed, G.D.

    1991-12-31

    A bench scale experimental system was developed for the analysis of polycyclic aromatic hydrocarbon (PAH) degradation by mixed microbial cultures in PAH contaminated Manufactured Gas Plant (MGP) soils and on sand. The reactor system was chosen in order to provide a fundamental protocol capable for evaluating the performance of specific mixed microbial cultures on specific soil systems by elucidating the important system variables and their interactions. The reactor design and peripherals are described. A plug flow differential volume reactor (DVR) was used in order to remove performance effects related to reactor type, as opposed to system structure. This reactor system could be well represented mathematically. Methods were developed for on-line quantitative determination of PAH liquid phase concentrations. The mathematical models and experimental data are presented for the biodegradation of naphthalene on artificial and MGP soils.

  11. Testing of an advanced thermochemical conversion reactor system

    SciTech Connect

    Not Available

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  12. Testing of an advanced thermochemical conversion reactor system

    NASA Astrophysics Data System (ADS)

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions.

  13. Systems effects on family planning innovativeness.

    PubMed

    Lee, S B

    1983-12-01

    Data from Korea were used to explore the importance of community level variables in explaining family planning adoption at the individual level. An open system concept was applied, assuming that individual family planning behavior is influenced by both environmental and individual factors. The environmental factors were measured at the village level and designated as community characteristics. The dimension of communication network variables was introduced. Each individual was characterized in terms of the degree of her involvement in family planning communication with others in her village. It was assumed that the nature of the communication network linking individuals with each other effects family planning adoption at the individual level. Specific objectives were to determine 1) the relative importance of the specific independent variables in explaining family planning adoption and 2) the relative importance of the community level variables in comparison with the individual level variables in explaining family planning adoption at the individual level. The data were originally gathered in a 1973 research project on Korea's mothers' clubs. 1047 respondents were interviewed, comprising all married women in 25 sample villages having mothers' clubs. The dependent variable was family planning adoption behavior, defined as current use of any of the modern methods of family planning. The independent variables were defined at 3 levels: individual, community, and at a level intermediate between them involving communication links between individuals. More of the individual level independent variables were significantly correlated with the dependent variables than the community level variables. Among those variables with statistically significant correlations, the correlation coefficients were consistently higher for the individual level than for the community level variables. More of the variance in the dependent variable was explained by individual level than by

  14. [Regulatory authorities expect innovative drug delivery systems (DDS)].

    PubMed

    Mori, Kazuhiko

    2013-01-01

    The Japanese Ministry of Health, Labour and Welfare (MHLW) and the Pharmaceuticals and Medical Devices Agency (PMDA) are responsible for appropriately implementing regulations and providing necessary instructions and advice so that patients have access to safer, more effective drugs. These responsibilities are essential missions of the MHLW/PMDA, although restrictions on drug use or development might be considered to be purely regulatory matters. In the genomic drug discovery era of the 21st century, it is expected that new, innovative drugs will be developed, although the reality can be slightly disturbing. The number of approvals of new molecular entities (NMEs) is only approximately 20 per year both in Japan and the USA and may reach an even lower level. In light of current drug development trends, drug delivery systems (DDS) for targeted therapy or personalized medicines as well as NMEs should be explored more proactively. To promote the development and evaluation of innovative DDS, the MHLW/PMDA considers it important to communicate smoothly among industry-government-academia from the very early stage of development. To promote this, the MHLW/PMDA launched regulatory affairs consultations on R&D strategy for drugs in July 2011. Innovative DDS require not only cutting-edge technology or materials but also extensions of existing pharmaceutical technology. It is most important for innovative DDS to benefit patients in practical clinical settings. The MHLW/PMDA encourages the relevant parties to develop a far-sighted strategy with this goal in mind.

  15. An innovative bifocal metrology system for aerospace applications

    NASA Astrophysics Data System (ADS)

    Bresciani, F.

    2016-11-01

    In this paper an innovative space metrology system which objective is to measure the mutual arrangement between two spacecrafts is descripted. It is a simple and robust system that makes possible relative attitude measurements between 2 satellites in formation flying with coarse and fine accuracies. Generally, in formation flying mission it's necessary to have a satellite attitude control whose accuracy depends on their relative distance. The proposed metrology is based on an innovative optical projective system embedded on satellite 1 and a target composed by several light sources mounted on satellite 2. Optical system concurrently projects on a CCD two images of the target and from relative position of the light sources on the CCD image plane it's possible to detect position and attitude of the S2. Basic element of innovation of this versatile metrology concept is the possibility to work on a very large S/Cs range distance (~10 m-15 km) and to determinate the relative attitude and position of two spacecrafts on all six degree of freedom in a very simple and fast way.

  16. Computer simulation of magnetization-controlled shunt reactors for calculating electromagnetic transients in power systems

    SciTech Connect

    Karpov, A. S.

    2013-01-15

    A computer procedure for simulating magnetization-controlled dc shunt reactors is described, which enables the electromagnetic transients in electric power systems to be calculated. It is shown that, by taking technically simple measures in the control system, one can obtain high-speed reactors sufficient for many purposes, and dispense with the use of high-power devices for compensating higher harmonic components.

  17. Course Management Systems and Blended Learning: An Innovative Learning Approach

    ERIC Educational Resources Information Center

    Chou, Amy Y.; Chou, David C.

    2011-01-01

    This article utilizes Rogers' innovation-decision process model (2003) and Beckman and Berry's innovation process model (2007) to create an innovative learning map that illustrates three learning methods (i.e., face-to-face learning, online learning, and blended learning) in two types of innovation (i.e., incremental innovation and radical…

  18. Lunar Regolith Simulant Feed System for a Hydrogen Reduction Reactor System

    NASA Technical Reports Server (NTRS)

    Mueller, R. P.; Townsend, Ivan I., III

    2009-01-01

    One of the goals of In-Situ Resource Utilization (ISRU) on the moon is to produce oxygen from the lunar regolith which is present in the form of Ilmenite (FeTi03) and other compounds. A reliable and attainable method of extracting some of the oxygen from the lunar regolith is to use the hydrogen reduction process in a hot reactor to create water vapor which is then condensed and electrolyzed to obtain oxygen for use as a consumable. One challenge for a production system is to reliably acquire the regolith with an excavator hauler mobility platform and then introduce it into the reactor inlet tube which is raised from the surface and above the reactor itself. After the reaction, the hot regolith (-1000 C) must be expelled from the reactor for disposal by the excavator hauler mobility system. In addition, the reactor regolith inlet and outlet tubes must be sealed by valves during the reaction in order to allow collection of the water vapor by the chemical processing sub-system. These valves must be able to handle abrasive regolith passing through them as well as the heat conduction from the hot reactor. In 2008, NASA has designed and field tested a hydrogen reduction system called ROxygen in order to demonstrate the feasibility of extracting oxygen from lunar regolith. The field test was performed with volcanic ash known as Tephra on Mauna Kea volcano on the Big Island of Hawai'i. The tephra has similar properties to lunar regolith, so that it is regarded as a good simulant for the hydrogen reduction process. This paper will discuss the design, fabrication, operation, test results and lessons learned with the ROxygen regolith feed system as tested on Mauna Kea in November 2008.

  19. A long term radiological risk model for plutonium-fueled and fission reactor space nuclear system

    SciTech Connect

    Bartram, B.W.; Dougherty, D.K.

    1987-01-01

    This report describes the optimization of the RISK III mathematical model, which provides risk assessment for the use of a plutonium-fueled, fission reactor in space systems. The report discusses possible scenarios leading to radiation releases on the ground; distinctions are made for an intact reactor and a dispersed reactor. Also included are projected dose equivalents for various accident situations. 54 refs., 31 figs., 11 tabs. (TEM)

  20. Thermophotovoltaic Energy Conversion in Space Nuclear Reactor Power Systems

    DTIC Science & Technology

    2004-12-01

    Franklin Chang-Diaz of NASA Johnson’s Advanced Space Propulsion Laboratory led me pursue this topic when he asked about the best way to get megawatts of...wise to remember the words of ADM Hyman G. Rickover, the first Director of Naval Nuclear Propulsion . An academic reactor or reactor plant almost always

  1. System simulation of a multicell thermionic space power reactor

    NASA Astrophysics Data System (ADS)

    von Arx, Alan Vincent

    For many years, thermionic power has been considered for space application. The prominent feature of the power conversion system is that there are no moving parts. Although designs have been developed by various organizations, no comprehensive system models are known to exist which can simulate transient behavior of a multicell design nor is there a method to directly couple these models to other codes that can calculate variations in reactivity. Thus, a procedure has been developed to couple the performance calculations of a space nuclear reactor thermal/hydraulics code with a neutron diffusion code to analyze temperature feedback. Thermionic power is based on the thermionic emissions principle where free electrons in a conductor have sufficient energy to escape the surface. Kinetic energy is given to the electrons by heating the conductor. Specifically, a 48 kWe thermionic power converter system model has been developed and used to model startup and other transients. Less than 10% of the fuel heat is converted to electricity, and the rest is rejected to space via a heat pipe radiator. An electromagnetic pump circulates the liquid metal coolant. First, a startup transient model was developed which showed stable operation through ignition of the Thermionic Fuel Elements (TFEs) and thawing of the radiator heat pipes. Also, the model's capability was expanded to include two-phase heat transfer to model boiling using coupled mass and thermal energy conservation equations. The next step incorporated effects of reactivity feedback---showing that various mechanisms will prevent power and temperature run-up for a flow reduction scenario where the reactor control systems fail to respond. In particular, the Doppler effect was shown to counter a positive worth due to partial core voiding although steps must be taken to preclude film boiling in that high superheats will result in TFE failures. Finally, analysis of the core grid spacer location suggests it should be located at

  2. Hanging core support system for a nuclear reactor. [LMFBR

    DOEpatents

    Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.

    1984-04-26

    For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform.

  3. Shielding considerations for advanced space nuclear reactor systems

    NASA Astrophysics Data System (ADS)

    Angelo, J. P., Jr.; Buden, D.

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO2) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The status of this advanced heat pipe reactor is reviewed and the radiation environments and shielding requirements for representative manned and unmanned applications are explored.

  4. Shielding considerations for advanced space nuclear reactor systems

    SciTech Connect

    Angelo, J.P. Jr.; Buden, D.

    1982-01-01

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO/sub 2/) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications.

  5. Instrumentation Needs for Integral Primary System Reactors (IPSRs) - Task 1 Final Report

    SciTech Connect

    Gary D. Storrick; Bojan Petrovic; Luca Oriani; Lawrence E. Conway; Diego Conti

    2005-09-30

    This report presents the results of the Westinghouse work performed under Task 1 of this Financial Assistance Award and satisfies a Level 2 Milestone for the project. While most of the signals required for control of IPSRs are typical of other PWRs, the integral configuration poses some new challenges in the design or deployment of the sensors/instrumentation and, in some cases, requires completely new approaches. In response to this consideration, the overall objective of Task 1 was to establish the instrumentation needs for integral reactors, provide a review of the existing solutions where available, and, identify research and development needs to be addressed to enable successful deployment of IPSRs. The starting point for this study was to review and synthesize general characteristics of integral reactors, and then to focus on a specific design. Due to the maturity of its design and availability of design information to Westinghouse, IRIS (International Reactor Innovative and Secure) was selected for this purpose. The report is organized as follows. Section 1 is an overview. Section 2 provides background information on several representative IPSRs, including IRIS. A review of the IRIS safety features and its protection and control systems is used as a mechanism to ensure that all critical safety-related instrumentation needs are addressed in this study. Additionally, IRIS systems are compared against those of current advanced PWRs. The scope of this study is then limited to those systems where differences exist, since, otherwise, the current technology already provides an acceptable solution. Section 3 provides a detailed discussion on instrumentation needs for the representative IPSR (IRIS) with detailed qualitative and quantitative requirements summarized in the exhaustive table included as Appendix A. Section 3 also provides an evaluation of the current technology and the instrumentation used for measurement of required parameters in current PWRs. Section 4

  6. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    SciTech Connect

    Hill, Thomas Johnathan; Noble, Cheryl Ann; Noble, C.; Martinell, John Stephen; Borowski, S.

    2000-07-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonable assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  7. Innovation Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    SciTech Connect

    Hill, T.; Noble, C.; Martinell, J.; Borowski, S.

    2000-07-14

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  8. Automated Microdosing System for Integration With a Miniaturized High-pressure Reactor System.

    PubMed

    Stoll, Norbert; Hawali, Ihsan; Thurow, Kerstin

    2005-01-01

    We present a new automated dosing system developed by the Institute for Automation of the University of Rostock, Germany. The new system is designed for the dosing of chemical liquids in the range of 50 muL-2.5 mL. It is integrated into a miniaturized reactor system to be used in the field of combinatorial synthesis. The reactor system can be pressurized up to 150 bar and tempered up to 200(;)C. A wide range of liquids with different physical properties can be handled with the new dosing system. A detailed description of the new dosing system in terms of function and operation as well as the relevant features and potential benefits is provided.

  9. Pressurized hydrogenotrophic denitrification reactor for small water systems.

    PubMed

    Epsztein, Razi; Beliavski, Michael; Tarre, Sheldon; Green, Michal

    2017-03-15

    The implementation of hydrogenotrophic denitrification is limited due to safety concerns, poor H2 utilization and low solubility of H2 gas with the resulting low transfer rate. The current paper presents the main research work conducted on a pressurized hydrogenotrophic reactor for denitrification that was recently developed. The reactor is based on a new concept suggesting that a gas-liquid equilibrium is achieved in the closed headspace of denitrifying reactor, further produced N2 gas is carried out by the effluent and gas purging is not required. The feasibility of the proposed reactor was shown for two effluent concentrations of 10 and 1 mg NO3(-)-N/L. Hydrogen gas utilization efficiencies of 92.8% and 96.9% were measured for the two effluent concentrations, respectively. Reactor modeling predicted high denitrification rates above 4 g NO3(-)-N/(Lreactor·d) at reasonable operational conditions. Hydrogen utilization efficiency was improved up to almost 100% by combining the pressurized reactor with a following open-to-atmosphere polishing unit. Also, the potential of the reactor to remove ClO4(-) was shown.

  10. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    SciTech Connect

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  11. Cognitive evaluation of an innovative psychiatric clinical knowledge enhancement system.

