Schmidt, Kathrin R; Chand, Shivangini; Gostomski, Peter A; Boyd-Wilson, Kirsty S H; Ford, Chris; Walter, Monika
2005-01-01
The effect of fungal inoculum properties on colonization of nonsterile soil by three isolates of the white-rot fungus Trametes versicolor was investigated. Fungal inoculum properties were examined in separate experiments and were fungal inoculum composition, age of fungal inoculum, concentration of the inoculum and inoculation method. The fungal inoculum composition study compared pine versus poplar sawdust as the basic carrier with varying amounts of corn grit, corn meal and starch. The age of the fungal inoculum studied ranged from 3 to 21 days. The inoculum concentration gradually increased from 0 to 50% (v/v). The study assessing inoculation method compared mixing with layering techniques. The effect of moisture conditions of soil, sawdust and sand in combination with two inoculation methods (mixing versus point source inoculation) on colonization by T. versicolor was also determined. Colonization of soil was always assessed visually and enzymatically monitoring mycelial growth, biological potential (fluorescein diacetate assay) and laccase levels. Generally, the three different assessment methods correlated (P < 0.05) with each other. A fungal inoculum based on pine sawdust supported white-rot fungal growth in soil better than a poplar sawdust basis. Colonization of soil by T. versicolor was improved by increasing the corn content of the fungal inoculum. Younger (<7 days old) fungal inoculum resulted in better soil colonization than older (>10 days). A strong correlation (P < 0.001) was observed between the amount of fungal inoculum used in the soil augmentation and white-rot fungal colonization of soil. Inoculation of the fungal inoculum into soil by mixing was preferable over application in layers or point source inoculation. Moisture level did not influence biological potential measurements, but affected mycelial growth and laccase expression.
Wang, Kun; Yin, Jun; Shen, Dongsheng; Li, Na
2014-06-01
Food waste anaerobic fermentation was carried out under acidic conditions using inocula based on aerobic activated sludge (Inoculum AE) or anaerobic activated sludge (Inoculum AN) for volatile fatty acids (VFAs) production. The results showed that food waste hydrolysis increased obviously when Inoculum AN was used relative to Inoculum AE at any pH investigated. Hydrolysis at pH 4.0 and uncontrolled pH was higher than that at other pHs when either inoculum was used. Additionally, VFAs production at pH 6.0 was the highest, regardless of the inoculum used. The optimum VFA yields were 0.482g/gVSSremoval with Inoculum AE and 0.918g/gVSSremoval with Inoculum AN, which were observed after 4d and 20d of fermentation, respectively. VFAs composition analysis showed that butyrate acid was the prevalent acid at pH 6.0, followed by acetate acid and propionic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.
Selvaraj, Thangaswamy; Kim, Hoon
2004-03-01
A sucrose-agar globule (SAG) was newly introduced to increase production of the vesicular arbuscular mycorrhizal (VAM) fungal spores, Gigaspora gigantea and Glomus fasciculatum. An SAG inoculum and a sucrose-agar globule with root exudates (SAGE) inoculum were prepared, and their spore productions were compared with a soil inoculum. When the SAGE was used as the inoculum on sucrose-agar medium plates the number of spores was increased (35% more than the soil inoculum). After the soil inoculum and SAGE were inoculated on an experimental plant, Zingiber officinale, the percentage root colonization, number of VAM spores, and dry matter content were analyzed. It was observed that the SAGE showed a higher percentage of root colonization (about 10% more), and increases in the number of spores (about 26%) and dry matter (more than 13%) for the two VAM fungal spores than the soil inoculum. The results of this study suggested that the SAGE inoculum may be useful for the mass production of VAM fungi and also for the large scale production of VAM fungal fertilizer.
Sutherland, Alastair D; Varela, Joao C
2014-01-23
The hydrolysis of seaweed polysaccharides is the rate limiting step in anaerobic digestion (AD) of seaweeds. Seven different microbial inocula and a mixture of these (inoculum 8) were therefore compared in triplicate, each grown over four weeks in static culture for the ability to degrade Laminaria hyperborea seaweed and produce methane through AD. All the inocula could degrade L. hyperborea and produce methane to some extent. However, an inoculum of slurry from a human sewage anaerobic digester, one of rumen contents from seaweed-eating North Ronaldsay sheep and inoculum 8 used most seaweed volatile solids (VS) (means ranged between 59 and 68% used), suggesting that these each had efficient seaweed polysaccharide digesting bacteria. The human sewage inoculum, an inoculum of anaerobic marine mud mixed with rotting seaweed and inoculum 8 all developed to give higher volumes of methane (means between 41 and 62.5 ml g-1 of seaweed VS by week four) ,compared to other inocula (means between 3.5 and 27.5 ml g-1 VS). Inoculum 8 also gave the highest acetate production (6.5 mmol g-1 VS) in a single-stage fermenter AD system and produced most methane (8.4 mL mmol acetate-1) in phase II of a two-stage AD system. Overall inoculum 8 was found to be the most efficient inoculum for AD of seaweed. The study therefore showed that selection and inclusion of efficient polysaccharide hydrolysing bacteria and methanogenic archaea in an inoculum offer increased methane productivity in AD of L. hyperborea. This inoculum will now being tested in larger scale (10L) continuously stirred reactors optimised for feed rate and retention time to determine maximum methane production under single-stage and two-stage AD systems.
2014-01-01
Background The hydrolysis of seaweed polysaccharides is the rate limiting step in anaerobic digestion (AD) of seaweeds. Seven different microbial inocula and a mixture of these (inoculum 8) were therefore compared in triplicate, each grown over four weeks in static culture for the ability to degrade Laminaria hyperborea seaweed and produce methane through AD. Results All the inocula could degrade L. hyperborea and produce methane to some extent. However, an inoculum of slurry from a human sewage anaerobic digester, one of rumen contents from seaweed-eating North Ronaldsay sheep and inoculum 8 used most seaweed volatile solids (VS) (means ranged between 59 and 68% used), suggesting that these each had efficient seaweed polysaccharide digesting bacteria. The human sewage inoculum, an inoculum of anaerobic marine mud mixed with rotting seaweed and inoculum 8 all developed to give higher volumes of methane (means between 41 and 62.5 ml g-1 of seaweed VS by week four) ,compared to other inocula (means between 3.5 and 27.5 ml g-1 VS). Inoculum 8 also gave the highest acetate production (6.5 mmol g-1 VS) in a single-stage fermenter AD system and produced most methane (8.4 mL mmol acetate-1) in phase II of a two-stage AD system. Conclusions Overall inoculum 8 was found to be the most efficient inoculum for AD of seaweed. The study therefore showed that selection and inclusion of efficient polysaccharide hydrolysing bacteria and methanogenic archaea in an inoculum offer increased methane productivity in AD of L. hyperborea. This inoculum will now being tested in larger scale (10L) continuously stirred reactors optimised for feed rate and retention time to determine maximum methane production under single-stage and two-stage AD systems. PMID:24456825
Zaouchi, Yousr; Bahri, Nada Ben; Rezgui, S; Bettaieb, Taoufik
2013-10-01
The effects of fertilization and the nature of the inoculum as well as the variation of the dose intake of the latter on the level of Jacaranda mimosifolia D.Don mycorhization were tested. Young plants were treated with two inoculums presenting different origins, compositions and modes of application: one is a commercial product containing Glomus irregulare, and the other is a composite indigenous inoculum resulting from trapping five species of genus Glomus and also from multiplication on mycotrophic plants: leek (Allium porrum L.) and vetch (Vicia sativa L.). For each inoculum, two doses were tested and for each dose of inoculum, four levels of fertilization based on a complete commercial fertilizer (Osmocote) were tested: 0 g/plant, 2 g/plant, 4 g/plant, and 6g/plant. Three repetitions were performed for each combination treatment of inoculum/fertilizer. One-year-old young Jacaranda plants, being about 40 cm high, were cultured under greenhouse in 10/12 cm caliber pots. After six months, all the inoculated plants were mycorrhized. According to endomycorrhizal structures found on their roots, plants receiving doses of composite indigenous inoculum reached a more advanced stage of mycorrhization than those treated with the commercial inoculum. The existence of an interaction effect between the inoculum dose and the level of fertilization on Jacaranda mycorhization rate was excluded. These two parameters of variation were studied as simple effects. The increase in commercial inoculum dose had a significant positive influence on the level of Jacaranda plants mycorrhization (P=0.05). The rate of mycorrhization jumped from 12.69% to 21.92%. Nonetheless, for plants receiving increasing doses of composite indigenous inoculum, the level of mycorrhization has varied randomly. In both instances of inoculum treatments, increasing the dose of fertilizer significantly inhibited endomycorrhizal colonization of Jacaranda roots (P=0.01). Thus, the rate of root colonization decreased from 47.43% to 2.41% for plants receiving the composite indigenous inoculums. It decreased from 32.35% to 3.95% for those treated with the commercial inoculum. Mycorrhization had a positive effect on root dry biomass of Jacaranda, as in the case of unfertilize ave the highest rates of colonization. Copyright © 2013. Published by Elsevier SAS.
Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D
2017-02-01
Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P < 0.001) and had more discriminant taxa delineating groups (linear discriminant analysis). Living inoculum soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P < 0.05), and more discriminant taxa than conventionally farmed inoculum-treated soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.
Sources of inoculum for Phytophthora ramorum in a redwood forest.
Davidson, J M; Patterson, H A; Rizzo, D M
2008-08-01
ABSTRACT Sources of inoculum were investigated for dominant hosts of Phytophthora ramorum in a redwood forest. Infected trunks, twigs, and/or leaves of bay laurel (Umbellularia californica), tanoak (Lithocarpus densiflorus), and redwood (Sequoia sempervirens) were tested in the laboratory for sporangia production. Sporangia occurred on all plant tissues with the highest percentage on bay laurel leaves and tanoak twigs. To further compare these two species, field measurements of inoculum production and infection were conducted during the rainy seasons of 2003-04 and 2004-05. Inoculum levels in throughfall rainwater and from individual infections were significantly higher for bay laurel as opposed to tanoak for both seasons. Both measurements of inoculum production from bay laurel were significantly greater during 2004-05 when rainfall extended longer into the spring, while inoculum quantities for tanoak were not significantly different between the 2 years. Tanoak twigs were more likely to be infected than bay laurel leaves in 2003-04, and equally likely to be infected in 2004-05. These results indicate that the majority of P. ramorum inoculum in redwood forest is produced from infections on bay laurel leaves. Years with extended rains pose an elevated risk for tanoak because inoculum levels are higher and infectious periods continue into late spring.
Ding, Ming-Zhu; Tian, Hong-Chi; Cheng, Jing-Sheng; Yuan, Ying-Jin
2009-12-01
To investigate the metabolic regulation against inoculum density and stress response to high cell density, comparative metabolomic analysis was employed on Saccharomyces cerevisiae under fermentations with five different inoculum sizes by gas chromatography time-of-flight mass spectrometry. Samples from these fermentations were clearly distinguished by principal components analysis, indicating that inoculum size had a profound effect on the metabolism of S. cerevisiae. Potential biomarkers responsible for the discrimination were identified as glycerol, phosphoric acid, succinate, glycine, isoleucine, proline, palmitoleic acid, myo-inositol and ethanolamine. It indicated that enhanced stress protectants in glycerol biosynthesis and amino acid metabolism, depressed citric acid cycle intermediates, as well as decreased metabolites relating to membrane structure and function were involved as the inoculum size of yeast increased. Furthermore, significantly higher levels of glycerol and proline in yeast cells of higher inoculum size fermentation (40 g l(-1)) revealed that they played important roles in protecting yeast from stresses in high cell density fermentation. These findings provided new insights into characterizing the metabolic regulation and stress response depending on inoculum density during ethanol fermentation.
The effect of cultivation on the size, shape, and persistence of disease patches in fields.
Truscott, J E; Gilligan, C A
2001-06-19
Epidemics of soil-borne plant disease are characterized by patchiness because of restricted dispersal of inoculum. The density of inoculum within disease patches depends on a sequence comprising local amplification during the parasitic phase followed by dispersal of inoculum by cultivation during the intercrop period. The mechanisms that control size, shape, and persistence have received very little rigorous attention in epidemiological theory. Here we derive a model for dispersal of inoculum in soil by cultivation that takes account into the discrete stochastic nature of the system in time and space. Two parameters, probability of movement and mean dispersal distance, characterize lateral dispersal of inoculum by cultivation. The dispersal parameters are used in combination with the characteristic area and dimensions of host plants to identify criteria that control the shape and size of disease patches. We derive a critical value for the probability of movement for the formation of cross-shaped patches and show that this is independent of the amount of inoculum. We examine the interaction between local amplification of inoculum by parasitic activity and subsequent dilution by dispersal and identify criteria whereby asymptomatic patches may persist as inoculum falls below a threshold necessary for symptoms to appear in the subsequent crop. The model is motivated by the spread of rhizomania, an economically important soil-borne disease of sugar beet. However, the results have broad applicability to a very wide range of diseases that survive as discrete units of inoculum. The application of the model to patch dynamics of weed seeds and local introductions of genetically modified seeds is also discussed.
Srinivasan, R; Alvarez, J M
2008-09-01
Hairy nightshade, Solanum sarrachoides, is a solanaceous weed found abundantly in Pacific Northwest potato ecosystems. It serves as a reservoir for one of the important potato viruses, Potato leafroll virus (PLRV) (Luteoviridae: Polerovirus), and its most important vector, the green peach aphid, Myzus persicae (Homoptera: Aphididae). Laboratory research indicated an increased green peach aphid settling and performance on S. sarrachoides than on potato. It also revealed that green peach aphids transmitted PLRV more efficiently from S. sarrachoides to potato than from potato to potato. To test the efficiency of S. sarrachoides as an inoculum source in the field, a two season (2004 and 2005) trial was conducted at Kimberly, Idaho. Two inoculum sources, PLRV-infected potato and PLRV-infected S. sarrachoides, were compared in this trial. Green peach aphid density and temporal and spatial PLRV spread were monitored at weekly intervals. Higher densities of green peach aphids were observed on plots with S. sarrachoides and inoculum sources (PLRV-infected S. sarrachoides and potato) than on plots without S. sarrachoides and inoculum sources. PLRV infection in plots with PLRV-infected S. sarrachoides was similar to or slightly higher than in plots with PLRV-infected potato as an inoculum source. Temporal and spatial PLRV spread was similar in plots with either inoculum source. Thus, S. sarrachoides is as efficient as or a better PLRV inoculum source than potato.
NASA Astrophysics Data System (ADS)
Hamdiyati, Yanti; Kusnadi, Yuliani, Lia Amelia
2016-02-01
The used of synthetic dyes have various negative effects on human health. Roomates pigment produced by Monascus purpureus mold can be used as an alternative natural food coloring. The research on the effect of inoculum concentration's M. purpureus to pigment production on the jackfruit seed flour has been done. The objective of research to is to investigate the effect of inoculum concentration's M. purpureus to the production of red, yellow and orange pigment on the jackfruit seed flour. The concentrations used were 0%, 5%, 10%, and 15% (v/w). The result of the data analysed using One-Way ANOVA showed that the inoculum concentration affected the production of red pigment M. purpureus, as well as the data analysis using the Kruskal-Wallis showed that inoculum concentration has influence on the production of yellow and orange pigments. Inoculum concentration of 15% is the optimum concentration for the production of red, yellow and orange pigments with 0:10, 0:50 and 0:20 absorbance units per gram of sample respectively. Based on the results of the research, it can be concluded that inoculum concentration of M. purpureus influenced the production of red, yellow and orange pigments.
Inoculum selection influences the biochemical methane potential of agro-industrial substrates
De Vrieze, Jo; Raport, Linde; Willems, Bernard; Verbrugge, Silke; Volcke, Eveline; Meers, Erik; Angenent, Largus T; Boon, Nico
2015-01-01
Obtaining a reliable estimation of the methane potential of organic waste streams in anaerobic digestion, for which a biochemical methane potential (BMP) test is often used, is of high importance. Standardization of this BMP test is required to ensure inter-laboratory repeatability and accuracy of the BMP results. Therefore, guidelines were set out; yet, these do not provide sufficient information concerning origin of and the microbial community in the test inoculum. Here, the specific contribution of the methanogenic community on the BMP test results was evaluated. The biomethane potential of four different substrates (molasses, bio-refinery waste, liquid manure and high-rate activated sludge) was determined by means of four different inocula from full-scale anaerobic digestion plants. A significant effect of the selected inoculum on the BMP result was observed for two out of four substrates. This inoculum effect could be attributed to the abundance of methanogens and a potential inhibiting effect in the inoculum itself, demonstrating the importance of inoculum selection for BMP testing. We recommend the application of granular sludge as an inoculum, because of its higher methanogenic abundance and activity, and protection from bulk solutions, compared with other inocula. PMID:25756301
Smith, Kenneth P; Kirby, James E
2018-05-21
The observed MIC may depend on the number of bacteria initially inoculated into the assay. This phenomenon is termed the inoculum effect (IE) and is often most pronounced for β-lactams in strains expressing β-lactamase enzymes. The Clinical and Laboratory Standards Institute (CLSI) recommended inoculum is 5 x 10 5 CFU mL -1 with an acceptable range of 2-8 x 10 5 CFU mL -1 IE testing is typically performed using an inoculum 100-fold greater than the CLSI recommended inoculum. Therefore, it remains unknown whether the IE influences MICs during testing performed according to CLSI guidelines. Here, we utilized inkjet printing technology to test the IE on cefepime, meropenem, and ceftazidime-avibactam. First, we determined that inkjet dispense volume correlated well with the number of bacteria delivered to microwells in two-fold (R 2 = 0.99) or 1.1-fold (R 2 = 0.98) serial dilutions. We then quantified the IE by dispensing orthogonal titrations of bacterial cells and antibiotics. For cefepime resistant and susceptible dose-dependent strains, a 2-fold increase in inoculum resulted in a 1.6 Log 2 -fold increase in MIC. For carbapenemase-producing strains, each 2-fold reduction in inoculum resulted in a 1.26 Log 2 -fold reduction in meropenem MIC. At the lower end of the CLSI allowable inoculum range, minor error rates of 34.8% were observed for meropenem when testing a resistant strain set. Ceftazidime-avibactam was not subject to an appreciable IE. Our results suggest that IE is sufficiently pronounced for meropenem and cefepime in multidrug-resistant Gram-negative pathogens to affect categorical interpretations during standard laboratory testing. Copyright © 2018 American Society for Microbiology.
Koch, Konrad; Lippert, Thomas; Drewes, Jörg E
2017-11-01
The impact of the inoculum's origin on the methane yield in Biochemical Methane Potential (BMP) tests was investigated. The three most commonly applied inocula were chosen, originating from (i) a digester of a wastewater treatment plant, (ii) an agricultural biogas plant treating manure and energy crops, and (iii) a biowaste treatment plant. The performance of each inoculum was tested with four different substrates, namely sewage sludge, dried whole crop maize, food waste, and microcrystalline cellulose as a typical reference material. The results revealed that the choice of inoculum had no significant impact on the specific methane yield of the tested substrates except for cellulose. Still, the specific methane production rate was significantly influenced by the choice of the inoculum especially for sewage sludge, but also for food waste and cellulose, whereas it became clear that an inoculum adapted to a substrate is beneficial for a speedy digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Towards a universal microbial inoculum for dissolved organic carbon degradation experiments
NASA Astrophysics Data System (ADS)
Pastor, Ada; Catalán, Núria; Gutiérrez, Carmen; Nagar, Nupur; Casas-Ruiz, Joan P.; Obrador, Biel; von Schiller, Daniel; Sabater, Sergi; Petrovic, Mira; Borrego, Carles M.; Marcé, Rafael
2017-04-01
Dissolved organic carbon (DOC) is the largest biologically available pool of organic carbon in aquatic ecosystems and its degradation along the land-to-ocean continuum has implications for carbon cycling from local to global scales. DOC biodegradability is usually assessed by incubating filtered water inoculated with native microbial assemblages in the laboratory. However, the use of a native inoculum from several freshwaters, without having a microbial-tailored design, hampers our ability to tease apart the relative contribution of the factors driving DOC degradation from the effects of local microbial communities. The use of a standard microbial inoculum would allow researchers to disentangle the drivers of DOC degradation from the metabolic capabilities of microbial communities operating in situ. With this purpose, we designed a bacterial inoculum to be used in experiments of DOC degradation in freshwater habitats. The inoculum is composed of six bacterial strains that easily grow under laboratory conditions, possess a versatile metabolism and are able to grow under both aerobic and anaerobic conditions. The mixed inoculum showed higher DOC degradation rates than those from their isolated bacterial components and the consumption of organic substrates was consistently replicated. Moreover, DOC degradation rates obtained using the designed inoculum were responsive across a wide range of natural water types differing in DOC concentration and composition. Overall, our results show the potential of the designed inoculum as a tool to discriminate between the effects of environmental drivers and intrinsic properties of DOC on degradation dynamics.
Effect of seed sludge on characteristics and microbial community of aerobic granular sludge.
Song, Zhiwei; Pan, Yuejun; Zhang, Kun; Ren, Nanqi; Wang, Aijie
2010-01-01
Aerobic granular sludge was cultivated by using different kinds of seed sludge in sequencing batch airlift reactor. The influence of seed sludge on physical and chemical properties of granular sludge was studied; the microbial community structure was probed by using scanning electron microscope and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that seed sludge played an important role on the formation of aerobic granules. Seed sludge taken from beer wastewater treatment plant (inoculum A) was more suitable for cultivating aerobic granules than that of sludge from municipal wastewater treatment plant (inoculum B). Cultivated with inoculum A, large amount of mature granules formed after 35 days operation, its SVI reached 32.75 mL/g, and SOUR of granular sludge was beyond 1.10 mg/(g x min). By contrast, it needed 56 days obtaining mature granules using inoculum B. DGGE profiles indicated that the dominant microbial species in mature granules were 18 and 11 OTU when inoculum A and B were respectively employed as seed sludge. The sequencing results suggested that dominant species in mature granules cultivated by inoculum A were Paracoccus sp., Devosia hwasunensi, Pseudoxanthomonas sp., while the dominant species were Lactococcus raffinolactis and Pseudomonas sp. in granules developed from inoculum B.
Niwa, Rieko; Koyama, Takuya; Sato, Takumi; Adachi, Katsuki; Tawaraya, Keitaro; Sato, Shusei; Hirakawa, Hideki; Yoshida, Shigenobu; Ezawa, Tatsuhiro
2018-05-09
Arbuscular mycorrhizal (AM) fungi associate with most land plants and deliver phosphorus to the host. Identification of biotic/abiotic factors that determine crop responses to AM fungal inoculation is an essential step for successful application of the fungi in sustainable agriculture. We conducted three field trials on soybean with a commercial inoculum and developed a new molecular tool to dissect interactions between the inoculum and indigenous fungi on the MiSeq sequencing platform. Regression analysis indicated that sequence read abundance of the inoculum fungus was the most significant factor that determined soybean yield responses to the inoculation, suggesting that dominance of the inoculum fungus is a necessary condition for positive yield responses. Agricultural practices (fallow/cropping in the previous year) greatly affected the colonization levels (i.e. read abundances) of the inoculum fungus via altering the propagule density of indigenous AM fungi. Analysis of niche competition revealed that the inoculum fungus competed mainly with the indigenous fungi that are commonly distributed in the trial sites, probably because their life-history strategy is the same as that of the inoculum fungus. In conclusion, we provide a new framework for evaluating the significance of environmental factors towards successful application of AM fungi in agriculture.
NASA Astrophysics Data System (ADS)
Papp, Orsolya; Biro, Borbala; Abod, Eva; Jung, Timea; Tirczka, Imre; Drexler, Dora
2017-04-01
Soil biological functioning and proper agrotechnical management are of key importance in organic agriculture. Beneficial microbial inoculums are used either as plant strengthening products (psp) or also as plant protecting products (ppp). Question is, which type of microbes should be applied to certain soil-plant systems to improve yield or reduce the damage of soil-born plant pathogens? Objective of present study was to compare the effect of inoculums 1 (PPS) with plant growth promoting bacterium strains (PGPR) and inoculums 2 (TPB) with potential biocontrol-agents, including both fungi and bacteria in organic potato production. Field experiment was conducted at the Organic Research Station of the Szent István University (Babatpuszta, Hungary). Growth and quality of potato (Solanum tuberosum var. Demon) was studied in the two microbial treatments and control, in four replicates. The PPS inoculums included Pseudomonas protegens, Ps. jessenii and Strenotrophomonas maltophylia, with plant growth promoting (PGPR) effect. TPB inoculums consisted of Trichoderma hartianum, Pseudomonas putida and Bacillus subtilis strains with main biocontrol effects of fungal and bacterium combination. Strains were incubated for 24 hours at 28 oC in a rotary shaker (140 rpm/min) up till cell-number about 1010 cell.ml-1 in Nutrient broth substrate, and mixed to prepare combined inoculums. Each potato tuber was treated by 10 ml inoculums that was added to 100 ml water respectively with only water at the controls. Yield of potato (10 plants/plot) and tuber quality, i.e. the percentage ratio of scabbiness (Streptomyces scabies), Rhizoctonia solani, and Fusarium sp. infection was estimated. Abundance of total aerob and anaerob heterotrophs, total microscopic fungi, pseudomonads bacteria and some sporeforming microorganisms was assessed by the most probable number (MPN) method in soil samples, collected four times during vegetation. Soil enzyme, dehydrogenase (DH) and fluorescein diacetate (FDA) activity was estimated, beside soil physical and chemical characteristics. Statistics, including binomial logistic regression was used for evaluation (IBM SPSS Statistics 22 software). Aerobic MPN counts were reduced by 0,5 value, anaerobic however were increased by 2 order of magnitude at the end of vegetation period. Both inoculums reduced the fungal counts at 60% of flowering stage, but PPS inoculums improved also the abundance of pseudomonads bacteria in the soil at all sampling stages. Soil dehydrogenase (DH) activity showed a strong seasonal variability, which was about 20-times higher at flowering of potato, more particularly at TPB inoculums. Although yield parameters were only tendentiously improved, the presence of Rhizoctonia solani infected tubers was significantly less likely (by 70,3%) with TPB inoculums combination. We assumed that presence of biocontrol type of Trichoderma fungi in TPB inoculums was the reason for such a significant reduction of Rhizoctonia infection. Necessity of previous monitoring of soil-health, including the microbial status of potential biocontrol strains is concluded. The tuber quality of organic potato may be enhanced by using the inoculums tested in this study. Thematically belongs to Biochar (Piac-13-1-2013-0274) and Biofector (GA 312117) projects.
Infection of five Phytophthora ramorum hosts in response to increasing inoculum levels
Paul Tooley; Marsha Browning; Robert Leighty
2013-01-01
The objective of this work was to establish inoculum density relationships between Phytophthora ramorum and selected hosts based on whole plant inoculations. Knowledge of levels of initial inoculum needed to generate epidemics is needed for disease prediction and development of pest risk assessments. Sporangia of six P. ramorum...
Wilson, L Paige; Sharvelle, Sybil E; De Long, Susan K
2016-11-01
Suboptimal conditions in anaerobic digesters (e.g., presence of common inhibitors ammonia and salinity) limit waste hydrolysis and lead to unstable performance and process failures. Application of inhibitor-tolerant inocula improves hydrolysis, but approaches are needed to establish and maintain these desired waste-hydrolyzing bacteria in high-solids reactors. Herein, performance was compared for leach bed reactors (LBRs) seeded with unacclimated or acclimated inoculum (0-60% by mass) at start-up and over long-term operation. High quantities of inoculum (∼60%) increase waste hydrolysis and are beneficial at start-up or when inhibitors are increasing. After start-up (∼112days) with high inoculum quantities, leachate recirculation leads to accumulation of inhibitor-tolerant hydrolyzing bacteria in leachate. During long-term operation, low inoculum quantities (∼10%) effectively increase waste hydrolysis relative to without solids-derived inoculum. Molecular analyses indicated that combining digested solids with leachate-based inoculum doubles quantities of Bacteria contacting waste over a batch and supplies additional desirable phylotypes Bacteriodes and Clostridia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vidal, T; Gigot, C; de Vallavieille-Pope, C; Huber, L; Saint-Jean, S
2018-06-08
Growing cultivars differing by their disease resistance level together (cultivar mixtures) can reduce the propagation of diseases. Although architectural characteristics of cultivars are little considered in mixture design, they could have an effect on disease, in particular through spore dispersal by rain splash, which occurs over short distances. The objective of this work was to assess the impact of plant height of wheat cultivars in mixtures on splash dispersal of Zymoseptoria tritici, which causes septoria tritici leaf blotch. We used a modelling approach involving an explicit description of canopy architecture and splash dispersal processes. The dispersal model computed raindrop interception by a virtual canopy as well as the production, transport and interception of splash droplets carrying inoculum. We designed 3-D virtual canopies composed of susceptible and resistant plants, according to field measurements at the flowering stage. In numerical experiments, we tested different heights of virtual cultivars making up binary mixtures to assess the influence of this architectural trait on dispersal patterns of spore-carrying droplets. Inoculum interception decreased exponentially with the height relative to the main inoculum source (lower diseased leaves of susceptible plants), and little inoculum was intercepted further than 40 cm above the inoculum source. Consequently, tall plants intercepted less inoculum than smaller ones. Plants with twice the standard height intercepted 33 % less inoculum than standard height plants. In cases when the height of suscpeptible plants was doubled, inoculum interception by resistant leaves was 40 % higher. This physical barrier to spore-carrying droplet trajectories reduced inoculum interception by tall susceptible plants and was modulated by plant height differences between cultivars of a binary mixture. These results suggest that mixture effects on spore dispersal could be modulated by an adequate choice of architectural characteristics of cultivars. In particular, even small differences in plant height could reduce spore dispersal.
Griffith, Candace L; Ribeiro, Gabriel O; Oba, Masahito; McAllister, Tim A; Beauchemin, Karen A
2016-01-01
The purpose of this study was to determine the effect of rumen inoculum from heifers with fast vs. slow rate of in situ fiber digestion on the fermentation of complex versus easily digested fiber sources in the forms of untreated and Ammonia Fiber Expansion (AFEX) treated barley straw, respectively, using an artificial rumen simulation technique (Rusitec). In situ fiber digestion was measured in a previous study by incubating untreated barley straw in the rumen of 16 heifers fed a diet consisting of 700 g/kg barley straw and 300 g/kg concentrate. The two heifers with fastest rate of digestion (Fast ≥ 4.18% h -1 ) and the two heifers with the slowest rate of digestion (Slow ≤ 3.17% h -1 ) were chosen as inoculum donors for this study. Two Rusitec apparatuses each equipped with eight fermenters were used in a completely randomized block design with two blocks (apparatus) and four treatments in a 2 × 2 factorial arrangement of treatments (Fast or Slow rumen inoculum and untreated or AFEX treated straw). Fast rumen inoculum and AFEX straw both increased ( P < 0.05) disappearance of dry matter (DMD), organic matter, true DMD, neutral detergent fiber, acid detergent fiber, and nitrogen (N) with an interactive effect between the two ( P < 0.05). Fast rumen inoculum increased ( P > 0.05) methane production per gram of digested material for both untreated and AFEX straw, and reduced (interaction, P < 0.05) acetate: propionate ratio for untreated straw. Greater relative populations of Ruminococcus albus ( P < 0.05) and increased microbial N production ( P = 0.045) were observed in Fast rumen inoculum. AFEX straw in Fast inoculum had greater total bacterial populations than Slow, but for untreated straw this result was reversed (interaction, P = 0.013). These findings indicate that differences in microbial populations in rumen fluid contribute to differences in the capacity of rumen inoculum to digest fiber.
Jung, Yong-Gyun; Kim, Hyejin; Lee, Sangyeop; Kim, Suyeoun; Jo, EunJi; Kim, Eun-Geun; Choi, Jungil; Kim, Hyun Jung; Yoo, Jungheon; Lee, Hye-Jeong; Kim, Haeun; Jung, Hyunju; Ryoo, Sungweon; Kwon, Sunghoon
2018-06-05
The Disc Agarose Channel (DAC) system utilizes microfluidics and imaging technologies and is fully automated and capable of tracking single cell growth to produce Mycobacterium tuberculosis (MTB) drug susceptibility testing (DST) results within 3~7 days. In particular, this system can be easily used to perform DSTs without the fastidious preparation of the inoculum of MTB cells. Inoculum effect is one of the major problems that causes DST errors. The DAC system was not influenced by the inoculum effect and produced reliable DST results. In this system, the minimum inhibitory concentration (MIC) values of the first-line drugs were consistent regardless of inoculum sizes ranging from ~10 3 to ~10 8 CFU/mL. The consistent MIC results enabled us to determine the critical concentrations for 12 anti-tuberculosis drugs. Based on the determined critical concentrations, further DSTs were performed with 254 MTB clinical isolates without measuring an inoculum size. There were high agreement rates (96.3%) between the DAC system and the absolute concentration method using Löwenstein-Jensen medium. According to these results, the DAC system is the first DST system that is not affected by the inoculum effect. It can thus increase reliability and convenience for DST of MTB. We expect that this system will be a potential substitute for conventional DST systems.
Oss, Daniela B; Ribeiro, Gabriel O; Marcondes, Marcos I; Yang, WenZhu; Beauchemin, Karen A; Forster, Robert J; McAllister, Tim A
2016-01-01
This study evaluated the effect of increasing the proportion of bison relative to cattle inoculum on fermentation and microbial populations within an artificial rumen (Rusitec). The experiment was a completely randomized design with a factorial treatment structure (proportion cattle:bison inoculum; 0:100, 33:67, 67:33, and 100:0) replicated in two Rusitec apparatuses ( n = 8 fermenters). The experiment was 15 d with 8 d of adaptation and 7 d of sampling. Fermenters were fed a diet of 70:30 barley straw:concentrate (DM basis). True digestibility of DM was determined after 48 h of incubation from d 13 to 15, and daily ammonia (NH 3 ) and volatile fatty acid (VFA) production were measured on d 9-12. Protozoa counts were determined at d 9, 11, 13, and 15 and particle-associated bacteria (PAB) from d 13 to 15. Select bacterial populations in the PAB were measured using RT-qPCR. Fermenter was considered the experimental unit and day of sampling as a repeated measure. Increasing the proportion of bison inoculum resulted in a quadratic effect ( P < 0.05) on straw, concentrate and total true DM disappearance and on straw and total neutral detergent fiber (aNDF) disappearance, with greater disappearances observed with mixed inoculum. There were no effect of source or proportion of inoculum on ADF disappearance ( P > 0.05). Increasing bison inoculum linearly increased ( P < 0.05) concentrate aNDF disappearance, total and concentrate N disappearance as well as total daily VFA and acetate production. A positive quadratic response ( P < 0.05) was observed for daily NH 3 -N, propionate, butyrate, valerate, isovalerate and isobutyrate production, as well as the acetate:propionate ratio. Increasing the proportion of bison inoculum linearly increased ( P < 0.05) total protozoa numbers. No effects were observed on pH, total gas and methane production, microbial N synthesis, or copies of 16S rRNA associated with total bacteria, Selenomonas ruminantium or Prevotella bryantii . Increasing bison inoculum had a quadratic effect ( P < 0.05) on Fibrobacter succinogenes , and tended to linearly ( P < 0.10) increase Ruminococcus flavefaciens and decrease ( P < 0.05) Ruminococcus albus copy numbers. In conclusion, bison inoculum increased the degradation of feed protein and fiber. A mixture of cattle and bison rumen inoculum acted synergistically, increasing the DM and aNDF disappearance of barley straw.
Oss, Daniela B.; Ribeiro, Gabriel O.; Marcondes, Marcos I.; Yang, WenZhu; Beauchemin, Karen A.; Forster, Robert J.; McAllister, Tim A.
2016-01-01
This study evaluated the effect of increasing the proportion of bison relative to cattle inoculum on fermentation and microbial populations within an artificial rumen (Rusitec). The experiment was a completely randomized design with a factorial treatment structure (proportion cattle:bison inoculum; 0:100, 33:67, 67:33, and 100:0) replicated in two Rusitec apparatuses (n = 8 fermenters). The experiment was 15 d with 8 d of adaptation and 7 d of sampling. Fermenters were fed a diet of 70:30 barley straw:concentrate (DM basis). True digestibility of DM was determined after 48 h of incubation from d 13 to 15, and daily ammonia (NH3) and volatile fatty acid (VFA) production were measured on d 9–12. Protozoa counts were determined at d 9, 11, 13, and 15 and particle-associated bacteria (PAB) from d 13 to 15. Select bacterial populations in the PAB were measured using RT-qPCR. Fermenter was considered the experimental unit and day of sampling as a repeated measure. Increasing the proportion of bison inoculum resulted in a quadratic effect (P < 0.05) on straw, concentrate and total true DM disappearance and on straw and total neutral detergent fiber (aNDF) disappearance, with greater disappearances observed with mixed inoculum. There were no effect of source or proportion of inoculum on ADF disappearance (P > 0.05). Increasing bison inoculum linearly increased (P < 0.05) concentrate aNDF disappearance, total and concentrate N disappearance as well as total daily VFA and acetate production. A positive quadratic response (P < 0.05) was observed for daily NH3-N, propionate, butyrate, valerate, isovalerate and isobutyrate production, as well as the acetate:propionate ratio. Increasing the proportion of bison inoculum linearly increased (P < 0.05) total protozoa numbers. No effects were observed on pH, total gas and methane production, microbial N synthesis, or copies of 16S rRNA associated with total bacteria, Selenomonas ruminantium or Prevotella bryantii. Increasing bison inoculum had a quadratic effect (P < 0.05) on Fibrobacter succinogenes, and tended to linearly (P < 0.10) increase Ruminococcus flavefaciens and decrease (P < 0.05) Ruminococcus albus copy numbers. In conclusion, bison inoculum increased the degradation of feed protein and fiber. A mixture of cattle and bison rumen inoculum acted synergistically, increasing the DM and aNDF disappearance of barley straw. PMID:28018336
Experimental rhinovirus infection in volunteers.
Bardin, P G; Sanderson, G; Robinson, B S; Holgate, S T; Tyrrell, D A
1996-11-01
Experimental viral disease studies in volunteers have clarified many aspects of the pathogenesis of human viral disease. Recently, interest has focused on rhinovirus-associated asthma exacerbations, and new volunteer studies have suggested that airway responsiveness (AR) is enhanced during a cold. For scientific, ethical and safety reasons, it is important to use validated methods for the preparation of a virus inoculum and that the particular virological characteristics and host responses should not be altered. We have prepared a new human rhinovirus (HRV) inoculum using recent guidelines and assessed whether disease characteristics (for example, severity of colds or changes in AR) were retained. Studies were conducted in 25 clinically healthy volunteers using a validated HRV inoculum in the first 17 and a new inoculum in the subsequent eight subjects. Severity of cold symptoms, nasal wash albumin levels and airway responsiveness were measured, and the new inoculum was prepared from nasal washes obtained during the cold. The new inoculum was tested using standard virological and serological techniques, as well as a polymerase chain reaction for Mycoplasma pneumoniae. No contaminating viruses or organisms were detected and the methods suggested were workable. Good clinical colds developed in 20 of the 25 subjects and median symptom scores were similar in the validated and new inoculum groups (18 and 17.5, respectively; p=0.19). All subjects shed virus, and there were no differences noted in viral culture scores, nasal wash albumin and rates of seroconversion in the two groups. Although airway responsiveness increased in both groups (p=0.02 and p=0.05), the degree of change was similar. We have performed experimental rhinovirus infection studies and demonstrated similar clinical disease in two inoculum groups. Amplified airway responsiveness was induced; continuing studies will define the mechanisms and suggest modes of treatment.
Nina Shishkoff
2008-01-01
Leaves with lesions caused by Phytophthora ramorum Werres, de Cock & Man in?t Veld often drop off infected plants. Because fallen leaves might serve as sources of inoculum both for the above-ground tissues of host plants and for their roots, this study quantified the inoculum produced by such leaves on the surface of pots when exposed to...
USDA-ARS?s Scientific Manuscript database
The sustainability and profitability of many agricultural systems can be enhanced through the utilization of inoculum of arbuscular mycorrhizal fungi. Inocula are commercially available, but inoculum can also be produced on-farm in mixtures of compost and vermiculite with a nurse host plant. Demon...
R. Kasten Dumroese; Robert L. James; David L. Wenny
2002-01-01
Inoculum of Douglas fir root diseases caused by the fungi Fusarium and Cylindrocarpon is carried from crop to crop in reused containers. Soaking containers for 90 seconds in 80 °C water removed ~99% of Fusarium and 100% of Cylindrocarpon inoculum between growing cycles. Overall seedling growth was also improved:...
Leung, H M; Leung, A O W; Ye, Z H; Cheung, K C; Yung, K K L
2013-08-01
A greenhouse pot experiment was conducted to study the effects of three types of single inoculum [indigenous mycorrhizas (IM) isolated from As mine, Glomus mosseae (GM) and Glomus intraradices (GI)] and two types of mixed inoculum (mixed with IM and either GM or GI) on the growth response of Pteris vittata (hyperaccumulator) and Cynodon dactylon (non-hyperaccumulator) at three levels of As concentrations (0, 100 and 200mgkg(-1)). Both mycorrhizal plants exhibited significantly higher biomass, and N and P accumulation in its tissue than the control. Among the mycorrhizal inoculum, the mixed inoculum IM/GM promoted substantially higher mycorrhizal colonization and arsenate reductase activity in P. vittata than C. dactylon, among all As levels. The portion of Paris arbuscular mycorrhizal structure (observed in colonized roots) together with the highest As translocation factor of 10.2 in P. vittata inoculated with IM/GM was also noted. It was deduced that IM/GM inoculum may be the best choice for field inoculation at any contaminated lands as the inoculum exhibited better adaptation to variable environmental conditions and hence benefited the host plants. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Utilization of arbuscular mycorrhizal [AM] fungus inoculum has been encouraged as a way for vegetable farmers to better utilize the AM symbiosis. On-farm systems can economically produce inoculum that has been shown to increase the yield of specific crops. We conducted seven years of field studies...
Griffith, Candace L.; Ribeiro, Gabriel O.; Oba, Masahito; McAllister, Tim A.; Beauchemin, Karen A.
2016-01-01
The purpose of this study was to determine the effect of rumen inoculum from heifers with fast vs. slow rate of in situ fiber digestion on the fermentation of complex versus easily digested fiber sources in the forms of untreated and Ammonia Fiber Expansion (AFEX) treated barley straw, respectively, using an artificial rumen simulation technique (Rusitec). In situ fiber digestion was measured in a previous study by incubating untreated barley straw in the rumen of 16 heifers fed a diet consisting of 700 g/kg barley straw and 300 g/kg concentrate. The two heifers with fastest rate of digestion (Fast ≥ 4.18% h-1) and the two heifers with the slowest rate of digestion (Slow ≤ 3.17% h-1) were chosen as inoculum donors for this study. Two Rusitec apparatuses each equipped with eight fermenters were used in a completely randomized block design with two blocks (apparatus) and four treatments in a 2 × 2 factorial arrangement of treatments (Fast or Slow rumen inoculum and untreated or AFEX treated straw). Fast rumen inoculum and AFEX straw both increased (P < 0.05) disappearance of dry matter (DMD), organic matter, true DMD, neutral detergent fiber, acid detergent fiber, and nitrogen (N) with an interactive effect between the two (P < 0.05). Fast rumen inoculum increased (P > 0.05) methane production per gram of digested material for both untreated and AFEX straw, and reduced (interaction, P < 0.05) acetate: propionate ratio for untreated straw. Greater relative populations of Ruminococcus albus (P < 0.05) and increased microbial N production (P = 0.045) were observed in Fast rumen inoculum. AFEX straw in Fast inoculum had greater total bacterial populations than Slow, but for untreated straw this result was reversed (interaction, P = 0.013). These findings indicate that differences in microbial populations in rumen fluid contribute to differences in the capacity of rumen inoculum to digest fiber. PMID:27899919
USDA-ARS?s Scientific Manuscript database
Adding arbuscular mycorrhizal [AM] fungus inoculum to potting media enables vegetable farmers to better take advantage of the AM symbiosis. On-farm production of AM fungus inoculum is a viable alternative to commercially-available inocula. We conducted a seven year experiment at a conventional veg...
Brulé, Mathieu; Bolduan, Rainer; Seidelt, Stephan; Schlagermann, Pascal; Bott, Armin
2013-01-01
Batch biochemical methane potential (BMP) assays to evaluate the methane yield of biogas substrates such as energy crops are usually carried out with undiluted inoculum. A BMP assay was performed on two energy crops (green cuttings and grass silage). Anaerobic digestion was performed both with and without supplementation of three commercial additives containing trace metals in liquid, solid or adsorbed form (on clay particles). In order to reveal positive effects of trace metal supplementation on the methane yield, besides undiluted inoculum, 3-fold and 10-fold dilutions of the inoculum were applied for substrate digestion. Diluted inoculum variants were supplemented with both mineral nutrients and pH-buffering substances to prevent a collapse of the digestion process. As expected, commercial additives had no effect on the digestion process performed with undiluted inoculum, while significant increases of methane production through trace element supplementation could be observed on the diluted variants. The effect of inoculum dilution may be twofold: (1) decrease in trace metal supplementation from the inoculum and (2) reduction in the initial number of bacterial cells. Bacteria require higher growth rates for substrate degradation and hence have higher trace element consumption. According to common knowledge of the biogas process, periods with volatile fatty acids accumulation and decreased pH may have occurred in the course ofanaerobic digestion. These effects may have led to inhibition, not only ofmethanogenes and acetogenes involved in the final phases of methane production, but also offibre-degrading bacterial strains involved in polymer hydrolysis. Further research is required to confirm this hypothesis.
Sheared-root inocula of vesicular-arbuscular mycorrhizal fungi.
Sylvia, D M; Jarstfer, A G
1992-01-01
For efficient handling, vesicular-arbuscular mycorrhizal fungi should be processed into small and uniform inocula; however, processing can reduce the inoculum density. In this article we describe the preparation and use of sheared-root inocula of Glomus spp. in which inoculum densities were increased during processing. Our objectives were to determine inoculum viability and density after shearing and to ascertain if the sheared inocula could be pelletized or used with a gel carrier. Root samples were harvested from aeroponic cultures, blotted dry, cut into 1-cm lengths, and sheared in a food processor for up to 80 s. After shearing, the inoculum was washed over sieves, and the propagule density in each fraction was determined. Sheared inocula were also encapsulated in carrageenan or used in a gel carrier. Shearing aeroponically produced root inocula reduced particle size. Propagule density increased with decreasing size fraction down to a size of 63 mum, after which propagule density decreased. The weighted-average propagule density of the inoculum was 135,380 propagules g (dry weight) of sheared root material. Sheared roots were encapsulated successfully in carrageenan, and the gel served as an effective carrier. Aeroponic root inoculum was stored dry at 4 degrees C for 23 months without significant reduction in propagule density; however, this material was not appropriate for shearing. Moist roots, useful for shearing, began to lose propagule density after 1 month of storage. Shearing proved to be an excellent method to prepare viable root inocula of small and uniform size, allowing for more efficient and effective use of limited inoculum supplies.
Development of an In Vivo and In Vitro Ileal Fermentation Method in a Growing Pig Model.
Montoya, Carlos A; de Haas, Edward S; Moughan, Paul J
2018-02-01
Substantial microbial fermentation may occur mainly in the lower small intestine (SI) of human adults, but there is no established methodology to determine this. The study aimed to develop a combined in vivo and in vitro methodology for ileal fermentation based on the pig as an animal model for digestion in human adults. Several aspects of a combined in vivo/in vitro ileal fermentation assay were evaluated. Male 9-wk-old pigs (n = 30; mean ± SD body weight: 23 ± 1.6 kg) were fed a human-type diet (143, 508, 45, 49, and 116 g/kg dry matter diet of crude protein, starch, total lipid, ash, and total dietary fiber) for 15 d. On day 15, pigs were killed, and the last third of the SI was collected to prepare an ileal digesta-based inoculum. Terminal jejunal digesta (last 50 cm of the second third of the SI) were collected as substrate for the assay to test the form of substrate (fresh or freeze-dried), origin (location in jejunum or SI) of the substrate, storage of the inoculum, incubation time (1.2-6.8 h), pH of the medium, and inoculum concentration (6-26 mg inoculum/100 mg substrate). The group of donor pigs used to prepare the inoculum, form of the substrate, origin of the substrate, origin of the inoculum (location in the SI), storage of the inoculum, incubation time, and inoculum concentration did not influence the in vitro ileal organic matter (OM) fermentability (P > 0.05). The in vitro ileal OM fermentability decreased when the pH of the medium increased from 5.5 to 7.5 (31% to 28%; P ≤ 0.05). Predicted (in vivo/in vitro) apparent ileal OM digestibility was similar to the value measured in vivo. Thirty-percent of the terminal jejunal digesta OM was fermented in the ileum. Fiber fermentation in the ileum can be studied using the optimized in vivo/in vitro ileal fermentation method.
Development of a robust, versatile, and scalable inoculum train for the production of a DNA vaccine.
Okonkowski, J; Kizer-Bentley, L; Listner, K; Robinson, D; Chartrain, M
2005-01-01
For many microbial fermentation processes, the inoculum train can have a substantial impact on process performance in terms of productivity, profitability, and process control. In general, it is understood that a well-characterized and flexible inoculum train is essential for future scale-up and implementation of the process in a pilot plant or manufacturing setting. A fermentation process utilizing E. coli DH5 for the production of plasmid DNA carrying the HIV gag gene for use as a vaccine is currently under development in our laboratory. As part of the development effort, we evaluated inoculum train schemes that incorporate one, two, or three stages. In addition, we investigated the effect of inoculum viable-cell concentrations, either thawed or actively growing, over a wide range (from 2.5 x 10(4) to 1.0 x 10(8) viable cells/mL or approximately 0.001% to 4% of final working volume). The various inoculum trains were evaluated in terms of final plasmid yield, process time, reproducibility, robustness, and feasibility at large scale. The results of these studies show that final plasmid yield remained in the desired range, despite the number of stages or inoculation viable-cell concentrations comprising the inoculum train. On the basis of these observations and because it established a large database, the first part of these investigations supports an exceptional flexibility in the design of scalable inoculum trains for this DNA vaccine process. This work also highlighted that a slightly higher level of process reproducibility, as measured by the time for the culture to reach mid-exponential growth, was observed when using actively growing versus frozen cells. It also demonstrated the existence of a viable-cell concentration threshold for the one-stage process, since we observed that inoculation of the production stage with very low amounts of viable cells from a frozen source could lead to increased process sensitivity to external factors such as variation in the quality of the raw materials used in the medium formulation. However, our analysis indicates that, despite this slight disadvantage, a one-stage inoculum train was a viable option in many situations, especially if the inoculation viable-cell concentration was kept above 4.8 x 10(6) viable cells/mL. Because it leads to a reduction in process steps and eliminates some capital investments (i.e., inoculum fermenter), when feasible a one-stage process configuration will positively impact process economics.
Koslowsky, S D; Boener, R E
1989-01-01
The effects of Al on Panicum virgatum (switchgrass), a widespread perennial grass, were determined in relation to factors which might interact with Al in the soil. Plants were grown for 8 weeks in sand culture and were treated with 3 Al levels (0.5, 2.0, 5.0 mM), 2 P levels (0.065, 0.161 mM), 2 inoculum types (vesicular-arbuscular mycorrhizal (VAM) inoculum or VAM-free soil inoculum) and 2 inoculum sources (a high Al forest in NY or a low Al forest in Ohio) in a factorial design. Plant growth decreased with increasing Al and increased with increasing P, but the Al effect was less at high P than low P. VAM-inoculated plants outgrew non-VAM plants, especially at low and medium Al levels. Total P and Ca uptake decreased with increasing Al concentration, especially at low P levels. VAM inoculation did not result in increased P uptake at any Al level though VAM plants took up significantly more Ca than non-VAM plants at any Al level. VAM plants had lower tissue Al concentrations and took up less Al than non-VAM plants; Al uptake increased with increasing soil Al in non-VAM plants but not in VAM plants. Plants given inoculum from the high Al site had significantly lower tissue Al than plants given the low Al site inoculum, regardless of VAM status. We conclude that the presence of a VAM infection, moderate levels of soil P, and the source of the inoculum can reduce the effects of soluble Al. We discuss potential physiological and edaphic mechanisms by which Al may be immobilized and Ca availability increased in the presence of VAM fungi and other soil microflora.
Kwon, Sun-Jung
2012-01-01
Despite overwhelming interest in the impact exerted by recombination during evolution of RNA viruses, the relative contribution of the polarity of inoculum templates remains poorly understood. Here, by agroinfiltrating Nicotiana benthamiana leaves, we show that brome mosaic virus (BMV) replicase is competent to initiate positive-strand [(+)-strand] synthesis on an ectopically expressed RNA3 negative strand [(−) strand] and faithfully complete the replication cycle. Consequently, we sought to examine the role of RNA polarity in BMV recombination by expressing a series of replication-defective mutants of BMV RNA3 in (+) or (−) polarity. Temporal analysis of progeny sequences revealed that the genetic makeup of the primary recombinant pool is determined by the polarity of the inoculum template. When the polarity of the inoculum template was (+), the recombinant pool that accumulated during early phases of replication was a mixture of nonhomologous recombinants. These are longer than the inoculum template length, and a nascent 3′ untranslated region (UTR) of wild-type (WT) RNA1 or RNA2 was added to the input mutant RNA3 3′ UTR due to end-to-end template switching by BMV replicase during (−)-strand synthesis. In contrast, when the polarity of the inoculum was (−), the progeny contained a pool of native-length homologous recombinants generated by template switching of BMV replicase with a nascent UTR from WT RNA1 or RNA2 during (+)-strand synthesis. Repair of a point mutation caused by polymerase error occurred only when the polarity of the inoculum template was (+). These results contribute to the explanation of the functional role of RNA polarity in recombination mediated by copy choice mechanisms. PMID:22357282
Wi, Yu Mi; Choi, Ji-Young; Lee, Ji-Young; Kang, Cheol-In; Chung, Doo Ryeon; Peck, Kyong Ran; Song, Jae-Hoon
2017-01-01
ABSTRACT We studied the resistance mechanism and antimicrobial effects of β-lactams on imipenem-resistant Pseudomonas aeruginosa isolates that were susceptible to ceftazidime as detected by time-kill curve methods. Among 215 P. aeruginosa isolates from hospitalized patients in eight hospitals in the Republic of Korea, 18 isolates (23.4% of 77 imipenem-resistant isolates) were imipenem resistant and ceftazidime susceptible. Multilocus sequence typing revealed diverse genotypes, which indicated independent emergence. These 18 isolates were negative for carbapenemase genes. All 18 imipenem-resistant ceftazidime-susceptible isolates showed decreased mRNA expression of oprD, and overexpression of mexB was observed in 13 isolates. In contrast, overexpression of ampC, mexD, mexF, or mexY was rarely found. Time-kill curve methods were applied to three selected imipenem-resistant ceftazidime-susceptible isolates at a standard inoculum (5 × 105 CFU/ml) or at a high inoculum (5 × 107 CFU/ml) to evaluate the antimicrobial effects of β-lactams. Inoculum effects were detected for all three β-lactam antibiotics, ceftazidime, cefepime, and piperacillin-tazobactam, against all three isolates. The antibiotics had significant killing effects in the standard inoculum, but no effects in the high inoculum were observed. Our results suggest that β-lactam antibiotics should be used with caution in patients with imipenem-resistant ceftazidime-susceptible P. aeruginosa infection, especially in high-inoculum infections such as endocarditis and osteomyelitis. PMID:28373200
Rodriguez, Renata P; Zaiat, Marcelo
2011-04-01
This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optimization of the production of mycorrhizal inoculum on substrate with organic fertilizer
Coelho, Ieda R; Pedone-Bonfim, Maria VL; Silva, Fábio SB; Maia, Leonor C
2014-01-01
The system for production of inoculum of arbuscular mycorrhizal fungi (AMF) using sand and vermiculite irrigated with nutrient solution is promising. However, organic amendments added to the substrate can stimulate sporulation of AMF and replace the nutrient solution. The aim of this study was to maximize the production of AMF (Acaulospora longula, Claroideoglomus etunicatum, Dentiscutata heterogama and Gigaspora albida) using selected organic substrates (vermicompost, coir dust and Tropstrato) together with sand and vermiculite. The production of spores varied among the tested AMF and according to the organic source added to the substrate. The vermicompost promoted higher sporulation of A. longula in relation to the other AMF and substrates. The Tropstrato® inhibited the sporulation of D. heterogama while the reproduction of C. etunicatum was not affected by the organic compounds. The inoculum of A. longula also showed a high number of infective propagules and promoted biomass accumulation in maize plants. The system of inoculum production using sand and vermiculite + 10% vermicompost favors the production of infective inoculum of A. longula with the fungus benefiting growth of corn plants. PMID:25763020
Fermentative hydrogen gas production using biosolids pellets as the inoculum source.
Kalogo, Youssouf; Bagley, David M
2008-02-01
Biosolids pellets produced from anaerobically digested municipal wastewater sludge by drying to greater than 90% total solids at 110-115 degrees C for at least 75 min, were tested for their suitability as an inoculum source for fermentative hydrogen production. The hydrogen recoveries (mg gaseous H(2) produced as COD/mg added substrate COD) for glucose-fed batch systems were equal, 20.2-21.5%, between biosolids pellets and boiled anaerobic digester sludge as inoculum sources. Hydrogen recoveries from primary sludge were 2.4% and 3.5% using biosolids pellets and boiled sludge, respectively, and only 0.2% and 0.8% for municipal wastewater. Biosolids pellets should be a practical inoculum source for fermentative hydrogen reactors, although the effectiveness will depend on the wastewater treated.
Forgrave, R; Donaghy, J A; Fisher, A; Rowe, M T
2016-11-01
Persistence of Mycobacterium bovis was investigated in UK raw milk cheeses. Replicating traditional cheese production methods under stringent CL3 containment conditions, Cheddar and Caerphilly cheeses were produced with Myco. bovis inoculated raw milk. High-inoculum investigations used three Myco. bovis genotypes; later low-inoculum investigations used only Myco. bovis AF2122/97. High-inoculum Cheddar (n = 9) and Caerphilly (n = 9) were matured for a minimum of 12 and 4 months respectively; maturation of low-inoculum Cheddar (n = 3) and Caerphilly (n = 3) was up to 11 weeks. Survival of Myco. bovis was monitored by enumeration at different points throughout cheese manufacture and ripening. D values were calculated as follows: 57 and 59 days in high-inoculum Cheddar and Caerphilly, respectively, and 41 and 24 days in low-inoculum Cheddar and Caerphilly respectively. Mycobacterium bovis is concentrated in cheese curd and a proportion lost with the whey. Reduction in viability during manufacturing is limited, while significant Myco. bovis inactivation occurs during maturation. Inactivation was improved, during Caerphilly ripening, when acid development was enhanced by increasing the proportion of starter culture. Mycobacterium bovis inactivation data obtained could be used to inform assessment of the risk posed to consumers by raw milk dairy products. © 2016 The Society for Applied Microbiology.
Wi, Yu Mi; Choi, Ji-Young; Lee, Ji-Young; Kang, Cheol-In; Chung, Doo Ryeon; Peck, Kyong Ran; Song, Jae-Hoon; Ko, Kwan Soo
2017-06-01
We studied the resistance mechanism and antimicrobial effects of β-lactams on imipenem-resistant Pseudomonas aeruginosa isolates that were susceptible to ceftazidime as detected by time-kill curve methods. Among 215 P. aeruginosa isolates from hospitalized patients in eight hospitals in the Republic of Korea, 18 isolates (23.4% of 77 imipenem-resistant isolates) were imipenem resistant and ceftazidime susceptible. Multilocus sequence typing revealed diverse genotypes, which indicated independent emergence. These 18 isolates were negative for carbapenemase genes. All 18 imipenem-resistant ceftazidime-susceptible isolates showed decreased mRNA expression of oprD , and overexpression of mexB was observed in 13 isolates. In contrast, overexpression of ampC , mexD , mexF , or mexY was rarely found. Time-kill curve methods were applied to three selected imipenem-resistant ceftazidime-susceptible isolates at a standard inoculum (5 × 10 5 CFU/ml) or at a high inoculum (5 × 10 7 CFU/ml) to evaluate the antimicrobial effects of β-lactams. Inoculum effects were detected for all three β-lactam antibiotics, ceftazidime, cefepime, and piperacillin-tazobactam, against all three isolates. The antibiotics had significant killing effects in the standard inoculum, but no effects in the high inoculum were observed. Our results suggest that β-lactam antibiotics should be used with caution in patients with imipenem-resistant ceftazidime-susceptible P. aeruginosa infection, especially in high-inoculum infections such as endocarditis and osteomyelitis. Copyright © 2017 American Society for Microbiology.
Hirao, Ayako; Ehlers, Ralf-Udo
2010-01-01
For improvement of mass production of the rhabditid biocontrol nematodes Steinernema carpocapsae and Steinernema feltiae in monoxenic liquid culture with their bacterial symbionts Xenorhabdus nematophila and Xenorhabdus bovienii, respectively, the effect of the initial nematode inoculum density on population development and final concentration of dauer juveniles (DJs) was investigated. Symbiotic bacterial cultures are pre-incubated for 1 day prior to inoculation of DJs. DJs are developmentally arrested and recover development as a reaction to food signals provided by their symbionts. After development to adults, the nematodes produce DJ offspring. Inoculum density ranged from 1 to 10 x 10(3) DJ per milliliter for S. carpocapsae and 1 to 8 x 10(3) DJs per milliliter for S. feltiae. No significant influence of the inoculum density on the final DJ yields in both nematode species was recorded, except for S. carpocapsae cultures with a parental female density <2 x 10(3) DJs per milliliter, in which the yields increased with increasing inoculation density. A strong negative response of the parental female fecundity to increasing DJ inoculum densities was recorded for both species with a maximum offspring number per female of >300 for S. carpocapsae and almost 200 for S. feltiae. The compensative adaptation of fecundity to nematode population density is responsible for the lack of an inoculum (or parental female) density effect on DJ yields. At optimal inoculation density of S. carpocapsae, offspring were produced by the parental female population, whereas S. feltiae always developed a F1 female population, which contributed to the DJ yields and was the reason for a more scattered distribution of the yields. The F1 female generation was accompanied by a second peak in X. bovienii density. The optimal DJ inoculum density for S. carpocapsae is 3-6 x 10(3) DJs per milliliter in order to obtain >10(3) parental females per milliliter. Density-dependent effects were neither observed on the DJ recovery nor on the sex ratio in the parental adult generation. As recovery varied between different batches, assessment of the recovery of inoculum DJ batches is recommended. S. feltiae was less variable in DJ recovery usually reaching >90%. The recommended DJ inoculum density is >5 x 10(3) DJs per milliliter to reach >2 x 10(3) parental females per milliliter. The mean yield recorded for S. carpocapsae was 135 x 10(3) and 105 x 10(3) per mililiter for S. feltiae.
Ferrario, Mariana I; Guerrero, Sandra N
The purpose of this study was to analyze the response of different initial contamination levels of Alicyclobacillus acidoterrestris ATCC 49025 spores in apple juice as affected by pulsed light treatment (PL, batch mode, xenon lamp, 3pulses/s, 0-71.6J/cm 2 ). Biphasic and Weibull frequency distribution models were used to characterize the relationship between inoculum size and treatment time with the reductions achieved after PL exposure. Additionally, a second order polynomial model was computed to relate required PL processing time to inoculum size and requested log reductions. PL treatment caused up to 3.0-3.5 log reductions, depending on the initial inoculum size. Inactivation curves corresponding to PL-treated samples were adequately characterized by both Weibull and biphasic models (R adj 2 94-96%), and revealed that lower initial inoculum sizes were associated with higher inactivation rates. According to the polynomial model, the predicted time for PL treatment increased exponentially with inoculum size. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Assamoi, Antoine A.; Destain, Jacqueline; Delvigne, Frank; Lognay, Georges; Thonart, Philippe
Xylanase is produced by Penicillium canescens 10-10c from soya oil cake in static conditions using solid-state fermentation. The impact of several parameters such as the nature and the size of inoculum, bed-loading, and aeration is evaluated during the fermentation process. Mycelial inoculum gives more production than conidial inoculum. Increasing the quantity of inoculum enhances slightly xylanase production. Forced aeration induces more sporulation of strain and reduces xylanase production. However, forced moistened air improves the production compared to production obtained with forced dry air. In addition, increasing bed-loading reduces the specific xylanase production likely due to the incapacity of the Penicillium strain to grow deeply in the fermented soya oil cake mass. Thus, the best cultivation conditions involve mycelial inoculum form, a bed loading of 1-cm height and passive aeration. The maximum xylanase activity is obtained after 7 days of fermentation and attains 10,200 U/g of soya oil cake. These levels are higher than those presented in the literature and, therefore, show all the potentialities of this stock and this technique for the production of xylanase.
Different substrates and starter inocula govern microbial community structures in biogas reactors.
Satpathy, Preseela; Steinigeweg, Sven; Cypionka, Heribert; Engelen, Bert
2016-01-01
The influence of different starter inocula on the microbial communities in biogas batch reactors fed with fresh maize and maize silage as substrates was investigated. Molecular biological analysis by Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rRNA gene fragments showed that each inoculum bore specific microbial communities with varying predominant phylotypes. Both, bacterial and archaeal DGGE profiles displayed three distinct communities that developed depending on the type of inoculum. Although maize and silage are similar substrates, different communities dominated the lactate-rich silage compared to lactate-free fresh maize. Cluster analysis of DGGE gels showed the communities of the same substrates to be stable with their respective inoculum. Bacteria-specific DGGE analysis revealed a rich diversity with Firmicutes being predominant. The other abundant phylotypes were Bacteroidetes and Synergistetes. Archaea-specific DGGE analysis displayed less diverse community structures, identifying members of the Methanosarcinales as the dominant methanogens present in all the three biogas digesters. In general, the source of inoculum played a significant role in shaping microbial communities. Adaptability of the inoculum to the substrates fed also influenced community compositions which further impacted the rates of biogas production.
Transmission of Phytophthora ramorum in Mixed-Evergreen Forest in California.