    PubMed

    Cohen, Trevor; Kaufman, David; White, Thomas; Segal, Gerald; Staub, Amy Bennett; Patel, Vimla; Finnerty, Molly

    2004-01-01

    Psychiatric Clinical Knowledge Enhancement System (PSYCKES) is an innovative information system that presents patient medication history in tabular and graphical form. The system is designed to support therapeutic decision making. In this paper, we present a multifaceted cognitive evaluation of this system. The evaluation includes a cognitive walkthrough which is a task-analytic method for usability evaluation. We also conducted cognitive studies of two trainee and two attending psychiatrists using the system. One of the attending subjects is presented as a case study. An objective of this research is to characterize the way PSYCKES mediates reasoning. The study found that clinicians were able to use the system effectively to extract and coordinate information and draw appropriate inferences. The expert clinicians were better able to construct a coherent patient representation. The study also documented a few usability problems pertaining to the temporal integration of patient data. PSYCKES is a multifaceted tool that can significantly enhance therapeutic decision making.

  12. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  13. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    SciTech Connect

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described.

  14. High-throughput reactor system with individual temperature control for the investigation of monolith catalysts.

    PubMed

    Dellamorte, Joseph C; Vijay, Rohit; Snively, Christopher M; Barteau, Mark A; Lauterbach, Jochen

    2007-07-01

    A high-throughput parallel reactor system has been designed and constructed to improve the reliability of results from large diameter catalysts such as monoliths. The system, which is expandable, consists of eight quartz reactors, 23.5 mm in diameter. The eight reactors were designed with separate K type thermocouples and radiant heaters, allowing for the independent measurement and control of each reactor temperature. This design gives steady state temperature distributions over the eight reactors within 0.5 degrees C of a common setpoint from 50 to 700 degrees C. Analysis of the effluent from these reactors is performed using rapid-scan Fourier transform infrared (FTIR) spectroscopic imaging. The integration of this technique to the reactor system allows a chemically specific, truly parallel analysis of the reactor effluents with a time resolution of approximately 8 s. The capabilities of this system were demonstrated via investigation of catalyst preparation conditions on the direct epoxidation of ethylene, i.e., on the ethylene conversion and the ethylene oxide selectivity. The ethylene, ethylene oxide, and carbon dioxide concentrations were calibrated based on spectra from FTIR imaging using univariate and multivariate chemometric techniques. The results from this analysis showed that the calcination conditions significantly affect the ethylene conversion, with a threefold increase in the conversion when the catalyst was calcined for 3 h versus 12 h at 400 degrees C.

  15. Improvement of Algorithms for Pressure Maintenance Systems in Drum-Separators of RBMK-1000 Reactors

    SciTech Connect

    Aleksakov, A. N. Yankovskiy, K. I.; Dunaev, V. I.; Kushbasov, A. N.

    2015-05-15

    The main tasks and challenges for pressure regulation in the drum-separators of RBMK-1000 reactors are described. New approaches to constructing algorithms for pressure control in drum-separators by electro-hydraulic turbine control systems are discussed. Results are provided from tests of the operation of modernized pressure regulators during fast transients with reductions in reactor power.

  16. A computer program for engineering simulations of space reactor system performance

    SciTech Connect

    Dobranich, D.

    1992-07-01

    Nuclear thermal propulsion systems are envisioned as a fast and efficient form of transportation for the exploration of space. Several nuclear reactor concepts have been proposed. This document discusses SAFSIM (System Analysis Flow SIMulator) which is an engineering computer program that allows the fluid mechanic, heat transfer, and reactor dynamic simulation of the entire propulsion system. SAFSIM currently contains three basic physics modules: (1) fluid mechanics, (2) heat transfer, and (3) reactor dynamics. All three modules are coupled to allow the prediction of system performance. The analyst can employ any or all of the physics modules as the problem dictates.

  17. BOILING REACTORS

    DOEpatents

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  18. Passive cooling system for top entry liquid metal cooled nuclear reactors

    DOEpatents

    Boardman, Charles E.; Hunsbedt, Anstein; Hui, Marvin M.

    1992-01-01

    A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

  19. 78 FR 41436 - Proposed Revision to Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... COMMISSION Proposed Revision to Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors... Treatment of Non-Safety Systems (RTNSS) for Passive Advanced Light Water Reactors.'' The NRC seeks public...- Safety Systems (RTNSS) for Passive Advanced Light Water Reactors.'' This area includes a revised...

  20. Liquid metal systems development: reactor vessel support structure evaluation

    SciTech Connect

    McEdwards, J.A.

    1981-01-01

    Results of an evaluation of support structures for the reactor vessel are reported. The U ring, box ring, integral ring, tee ring and tangential beam supports were investigated. The U ring is the recommended vessel support structure configuration.

  1. Building inclusive health innovation systems: lessons from India.

    PubMed

    Abrol, Dinesh; Sundararaman, T; Madhavan, Harilal; Joseph, K J

    2016-11-03

    This article presents an overview of the changes that are taking place within the public and private health innovation systems in India including delivery of medical care, pharmaceutical products, medical devices, and Indian traditional medicine. The nature of the flaws that exist in the health innovation system is pinpointed. The response by the government, the health, technology and medical institutions, and the evolving industry is addressed on a national level. The article also discusses how the alignment of policies and institutions was developed within the scope of national health innovation systems, and how the government and the industry are dealing with the challenges to integrate health system, industry, and social policy development processes. Resumo: O artigo apresenta um panorama das mudanças atualmente em curso dentro dos sistemas público e privado de inovação em saúde na Índia, incluindo a prestação de serviços médicos, produtos farmacêuticos, dispositivos médicos e medicina tradicional indiana. É destacada a natureza das falhas que existem nos sistemas de inovação em saúde. As respostas do governo, das instituições médicas, de saúde e tecnologia e indústrias envolvidas, são abordadas em nível nacional. O artigo também discute como foi desenvolvido o alinhamento de políticas e instituições no escopo dos sistemas nacionais de inovação em saúde, e como governo e indústria estão lidando com os desafios para integrar o sistema de saúde, a indústria e o desenvolvimento de políticas sociais.

  2. Analysis of N-16 concentration in primary cooling system of AP1000 power reactor

    SciTech Connect

    Rohanda, Anis; Waris, Abdul

    2015-04-16

    Nitrogen-16 (N-16) is one of the radiation safety parameter on the primary reactor system. The activation product, N-16, is the predominant contributor to the activity in the reactor coolant system during reactor operation. N-16 is activation product derived from activation of O-16 with fast neutron based on {sup 16}O(n,p){sup 16}N reaction. Thus study is needed and it performs to determine N-16 concentration in reactor coolant (primary coolant) in supporting radiation safety. One of the way is using analytical methode based on activation and redecay princip to obtain N-16 concentration. The analysis was performed on the configuration basis and operational of Westinghouse AP1000 power reactor in several monitoring points at coolant reactor system. The results of the calculation of N-16 concentration at the core outlet, reactor vessel outlet, pressurizer line, inlet and outlet of steam generators, primary pumps, reactor vessels inlet and core inlet are: 281, 257, 255, 250, 145, 142, 129 and 112 µCi/gram respectively. The results of analysis compared with AP1000 design control document as standard values. The verification showed very high accuracy comparation between analytical results and standard values.

  3. Analysis of N-16 concentration in primary cooling system of AP1000 power reactor

    NASA Astrophysics Data System (ADS)

    Rohanda, Anis; Waris, Abdul

    2015-04-01

    Nitrogen-16 (N-16) is one of the radiation safety parameter on the primary reactor system. The activation product, N-16, is the predominant contributor to the activity in the reactor coolant system during reactor operation. N-16 is activation product derived from activation of O-16 with fast neutron based on 16O(n,p)16N reaction. Thus study is needed and it performs to determine N-16 concentration in reactor coolant (primary coolant) in supporting radiation safety. One of the way is using analytical methode based on activation and redecay princip to obtain N-16 concentration. The analysis was performed on the configuration basis and operational of Westinghouse AP1000 power reactor in several monitoring points at coolant reactor system. The results of the calculation of N-16 concentration at the core outlet, reactor vessel outlet, pressurizer line, inlet and outlet of steam generators, primary pumps, reactor vessels inlet and core inlet are: 281, 257, 255, 250, 145, 142, 129 and 112 µCi/gram respectively. The results of analysis compared with AP1000 design control document as standard values. The verification showed very high accuracy comparation between analytical results and standard values.

  4. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    DTIC Science & Technology

    2011-03-01

    water bath temperature to prevent condensation of TEP. 9 Non-thermal plasma was generated in one of two quartz-tube packed bed reactors, ½ inch or...the conceptual design . A direct proportional scale-up required 0.75 ft3 of packing in the NTP reactor. The conceptual design includes 1.5ft3 of Ag...Army position, policy or decision, unless so designated by other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release

  5. Hybrid energy systems (HESs) using small modular reactors (SMRs)

    SciTech Connect

    S. Bragg-Sitton

    2014-10-01

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations – while still accommodating the desire to support renewable production sources.

  6. Integrated reactor-containment hyperbolic-cooling-tower system

    SciTech Connect

    Patel, A.R.; Todreas, N.E.; Driscoll, M.J.

    1994-12-31

    A preliminary feasibility analysis has been conducted to evaluate placing a nuclear reactor containment building inside a large hyperbolic cooling tower, a concept previously suggested for fossil-fired units but for reasons other than those that motivate this evaluation. The geometry of the design, the amount of water available, and the shielding provided by the cooling tower are beneficial to the safety characteristics of the containment under accident conditions. Three means of decay heat management are employed: an initial water spray on the containment exterior, long-term air convection on side of the containment, and creation of a water pool inside the containment. A continuously spraying water tank on top of the containment allows for a completely passive decay heat removal system. An annular air chimney around the containment is effective in long-term removal of {approximately} 1O MW (thermal) through air convection. Five percent of the water inventory in the cooling-tower pond surrounding the containment is sufficient to flood the containment interior to a depth of 14.6 ft, thereby providing an internal containment heat sink. The packing and the height of the tower provide major scrubbing and dispersing sources for any uncontrolled radioactive leak. The cooling tower veil also protects the containment from external events such as lane crashes.

  7. Development of high-fidelity multiphysics system for light water reactor analysis

    NASA Astrophysics Data System (ADS)

    Magedanz, Jeffrey W.

    There has been a tendency in recent years toward greater heterogeneity in reactor cores, due to the use of mixed-oxide (MOX) fuel, burnable absorbers, and longer cycles with consequently higher fuel burnup. The resulting asymmetry of the neutron flux and energy spectrum between regions with different compositions causes a need to account for the directional dependence of the neutron flux, instead of the traditional diffusion approximation. Furthermore, the presence of both MOX and high-burnup fuel in the core increases the complexity of the heat conduction. The heat transfer properties of the fuel pellet change with irradiation, and the thermal and mechanical expansion of the pellet and cladding strongly affect the size of the gap between them, and its consequent thermal resistance. These operational tendencies require higher fidelity multi-physics modeling capabilities, and this need is addressed by the developments performed within this PhD research. The dissertation describes the development of a High-Fidelity Multi-Physics System for Light Water Reactor Analysis. It consists of three coupled codes -- CTF for Thermal Hydraulics, TORT-TD for Neutron Kinetics, and FRAPTRAN for Fuel Performance. It is meant to address these modeling challenges in three ways: (1) by resolving the state of the system at the level of each fuel pin, rather than homogenizing entire fuel assemblies, (2) by using the multi-group Discrete Ordinates method to account for the directional dependence of the neutron flux, and (3) by using a fuel-performance code, rather than a Thermal Hydraulics code's simplified fuel model, to account for the material behavior of the fuel and its feedback to the hydraulic and neutronic behavior of the system. While the first two are improvements, the third, the use of a fuel-performance code for feedback, constitutes an innovation in this PhD project. Also important to this work is the manner in which such coupling is written. While coupling involves combining

  8. Improving oral healthcare delivery systems through workforce innovations: an introduction.

    PubMed

    Mertz, Elizabeth A; Finocchio, Len

    2010-06-01

    The objective of this paper is to describe the purpose, rationale and key elements of the special issue, Improving Oral Healthcare Delivery Systems through Workforce Innovations. The purpose of the special issue is to further develop ideas presented at the 2009 Institute of Medicine (IOM) workshop, Sufficiency of the U.S. Oral Health Workforce in the Coming Decade. Using the IOM discussions as their starting point, the authors evaluate oral health care delivery system performance for specific populations' needs and explore the roles that the workforce can play in improving the care delivery model. The contributing articles provide a broad framework for stimulating and evaluating innovation and change in the oral health care delivery system. The articles in this special issue point to many deficits in the current oral health care delivery system and provide compelling arguments and proposals for improvements. The issues presented and solutions recommended are not entirely new, but add to a growing body of work that is of critical importance given the context of wider health care reform.

  9. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  10. Physical modelling of the composting environment: A review. Part 1: Reactor systems

    SciTech Connect

    Mason, I.G. . E-mail: ian.mason@canterbury.ac.nz; Milke, M.W.

    2005-07-01

    In this paper, laboratory- and pilot-scale reactors used for investigation of the composting process are described and their characteristics and application reviewed. Reactor types were categorised by the present authors as fixed-temperature, self-heating, controlled temperature difference and controlled heat flux, depending upon the means of management of heat flux through vessel walls. The review indicated that fixed-temperature reactors have significant applications in studying reaction rates and other phenomena, but may self-heat to higher temperatures during the process. Self-heating laboratory-scale reactors, although inexpensive and uncomplicated, were shown to typically suffer from disproportionately large losses through the walls, even with substantial insulation present. At pilot scale, however, even moderately insulated self-heating reactors are able to reproduce wall losses similar to those reported for full-scale systems, and a simple technique for estimation of insulation requirements for self-heating reactors is presented. In contrast, controlled temperature difference and controlled heat flux laboratory reactors can provide spatial temperature differentials similar to those in full-scale systems, and can simulate full-scale wall losses. Surface area to volume ratios, a significant factor in terms of heat loss through vessel walls, were estimated by the present authors at 5.0-88.0 m{sup 2}/m{sup 3} for experimental composting reactors and 0.4-3.8 m{sup 2}/m{sup 3} for full-scale systems. Non-thermodynamic factors such as compression, sidewall airflow effects, channelling and mixing may affect simulation performance and are discussed. Further work to investigate wall effects in composting reactors, to obtain more data on horizontal temperature profiles and rates of biological heat production, to incorporate compressive effects into experimental reactors and to investigate experimental systems employing natural ventilation is suggested.

  11. Investigation of Anaerobic Fluidized Bed Reactor/ Aerobic Moving Bed Bio Reactor (AFBR/MMBR) System for Treatment of Currant Wastewater

    PubMed Central

    JAFARI, Jalil; MESDAGHINIA, Alireza; NABIZADEH, Ramin; FARROKHI, Mehrdad; MAHVI, Amir Hossein

    2013-01-01

    Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR)-Aerobic Moving Bed Bio Reactor (MBBR) in series arrangement to treat Currant wastewater. Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2–2.3 mm, particle density of 1250 kg/m3. The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3. Results: When system operated at 35 ºC, chemical oxygen demand (COD) removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR) of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT) of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively. Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR) of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewater. PMID:26056640

  12. The Innovations, Technology and Waste Management Approaches to Safely Package and Transport the World's First Radioactive Fusion Research Reactor for Burial

    SciTech Connect

    Keith Rule; Erik Perry; Jim Chrzanowski; Mike Viola; Ron Strykowsky

    2003-09-15

    Original estimates stated that the amount of radioactive waste that will be generated during the dismantling of the Tokamak Fusion Test Reactor will approach two million kilograms with an associated volume of 2,500 cubic meters. The materials were activated by 14 MeV neutrons and were highly contaminated with tritium, which present unique challenges to maintain integrity during packaging and transportation. In addition, the majority of this material is stainless steel and copper structural metal that were specifically designed and manufactured for this one-of-a-kind fusion research reactor. This provided further complexity in planning and managing the waste. We will discuss the engineering concepts, innovative practices, and technologies that were utilized to size reduce, stabilize, and package the many unique and complex components of this reactor. This waste was packaged and shipped in many different configurations and methods according to the transportation regulations and disposal facility requirements. For this particular project, we were able to utilize two separate disposal facilities for burial. This paper will conclude with a complete summary of the actual results of the waste management costs, volumes, and best practices that were developed from this groundbreaking and successful project.

  13. Sliding mode control of the space nuclear reactor system TOPAZ II

    SciTech Connect

    Shtessel, Y.B.; Wyant, F.J.

    1996-03-01

    The Automatic Control System (ACS) of the space nuclear reactor power system TOPAZ II that generates electricity from nuclear heat using in-core thermionic converters is considered. Sliding Mode Control Technique was applied to the reactor system controller design in order to provide the robust high accuracy following of a neutron (thermal) power reference profile in a start up regime and a payload electric power (current) reference profile following in an operation regime. Extensive simulations of the TOPAZ II reactor system with the designed sliding mode controllers showed improved accuracy and robustness of the reactor system performances in a start up regime and in an electric power supply regime as well. {copyright} {ital 1996 American Institute of Physics.}

  14. Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems

    NASA Astrophysics Data System (ADS)

    Harty, Richard B.; Johnson, Gregory A.

    1992-01-01

    An integration study was performed by Rocketdyne coupling an SP-100 reactor to either a Brayton, Stirling, or K-Rankine power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the National Aeronautics and Space Administration (NASA) Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one standby unit. Integration design studies indicated that either of the three power conversion systems could be integrated with the SP-100 reactor. From a performance consideration, the Brayton and Stirling mass was approximately 45% higher than the K-Rankine. The K-Rankine radiator area was 45% of the Stirling, which in turn was about 40% of the Brayton.

  15. Defining Innovation: Using Soft Systems Methodology to Approach the Complexity of Innovation in Educational Technology

    ERIC Educational Resources Information Center

    Cox, Glenda

    2010-01-01

    This paper explores what educational technologists in one South African Institution consider innovation to be. Ten educational technologists in various faculties across the university were interviewed and asked to define and answer questions about innovation. Their answers were coded and the results of the overlaps in coding have been assimilated…

  16. Role of Brokerage in Evolving Innovation Systems: A Case of the Fodder Innovation Project in Nigeria

    ERIC Educational Resources Information Center

    Madzudzo, Elias

    2011-01-01

    This paper looks at brokerage functions in a project on building innovation capacity through improved networking. Innovation capacity influences how actors respond to changes in their environments. In such dynamic environments well connected sets of actors are at an advantage in that they can combine skills to address the emerging opportunities…

  17. 77 FR 62270 - Proposed Revision Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... Non-Safety Systems for Passive Advanced Light Water Reactors AGENCY: Nuclear Regulatory Commission... Systems (RTNSS) for Passive Advanced Light Water Reactors.'' The current SRP does not contain guidance on the proposed RTNSS for Passive Advance Light Water Reactors. DATES: Submit comments by November...

  18. Systems and methods for managing shared-path instrumentation and irradiation targets in a nuclear reactor

    DOEpatents

    Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.

    2015-12-29

    Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.

  19. Hanging core support system for a nuclear reactor

    DOEpatents

    Burelbach, James P.; Kann, William J.; Pan, Yen-Cheng; Saiveau, James G.; Seidensticker, Ralph W.

    1987-01-01

    For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform. Motion or radiation sensing detectors can be provide at the lower ends of the tension rods for obtaining pertinent readings proximate the core.

  20. Development of an Inspection System for the Reactor Vessel/Containment Vessel of the PRISM and SAFR Liquid Metal Reactors

    SciTech Connect

    1989-02-01

    The integrity of the reactor vessel is of utmost importance in both the PRISM and SAFR concepts. The reactor vessel operates at elevated temperatures and contains molten liquid sodium. To ensure safe operation of the reactor, a periodic, visual inspection of the walls of the containment vessel is required by ASME specifications. This inspection would be conducted during a time when the reactor is shut down for refueling or maintenance. Nuclear Systems Associates, Inc. (NSA) was issued a PRDA contract by the Department of Energy to design, develop, and test a Closed Circuit Television (CCTV) camera system. The purpose of the system is to inspect the welds and wall surface of the Reactor Vessel/Container Vessel for both the PRISM and SAFR type reactors. The system was designed to function at the reactor's normal shutdown temperature, and provide a clear indication of flaws in the wall's weld seams and any cracks that might develop. The project was performed in three phases. The first phase concentrated the efforts on producing a compact camera system with the required resolution, self -contained lighting, and remote control focus and viewing angle. The proposed camera was then tested in a vessel mock-up and found to perform to required specifications at room (cold) temperatures. Simulated flaws, cracks, and a sodium leak were observed with required clarity on both a commercial and blackened stainless steel surfaces. The camera was tested with a single clear glass dome, a single coated glass dome, and a dual-glass dome covering the camera lens and mirror. The second phase of the project was conducted in two parts. The first part involved testing the vessel mock-up at elevated temperatures to verify that the required temperatures can be obtained. The mock-up was constructed with imbedded heaters and both control and indicating thermocouples. Stable operating temperatures over 400°F were achieved. During the second part of this phase, the camera was inserted into the

  1. A Research on the Cultivation System of Innovative Talents at Colleges

    ERIC Educational Resources Information Center

    Chen, Yurong

    2010-01-01

    As an important part in the national innovation system, colleges are the cradle for innovative spirits and talents as well as the main base for the innovation, transmission and application of knowledge. Therefore, they are expected to be adapted to the demands of social and economic development, to update their education ideas, to actively promote…

  2. An innovative algorithm for panoramic representation in observation systems

    NASA Astrophysics Data System (ADS)

    Luison, Cristian; Aquilanti, Valeria; Riccobono, Aldo; Liberace, Claudio

    2013-06-01

    This document presents the study and test carried out for the development of an innovative algorithm designed to create a panoramic representation of the scene scanned by observation systems operating with passive sensors. The purpose of the algorithm is to represent 360° of scene using staring sensors mounted on stabilized or semi-stabilized platforms, without requirements on video output, both in terms of the transmission format and in terms of frame rate. The algorithm is real-time and does not require step-and-stare technique or special systems to scan the scene. The architecture of the algorithm requires a very low computational cost for the electronics contained in a Multi-Functional Display (MDP) used in defense applications. The algorithm has been implemented and tested on the JANUS NAVAL system, where the results were very satisfactory. Today, a patent is pendent.

  3. Co-simulation of innovative integrated HVAC systems in buildings

    SciTech Connect

    Trcka, Marija; Hensena, Jan L.M.; Wetter, Michael

    2010-06-21

    Integrated performance simulation of buildings HVAC systems can help in reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation, as an integrated approach to simulation. This article elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in the here described co-simulation prototype. The prototype is validated with the results obtained from the traditional simulation approach. It is further used in a proof-of-concept case study to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling time step.

  4. Characteristics of Spent Fuel from Plutonium Disposition Reactors, Vol. 1: The Combustion Engineering System 80+ Pressurized-Water-Reactor Design

    SciTech Connect

    Murphy, B.D.

    1993-01-01

    This report discusses a simulation study of the burnup of mixed-oxide fuel in a Combustion Engineering System 80+ Pressurized-Water Reactor. The mixed oxide was composed of uranium and plutonium oxides where the plutonium was of weapons-grade composition. The study was part of the Fissile Materials Disposition Program that considered the possibility of fueling commercial reactors with weapons plutonium. The isotopic composition of the spent fuel is estimated at various times following discharge. Actinides and all significant fission products are considered. The activities, decay-heat values, and gamma-ray fluxes associated with the spent fuel are also discussed. It is clear from the analysis that following discharge the plutonium is no longer of weapons-grade composition. The characteristics of the mixed-oxide fuel at various times following discharge indicate its behavior under long-term storage. As a counterpoint to the mixed-oxide fuel case, the situation with a similar reactor fueled with uranium oxide alone is analyzed. The comparisons serve to emphasize the significance of the plutonium as part of the fuel. For the mixed-oxide case, the burnup was 42,200 MWd/MTHM; in the pure-uranium case, it was 47,800 MWd/MTHM.

  5. Progress in space nuclear reactor power systems technology development - The SP-100 program

    NASA Technical Reports Server (NTRS)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  6. Passive decay heat removal system for water-cooled nuclear reactors

    DOEpatents

    Forsberg, Charles W.

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  7. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOEpatents

    McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

    1994-05-03

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  8. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOEpatents

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  9. Innovative requirements and technologies for future RLVs health management system

    NASA Astrophysics Data System (ADS)

    Maltecca, L.; Miccichè, L.; Russo, G.; Sellitto, M.

    2002-07-01

    The Italian aerospace research program PRORA (PROgramma nazionale di Ricerche Aerospaziali), which has been conceived and managed by CIRA (Italian Aerospace Research Center), is focused on the development of innovative technologies, also based on experience from flying test beds. One family of these test beds, designated USV (Unmanned Space Vehicle) will be dedicated to acquire the knowledge about future RLV (Reusable Launch Vehicle) technologies. Major strategic technologies identified are reusability, hypersonic flight and atmospheric re-entry. The Phase-A study has been concluded and recently approved. Laben (a Finmeccanica Company) has contributed to identify requirements for the next generations of on board Vehicle Health Management System (VHMS) and to investigate possible innovative architectures. This new generation VHMS will be able to manage in a real-time mode the health of the vehicle (structure, propulsion, avionics, etc.). The proposed approach is based on a set of decentralised computers linked via an advanced high-speed interconnect system. This paper will describe preliminary requirements analysis and trade-off's mainly in terms of HW (e.g. use of general purpose CPUs versus DSPs, interconnects and topologies).

  10. Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

    SciTech Connect

    Qualls, A L; Cetiner, M S; Wilson, Jr, T L

    2012-04-30

    The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary

  11. Innovation, Innovation, Innovation

    ERIC Educational Resources Information Center

    Schuller, Tom

    2007-01-01

    Innovation, Universities and Skills. The new title of the department offers much food for thought. The title is indeed an intriguing and important one. Bringing the idea of innovation right to the fore is, to use an overworked term, challenging. Pinning down what innovation means is not at all easy. There are three different lines of argument. The…

  12. Sodium leak detection system for liquid metal cooled nuclear reactors

    DOEpatents

    Modarres, Dariush

    1991-01-01

    A light source is projected across the gap between the containment vessel and the reactor vessel. The reflected light is then analyzed with an absorption spectrometer. The presence of any sodium vapor along the optical path results in a change of the optical transmissivity of the media. Since the absorption spectrum of sodium is well known, the light source is chosen such that the sensor is responsive only to the presence of sodium molecules. The optical sensor is designed to be small and require a minimum of amount of change to the reactor containment vessel.

  13. Tritium Formation and Mitigation in High-Temperature Reactor Systems

    SciTech Connect

    Piyush Sabharwall; Carl Stoots; Hans A. Schmutz

    2013-03-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  14. Innovative Detection System of Ochratoxin A by Thin Film Photodiodes

    PubMed Central

    Caputo, Domenico; de Cesare, Giampiero; Fanelli, Corrado; Nascetti, Augusto; Ricelli, Alessandra; Scipinotti, Riccardo

    2007-01-01

    In this work we present, for the first time, a rapid, compact and innovative method for detection of Ochratoxin A (OTA) based on hydrogenated amorphous silicon (a-Si:H) sensors. 2 μl of acidified toluene containing OTA at different concentrations were spotted on the silica side of a High Performance Thin Layer Cromatography plate and aligned with a a-Si:H p-i-n photodiode deposited by Plasma Enhanced Chemical Vapor Deposition on a different glass substrate. As an UV radiation excites the mycotoxin, the re-emitted light is detected by the a-Si:H sensor. Results show a very good linearity between OTA concentration and the sensor photocurrent over almost three orders of magnitude. The minimum detected OTA concentration is equal to 0.1ng, showing that the presented system has the potential for a low cost system suitable for the early detection of toxins in foods.

  15. Innovative production system goes in off Ivory Coast

    SciTech Connect

    Childers, M.; Barnes, J. |

    1995-07-17

    The phased field development of the Lion and Panthere fields, offshore the Ivory Coast, includes a small floating production, storage, and offloading (FPSO) tanker with minimal processing capability as an early oil production system (EPS). For the long-term production scheme, the FPSO will be replaced by a converted jack up mobile offshore production system (MOPS) with full process equipment. The development also includes guyed-caisson well platforms, pipeline export for natural gas to fuel an onshore power plant, and a floating storage and offloading (FSO) tanker for oil export. Pipeline export for oil is a future possibility. This array of innovative strategies and techniques seldom has been brought together in a single project. The paper describes the development plan, early oil, jack up MOPS, and transport and installation.

  16. Hydraulic characterization of an activated sludge reactor with recycling system by tracer experiment and analytical models.