Davidson, Jennifer M; Wickland, Allison C; Patterson, Heather A; Falk, Kristen R; Rizzo, David M
2005-05-01
ABSTRACT During 2001 to 2003, the transmission biology of Phytophthora ramorum, the causal agent of sudden oak death, was studied in mixedevergreen forest, a common forest type in northern, coastal California. Investigation of the sources of spore production focused on coast live oak (Quercus agrifolia) and bay laurel (Umbellularia californica), dominant hosts that comprised 39.7 and 46.2% of the individuals at the study site, respectively. All tests for inoculum production from the surface of infected coast live oak bark or exudates from cankers were negative. In contrast, sporangia and chlamydospores were produced on the surface of infected bay laurel leaves. Mean number of zoospores produced from infected bay laurel leaves under natural field conditions during rainstorms was 1,173.0 +/- SE 301.48, and ranged as high as 5,200 spores/leaf. P. ramorum was recovered from rainwater, soil, litter, and streamwater during the mid- to late rainy season in all 3 years of the study. P. ramorum was not recovered from sporadic summer rains or soil and litter during the hot, dry summer months. Concentrations of inoculum in rainwater varied significantly from year to year and increased as the rainy season progressed for the two complete seasons that were studied. Potential dispersal distances were investigated for rainwater, soil, and streamwater. In rainwater, inoculum moved 5 and 10 m from the inoculum source. For soil, transmission of inoculum was demonstrated from infested soil to bay laurel green leaf litter, and from bay laurel green leaf litter to aerial leaves of bay laurel seedlings. One-third to one-half of the hikers tested at the study site during the rainy season also were carrying infested soil on their shoes. In streamwater, P. ramorum was recovered from an unforested site in pasture 1 km downstream of forest with inoculum sources. In total, these studies provide details on the production and spread of P. ramorum inoculum in mixed-evergreen forest to aid forecasting and managing disease transmission of this environmentally destructive pathogen.
Bedenić, B; Boras, A
2001-01-01
The plasmid-mediated extended-spectrum beta-lactamases (ESBL) confer resistance to oxymino-cephalosporins, such as cefotaxime, ceftazidime, and ceftriaxone and to monobactams such as aztreonam. It is well known fact that ESBL producing bacteria exhibit a pronounced inoculum effect against broad spectrum cephalosporins like ceftazidime, cefotaxime, ceftriaxone and cefoperazone. The aim of this investigation was to determine the effect of inoculum size on the sensitivity and specificity of double-disk synergy test (DDST) which is the test most frequently used for detection of ESBLs, in comparison with other two methods (determination of ceftazidime MIC with and without clavulanate and inhibitor potentiated disk-diffusion test) which are seldom used in clinical laboratories. The experiments were performed on a set of K. pneumoniae strains with previously characterized beta-lactamases which comprise: 10 SHV-5 beta-lactamase producing K. pneumoniae, 20 SHV-2 + 1 SHV 2a beta-lactamase producing K. pneumoniae, 7 SHV-12 beta-lactamase producing K. pneumoniae, 39 putative SHV ESBL producing K. pneumoniae and 26 K. pneumoniae isolates highly susceptible to ceftazidime according to Kirby-Bauer disk-diffusion method and thus considered to be ESBL negative. According to the results of this investigation, increase in inoculum size affected more significantly the sensitivity of DDST than of other two methods. The sensitivity of the DDST was lower when a higher inoculum size of 10(8) CFU/ml was applied, in distinction from other two methods (MIC determination and inhibitor potentiated disk-diffusion test) which retained high sensitivity regardless of the density of bacterial suspension. On the other hand, DDST displayed higher specificity compared to other two methods regardless of the inoculum size. This investigation found that DDST is a reliable method but it is important to standardize the inoculum size.
Characterization of Founder Viruses in Very Early SIV Rectal Transmission
Yuan, Zhe; Ma, Fangrui; Demers, Andrew J.; Wang, Dong; Xu, Jianqing; Lewis, Mark G.; Li, Qingsheng
2016-01-01
A better understanding of HIV-1 transmission is critical for developing preventative strategies. To that end, we analyzed 524 full-length env sequences of SIVmac251 at 6 and 10 days post intrarectal infection of rhesus macaques. There was no tissue compartmentalization of founder viruses across plasma, rectal and distal lymphatic tissues for most animals; however one animal has evidence of virus tissue compartmentalization. Despite identical viral inoculums, founder viruses were animal-specific, primarily derived from rare variants in the inoculum, and have a founder virus signature that can distinguish dominant founder variants from minor founder or untransmitted variants in the inoculum. Importantly, the sequences of post-transmission defective viruses were phylogenetically associated with competent viral variants in the inoculum and were mainly converted from competent viral variants by frameshift rather than APOBEC mediated mutations, suggesting the converting the transmitted viruses into defective viruses through frameshift mutation is an important component of rectal transmission bottleneck. PMID:28027479
Influence of inoculum size of Aspergillus parasiticus spores on aflatoxin production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, A.; Behere, A.G.; Padwal-Desai, S.R.
The influence of the inoculum size on growth and aflatoxin production was examined in Aspergillus parasiticus (NRRL 3145) by using a synthetic medium. The reduction in the number of spores by 4 to 5 log cycles either by serial dilution or by gamma irradiation caused a two fold increase in the toxin production. The decrease in the inoculum size induced a lag in growth of the culture, though the final yield of the mycelium over the 28-day experimental period was the same. The maximal accumulation of aflatoxin was observed on day 14 of incubation. A transition from the biphasic tomore » monophasic pattern in aflatoxin production could be correlated with the size of the inoculum. The enhanced toxin production from dilute inocula was similar to that obtained with the surviving fraction of the spores after gamma irradiation (0 to 150 krads).« less
Effect of domestication on microorganism diversity and anaerobic digestion of food waste.
Bi, S J; Hong, X J; Wang, G X; Li, Y; Gao, Y M; Yan, L; Wang, Y J; Wang, W D
2016-08-19
To accomplish the rapid start-up and stable operation of biogas digesters, an efficient inoculum is required. To obtain such an inoculum for food waste anaerobic digestion, we domesticated dairy manure anaerobic digestion residue by adding food waste every day. After 36 days, the pH and biogas yield stabilized signifying the completion of domestication. During domestication, the microbial communities in the inocula were investigated by constructing 16S rDNA clone libraries. We evaluated the effect of the domesticated inoculum by testing batch food waste anaerobic digestion with a non-domesticated inoculum as a control. The pH and methane yield of the digestion systems were determined as measurement indices. Domestication changed the composition and proportion of bacteria and archaea in the inocula. Of the bacteria, Clostridia (49.3%), Bacteroidales (19.5%), and Anaerolinaceae (8.1%) species were dominant in the seed sludge; Anaerolinaceae (49.0%), Clostridia (28.4%), and Bacteroidales (9.1%), in domestication sludge. Methanosaeta was the dominant genus in both of the seed (94.3%) and domestication (74.3%) sludge. However, the diversity of methanogenic archaea was higher in the domestication than in seed sludge. Methanoculleus, which was absent from the seed sludge, appeared in the domestication sludge (21.7%). When the domesticated inoculum was used, the digestion system worked stably (organic loading rate: 20 gVS/L; methane yield: 292.2 ± 9.8 mL/gVS; VS = volatile solids), whereas the digestion system inoculated with seed sludge failed to generate biogas. The results indicate that inoculum domestication ensures efficient and stable anaerobic digestion by enriching the methanogenic strains.
NASA Astrophysics Data System (ADS)
Harbowo, Danni Gathot; Choesin, Devi Nandita
2014-03-01
Synergism between wetland systems and the provision of degrading bacterial inoculum is now being developed for the recovery of areas polluted waters of pollutants. In connection with the frequent cases of diesel oil pollution in the waters of Indonesia, we need a way of water treatment as an efficient. In this study conducted a series of tests to develop an construcred wetland design that can effectively degrade diesel oil. Tested five systems: blanko (A), substrated, without bacterial inoculums, and vegetation (B); with the addition of inoculum (C); subsrated and vegetated (D); substrated and vegetated with the addition of inoculum (E). Vegetation used in this study is Cyperus papyrus because it has the ability to absorb pollutants. Inoculum used was Pseudomonas aeruginosa and Enterobacter aerogenes which is a bacteria degrading organic compounds commonly found in water. To measure the effectiveness of the system, use several indicators to see the degradation of pollutants, namely changes in viscosity, surface tension of pollutants, and the emergence of compound degradation. Based on the results of the study can be determined that the substrated and vegetated system with Cyperus papyrus inoculum (E) was considered the most capable of degrading diesel oil due to the large changes in all parameters. In the system E, 40.6% increase viscosity, surface tension decreased 32.7%, the appearance of degradation compounds with relatively 3614.7 points, and increased to 227.8% TDS. In addition the environmental conditions in the system E also supports the growth of vegetation and degrading microbes.
Rapid Detection of Ceratocystis platani Inoculum by Quantitative Real-Time PCR Assay
Ghelardini, Luisa; Belbahri, Lassaâd; Quartier, Marion; Santini, Alberto
2013-01-01
Ceratocystis platani is the causal agent of canker stain of plane trees, a lethal disease able to kill mature trees in one or two successive growing seasons. The pathogen is a quarantine organism and has a negative impact on anthropogenic and natural populations of plane trees. Contaminated sawdust produced during pruning and sanitation fellings can contribute to disease spread. The goal of this study was to design a rapid, real-time quantitative PCR assay to detect a C. platani airborne inoculum. Airborne inoculum traps (AITs) were placed in an urban setting in the city of Florence, Italy, where the disease was present. Primers and TaqMan minor groove binder (MGB) probes were designed to target cerato-platanin (CP) and internal transcribed spacer 2 (ITS2) genes. The detection limits of the assay were 0.05 pg/μl and 2 fg/μl of fungal DNA for CP and ITS, respectively. Pathogen detection directly from AITs demonstrated specificity and high sensitivity for C. platani, detecting DNA concentrations as low as 1.2 × 10−2 to 1.4 × 10−2 pg/μl, corresponding to ∼10 conidia per ml. Airborne inoculum traps were able to detect the C. platani inoculum within 200 m of the closest symptomatic infected plane tree. The combination of airborne trapping and real-time quantitative PCR assay provides a rapid and sensitive method for the specific detection of a C. platani inoculum. This technique may be used to identify the period of highest risk of pathogen spread in a site, thus helping disease management. PMID:23811499
Root infections may challenge management of invasive Phytophthora spp
E.J. Fichtner; D.M. Rizzo; S.A. Kirk; J.F. Webber
2011-01-01
Because sporulation of Phytophthora ramorum and P. kernoviae on Rhododendron ponticum, an invasive plant, serves as primary inoculum for trunk infections on trees, R. ponticum clearance from pathogen-infested woodlands is pivotal to inoculum management. The efficacy of clearance for...
Inoculum and zeolite synergistic effect on anaerobic digestion of poultry manure.
Fotidis, Ioannis A; Kougias, Panagiotis G; Zaganas, Ioannis D; Kotsopoulos, Thomas A; Martzopoulos, Gerasimos G
2014-01-01
Poultry manure is an ammonia-rich substrate due to its high content of proteins and amino acids. Ammonia is the major inhibitor of anaerobic digestion (AD) process, affecting biogas production and causing great economic losses to the biogas plants. In this study, the effect of different natural zeolite dosages on the mesophilic AD of poultry manure inoculated with a non-acclimatized to ammonia inoculum (dairy manure) was investigated. Additionally, a comparative analysis was performed between the data extracted from this study and the results of a previous study, which has been conducted under the same experimental conditions but with the use of ammonia acclimatized inoculum (swine manure). At 5 and 10 g zeolite L(-1), the methane yield of poultry manure was 43.4% and 80.3% higher compared with the experimental set without zeolite addition. However, the ammonia non-acclimatized inoculum was not efficient in digesting poultry manure even in the presence of 10 g zeolite L(-1), due to low methane production (only 39%) compared with the maximum theoretical yield. Finally, ammonia acclimatized inoculum and zeolite have demonstrated a possible 'synergistic effect', which led to a more efficient AD of poultry manure. The results of this study could potentially been used by the biogas plant operators to efficiently digest poultry manure.
López-Gálvez, Francisco; Gil, Maria Isabel; Allende, Ana
2018-04-01
The effects of relative humidity (RH), fluctuating climate conditions, inoculum size and carrier on the survival of Salmonella enterica serovar Typhimurium on baby lettuce in environmental test chambers were studied. Buffered peptone water (BPW), distilled water (DW), and irrigation water (IW) were compared as inoculum carriers. Additionally, survival of Salmonella in suspensions prepared using filtered and unfiltered IW was assessed. Salmonella Typhimurium survived better on baby lettuce plants at high RH independently of the inoculum size. When lettuce plants were grown under fluctuating environmental conditions, Salmonella survival was similar under both RH conditions. Regarding the inoculum carrier, the inoculated microorganism survived better on lettuce plants when BPW was used as carrier both at high and low RH. Survival rate of Salmonella in IW was affected by the presence of native microbiota. Native microbiota present in IW did not affect survival of Salmonella or the levels of mesophilic bacteria on the baby lettuce leaves. The information obtained in the present study contributes to the knowledge on the effect of environmental conditions on pathogenic bacteria survival on growing edible plants. These results are useful when selecting the methodology to carry out experimental studies on the survival of microbial pathogens under different pre-harvest conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Qian; Wei, Liang-Huan; Li, Wei-Zun; Chen, Yu; Ju, Mei-Ting
2017-11-01
Different inoculum sources and acclimatization methods result in different substrate adaptation and biodegradability. To increase straw degradation rate, shorten the digester start-up time, and enhance the biogas production, we domesticated anaerobic sludge by adding microcrystalline cellulose (MCC). During acclimatization, the start-up strategies and reactor performance were investigated to analyze changes in feedstock adaption, biodegradability, and methanogen activity. The effect of the domesticated inoculum was evaluated by testing batch un-pretreated corn stover with a dewatered sludge (DS)-domesticated inoculum as a control. The results showed that (1) using MCC as a substrate rapidly improved microorganism biodegradability and adaptation. (2) MCC as domesticated substrate has relatively stable system and high mass conversion, but with low buffer capacity. (3) Macro- and micronutrients should be added for improving the activity of methanogenic and system's buffer capacity. (4) Using the domesticated inoculums and batch tests to anaerobically digest untreated corn stover yielded rapid biogas production of 292 mL, with an early peak value on the first day. The results indicated that cultivating directional inoculum can efficiently and quickly start-up digester. These investigated results to promote anaerobic digestion of straw for producing biogas speed up the transformation of achievements of biomass solid waste utilization have a positive promoting significance.
Laureys, D; De Vuyst, L
2017-03-01
To investigate the influence of the water kefir grain inoculum on the characteristics of the water kefir fermentation process. Three water kefir fermentation processes were started with different water kefir grain inocula and followed as a function of time regarding microbial species diversity, community dynamics, substrate consumption profile and metabolite production course. The inoculum determined the water kefir grain growth, the viable counts on the grains, the time until total carbohydrate exhaustion, the final metabolite concentrations and the microbial species diversity. There were always 2-10 lactic acid bacterial cells for every yeast cell and the majority of these micro-organisms was always present on the grains. Lactobacillus paracasei, Lactobacillus hilgardii, Lactobacillus nagelii and Saccharomyces cerevisiae were always present and may be the key micro-organisms during water kefir fermentation. Low water kefir grain growth was associated with small grains with high viable counts of micro-organisms, fast fermentation and low pH values, and was not caused by the absence of exopolysaccharide-producing lactic acid bacteria. The water kefir grain inoculum influences the microbial species diversity and characteristics of the fermentation process. A select group of key micro-organisms was always present during fermentation. This study allows a rational selection of a water kefir grain inoculum. © 2016 The Society for Applied Microbiology.
A test system to quantify inoculum in runoff from Phytophthora ramorum-infected plant roots
Nina. Shishkoff
2010-01-01
Foliar hosts of Phytophthora ramorum are often susceptible to root infection, but the epidemiological significance of such infections is unknown. We used a standardized test system to study inoculum in runoff from root-infected Viburnum tinus cuttings.
Sudhakar, N; Nagendra-Prasad, D; Mohan, N; Murugesan, K
2007-12-01
Studies were undertaken to evaluate ozone for inactivation of Cucumber mosaic virus present in the inoculum and to stimulate Lycopersicon esculentum cv. PKM1 (tomato) plants against Cucumber mosaic virus infection by using the inactivated Cucumber mosaic virus inoculum. Application of a T(4) (0.4mg/l) concentration of ozone to the inoculum containing Cucumber mosaic virus resulted in complete inactivation of the virus. The inactivated viral inoculum was mixed with a penetrator (delivery agent), referred to as T(4) preparation, and it was evaluated for the development of systemic acquired resistance in the tomato plants. Application of a T(4) preparation 5 days before inoculation with the Cucumber mosaic virus protected tomato plants from the effects of Cucumber mosaic virus. Among the components of the inactivated virus tested, coat protein subunits and aggregates were responsible for the acquired resistance in tomato plants. In field trials, the results of enzyme-linked immunosorbent assay revealed that, Cucumber mosaic virus accumulation was significantly less for all the test plants (16%) sprayed with the T(4) preparation than untreated control plants (89.5%) at 28 days postinoculation (dpi). A remarkable increase in the activities of the total soluble phenolics (10-fold) and salicylic acid (16-fold) was detected 5 days after the treatment in foliar extracts of test plants relative to untreated control plants. The results showed that treatment of tomato plants with inactivated viral inoculum led to a significant enhancement of protection against Cucumber mosaic virus attack in a manner that mimics a real pathogen and induces systemic acquired resistance.
Paul-Pont, Ika; Evans, Olivia; Dhand, Navneet K; Whittington, Richard J
2015-03-09
In Australia, the spread of the ostreid herpesvirus-1 microvariant (OsHV-1 µVar) threatens the Pacific oyster industry. There is an urgent need to develop an experimental infection model in order to study the pathogenesis of the virus under controlled laboratory conditions. The present study constitutes the first attempt to use archived frozen oysters as a source of inoculum, based on the Australian OsHV-1 µVar strain. Experiments were conducted to test (1) virus infectivity, (2) the dose-response relationship for OsHV-1, and (3) the best conditions in which to store infective viral inoculum. Intramuscular injection of a viral inoculum consistently led to an onset of mortality 48 h post-injection and a final cumulative mortality exceeding 90%, in association with high viral loads (1 × 105 to 3 × 107 copies of virus mg-1) in dead individuals. For the first time, an infective inoculum was produced from frozen oysters (tissues stored at -80°C for 6 mo). Storage of purified viral inoculum at +4°C for 3 mo provided similar results to use of fresh inoculum, whereas storage at -20°C, -80°C and room temperature was detrimental to infectivity. A dose-response relationship for OsHV-1 was identified but further research is recommended to determine the most appropriate viral concentration for development of infection models that would be used for different purposes. Overall, this work highlights the best practices and potential issues that may occur in the development of a reproducible and transferable infection model for studying the pathogenicity of the Australian OsHV-1 strain in Crassostrea gigas under experimental conditions.
Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review.
Bundhoo, M A Zumar; Mohee, Romeela; Hassan, M Ali
2015-07-01
Biohydrogen production from dark fermentation of lignocellulosic materials represents a huge potential in terms of renewable energy exploitation. However, the low hydrogen yield is currently hindering its development on industrial scale. This study reviewed various technologies that have been investigated for enhancing dark fermentative biohydrogen production. The pre-treatment technologies can be classified based on their applications as inoculum or substrates pre-treatment or they can be categorised into physical, chemical, physicochemical and biological based on the techniques used. From the different technologies reviewed, heat and acid pre-treatments are the most commonly studied technologies for both substrates and inoculum pre-treatment. Nevertheless, these two technologies need not necessarily be the most suitable since across different studies, a wide array of other emerging techniques as well as combined technologies have yielded positive findings. To date, there exists no perfect technology for either inoculum or substrate pre-treatment. Although the aim of inoculum pre-treatment is to suppress H2-consumers and enrich H2-producers, many sporulating H2-consumers survive the pre-treatment while some non-spore H2-producers are inhibited. Besides, several inoculum pre-treatment techniques are not effective in the long run and repeated pre-treatment may be required for continuous suppression of H2-consumers and sustained biohydrogen production. Furthermore, many technologies employed for substrates pre-treatment may yield inhibitory compounds that can eventually decrease biohydrogen production. Consequently, much research needs to be done to find out the best technology for both substrates and inoculum pre-treatment while also taking into consideration the energetic, economic and technical feasibility of implementing such a process on an industrial scale. Copyright © 2015 Elsevier Ltd. All rights reserved.
Anaerobic biodegradability of Category 2 animal by-products: methane potential and inoculum source.
Pozdniakova, Tatiana A; Costa, José C; Santos, Ricardo J; Alves, M M; Boaventura, Rui A R
2012-11-01
Category 2 animal by-products that need to be sterilized with steam pressure according Regulation (EC) 1774/2002 are studied. In this work, 2 sets of experiments were performed in mesophilic conditions: (i) biomethane potential determination testing 0.5%, 2.0% and 5.0% total solids (TS), using sludge from the anaerobic digester of a wastewater treatment plant as inoculum; (ii) biodegradability tests at a constant TS concentration of 2.0% and different inoculum sources (digested sludge from a wastewater treatment plant; granular sludge from an upflow anaerobic sludge blanket reactor; leachate from a municipal solid waste landfill; and sludge from the slaughterhouse wastewater treatment anaerobic lagoon) to select the more adapted inoculum to the substrate in study. The higher specific methane production was of 317 mL CH(4)g(-1) VS(substrate) for 2.0% TS. The digested sludge from the wastewater treatment plant led to the lowest lag-phase period and higher methane potential rate. Copyright © 2012 Elsevier Ltd. All rights reserved.
Garcia, Daiana; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia
2014-09-01
The aim of this work was to compare the radial growth rate (μ) and the lag time (λ) for growth of 25 isolates of Penicillium expansum at 1 and 20 ºC with those of the mixed inoculum of the 25 isolates. Moreover, the evolution of probability of growth through time was also compared for the single strains and mixed inoculum. Working with a mixed inoculum would require less work, time and consumables than if a range of single strains has to be used in order to represent a given species. Suitable predictive models developed for a given species should represent as much as possible the behavior of all strains belonging to this species. The results suggested, on one hand, that the predictions based on growth parameters calculated on the basis of mixed inocula may not accurately predict the behavior of all possible strains but may represent a percentage of them, and the median/mean values of μ and λ obtained by the 25 strains may be substituted by the value obtained with the mixed inoculum. Moreover, the predictions may be biased, in particular, the predictions of λ which may be underestimated (fail-safe). Moreover, the prediction of time for a given probability of growth through a mixed inoculum may not be accurate for all single inocula, but it may represent 92% and 60% of them at 20 and 1 ºC, respectively, and also their overall mean and median values. In conclusion, mixed inoculum could be a good alternative to estimate the mean or median values of high number of isolates, but not to account for those strains with marginal behavior. In particular, estimation of radial growth rate, and time for 0.10 and 0.50 probability of growth using a cocktail inoculum accounted for the estimates of most single isolates tested. For the particular case of probability models, this is an interesting result as for practical applications in the food industry the estimation of t10 or lower probability may be required. Copyright © 2014 Elsevier B.V. All rights reserved.
Paul Tooley; Marsha Browning; Robert Leighty
2013-01-01
Our objectives were to establish inoculum density relationships between P. ramorum and selected hosts using detached leaf and whole-plant inoculations. Young plants and detached leaves of Quercus prinus (Chestnut oak), Q. rubra (Northern red oak), Acer rubrum (red maple), ...
Moore, Ian N; Lamirande, Elaine W; Paskel, Myeisha; Donahue, Danielle; Kenney, Heather; Qin, Jing; Subbarao, Kanta
2014-12-01
Ferrets are a valuable model for influenza virus pathogenesis, virus transmission, and antiviral therapy studies. However, the contributions of the volume of inoculum administered and the ferret's respiratory tract anatomy to disease outcome have not been explored. We noted variations in clinical disease outcomes and the volume of inoculum administered and investigated these differences by administering two influenza viruses (A/California/07/2009 [H1N1 pandemic] and A/Minnesota/11/2010 [H3N2 variant]) to ferrets intranasally at a dose of 10(6) 50% tissue culture infective doses in a range of inoculum volumes (0.2, 0.5, or 1.0 ml) and followed viral replication, clinical disease, and pathology over 6 days. Clinical illness and respiratory tract pathology were the most severe and most consistent when the viruses were administered in a volume of 1.0 ml. Using a modified micro-computed tomography imaging method and examining gross specimens, we found that the right main-stem bronchus was consistently larger in diameter than the left main-stem bronchus, though the latter was longer and straighter. These anatomic features likely influence the distribution of the inoculum in the lower respiratory tract. A 1.0-ml volume of inoculum is optimal for delivery of virus to the lower respiratory tract of ferrets, particularly when evaluation of clinical disease is desired. Furthermore, we highlight important anatomical features of the ferret lung that influence the kinetics of viral replication, clinical disease severity, and lung pathology. Ferrets are a valuable model for influenza virus pathogenesis, virus transmission, and antiviral therapy studies. Clinical disease in ferrets is an important parameter in evaluating the virulence of novel influenza viruses, and findings are extrapolated to virulence in humans. Therefore, it is highly desirable that the data from different laboratories be accurate and reproducible. We have found that, even when the same virus was administered at similar doses, different investigators reported a range of clinical disease outcomes, from asymptomatic infection to severe weight loss, ocular and nasal discharge, sneezing, and lethargy. We found that a wide range of inoculum volumes was used to experimentally infect ferrets, and we sought to determine whether the variations in disease outcome were the result of the volume of inoculum administered. These data highlight some less explored features of the model, methods of experimental infection, and clinical disease outcomes in a research setting. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Moore, Ian N.; Lamirande, Elaine W.; Paskel, Myeisha; Donahue, Danielle; Qin, Jing
2014-01-01
ABSTRACT Ferrets are a valuable model for influenza virus pathogenesis, virus transmission, and antiviral therapy studies. However, the contributions of the volume of inoculum administered and the ferret's respiratory tract anatomy to disease outcome have not been explored. We noted variations in clinical disease outcomes and the volume of inoculum administered and investigated these differences by administering two influenza viruses (A/California/07/2009 [H1N1 pandemic] and A/Minnesota/11/2010 [H3N2 variant]) to ferrets intranasally at a dose of 106 50% tissue culture infective doses in a range of inoculum volumes (0.2, 0.5, or 1.0 ml) and followed viral replication, clinical disease, and pathology over 6 days. Clinical illness and respiratory tract pathology were the most severe and most consistent when the viruses were administered in a volume of 1.0 ml. Using a modified micro-computed tomography imaging method and examining gross specimens, we found that the right main-stem bronchus was consistently larger in diameter than the left main-stem bronchus, though the latter was longer and straighter. These anatomic features likely influence the distribution of the inoculum in the lower respiratory tract. A 1.0-ml volume of inoculum is optimal for delivery of virus to the lower respiratory tract of ferrets, particularly when evaluation of clinical disease is desired. Furthermore, we highlight important anatomical features of the ferret lung that influence the kinetics of viral replication, clinical disease severity, and lung pathology. IMPORTANCE Ferrets are a valuable model for influenza virus pathogenesis, virus transmission, and antiviral therapy studies. Clinical disease in ferrets is an important parameter in evaluating the virulence of novel influenza viruses, and findings are extrapolated to virulence in humans. Therefore, it is highly desirable that the data from different laboratories be accurate and reproducible. We have found that, even when the same virus was administered at similar doses, different investigators reported a range of clinical disease outcomes, from asymptomatic infection to severe weight loss, ocular and nasal discharge, sneezing, and lethargy. We found that a wide range of inoculum volumes was used to experimentally infect ferrets, and we sought to determine whether the variations in disease outcome were the result of the volume of inoculum administered. These data highlight some less explored features of the model, methods of experimental infection, and clinical disease outcomes in a research setting. PMID:25187553
Han, Jian-Rong; Xu, Jun; Zhou, Xiao-Mei
2002-01-01
This study examined the respective effect of inoculum type, inorganic salt and nitrogen to carbon ratio on sclerotium formation and carotenoid production in surface culture of Penicillium sp. PT95. Neither the spore inoculum nor the mycelial pellet inoculum could result in the formation of sclerotium on a modified Czapek agar medium after incubation of 28 days, whereas the inoculum in the form of sclerotium caused the formation of numerous orange, sand-shaped sclerotia after incubation of 14 days. Among four inorganic salts tested, K(2)HPO(4) was more essential to the sclerotium formation and carotenoid production of strain PT95 as compared to KCl, MgSO(4) or FeSO(4). It was also shown that the combination of K(2)HPO(4), KCl and MgSO(4) could produce the best positive cooperation and give the highest sclerotia biomass (782 mg/plate) and carotenoid content in sclerotium (420 microg/g of dry sclerotia) as well as pigment yield (328 microg/plate). The medium containing 0.24 approximately 0.48 g/l sodium nitrate-nitrogen was effective to both the sclerotium formation and carotenoid production of strain PT95 when available maltose-carbon concentrations were at 5.26 approximately 21.05 g/l. The optimal N:C ratio was found to be 1:25.
NASA Astrophysics Data System (ADS)
Ardhi, Muh. Waskito; Sulistyarsi, Ani; Pujiati
2017-06-01
Aspergillus sp is a microorganism which has a high ability to produce cellulase enzymes. In producing Cellulase enzymes requires appropriate concentration and incubation time to obtain optimum enzyme activity. This study aimed to determine the effect of inoculum concentration and incubation time towards production and activity of cellulases from Aspergillus sp substrate bagasse. This research used experiments method; completely randomized design with 2 factorial repeated 2 times. The treatment study include differences inoculum (K) 5% (K1), 15% (K2) 25%, (K3) and incubation time (F) that is 3 days (F1), 6 days (F2), 9 days (F3), 12 days (F4). The data taken from the treatment are glucose reduction and protein levels of crude cellulase enzyme activity that use Nelson Somogyi and Biuret methods. Analysis of variance ANOVA data used two paths with significance level of 5% then continued with LSD test. The results showed that: Fhit>Ftab. Thus, there is effect of inoculum concentrations and incubation time toward activity of crude cellulases of Aspergillus sp. The highest glucose reduction of treatment is K3F4 (concentration of inoculum is 25% with 12 days incubation time) amount 12.834 g / ml and the highest protein content is K3F4 (concentration of inoculum is 25% with with 12 days incubation time) amount 0.740 g / ml.
Calvo-Garrido, Carlos; Usall, Josep; Viñas, Inmaculada; Elmer, Philip Ag; Cases, Elena; Teixidó, Neus
2014-06-01
Epidemiological studies have described the life cycle of B. cinerea in vineyards. However, there is a lack of information on the several infection pathways and the quantitative relationships between secondary inoculum and bunch rot at harvest. Over two seasons, different spray programmes were used to determine key phenological stages for bunch rot development. Secondary inoculum sources within the bunch were also studied. The relative importance of flowering was evidenced in the given conditions, as treatments that included two fungicide applications at flowering were the most effective. In 2010, under conducive meteorological conditions for B. cinerea development after veraison, an extra application provided significantly higher control. Infections of necrotic tissues inside the bunch and latent infections developed mainly during flowering, while very low quantities of B. cinerea conidia were recovered from the fruit surface at veraison. Regression analysis correlated the incidence of latent infections and B. cinerea incidence on calyptras and aborted fruits at veraison with incidence of Botrytis bunch rot at harvest, presenting R2 = 0.95 for the overall regression model. This work points out key phenological stages during the season for bunch rot and B. cinerea secondary inoculum development and relates quantitatively inoculum sources at veraison to bunch rot at harvest. Recommendations for field applications of antibotrytic products are also suggested. © 2013 Society of Chemical Industry.
Fernández, C E; Aspiras, M B; Dodds, M W; González-Cabezas, C; Rickard, A H
2017-03-01
Saliva has been previously used as an inoculum for in vitro oral biofilm studies. However, the microbial community profile of saliva is markedly different from hard- and soft-tissue-associated oral biofilms. Here, we investigated the changes in the biofilm architecture and microbial diversity of in vitro oral biofilms developed from saliva, tongue or plaque-derived inocula under different salivary shear forces. Four inoculum types (saliva, bacteria harvested from the tongue, toothbrush and curette-harvested plaque) were collected and pooled. Biofilms (n ≥ 15) were grown for 20 h in cell-free human saliva flowing at three different shear forces. Stained biofilms were imaged using a confocal laser scanning microscope. Biomass, thickness and roughness were determined by image analysis and bacterial community composition analysed using Ion Torrent. All developed biofilms showed a significant reduction in observed diversity compared with their respective original inoculum. Shear force altered biofilm architecture of saliva and curette-collected plaque and community composition of saliva, tongue and curette-harvested plaque. Different intraoral inocula served as precursors of in vitro oral polymicrobial biofilms which can be influenced by shear. Inoculum selection and shear force are key factors to consider when developing multispecies biofilms within in vitro models. © 2016 The Society for Applied Microbiology.
Sabath, L. D.; Garner, Carol; Wilcox, Clare; Finland, Maxwell
1975-01-01
Because there are few persuasive data for selecting one semisynthetic penicillin or cephalosporin over another for treatment of serious staphylococcal infections, 118 recent clinical isolates of Staphylococcus aureus were studied to determine to what extent the presence of β-lactamase affected the relative anti-staphylococcal activity of six penicillins and seven cephalosporins. In addition, the effect of inoculum was studied for its possible effect on the anti-staphylococcal activity of the 13 β-lactam antibiotics. By all criteria, methicillin and nafcillin were clearly more resistant to both the inoculum effect and the production of staphylococcal β-lactamase, whereas benzylpenicillin and cephaloridine (especially benzyl-penicillin) were the most susceptible to these effects. Cephazolin was clearly more susceptible to staphylococcal β-lactamase and heavy inocula than the other cephalosporins (with the exception of cephaloridine), whereas cephalothin was the most resistant cephalosporin to these factors. The minimal inhibitory concentration for benzylpenicillin for tests with undiluted inoculum, compared to results with inoculum diluted 10−4, differed by a factor up to 16,384, whereas with methicillin and nafcillin the differences were rarely more than twofold. Ratios for the other 10 antibiotics fell between these extremes. These results suggest that methicillin or nafcillin is most stable to staphylococcal β-lactamase, and that benzylpenicillin and cephaloridine are the most susceptible. PMID:1167043
NASA Astrophysics Data System (ADS)
Ai, Binling; Chi, Xue; Meng, Jia; Sheng, Zhanwu; Zheng, Lili; Zheng, Xiaoyan; Li, Jianzheng
2017-12-01
Undefined mixed culture-based fermentation is an alternative strategy for biofuels and bioproducts production from lignocellulosic biomass without supplementary cellulolytic enzymes. Mixed culture produces mixed carboxylates. To estimate the relationship between microbial community structure and product spectrum, carboxylate production was initiated by mixed cultures with different microbial community structure. All the inoculum cultures were derived from the same enrichment culture from the combination of cattle manure, pig manure compost, corn field soil and rotten wood. Due to the differences in the preparation method and culture time, the inoculum cultures for batch fermentation had high similarity in microbial community structure, while the community structure of each inoculum culture for repeated batch fermentation differed from that of another. The inoculum cultures with similar community structure led to a similar product spectrum. In batch fermentation, the selectivity of main product butyric acid stabilized around 76%. The inoculum cultures with different community structures resulted in different product spectra. In repeated batch fermentation, the butyric acid content gradually decreased to 27%, and the by-product acetic acid content steadily increased to 56%. The other by-products including propionic, valeric and caproic acids were also increased. It is deduced that keeping the microbial community structure stable makes the basic and key precondition for steady production of specific carboxylic acid with undefined mixed culture.
Susceptibility of Haemophilus influenzae to chloramphenicol and eight beta-lactam antibiotics.
Thirumoorthi, M C; Kobos, D M; Dajani, A S
1981-01-01
We examined the minimal inhibitory concentrations and minimal bactericidal concentrations of chloramphenicol, ampicillin, ticarcillin, cefamandole, cefazolin, cefoxitin, cefotaxime, ceforanide, and moxalactam for 100 isolates of Haemophilus influenzae, 25 of which produced beta-lactamase. Susceptibility was not influenced by the capsular characteristic of the organism. The mean minimal inhibitory concentrations of cefamandole, ticarcillin, and ampicillin for beta-lactamase-producing strains were 3-, 120-, and 400-fold higher than their respective mean minimal inhibitory concentrations for beta-lactamase-negative strains. No such difference was noted for the other antibiotics. We performed time-kill curve studies, using chloramphenicol, ampicillin, cefamandole, cefotaxime, and moxalactam with two concentrations of the antimicrobial agents (4 or 20 times the minimal inhibitory concentrations) and two inoculum sizes (10(4) or 10(6) colony-forming units per ml). The inoculum size had no appreciable effect on the rate of killing of beta-lactamase-negative strains. The rates at which beta-lactamase-producing strains were killed by chloramphenicol, cefotaxime, and moxalactam was not influenced by the inoculum size. Whereas cefamandole in high concentrations was able to kill at 10(6) colony-forming units/ml of inoculum, it had only a temporary inhibiting effect at low drug concentrations. Methicillin and the beta-lactamase inhibitor CP-45,899 were able to neutralize the inactivation of cefamandole by a large inoculum of beta-lactamase-producing H. influenzae. PMID:6974541
Improving management of grape powdery mildew with new tools and knowledge
USDA-ARS?s Scientific Manuscript database
The assumption that inoculum of the grape powdery mildew pathogen is always available once conditions are suitable for inoculum release has been shown to be incorrect. Using various molecular techniques, we have shown that viticulturist can reduce their fungicide applications, on average, by 2.4 ap...
A test system to quantify inoculum in runoff from Phytophthora ramorum-infected plant roots
USDA-ARS?s Scientific Manuscript database
Foliar hosts of Phytophthora ramorum are often susceptible to root infection, but the epidemiological significance of such infections is unknown. We used a standardized test system to study inoculum in runoff from root-infected Viburnum tinus cuttings. Viburnum were inoculated by pouring a sporang...
Effects of microbial inoculum composition on rumen microbial ecology of dairy calves
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine if microbial inoculum composition affects dairy calf rumen microbial ecology. Holstein bull calves (n=20) were removed from their dam at birth and individually housed in calf hutches with sand bedding. Responses were studied using a randomized complete bl...
Effect of prior vegetative growth, inoculum density and light on conidiation in Erysiphe necator
USDA-ARS?s Scientific Manuscript database
A driving force in epidemics of grape powdery mildew is the abundant production of conidia. Our objective was to better define the three factors involved in the qualitative change that occurs when a mildew colony switches from vegetative growth to sporulation –inoculum density, light, and a sporulat...
On-farm AM fungus inoculum production: a complete how-to on-farm am fungus inoculum production
USDA-ARS?s Scientific Manuscript database
Arbuscular mycorrhizal (AM) fungi are beneficial soil fungi that form a symbiosis with the majority of crop plants. The benefits to the plant include increased nutrient uptake and disease and drought resistance. This makes utilization of the symbiosis a potentially important part in ensuring the s...
USDA-ARS?s Scientific Manuscript database
Seedlings of three Eastern US forest species (red maple, northern red oak, and chestnut oak) were inoculated by applying Phytophthora ramorum sporangia to stems at different inoculum densities with and without wounding. Disease occurred in all treatments involving wounds, and no disease was observe...
P.W. Tooley; M. Browning; R.M. Leighty
2014-01-01
Seedlings of three Eastern US forest species Quercus rubra (northern red oak), Quercus prinus (chestnut oak) and Acer rubrum (red maple) were inoculated by applying Phytophthora ramorum sporangia to stems at different inoculum densities with and without wounding. Disease occurred in all...
Development of an assay for rapid detection and quantification of Verticillium dahliae in soil
USDA-ARS?s Scientific Manuscript database
Verticillium dahliae is responsible for Verticillium wilt on a wide range of hosts including strawberry, on which low inoculum densities can cause significant crop loss. Determination of inoculum density is currently done by soil plating, but this can take 6-8 weeks to complete and delay the grower...
USDA-ARS?s Scientific Manuscript database
Little is known about root susceptibility of eastern tree species to Phytophthora ramorum. In this study, we examined root susceptibility and inoculum production from roots. Oak radicles of several eastern oak species were exposed to zoospore suspensions of 1, 10, 100, or 1000 zoospores per ml at ...
Seasonal availability of inoculum of the Heterobasidion root disease pathogen in central Wisconsin
Glen R. Stanosz; Denise R. Smith; Jennifer Juzwik
2016-01-01
After deposition of airborne basidiospores, the root disease pathogen Heterobasidion irregulare Garbelotto and Otrosina infects fresh conifer stumps and spreads through root grafts or by root contact to adjacent trees. Infection can be prevented, however, by borate application. Because the need for stump protection depends on inoculum availability...
Corrêa, E K; Ulguim, R R; Corrêa, L B; Castilhos, D D; Bianchi, I; Gil-Turnes, C; Lucia, T
2012-10-01
Thermal and microbiological characteristics of beddings for swine were compared according to their depth and of addition of inoculums. Bedding was added to boxes at 0.25 (25D) and 0.50 m (50D), with three treatments: control (no inoculums); T1, with 250 g of Bacillus cereus var. toyoii at 8.4 × 10(7) CFU; and T2, with 250 g of a pool of B. subtilis, Bacillus licheniformis and Bacillus polymyxa at 8.4 × 10(7) CFU (250 g for 25D and 500 g for 50D). Mean temperatures were 28.5 ± 3.9 at the surface and 35.2 ± 8.9 inside the beddings. The most probable number (MPN) of thermophilic bacteria was higher for T1 and T2 than for the control (P<0.05). The MPN of thermophilic bacteria and fungi was greater for D50 than for D25 (P<0.05). The use of 25D without inoculums is recommended due to the reduction of thermophilic microbiota. Copyright © 2012 Elsevier Ltd. All rights reserved.
Corrêa, E K; Corezzolla, J L; Corrêa, M N; Bianchi, I; Gil-Turnes, C; Lucia, T
2012-11-01
The effect of depths and of addition of inoculums on the chemical content of swine beddings was evaluated. For beddings 0.25m (25D) and 0.50m (50D) deep, three treatments were tested in two repeats with the same beddings: control (no inoculums); T1 (250g of Bacillus cereus var. toyoii at 8.4×10(7)CFU/g); and T2 (250g of a pool of Bacillus sp. at 8.4×10(7)CFU/g) (250g for 25D and 500g for 50D). For 25D, the C:N ratio was lower, but N, K and C contents were greater than for 50D (P<0.05). The inoculums did not benefit any chemical parameter (P>0.05). In the second repeat, beddings presented lower C:N ratio and greater N, P and K contents than in the first repeat (P<0.05). Thus, the compost produced after using 25D twice had greater fertilizer value than that of 50D. Copyright © 2012 Elsevier Ltd. All rights reserved.
Han, Jian-Rong; Yuan, Jing-Ming
2003-10-01
Various inocula and grains were evaluated for carotenoid production by solid-state fermentation using Penicillium sp. PT95. Millet medium was more effective in both sclerotia growth and carotenoid production than other grain media. An inoculum in the form of sclerotia yielded higher sclerotia biomass compared to either a spore inoculum or a mycelial pellet inoculum. Adding wheat bran to grain medium favored the formation of sclerotia. However, neither the inoculum type nor addition of wheat bran resulted in a significant change in the carotenoid content of sclerotia. Among grain media supplemented with wheat bran (wheat bran:grain =1:4 w/w, dry basis), a medium consisting of rice and wheat bran gave the highest sclerotia biomass (15.10 g/100 g grain), a medium consisting of buckwheat and wheat bran gave the highest content of carotenoid in sclerotia (0.826 mg/g dry sclerotia), and a medium consisting of millet and wheat bran gave the highest carotenoid yield (11.457 mg/100 g grain).
The Ebb and Flow of Airborne Pathogens: Monitoring and Use in Disease Management Decisions.
Mahaffee, Walter F; Stoll, Rob
2016-05-01
Perhaps the earliest form of monitoring the regional spread of plant disease was a group of growers gathering together at the market and discussing what they see in their crops. This type of reporting continues to this day through regional extension blogs, by crop consultants and more formal scouting of sentential plots in the IPM PIPE network (http://www.ipmpipe.org/). As our knowledge of plant disease epidemiology has increased, we have also increased our ability to detect and monitor the presence of pathogens and use this information to make management decisions in commercial production systems. The advent of phylogenetics, next-generation sequencing, and nucleic acid amplification technologies has allowed for development of sensitive and accurate assays for pathogen inoculum detection and quantification. The application of these tools is beginning to change how we manage diseases with airborne inoculum by allowing for the detection of pathogen movement instead of assuming it and by targeting management strategies to the early phases of the epidemic development when there is the greatest opportunity to reduce the rate of disease development. While there are numerous advantages to using data on inoculum presence to aid management decisions, there are limitations in what the data represent that are often unrecognized. In addition, our understanding of where and how to effectively monitor airborne inoculum is limited. There is a strong need to improve our knowledge of the mechanisms that influence inoculum dispersion across scales as particles move from leaf to leaf, and everything in between.
Muruganandam, B; Saravanane, R; Lavanya, M; Sivacoumar, R
2008-07-01
Anaerobic treatment has gained tremendous success over the past two decades for treatment of industrial effluents. Over the past 30 years, the popularity of anaerobic wastewater treatment has increased as public utilities and industries have utilized its considerable benefits. Low biomass production, row nutrient requirements and the energy production in terms of methane yield are the significant advantages over aerobic treatment process. Due to the disadvantages reported in the earlier investigations, during the past decade, anaerobic biotechnology now seems to become a stable process technology in respect of generating a high quality effluent. The objective of the present experimental study was to compare the biodegradability of recalcitrant effluent (pharmaceutical effluent) for various inoculum-substrate ratios. The batch experiments were conducted over 6 months to get effect of ratio of inoculum-substrate on the acclimatization of pharmaceutical effluent. The tests were carried out in batch reactors, serum bottles, of volume 2000 mL and plastic canes of 10000 mL. Each inoculum was filled with a cow dung, sewage and phosphate buffer. The batch was made-up of diluted cow dung at various proportions of water and cow dung, i.e., 1:1 and 1:2 (one part of cow dung and one part of water by weight for 1:1). The bottles were incubated at ambient temperature (32 degrees C-35 degrees C). The bottles were closed tightly so that the anaerobic condition is maintained. The samples were collected and biodegradability was measured once in four days. The bottles were carefully stirred before gas measurement. The substrate was added to a mixture of inoculum and phosphate nutrients. The variations in pH, conductivity, alkalinity, COD, TS, TVS, VSS, and VFA were measured for batch process. The biogas productivity was calculated for various batches of inoculum-substrate addition and conclusions were drawn for expressing the biodegradability of pharmaceutical effluent on acclimatization period and influent COD concentration.
Kesteman, Anne-Sylvie; Ferran, Aude A.; Perrin-Guyomard, Agnès; Laurentie, Michel; Sanders, Pascal; Toutain, Pierre-Louis; Bousquet-Mélou, Alain
2009-01-01
We tested the hypothesis that the bacterial load at the infection site could impact considerably on the pharmacokinetic/pharmacodynamic (PK/PD) parameters of fluoroquinolones. Using a rat lung infection model, we measured the influence of different marbofloxacin dosage regimens on selection of resistant bacteria after infection with a low (105 CFU) or a high (109 CFU) inoculum of Klebsiella pneumoniae. For daily fractionated doses of marbofloxacin, prevention of resistance occurred for an area-under-the-concentration-time-curve (AUC)/MIC ratio of 189 h for the low inoculum, whereas for the high inoculum, resistant-subpopulation enrichment occurred for AUC/MIC ratios up to 756 h. For the high-inoculum-infected rats, the AUC/MIC ratio, Cmax/MIC ratio, and time within the mutant selection window (TMSW) were not found to be effective predictors of resistance prevention upon comparison of fractionated and single administrations. An index corresponding to the ratio of the time that the drug concentrations were above the mutant prevention concentration (MPC) over the time that the drug concentrations were within the MSW (T>MPC/TMSW) was the best predictor of the emergence of resistance: a T>MPC/TMSW ratio of 0.54 was associated with prevention of resistance for both fractionated and single administrations. These results suggest that the enrichment of resistant bacteria depends heavily on the inoculum size at the start of an antimicrobial treatment and that classical PK/PD parameters cannot adequately describe the impact of different dosage regimens on enrichment of resistant bacteria. We propose an original index, the T>MPC/TMSW ratio, which reflects the ratio of the time that the less susceptible bacterial subpopulation is killed over the time that it is selected, as a potentially powerful indicator of prevention of enrichment of resistant bacteria. This ratio is valid only if plasma concentrations achieve the MPC. PMID:19738020
Rebecca E. Hewitt; F. Stuart Chapin; Teresa N. Hollingsworth; D. Lee Taylor
2017-01-01
Root-associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially...
USDA-ARS?s Scientific Manuscript database
Little is known about root susceptibility of eastern U.S. tree species to Phytophthora ramorum. In this study, we examined root susceptibility and inoculum production from roots. Sprouted acorns of Q. rubra, Q. palustrus, Q. coccinia, Q. alba, Q. michauxii and Q. prinus were exposed to motile zoos...
USDA-ARS?s Scientific Manuscript database
Over a three year period, we compared aflatoxin accumulation and kernel infection in maize hybrids inoculated with six inoculum concentrations of Aspergillus flavus isolate NRRL 3357 or A. parasiticus isolate NRRL 6111 which is a norsolorinic acid producer. Aflatoxin resistant and susceptible mai...
Massé, Daniel I; Saady, Noori M Cata
2015-05-01
Cow manure with bedding is renewable organic biomass available around the year on dairy farms. Developing efficient and cost-effective psychrophilic dry anaerobic digestion (PDAD) processes could contribute to solving farm-related environmental, energy, and manure management problems in cold-climate regions. This study was to increase the organic loading rate (OLR), fed to a novel psychrophilic (20 °C) dry anaerobic digestion of 27% total solid dairy manure (cow feces and wheat straw) in sequence batch reactor (PDAD-SBR), by 133 to 160%. The PDAD-SBR process operated at treatment cycle length of 21 days and OLR of 7.0 and 8.0 g total chemical oxygen demand (TCOD) kg(-1) inoculum day(-1) (5.2 ± 0.1 and 5.8 ± 0.0 g volatile solids (VS) kg(-1) inoculum day(-1)) for four successive cycles (84 days) produced average specific methane yields (SMYs) of 147.1 ± 17.2 and 143.2 ± 11.7 normalized liters (NL) CH4 kg(-1) VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.45 at OLR of 8.0 g TCOD kg(-1) inoculum day(-1). Hydrolysis was the limiting step reaction. The VS removal averaged around 57.4 ± 0.5 and 60.5 ± 5.7% at OLR 7.0 and 8.0 g TCOD kg(-1) inoculum day(-1), respectively.
Anaerobic Digestion Performance in the Energy Recovery of Kiwi Residues
NASA Astrophysics Data System (ADS)
Martins, Ramiro; Boaventura, Rui; Paulista, Larissa
2017-12-01
World production and trade of fruits generate losses in the harvest, post-harvest, handling, distribution and consumption phases, corresponding to 6.8% of total production. These residues present high potential as a substrate for the anaerobic digestion process and biogas generation. Thus, the energy valuation of the agro-industrial residues of kiwi production was evaluated by anaerobic digestion, aiming at optimizing the biogas production and its quality. Ten assays were carried out in a batch reactor (500 mL) under mesophilic conditions and varying a number of operational factors: different substrate/inoculum ratios; four distinct values for C: N ratio; inoculum from different digesters; and inoculum collected at different times of the year. The following parameters were used to control and monitor the process: pH, alkalinity, volatile fatty acids (VFA), volatile solids (VS) and chemical oxygen demand (COD). Among the tests performed, the best result obtained for the biogas production corresponded to the use of 2 g of substrate and 98 mL of inoculum of the anaerobic digester of the Wastewater Treatment Plant (WWTP) of Bragança, with addition of 150 mg of bicarbonate leading to a production of 1628 L biogas.kg-1 VS (57% methane). In relation to the biogas quality, the best result was obtained with 20 g of substrate and 380 mL of inoculum from the anaerobic digester sludge of WWTP of Ave (with addition 600 mg of sodium bicarbonate), presenting a value of 85% of CH4, with a production of 464 L biogas.kg-1 VS.
Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.
Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang
2016-01-01
Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).
Ebba K. Peterson; Niklaus J. Grünwald; Jennifer L. ParkeSoil
2017-01-01
Soilborne inoculum (infested leaf debris which has become incorporated into the soil) may be an important contributor to the persistence of the sudden oak death pathogen Phytophthora ramorum in recurrently positive nurseries. To initiate new epidemics, soilborne inoculum must not only be able to survive over time, but also be capable of...
Bacterial Growth in Tray Pack Acidified Rice
1987-01-01
Bacillus coagulans , which were able to survive the pasteurization processing temperature. Because of the potential for spoilage that was indicated...Inoculum A miKed inoculum consisting o-f Bacillus sphaericus, Bacillus circulans and iour strains of Bacillus coagulans was prepared. All cultures...ineffective in preventing growth of sporeforming bacillus species. Moreover, there was nonuniform distribution of the acidulant, which resulted in
USDA-ARS?s Scientific Manuscript database
Validation of model predictions for independent variables not included in model development can save time and money by identifying conditions for which new models are not needed. A single strain of Salmonella Typhimurium DT104 was used to develop a general regression neural network model for growth...
Bailey, T.A.; Bradford, K.; Bland, C.E.
1990-01-01
Because the infective stage of most mycoses of aquatic organisms is the zoospore, we attempted to establish optimum conditions under which zoospores could be produced for use in antifungal testing. Optimum sporulation time, incubation time, inoculum size, and growth temperature were determined for each oftwo saprolegniaceous fungi, Achlya flagellata Coker and Saprolegnia hypogyna (Pringsheim) de Bary. Both species produced the largest number of zoospores after 18 hours (51.7 spores/ml for A. jlagellata and 848.0 spores/ml for S. hypogyna), and yielded maximum growth after 48 hours at 22 'C. The recommended test inoculum size for S. hypogyna (5,600 spores/ml was nearly three times that for A. flagellata (2,000 spores/ml),
NASA Astrophysics Data System (ADS)
Tien, Hai M.; Le, Kien A.; Tran, An T.; Le, Phung K.
2016-06-01
In this work, a series of batch tests were conducted to investigate the effect of pH, temperature, fermentation time, and inoculums ratio to hydrogen production using cassava starch as a substrate. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. It was fouund that the suitable fermentation conditions of biohydrogen production should be at temperature 40 ° C; pH 6.5, inoculums to medium ratio 10 % and COD operation at 4800 g/mL. The maximum value of hydrogen volume produced was 76.22 mL. These affected has been evaluated and the result can be used as an reference for the pilot or industrial biohydrogen production.
Ebba K. Peterson; Niklaus J. Grünwald; Jennifer L. Parke
2017-01-01
Soilborne inoculum (infested leaf debris which has become incorporated into the soil) may be an important contributor to the persistence of the sudden oak death pathogen Phytophthora ramorum in recurrently positive nurseries. To initiate new epidemics, soilborne inoculum must not only be able to survive over time, but also be capable of producing...
Hidalgo, Dolores; Martín-Marroquín, Jesús M
2014-09-01
This work aims at selecting a suitable strategy to improve the performance of the anaerobic digestion of residues generated in the treatment of waste vegetable oils (WVO). Biochemical methane potential (BMP) assays were conducted at 35 °C to evaluate the effects of substrate mix ratio between a mixture of WVO residues (M) and pig manure (PM) co-digesting by using different inocula. Inoculum from an industrial digester fed with organic waste from hotels, restaurants and catering leftovers (HORECA) showed higher methanogenic activity (55.5 mLCH4 gVS(-1) d(-1)) than municipal wastewater treatment plant (mWWTP) inoculum (42.6 mL CH4 gVS(-1) d(-1)). Furthermore, the results showed that the resistance to WVO residues toxicity was higher for the HORECA sludge than for the mWWTP sludge. HORECA inoculum produced more biogas in all the assays. Moreover, the resulting biogas was of better quality, containing an average of 71.1% (SD = 1.6) methane compared to an average of 69.5% (SD = 1.2) methane for test with mWWTP sludge. The maximum degradation rate occurred at the higher PM mix ratio (M/PM:1/3), reaching 26.7 ± 4.3 mLCH4 gVS(-1) d(-1) for mWWTP inoculum, versus 42.0 ± 1,5 mLCH4 gVS(-1) d(-1) achieved for HORECA inoculum. A high reduction of volatile solids (between 70% and 81%) was obtained with both inocula at all M/PM ratios assayed (1/0, 1/3, 1/1 and 3/1 v/v) but, bearing in mind the operation of a full-scale anaerobic plant, the optimal scenario assayed corresponds to the ratio M/PM: 1/3 v/v where shorter lag periods will make it possible to operate at lower hydraulic retention times. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lee, Dong-Gun; Murakami, Yoichi; Andes, David R.
2013-01-01
Reduced bactericidal efficacy at a high inoculum is known as the inoculum effect (IE). We used neutropenic mice to compare the IEs of ceftobiprole (CFB), daptomycin (DAP), linezolid (LZD), and vancomycin (VAN) against 6 to 9 strains of Staphylococcus aureus and 4 strains of Streptococcus pneumoniae at 2 inocula in opposite thighs of the same mice. Neutropenic mice had 104.5 to 105.7 CFU/thigh (low inoculum [LI]) in one thigh and 106.4 to 107.2 CFU/thigh (high inoculum [HI]) in the opposite thigh when treated for 24 h with subcutaneous (s.c.) doses every 12 h of DAP at 0.024 to 100 mg/kg of body weight and LZD at 0.313 to 320 mg/kg and s.c. doses every 6 h of CFB at 0.003 to 160 mg/kg and VAN at 0.049 to 800 mg/kg. Dose-response data were analyzed by a maximum effect (Emax) model using nonlinear regression. Static doses for each drug and at each inoculum were calculated, and the difference between HI and LI (IE index) gave the magnitude of IE for each drug-organism combination. Mean (range) IE indexes of S. aureus were 2.9 (1.7 to 4.6) for CFB, 4.1 (2.6 to 9.3) for DAP, 4.6 (1.7 to 7.1) for LZD, and 10.1 (6.3 to 20.3) for VAN. In S. pneumoniae, the IE indexes were 2.5 (1.3 to 3.3) for CFB, 2.0 (1.6 to 2.8) for DAP, 1.9 (1.7 to 2.2) for LZD, and 1.5 (0.8 to 3.2) for VAN; these values were similar for all drugs. In S. aureus, the IE was much larger with VAN than with CFB, DAM, and LZD (P < 0.05). An in vivo time course of vancomycin activity showed initiation of killing at 4- to 16-fold-higher doses at HI than at LI despite similar initial growth of controls. PMID:23295932
Internalization of Murine Norovirus 1 by Lactuca sativa during Irrigation ▿
Wei, Jie; Jin, Yan; Sims, Tom; Kniel, Kalmia E.
2011-01-01
Romaine lettuce (Lactuca sativa) was grown hydroponically or in soil and challenged with murine norovirus 1 (MNV) under two conditions: one mimicking a severe one-time contamination event and another mimicking a lower level of contamination occurring over time. In each condition, lettuce was challenged with MNV delivered at the roots. In the first case, contamination occurred on day one with 5 × 108 reverse transcriptase quantitative PCR (RT-qPCR) U/ml MNV in nutrient buffer, and irrigation water was replaced with virus-free buffer every day for another 4 days. In the second case, contamination with 5 × 105 RT-qPCR U/ml MNV (freshly prepared) occurred every day for 5 days. Virus had a tendency to adsorb to soil particles, with a small portion suspended in nutrient buffer; e.g., ∼8 log RT-qPCR U/g MNV was detected in soil during 5 days of challenge with virus inoculums of 5 × 108 RT-qPCR U/ml at day one, but <6 log was found in nutrient buffer on days 3 and 5. For hydroponically grown lettuce, ∼3.4 log RT-qPCR U of viral RNA/50 mg of plant tissue was detected in some lettuce leaf samples after 5 days at high MNV inoculums, significantly higher than the internalized virus concentration (∼2.6 log) at low inoculums (P < 0.05). For lettuce grown in soil, approximately 2 log RT-qPCR U of viral RNA/50 mg of plant tissue was detected in lettuce with both high and low inoculums, showing no significant difference. For viral infectivity, infectious MNV was found in lettuce samples challenged with high virus inoculums grown hydroponically and in soil but not in lettuce grown with low virus inoculums. Lettuce grown hydroponically was further incubated in 99% and 70% relative humidities (RH) to evaluate plant transpiration relative to virus uptake. More lettuce samples were found positive for MNV at a significantly higher transpiration rate at 70% RH, indicating that transpiration might play an important role in virus internalization into L. sativa. PMID:21296944
Use of disposable reactors to generate inoculum cultures for E. coli production fermentations.
Mahajan, Ekta; Matthews, Timothy; Hamilton, Ryan; Laird, Michael W
2010-01-01
Disposable technology is being used more each year in the biotechnology industry. Disposable bioreactors allow one to avoid expenses associated with cleaning, assembly and operations, as well as equipment validation. The WAVE bioreactor is well established for Chinese Hamster Ovary (CHO) production, however, it has not yet been thoroughly tested for E. coli production because of the high oxygen demand and temperature maintenance requirements of that platform. The objective of this study is to establish a robust process to generate inoculum for E. coli production fermentations in a WAVE bioreactor. We opted not to evaluate the WAVE system for production cultures because of the high cell densities required in our current E. coli production processes. Instead, the WAVE bioreactor 20/50 system was evaluated at laboratory scale (10-L) to generate inoculum with target optical densities (OD(550)) of 15 within 7-9 h (pre-established target for stainless steel fermentors). The maximum settings for rock rate (40 rpm) and angle (10.5) were used to maximize mass transfer. The gas feed was also supplemented with additional oxygen to meet the high respiratory demand of the culture. The results showed that the growth profiles for the inoculum cultures were similar to those obtained from conventional stainless steel fermentors. These inoculum cultures were subsequently inoculated into 10-L working volume stainless steel fermentors to evaluate the inocula performance of two different production systems during recombinant protein production. The results of these production cultures using WAVE inocula showed that the growth and recombinant protein production was comparable to the control data set. Furthermore, an economic analysis showed that the WAVE system would require less capital investment for installation and operating expenses would be less than traditional stainless steel systems. (c) 2010 American Institute of Chemical Engineers
Bergen, Phillip J.; Tsuji, Brian T.; Bulitta, Jurgen B.; Forrest, Alan; Jacob, Jovan; Sidjabat, Hanna E.; Paterson, David L.; Nation, Roger L.; Li, Jian
2011-01-01
Combination therapy may be required for multidrug-resistant (MDR) Pseudomonas aeruginosa. The aim of this study was to systematically investigate bacterial killing and emergence of colistin resistance with colistin and doripenem combinations against MDR P. aeruginosa. Studies were conducted in a one-compartment in vitro pharmacokinetic/pharmacodynamic model for 96 h at two inocula (∼106 and ∼108 CFU/ml) against a colistin-heteroresistant reference strain (ATCC 27853) and a colistin-resistant MDR clinical isolate (19147 n/m). Four combinations utilizing clinically achievable concentrations were investigated. Microbiological response was examined by log changes and population analysis profiles. Colistin (constant concentrations of 0.5 or 2 mg/liter) plus doripenem (peaks of 2.5 or 25 mg/liter every 8 h; half-life, 1.5 h) substantially increased bacterial killing against both strains at the low inoculum, while combinations containing colistin at 2 mg/liter increased activity against ATCC 27853 at the high inoculum; only colistin at 0.5 mg/liter plus doripenem at 2.5 mg/liter failed to improve activity against 19147 n/m at the high inoculum. Combinations were additive or synergistic against ATCC 27853 in 16 and 11 of 20 cases (4 combinations across 5 sample points) at the 106- and 108-CFU/ml inocula, respectively; the corresponding values for 19147 n/m were 16 and 9. Combinations containing doripenem at 25 mg/liter resulted in eradication of 19147 n/m at the low inoculum and substantial reductions in regrowth (including to below the limit of detection at ∼50 h) at the high inoculum. Emergence of colistin-resistant subpopulations of ATCC 27853 was substantially reduced and delayed with combination therapy. This investigation provides important information for optimization of colistin-doripenem combinations. PMID:21911563
Xie, Binghan; Gong, Weijia; Ding, An; Yu, Huarong; Qu, Fangshu; Tang, Xiaobin; Yan, Zhongsen; Li, Guibai; Liang, Heng
2017-10-01
Microbial fuel cell (MFC) is a sustainable technology to treat cattle manure slurry (CMS) for converting chemical energy to bioelectricity. In this work, two types of allochthonous inoculum including activated sludge (AS) and domestic sewage (DS) were added into the MFC systems to enhance anode biofilm formation and electricity generation. Results indicated that MFCs (AS + CMS) obtained the maximum electricity output with voltage approaching 577 ± 7 mV (~ 196 h), followed by MFCs (DS + CMS) (520 ± 21 mV, ~ 236 h) and then MFCs with autochthonous inoculum (429 ± 62 mV, ~ 263.5 h). Though the raw cattle manure slurry (RCMS) could facilitate electricity production in MFCs, the addition of allochthonous inoculum (AS/DS) significantly reduced the startup time and enhanced the output voltage. Moreover, the maximum power (1.259 ± 0.015 W/m 2 ) and the highest COD removal (84.72 ± 0.48%) were obtained in MFCs (AS + CMS). With regard to microbial community, Illumina HiSeq of the 16S rRNA gene was employed in this work and the exoelectrogens (Geobacter and Shewanella) were identified as the dominant members on all anode biofilms in MFCs. For anode microbial diversity, the MFCs (AS + CMS) outperformed MFCs (DS + CMS) and MFCs (RCMS), allowing the occurrence of the fermentative (e.g., Bacteroides) and nitrogen fixation bacteria (e.g., Azoarcus and Sterolibacterium) which enabled the efficient degradation of the slurry. This study provided a feasible strategy to analyze the anode biofilm formation by adding allochthonous inoculum and some implications for quick startup of MFC reactors for CMS treatment.