    PubMed

    Sánchez, F; Viedma, A; Kaiser, A S

    2016-09-15

    Fluid dynamic behaviour plays an important role in wastewater treatment. An efficient treatment requires the inexistence of certain hydraulic problems such as dead zones or short-circuiting flows. Residence time distribution (RTD) analysis is an excellent technique for detecting these inefficiencies. However, many wastewater treatment installations include water or sludge recycling systems, which prevent us from carrying out a conventional tracer pulse experiment to obtain the RTD curve of the installation. This paper develops an RTD analysis of an activated sludge reactor with recycling system. A tracer experiment in the reactor is carried out. Three analytical models, derived from the conventional pulse model, are proposed to obtain the RTD curve of the reactor. An analysis of the results is made, studying which model is the most suitable for each situation. This paper is useful to analyse the hydraulic efficiency of reactors with recycling systems.

  17. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    SciTech Connect

    Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin

    2016-01-01

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.

  18. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.

    1986-04-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  19. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

    1984-04-10

    Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  20. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora, Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.

    1986-01-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  1. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    NASA Astrophysics Data System (ADS)

    Alameri, Saeed A.

    Nuclear power plants usually provide base-load electric power and operate most economically at a constant power level. In an energy grid with a high fraction of renewable energy sources, future nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling the reactor to a large Thermal Energy Storage (TES) block will allow the reactor to better respond to variable power demands. In the system described in this thesis, a Prismatic-core Advanced High Temperature Reactor (PAHTR) operates at constant power with heat provided to a TES block that supplies power as needed to a secondary energy conversion system. The PAHTR is designed to have a power rating of 300 MW th, with 19.75 wt% enriched Tri-Structural-Isotropic UO 2 fuel and a five year operating cycle. The passive molten salt TES system will operate in the latent heat region with an energy storage capacity of 150 MWd. Multiple smaller TES blocks are used instead of one large block to enhance the efficiency and maintenance complexity of the system. A transient model of the coupled reactor/TES system is developed to study the behavior of the system in response to varying load demands. The model uses six-delayed group point kinetics and decay heat models coupled to thermal-hydraulic and heat transfer models of the reactor and TES system. Based on the transient results, the preferred TES design consists of 1000 blocks, each containing 11000 LiCl phase change material tubes. A safety assessment of major reactor events demonstrates the inherent safety of the coupled system. The loss of forced circulation study determined the minimum required air convection heat removal rate from the reactor core and the lowest possible reduced primary flow rate that can maintain the reactor in a safe condition. The loss of ultimate heat sink study demonstrated the ability of the TES

  2. Method and apparatus for enhancing reactor air-cooling system performance

    DOEpatents

    Hunsbedt, Anstein

    1996-01-01

    An enhanced decay heat removal system for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer.

  3. Method and apparatus for enhancing reactor air-cooling system performance

    DOEpatents

    Hunsbedt, A.

    1996-03-12

    An enhanced decay heat removal system is disclosed for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer. 6 figs.

  4. Design and Implementation of an Innovative Residential PV System

    NASA Astrophysics Data System (ADS)

    Najm, Elie Michel

    This work focuses on the design and implementation of an innovative residential PV system. In chapter one, after an introduction related to the rapid growth of solar systems' installations, the most commonly used state of the art solar power electronics' configurations are discussed, which leads to introducing the proposed DC/DC parallel configuration. The advantages and disadvantages of each of the power electronics' configurations are deliberated. The scope of work in the power electronics is defined in this chapter to be related to the panel side DC/DC converter. System integration and mechanical proposals are also within the scope of work and are discussed in later chapters. Operation principle of a novel low cost PV converter is proposed in chapter 2. The proposal is based on an innovative, simplified analog implementation of a master/slave methodology resulting in an efficient, soft-switched interleaved variable frequency flybacks, operating in the boundary conduction mode (BCM). The scheme concept and circuit configuration, operation principle and theoretical waveforms, design equations, and design considerations are presented. Furthermore, design examples are also given, illustrating the significance of the newly derived frequency equation for flybacks operating in BCM. In chapters 3, 4, and 5, the design implementation and optimization of the novel DC/DC converter illustrated in chapter 2 are discussed. In chapter 3, a detailed variable frequency BCM flyback design model leading to optimizing the component selections and transformer design, detailed in chapter 4, is presented. Furthermore, in chapter 4, the method enabling the use of lower voltage rating switching devices is also discussed. In chapter 5, circuitry related to Start-UP, drive for the main switching devices, zero-voltage-switching (ZVS) as well as turn OFF soft switching and interleaving control are fully detailed. The experimental results of the proposed DC/DC converter are presented in

  5. An Innovative Ceramic Corrosion Protection System for Zircaloy Cladding

    SciTech Connect

    Ronald H. Baney, Dr. D. Butt, Dr. P. Demkowicz, Dr. G. Fuchs Department of Materials Science; James S. Tulenko, Department of Nuclear and Radiological Engineering; University of Florida.

    2003-02-19

    Light Water reactor (LWR) fuel performance is currently limited by thermal, chemical and mechanical constraints associated with the design, fabrication, and operation of the fuel in incore operation. Corrosion of the zirconium based (Zircaloy-4) alloy cladding of the fuel is a primary limiting factor. Recent success at the University of Florida in developing thin ceramic films with great adhesive properties for metal substrates offers an innovative breakthrough for eliminating a major weakness of the Zircaloy clad. ?The University of Florida proposes to coat the existing Zircaloy clad tubes with a ceramic coating for corrosion protection. An added bonus of this approach would be the implementation of a boron-containing burnable poison outer layer will also be demonstrated as part of the ceramic coating development. In this proposed effort, emphasis will be on the ceramic coating with only demonstration of feasibility on the burnable outer coating approach. This proposed program i s expected to give a step change (approximately a doubling) in clad lifetime before failure due to corrosion. In the development of ceramic coatings for Zircaloy-4 clad, silicon carbide and zirconium carbide coatings will first be applied to Zircaloy-4 coupons and cladding samples by thermal assisted chemical vapor deposition, plasma assisted chemical vapor deposition or by laser ablation deposition. All of these processes are in use at the University of Florida and have shown great potential. The questions of adhesion and thermal expansion mismatch of the ceramic coating to the Zircaloy substrate will be addressed. Several solutions to these conditions will be examined, if needed. These solutions include the use of a zirconium oxide compliant layer, employment of a laser roughened surface and the use of a gradient composition interlayer. These solutions have already been shown to be effective for other high modulus coatings on metal substrates. Mechanical properties and adhesion of the

  6. Orally disintegrating systems: innovations in formulation and technology.

    PubMed

    Goel, Honey; Rai, Parshuram; Rana, Vikas; Tiwary, Ashok K

    2008-01-01

    disintegration), it becomes essential to study the innovations in this field and understand the intricacies of the different processes used for manufacturing these systems. This article attempts at discussing the patents relating to orally disintegrating systems with respect to the use of different formulation ingredients and technologies.

  7. Sodium coolant purification systems for a nuclear power station equipped with a BN-1200 reactor

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Kovalev, Yu. P.; Kalyakin, S. G.; Kozlov, F. A.; Kumaev, V. Ya.; Kondrat'ev, A. S.; Matyukhin, V. V.; Pirogov, E. P.; Sergeev, G. P.; Sorokin, A. P.; Torbenkova, I. Yu.

    2013-05-01

    Both traditional coolant purification methods (by means of traps and sorbents for removing cesium), the use of which supported successful operation of nuclear power installations equipped with fast-neutron reactors with a sodium coolant, and the possibility of removing oxygen from sodium through the use of hot traps are analyzed in substantiating the purification system for a nuclear power station equipped with a BN-1200 reactor. It is shown that a cold trap built into the reactor vessel must be a mandatory component of the reactor plant primary coolant circuit's purification system. The use of hot traps allows oxygen to be removed from the sodium coolant down to permissible concentrations when the nuclear power station operates in its rated mode. The main lines of works aimed at improving the performance characteristics of cold traps are suggested based on the results of performed investigations.

  8. Results of theoretical and experimental studies of hydrodynamics of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors

    NASA Astrophysics Data System (ADS)

    Ryabov, G. A.; Folomeev, O. M.; Sankin, D. A.; Melnikov, D. A.

    2015-02-01

    Problems of the calculation of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (polygeneration systems for the production of electricity, heat, and useful products and chemical cycles of combustion and gasification of solid fuels)are considered. A method has been developed for the calculation of circulation loop of fuel particles with respect to boilers with circulating fluidized bed (CFB) and systems with interconnected reactors with fluidized bed (FB) and CFB. New dependences for the connection between the fluidizing agent flow (air, gas, and steam) and performance of reactors and for the whole system (solids flow rate, furnace and cyclone pressure drops, and bed level in the riser) are important elements of this method. Experimental studies of hydrodynamics of circulation loops on the aerodynamic unit have been conducted. Experimental values of pressure drop of the horizontal part of the L-valve, which satisfy the calculated dependence, have been obtained.

  9. A New Approach for Analysing National Innovation Systems in Emerging and Developing Countries

    ERIC Educational Resources Information Center

    Seidel, Uwe; Muller, Lysann; Meier zu Kocker, Gerd; Filho, Guajarino de Araujo

    2013-01-01

    This paper presents a tool for the indicator-based analysis of national innovation systems (ANIS). ANIS identifies the economic strengths and weaknesses of a country-wide, regional or local system and includes a comprehensive examination and evaluation of the status of existing innovation systems. The use of a particular form of expert interviews…

  10. Applying Structural Systems Thinking to Frame Perspectives on Social Work Innovation

    ERIC Educational Resources Information Center

    Stringfellow, Erin J.

    2017-01-01

    Objective: Innovation will be key to the success of the Grand Challenges Initiative in social work. A structural systems framework based in system dynamics could be useful for considering how to advance innovation. Method: Diagrams using system dynamics conventions were developed to link common themes across concept papers written by social work…

  11. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  12. Challenges to deployment of twenty-first century nuclear reactor systems.

    PubMed

    Ion, Sue

    2017-02-01

    The science and engineering of materials have always been fundamental to the success of nuclear power to date. They are also the key to the successful deployment and operation of a new generation of nuclear reactor systems and their associated fuel cycles. This article reflects on some of the historical issues, the challenges still prevalent today and the requirement for significant ongoing materials R&D and discusses the potential role of small modular reactors.

  13. Challenges to deployment of twenty-first century nuclear reactor systems

    NASA Astrophysics Data System (ADS)

    Ion, Sue

    2017-02-01

    The science and engineering of materials have always been fundamental to the success of nuclear power to date. They are also the key to the successful deployment and operation of a new generation of nuclear reactor systems and their associated fuel cycles. This article reflects on some of the historical issues, the challenges still prevalent today and the requirement for significant ongoing materials R&D and discusses the potential role of small modular reactors.

  14. Challenges to deployment of twenty-first century nuclear reactor systems

    PubMed Central

    2017-01-01

    The science and engineering of materials have always been fundamental to the success of nuclear power to date. They are also the key to the successful deployment and operation of a new generation of nuclear reactor systems and their associated fuel cycles. This article reflects on some of the historical issues, the challenges still prevalent today and the requirement for significant ongoing materials R&D and discusses the potential role of small modular reactors. PMID:28293142

  15. Innovative tephra studies in the East African Rift System

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Hart, William K.; Heiken, Grant

    Geosciences investigations form the foundation for paleoanthropological research in the East African Rift System. However, innovative applications of tephra studies for constraining spatial and temporal relations of diverse geological processes, biostratigraphic records, and paleoenvironmental conditions within the East African Rift System were fueled by paleoanthropological investigations into the origin and evolution of hominids and material culture. Tephra is a collective, size-independent term used for any material ejected during an explosive volcanic eruption.The East African Rift System has become a magnet for paleoanthropological research ever since the discovery of the first hominids at Olduvai Gorge, in Tanzania, in the 1950s [Leakey et al., 1961]. Currently, numerous multidisciplinary scientific teams from academic institutions in the United States and Western Europe make annual pilgrimages for a couple of months to conduct paleoanthropological field research in the fossil-rich sedimentary deposits of the East African Rift System in Ethiopia, Kenya, and Tanzania. The field expedition consists of geological, paleontological, archaeological, and paleoenvironmental investigations.

  16. Crowd-sourcing delivery system innovation: A public-private solution.

    PubMed

    Agrawal, Shantanu; Chen, Christopher; Tanio, Craig P

    2015-03-01

    We propose the establishment of a public-private approach which creates and maintains a "delivery systems innovations knowledge management system" to define, describe, and assess novel delivery approaches. The public sector could provide the foundational technology, resources and convening power for this innovations database. The private sector would contribute practical innovations that could guide annual strategic planning and implementation. A crowd-sourced effort would jump start delivery system reform. We believe that providing a comprehensive knowledge resource will not stifle competition or private sector opportunities but rather augment and speed the application of effective innovation.

  17. Current Trends of Blanket Research and Deveopment in Japan 2.Roles and Requirements of the Blanket System of Fusion Power Reactors

    NASA Astrophysics Data System (ADS)

    Asaoka, Yoshiyuki; Mohri, Kensuke; Hashizume, Hidetoshi; Tanaka, Satoru; Ueda, Yoshio

    Roles and requirements of the blanket system of the fusion power reactors are discussed from viewpoints of economics, fuel supply, generation system, maintenance, radioactive waste, and interaction with the plasma core. As the blanket system influences the cost of the fusion energy, the blanket system must be designed to minimize the fusion energy cost. Tritium breeding performance of the blanket is indispensable role to show the advantage of fusion energy on energy security. Material development for high temperature use under high neutron flux is one of the key issues of the generation system because the thermal efficiency depends on the coolant temperature of the blanket. Innovative maintenance technologies such as dividable superconducting coil system are very effective to make the fusion power reactor attractive. From viewpoints of natural resources and waste management, materials used in the fusion reactors should be recycled. Material selection is also of a large importance on the cost of radioactive waste disposal. Finally, it must be paid a careful attention that the design of the blanket system is inseparable from the achievement of a high performance plasma core.

  18. Integral fast reactor concept inherent safety features

    SciTech Connect

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFT development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: 1) a liquid metal (sodium) coolant, 2) a pool-type reactor primary system configuration, 3) an advanced ternary alloy metallic fuel, and 4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS).

  19. Integral Fast Reactor concept inherent safety features

    SciTech Connect

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: (1) a liquid metal (sodium) coolant, (2) a pool-type reactor primary system configuration, (3) an advanced ternary alloy metallic fuel, and (4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS).