Chen, Jian; Ren, Yanqin; Daharsh, Lance; Liu, Lu; Kang, Guobin; Li, Qingsheng; Wei, Qiang; Wan, Yanmin; Xu, Jianqing
2018-01-01
Characterizing the transmitted/founder (T/F) viruses of multi-variant SIV infection may shed new light on the understanding of mucosal transmission. We intrarectally inoculated six Chinese rhesus macaques with a single high dose of SIVmac251 (3.1 × 104 TCID50) and obtained 985 full-length env sequences from multiple tissues at 6 and 10 days post-infection by single genome amplification (SGA). All 6 monkeys were infected with a range of 2 to 8 T/F viruses and the dominant variants from the inoculum were still dominant in different tissues from each monkey. Interestingly, our data showed that a cluster of rare T/F viruses was unequally represented in different tissues. This cluster of rare T/F viruses phylogenetically related to the non-dominant SIV variants in the inoculum and was not detected in any rectum tissues, but could be identified in the descending colon, jejunum, spleen, or plasma. In 2 out of 6 macaques, identical SIVmac251 variants belonging to this cluster were detected simultaneously in descending colon/jejunum and the inoculum. We also demonstrated that the average CG dinucleotide frequency of these rare T/F viruses found in tissues, as well as non-dominant variants in the inoculum, was significantly higher than the dominant T/F viruses in tissues and the inoculum. Collectively, these findings suggest that descending colon/jejunum might be more susceptible than rectum to SIV in the very early phase of infection. And host CG suppression, which was previously shown to inhibit HIV replication in vitro, may also contribute to the bottleneck selection during in vivo transmission. PMID:29651274
Marín-Guirao, J I; Rodríguez-Romera, P; Lupión-Rodríguez, B; Camacho-Ferre, F; Tello-Marquina, J C
2016-10-01
The biostimulant effect of Trichoderma spp. on horticultural crops are highly variable. Thus, practical use of Trichoderma sp. requires feasible formulated products and suitable substrates. This study evaluates the survival and the growth-promotion effect of a Trichoderma saturnisporum rice formulation compared with a nonformulated conidia suspension (seven treatments in total), on tomato, pepper and cucumber seedlings grown in two substrates: (i) rich in organic matter (OM) and (ii) mineral substrate without OM. The results showed beneficial effects on seedling growth in the OM-rich substrate when T. saturnisporum rice formulation (mainly at maximum concentration) was applied, but the effects were opposite when the mineral substrate without OM was used. The effects were closely linked to the level of inoculum in the substrate, which was greater upon application of the formulated inoculum as opposed to the nonformulated one. The use of rice to prepare the inoculum of T. saturnisporum seems to be promising for seedling growth in the nursery when it is applied in a substrate that is rich in organic matter, but it must be considered that under certain conditions of food shortage, Trichoderma sp. could show pathogenicity to seedlings. This study provides evidence of the complexity inherent in the use of micro-organisms in agriculture, while also confirming that the activity of the biofertilizers based on Trichoderma depends on the type of inoculum and its concentration, as well as the properties of the medium in which the fungi develop. Further studies assessing the effectiveness or possible pathogenicity of Trichoderma in different soils under greenhouse conditions must be addressed. © 2016 The Society for Applied Microbiology.
Nwokoro, Ogbonnaya; Dibua, Marie Esther Uju
2014-03-01
The aim of this investigation was to study whether certain bacteria could be used for cyanide degradation in soil. The bacteria Pseudomonas stutzeri and Bacillus subtilis were selected based on their good growth in a minimal medium containing 0.8 mg mL-1 potassium cyanide (KCN). In this study we tested their ability to reduce cyanide levels in a medium containing 1.5 mg mL-1 of KCN. Although both microorganisms reduced cyanide levels, Pseudomonas stutzeri was the more effective test organism. Later on, the selected cultures were grown, diluted and their various cell concentrations were used individually and in combination to test their ability of cyanide degradation in soil samples collected around a cassava processing mill. Bacillus subtilis caused degradation of soil cyanide from 0.218 mg g-1 soil immediately with an inoculum concentration of 0.1 (OD600nm) to 0.072 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) implying a 66.9 % reduction. Pseudomonas stutzeri cell concentration of 0.1 (OD600nm) decreased soil cyanide from 0.218 mg g-1 soil initially to 0.061 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) (72 % reduction). The mixed culture of the two bacteria produced the best degradation of soil cyanide from 0.218 mg g-1 soil sample with a combined inoculum concentration of 0.1 (OD600nm) initially to 0.025 mg g-1 soil with a combined inoculum concentration of 0.6 (OD600nm) after 10 days incubation resulting in an 88.5 % degradation of soil cyanide. The analysed bacteria displayed high cyanide degradation potential and may be useful for efficient decontamination of cyanide contaminated sites.
van Kuijk, Sandra J A; Sonnenberg, Anton S M; Baars, Johan J P; Hendriks, Wouter H; Cone, John W
2016-01-01
The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains (0.5, 1.5 or 3.0 % per g of wet weight of substrate) added to the substrates. Also, wheat straw and wood chips were chopped to either 0.5 or 2 cm. Effectiveness of the fungal treatment after 0, 2, 4, 6, or 8 wk of incubation was determined by changes in chemical composition, in vitro gas production (IVGP) as a measure for rumen degradability, and ergosterol content as a measure of fungal biomass. Incomplete colonization was observed for C. subvermispora treated wheat straw and L. edodes treated wood chips. The different particle sizes and amounts of inoculum tested, had no significant effects on the chemical composition and the IVGP of C. subvermispora treated wood chips. Particle size did influence L. edodes treatment of wheat straw. The L. edodes treatment of 2 cm wheat straw resulted in a more selective delignification and a higher IVGP than the smaller particles. Addition of 1.5 % or 3 % L. edodes inoculum to wheat straw resulted in more selective delignification and a higher IVGP than addition of 0.5 % inoculum. Particle size and amount of inoculum did not have an effect on C. subvermispora treatment of wood chips. At least 1.5 % L. edodes colonized millet grains should be added to 2 cm wheat straw to result in an increased IVGP and acid detergent lignin (ADL) degradation.
Sargent, Dorian; Verchère, Jérémy; Lazizzera, Corinne; Gaillard, Damien; Lakhdar, Latifa; Streichenberger, Nathalie; Morignat, Eric; Bétemps, Dominique; Baron, Thierry
2017-10-01
The M83 transgenic mouse is a model of human synucleinopathies that develops severe motor impairment correlated with accumulation of the pathological Ser129-phosphorylated α-synuclein (α-syn P ) in the brain and spinal cord. M83 disease can be accelerated by intracerebral inoculation of brain extracts from sick M83 mice. This has also recently been described using peripheral routes, injecting recombinant preformed α-syn fibrils into the muscle or the peritoneum. Here, we inoculated homozygous and/or hemizygous M83 neonates via the intraperitoneal and/or intracerebral routes with two different brain extracts: one from sick M83 mice inoculated with brain extract from other sick M83 mice, and the other derived from a human multiple system atrophy source passaged in M83 mice. Detection of α-syn P using ELISA and western blot confirmed the disease in mice. The distribution of α-syn P in the central nervous system was similar, independently of the inoculum or inoculation route, consistent with previous studies describing M83 disease. ELISA tests revealed higher levels of α-syn P in homozygous than in hemizygous sick M83 mice, at least after IC inoculation. Interestingly, the immunoreactivity of α-syn P detected by ELISA was significantly lower in M83 mice inoculated with the multiple system atrophy inoculum than in M83 mice inoculated with the M83 inoculum, at the first two passages. 'Prion-like' propagation of the synucleinopathy up to the clinical disease was accelerated by both intracerebral and intraperitoneal inoculations of brain extracts from sick mice. This acceleration, however, depends on the levels of α-syn expression by the mouse and the type of inoculum. © 2017 International Society for Neurochemistry.
Carminati, Joyce A.; Morishita, Karen N.; Amorim Neto, Dionísio P.; Pinheiro, Hildete P.; Maia, Rafael P.
2018-01-01
Due to recent large outbreaks, peanuts have been considered a product of potential risk for Salmonella. Usually, peanut products show a low water activity (aw) and high fat content, which contribute to increasing the thermal resistance and survival of Salmonella. This study evaluated the long-term kinetics of Salmonella survival on different peanut products under storage at 28°C for 420 days. Samples of raw in-shell peanuts (aw = 0.29), roasted peanuts (aw = 0.39), unblanched peanut kernel (aw = 0.54), peanut brittle (aw = 0.30), paçoca (aw = 0.40) and pé-de-moça (aw = 0.68) were inoculated with Salmonella Typhimurium ATCC 14028 at two inoculum levels (3 and 6 log cfu/ g). The Salmonella behavior was influenced (p<0.05) by aw, lipid, carbohydrate and protein content. In most cases for both inoculum levels, the greatest reductions were seen after the first two weeks of storage, followed by a slower decline phase. The lowest reductions were verified in paçoca and roasted peanuts, with counts of 1.01 and 0.87 log cfu/ g at low inoculum level and 2.53 and 3.82 log cfu/ g at high inoculum level at the end of the storage time. The highest loss of viability was observed in pé-de-moça, with absence of Salmonella in 10-g after 180 days at low inoculum level. The Weibull model provided a suitable fit to the data (R2≥0.81), with δ value ranging from 0.06 to 49.75 days. Therefore, the results demonstrated that Salmonella survives longer in peanut products, beyond the shelf life (>420 days), especially in products with aw around 0.40. PMID:29401480
Kebriaei, Razieh; Rice, Seth A; Singh, Kavindra V; Stamper, Kyle C; Dinh, An Q; Rios, Rafael; Diaz, Lorena; Murray, Barbara E; Munita, Jose M; Tran, Truc T; Arias, Cesar A; Rybak, Michael J
2018-05-14
Enterococcus faecium that harbor LiaFSR substitutions but are phenotypically susceptible to daptomycin (DAP) by current breakpoints are problematic since predisposition to resistance may lead to therapeutic failure. Using a simulated endocardial vegetation (SEV) PK/PD model, we investigated DAP regimens (6, 8 and 10 mg/kg/day) as monotherapy and in combination with ampicillin (AMP), ceftaroline (CPT) or ertapenem (ERT) against E. faecium HOU503, a DAP-susceptible strain that harbors common LiaS and LiaR substitutions found in clinical isolates (T120S and W73C, respectively). Of interest, the efficacy of DAP monotherapy, at any dose regimen, was dependent on the size of the inoculum. At an inoculum of ∼10 9 CFU/g, DAP doses of 6-8 mg/kg/d were not effective and led to significant regrowth with emergence of resistant derivatives. In contrast, at an inoculum of ∼10 7 , marked reductions in bacterial counts were observed with DAP 6 mg/kg/d with no resistance. The inoculum effect was confirmed in a rat model using humanized DAP exposures. Combinations of DAP with AMP, CPT or ERT demonstrated enhanced eradication and reduced potential for resistance allowing for de-escalation of the DAP dose. Persistence of the LiaRS substitutions were identified in DAP-resistant isolates recovered from the SEV model and in DAP-resistant derivatives of an initially DAP-susceptible clinical isolate of E. faecium (HOU668) harboring LiaSR substitutions and recovered from a patient with a recurrent bloodstream infection. Our results provide novel data for the use of DAP monotherapy and combinations for recalcitrant E. faecium infections and paves the way for testing these approaches in humans. Copyright © 2018 American Society for Microbiology.
Carisse, Odile; McNealis, Vanessa; Kriss, Alissa
2018-01-01
Botrytis fruit rot (BFR), one of the most important diseases of raspberry (Rubus spp.), is controlled primarily with fungicides. Despite the use of fungicides, crop losses due to BFR are high in most years. The aim of this study was to investigate the association between airborne inoculum, weather variables, and BFR in order to improve the management of the disease as well as harvest and storage decisions. Crop losses, measured as the percentage of diseased berries during the harvest period, were monitored in unsprayed field plots at four sites in three successive years, together with meteorological data and the number of conidia in the air. Based on windowpane analysis, there was no evidence of correlation between crop losses and temperature, vapor pressure deficit, wind, solar radiation, or probability of infection. There were significant correlations between crop losses and airborne inoculum and between crop losses and humidity-related variables, and the best window length was identified as 7 days. Using 7-day average airborne inoculum concentration combined with 7-day average relative humidity for periods ending 6 to 8 days before bloom, it was possible to accurately predict crop losses (R 2 of 0.86 to 0.89). These models could be used to assist with managing BFR, timing harvests, and optimizing storage duration in raspberry crops.
Saady, Noori M Cata; Massé, Daniel I
2015-04-01
Development of efficient processes for valorising animal wastes would be a major advancement in cold-climate regions. This paper reports the results of long term (315 days experiment) of novel psychrophilic (20°C) dry anaerobic digestion (PDAD) of cow feces and wheat straw in laboratory scale sequence batch reactor operated at increasing organic loading rate. The PDAD process fed with a mixture of feces and straw (TS of 27%) over a treatment cycle length of 21 days at organic loading rate (OLR) 4.0, 5.0 and 6.0 g TCOD kg(-1) inoculum d(-1) (of 2.9 ± 0.1, 3.7 ± 0.1, and 4.4 ± 0.1g VS kg(-1) inoculum d(-1), respectively) resulted in average specific methane yield (SMY) of 187.3 ± 18.1, 163.6 ± 39.5, 150.8 ± 32.9 N L CH4 kg(-1)VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.4 at OLR of 6.0 g TCOD kg(-1) inoculum d(-1). Hydrolysis was the limiting step reaction. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Calvo-Garrido, Carlos; Viñas, Inmaculada; Elmer, Philip A G; Usall, Josep; Teixidó, Neus
2014-04-01
Necrotic tissues within grape (Vitis vinifera) bunches represent an important source of Botrytis cinerea inoculum for Botrytis bunch rot (BBR) at harvest in vineyards. This research quantified the incidence of B. cinerea on necrotic floral and fruit tissues and the efficacy of biologically based treatments for suppression of B. cinerea secondary inoculum within developing bunches. At veraison (2009 and 2010), samples of aborted flowers, aborted fruits and calyptras were collected, and the incidence and sporulation of B. cinerea were determined. Aborted fruits presented significantly higher incidence in untreated samples. Early-season applications of Candida sake plus Fungicover®, Fungicover alone or Ulocladium oudemansii significantly reduced B. cinerea incidence on aborted flowers and calyptras by 46-85%. Chitosan treatment significantly reduced B. cinerea incidence on calyptras. None of the treatments reduced B. cinerea incidence on aborted fruits. Treatments significantly reduced sporulation severity by 48% or more. Treatments were effective at reducing B. cinerea secondary inoculum on necrotic tissues, in spite of the variable control on aborted fruits. This is the first report to quantify B. cinerea on several tissues of bunch trash and to describe the effective suppression of saprophytic B. cinerea inoculum by biologically based treatments. © 2013 Society of Chemical Industry.
Nordgård, A S R; Bergland, W H; Bakke, R; Vadstein, O; Østgaard, K; Bakke, I
2015-12-01
To elucidate how granular sludge inoculum and particle-rich organic loading affect the structure of the microbial communities and process performance in upflow anaerobic sludge bed (UASB) reactors. We investigated four reactors run on dairy manure filtrate and four on pig manure supernatant for three months achieving similar methane yields. The reactors fed with less particle rich pig manure stabilized faster and had highest capacity. Microbial community dynamics analysed by a PCR/denaturing gradient gel electrophoresis approach showed that influent was a major determinant for the composition of the reactor communities. Comparisons of pre- and non-adapted inoculum in the reactors run on pig manure supernatant showed that the community structure of the nonadapted inoculum adapted in approximately two months. Microbiota variance partitioning analysis revealed that running time, organic loading rate and inoculum together explained 26 and 31% of the variance in bacterial and archaeal communities respectively. The microbial communities of UASBs adapted to the reactor conditions in treatment of particle rich manure fractions, obtaining high capacity, especially on pig manure supernatant. These findings provide relevant insight into the microbial community dynamics in startup and operation of sludge bed reactors for methane production from slurry fractions, a major potential source of biogas. © 2015 The Society for Applied Microbiology.
The role of rain in dispersal of the primary inoculum of Plasmopara viticola.
Rossi, Vittorio; Caffi, Tito
2012-02-01
Although primary infection of grapevines by Plasmopara viticola requires splash dispersal of inoculum from soil to leaves, little is known about the role of rain in primary inoculum dispersal. Distribution of rain splashes from soil to grapevine canopy was evaluated over 20 rain periods (0.2 to 64.2 mm of rain) with splash samplers placed within the canopy. Samplers at 40, 80, and 140 cm above the soil caught 4.4, 0.03, and 0.003 drops/cm(2) of sampler area, respectively. Drops caught at 40 and 80 cm (1.5 cm in diameter) were larger than drops at 140 cm (1.3 cm). Leaf coverage by splashed drops, total drop number, and drop size increased with an increase in the maximum intensity of rain (mm/h) during any rain period. Any rainfall led to infection in potted grapevines placed outside on leaf litter containing oospores, if the litter contained germinated oospores at the time of rain; infection severity was unrelated to rain amount or intensity. Results from vineyards also indicate that any rain can carry P. viticola inoculum from soil to leaves and should be considered a splash event in disease prediction systems. Sampling for early disease detection should focus on the lower canopy, where the probability of splash impact is greatest.
Ghribi, Dhouha; Abdelkefi-Mesrati, Lobna; Mnif, Ines; Kammoun, Radhouan; Ayadi, Imen; Saadaoui, Imen; Maktouf, Sameh; Chaabouni-Ellouze, Semia
2012-01-01
During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth.
2013-09-01
after anaerobic digestion at thermophilic conditions (60- 70C). Application of biofilm covered activated carbon particles as a microbial inoculum...Sludge Thickener; Sludge = Sludge after anaerobic digestion at thermophilic conditions (60- 70C). C3. Microscopic evaluation of dechlorinating...associated enzymes are capable of opening the biphenyl ring structure and transform the molecule into a linear structure, this changed structure was not
Dispersal of Beauveria bassiana by the activity of nettle insects.
Meyling, Nicolai V; Pell, Judith K; Eilenberg, Jørgen
2006-10-01
Recent studies have shown that the entomopathogenic fungus Beauveria bassiana occurs naturally on the phylloplanes of several plants, including nettles. Insects could, by their activity, be contributing to this inoculum by dispersing it from other sites. The potential of nettle aphids Microlophium carnosum and their predator Anthocoris nemorum to disperse conidia of B. bassiana from soil to nettles and from sporulating cadavers in the nettle canopy was investigated in laboratory experiments. In petri dish assays, aphids showed potential to distribute B. bassiana from soil to nettle leaves. Predators dispersed inoculum from both soil and cadavers to nettle leaves in petri dishes. In microcosms, aphids did not disperse B. bassiana from the soil or from cadavers confined in the canopy, but A. nemorum were able to transfer inoculum from soil into the nettle canopy and to distribute conidia from cryptic cadavers. In some instances, infections were initiated in aphids and predators as a consequence of dispersal.
Microbial detection method based on sensing molecular hydrogen
NASA Technical Reports Server (NTRS)
Wilkins, J. R.; Stoner, G. E.; Boykin, E. H.
1974-01-01
A simple method for detecting bacteria, based on the time of hydrogen evolution, was developed and tested against various members of the Enterobacteriaceae group. The test system consisted of (1) two electrodes, platinum and a reference electrode, (2) a buffer amplifier, and (3) a strip-chart recorder. Hydrogen evolution was measured by an increase in voltage in the negative (cathodic) direction. A linear relationship was established between inoculum size and the time hydrogen was detected (lag period). Lag times ranged from 1 h for 1 million cells/ml to 7 h for 1 cell/ml. For each 10-fold decrease in inoculum, length of the lag period increased 60 to 70 min. Based on the linear relationship between inoculum and lag period, these results indicate the potential application of the hydrogen-sensing method for rapidly detecting coliforms and other gas-producing microorganisms in a variety of clinical, food, and other samples.
Biochemical methane potential (BMP) of artichoke waste: the inoculum effect.
Fabbri, Andrea; Serranti, Silvia; Bonifazi, Giuseppe
2014-03-01
The aim of this work was to investigate anaerobic digestibility of artichoke waste resulting from industrial transformation. A series of batch anaerobic digestion tests was performed in order to evaluate the biochemical methane potential of the matrix in respect of the process. A comparison of the different performances of the laboratory-scale reactors operating in mesophilic conditions and utilizing three different values of the inoculum/substrate ratio was carried out. The best performance was achieved with an inoculum/substrate ratio of 2. Artichoke-processing byproducts showed a classical organic waste decomposition behaviour: a fast start-up phase, an acclimation stage, and a final stabilization phase. Following this approach, artichoke waste reached chemical oxygen demand removal of about 90% in 40 days. The high methane yield (average 408.62 mL CH4 gvs (-1) voltatile solids), makes artichoke waste a good product to be utilized in anaerobic digestion plants for biogas production.
Thouand, Gérald; Durand, Marie-José; Maul, Armand; Gancet, Christian; Blok, Han
2011-01-01
The European REACH Regulation (Registration, Evaluation, Authorization of CHemical substances) implies, among other things, the evaluation of the biodegradability of chemical substances produced by industry. A large set of test methods is available including detailed information on the appropriate conditions for testing. However, the inoculum used for these tests constitutes a “black box.” If biodegradation is achievable from the growth of a small group of specific microbial species with the substance as the only carbon source, the result of the test depends largely on the cell density of this group at “time zero.” If these species are relatively rare in an inoculum that is normally used, the likelihood of inoculating a test with sufficient specific cells becomes a matter of probability. Normally this probability increases with total cell density and with the diversity of species in the inoculum. Furthermore the history of the inoculum, e.g., a possible pre-exposure to the test substance or similar substances will have a significant influence on the probability. A high probability can be expected for substances that are widely used and regularly released into the environment, whereas a low probability can be expected for new xenobiotic substances that have not yet been released into the environment. Be that as it may, once the inoculum sample contains sufficient specific degraders, the performance of the biodegradation will follow a typical S shaped growth curve which depends on the specific growth rate under laboratory conditions, the so called F/M ratio (ratio between food and biomass) and the more or less toxic recalcitrant, but possible, metabolites. Normally regulators require the evaluation of the growth curve using a simple approach such as half-time. Unfortunately probability and biodegradation half-time are very often confused. As the half-time values reflect laboratory conditions which are quite different from environmental conditions (after a substance is released), these values should not be used to quantify and predict environmental behavior. The probability value could be of much greater benefit for predictions under realistic conditions. The main issue in the evaluation of probability is that the result is not based on a single inoculum from an environmental sample, but on a variety of samples. These samples can be representative of regional or local areas, climate regions, water types, and history, e.g., pristine or polluted. The above concept has provided us with a new approach, namely “Probabio.” With this approach, persistence is not only regarded as a simple intrinsic property of a substance, but also as the capability of various environmental samples to degrade a substance under realistic exposure conditions and F/M ratio. PMID:21863143
The effects of arbuscular mycorrhizal fungal inoculation at a roadside prairie restoration site.
White, Jennifer A; Tallaksen, J; Charvat, I
2008-01-01
Arbuscular mycorrhizal fungi (AMF) may play an important role in ecological succession, but few studies have documented the effectiveness of mycorrhizal inoculation at restoration/reclamation sites. At a roadside prairie restoration in Shakopee, Minnesota, we compared AMF root colonization and resulting vegetative cover among four inoculation treatments. After 15 mo of growth, we found that AMF colonization was high in all treatments but was significantly higher in treatments that received AMF inoculum propagated from a local prairie site or commercially available inoculum than the uninoculated control. For the prairie inoculum, this increase in colonization occurred whether the inoculum was applied with seeds in furrows or broadcast with seeds on the soil surface. However, increased colonization did not discernibly affect the restored vegetation; neither total vegetative cover nor the proportion "desired" prairie vegetation differed among inoculation treatments. By the end of the third growing season (27 mo after planting) there were no longer differences in AMF colonization among the inoculation treatments nor were there differences in vegetative cover. It is likely that natural recolonization of the plots by remnant AMF populations at the site limited the duration of the inoculation effect. This natural recolonization, in combination with relatively high soil phosphorus levels, likely rendered inoculation unnecessary. In contrast to previous published studies of AMF inoculation in landscape restorations, this study shows that AMF inoculation may not be warranted under some circumstances.
Shu, Guowei; Yang, Hui; Chen, He; Zhang, Qiuhong; Tian, Yue
2015-01-01
Angiotensin I converting enzyme (ACE) plays an important physiological role in regulating hypertension. Lactic acid bacteria are known to produce ACE inhibitory peptides which can lower hypertension during fermentation. The effect of incubation time (0~36 h), inoculum size (3, 4, 5, 6 and 7%, v/v), temperature (25, 30, 35, 40 and 45°C), sterilization time (5, 10, 15, 20 and 25 min), concentration of goat milk powder (8, 10, 12, 14 and 16%, w/v) and whey powder (0.5, 0.6, 0.7, 0.8 and 0.9%, w/v) on ACE inhibitory peptides fermented from goat milk by Lactobacillus plantarum LP69 was investigated using single factor experiment. The optimal incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder in fermented milk by L. plantarum LP69 was 14 h, 3.0%, 35°C, 20 min, 14% and 0.70% for ACE inhibitory activity and 22 h, 3.0%, 40°C, 25 min, 16% and 0.60% for viable cell counts, respectively. The incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder had a significant influence on ACE inhibitory activity in fermented milk by Lactobacillus plantarum LP69, the results are beneficial for further screening of main factors by using fractional factorial designs.
Impact of the start-up process on the microbial communities in biocathodes for electrosynthesis.
Mateos, Raúl; Sotres, Ana; Alonso, Raúl M; Escapa, Adrián; Morán, Antonio
2018-06-01
This study seeks to understand how the bacterial communities that develop on biocathodes are influenced by inocula diversity and electrode potential during start-up. Two different inocula are used: one from a highly diverse environment (river mud) and the other from a low diverse milieu (anaerobic digestion). In addition, both inocula were subjected to two different polarising voltages: oxidative (+0.2 V vs. Ag/AgCl) and reductive (-0.8 V vs. Ag/AgCl). Bacterial communities were analysed by means of high throughput sequencing. Possible syntrophic interactions and competitions between archaea and eubacteria were described together with a discussion of their potential role in product formation and current production. The results confirmed that reductive potentials lead to an inconsistent start-up procedure regardless of the inoculum used. However, imposing oxidative potentials help to quickly develop an electroactive biofilm ready to withstand reductive potentials (i.e. biocathodic operation). The microbial structure that finally developed on them was highly dependent on the raw community present in the inoculum. Using a non-specialised inoculum resulted in a highly specialised biofilm, which was accompanied by an improved performance in terms of consumed current and product generation. Interestingly, a much more specialised inoculum promoted a rediversification in the biofilm, with a lower general cell performance. Copyright © 2018 Elsevier B.V. All rights reserved.
Sun, Qi-Xing; Chen, Xu-Sheng; Ren, Xi-Dong; Mao, Zhong-Gui
2015-01-01
Nissin, natamycin, and ε-poly-L-lysine (ε-PL) are three safe, microbial-produced food preservatives used today in the food industry. However, current industrial production of ε-PL is only performed in several countries. In order to realize large-scale ε-PL production by fermentation, the effects of seed stage on cell growth and ε-PL production were investigated by monitoring of pH in situ in a 5-L laboratory-scale fermenter. A significant increase in ε-PL production in fed-batch fermentation by Streptomyces sp. M-Z18 was achieved, at 48.9 g/L, through the optimization of several factors associated with seed stage, including spore pretreatment, inoculum age, and inoculum level. Compared with conventional fermentation approaches using 24-h-old shake-flask seed broth as inoculum, the maximum ε-PL concentration and productivity were enhanced by 32.3 and 36.6 %, respectively. The effect of optimized inoculum conditions on ε-PL production on a large scale was evaluated using a 50-L pilot-scale fermenter, attaining a maximum ε-PL production of 36.22 g/L in fed-batch fermentation, constituting the first report of ε-PL production at pilot scale. These results will be helpful for efficient ε-PL production by Streptomyces at pilot and plant scales.
Biogas production from oil palm empty fruit bunches of post mushroom cultivation media
NASA Astrophysics Data System (ADS)
Purnomo, Agus; Suprihatin; Romli, M.; Hasanudin, Udin
2018-03-01
The Empty fruit bunches are one of the palm oil industry wastes, which can be used for mushroom cultivation. Post-cultivation of mushroom from former EFB-mushroom media (EFBMM) has the potential to be processed into biogas. The purpose of this research was to examine optimum co-digestion conditions for biogas production of EFBMM.The research was carried out in an anaerobic digester with three different conditions - dry fermentation (Water content (WC)/Total Solid (TS) ratio 1.5 - 3.5), semi-wet fermentation (WC/TS ratio = 4.0 - 5.7) and wet fermentation (WC/TS ratio> 9.0) conditions. Digester of capacity 50L was used. Fermentation was done using 20% cow feces as inoculum which then added with circulation system for 70 days. The results showed that optimum biogas production were produced in semi-wet fermentation conditions (WC/TS ratio = 4). It was produced 37.462 liters (2.420 liters CH4/Kg Volatile Solid (VS)) of biogas with methane contain about 26.231%. Total volume of inoculum during process was 19.6 liters (1: 4 w/v) with absorbed TS inoculum ratio, TS/I = 0.4 (1:2.5 w/v). The result of research also showed that biogas which was produced from control about 2.865 liters (0.041 liters CH4/KgVS), with TS absorbed inoculum ratio, TS/I = 0.5 (1: 5w/v).
Ghribi, Dhouha; Abdelkefi-Mesrati, Lobna; Mnif, Ines; Kammoun, Radhouan; Ayadi, Imen; Saadaoui, Imen; Maktouf, Sameh; Chaabouni-Ellouze, Semia
2012-01-01
During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth. PMID:22536017
Berlanas, Carmen; Andrés-Sodupe, Marcos; López-Manzanares, Beatriz; Maldonado-González, María Mercedes; Gramaje, David
2018-05-20
Black-foot disease is one of the main soilborne fungal diseases affecting grapevine production worldwide. Two field experiments were established to evaluate the effect of white mustard cover crop residue amendment and chemical fumigation with propamocarb + fosetyl-Al combined with Trichoderma spp. root treatment on the viability of black-foot inoculum in soil and fungal infection in grafted plants and grapevine seedlings used as bait plants. A total of 876 black-foot pathogens isolates were collected from grafted plants and grapevine seedlings used as bait plants in both fields. White mustard biofumigation reduced inoculum of Dactylonectria torresensis and the incidence and severity of black-foot of grapevine, but no added benefit was obtained when biofumigation was used with Trichoderma spp. root treatments. The effect of white mustard residues and chemical fumigation on populations of D. torresensis propagules in soil was inconsistent, possibly due to varying pretreatment inoculum levels. Biofumigation with white mustard plants had potential for improving control of black-foot disease in grapevines. This control strategy can reduce soil inoculum levels and protect young plants from infection, providing grape growers and nursery propagators with more tools for developing integrated and sustainable control systems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Soto, L P; Astesana, D M; Zbrun, M V; Blajman, J E; Salvetti, N R; Berisvil, A P; Rosmini, M R; Signorini, M L; Frizzo, L S
2016-02-01
The aim of this study was to evaluate the effect of a probiotic/lactose inoculum on haematological and immunological parameters and renal and hepatic biochemical profiles before and during a Salmonella Dublin DSPV 595T challenge in young calves. Twenty eight calves, divided into a control and probiotic group were used. The probiotic group was supplemented with 100 g lactose/calf/d and 10 10 cfu/calf/d of each strain of a probiotic inoculum composed of Lactobacillus casei DSPV318T, Lactobacillus salivarius DSPV315T and Pediococcus acidilactici DSPV006T throughout the experiment. The pathogen was administered on day 11 of the experiment, at an oral dose of 10 9 cfu/animal (LD 50 ). Aspartate aminotransferase (AST), gamma glutamyl transpeptidase (GGT), urea, red blood cells, haemoglobin, haematocrit, mean cell haemoglobin (MCH), mean corpuscular volume, mean corpuscular haemoglobin concentration (MCHC), white blood cells, lymphocytes, neutrophils, band neutrophils, monocytes, eosinophils, basophils and the neutrophils/lymphocytes ratio were measured on days 1, 10, 20 and 27 of the experiment. In addition, animals were necropsied to evaluate immunoglobulin A (IgA) production in the jejunal mucosa. The most significant differences caused by the administration of the inoculum/lactose were found during the acute phase of Salmonella challenge (9 days after challenge), when a difference between groups in neutrophils/lymphocytes ratio were detected. These results suggest that the probiotic/lactose inoculum administration increases the calf's ability to respond to the disease increasing the systemic immune response specific. No differences were found in haemoglobin, haematocrit, MCH, MCHC, AST, urea, GGT, band neutrophils, eosinophils, monocytes and IgA in the jejunum between the two groups of calves under the experimental conditions of this study. Further studies must be conducted to evaluate different probiotic/pathogens doses and different sampling times, to achieve a greater understanding of the effects of this inoculum on intestinal infections in young calves and of its mechanism of action.
Sim, Hui Li; Hong, Yoon-Ki; Yoon, Won Byong; Yuk, Hyun-Gyun
2013-01-01
The aim of this study was to determine survival or growth of unadapted, acid-adapted and cold-stressed Salmonella spp., and natural microbiota on fresh-cut dragon fruits at different storage temperatures. Dragon fruits were sliced and spot inoculated with five-strain cocktail of Salmonella spp. at two inoculum levels (2.5 or 5.5 log CFU/g). Inoculated fruits were stored at 28°C for 48h and at 4°C and 12°C for 96 h. Salmonella population significantly increased by 2.4 to 3.0 log CFU/g at low inoculum level, whereas the numbers increased by 0.4 to 0.7 log CFU/g at the high inoculum level on fruits held at 28°C for 48h. Only unadapted and acid-adapted cells grew with 0.7 to 0.9log increase at the low inoculum level at 12°C for 96h. No significant growth was observed at both inoculum levels during storage at 4°C. Overall, acid, starved and cold adaptation of Salmonella spp. did not show significant difference in survival or growth on fresh-cut dragon fruits during storage compared to unadapted control cells. For natural microbiota on the fruit, mesophilic bacterial counts reached to 5-log CFU/g at 28 and 12°C by 9.9 and 52.9h. Similar with Salmonella spp. there was no growth of natural microbiota at 4°C. These results showed that Salmonella spp. could grow on fresh-cut dragon fruits under inappropriate storage conditions, indicating that fresh-cut dragon fruits could be a potential vehicle for salmonellosis. Thus, this study suggests that fresh-cut dragon fruits should be stored at 4°C to ensure the safety as well as to extend the shelf life of fresh-cut dragon fruits. Copyright © 2012 Elsevier B.V. All rights reserved.