  20. Healthcare systems, the State, and innovation in the pharmaceutical industry.

    PubMed

    Delgado, Ignacio José Godinho

    2016-11-03

    This article discusses the relations between healthcare systems and the pharmaceutical industry, focusing on state support for pharmaceutical innovation. The study highlights the experiences of the United States, United Kingdom, and Germany, developed countries and paradigms of modern health systems (liberal, universal, and corporatist), in addition to Japan, a case of successful catching up. The study also emphasizes the experiences of China, India, and Brazil, large developing countries that have tried different catching up strategies, with diverse histories and profiles in their healthcare systems and pharmaceutical industries. Finally, with a focus on state forms of support for health research, the article addresses the mechanisms for linkage between health systems and the pharmaceutical industry, evaluating the possibilities of Brazil strengthening a virtuous interaction, favoring the expansion and consolidation of the Brazilian health system - universal but segmented ‒ and the affirmation of the innovative national pharmaceutical industry. Resumo: O artigo discute as relações entre os sistemas de saúde e a indústria farmacêutica, concentrando-se no apoio do Estado à inovação farmacêutica. Salienta as trajetórias dos Estados Unidos, Reino Unido e Alemanha, países desenvolvidos, paradigmáticos dos modernos sistemas de saúde (liberais, universais e corporativos), além do Japão, um caso de emparelhamento bem-sucedido. Também enfatiza as trajetórias de China, Índia e Brasil, países em desenvolvimento, extensos, que experimentaram diferentes estratégias de emparelhamento, dispondo de sistemas de saúde e indústrias farmacêuticas com trajetórias e perfis diversos. Finalmente, com foco nas formas estatais de apoio à pesquisa em saúde, considera os mecanismos de conexão entre os sistemas de saúde e a indústria farmacêutica, avaliando as possibilidades, no Brasil, de fortalecer uma interação virtuosa que favoreça a expansão e

  1. 2-D linear motion system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology

  2. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1991-01-01

    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  3. Interfacing systems LOCA (loss-of-coolant accidents): Pressurized water reactors

    SciTech Connect

    Bozoki, G.; Kohut, P.; Fitzpatrick, R.

    1989-02-01

    This report summarizes a study performed by Brookhaven National Laboratory for the Office of Nuclear Regulatory Research, Reactor and Plant Safety Issues Branch, Division of Reactor and Plant Systems, US Nuclear Regulatory Commission. This study was requested by the NRC in order to provide a technical basis for the resolution of Generic Issue 105 ''Interfacing LOCA at LWRs.'' This report deals with pressurized water reactors (PWRs). A parallel report was also accomplished for boiling water reactors. This study focuses on three representative PWRs and extrapolates the plant-specific findings for their generic applicability. In addition, a generic analysis was performed to investigate the cost-benefit aspects of imposing a testing program that would require some minimum level of leak testing of the pressure isolation valves on plants that presently have no such requirements. 28 refs., 31 figs., 64 tabs.

  4. Air-lift reactor system for the treatment of waste-gas-containing monochlorobenzene.

    PubMed

    Joshi, Pradnya R; Deshmukh, Sharvari C; Morone, Amruta P; Kanade, Gajanan; Pandey, R A

    2013-01-01

    An air-lift bioreactor (ALR) system, applied for the treatment of waste-gas-containing monochlorobenzene (MCB) was seeded with pure culture of Acinetobacter calcoaceticus, isolated from soil as a starter seed. It was found that MCB was biologically converted to chloride as chloride was mineralized in the ALR. After the built up of the biomass in the ALR, the reactor parameters which have major influence on the removal efficiency and elimination capacity were studied using response surface methodology. The data generated by running the reactor for 150 days at varying conditions were fed to the model with a target to obtain the removal efficiency above 95% and the elimination capacity greater than 60%. The data analysis indicated that inlet loading was the major parameter affecting the elimination capacity and removal efficiency of >95%. The reactor when operated at optimized conditions resulted in enhanced performance of the reactor.

  5. Innovative Multi-Environment, Multimode Thermal Control System

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.; Hasan, Mohammad H.

    2007-01-01

    Innovative multi-environment multimode thermal management architecture has been described that is capable of meeting widely varying thermal control requirements of various exploration mission scenarios currently under consideration. The proposed system is capable of operating in a single-phase or two-phase mode rejecting heat to the colder environment, operating in a two-phase mode with heat pump for rejecting heat to a warm environment, as well as using evaporative phasechange cooling for the mission phases where the radiator is incapable of rejecting the required heat. A single fluid loop can be used internal and external to the spacecraft for the acquisition, transport and rejection of heat by the selection of a working fluid that meets NASA safety requirements. Such a system may not be optimal for each individual mode of operation but its ability to function in multiple modes may permit global optimization of the thermal control system. The architecture also allows flexibility in partitioning of components between the various Constellation modules to take advantage of operational requirements in various modes consistent with the mission needs. Preliminary design calculations using R-134 as working fluid show the concept to be feasible to meet the heat rejection requirements that are representative of the Crew Exploration Vehicle and Lunar Access Module for nominal cases. More detailed analyses to establish performance under various modes and environmental conditions are underway.

  6. Gamma-ray imaging system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The RadScan 600 gamma-ray imaging system is designed to survey large surface areas for radiological contamination with accuracy and efficiency. The resulting survey data are clear, concise, and precise in describing how much contamination is present at exact locations. Data can be permanently stored electronically and on video tape, making storage and retrieval economical and efficient. This technology can perform accurate measurements in high radiation contamination areas while minimizing worker exposure. The RadScan 600 system is a safe and effective alternative to hand-held radiation detection devices. Performance data of the demonstrated survey area of the RadScan 600 system versus the baseline, which is the hand-held radiation detection devices (RO-2 and RO-7) for a given survey, production rate is 72% of the baseline. It should be noted that the innovative technology provides 100% coverage at a unit cost of $8.64/m{sup 2} versus a static measurement of a unit cost of $1.61/m{sup 2} for the baseline.

  7. Investigations on natural circulation in reactor models and shutdown heat removal systems for LMFBRs (liquid metal fast breeder reactors)

    SciTech Connect

    Hoffmann, H.; Weinberg, D.; Marten, K. ); Ieda, Yoshiaki )

    1989-11-01

    For sodium-cooled pool-type reactors, studies have been undertaken to remove the decay heat by natural convection alone, as in the case of failure of all power supplies. For this purpose, four immersion coolers (ICs), two each installed at a 180-deg circumferential position with respect to the others, are arranged within the reactor tank. They are connected with natural-drift air coolers through independent intermediate circuits. The primary sodium in the tank as well as the secondary sodium in the intermediate loop circulate by natural convection. The general functioning of this passive shutdown decay heat removal (DHR) system is demonstrated in 1:20 and 1:5 scale test models using water as a simulant fluid for sodium. The model design is based on the thermohydraulics similarity criteria. In the RAMONA three-dimensional 1:20 scale model, experiments were carried out to clarify the steady-state in-vessel thermohydraulics for different parameter combinations (core power, radial power distribution across the core, DHR by 2 or 4 ICs in operation, above-core structure geometry and position, different IC designs). For all mentioned parameters, temperatures and their fluctuations were measured and used to indicate isotherms and lines of identical temperature fluctuations. The flow patterns were observed visually. The experiments were recalculated by an updated version of the single-phase three-dimensional thermohydraulics code COMMIX.

  8. Laser anemometry measurements of natural circulation flow in a scale model PWR reactor system. [Pressurized Water Reactor

    NASA Technical Reports Server (NTRS)

    Kadambi, J. R.; Schneider, S. J.; Stewart, W. A.

    1986-01-01

    The natural circulation of a single phase fluid in a scale model of a pressurized water reactor system during a postulated grade core accident is analyzed. The fluids utilized were water and SF6. The design of the reactor model and the similitude requirements are described. Four LDA tests were conducted: water with 28 kW of heat in the simulated core, with and without the participation of simulated steam generators; water with 28 kW of heat in the simulated core, with the participation of simulated steam generators and with cold upflow of 12 lbm/min from the lower plenum; and SF6 with 0.9 kW of heat in the simulated core and without the participation of the simulated steam generators. For the water tests, the velocity of the water in the center of the core increases with vertical height and continues to increase in the upper plenum. For SF6, it is observed that the velocities are an order of magnitude higher than those of water; however, the velocity patterns are similar.

  9. Enhancing VHTR passive safety and economy with thermal radiation based direct reactor auxiliary cooling system

    SciTech Connect

    Zhao, H.; Zhang, H.; Zou, L.; Sun, X.

    2012-07-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The RVACS can be characterized as a surface-based decay heat removal system. It is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to the core volume) and decay heat removal capability (proportional to the vessel surface area). Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environmental side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps or annular regions formed between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions among the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very

  10. A Systems Dynamics Model of Implementation of an Innovation.

    ERIC Educational Resources Information Center

    Gaynor, Alan K.; And Others

    The research presented in this report investigated the critical factors that affected the decision to abandon or replace a curricular innovation in one elementary school. The specific innovation examined in this research is called developing mathematical processes, which emphasizes process and induction rather than computational skills. Although…

  11. Role of Universities in the National Innovation System. Discussion Paper

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2011

    2011-01-01

    Over recent years governments have been placing more emphasis on innovation as a source of national competitiveness. Governments now assess their investments across many areas in terms of the contribution that such investments make to increasing innovation. This has been especially significant for education and in particular for the development of…

  12. Remote Underwater Characterization System - Innovative Technology Summary Report

    SciTech Connect

    Willis, W D

    1999-04-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available "Scallop" vehicle 1 , but has been modified by the Department of Energy's Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a "head-to-head" fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations.

  13. Update on Small Modular Reactors Dynamic System Modeling Tool: Web Application

    SciTech Connect

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.; Batteh, John J; Tiller, Michael M.

    2015-01-01

    Previous reports focused on the development of component and system models as well as end-to-end system models using Modelica and Dymola for two advanced reactor architectures: (1) Advanced Liquid Metal Reactor and (2) fluoride high-temperature reactor (FHR). The focus of this report is the release of the first beta version of the web-based application for model use and collaboration, as well as an update on the FHR model. The web-based application allows novice users to configure end-to-end system models from preconfigured choices to investigate the instrumentation and controls implications of these designs and allows for the collaborative development of individual component models that can be benchmarked against test systems for potential inclusion in the model library. A description of this application is provided along with examples of its use and a listing and discussion of all the models that currently exist in the library.

  14. Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems

    NASA Technical Reports Server (NTRS)

    Harty, Richard B.; Durand, Richard E.

    1993-01-01

    An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage.

  15. Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems

    NASA Astrophysics Data System (ADS)

    Harty, Richard B.; Durand, Richard E.

    1993-03-01

    An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage.

  16. Modular coils: a promising toroidal-reactor-coil system

    SciTech Connect

    Chu, T.K.; Furth, H.P.; Johnson, J.L.; Ludescher, C.; Weimer, K.E.

    1981-04-01

    The concept of modular coils originated from a need to find reactor-relevant stellarator windings, but its usefulness can be extended to provide an externally applied, additional rotational transform in tokamaks. Considerations of (1) basic principles of modular coils, (2) types of coils, (3) types of configurations (general, helically symmetric, helically asymmetric, with magnetic well, with magnetic hill), (4) types of rotational transform profile, and (5) structure and origin of ripples are given. These results show that modular coils can offer a wide range of vacuum magnetic field configurations, some of which cannot be obtained with the classical stellarator or torsatron coil configuration.

  17. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    SciTech Connect

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; Kettell, S. H.; Littenberg, L.; Pearson, C. E.; Qian, X.; Theman, H.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2014-10-05

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  18. The muon system of the Daya Bay Reactor antineutrino experiment

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. E.; Butorov, I.; Cao, G. F.; Cao, J.; Carr, R.; Chan, Y. L.; Chang, J. F.; Chang, L.; Chang, Y.; Chasman, C.; Chen, H. S.; Chen, H. Y.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, Y.; Chen, Y. X.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; Dale, E.; de Arcos, J.; Deng, Z. Y.; Ding, Y. Y.; Diwan, M. V.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fu, J. Y.; Ge, L. Q.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gu, W. Q.; Guan, M. Y.; Guo, X. H.; Hackenburg, R. W.; Han, G. H.; Hans, S.; He, M.; He, Q.; Heeger, K. M.; Heng, Y. K.; Hinrichs, P.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. J.; Hu, L. M.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, H. Z.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jetter, S.; Ji, X. L.; Ji, X. P.; Jiang, H. J.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kebwaro, J. M.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, W. C.; Lai, W. H.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, A.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. C.; Liu, J. L.; Liu, S. S.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Luk, K. B.; Ma, Q. M.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Nemchenok, I.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Patton, S.; Pec, V.; Pearson, C. E.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tam, Y. H.; Tang, X.; Themann, H.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wilhelmi, J.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, G. H.; Xu, J.; Xu, J. L.; Xu, J. Y.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Young, B. L.; Yu, G. Y.; Yu, J. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. M.; Zhang, S. H.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, Z. Y.; Zhuang, H. L.; Zou, J. H.

    2015-02-01

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described.

  19. The Practice Teaching Platform and System for Innovating Talents and Performing Research

    ERIC Educational Resources Information Center

    Wang, Boyu; Hao, Ziqiang

    2014-01-01

    The practice education is an important part of higher educational system and an important approach to cultivating applied innovative talents. This paper studies practice of teaching platform and practical teaching system for the research and practice based on the objective basis of applied innovative talents and the basic characteristics of the…

  20. Implementation of a Technological Innovation: Factors Influencing the Adoption of a New Student Information System

    ERIC Educational Resources Information Center

    Johnston, Katrina M.

    2013-01-01

    School information systems (SIS) have the potential to cause a change in a school's technical, structural, psycho-social, and managerial systems. Implementation of a technological innovation such as an SIS is not a one-step occurrence; it is a process that occurs over time. Implementing any technological innovation involves active learning…

  1. Heat stress monitoring system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy`s (DOE) nuclear facility decontamination and decommissioning (D and D) program involves the need to decontaminate and decommission buildings expeditiously and cost-effectively. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. Often, D and D workers must perform duties in inclement weather, and because they also frequently work in contaminated areas, they must wear personal protective clothing and/or respirators. Monitoring the health status of workers under these conditions is an important component of ensuring their safety. The MiniMitter VitalSense Telemetry System`s heat stress monitoring system (HSMS) is designed to monitor the vital signs of individual workers as they perform work in conditions that might be conducive to heat exhaustion or heat stress. The HSMS provides real-time data on the physiological condition of workers which can be monitored to prevent heat stress or other adverse health situations. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their condition more difficult. The MiniMitter VitalSense Telemetry System can monitor up to four channels (e.g., heart rate, body activity, ear canal, and skin temperature) and ten workers from a single supervisory station. The monitors are interfaced with a portable computer that updates and records information on individual workers. This innovative technology, even though it costs more, is an attractive alternative to the traditional (baseline) technology, which measures environmental statistics and predicts the average worker`s reaction to those environmental conditions without taking the physical condition of the individual worker into consideration. Although use of the improved technology might be justified purely on the basis of improved safety, it has the potential to pay for itself by reducing worker time lost caused by heat

  2. GAS-PASS/H : a simulation code for gas reactor plant systems.

    SciTech Connect

    Vilim, R. B.; Mertyurek, U.; Cahalan, J. E.; Nuclear Engineering Division; Texas A&M Univ.

    2004-01-01

    A simulation code for gas reactor plant systems has been developed. The code is intended for use in safety analysis and control studies for Generation-IV reactor concepts. We developed it anticipating an immediate application to direct cycle gas reactors. By programming in flexibility as to how components can be configured, we believe the code can be adapted for the indirect-cycle gas reactors relatively easy. The use of modular components and a general purpose equation solver allows for this. There are several capabilities that are included for investigating issues associated with direct cycle gas reactors. Issues include the safety characteristics of single shaft plants during coastdown and transition to shutdown heat removal following unprotected accidents, including depressurization, and the need for safety grade control systems. Basic components provided include turbine, compressor, recuperator, cooler, bypass valve, leak, accumulator, containment, and flow junction. The code permits a more rapid assessment of design concepts than is achievable using RELAP. RELAP requires detail beyond what is necessary at the design scoping stage. This increases the time to assemble an input deck and tends to make the code slower running. The core neutronics and decay heat models of GAS-PASS/H are taken from the liquid-metal version of MINISAS. The ex-reactor component models were developed from first principles. The network-based method for assembling component models into a system uses a general nonlinear solver to find the solution to the steady-state equations. The transient time-differenced equations are solved implicitly using the same solver. A direct cycle gas reactor is modeled and a loss of generator load transient is simulated for this reactor. While normally the reactor is scrammed, the plant safety case will require analysis of this event with failure of various safety systems. Therefore, we simulated the loss of load transient with a combined failure of the

  3. Cryogenic Cooling System for 5 kA, 200 μH Class HTS DC Reactor

    NASA Astrophysics Data System (ADS)

    Park, Heecheol; Kim, Seokho; Kim, Kwangmin; Park, Minwon; Park, Taejun; Kim, A.-rong; Lee, Sangjin

    DC reactors, made by aluminum busbar, are used to stabilize the arc of an electric furnace. In the conventional arc furnace, the transport current is several tens of kilo-amperes and enormous resistive loss is generated. To reduce the resistive loss at the DC reactor, a HTS DC reactor can be considered. It can dramatically improve the electric efficiency as well as reduce the installation space. Similar with other superconducting devices, the HTS DC reactor requires current leads from a power source in room temperature to the HTS coil in cryogenic environment. The heat loss at the metal current leads can be minimized through optimization process considering the geometry and the transport current. However, the transport current of the HTS DC reactor for the arc furnace is much larger than most of HTS magnets and the enormous heat penetration through the current lead should be effectively removed to keep the temperature around 70∼77 K. Current leads are cooled down by circulation of liquid nitrogen from the cooling system with a stirling cryocooler. The operating temperature of HTS coil is 30∼40 K and circulation of gaseous helium is used to remove the heat generation at the HTS coil. Gaseous helium is transported through the cryogenic helium blower and a single stage GM cryocooler. This paper describes design and experimental results on the cooling system for current leads and the HTS coil of 5 kA, 200 μH class DC reactor as a prototype. The results are used to verify the design values of the cooling systems and it will be applied to the design of scale-up cooling system for 50 kA, 200 μH class DC reactor.

  4. The results of systems tests of the 500 kV busbar controllable shunting reactor in the Tavricheskaya substation

    SciTech Connect

    Gusev, S. I.; Karpov, V. N.; Kiselev, A. N.; Kochkin, V. I.

    2009-09-15

    The results of systems tests of the 500 kV busbar magnetization-controllable shunting reactor (CSR), set up in the Tavricheskaya substation, including measurements of the quality of the electric power, the harmonic composition of the network currents of the reactor for different values of the reactive power consumed, the determination of the regulating characteristics of the reactor, the speed of response of the shunting reactor in the current and voltage stabilization modes, and also the operation of the reactor under dynamic conditions for different perturbations, are presented. The results obtained are analyzed.

  5. Reactor assessments of advanced bumpy torus configurations

    SciTech Connect

    Uckan, N.A.; Owen, L.W.; Spong, D.A.; Miller, R.L.; Ard, W.B.; Pipkins, J.F.; Schmitt, R.J.

    1984-02-01

    Recently, several innovative approaches were introduced for enhancing the performance of the basic ELMO Bumpy Torus (EBT) concept and for improving its reactor potential. These include planar racetrack and square geometries, Andreoletti coil systems, and bumpy torus-stellarator hybrids (which include twisted racetrack and helical axis stellarator - snakey torus). Preliminary evaluations of reactor implications of each approach have been carried out based on magnetics (vacuum) calculations, transport and scaling relationships, and stability properties deduced from provisional configurations that implement the approach but are not necessarily optimized. Further optimization is needed in all cases to evaluate the full potential of each approach. Results of these studies indicate favorable reactor projections with a significant reduction in reactor physical size as compared to conventional EBT reactor designs carried out in the past.

  6. Technological innovations in the development of cardiovascular clinical information systems.

    PubMed

    Hsieh, Nan-Chen; Chang, Chung-Yi; Lee, Kuo-Chen; Chen, Jeen-Chen; Chan, Chien-Hui

    2012-04-01

    Recent studies have shown that computerized clinical case management and decision support systems can be used to assist surgeons in the diagnosis of disease, optimize surgical operation, aid in drug therapy and decrease the cost of medical treatment. Therefore, medical informatics has become an extensive field of research and many of these approaches have demonstrated potential value for improving medical quality. The aim of this study was to develop a web-based cardiovascular clinical information system (CIS) based on innovative techniques, such as electronic medical records, electronic registries and automatic feature surveillance schemes, to provide effective tools and support for clinical care, decision-making, biomedical research and training activities. The CIS developed for this study contained monitoring, surveillance and model construction functions. The monitoring layer function provided a visual user interface. At the surveillance and model construction layers, we explored the application of model construction and intelligent prognosis to aid in making preoperative and postoperative predictions. With the use of the CIS, surgeons can provide reasonable conclusions and explanations in uncertain environments.

  7. Innovations in Rwanda's health system: looking to the future.

    PubMed

    Logie, Dorothy E; Rowson, Michael; Ndagije, Felix

    2008-07-19

    Rwanda is making substantial progress towards improvement of health and is working towards achievement of the Millennium Development Goals, which is a challenging task because the country has had genocide in 1994, has few natural resources, is landlocked, and has high population growth. Like many impoverished sub-Saharan countries, Rwanda's health system has had an uncoordinated plethora of donors, shortage of health staff, inequity of access, and poor quality of care in health facilities. This report describes three health system developments introduced by the Rwandan government that are improving these barriers to care-ie, the coordination of donors and external aid with government policy, and monitoring the effectiveness of aid; a country-wide independent community health insurance scheme; and the introduction of a performance-based pay initiative. If these innovations are successful, they might be of interest to other sub-Saharan countries. However, Rwanda still does not have sufficient financial resources for health and will need additional external aid for some time to attain the Millennium Development Goals.

  8. Design and development of high-temperature superconducting magnet system with joint-winding for the helical fusion reactor

    NASA Astrophysics Data System (ADS)

    Yanagi, N.; Ito, S.; Terazaki, Y.; Seino, Y.; Hamaguchi, S.; Tamura, H.; Miyazawa, J.; Mito, T.; Hashizume, H.; Sagara, A.

    2015-05-01

    An innovative winding method is developed by connecting high-temperature superconducting (HTS) conductors to enable efficient construction of a magnet system for the helical fusion reactor FFHR-d1. A large-current capacity HTS conductor, referred to as STARS, is being developed by the incorporation of several innovative ideas, such as the simple stacking of state-of-the-art yttrium barium copper oxide tapes embedded in a copper jacket, surrounded by electrical insulation inside a conductor, and an outer stainless-steel jacket cooled by helium gas. A prototype conductor sample was fabricated and reached a current of 100 kA at a bias magnetic field of 5.3 T with the temperature at 20 K. At 4.2 K, the maximum current reached was 120 kA, and a current of 100 kA was successfully sustained for 1 h. A low-resistance bridge-type mechanical lap joint was developed and a joint resistance of 2 nΩ was experimentally confirmed for the conductor sample.

  9. Nuclear reactor system study for NASA/JPL. Final report

    SciTech Connect

    Palmer, R.G.; Lundberg, L.B.; Keddy, E.S.; Koenig, D.R.

    1982-09-01

    Reactor shielding and safety studies and heat pipe development work undertaken for the Jet Propulsion Laboratory during the period March 1, 1981 to October 30, 1981 are described. Monte Carlo calculations of gamma and neutron shield configurations show that substantial weight penalties are incurred if exposures at 25 m to neutrons and gammas must be limited to 10/sup 12/ nvt and 10/sup 6/ rad, instead of the 10/sup 13/ nvt and 10/sup 7/ rad values used earlier. For a 1.6 MW/sub t/ reactor, the required shield weight increases from 400 to 815 kg. Water immersion criticality calculations have been extended to study the effect of water in fuel void spaces as well as in the core heat pipes. These show that the insertion into the core of eight blades of B/sub 4/C with a mass totaling 2.5 kg will guarantee subcriticality. The design, fabrication procedure, and testing of a 4-m-long molybdenum/lithium heat pipe are described. It appears that an excess of oxygen in the wick prevented the attainment of expected performance capability.

  10. Nuclear reactor system study for NASA/JPL

    NASA Technical Reports Server (NTRS)

    Palmer, R. G.; Lundberg, L. B.; Keddy, E. S.; Koenig, D. R.

    1982-01-01

    Reactor shielding, safety studies, and heat pipe development work are described. Monte Carlo calculations of gamma and neutron shield configurations show that substantial weight penalties are incurred if exposure at 25 m to neutrons and gammas must be limited to 10 to the 12th power nvt and 10 to the 6th power rad, instead of the 10 to the 13th power nvt and 10 to the 7th power rad values used earlier. For a 1.6 MW sub t reactor, the required shield weight increases from 400 to 815 kg. Water immersion critically calculations were extended to study the effect of water in fuel void spaces as well as in the core heat pipes. These show that the insertion into the core of eight blades of B4C with a mass totaling 2.5 kg will guarantee subcriticality. The design, fabrication procedure, and testing of a 4m long molybdenum/lithium heat pipe are described. It appears that an excess of oxygen in the wick prevented the attainment of expected performance capability.

  11. Operation of Fusion Reactors in One Atmosphere of Air Instead of Vacuum Systems

    NASA Astrophysics Data System (ADS)

    Roth, J. Reece

    2009-07-01

    Engineering design studies of both magnetic and inertial fusion power plants have assumed that the plasma will undergo fusion reactions in a vacuum environment. Operation under vacuum requires an expensive additional major system for the reactor-a vacuum vessel with vacuum pumping, and raises the possibility of sudden unplanned outages if the vacuum containment is breached. It would be desirable in many respects if fusion reactors could be made to operate at one atmosphere with air surrounding the plasma, thus eliminating the requirement of a pressure vessel and vacuum pumping. This would have obvious economic, reliability, and engineering advantages for currently envisaged power plant reactors; it would make possible forms of reactor control not possible under vacuum conditions (i.e. adiabatic compression of the fusion plasma by increasing the pressure of surrounding gas); it would allow reactors used as aircraft engines to operate as turbojets or ramjets in the atmosphere, and it would allow reactors used as fusion rockets to take off from the surface of the earth instead of low earth orbit.

  12. Health Systems Innovation at Academic Health Centers: Leading in a New Era of Health Care Delivery.

    PubMed

    Ellner, Andrew L; Stout, Somava; Sullivan, Erin E; Griffiths, Elizabeth P; Mountjoy, Ashlin; Phillips, Russell S

    2015-07-01

    Challenged by demands to reduce costs and improve service delivery, the U.S. health care system requires transformational change. Health systems innovation is defined broadly as novel ideas, products, services, and processes-including new ways to promote healthy behaviors and better integrate health services with public health and other social services-which achieve better health outcomes and/or patient experience at equal or lower cost. Academic health centers (AHCs) have an opportunity to focus their considerable influence and expertise on health systems innovation to create new approaches to service delivery and to nurture leaders of transformation. AHCs have traditionally used their promotions criteria to signal their values; creating a health systems innovator promotion track could be a critical step towards creating opportunities for innovators in academic medicine. In this Perspective, the authors review publicly available promotions materials at top-ranked medical schools and find that while criteria for advancement increasingly recognize systems innovation, there is a lack of specificity on metrics beyond the traditional yardstick of peer-reviewed publications. In addition to new promotions pathways and alternative evidence for the impact of scholarship, other approaches to fostering health systems innovation at AHCs include more robust funding for career development in health systems innovation, new curricula to enable trainees to develop skills in health systems innovation, and new ways for innovators to disseminate their work. AHCs that foster health systems innovation could meet a critical need to contribute both to the sustainability of our health care system and to AHCs' continued leadership role within it.

  13. Determination of the optimal positions for installing gamma ray detection systems at Tehran Research Reactor

    NASA Astrophysics Data System (ADS)

    Sayyah, A.; Rahmani, F.; Khalafi, H.