López-Cerero, L; Picón, E; Morillo, C; Hernández, J R; Docobo, F; Pachón, J; Rodríguez-Baño, J; Pascual, A
2010-02-01
A significant inoculum-size effect has been observed with piperacillin-tazobactam, and has been associated with beta-lactamase production in extended-spectrum beta-lactamase (ESBL) producers. This association has not been previously studied in the case of amoxycillin-clavulanate. Piperacillin-tazobactam and amoxycillin-clavulanate were compared, using high inocula of susceptible strains either harbouring ESBLs or not. Two non-ESBL-producing and 15 amoxycillin-clavulanate-susceptible and piperacillin-tazobactam-susceptible ESBL-producing Escherichia coli isolates, and their respective transconjugants, were tested in dilution susceptibility tests using standard and 100-fold higher inocula. Three ESBL-producing strains and E. coli ATCC 25922 were selected for time-kill studies using standard and high initial inocula. At high inocula, MICs of piperacillin increased >eight-fold for non-ESBL-producing strains, and MICs of piperacillin-tazobactam (8:1 ratio or with tazobactam fixed at 4 mg/L) increased>eight-fold for all ESBL-producing strains. However, amoxycillin MICs were not affected by a high inoculum with non-ESBL-producing strains, whereas the MICs of amoxycillin-clavulanate (2:1 and 4:1) increased
Boylan, Brendan T; Moreira, Fernando R; Carlson, Tim W; Bernard, Kristen A
2017-02-01
Half of the human population is at risk of infection by an arthropod-borne virus. Many of these arboviruses, such as West Nile, dengue, and Zika viruses, infect humans by way of a bite from an infected mosquito. This infectious inoculum is insect cell-derived giving the virus particles distinct qualities not present in secondary infectious virus particles produced by infected vertebrate host cells. The insect cell-derived particles differ in the glycosylation of virus structural proteins and the lipid content of the envelope, as well as their induction of cytokines. Thus, in order to accurately mimic the inoculum delivered by arthropods, arboviruses should be derived from arthropod cells. Previous studies have packaged replicon genome in mammalian cells to produce replicon particles, which undergo only one round of infection, but no studies exist packaging replicon particles in mosquito cells. Here we optimized the packaging of West Nile virus replicon genome in mosquito cells and produced replicon particles at high concentration, allowing us to mimic mosquito cell-derived viral inoculum. These particles were mature with similar genome equivalents-to-infectious units as full-length West Nile virus. We then compared the mosquito cell-derived particles to mammalian cell-derived particles in mice. Both replicon particles infected skin at the inoculation site and the draining lymph node by 3 hours post-inoculation. The mammalian cell-derived replicon particles spread from the site of inoculation to the spleen and contralateral lymph nodes significantly more than the particles derived from mosquito cells. This in vivo difference in spread of West Nile replicons in the inoculum demonstrates the importance of using arthropod cell-derived particles to model early events in arboviral infection and highlights the value of these novel arthropod cell-derived replicon particles for studying the earliest virus-host interactions for arboviruses.
Ceballos, Isabel; Ruiz, Michael; Fernández, Cristhian; Peña, Ricardo
2013-01-01
The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future. PMID:23950975
In Vitro Pharmacodynamics of AZD5206 against Staphylococcus aureus
Chang, Kai-Tai; Yang, Zhen; Newman, Joseph; Hu, Ming
2013-01-01
AZD5206 is a novel antimicrobial agent with potent in vitro activity against Staphylococcus aureus. We evaluated the in vitro pharmacodynamics of AZD5206 against a standard wild-type methicillin-susceptible strain (ATCC 29213) and a clinical strain of methicillin-resistant S. aureus (SA62). Overall, bacterial killing against a low baseline inoculum was more remarkable. Low dosing exposures and/or high baseline inoculum resulted in early reduction in bacterial burden, followed by regrowth and selective amplification of the resistant population. PMID:23229481
Rongsayamanont, Chaiwat; Limpiyakorn, Tawan; Khan, Eakalak
2014-07-01
An entrapment of nitrifiers into gel matrix is employed as a tool to fulfill partial nitrification under non-limiting dissolved oxygen (DO) concentrations in bulk solutions. This study aims to clarify which of these two attributes, inoculum type and DO concentration in bulk solutions, is the decisive factor for partial nitrification in an entrapped-cell based system. Four polyvinyl alcohol entrapped inocula were prepared to have different proportions of nitrite-oxidizing bacteria (NOB) and nitrite-oxidizing activity. At a DO concentration of 3 mg l(-1), the number of active NOB cells in an inoculum was the decisive factor for partial nitrification enhancement. However, when the DO concentration was reduced to 2 mg l(-1), all entrapped cell inocula showed similar degrees of partial nitrification. The results suggested that with the lower bulk DO concentration, the preparation of entrapped cell inocula is not useful as the DO level becomes the decisive factor for achieving partial nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Manu, M K; Kumar, Rakesh; Garg, Anurag
2017-06-01
Wet waste recycling at generation point will alleviate burden on the overflowing waste dumpsites in developing nations. Drum composting is a potential treatment option for such waste at individual or community level. The present study was aimed to produce compost from wet waste (primarily comprising food waste) in composting drums modified for improved natural air circulation. Effect of microbial inoculum and waste turning on composting process was also studied. The final results showed the production of matured and stable compost in the modified drums. Addition of the microbial inoculum resulted in thermophilic phase within a week time. The self-heating test and germination index (>80%) showed the production of non-phytotoxic and mature compost in the modified drums after 60days. The change in microbial population, humic substances and biological parameters (lignin, cellulose and hemicellulose) during the study is discussed. Moreover, the reduction in waste mass and volume is also reported. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flores, Jose-Axel; Gschaedler, Anne; Amaya-Delgado, Lorena; Herrera-López, Enrique J; Arellano, Melchor; Arrizon, Javier
2013-10-01
Agave tequilana fructans (ATF) constitute a substrate for bioethanol and tequila industries. As Kluyveromyces marxianus produces specific fructanases for ATF hydrolysis, as well as ethanol, it can perform simultaneous saccharification and fermentation. In this work, fifteen K. marxianus yeasts were evaluated to develop inoculums with fructanase activity on ATF. These inoculums were added to an ATF medium for simultaneous saccharification and fermentation. All the yeasts, showed exo-fructanhydrolase activity with different substrate specificities. The yeast with highest fructanase activity in the inoculums showed the lowest ethanol production level (20 g/l). Five K. marxianus strains were the most suitable for the simultaneous saccharification and fermentation of ATF. The volatile compounds composition was evaluated at the end of fermentation, and a high diversity was observed between yeasts, nevertheless all of them produced high levels of isobutyl alcohol. The simultaneous saccharification and fermentation of ATF with K. marxianus strains has potential for industrial application. Copyright © 2013 Elsevier Ltd. All rights reserved.
Recovery of failed solid-state anaerobic digesters.
Yang, Liangcheng; Ge, Xumeng; Li, Yebo
2016-08-01
This study examined the performance of three methods for recovering failed solid-state anaerobic digesters. The 9-L digesters, which were fed with corn stover, failed at a feedstock/inoculum (F/I) ratio of 10 with negligible methane yields. To recover the systems, inoculum was added to bring the F/I ratio to 4. Inoculum was either added to the top of a failed digester, injected into it, or well-mixed with the existing feedstock. Digesters using top-addition and injection methods quickly resumed and achieved peak yields in 10days, while digesters using well-mixed method recovered slowly but showed 50% higher peak yields. Overall, these methods recovered 30-40% methane from failed digesters. The well-mixed method showed the highest methane yield, followed by the injection and top-addition methods. Recovered digesters outperformed digesters had a constant F/I ratio of 4. Slow mass transfer and slow growth of microbes were believed to be the major limiting factors for recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Forest farming of shiitake mushrooms: an integrated evaluation of management practices.
Bruhn, J N; Mihail, J D; Pickens, J B
2009-12-01
Two outdoor shiitake (Lentinula edodes) cultivation experiments, established in Missouri USA in 1999 and 2000, produced mushrooms in 2000-2005. We examined shiitake production in response to substrate species, inoculum form, inoculum strain, and inoculation timing, using total mushroom weight per log as the primary response variable with log characteristics as covariates. The significantly greater mushroom weight produced by sugar maple logs compared with white or northern red oak was attributable to the higher proportion of undiscolored wood volume in the maple logs, rather than to bark thickness or log diameter. The "wide temperature range" shiitake strain produced significantly greater yield compared with the "warm" or "cold" weather strains. Both the wide-range and warm-weather strains were stimulated to fruit by significant rain events, while the cold-weather strain was responsive to temperature. Inoculation with sawdust spawn gave significantly greater yield than colonized wooden dowels or pre-packaged "thimble" plug inoculum. The second and third full years following inoculation were the most productive.
Favourable culture conditions for mycelial growth of Hydnum repandum, a medicinal mushroom.
Peksen, Aysun; Kibar, Beyhan; Yakupoglu, Gokcen
2013-01-01
In this study, factors such as pH, temperature, carbon and nitrogen sources that affect mycelial growth of Hydnum repandum, a medicinal mushroom, were investigated. Different inoculum media for vegetative inoculum production were also examined. The best suitable pH for mycelial growth was found to be 5.5. Among constant temperatures, the best mycelial growth was obtained at 20 and 25°C. The mycelial growth drastically decreased at 15°C, and no mycelia were obtained at 30°C. Glucose and mannitol were found to be the most suitable carbon sources. Ca(NO3)2 as a nitrogen source gave the best results for mycelial growth. The poorest mycelial growth was noted in sucrose and xylose as carbon sources and in NH4NO3 and (NH4)2HPO4 as nitrogen sources. Peat and peat: vermiculite mixtures (1:4, 1:6, 1:8 and 1:10, v:v) were the best media to use in producing the vegetative inoculum of H. repandum.
Inoculum production and long-term conservation methods for cucurbits and tomato powdery mildews.
Bardin, Marc; Suliman, Muna E; Sage-Palloix, Anne-Marie; Mohamed, Youssif F; Nicot, Philippe C
2007-06-01
The behaviour of cucurbit powdery mildews (Podosphaera xanthii and Golovinomyces cichoracearum) and tomato powdery mildew (Oidium neolycopersici) infesting detached cotyledons of Lagenaria leucantha cv. 'Minibottle' was studied in order to develop an easy culture method for pure inoculum production. High spore production was found with a combination of mannitol (0.1 m), sucrose (0.02 m) and agar (8 gl(-1)) in the cotyledon survival medium. Sporulation on cotyledons and viability of conidia were affected by the age of culture for the three species of powdery mildew tested. The age of cotyledons had also an impact of the spore production. This method was used to produce large amounts of inoculum for P. xanthii, G. cichoracearum and O. neolycopersici and enable the development of other species of powdery mildew like Leveillula taurica. Freezing conidia in liquid nitrogen enabled the long-term conservation of P. xanthii without any loss of virulence. The same method was unsuccessful with G. cichoracearum, and L. taurica and partly successful with O. neolycopersici.
[Virulence of Sporothrix globosa in murine models].
Cruz Choappa, Rodrigo; Pérez Gaete, Salomón; Rodríguez Badilla, Valentina; Vieille Oyarzo, Peggy; Opazo Sanchez, Héctor
The sporothricosis disease is an infection caused by species included in Sporothrix schenkii complex. Verify the virulence of a strain of S. globosa using two different concentrations of inoculum by intraperitoneally and subcutaneously, into a mouse model. Nonrandomized pilot study, in murine inoculated with a strain of S. globosa (CBS 14.076M) by intraperitoneally and subcutaneously with inoculum concentrations of 0.5 and 4 McFarland. For this purpose 18 rodents CF-1 (ISP, Santiago, Chile) were used. The studied strain did not induce illness or injury on animals, they all survived and neither the tissue culture nor the histopathological analysis showed fungal growth or suggestive infection by organ abnormalities. The S. globosa strain did not present any virulence enough to cause disease at 0.5 and 4.0 McFarland concentration inoculum when inoculated in both intraperitoneally and subcutaneously, in murine models. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Alter, Thomas; Bori, Anouchka; Hamedi, Ahmad; Ellerbroek, Lüppo; Fehlhaber, Karsten
2006-10-01
This study investigated the influence of inoculum levels and manufacturing methods on the survival of Campylobacter (C.) jejuni in raw fermented turkey sausages. Sausages were prepared and inoculated with C. jejuni. After inoculation, these sausages were processed and ripened for 8 days. Samples were taken throughout the ripening process. The presence of C. jejuni was established bacteriologically. Additionally, lactic acid bacteria were enumerated, pH values and water activity were measured to verify the ripening process. To detect changes in genotype and verify the identity of the recovered clones, AFLP analysis was carried out on the re-isolated strains. Whereas no C. jejuni were detectable when inoculating the sausages with the lowest inoculum (0.08-0.44 log(10) cfu/g sausage emulsion), C. jejuni were detectable for 12-24h by enrichment when inoculated with approximately 2 log(10) cfu/g. After inoculation with 4 and 6 log(10) cfu/g respectively, C. jejuni were detectable without enrichment for 12-48 h and by enrichment for 144 h at the most. The greatest decrease of the C. jejuni population occurred during the first 4 h of ripening. Only a very high inoculum level allowed the survival of the organism during a fermentation process and during ripening to pose a potential risk for consumers. Lower initial Campylobacter inoculums will be eliminated during proper ripening of the sausages, if sufficient decrease in water activity and pH-value is ensured.
Lu, Zen H; Wang, Xinglong; Wilson, Alison D; Dorey-Robinson, Daniel L W; Archibald, Alan L; Ait-Ali, Tahar; Frossard, Jean-Pierre
2017-08-01
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major infectious threat to the pig industry worldwide. Increasing evidence suggests that microevolution within a quasispecies population can give rise to high sequence heterogeneity in PRRSV; potentially impacting the pathogenicity of the virus. Here, we report on micro-evolutionary events taking place within the viral quasispecies population in lung and lymph node 3 days post infection (dpi) following experimental in vivo infection with the prototypical Lelystad PRRSV (LV). Sequence analysis revealed 16 high frequency single nucleotide variants (SNV) or differences from the reference LV genome which are assumed to be representative of the consensus inoculum genome. Additionally, 49 other low frequency SNVs were also found in the inoculum population. At 3 dpi, a total of 9 and 10 SNVs of varying frequencies could already be detected in the LV population infecting the lung and lymph nodes, respectively. Interestingly, of these, three and four novel SNVs emerged independently in the two respective tissues when compared to the inoculum. The remaining variants, though already present at lower frequencies in the inoculum, were positively selected and their frequency increased within the quasispecies population. Hence, we were able to determine directly from tissues infected with PRRSV the repertoire of genetic variants within the viral quasispecies population. Our data also suggest that microevolution of these variants is rapid and some may be tissue-specific.
Zbrun, María V.; Soto, Lorena P.; Bertozzi, Ezequiel; Sequeira, Gabriel J.; Marti, Luis E.; Signorini, Marcelo L.; Armesto, Roberto Rodríguez; Rosmini, Marcelo R.
2012-01-01
The purpose of this study was to evaluate the capacity of a lactic acid bacteria (LAB) inoculum to protect calves with or without lactose supplements against Salmonella Dublin infection by evaluating histopathological lesions and pathogen translocation. Fifteen calves were divided into three groups [control group (C-G), a group inoculated with LAB (LAB-G), and a group inoculated with LAB and given lactose supplements (L-LAB-G)] with five, six, and four animals, respectively. The inoculum, composed of Lactobacillus (L.) casei DSPV 318T, L. salivarius DSPV 315T, and Pediococcus acidilactici DSPV 006T, was administered with milk replacer. The LAB-G and L-LAB-G received a daily dose of 109 CFU/kg body weight of each strain throughout the experiment. Lactose was provided to the L-LAB-G in doses of 100 g/day. Salmonella Dublin (2 × 1010 CFU) was orally administered to all animals on day 11 of the experiment. The microscopic lesion index values in target organs were 83%, 70%, and 64.3% (p < 0.05) for the C-G, LAB-G, and L-LAB-G, respectively. Administration of the probiotic inoculum was not fully effective against infection caused by Salmonella. Although probiotic treatment was unable to delay the arrival of pathogen to target organs, it was evident that the inoculum altered the response of animals against pathogen infection. PMID:23000583
A waste characterisation procedure for ADM1 implementation based on degradation kinetics.
Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Steyer, J-P; Sadowski, A G; Béline, F
2012-09-01
In this study, a procedure accounting for degradation kinetics was developed to split the total COD of a substrate into each input state variable required for Anaerobic Digestion Model n°1. The procedure is based on the combination of batch experimental degradation tests ("anaerobic respirometry") and numerical interpretation of the results obtained (optimisation of the ADM1 input state variable set). The effects of the main operating parameters, such as the substrate to inoculum ratio in batch experiments and the origin of the inoculum, were investigated. Combined with biochemical fractionation of the total COD of substrates, this method enabled determination of an ADM1-consistent input state variable set for each substrate with affordable identifiability. The substrate to inoculum ratio in the batch experiments and the origin of the inoculum influenced input state variables. However, based on results modelled for a CSTR fed with the substrate concerned, these effects were not significant. Indeed, if the optimal ranges of these operational parameters are respected, uncertainty in COD fractionation is mainly limited to temporal variability of the properties of the substrates. As the method is based on kinetics and is easy to implement for a wide range of substrates, it is a very promising way to numerically predict the effect of design parameters on the efficiency of an anaerobic CSTR. This method thus promotes the use of modelling for the design and optimisation of anaerobic processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Forest type influences transmission of Phytophthora ramorum in California oak woodlands.
Davidson, Jennifer M; Patterson, Heather A; Wickland, Allison C; Fichtner, Elizabeth J; Rizzo, David M
2011-04-01
The transmission ecology of Phytophthora ramorum from bay laurel (Umbellularia californica) leaves was compared between mixed-evergreen and redwood forest types throughout winter and summer disease cycles in central, coastal California. In a preliminary multisite study, we found that abscission rates of infected leaves were higher at mixed-evergreen sites. In addition, final infection counts were slightly higher at mixed-evergreen sites or not significantly different than at redwood sites, in part due to competition from other foliar pathogens at redwood sites. In a subsequent, detailed study of paired sites where P. ramorum was the main foliar pathogen, summer survival of P. ramorum in bay laurel leaves was lower in mixed-evergreen forest due to lower recovery from infected attached leaves and higher abscission rates of infected leaves. Onset of inoculum production and new infections of bay laurel leaves occurred later in mixed-evergreen forest. Mean inoculum levels in rainwater and final infection counts on leaves were higher in redwood forest. Based on these two studies, lower summer survival of reservoir inoculum in bay laurel leaves in mixed-evergreen forest may result in delayed onset of both inoculum production and new infections, leading to slower disease progress in the early rainy season compared with redwood forest. Although final infection counts also will depend on other foliar pathogens and disease history, in sites where P. ramorum is the main foliar pathogen, these transmission patterns suggest higher rates of disease spread in redwood forests during rainy seasons of short or average length.
Reithmeier, Laura; Kernaghan, Gavin
2013-01-01
Ectomycorrhizal fungi (ECMF) are an important biotic factor in the survival of conifer seedlings under stressful conditions and therefore have the potential to facilitate conifer establishment into alpine and tundra habitats. In order to assess patterns of ectomycorrhizal availability and community structure above treeline, we conducted soil bioassays in which Picea mariana (black spruce) seedlings were grown in field-collected soils under controlled conditions. Soils were collected from distinct alpine habitats, each dominated by a different ectomycorrhizal host shrub: Betula glandulosa, Arctostaphylos alpina or Salix herbacaea. Within each habitat, half of the soils collected contained roots of ectomycorrhizal shrubs (host (+)) and the other half were free of host plants (host(-)). Forest and glacial moraine soils were also included for comparison. Fungi forming ectomycorrhizae during the bioassays were identified by DNA sequencing. Our results indicate that ECMF capable of colonizing black spruce are widespread above the current tree line in Eastern Labrador and that the level of available inoculum has a significant influence on the growth of seedlings under controlled conditions. Many of the host(-) soils possessed appreciable levels of ectomycorrhizal inoculum, likely in the form of spore banks. Inoculum levels in these soils may be influenced by spore production from neighboring soils where ectomycorrhizal shrubs are present. Under predicted temperature increases, ectomycorrhizal inoculum in soils with host shrubs as well as in nearby soils without host shrubs have the potential to facilitate conifer establishment above the present tree line.
Availability of Ectomycorrhizal Fungi to Black Spruce above the Present Treeline in Eastern Labrador
Reithmeier, Laura; Kernaghan, Gavin
2013-01-01
Ectomycorrhizal fungi (ECMF) are an important biotic factor in the survival of conifer seedlings under stressful conditions and therefore have the potential to facilitate conifer establishment into alpine and tundra habitats. In order to assess patterns of ectomycorrhizal availability and community structure above treeline, we conducted soil bioassays in which Picea mariana (black spruce) seedlings were grown in field-collected soils under controlled conditions. Soils were collected from distinct alpine habitats, each dominated by a different ectomycorrhizal host shrub: Betula glandulosa, Arctostaphylos alpina or Salix herbacaea. Within each habitat, half of the soils collected contained roots of ectomycorrhizal shrubs (host+) and the other half were free of host plants (host−). Forest and glacial moraine soils were also included for comparison. Fungi forming ectomycorrhizae during the bioassays were identified by DNA sequencing. Our results indicate that ECMF capable of colonizing black spruce are widespread above the current tree line in Eastern Labrador and that the level of available inoculum has a significant influence on the growth of seedlings under controlled conditions. Many of the host− soils possessed appreciable levels of ectomycorrhizal inoculum, likely in the form of spore banks. Inoculum levels in these soils may be influenced by spore production from neighboring soils where ectomycorrhizal shrubs are present. Under predicted temperature increases, ectomycorrhizal inoculum in soils with host shrubs as well as in nearby soils without host shrubs have the potential to facilitate conifer establishment above the present tree line. PMID:24204858
Zicarelli, Fabio; Calabrò, Serena; Cutrignelli, Monica I; Infascelli, Federico; Tudisco, Raffaella; Bovera, Fulvia; Piccolo, Vincenzo
2011-05-01
The aim of this trial was to evaluate the replacement of rumen fluid with faeces as inoculum in studying the in vitro fermentation characteristics of diets for ruminants using the in vitro gas production technique. Six iso-protein diets with different forage/concentrate ratios were incubated with rumen fluid (RI) or faeces (FI) collected from sheep. Most of the fermentation parameters were influenced by diet and inoculum (P < 0.01). With both inocula, organic matter degradability (dOM), cumulative gas production (OMCV) and maximum fermentation rate (R(max) ) increased as the amount of concentrate in the diet increased. R(max) was lower with FI vs RI (P < 0.01); dOM was higher with FI vs RI and the diet × inoculum interaction was significant. As expected, with both inocula, R(max) increased as the neutral detergent fibre content of the diet decreased. Significant correlations were obtained using both inocula between OMCV/dOM and gas/volatile fatty acid (VFA), while the correlation VFA/dOM was significant only with FI. The microbial biomass yield calculated by stoichiometric analysis for all diets was higher with FI vs RI. With FI the organic matter used for microbial growth showed an overall decreasing trend as the amount of concentrate in the diet increased. The results indicate that both faeces and rumen fluid from sheep have the potential to be used as inoculum for the in vitro gas production technique. Copyright © 2011 Society of Chemical Industry.
Yin, Tan Tzy; Pin, Ui Li; Ghazali, Amir Hamzah Ahmad
2015-04-01
The production of nitrogenase enzyme and auxins by free living diazotrophs has the potential to influence the growth of host plants. In this study, diazotrophs were grown in the presence of various concentrations of nitogen (N) to determine the optimal concentration of N for microbial growth stimulation, promotion of gaseous N (N2) fixation, and phytohormone production. Therefore, we investigate whether different levels of N supplied to Herbaspirillum seropedicae (Z78) have significant effects on nitrogenase activity and auxin production. The highest nitrogenase activity and the lowest auxin production of H. seropedicae (Z78) were both recorded at 0 gL(-1) of NH4Cl. Higher levels of external N caused a significant decrease in the nitrogenase activity and an increased production of auxins. In a subsequent test, two different inoculum sizes of Z78 (10(6) and 10(12) cfu/ml) were used to study the effect of different percentages of acetylene on nitrogenase activity of the inoculum via the acetylene reduction assay (ARA). The results showed that the optimal amount of acetylene required for nitrogenase enzyme activity was 5% for the 10(6) cfu/ml inoculum, whereas the higher inoculum size (10(12) cfu/ml) required at least 10% of acetylene for optimal nitrogenase activity. These findings provide a clearer understanding of the effects of N levels on diazotrophic nitrogenase activity and auxin production, which are important factors influencing plant growth.
Yin, Tan Tzy; Pin, Ui Li; Ghazali, Amir Hamzah Ahmad
2015-01-01
The production of nitrogenase enzyme and auxins by free living diazotrophs has the potential to influence the growth of host plants. In this study, diazotrophs were grown in the presence of various concentrations of nitogen (N) to determine the optimal concentration of N for microbial growth stimulation, promotion of gaseous N (N2) fixation, and phytohormone production. Therefore, we investigate whether different levels of N supplied to Herbaspirillum seropedicae (Z78) have significant effects on nitrogenase activity and auxin production. The highest nitrogenase activity and the lowest auxin production of H. seropedicae (Z78) were both recorded at 0 gL−1 of NH4Cl. Higher levels of external N caused a significant decrease in the nitrogenase activity and an increased production of auxins. In a subsequent test, two different inoculum sizes of Z78 (106 and 1012 cfu/ml) were used to study the effect of different percentages of acetylene on nitrogenase activity of the inoculum via the acetylene reduction assay (ARA). The results showed that the optimal amount of acetylene required for nitrogenase enzyme activity was 5% for the 106 cfu/ml inoculum, whereas the higher inoculum size (1012 cfu/ml) required at least 10% of acetylene for optimal nitrogenase activity. These findings provide a clearer understanding of the effects of N levels on diazotrophic nitrogenase activity and auxin production, which are important factors influencing plant growth. PMID:26868594
Hobbs, Shakira R; Landis, Amy E; Rittmann, Bruce E; Young, Michelle N; Parameswaran, Prathap
2018-01-01
Food waste has a high energy potential that can be converted into useful energy in the form of methane via anaerobic digestion. Biochemical Methane Potential assays (BMPs) were conducted to quantify the impacts on methane production of different ratios of food waste. Anaerobic digester sludge (ADS) was used as the inoculum, and BMPs were performed at food waste:inoculum ratios of 0.42, 1.42, and 3.0g chemical oxygen demand/g volatile solids (VS). The 1.42 ratio had the highest CH 4 -COD recovery: 90% of the initial total chemical oxygen demand (TCOD) was from food waste, followed by ratios 0.42 and 3.0 at 69% and 57%, respectively. Addition of food waste above 0.42 caused a lag time for CH 4 production that increased with higher ratios, which highlighted the negative impacts of overloading with food waste. The Gompertz equation was able to represent the results well, and it gave lag times of 0, 3.6 and 30days and maximum methane productions of 370, 910, and 1950mL for ratios 0.42, 1.42 and 3.0, respectively. While ratio 3.0 endured a long lag phase and low VSS destruction, ratio 1.42 achieved satisfactory results for all performance criteria. These results provide practical guidance on food-waste-to-inoculum ratios that can lead to optimizing methanogenic yield. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cost-effective approach to ethanol production and optimization by response surface methodology.
Uncu, Oya Nihan; Cekmecelioglu, Deniz
2011-04-01
Food wastes disposed from residential and industrial kitchens have gained attention as a substrate in microbial fermentations to reduce product costs. In this study, the potential of simultaneously hydrolyzing and subsequently fermenting the mixed carbohydrate components of kitchen wastes were assessed and the effects of solid load, inoculum volume of baker's yeast, and fermentation time on ethanol production were evaluated by response surface methodology (RSM). The enzymatic hydrolysis process was complete within 6h. Fermentation experiments were conducted at pH 4.5, a temperature of 30°C, and agitated at 150 rpm without adding the traditional fermentation nutrients. The statistical analysis of the model developed by RSM suggested that linear effects of solid load, inoculum volume, and fermentation time and the quadratic effects of inoculum volume and fermentation time were significant (P<0.05). The verification experiments indicated that the developed model could be successfully used to predict ethanol concentration at >90% accuracy. An optimum ethanol concentration of 32.2g/l giving a yield of 0.40g/g, comparable to yields reported to date, was suggested by the model with 20% solid load, 8.9% inoculum volume, and 58.8h of fermentation. The results indicated that the production costs can be lowered to a large extent by using kitchen wastes having multiple carbohydrate components and eliminating the use of traditional fermentation nutrients from the recipe. Copyright © 2010 Elsevier Ltd. All rights reserved.
[Experimental and clinical evaluation of cefotetan in pediatrics].
Toyonaga, Y; Kurosu, Y; Sugita, M; Kita, A; Yoshino, N; Kouda, N; Kumagai, K; Horiuchi, K; Hori, M; Takahashi, T
1983-06-01
Preclinical and clinical studies were carried out on cefotetan (CTT), a new synthetic cephamycin antibacterial agent. The results are described below. Antibacterial activity The minimum inhibitory concentrations (MICs) of CTT, CEZ, CTM and CMZ were determined against clinical isolates of S. aureus, E. coli, K. pneumoniae and P. mirabilis. To CTT S. aureus, showed its sensitivity peak (in the graphic plot of the MIC distribution) at a concentration range of 3.13-6.25 micrograms/ml when a 100-fold dilution of the pathological specimen was employed as the inoculum. These results were inferior to those with CEZ and CTM by 2-4 concentration tubes. The CTT results were also about 2 tubes inferior to the results with CMZ, which is a cephamycin antibiotic. On the other hand, CTT was found to show very strong antibacterial activity against Gram-negative rods. For example, the sensitivity peak of E. coli, occurred at an antibiotic concentration of less than or equal to 0.1-0.2 microgram/ml, regardless of whether the inoculum was the undiluted pathological specimen or the 100-fold dilution thereof. Similar results were obtained in relation to the K. pneumoniae strains: at a CTT concentration of less than or equal to 0.1 microgram/ml, suppression of growth was achieved in 74% of the strains when the inocula were the undiluted specimens, and 86% when the inocula were the 100-fold dilutions thereof. In addition, against P. mirabilis, when the inoculum consisted of the undiluted pathological specimen the MIC peak for CTT occurred at a concentration range of 0.39-0.78 microgram/ml, whereas the peak occurred at 0.2-0.39 microgram/ml when the bacterial inoculum was the 100-fold dilution of the collected specimen. In contrast, CTM showed slightly stronger antibacterial activity than CTT in relation to P. mirabilis; that is, its MIC peak occurred at less than or equal to 0.1-0.2 microgram/ml when the inoculum was the undiluted pathological specimen, and at less than or equal to 0.1 microgram/ml when the bacterial inoculum was the 100-fold dilution. Otherwise, against these 3 species of bacteria, CTT yielded results which were clearly superior to those achieved with the other 3 antibiotics. Absorption and excretion CTT was administered to children at a dosage of 10 mg/kg and 20 mg/kg as a one-shot intravenous injection or as a 1-hour intravenous drip infusion. Thereafter, the serum concentration of the antibiotic was monitored and it excretion rate in the urine was also determined.(ABSTRACT TRUNCATED AT 400 WORDS)
Zinner, Stephen H.; Simmons, Kelly; Gilbert, Deborah
2000-01-01
The activities of levofloxacin (500 mg every 24 h) and ciprofloxacin (750 mg every 12 h) against six pneumococcal isolates in an in vitro dynamic model were compared. For one strain, levofloxacin reduced the inoculum by over 4 log CFU/ml and ciprofloxacin reduced the inoculum by over 2 log CFU/ml. For four isolates, both drugs reduced inocula by 4 log CFU/ml within 6 h, suggesting that this dose of ciprofloxacin should be as effective as levofloxacin against these pneumococci. PMID:10681356
Rotylenchulus reniformis on Greenhouse-grown Foliage Plants: Host Range and Sources of Inoculum.
Starr, J L
1991-10-01
Two sources of inoculum of reniform nematodes, Rotylenchulus reniformis, were identified for infestation of ornamental foliage plants in commercial greenhouses. These were water from a local canal system and rooted cuttings purchased from other sources. Eight ornamental plant species were identified as good hosts for the reniform nematode, with each species supporting a reniform population density equal to or greater than that supported by 'Rutgers' tomato and a reproduction factor of greater than 1.0. Nine other plant species were identified as poor hosts.
Rotylenchulus reniformis on Greenhouse-grown Foliage Plants: Host Range and Sources of Inoculum
Starr, J. L.