    2015-09-01

    Dosimetric instruments must constantly monitor radiation dose levels in different areas of nuclear reactor. Tehran Research Reactor (TRR) has seven beam tubes for different research purposes. All the beam tubes extend from the reactor core to Beam Port Floor (BPF) of the reactor facility. During the reactor operation, the gamma rays exiting from each beam tube outlet produce a specific gamma dose rate field in the space of the BPF. To effectively monitor the gamma dose rates on the BPF, gamma ray detection systems must be installed in optimal positions. The selection of optimal positions is a compromise between two requirements. First, the installation positions must possess largest gamma dose rates and second, gamma ray detectors must not be saturated in these positions. In this study, calculations and experimental measurements have been carried out to identify the optimal positions of the gamma ray detection systems. Eight three dimensional models of the reactor core and related facilities corresponding to eight scenarios have been simulated using MCNPX Monte Carlo code to calculate the gamma dose equivalent rate field in the space of the BPF. These facilities are beam tubes, thermal column, pool, BPF space filled with air, facilities such as neutron radiography facility, neutron powder diffraction facility embedded in the beam tubes as well as biological shields inserted into the unused beam tubes. According to the analysis results of the combined gamma dose rate field, three positions on the north side and two positions on the south side of the BPF have been recognized as optimal positions for installing the gamma ray detection systems. To ensure the consistency of the simulation data, experimental measurements were conducted using TLDs (600 and 700) pairs during the reactor operation at 4.5 MW.

  14. A new reactor for denitrification and micro-particle removal in recirculated aquaculture systems.

    PubMed

    Boley, A; Korshun, G; Boley, S; Jung-Schroers, V; Adamek, M; Steinhagen, D; Richter, S

    2017-03-01

    A 'membrane-denitrification' reactor (MDR) was developed and tested in a semi-technical recirculation aquaculture system in comparison to a double - without MDR - as reference system. The MDR consisted of a reactor with an ultrafiltration membrane unit for removal of micro-particles (e.g. sludge flocs, bacteria and parasites). Specific carrier material provided surfaces for biofilm growth in a fluidized bed reactor with ethanol as carbon source for denitrification. The continuous motion of these carriers cleaned the membrane surface. With online and laboratory measurements of water parameters and operational data the feasibility of the concept was verified. An advantage is that no chemicals are needed to clean the membranes. Examinations of the fish and water analyses proved an MDR can positively influence cortisol, as a stress marker, and the microflora of the aquatic system.

  15. Autonomous Control of Space Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Merk, John

    2013-01-01

    Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the

  16. System Analysis for Decay Heat Removal in Lead-Bismuth Cooled Natural Circulated Reactors

    SciTech Connect

    Takaaki Sakai; Yasuhiro Enuma; Takashi Iwasaki; Kazuhiro Ohyama

    2002-07-01

    Decay heat removal analyses for lead-bismuth cooled natural circulation reactors are described in this paper. A combined multi-dimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural circulation reactors. For the preliminary study, transient analysis has been performed for a 100 MWe lead-bismuth-cooled reactor designed by Argonne National Laboratory (ANL). In addition, decay heat removal characteristics of a 400 MWe lead-bismuth-cooled natural circulation reactor designed by Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. PRACS (Primary Reactor Auxiliary Cooling System) is prepared for the JNC's concept to get sufficient heat removal capacity. During 2000 sec after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 Centigrade, because the buoyancy force in a primary circulation path is temporary reduced. However, the natural circulation is recovered by the PRACS system and the out let temperature decreases successfully. (authors)

  17. System Analysis for Decay Heat Removal in Lead-Bismuth-Cooled Natural-Circulation Reactors

    SciTech Connect

    Sakai, Takaaki; Enuma, Yasuhiro; Iwasaki, Takashi

    2004-03-15

    Decay heat removal analyses for lead-bismuth-cooled natural-circulation reactors are described in this paper. A combined multidimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural-circulation reactors. For the preliminary study, transient analysis has been performed for a 300-MW(thermal) lead-bismuth-cooled reactor designed by Argonne National Laboratory. In addition, decay heat removal characteristics of a 400-MW(electric) lead-bismuth-cooled natural-circulation reactor designed by the Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. The primary reactor auxiliary cooling system (PRACS) is prepared for the JNC concept to get sufficient heat removal capacity. During 2000 s after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 deg. C because the buoyancy force in a primary circulation path is temporarily reduced. However, the natural circulation is recovered by the PRACS system, and the outlet temperature decreases successfully.

  18. Utilizing a Russian space nuclear reactor for a United States space mission: Systems integration issues

    SciTech Connect

    Reynolds, E.; Schaefer, E.; Polansky, G.; Lacy, J.; Bocharov, A.

    1993-09-30

    The Nuclear Electric Propulsion Space Test Program (NEPSTP) has developed a cooperative relationship with several institutes of the former Soviet Union to evaluate Russian space hardware on a US spacecraft One component is the Topaz II Nuclear Power System; a built and flight qualified nuclear reactor that has yet to be tested in space. The access to the Topaz II reactor provides the NEPSTP with a rare opportunity; to conduct an early flight demonstration of nuclear electric propulsion at a relatively low cost. This opportunity, however, is not without challenges. Topaz II was designed to be compatible with Russian spacecraft and launch vehicles. It was manufactured and flight qualified by Russian techniques and standards and conforms to safety requirements of the former Soviet Union, not the United States. As it is desired to make minimal modifications to the Topaz II, integrating the reactor system with a United States spacecraft and launch vehicle presents an engineering challenge. This paper documents the lessons teamed regarding the integration of reactor based spacecraft and also some insight about integrating Russian hardware. It examines the planned integration flow along with specific reactor requirements that affect the spacecraft integration including American-Russian space system compatibility.

  19. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... COMMISSION Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors AGENCY... Systems for Light-Water-Cooled Nuclear Power Reactors,'' in which the NRC made editorial corrections and... analysis for liquid and gaseous radwaste system components for light water nuclear power...

  20. An innovative forecasting and dashboard system for Malaysian dengue trends

    NASA Astrophysics Data System (ADS)

    Jamil, Jastini Mohd; Shaharanee, Izwan Nizal Mohd

    2016-08-01

    Dengue fever has been recognized in over 100 countries and 2.5 billion people live in areas where dengue is endemic. It is currently a serious arthropod-borne disease, affecting around 50-100 million people worldwide every year. Dengue fever is also prevalent in Malaysia with numerous cases including mortality recorded over the past year. In 2012, a total of 21,900 cases of dengue fever were reported with 35 deaths. Dengue, a mosquito-transmitted virus, causes a high fever accompanied by significant pain in afflicted patient and the Aedes Aegypti mosquito is the primary disease carrier. Knowing the dangerous effect of dengue fever, thus one of the solutions is to implement an innovative forecasting and dashboard system of dengue spread in Malaysia, with emphasize on an early prediction of dengue outbreak. Specifically, the model developed will provide with a valuable insight into strategically managing and controlling the future dengue epidemic. Importantly, this research will deliver the message to health policy makers such as The Ministry of Health Malaysia (MOH), practitioners, and researchers of the importance to integrate their collaboration in exploring the potential strategies in order to reduce the future burden of the increase in dengue transmission cases in Malaysia.

  1. Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)

    SciTech Connect

    Pablo Rubiolo, Principal Investigator

    2003-03-21

    The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)

  2. Lunar in-core thermionic nuclear reactor power system conceptual design

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Schmitz, Paul C.; Gallup, Donald R.

    1991-01-01

    This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Exploration Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.

  3. The effects of aging on Boiling Water Reactor core isolation cooling system

    SciTech Connect

    Lee, Bom Soon

    1994-06-01

    A study was performed to assess the effects of aging on the Reactor Core Isolation Cooling system in commercial Boiling Water Reactors. This study is part of the Nuclear Plant Aging Research program sponsored by the US Nuclear Regulatory Commission. The failure data, from national databases, as well as plant specific data were reviewed and analyzed to understand the effects of aging on the RCIC system. This analysis identified important components that should receive the highest priority in terms of aging management. The aging characterization provided information on the effects of aging on component failure frequency, failure modes, and failure causes.

  4. Lunar in-core thermionic nuclear reactor power system conceptual design

    SciTech Connect

    Mason, L.S. ); Schmitz, P.C. ); Gallup, D.R. )

    1991-01-05

    This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Explortion Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.

  5. Innovative Distributed Power Grid Interconnection and Control Systems: Final Report, December 11, 2000 - August 30, 2005

    SciTech Connect

    DePodesta, K.; Birlingmair, D.; West, R.

    2006-03-01

    The contract goal was to further advance distributed generation in the marketplace by making installations more cost-effective and compatible with existing systems. This was achieved by developing innovative grid interconnection and control systems.

  6. TESTING AND PERFORMANCE EVALUATION OF AN INNOVATIVE INTERNAL PIPE SEALING SYSTEM FOR WASTEWATER MAIN REHABILITATION

    EPA Science Inventory

    Many utilities are seeking emerging and innovative rehabilitation technologies to extend the service life of their infrastructure systems. This report describes the testing and performance evaluation of an internal pipe sealing system, which provides a permanent physical seal fo...

  7. Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

    2012-06-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or

  8. Building America Top Innovations 2012: Basement Insulation Systems

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

  9. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2009-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, OH. This is a closed-cycle system that incorporates an electrically heated reactor core module, turbo alternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  10. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2010-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  11. Code System for Three-Dimensional Hydraulic Reactor Core Analysis.

    SciTech Connect

    ROBERT,; BENEDETTI, L.

    2001-03-05

    Version 00 SCORE-EVET was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code contains a one-dimensional steady state solution scheme to initialize the flow field, steady state and transient fuel rod conduction models, and comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions, such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage. The basic volume-averaged transient three-dimensional equations for flow in porous media are solved in their general form with constitutive relationships and boundary conditions tailored to define the porous medium as a matrix of fuel rods. By retaining generality in the form of the conservation equations, a wide range of fluid flow problem configurations, from computational regions representing a single fuel rod subchannel to multichannels, or even regions without a fuel rod, can be modeled without restrictive assumptions. The completeness of the conservation equations has allowed SCORE-EVET to be used, with modification to the constitutive relationships, to calculate three-dimensional laminar boundary layer development, flow fields in large bodies of water, and, with the addition of a turbulence model, turbulent flow in pipe expansions and tees.

  12. Experimental and numerical validation of an ultrasonic visualization system for nuclear reactor application

    SciTech Connect

    Van de Wyer, Nicolas; Schram, Christophe; Van Dyck, Dries; Dierckx, Marc

    2015-07-01

    This paper deals with the design of ultrasonic imaging systems for the next generation of nuclear reactors cooled by liquid metal. Indeed, a generation IV research nuclear reactor is being developed by the Belgian Nuclear Research Center (SCK-CEN) in the frame of the MYRRHA project (for Multipurpose hYbrid Research Reactor for High-tech Applications). This sub-critical/critical reactor is cooled by Lead-Bismuth Eutectic (LBE). The opacity of this liquid metal requires the development of an ultrasonic visualization system for internal inspection and object detection. But due to the peculiar conditions met in the core of the reactor, velocity as well as temperature gradients are expected and are likely to affect directly the ultrasonic propagation. The objective of this work is to validate the ultrasonic imaging strategy by tests performed in a dedicated test rig and by numerical simulations using a ray-tracing method. The experimental investigations have been performed on a specific water facility reproducing conditions similar to those encountered in the core of the MYRRHA reactor. These conditions include the propagation over large distance, and the presence of temperature and velocity gradients. In the MYRRHA reactor application, the distance to be travelled by the acoustic waves of the visualization system is about 5 m, including a reflection. The acoustic absorption, the scattering losses, the beam divergence and the transmitted energy during reflection have been determined as a function of the travelled distance. The experimental values are compared with the literature for validation. The presence of temperature and velocity gradients in the core of the reactor is due to the coolant circulation. These gradients are about 5 K over 0.1 m and 1 m/s over 0.2 m, respectively, and are reproduced in the facility for investigating their influence on the propagation of ultrasounds. The experimental data are used for improving and validating a ray-tracing algorithm

  13. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine.

    PubMed

    Sponza, Delia Teresa; Demirden, Pinar

    2010-04-15

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  14. Self locking drive system for rotating plug of a nuclear reactor

    DOEpatents

    Brubaker, James E.

    1979-01-01

    This disclosure describes a self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event should occur during reactor refueling. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm.

  15. System for detecting slag level in a solid fuels gasification reactor

    SciTech Connect

    Mayes, M.D.

    1988-06-14

    In combination, a solid fuels gasification reactor and a system for detecting the level of a slag product in the reactor, the reactor includes a quench chamber having a discharge end that connects into a crusher unit, and the slag product is discharged from the quench chamber into the crusher unit, which reduces the particle size of the slag product. The slag level detector system is described comprising: a housing assembly that includes a fluid inlet port and a seal section, the housing member is positioned adjacent to the quench chamber; a nozzle member that fastens inside the housing assembly, and the nozzle member has an open end that extends into the quench chamber; an elongate rod that defines a pokerod; an electronic controller unit adapted for timing an operation cycle; a first position sensor and second position sensor; a space is defined between the pokerod and nozzle member; and a conduit connects the fluid inlet port into a source of fluid.

  16. Characterization of the Annular Core Research Reactor (ACRR) Neutron Radiography System Imaging Plane

    NASA Astrophysics Data System (ADS)

    Kaiser, Krista; Chantel Nowlen, K.; DePriest, K. Russell

    2016-02-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1) available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  17. EBT reactor systems analysis and cost code: description and users guide (Version 1)

    SciTech Connect

    Santoro, R.T.; Uckan, N.A.; Barnes, J.M.; Driemeyer, D.E.

    1984-06-01

    An ELMO Bumpy Torus (EBT) reactor systems analysis and cost code that incorporates the most recent advances in EBT physics has been written. The code determines a set of reactors that fall within an allowed operating window determined from the coupling of ring and core plasma properties and the self-consistent treatment of the coupled ring-core stability and power balance requirements. The essential elements of the systems analysis and cost code are described, along with the calculational sequences leading to the specification of the reactor options and their associated costs. The input parameters, the constraints imposed upon them, and the operating range over which the code provides valid results are discussed. A sample problem and the interpretation of the results are also presented.

  18. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    DOEpatents

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  19. Evaluation of a soil slurry reactor system for treating soil contaminated with munitions compounds

    SciTech Connect

    Boopathy, R.; Manning, J.; Montemagno, C.; Kulpa, C.F.

    1994-05-01

    Two 0.5-L semicontinuous soil slurry reactors were operated for seven months to evaluate the performance of the slurry reactor system in bioremediating soil contaminated with munitions compounds. Nitrogen and carbon were supplemented. The soil slurry was mixed continuously and aerated 10 min/day. Ten percent of the contaminated soil was replaced every week. The 2,4,6-trinitrotoluene (TNT) concentration in soil began to drop after 15 days of treatment, falling to less than 0.5 mg/kg from 7800 mg/kg. Total plate counts in both reactors indicated that the bacterial population was maintained, with an average plate count of about 10{sup 8} CFU/mL. The soil slurry was slightly acidic. In addition to TNT, the slurry reactor also removed the other munitions compounds trinitrobenzene (TNB), 2,4-dinitrotoluene (2,4-DNT), RDX, and HMX. Radiolabeling studies on the reactor biomass showed that 23% of [{sup C}14]TNT was mineralized, while 27% was used as biomass and 8% was adsorbed on to the soil. The rest of the [{sup 14}C]TNT was accounted for as TNT metabolites. Increasing the frequency of soil replacement from once to two or three times weekly did not affect the TNT removal rates. However, the slurry system showed signs of stress, with highly acidic conditions and low oxygen uptake rates.

  20. SUSEE: A Compact, Lightweight Space Nuclear Power System Using Present Water Reactor Technology

    SciTech Connect

    Maise, George; Powell, James; Paniagua, John

    2006-01-20

    The SUSEE space reactor system uses existing nuclear fuels and the standard steam cycle to generate electrical and thermal power for a wide range of in-space and surface applications, including manned bases, sub-surface mobile probes to explore thick ice deposits on Mars and the Jovian moons, and mobile rovers. SUSEE cycle efficiency, thermal to electric, ranges from {approx}20 to 24%, depending on operating parameters. Rejection of waste heat is by a lightweight condensing radiator that can be launched as a compact rolled-up package and deployed into flat panels when appropriate. The 50 centimeter diameter SUSEE reactor can provide power over the range of 10 kW(e) to 1 MW(e) for a period of 10 years. Higher power outputs are possible using slightly larger reactors. System specific weight (reactor, turbine, generator, piping, and radiator) is {approx}3 kg/kW(e). Two SUSEE reactor options are described, based on the existing Zr/O2 cermet and the UH3/ZrH2 TRIGA nuclear fuels.

  1. Impact Of Health Care Delivery System Innovations On Total Cost Of Care.

    PubMed

    Smith, Kevin W; Bir, Anupa; Freeman, Nikki L B; Koethe, Benjamin C; Cohen, Julia; Day, Timothy J

    2017-03-01

    Using delivery system innovations to advance health care reform continues to be of widespread interest. However, it is difficult to generalize about the success of specific types of innovations, since they have been examined in only a few studies. To gain a broader perspective, we analyzed the results of forty-three ambulatory care programs funded by the first round of the Center for Medicare and Medicaid Innovation's Health Care Innovations Awards. The innovations' impacts on total cost of care were estimated by independent evaluators using multivariable difference-in-differences models. Through the first two years, most of the innovations did not show a significant effect on total cost of care. Using meta-regression, we assessed the effects on costs of five common components of these innovations. Innovations that used health information technology or community health workers achieved the greatest cost savings. Savings were also relatively large in programs that targeted clinically fragile patients-clinically complex populations at risk for disease progression. While the magnitude of these effects was often substantial, none achieved conventional levels of significance in our analyses. Meta-analyses of a larger number of delivery system innovations are needed to more clearly establish their potential for patient care cost savings.

  2. Long-term environmental trends: selection of sampling locations in a reactor-aquatic cooling system.

    PubMed

    Revsin, B K; Watson, J E

    1993-02-01

    The study objective was to determine whether environmental radionuclide accumulations were occurring in an aquatic system with a 13-y history of supplying a power plant with reactor-cooling water as well as receiving plant discharge. The aquatic system consisted of the following: 1) a reactor-cooling lake; 2) a secondary lake approximately 8 km downstream; and 3) a small stream that interfaced with the two lakes. Gamma-emitting radionuclides were identified and quantified in samples of benthic sediments obtained from representative areas of the aquatic system. This study demonstrated that in a reactor-aquatic cooling system, the component of the aquatic system most likely to experience radionuclide accumulation will not necessarily be the reactor-cooling lake, but will be that component of the aquatic system whose benthic sediments contain the highest concentrations of organic matter. Further, it was shown that the quantity of oxidizable organic matter present in a sediment is a good predictor or marker for potential sites of radionuclide accumulation (i.e., 60Co and 137Cs).

  3. Using an Interactive Systems Framework to Expand Telepsychology Innovations in Underserved Communities

    PubMed Central

    Alaniz, Angela B.

    2016-01-01

    Literature indicates that the use of promising innovations in mental health care can be improved. The advancement of telepsychology is one innovation that has been utilized as a method to reduce rural health disparities and increase the number of people with access to mental health services. This paper describes a successful pilot telepsychology program implemented in a rural community to increase access to mental health services and the model's replication and expansion into four additional communities using concepts described in an Interactive Systems Framework. The Interactive Systems Framework highlights how building local capacity specific to organizational functioning and innovations are necessary to support, deliver, and disseminate innovations within new settings. Based on the knowledge gained from this telepsychology innovation, the application of an Interactive Systems Framework and funding mechanisms are discussed. PMID:27403374

  4. Agricultural Innovation Systems (AIS): A Study of Stakeholders and Their Relations in System of Rice Intensification (SRI)

    ERIC Educational Resources Information Center

    Suchiradipta, Bhattacharjee; Raj, Saravanan

    2015-01-01

    Purpose: This paper identifies the stakeholders of System of Rice Intensification (SRI), their roles and actions and the supporting and enabling environment of innovation in the state as the elements of the Agricultural Innovation Systems (AIS) in SRI in Tripura state of India and studies the relationship matrix among the stakeholders.…

  5. Simulator platform for fast reactor operation and safety technology demonstration

    SciTech Connect

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  6. Oxygen transport membrane reactor based method and system for generating electric power

    DOEpatents

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  7. A Conceptual Multi-Megawatt System Based on a Tungsten CERMET Reactor

    SciTech Connect

    Jonathan A. Webb; Brian Gross

    2011-02-01

    Abstract. A conceptual reactor system to support Multi-Megawatt Nuclear Electric Propulsion is investigated within this paper. The reactor system consists of a helium cooled Tungsten-UN fission core, surrounded by a beryllium neutron reflector and 13 B4C control drums coupled to a high temperature Brayton power conversion system. Excess heat is rejected via carbon reinforced heat pipe radiators and the gamma and neutron flux is attenuated via segmented shielding consisting of lithium hydride and tungsten layers. Turbine inlet temperatures ranging from 1300 K to 1500 K are investigated for their effects on specific powers and net electrical outputs ranging from 1 MW to 100 MW. The reactor system is estimated to have a mass, which ranges from 15 Mt at 1 MWe and a turbine inlet temperature of 1500 K to 1200 Mt at 100 MWe and a turbine temperature of 1300 K. The reactor systems specific mass ranges from 32 kg/kWe at a turbine inlet temperature of 1300 K and a power of 1 MWe to 9.5 kg/kW at a turbine temperature of 1500 K and a power of 100 MWe.

  8. Nuclear reactor with makeup water assist from residual heat removal system

    DOEpatents

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  9. Nuclear reactor with makeup water assist from residual heat removal system

    DOEpatents

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  10. Energy Efficiency Building Systems Regional Innovation Cluster Initiative

    SciTech Connect

    Krebs, Martha

    2016-07-29

    The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with a focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.

  11. Sewage treatment in integrated system of UASB reactor and duckweed pond and reuse for aquaculture.

    PubMed

    Mohapatra, D P; Ghangrekar, M M; Mitra, A; Brar, S K

    2012-06-01

    The performance of a laboratory-scale upflow anaerobic sludge blanket (UASB) reactor and a duckweed pond containing Lemna gibba was investigated for suitability for treating effluent for use in aquaculture. While treating low-strength sewage having a chemical oxygen demand (COD) of typically less than 200 mg/L, with an increase in hydraulic retention time (HRT) from 10.04 to 33.49 h, COD removal efficiency of the UASB reactor decreased owing to a decrease in organic loading rate (OLR) causing poor mixing in the reactor. However, even at the lower OLR (0.475 kg COD/(m3 x d)), the UASB reactor gave a removal efficiency of 68% for COD and 74% for biochemical oxygen demand (BOD). The maximum COD, BOD, ammonia-nitrogen and phosphate removal efficiencies of the duckweed pond were 40.77%, 38.01%, 61.87% and 88.57%, respectively. Decreasing the OLR by increasing the HRT resulted in an increase in efficiency of the duckweed pond for removal of ammonia-nitrogen and phosphate. The OLR of 0.005 kg COD/(m2 x d) and HRT of 108 h in the duckweed pond satisfied aquaculture quality requirements. A specific growth rate of 0.23% was observed for tilapia fish fed with duckweed harvested from the duckweed pond. The economic analysis proved that it was beneficial to use the integrated system of a UASB reactor and a duckweed pond for treatment of sewage.

  12. Municipal waste stabilization in a reactor with an integrated active and passive aeration system.

    PubMed

    Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna

    2016-04-01

    To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor.

  13. Study of DNA damage with a new system for irradiation of samples in a nuclear reactor.

    PubMed

    Gual, Maritza R; Milian, Felix M; Deppman, Airton; Coelho, Paulo R P

    2011-02-01

    In this paper, we report results of a quantitative analysis of the effects of neutrons on DNA, and, specifically, the production of simple and double breaks of plasmid DNA in aqueous solutions with different concentrations of free-radical scavengers. The radiation damage to DNA was evaluated by electrophoresis through agarose gels. The neutron and gamma doses were measured separately with thermoluminescent detectors. In this work, we have also demonstrated usefulness of a new system for positioning and removing samples in channel BH#3 of the IEA-R1 reactor at the Instituto de Pesquisas Energéticas e Nucleares (Brazil) without necessity of interrupting the reactor operation.

  14. Supervisory control design based on hybrid systems and fuzzy events detection. Application to an oxichlorination reactor.

    PubMed

    Altamiranda, Edmary; Torres, Horacio; Colina, Eliezer; Chacón, Edgar

    2002-10-01

    This paper presents a supervisory control scheme based on hybrid systems theory and fuzzy events detection. The fuzzy event detector is a linguistic model, which synthesizes complex relations between process variables and process events incorporating experts' knowledge about the process operation. This kind of detection allows the anticipation of appropriate control actions, which depend upon the selected membership functions used to characterize the process under scrutiny. The proposed supervisory control scheme was successfully implemented for an oxichlorination reactor in a vinyl monomer plant. This implementation has allowed improvement of reactor stability and reduction of raw material consumption.

  15. Micro-Fluidic Chemical Reactor Systems: Development, Scale-Up and Demonstration

    DTIC Science & Technology

    2002-11-01

    915 – the reactor takes advantage of laminar flow to keep catholyte and anolyte separated. The structure is designed so that the catholyte and... anolyte can be introduced into the system separately. Because the flow is laminar and because the channels have a low aspect ratio (~ 500 microns wide

  16. Passive decay heat removal system for water-cooled nuclear reactors

    SciTech Connect

    Forseberg, C.W.

    1990-01-01

    This document describes passive decay-heat removal system for a water-cooled nuclear reactor which employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated evaporator located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  17. Flow-induced vibration and instability of some nuclear-reactor-system components. [PWR

    SciTech Connect

    Chen, S.S.

    1983-01-01

    The high-velocity coolant flowing through a reactor system component is a source of energy that can induce component vibration and instability. In fact, many reactor components have suffered from excessive vibration and/or dynamic instability. The potential for detrimental flow-induced vibration makes it necessary that design engineers give detailed considerations to the flow-induced vibration problems. Flow-induced-vibration studies have been performed in many countries. Significant progress has been made in understanding the different phenomena and development of design guidelines to avoid damaging vibration. The purpose of this paper is to present an overview of the recent progress in several selected areas, to discuss some new results and to indentify future research needs. Specifically, the following areas will be presented: examples of flow-induced-vibration problems in reactor components; excitation mechanisms and component response characteristics; instability mechanisms and stability criteria; design considerations; and future research needs.

  18. Ion transport membrane reactor systems and methods for producing synthesis gas

    DOEpatents

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  19. Applying Structural Systems Thinking to Frame Perspectives on Social Work Innovation

    PubMed Central

    Stringfellow, Erin J.

    2017-01-01

    Objective Innovation will be key to the success of the Grand Challenges Initiative in social work. A structural systems framework based in system dynamics could be useful for considering how to advance innovation. Method Diagrams using system dynamics conventions were developed to link common themes across concept papers written by social work faculty members and graduate students (N = 19). Results Transdisciplinary teams and ethical partnerships with communities and practitioners will be needed to responsibly develop high-quality innovative solutions. A useful next step would be to clarify to what extent factors that could “make or break” these partnerships arise from within versus outside of the field of social work and how this has changed over time. Conclusions Advancing innovation in social work will mean making decisions in a complex, ever-changing system. Principles and tools from methods that account for complexity, such as system dynamics, can help improve this decision-making process. PMID:28298877

  20. Development Status for a Combined Solid Oxide Co-Electrolyzer and Carbon Formation Reactor System for Oxygen Regeneration

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Matter, Paul H.; Holt, Chris; Beachy, Michael; Gaydos, James; Farmer, Serene C.; Setlock, John

    2016-01-01

    A critical component in spacecraft life support loop closure is the removal of carbon dioxide (CO2, produced by the crew) from the cabin atmosphere and chemical reduction of this CO2 to recover the oxygen. In 2015, we initiated development of an oxygen recovery system for life support applications consisting of a solid oxide co-electrolyzer (SOCE) and a carbon formation reactor (CFR). The SOCE electrolyzes a combined stream of carbon dioxide (CO2) and water (H2O) gas mixtures to produce synthesis gas (e.g., CO and H2 gas) and pure dry oxygen as separate products. This SOCE is being developed from a NASA GRC solid oxide fuel cell and stack design originally developed for aeronautics long-duration power applications. The CFR, being developed by pHMatter LLC, takes the CO and H2 output from the SOCE, and converts it primarily to solid carbon (C(s)) and H2O and CO2. Although the solid carbon accumulates in the CFR, the innovative design allows easy removal of the carbon product, requiring minimal crew member (CM) time and low resupply mass (1.0 kg/year/CM) for replacement of the solid carbon catalyst, a significant improvement over previous Bosch reactor approaches. In this work, we will provide a status of our Phase I efforts in the development and testing of both the SOCE and CFR prototype units, along with an initial assessment of the combined SOCE-CFR system, including a mass and power projections, along with an estimate of the oxygen recovery rate.