1991-01-01
Two sources of inoculum of reniform nematodes, Rotylenchulus reniformis, were identified for infestation of ornamental foliage plants in commercial greenhouses. These were water from a local canal system and rooted cuttings purchased from other sources. Eight ornamental plant species were identified as good hosts for the reniform nematode, with each species supporting a reniform population density equal to or greater than that supported by 'Rutgers' tomato and a reproduction factor of greater than 1.0. Nine other plant species were identified as poor hosts. PMID:19283176
Hofgaard, Ingerd S.; Seehusen, Till; Aamot, Heidi U.; Riley, Hugh; Razzaghian, Jafar; Le, Vinh H.; Hjelkrem, Anne-Grete R.; Dill-Macky, Ruth; Brodal, Guro
2016-01-01
The increased occurrence of Fusarium-mycotoxins in Norwegian cereals over the last decade, is thought to be caused by increased inoculum resulting from more cereal residues at the soil surface as a result of reduced tillage practices. In addition, weather conditions have increasingly promoted inoculum development and infection by Fusarium species. The objective of this work was to elucidate the influence of different tillage regimes (autumn plowing; autumn harrowing; spring plowing; spring harrowing) on the inoculum potential (IP) and dispersal of Fusarium spp. in spring oats. Tillage trials were conducted at two different locations in southeast Norway from 2010 to 2012. Oat residues from the previous year’s crop were collected within a week after sowing for evaluation. IP was calculated as the percentage of residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. Fusarium avenaceum and F. graminearum were the most common Fusarium species recovered from oat residues. The IP of Fusarium spp. was significantly lower in plowed plots compared to those that were harrowed. Plowing in either the autumn or spring resulted in a low IP. Harrowing in autumn was more effective in reducing IP than the spring harrowing, and IP levels for the spring harrowed treatments were generally higher than all other tillage treatments examined. Surprisingly low levels of F. langsethiae were detected in the residues, although this species is a common pathogen of oat in Norway. The percentage of the residues infested with F. avenaceum, F. graminearum, F. culmorum, and F. langsethiae generally related to the quantity of DNA of the respective Fusarium species determined using quantitative PCR (qPCR). Fusarium dispersal, quantified by qPCR analysis of spore trap samples collected at and after heading, generally corresponded to the IP. Fusarium dispersal was also observed to increase after rainy periods. Our findings are in line with the general understanding that plowing is a means to reduce the IP of Fusarium spp. in cereal fields. The main inoculum source for F. langsethiae remains unclear. Our results will be useful in the development of forecasting tools to calculate the risk of Fusarium in cereals. PMID:27148236
Amorim, Norma C S; Amorim, Eduardo L C; Kato, Mario T; Florencio, Lourdinha; Gavazza, Savia
2018-02-01
Manipueira is a carbohydrate-rich agro-industrial waste from cassava processing. It is considered well suitable for biotechnological processes, such as hydrogen and carboxylic acids production, due to the high content of easily degradable organic matter. However, the proper methanogenesis inhibition method, inoculum type, and organic loads are factors still limiting the processes. The objective in this work was to evaluate the effects of such factors on byproducts production in anaerobic reactors. Batch experiments were conducted with 2.3-L flasks during two operational phases. In the first phase (P1), inhibition of methanogens in the sludge was evaluated using acetylene (1% v/v of headspace) and heat treatment (120 °C, 1 atm for 30 min). In the second phase (P2), three inoculum types obtained from common anaerobic sludges (bovine rumen and sludges from municipal and textile industrial wastewater treatment plants) were individually assayed. P2 aimed to identify the best inoculum, based on hydrogen production ability, which was tested for three initial concentrations of manipueira in terms of chemical oxygen demand (COD) (10, 20 and 40 g O 2 /L). Results of P1 indicated that either acetylene or heat treatment efficiently inhibited methanogenesis, with no methane production. However, the maximum H 2 production potential by applying heat treatment (~ 563 mL) was more than twice compared with that by acetylene treatment (~ 257 mL); and butyrate was the main carboxylic acid by-product (~ 3 g/L). In P2 experiments after sludge heat treatment, the highest hydrogen yield (1.66 ± 0.07 mol H 2 /mol glucose) and caproic acid production (~ 2 g/L) were observed at 20 g O 2 /L of manipueira COD, when bovine rumen was the inoculum. The primary metabolic degradation products in all P2 experiments were ethanol, acetic, butyric, propionic and caproic acids. The finding of caproic acid detection indicated that the applied conditions in manipueira anaerobic degradation favored carbon chain elongation over methanogenesis.
Plasma Deactivation of Oral Bacteria Seeded on Hydroxyapatite Disks as Tooth Enamel Analogue
Blumhagen, Adam; Singh, Prashant; Mustapha, Azlin; Chen, Meng; Wang, Yong; Yu, Qingsong
2014-01-01
Purpose To study the plasma treatment effects on deactivation of oral bacteria seeded on a tooth enamel analogue. Methods A non-thermal atmospheric pressure argon plasma brush was used to treat two different Gram-positive oral bacteria including Lactobacillus acidophilus (L. acidophilus) and Streptococcus mutans (S. mutans). The bacteria were seeded on hydroxyapatite (HA) disks used as tooth enamel analogue with three initial bacterial seeding concentrations: a low inoculum concentration between 2.1×108 and 2.4×108 cfu/mL, a medium inoculum concentration between 9.8×108 and 2.4×109 cfu/mL, and a high inoculum concentration between 1.7×1010 and 3.5×1010 cfu/mL. The bacterial survivability upon plasma exposure was examined in terms of plasma exposure time and oxygen addition into the plasmas. SEM was performed to examine bacterial morphological changes after plasma exposure. Results The experimental data indicated that 13 second plasma exposure time completely killed all the bacteria when initial bacterial seeding density on HA surfaces were less than 6.9×106 cfu/cm2 for L. acidophilus and 1.7×107 cfu/cm2 for S. mutans, which were resulted from low initial seeding inoculum concentration between 2.1×108 and 2.4×108 cfu/mL. Plasma exposure of the bacteria at higher initial bacterial seeding density obtained with high initial seeding inoculum concentration, however, only resulted in ~ 1.5 to 2 log reduction and ~ 2 to 2.5 log reduction for L. acidophilus and S. mutans, respectively. It was also noted that oxygen addition into the argon plasma brush did not affect the plasma deactivation effectiveness. SEM images showed that plasma deactivation mainly occurred with the top layer bacteria, while shadowing effects from the resulting bacterial debris reduced the plasma deactivation of the underlying bacteria. Clinical Significance The experimental results indicate that, with direct contact, nonthermal atmospheric pressure argon plasmas could rapidly and effectively deactivate oral bacteria seeded on HA surfaces and thus could be a promising technique in various dental clinical applications. PMID:25000666
Bois, G; Piché, Y; Fung, M Y P; Khasa, D P
2005-05-01
Recent improvements in the management of oil sand tailings used by the Canadian oil sand industry have resulted in the production of composite tailing sands (CT): a new challenging material for reclamation work. Jack pine (Pinus banksiana Lamb.), hybrid poplar (Populus deltoides Bartr. ex Marsh. xPopulus nigra L.) and red clover (Trifolium pratense L.) plants were used in an 8-week greenhouse bioassay to evaluate the mycorrhizal inoculum potential of CT. This inoculum potential was compared with that of three other reclamation materials [common tailing sands (TS), deep overburden (OB) and muskeg peat (MK)], and with three sites reclaimed in 1982 (R82), 1988 (R88) and 1999 (R99). CT was devoid of active mycorrhizal propagules while all other materials showed some level of inoculum potential. Arbuscular mycorrhizal fungi were observed on roots of clover or poplar grown in TS, OB, and all substrates containing peat (MK, R82, R88 and R99). Pine roots were also colonized by vesicle-forming hyphae of an unidentified fine endophyte and by dark septate fungi. Ectomycorrhizas (ECM) were observed on pine and poplar grown in OB, MK, and in soils from the two older reclaimed sites (R82 and R88). Using morpho- and molecular typing, six ECM fungi were identified to the genus or species level: Laccaria sp., Thelephora americana, Wilcoxina sp. (E-strain), Tuber sp. (I-type), a Sebacinoid, and a Pezizales species. Laccaria sp. and Wilcoxina sp. were the most frequently observed ECM species.
[Production of a compost accelerator inoculant].
Medina Lara, M Socorro; Quintero Lizaola, Roberto; Espinosa Victoria, David; Alarcón, Alejandro; Etchevers Barra, Jorge D; Trinidad Santos, Antonio; Conde Martínez, F Víctor
2017-10-26
Composting was performed using a mixture of ovine manure and straw. Inoculum was extracted at five different phases of the composting process (18, 23, 28, 33 and 38 days after the start of the composting process) and its effect on reducing biotransformation time was evaluated in the composted ovine manure. The samples were preserved in a deep freezer, then lyophilized to obtain the inoculum, 50g of which was added to each treatment in the second experimental phase. Six treatments were established; C=straw (P)+ovine manure (E), T1=P+ E+inoculum 18 days after the start of the composting process (I18), T2=P+E+I23, T3=P+E+I28, T4=P+E+I33, T5=P+E+I38, with three replications. Treatments were placed in a controlled-environment chamber at 45% relative humidity and 30°C along with flasks containing 50g of material to measure daily production, CO 2 accumulation, temperature, pH, electric conductivity (dS/m), organic matter (%), total nitrogen (%), total carbon (%), C: N ratio, particle size (Tp) and bulk density (g/l). CO 2 production (mg) showed a significant difference (p ≤.05) of treatments T2 and T5 with respect to the others, which demonstrated that the inoculum of these treatments accelerated the dynamics of microorganisms and the composting process. The quality and maturity of the compost are guaranteed as the amount of CO 2 decreases. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Schmalreck, Arno; Willinger, Birgit; Czaika, Viktor; Fegeler, Wolfgang; Becker, Karsten; Blum, Gerhard; Lass-Flörl, Cornelia
2012-12-01
In vitro susceptibility testing of clinically important fungi becomes more and more essential due to the rising number of fungal infections in patients with impaired immune system. Existing standardized microbroth dilution methods for in vitro testing of molds (CLSI, EUCAST) are not intended for routine testing. These methods are very time-consuming and dependent on sporulating of hyphomycetes. In this multicentre study, a new (independent of sporulation) inoculum preparation method (containing a mixture of vegetative cells, hyphae, and conidia) was evaluated. Minimal inhibitory concentrations (MIC) of amphotericin B, posaconazole, and voriconazole of 180 molds were determined with two different culture media (YST and RPMI 1640) according to the DIN (Deutsches Institut für Normung) microdilution assay. 24 and 48 h MIC of quality control strains, tested per each test run, prepared with the new inoculum method were in the range of DIN. YST and RPMI 1640 media showed similar MIC distributions for all molds tested. MIC readings at 48 versus 24 h yield 1 log(2) higher MIC values and more than 90 % of the MICs read at 24 and 48 h were within ± 2 log(2) dilution. MIC end point reading (log(2 MIC-RPMI 1640)-log(2 MIC-YST)) of both media demonstrated a tendency to slightly lower MICs with RPMI 1640 medium. This study reports the results of a new, time-saving, and easy-to-perform method for inoculum preparation for routine susceptibility testing that can be applied for all types of spore-/non-spore and hyphae-forming fungi.
Enrichment and activity of methanotrophic microorganisms from municipal wastewater sludge.
Siniscalchi, Luciene Alves Batista; Vale, Isabel Campante; Dell'Isola, Jéssica; Chernicharo, Carlos Augusto; Calabria Araujo, Juliana
2015-01-01
In this study, methanotrophic microorganisms were enriched from a municipal wastewater sludge taken from an Upflow Anaerobic Sludge Blanket reactor. The enrichment was performed in a sequencing batch reactor (SBR) with an autotrophic medium containing nitrite and nitrate. The microbial community composition of the inoculum and of the enrichment culture after 100 days of SBR operation was investigated and compared with the help of data obtained from 454 pyrosequencing analyses. The nitrite and nitrate removal efficiencies were 68% and 53%, respectively, probably due to heterotrophic denitrification. Archaeal cells of the anaerobic methanotrophic Archaic (ANME)-I and ANME-II groups were detected by polymerase chain reaction throughout the whole cultivation period. Pyrosequencing analysis showed that community composition was different among the two samples analysed. The dominant phyla found in the inoculum were Synergistestes, Firmicutes and Euryarchaeota, while Planctomycetes, Verrucomicrobia, Chloroflexi and Proteobacteria prevailed in the enriched biomass. The cultivation conditions decreased Methanobacterium abundance from 8% to 1%, and enriched for methanotrophic bacteria such as Methylocaldum, Methylocistis and Methylosinus. Sequences of Methylocaldum sp. accounted for 2.5% of the total reads. The presence and high predominance of Verrucomicrobia in the enriched biomass suggested that other unknown methanotrophic species related to that phylum might also have occurred in the reactor. Anaerobic methane oxidation activity was measured for both samples, and showed that the activity of the enrichment culture was nearly three times higher than the activity of the inoculum. Taken together, these results showed that the inoculum type and cultivation conditions were properly suited for methanotrophic enrichment.
Motteran, Fabrício; Braga, Juliana K; Silva, Edson L; Varesche, Maria Bernadete A
2016-12-05
This study evaluates the kinetics of methane production and degradation of standard linear alkylbenzene sulfonate (LAS) (50 ± 3.5 mg/L) and LAS from laundry wastewater (85 ± 2.1 mg/L) in anaerobic batch reactors at 30°C with different sources of inoculum. The inocula were obtained by auto-fermentation (AFM) and UASB reactors from wastewater treatment of poultry slaughterhouse (SGH), swine production (SWT) and wastewater treatment thermophilic of sugarcane industry (THR). The study was divided into three phases: synthetic substrate (Phase I), standard LAS (Phase II) and LAS from laundry wastewater (Phase III). For SGH, the highest values for cumulative methane productions (1,844.8 ± 149 µmol-Phase II), methane production rate (70.8 ± 88 µmol/h-Phase II and 4.01 ± 07 µmol/h-Phase III) were observed. The use of thermophilic biomass (THR) incubated at 30°C was not favorable for methane production and LAS biodegradation, but the highest kinetic coefficient degradation (k 1 app ) was obtained for LAS (0.33 ± 0.3 h) compared with mesophilic biomass (SGH and SWT) (0.13 ± 0.02 h). Therefore, both LAS sources influenced the kinetics of methane production and organic matter degradation. For SGH, inoculum obtained the highest LAS degradation. In the SGH inoculum sequenced by MiSeq-Illumina was identified genera (VadinCA02, Candidatus Cloacamonas, VadinHB04, PD-UASB-13) related to degrade toxic compounds. Therefore, it recommended the reactor mesophilic inoculum UASB (SGH) for the LAS degradation.
Roche, Sylvain; El Garch, Hanane; Brunet, Sylvie; Poulet, Hervé; Iwaz, Jean; Ecochard, René; Vanhems, Philippe
2013-01-01
The early events of human immunodeficiency virus infection seem critical for progression toward disease and antiretroviral therapy initiation. We wanted to clarify some still unknown prognostic relationships between inoculum size and changes in various immunological and virological markers. Feline immunodeficiency virus infection could be a helpful model. Viremia and T-cell markers (number of CD4, CD8, CD8β(low)CD62L(neg) T-cells, CD4/CD8 ratio, and percentage of CD8β(low)CD62L(neg) cells among CD8 T-cells) were measured over 12 weeks in 102 cats infected with different feline immunodeficiency virus strains and doses. Viremia and T-cell markers trajectory groups were determined and the dose-response relationships between inoculum titres and trajectory groups investigated. Cats given the same inoculum showed different patterns of changes in viremia and T-cell markers. A statistically significant positive dose-response relationship was observed between inoculum titre and i) viremia trajectory-groups (r = 0.80, p<0.01), ii) CD8β(low)CD62L(neg) cell-fraction trajectory-groups (r = 0.56, p<0.01). Significant correlations were also found between viremia and the CD4/CD8 ratio and between seven out of ten T-cell markers. In cats, the infectious dose determines early kinetics of viremia and initial CD8+ T-cell activation. An expansion of the CD8β(low)CD62L(neg) T-cells might be an early predictor of progression toward disease. The same might be expected in humans but needs confirmation.
Enhancing anaerobic digestion of high-pressure extruded food waste by inoculum optimization.
Kong, Xin; Xu, Shuang; Liu, Jianguo; Li, Huan; Zhao, Ke; He, Liang
2016-01-15
The inoculation for extruded food waste anaerobic digestion (AD) was optimized to improve methane (CH4) yield. The inoculum of acclimated anaerobic sludge resulted in high biodegradability, producing CH4 yields from 580 mLCH4 g(-1)·VSadded to 605 mLCH4 g(-1)·VSadded, with corresponding BDCH4 ranging from 90% to 94%. We also investigated inoculum to substrate ratios (ISRs). With regards to digested slurry as inoculum, we found that a decrease in ISR improved CH4 yield, while a lower ISR prolonged the lag time of the initial AD stage due to lipid inhibition caused by excessive food waste. These results demonstrate that minimal inocula are required to start the AD system for high-pressure extruded food waste because it is easily biodegraded. High ammonia concentration had a negative effect on CH4 production (i.e., when free ammonia nitrogen [FAN] increased from 20 to 30 mg L(-1) to 120-140 mg L(-1), the CH4 yield decreased by 25%), suggesting that FAN was a significant inhibitor in CH4 yield reduction. In terms of CH4 yield and lag time of the AD process, the optimal inoculation of digested slurry for the extruded food waste had an ISR of 0.33 with CH4 yield of 505 mLCH4 g(-1)VSadded, which was 20% higher than what was found for higher ISR controls of 2, 1 and 0.5. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guo, Chunna; Liao, Xiaoping; Wang, Mingru; Wang, Feng; Yan, Chaoqun; Xiao, Xia; Sun, Jiang
2015-01-01
Streptococcus suis serotype 2 is an emerging zoonotic pathogen and causes severe disease in both pigs and human beings. Cefquinome (CEQ), a fourth-generation cephalosporin, exhibits broad-spectrum activity against Gram-positive bacteria such as S. suis. This study evaluated the in vitro and in vivo antimicrobial activities of CEQ against four strains of S. suis serotype 2 in a murine neutropenic thigh infection model. We investigated the effect of varied inoculum sizes (106 to 108 CFU/thigh) on the pharmacokinetic (PK)/pharmacodynamic (PD) indices and magnitudes of a particular PK/PD index or dose required for efficacy. Dose fractionation studies included total CEQ doses ranging from 0.625 to 640 mg/kg/24 h. Data were analyzed via a maximum effect (Emax) model using nonlinear regression. The PK/PD studies demonstrated that the percentage of time that serum drug levels were above the MIC of free drug (%ƒT>MIC) in a 24-h dosing interval was the primary index driving the efficacy of both inoculum sizes (R2 = 91% and R2 = 63%). CEQ doses of 2.5 and 40 mg/kg body weight produced prolonged postantibiotic effects (PAEs) of 2.45 to 8.55 h. Inoculum sizes had a significant influence on CEQ efficacy. Compared to the CEQ exposure and dosages in tests using standard inocula, a 4-fold dose (P = 0.006) and a 2-fold exposure time (P = 0.01) were required for a 1-log kill using large inocula of 108 CFU/thigh. PMID:26666923
Peces, M; Astals, S; Jensen, P D; Clarke, W P
2018-05-17
The impact of the starting inoculum on long-term anaerobic digestion performance, process functionality and microbial community composition remains unclear. To understand the impact of starting inoculum, active microbial communities from four different full-scale anaerobic digesters were each used to inoculate four continuous lab-scale anaerobic digesters, which were operated identically for 295 days. Digesters were operated at 15 days solid retention time, an organic loading rate of 1 g COD L r -1 d -1 (75:25 - cellulose:casein) and 37 °C. Results showed that long-term process performance, metabolic rates (hydrolytic, acetogenic, and methanogenic) and microbial community are independent of the inoculum source. Digesters process performance converged after 80 days, while metabolic rates and microbial communities converged after 120-145 days. The convergence of the different microbial communities towards a core-community proves that the deterministic factors (process operational conditions) were a stronger driver than the initial microbial community composition. Indeed, the core-community represented 72% of the relative abundance among the four digesters. Moreover, a number of positive correlations were observed between higher metabolic rates and the relative abundance of specific microbial groups. These correlations showed that both substrate consumers and suppliers trigger higher metabolic rates, expanding the knowledge of the nexus between microorganisms and functionality. Overall, these results support that deterministic factors control microbial communities in bioreactors independently of the inoculum source. Hence, it seems plausible that a desired microbial composition and functionality can be achieved by tuning process operational conditions. Copyright © 2018. Published by Elsevier Ltd.
Activation of inoculum microorganism from dairy cattle feces
NASA Astrophysics Data System (ADS)
Ayuningtyas, Widya D.; Ridwan, Roni; Joni, I. M.; Marlina, E. T.; Harlia, Ellin
2018-02-01
Coal produces Coal Bed Methane (CBM) which is formed both biogenically and thermogenically. Lignite is not utilized optimally because it has low heat content and productivity time limit that decreases CBM production. In order to utilize lignite waste, adding inoculum consortium microorganism from dairy cattle waste as starter for biogas process can be a solution. This study aimed to produce inoculum consortium microorganism as biogas starter from dairy cattle feces through in vitro activation process by Theoudorou modification method. The research used complete randomized design with 3 replications. The treatments were blank (R0), 100% concentrate (R1), 70% concentrate+30% grass (R2), 70% grass+30% concentrate (R3) and 100% grass (R4). All treatments were added by buffer solution and feces with ratio of 2:1 into 100 ml serum injection bottle with anaerobic conditions. The parameters observed were gas production, pH and gas kinetics (orskov's equation) for 2, 4, 6, 8, 10, 12, 24 and 48 hours. The results showed that the treatment had significant effect (P <0.05) on the observed parameters. The highest total gas production was for R2 and R3 treatments with total production of 91.17 ml and 101.17 ml, pH (6.62 and 6.57), maximum gas production (94.03 and 97.62 ml), speed of gas production (0.066 and 0.084 ml/hour). There is not a significant difference for both the treatments. The source of inoculum consortium microorganisms for biogas starter selected based on the observed parameters and potential availability of proteolytic and fibrocytic microorganisms is R2 (70% concentrate +30% grass).
Rodríguez-Molina, M Carmen; Serrano-Pérez, Paula; Palo, Carolina
2016-07-01
Biofumigation with defatted seed meal of Brassicaceae in the form of pellets has several advantages over the incorporation of fresh Brassicaceae crops to control soil-borne diseases. Two field experiments were established to evaluate the effect of biofumigation with brassica pellets on the survival and infectivity of Phytophthora nicotianae Breda de Haan inoculum introduced before treatments. In the spring experiment the incorporation of additional Brassicaceae cover crop (Brassica nigra L. and Sinapis alba L.) was tested, and in the summer experiment two brassica pellet doses were applied. Biofumigation with brassica pellets in spring (3000 kg ha(-1) with and without plastic) or in summer (3000 kg ha(-1) with or without plastic; 6000 kg ha(-1) without plastic) had no significant effect on the survival of P. nicotianae, regardless of the incorporation of additional Brassicaceae cover crop in spring. Reduction in infectivity in spring was related to the application of plastic, especially when combined with brassica pellets and Brassicaceae crop. In summer, soil temperature was the main factor in the inactivation of the inoculum, especially when plastic was applied, and no additional inactivation was achieved with brassica pellets. In spring and summer, biofumigation with brassica pellets had no effect on the survival of P. nicotianae. Application of plastic in spring may reduce infectivity. Soil temperature is the main factor in the inactivation of inoculum in summer, especially when plastic is applied. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Mujtaba, Ghulam; Lee, Kisay
2017-09-01
The use of algal-bacterial symbiotic association establishes a sustainable and cost-effective strategy in wastewater treatment. Using municipal wastewater, the removal performances of inorganic nutrients (nitrogen and phosphorus) and organic pollutants were investigated by the co-culture system having different inoculum ratios (R) of suspended activated sludge to alginate-immobilized microalgae Chlorella vulgaris. The co-culture reactors with lower R ratios obtained more removal of nitrogen than in pure culture of C. vulgaris. The reactor with R = 0.5 (sludge/microalgae) showed the highest performance representing 66% removal after 24 h and 95% removal after 84 h. Phosphorus was completely eliminated (100%) in the co-culture system with inoculum ratios of 0.5 and 1.0 after 24 h and in the pure C. vulgaris culture after 36 h. The COD level was greatly reduced in the activated sludge reactor, while, it was increasing in pure C. vulgaris culture after 24 h of incubation. However, COD was almost stabilized after 24 h in the reactors with high R ratios such as 2.0, 5.0, and 10 due to the higher concentration of activated sludge. The growth of C. vulgaris was promoted from 0.03 g/L/d to 0.05 g/L/d in the co-culture of low inoculum ratios such as R = 0.5, implying that there exist an optimum inoculum ratio in the co-culture system in order to achieve efficient removal of nutrients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Induced Resistance to Meloidogyne hapla by other Meloidogyne species on Tomato and Pyrethrum Plants
Ogallo, J. L.; McClure, M. A.
1995-01-01
Advance inoculation of the tomato cv. Celebrity or the pyrethrum clone 223 with host-incompatible Meloidogyne incognita or M. javanica elicited induced resistance to host-compatible M. hapla in pot and field experiments. Induced resistance increased with the length of the time between inoculations and with the population density of the induction inoculum. Optimum interval before challenge inoculation, or population density of inoculum for inducing resistance, was 10 days, or 5,000 infective nematodes per 500-cm³ pot. The induced resistance suppressed population increase of M. hapla by 84% on potted tomato, 72% on potted pyrethrum, and 55% on field-grown pyrethrum seedlings, relative to unprotected treatments. Pyrethrum seedlings inoculated with M. javanica 10 days before infection with M. hapla were not stunted, whereas those that did not receive the advance inoculum were stunted 33% in pots and 36% in field plots. The results indicated that advance infection of plants with incompatible or mildly virulent nematode species induced resistance to normally compatible nematodes and that the induced resistance response may have potential as a biological control method for plant nematodes. PMID:19277310
Collina, Elena; Lasagni, Marina; Pitea, Demetrio; Franzetti, Andrea; Di Gennaro, Patrizia; Bestetti, Giuseppina
2007-09-01
Aim of this work was to evaluate influence of two commercial surfactants and inoculum of selected bacteria on biodegradation of diesel fuel in different systems. Among alkyl polyethossilates (Brij family) and sorbitan derivates (Tween family) a first selection of surfactants was performed by estimation of Koc and Dafnia magna EC50 with molecular descriptor and QSAR model. Further experiments were conducted to evaluate soil sorption, biodegradability and toxicity. In the second part of the research, the effect of Brij 56, Tween 80 and selected bacteria addition on biodegradation of diesel fuel was studied in liquid cultures and in slurry and solid phase systems. The latter experiments were performed with diesel contaminated soil in bench scale slurry phase bioreactor and solid phase columns. Tween 80 addition increased the biodegradation rate of hydrocarbons both in liquid and in slurry phase systems. Regarding the effect of inoculum, no enhancement of biodegradation rate was observed neither in surfactant added nor in experiments without addition. On the contrary, in solid phase experiments, inoculum addition resulted in enhanced biodegradation compared to surfactant addition.
NASA Technical Reports Server (NTRS)
Gomez, Elena del V.; Garland, Jay L.; Roberts, Michael S.
2004-01-01
The present work tested whether the relationship between functional traits and inoculum density reflected structural diversity in bacterial communities from a land-use intensification gradient applying a mathematical model. Terminal restriction fragment length polymorphism (T-RFLP) analysis was also performed to provide an independent assessment of species richness. Successive 10-fold dilutions of a soil suspension were inoculated onto Biolog GN(R) microplates. Soil bacterial density was determined by total cell and plate counts. The relationship between phenotypic traits and inoculum density fit the model, allowing the estimation of maximal phenotypic potential (Rmax) and inoculum density (KI) at which Rmax will be half-reduced. Though Rmax decreased with time elapsed since clearing of native vegetation, KI remained high in two of the disturbed sites. The genetic pool of bacterial community did not experience a significant reduction, but the active fraction responding in the Biolog assay was adversely affected, suggesting a reduction in the functional potential. c2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Costa, José C; Oliveira, João V; Pereira, Maria A; Alves, Maria M; Abreu, Angela A
2015-08-01
Potential biohythane production from Sargassum sp. was evaluated in a two stage process. In the first stage, hydrogen dark fermentation was performed by Caldicellulosiruptor saccharolyticus. Sargassum sp. concentrations (VS) of 2.5, 4.9 and 7.4gL(-1) and initial inoculum concentrations (CDW) of 0.04 and 0.09gL(-1) of C. saccharolyticus were used in substrate/inoculum ratios ranging from 28 to 123. The end products from hydrogen production process were subsequently used for biogas production. The highest hydrogen and methane production yields, 91.3±3.3Lkg(-1) and 541±10Lkg(-1), respectively, were achieved with 2.5gL(-1) of Sargassum sp. (VS) and 0.09gL(-1)of inoculum (CDW). The biogas produced contained 14-20% of hydrogen. Potential energy production from Sargassum sp. in two stage process was estimated in 242GJha(-1)yr(-1). A maximum energy supply of 600EJyr(-1) could be obtained from the ocean potential area for macroalgae production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Improvement of hydrogen fermentation of galactose by combined inoculation strategy.
Sivagurunathan, Periyasamy; Anburajan, Parthiban; Kumar, Gopalakrishnan; Arivalagan, Pugazhendhi; Bakonyi, Péter; Kim, Sang-Hyoun
2017-03-01
This study evaluated the feasibility of anaerobic hydrogen fermentation of galactose, a red algal biomass sugar, using individual and combined mixed culture inocula. Heat-treated (90°C, 30 min) samples of granular sludge (GS) and suspended digester sludge (SDS) were used as inoculum sources. The type of mixed culture inoculum played an important role in hydrogen production from galactose. Between two inocula, granular sludge showed higher hydrogen production rate (HPR) and hydrogen yield (HY) of 2.2 L H 2 /L-d and 1.09 mol H 2 /mol galactose added , respectively. Combined inoculation (GS + SDS) led to an elevated HPR and HY of 3.1 L H 2 /L-d and 1.28 mol H 2 /mol galactose added , respectively. Acetic and butyric acids are the major organic acids during fermentation. Quantitative polymerase chain reaction (qPCR) revealed that the mixed culture generated using the combined inoculation contained a higher cluster I Clostridium abundance than the culture produced using the single inoculum. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Huang, Tao; Gao, Wenyuan; Wang, Juan; Cao, Yu
2010-01-01
To optimize the culture condition of adventitious roots of Panax ginseng. The adventitious roots were obtained through tissue culture by manipulation of inoculum, various sucrose concentrations and salt strength. The contents of ginsenosides Re, Rb1 and Rg1 were determined by HPLC while the contents of polysaccharides were determined by ultraviolet spectrophotometry. The multiplication of adventitious roots reached the peak when the inoculum was 20 g x L(-1). The effects of sucrose concentration and salt strength on adventitious roots were observed. The contents of polysaccharides were higher when the medium contained more sucrose. 40 g x L(-1) sucrose was favorable for roots growth and biosynthesis of Re, while 30 g x L(-1) was favorable for the biosynthesis of Rb1 and Rg1. 3/4MS medium was benefit for the growth of adventitious roots and the biosynthesis of ginsenosides. The contents of polysaccharides were decreased with the increase of salt strength. The results showed that inoculum, various sucrose concentrations and salt strength have significant influences on adventitious roots growth, secondary metabolite and polysaccharide synthesis in P. ginseng.
Effects and optimization of the use of biochar in anaerobic digestion of food wastes.
Cai, Jiao; He, Pinjing; Wang, Ying; Shao, Liming; Lü, Fan
2016-05-01
The addition of various amounts of biochar to anaerobic digestion of food wastes at different ratios of inoculum to substrate (ISR) was investigated to evaluate the effect of biochar as a functional additive and to optimize the additive dosage of biochar. The biochar treatments at ISR 2, 1, and 0.8 shortened the lag phase of digestion by -20.0%-10.9%, 43.3%-54.4%, and 36.3%-54.0%, and raised the maximum methane production rate by 100%-275%, 100%-133.3%, and 33.3%-100%, respectively, compared to control without biochar. Biochar also enhanced the degradation rate of dissolved organics and volatile fatty acids. Furthermore, the amount of biochar with best effectiveness at ISR = 2, 1, and 0.8 was 2.5, 0.625, and 0.5 g g(-1)-waste, respectively. Therefore, the effectiveness of biochar depended on the additive amount of biochar and at the same time the inoculum amount, implying a complementary role of abiotic biochar to biotic inoculum. © The Author(s) 2016.
Lin, Long; Yu, Zhongtang; Li, Yebo
2017-10-01
This study aimed to investigate the effect of recirculation of digestate as inoculum on the microbial communities in thermophilic solid-state anaerobic digestion (SS-AD) of yard trimmings. The SS-AD consisted of 4 consecutive runs (30days/run), with digestate from the previous run being used as the inoculum of the subsequent run. Bacterial and archaeal communities (day 0, 4, 8, 12, 20, and 30) were examined using Illumina sequencing of 16S rRNA genes. The results revealed substantial microbial succession toward increased diversity until run 3. The proportions of Firmicutes that contained cellulolytic bacteria doubled, which might explain the concomitantly increased cellulose degradation and volatile fatty acids (VFAs). Clostridia and Thermotogae appeared to correlate with VFAs. The VFA accumulation likely induced dynamic shifts of methanogens, particularly to hydrogenotrophic Methanothermobacter, implying that non-acetoclastic oxidative pathway dominated during the steady-state thermophilic SS-AD. This study suggested that recirculating SS-AD digestate might be an effective way for inoculation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of superheated steam on Geobacillus stearothermophilus spore viability.
Head, D S; Cenkowski, S; Holley, R; Blank, G
2008-04-01
To examine the effect of processing with superheated steam (SS) on Geobacillus stearothermophilus ATCC 10149 spores. Two inoculum levels of spores of G. stearothermophilus were mixed with sterile sand and exposed to SS at 105-175 degrees C. The decimal reduction time (D-value) and the thermal resistance constant (z-value) were calculated. The effect of cooling of spores between periods of exposure to SS was also examined. A mean z-value of 25.4 degrees C was calculated for both inoculum levels for SS processing temperatures between 130 degrees C and 175 degrees C. Spore response to SS treatment depends on inoculum size. SS treatment may be effective for reduction in viability of thermally resistant bacterial spores provided treatments are separated by intermittent cooling periods. There is a need for technologies that require short thermal processing times to eliminate bacterial spores in foods. The SS processing technique has the potential to reduce microbial load and to modify food texture with less energy in comparison to commonly used hot air treatment. This work provides information on the effect of SS processing parameters on the viability of G. stearothermophilus spores.
Ballesteros Martín, M M; Esteban García, B; Ortega-Gómez, E; Sánchez Pérez, J A
2014-01-01
A new bioassay proposed in the patent P201300029 was applied to a pre-treated wastewater containing a mixture of commercial pesticides to simulate a recalcitrant industrial wastewater in order to determine its biodegradability. The test uses a mixture of standardized inoculum of the lyophilized bacteria Pseudomonas putida with the proper proportion of salts and minerals. The results highlight that biodegradation efficiency can be calculated using a gross parameter (chemical oxygen demand (COD)) which facilitates the biodegradability determination for routine water biodegradability analysis. The same trend was observed throughout the assay with the dehydrated and fresh inoculums, and only a difference of 5% in biodegradation efficiency (E f) was observed. The obtained results showed that the P. putida biodegradability assay can be used as a commercial test with a lyophilized inoculum in order to monitor the ready biodegradability of an organic pollutant or a WWTP influent. Moreover, a combination of the BOD5/COD ratio and the P. putida biodegradability test is an attractive alternative in order to evaluate the biodegradability enhancement in water pre-treated with advanced oxidation processes (AOPs).
Fiber Treatment Effects on Bioreactor Bulk Fluid Trends
NASA Technical Reports Server (NTRS)
Ellis, Ronald II
2013-01-01
In order to facilitate the exploration of worlds beyond the borders of our planet, it is necessary to maintain sustainable levels of clean water. The remediation of water via Membrane Aerated Bioreactors (MABRs) is one such method, and the focus of this study. MARRs rely on healthy biofilms grown on hollow fiber membranes to clean non-potable water. These biofilms can take weeks to months to establish. Therefore, various fiber treatments and two inoculums were evaluated for their effect on rapid biofilm formation. Fiber treatments are as follows: sanding of the fibers with 1500 and 8000 grit sandpaper, immersion of the fibers in a 1% hydrofluoric acid solution for 12 seconds and 15 minutes, and the immersion of the fibers in a Fluoroetch® solution for 18 seconds and 5 minutes. The two inoculums utilized were sourced from healthy, established MARRs; Texas Tech University (TTU) MABR "TRL5" and Kennedy Space Center (KSC) MABR "R3". Data attained from direct bacterial cell counts of the reactor bulk fluids via fluorescent microscopy, suggests that the fluoroetching treatment combined with the TTU inoculum show the greatest biofilm creation.
Yin, Jun; Yu, Xiaoqin; Zhang, Yeer; Shen, Dongsheng; Wang, Meizhen; Long, Yuyang; Chen, Ting
2016-09-01
The aim of this study was to explore the effects of redox potential (ORP) and inoculum on volatile fatty acids (VFAs) production from food waste by acidogenic fermentation. Four experimental conditions with two ORP levels were tested: limited aeration conditions with ORP level of -100 to -200mV inoculating anaerobic sludge (LA+AnS) or aerobic sludge (LA+AeS), and anaerobic conditions with ORP level of -200 to -300mV inoculating anaerobic sludge with 2-bromoethanosulfophate (AN+BES) and without BES (AN). The maximal VFA yield (0.79g COD/g VS) was attained in LA+AnS reactor due to enhanced hydrolysis of substrates, especially proteins (degradation efficiency 78.3%). A higher frequency of phylum Firmicutes under limited aeration conditions (42.2-48.2%) was observed than that under anaerobic conditions (21.1%). The microbial community was more diverse in LA+AnS reactors than LA+AeS. We conclude that appropriate ORP level (from -100 to -200mV) and inoculum play essential roles in VFA production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chuard, C.; Reller, L. B.
1998-01-01
The bile-esculin test is used to differentiate enterococci and group D streptococci from non-group D viridans group streptococci. The effects on test performance of the concentration of bile salts, inoculum, and duration of incubation were examined with 110 strains of enterococci, 30 strains of Streptococcus bovis, and 110 strains of non-group D viridans group streptococci. Optimal sensitivity (>99%) and specificity (97%) of the bile-esculin test can be obtained with a bile concentration of 40%, a standardized inoculum of 106 CFU, and incubation for 24 h. PMID:9542954
Chuard, C; Reller, L B
1998-04-01
The bile-esculin test is used to differentiate enterococci and group D streptococci from non-group D viridans group streptococci. The effects on test performance of the concentration of bile salts, inoculum, and duration of incubation were examined with 110 strains of enterococci, 30 strains of Streptococcus bovis, and 110 strains of non-group D viridans group streptococci. Optimal sensitivity (> 99%) and specificity (97%) of the bile-esculin test can be obtained with a bile concentration of 40%, a standardized inoculum of 10(6) CFU, and incubation for 24 h.
Koseki, Shigenobu; Mizuno, Yasuko; Yamamoto, Kazutaka
2011-09-01
The route of pathogen contamination (from roots versus from leaves) of spinach leaves was investigated with a hydroponic cultivation system. Three major bacterial pathogens, Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes, were inoculated into the hydroponic solution, in which the spinach was grown to give concentrations of 10⁶ and 10³ CFU/ml. In parallel, the pathogens were inoculated onto the growing leaf surface by pipetting, to give concentrations of 10⁶ and 10³ CFU per leaf. Although contamination was observed at a high rate through the root system by the higher inoculum (10⁶ CFU) for all the pathogens tested, the contamination was rare when the lower inoculum (10³ CFU) was applied. In contrast, contamination through the leaf occurred at a very low rate, even when the inoculum level was high. For all the pathogens tested in the present study, the probability of contamination was promoted through the roots and with higher inoculum levels. The probability of contamination was analyzed with logistic regression. The logistic regression model showed that the odds ratio of contamination from the roots versus from the leaves was 6.93, which suggested that the risk of contamination from the roots was 6.93 times higher than the risk of contamination from the leaves. In addition, the risk of contamination by L. monocytogenes was about 0.3 times that of Salmonella enterica subsp. enterica serovars Typhimurium and Enteritidis and E. coli O157:H7. The results of the present study indicate that the principal route of pathogen contamination of growing spinach leaves in a hydroponic system is from the plant's roots, rather than from leaf contamination itself.
Ismaiel, Ahmed A; Ahmed, Ashraf S; Hassan, Ismail A; El-Sayed, El-Sayed R; Karam El-Din, Al-Zahraa A
2017-07-01
Among 60 fungal endophytes isolated from twigs, bark, and mature leaves of different plant species, two fungal isolates named TXD105 and TER995 were capable of producing paclitaxel in amounts of up to 84.41 and 37.92 μg L -1 , respectively. Based on macroscopic and microscopic characteristics, ITS1-5.8S-ITS2 rDNA sequence, and phylogenetic characteristic analysis, the two respective isolates were identified as Aspergillus fumigatus and Alternaria tenuissima. In the effort to increase paclitaxel magnitude by the two fungal strains, several fermentation conditions including selection of the proper fermentation medium, agitation rate, incubation temperature, fermentation period, medium pH, medium volume, and inoculum nature (size and age of inoculum) were tried. Fermentation process carried out in M1D medium (pH 6.0) and maintained at 120 rpm for 10 days and at 25 °C using 4% (v/v) inoculum of 5-day-old culture stimulated the highest paclitaxel production to attain 307.03 μg L -1 by the A. fumigatus strain. In the case of the A. tenuissima strain, fermentation conditions conducted in flask basal medium (pH 6.0) and maintained at 120 rpm for 14 days and at 25 °C using 8% (v/v) inoculum of 7-day-old culture were found the most favorable to attain the highest paclitaxel production of 124.32 μg L -1 . Using the MTT-based assay, fungal paclitaxel significantly inhibited the proliferation of five different cancer cell lines with 50% inhibitory concentration values varied from 3.04 to 14.8 μg mL -1 . Hence, these findings offer new and alternate sources with excellent biotechnological potential for paclitaxel production by fungal fermentation.
López, I; Passeggi, M; Borzacconi, L
2006-01-01
At the present time, organic solid wastes from industries and agricultural activities are considered to be promising substrates for biogas production via anaerobic digestion. Moreover solids stabilisation is required before reutilization or disposal. Slaughterhouses are among the most important industries in Uruguay and produce 150,000 tons of ruminal content (RC) and 30,000 tons of blood per year. In order to determine the influence of the solids and blood contents, the ammonia inhibition and the inoculum adaptation co-digestion batch tests were performed. A set of experiences with TS concentration of 2.5%, 5% and 7.5% and different ratios of RC/blood were carried out using an inoculum from an UASB reactor. In all experiences fast blood hydrolisation was observed. A higher methane production was detected in the experiences with higher TS content. However, the fraction of solids degradation was lower in these experiences. A plateau in the biogas production was found. The free ammonia level, which was above the reported inhibitory levels, could explain this behaviour. After the inhibition period the biogas production restarted probably due to the biomass acclimatisation to the ammonia. In order to determine the inoculum adaptation a new experiment was performed. The inoculum used was the sludge coming from the first set of experiences. Based upon batch tests a 3.5 m3 pilot reactor was designed and started up. Ammonia inhibition was avoided by the start-up strategy and in two weeks the biogas production was 3.5 m3/d. The VS stabilisation with a solid retention time of 20 days was of 43%. The pilot reactor working at steady state had a TS concentration of 3-4% with a ratio of RC/blood of 10:1 at the entrance.
Housefly maggot-treated composting as sustainable option for pig manure management.
Zhu, Feng-Xiang; Yao, Yan-Lai; Wang, Su-Juan; Du, Rong-Guang; Wang, Wei-Ping; Chen, Xiao-Yang; Hong, Chun-Lai; Qi, Bing; Xue, Zhi-Yong; Yang, Hong-Quan
2015-01-01
In traditional composting, large amounts of bulking agents must be added to reduce the moisture of pig manure, which increases the cost of composting and dilutes the N, P and K content in organic fertilizers. In this study, maggot treatment was used in composting instead of bulking agents. In experiment of selecting an optimal inoculum level for composting, the treatment of 0.5% maggot inoculum resulted in the maximum yield of late instar maggots, 11.6% (maggots weight/manure weight). The manure residue became noticeably granular by day 6 and its moisture content was below 60%, which was suitable for further composting without bulking agents. Moreover, in composting experiment with a natural compost without maggot inoculum and maggot-treated compost at 0.5% inoculum level, there were no significant differences in nutrient content between the two organic fertilizers from the two treatments (paired Student's t15=1.0032, P=0.3317). Therefore, maggot culturing did not affect the characteristics of the organic fertilizer. The content of TNPK (total nitrogen+total phosphorus+total potassium) in organic fertilizer from maggot treatment was 10.72% (dry weight), which was far more than that of organic fertilizer made by conventional composting with bulking agents (about 8.0%). Dried maggots as feed meet the national standard (GB/T19164-2003) for commercial fish meal in China, which contained 55.32 ± 1.09% protein; 1.34 ± 0.02% methionine; 4.15 ± 0.10% lysine. This study highlights housefly maggot-treated composting can be considered sustainable alternatives for pig manure management to achieve high-quality organic fertilizer and maggots as feed without bulking agents. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sublethal effects of iridovirus disease in a mosquito.
Marina, Carlos F; Arredondo-Jiménez, Juan I; Castillo, Alfredo; Williams, Trevor
1999-05-01
Recognition of the importance of debilitating effects of insect virus diseases is currently growing. Commonly observed effects of sublethal infection at the individual level include extended development times, reduced pupal and adult weights, and lowered fecundity. However, for the most part, sublethal infections are assumed to be present in survivors of an inoculum challenge, rather than demonstrated to be present by microscopy or molecular techniques. Invertebrate iridescent viruses are dsDNA viruses capable of causing disease with symptoms obvious to the naked eye, a "patent" infection, that is lethal. Furthermore, inapparent "covert" infections may occur that are non-lethal and which can only be detected using bioassay or molecular techniques. In this study, replication of Invertebrate iridescent virus 6 in Aedes aegypti larvae was demonstrated in the absence of patent disease. A sensitive insect bioassay (using Galleria mellonella) allowed the detection of covert infections, which were more common than patent infections. A concentration-response relationship was detected for the incidence of patent infections. Covert infections were up to 2 orders of magnitude commoner than patent infections, but the prevalence of covert infections did not appear to be related to virus inoculum concentration. Exposure of larvae to virus inoculum resulted in extended juvenile development times. A reduction in the mean and an increase in the variability of fecundity and adult progeny production was observed in females exposed to an inoculum challenge, although formal analysis was not possible. Males appeared capable of passing virus to uninfected females during the mating process. Covertly infected females were smaller and had shorter lifespans than control or virus-challenged females. A conservative estimate for the reduction in the net reproductive rate (R 0 ) of such insects was calculated at slightly more than 20% relative to controls.
Starzyńska-Janiszewska, Anna; Stodolak, Bożena; Wikiera, Agnieszka
2015-01-01
Tempeh is a food product obtained from legumes by means of solid-state fermentation with Rhizopus sp. Our previous research proved that mixed-culture inoculum may also be successfully applied. The objective of present research was to study the proteolytic activity of R. microsporus var. chinensis and A. oryzae during tempeh-type fermentation of grass pea seeds, and the effect of inoculum composition on the protein level and in vitro protein bioavailability in products. Fermentation substrate were soaked and cooked grass pea seeds. Material was mixed with single- or mixed-culture inoculum, and incubated in perforated plastic bags at 30°C for 32 hrs. In the products, the proteolytic activity (pH 3, 5 and 7), glucosamine, total protein and free amino acids levels, as well as protein in vitro bioavailability and degree of protein hydrolysis were obtained. The significant correlation was found between glucosamine content and proteolytic activity in grass pea seeds fermented with Rhizopus or Aspergillus. The activities of Rhizopus proteases were higher than Aspergillus ones, which corresponded with the degree of seed protein hydrolysis. Both strains showed the highest activity of protease at pH 3. Tempeh made with pure culture of Rhizopus had 37% protein of 69% in-vitro bioavailability. Mixed-culture fermentation improved nutritional parameters of products only when the dose of Aspergillus spores in the inoculum was equal and lower than that of Rhizopus. This process resulted in higher in-vitro bioavailability of protein, slightly more efficient protein hydrolysis and higher level of free amino acids, as compared to standard tempeh. The activity of A. oryzae in tempeh-type fermentation is beneficial as long as it does not dominate the activity and/or growth of Rhizopus strain.
Sclerotinia homoeocarpa Overwinters in Turfgrass and Is Present in Commercial Seed
Rioux, Renée A.; Shultz, Jeanette; Garcia, Michelle; Willis, David Kyle; Casler, Michael; Bonos, Stacy; Smith, Damon; Kerns, James
2014-01-01
Dollar spot is the most economically important disease of amenity turfgrasses in the United States, yet little is known about the source of primary inoculum for this disease. With the exception of a few isolates from the United Kingdom, Sclerotinia homoeocarpa, the causal agent of dollar spot, does not produce spores. Consequently, it was assumed that overwintering of this organism in soil, thatch, and plant debris provides primary inoculum for dollar spot epidemics. Overwintering of S. homoeocarpa in roots and shoots of symptomatic and asymptomatic creeping bentgrass turfgrass was quantified over the course of a three-year field experiment. Roots did not consistently harbor S. homoeocarpa, whereas S. homoeocarpa was isolated from 30% of symptomatic shoots and 10% of asymptomatic shoots in the spring of two out of three years. The presence of stroma-like pathogen material on leaf blades was associated with an increase in S. homoeocarpa isolation and colony diameter at 48 hpi. Commercial seed has also been hypothesized to be a potential source of initial inoculum for S. homoeocarpa. Two or more commercial seed lots of six creeping bentgrass cultivars were tested for contamination with S. homoeocarpa using culture-based and molecular detection methods. A viable, pathogenic isolate of S. homoeocarpa was isolated from one commercial seed lot and contamination of this lot was confirmed with nested PCR using S. homoeocarpa specific primers. A sensitive nested PCR assay detected S. homoeocarpa contamination in eight of twelve (75%) commercial seed lots. Seed source, but not cultivar or resistance to dollar spot, influenced contamination by S. homoeocarpa. Overall, this research suggests that seeds are a potential source of initial inoculum for dollar spot epidemics and presents the need for further research in this area. PMID:25333928
de la Bastide, P Y; Kropp, B R; Piché, Y
1995-01-01
An in vitro study investigated mechanisms for the development of genetically variable mycorrhizal mycelia for Laccaria bicolor. Seedlings of jack pine (Pinus banksiana) grown nonaseptically in an autoclaved soil substrate were given different L. bicolor inoculum treatments. These included (i) a dikaryotic mycelium genotype (D); (ii) D and basidiospores collected from one group of five sporophores (T1); (iii) D and basidiospores collected from 10 sporophores, two from each of five different groups (T5); (iv) T1 alone; (v) T5 alone; and (vi) a noninoculated control. Dikaryotic mycelial inoculum was provided at the time of sowing, while basidiospore inoculum was added at 10 weeks after seed germination. Sporophore formation was induced after 20 weeks of growth, and dikaryotic cultures were isolated from their tissue. Seedlings were harvested, and growth and mycorrhization were assessed. Levels of both were generally lower for T1-treated seedlings, compared with seedlings receiving D, while levels for T5-treated seedlings were intermediate. Sporophore genotype variability was assessed for inoculum treatments by using the isoenzymatic marker leucine aminopeptidase. The greatest genetic variability was seen with the basidiospore treatments T1 and T5, with up to four leucine aminopeptidase patterns per seedling. The mixed treatments D plus T1 and D plus T5 produced most frequently, but not exclusively, the inoculated dikaryon genotype. After isoenzyme results were assessed, variable sporophore isolates of mixed treatments were analyzed with randomly amplified polymorphic DNA and PCR mitochondrial DNA markers to determine if they were formed by dikaryon-monokaryon crosses between the inoculated dikaryon and monosporous mycelia.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7486997
Guo, Chunna; Liao, Xiaoping; Wang, Mingru; Wang, Feng; Yan, Chaoqun; Xiao, Xia; Sun, Jiang; Liu, Yahong
2016-02-01
Streptococcus suis serotype 2 is an emerging zoonotic pathogen and causes severe disease in both pigs and human beings. Cefquinome (CEQ), a fourth-generation cephalosporin, exhibits broad-spectrum activity against Gram-positive bacteria such as S. suis. This study evaluated the in vitro and in vivo antimicrobial activities of CEQ against four strains of S. suis serotype 2 in a murine neutropenic thigh infection model. We investigated the effect of varied inoculum sizes (10(6) to 10(8) CFU/thigh) on the pharmacokinetic (PK)/pharmacodynamic (PD) indices and magnitudes of a particular PK/PD index or dose required for efficacy. Dose fractionation studies included total CEQ doses ranging from 0.625 to 640 mg/kg/24 h. Data were analyzed via a maximum effect (Emax) model using nonlinear regression. The PK/PD studies demonstrated that the percentage of time that serum drug levels were above the MIC of free drug (%ƒT>MIC) in a 24-h dosing interval was the primary index driving the efficacy of both inoculum sizes (R(2) = 91% and R(2) = 63%). CEQ doses of 2.5 and 40 mg/kg body weight produced prolonged postantibiotic effects (PAEs) of 2.45 to 8.55 h. Inoculum sizes had a significant influence on CEQ efficacy. Compared to the CEQ exposure and dosages in tests using standard inocula, a 4-fold dose (P = 0.006) and a 2-fold exposure time (P = 0.01) were required for a 1-log kill using large inocula of 10(8) CFU/thigh. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Litter quality versus soil microbial community controls over decomposition: a quantitative analysis
Cleveland, Cory C.; Reed, Sasha C.; Keller, Adrienne B.; Nemergut, Diana R.; O'Neill, Sean P.; Ostertag, Rebecca; Vitousek, Peter M.
2014-01-01
The possible effects of soil microbial community structure on organic matter decomposition rates have been widely acknowledged, but are poorly understood. Understanding these relationships is complicated by the fact that microbial community structure and function are likely to both affect and be affected by organic matter quality and chemistry, thus it is difficult to draw mechanistic conclusions from field studies. We conducted a reciprocal soil inoculum × litter transplant laboratory incubation experiment using samples collected from a set of sites that have similar climate and plant species composition but vary significantly in bacterial community structure and litter quality. The results showed that litter quality explained the majority of variation in decomposition rates under controlled laboratory conditions: over the course of the 162-day incubation, litter quality explained nearly two-thirds (64 %) of variation in decomposition rates, and a smaller proportion (25 %) was explained by variation in the inoculum type. In addition, the relative importance of inoculum type on soil respiration increased over the course of the experiment, and was significantly higher in microcosms with lower litter quality relative to those with higher quality litter. We also used molecular phylogenetics to examine the relationships between bacterial community composition and soil respiration in samples through time. Pyrosequencing revealed that bacterial community composition explained 32 % of the variation in respiration rates. However, equal portions (i.e., 16 %) of the variation in bacterial community composition were explained by inoculum type and litter quality, reflecting the importance of both the meta-community and the environment in bacterial assembly. Taken together, these results indicate that the effects of changing microbial community composition on decomposition are likely to be smaller than the potential effects of climate change and/or litter quality changes in response to increasing atmospheric CO2 concentrations or atmospheric nutrient deposition.
Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid.
Khor, Way Cern; Roume, Hugo; Coma, Marta; Vervaeren, Han; Rabaey, Korneel
2016-10-01
Lactic acid is a high-in-demand chemical, which can be produced through fermentation of lignocellulosic feedstock. However, fermentation of complex substrate produces a mixture of products at efficiencies too low to justify a production process. We hypothesized that the background acetic acid concentration plays a critical role in lactic acid yield; therefore, its retention via selective extraction of lactic acid or its addition would improve overall lactic acid production and eliminate net production of acetic acid. To test this hypothesis, we added 10 g/L of acetate to fermentation broth to investigate its effect on products composition and concentration and bacterial community evolution using several substrate-inoculum combinations. With rumen fluid inoculum, lactate concentrations increased by 80 ± 12 % (cornstarch, p < 0.05) and 16.7 ± 0.4 % (extruded grass, p < 0.05) while with pure culture inoculum (Lactobacillus delbrueckii and genetically modified (GM) Escherichia coli), a 4 to 23 % increase was observed. Using rumen fluid inoculum, the bacterial community was enriched within 8 days to >69 % lactic acid bacteria (LAB), predominantly Lactobacillaceae. Higher acetate concentration promoted a more diverse LAB population, especially on non-inoculated bottles. In subsequent tests, acetate was added in a semi-continuous percolation system with grass as substrate. These tests confirmed our findings producing lactate at concentrations 26 ± 5 % (p < 0.05) higher than the control reactor over 20 days operation. Overall, our work shows that recirculating acetate has the potential to boost lactic acid production from waste biomass to levels more attractive for application.
Benneouala, Mourad; Bareha, Younès; Mengelle, Evrard; Bounouba, Mansour; Sperandio, Mathieu; Bessiere, Yolaine; Paul, Etienne
2017-11-15
Up to half of the organic fraction of an urban wastewater is made up of particulate settleable solids (PSS). In activated sludge process (AS) this material is rapidly adsorbed on to microbial flocs but is only slowly and partially degraded. To better understand and predict the degradation kinetics observed, a determination of the proportion of hydrolytic bacteria is required. As inoculum is usually added in the biodegradation tests, a comparison is required between the roles of bacteria introduced with the inoculum and those attached to the substrate. In this work, respirometric batch experiments were performed on PSS collected from upstream or downstream of the sewers of Toulouse city. Toilet paper (TP) and cellulose, two model particulate substrates, were also investigated. To understand the role of the active biomass in hydrolysis, increasing concentrations of AS were added to a certain amount of PSS or TP. No correlation was observed between the concentration of AS and the rate and duration of degradation of the particulate matter. Simulations performed after calibration of the model ASM-1 allowed the fraction of hydrolytic bacteria to be estimated in both the substrate and the AS-inoculum. Only a very small fraction of the bacteria of AS and of the substrate samples were found to be efficient for hydrolysis. Hydrolysis was mainly initiated by a small proportion of the microorganisms, and especially by cells already attached to PSSs. Moreover, the fraction of bacteria able to hydrolyse large particles present in an inoculum of AS depended on the initial contamination of the surface of the particles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Skelsey, Peter; Cooke, David E L; Lynott, James S; Lees, Alison K
2016-11-01
The impact of climate change on dispersal processes is largely ignored in risk assessments for crop diseases, as inoculum is generally assumed to be ubiquitous and nonlimiting. We suggest that consideration of the impact of climate change on the connectivity of crops for inoculum transmission may provide additional explanatory and predictive power in disease risk assessments, leading to improved recommendations for agricultural adaptation to climate change. In this study, a crop-growth model was combined with aerobiological models and a newly developed infection risk model to provide a framework for quantifying the impact of future climates on the risk of disease occurrence and spread. The integrated model uses standard meteorological variables and can be easily adapted to various crop pathosystems characterized by airborne inoculum. In a case study, the framework was used with data defining the spatial distribution of potato crops in Scotland and spatially coherent, probabilistic climate change data to project the future connectivity of crop distributions for Phytophthora infestans (causal agent of potato late blight) inoculum and the subsequent risk of infection. Projections and control recommendations are provided for multiple combinations of potato cultivar and CO 2 emissions scenario, and temporal and spatial averaging schemes. Overall, we found that relative to current climatic conditions, the risk of late blight will increase in Scotland during the first half of the potato growing season and decrease during the second half. To guide adaptation strategies, we also investigated the potential impact of climate change-driven shifts in the cropping season. Advancing the start of the potato growing season by 1 month proved to be an effective strategy from both an agronomic and late blight management perspective. © 2016 John Wiley & Sons Ltd.
2011-01-01
Background The accessory gene regulator (agr) is a quorum sensing cluster of genes which control colonization and virulence in Staphylococcus aureus. We evaluated agr function in community- (CA) and healthcare-associated (HA) MRSA, to compare the pharmacodynamics and bactericidal activity of vancomycin against agr functional and dysfunctional HA-MRSA and CA-MRSA. Methods 40 clinical isolates of MRSA from the Canadian Nosocomial Infection Surveillance Program were evaluated for delta-haemolysin production, as a surrogate marker of agr function. Time kill experiments were performed for vancomycin at 0 to 64 times the MIC against an initial inoculum of 106 and 108 cfu/ml of agr functional and dysfunctional CA-MRSA and HA-MRSA and these data were fit to a hill-type pharmacodynamic model. Results 15% isolates were agr dysfunctional, which was higher among HA-MRSA (26.3%) versus CA-MRSA (4.76%). Against a low initial inoculum of 106 cfu/ml of CA-MRSA, vancomycin pharmacodynamics were similar among agr functional and dysfunctional strains. However, against a high initial inoculum of 108 cfu/ml, killing activity was notably attenuated against agr dysfunctional CA-MRSA (USA400) and HA-MRSA (USA100). CA-MRSA displayed a 20.0 fold decrease in the maximal reduction in bacterial counts (Emax) which was 3.71 log10 CFU/ml for agr functional vs. 2.41 log10 CFU/ml for agr dysfunctional MRSA (p = 0.0007). Conclusions Dysfunction in agr was less common among CA-MRSA vs. HA-MRSA. agr dysfunction demonstrated an impact on vancomycin bactericidal activity and pharmacodynamics against a high initial inoculum of CA-MRSA and HA-MRSA, which may have implications for optimal antimicrobial therapy against persistent, difficult to treat MRSA infections. PMID:21599878
Tsuji, Brian T; MacLean, Robert D; Dresser, Linda D; McGavin, Martin J; Simor, Andrew E
2011-05-20
The accessory gene regulator (agr) is a quorum sensing cluster of genes which control colonization and virulence in Staphylococcus aureus. We evaluated agr function in community- (CA) and healthcare-associated (HA) MRSA, to compare the pharmacodynamics and bactericidal activity of vancomycin against agr functional and dysfunctional HA-MRSA and CA-MRSA. 40 clinical isolates of MRSA from the Canadian Nosocomial Infection Surveillance Program were evaluated for delta-haemolysin production, as a surrogate marker of agr function. Time kill experiments were performed for vancomycin at 0 to 64 times the MIC against an initial inoculum of 10(6) and 10(8) cfu/ml of agr functional and dysfunctional CA-MRSA and HA-MRSA and these data were fit to a hill-type pharmacodynamic model. 15% isolates were agr dysfunctional, which was higher among HA-MRSA (26.3%) versus CA-MRSA (4.76%). Against a low initial inoculum of 10(6) cfu/ml of CA-MRSA, vancomycin pharmacodynamics were similar among agr functional and dysfunctional strains. However, against a high initial inoculum of 10(8) cfu/ml, killing activity was notably attenuated against agr dysfunctional CA-MRSA (USA400) and HA-MRSA (USA100). CA-MRSA displayed a 20.0 fold decrease in the maximal reduction in bacterial counts (Emax) which was 3.71 log(10) CFU/ml for agr functional vs. 2.41 log(10) CFU/ml for agr dysfunctional MRSA (p = 0.0007). Dysfunction in agr was less common among CA-MRSA vs. HA-MRSA. agr dysfunction demonstrated an impact on vancomycin bactericidal activity and pharmacodynamics against a high initial inoculum of CA-MRSA and HA-MRSA, which may have implications for optimal antimicrobial therapy against persistent, difficult to treat MRSA infections.
Davis, Kathryn E. R.; Joseph, Shayne J.; Janssen, Peter H.
2005-01-01
Soils are inhabited by many bacteria from phylogenetic groups that are poorly studied because representatives are rarely isolated in cultivation studies. Part of the reason for the failure to cultivate these bacteria is the low frequency with which bacterial cells in soil form visible colonies when inoculated onto standard microbiological media, resulting in low viable counts. We investigated the effects of three factors on viable counts, assessed as numbers of CFU on solid media, and on the phylogenetic groups to which the isolated colony-forming bacteria belong. These factors were inoculum size, growth medium, and incubation time. Decreasing the inoculum size resulted in significant increases in the viable count but did not appear to affect colony formation by members of rarely isolated groups. Some media that are traditionally used for soil microbiological studies returned low viable counts and did not result in the isolation of members of rarely isolated groups. Newly developed media, in contrast, resulted in high viable counts and in the isolation of many members of rarely isolated groups, regardless of the inoculum size. Increased incubation times of up to 3 months allowed the development of visible colonies of members of rarely isolated groups in conjunction with the use of appropriate media. Once isolated, pure cultures of members of rarely isolated groups took longer to form visible colonies than did members of commonly isolated groups. Using these new media and extended incubation times, we were able to isolate many members of the phyla Acidobacteria (subdivisions 1, 2, 3, and 4), Gemmatimonadetes, Chloroflexi, and Planctomycetes (including representatives of the previously uncultured WPS-1 lineage) as well as members of the subclasses Rubrobacteridae and Acidimicrobidae of the phylum Actinobacteria. PMID:15691937
Różańska, Anna; Chmielarczyk, Agnieszka; Romaniszyn, Dorota; Sroka-Oleksiak, Agnieszka; Bulanda, Małgorzata; Walkowicz, Monika; Osuch, Piotr; Knych, Tadeusz
2017-07-20
Background: Hospital equipment made from copper alloys can play an important role in complementing traditional methods of disinfection. Aims of the study: The aim of this study was to assess the dynamics of the antimicrobial properties of selected copper alloys in different simulations of environmental conditions (with organic contamination vs. without organic contamination), and to test alternatives to the currently used testing methods. Materials and Methods: A modification of Japanese standard JIS Z 2801 as well as Staphylococcus aureus (SA) and Escherichia coli (EC) suspended in NaCl vs. tryptic soy broth (TSB) were used in tests performed on seven commonly used copper alloys, copper, and stainless steel. Results: A much faster reduction of the bacterial suspension was observed for the inoculum prepared in NaCl than in TSB. A faster reduction for EC than for SA was observed in the inoculum prepared in NaCl. The opposite results were found for the inoculum based on TSB. A significant correlation between the copper concentration in the copper alloys and the time and degree of bacterial suspension reduction was only observed in the case of EC. Conclusions: This study confirmed the antimicrobial properties of copper alloys, and additionally showed that Staphylococcus aureus was more resistant than Escherichia coli in the variant of the experiment without organic contamination. However, even for SA, a total reduction of the bacterial inoculum's density took no longer than 2 h. Under conditions simulating organic contamination, all of the tested alloys were shown to have bactericidal or bacteriostatic properties, which was contrary to the results from stainless steel.
Study of methanogenesis during bioutilization of plant residuals
NASA Astrophysics Data System (ADS)
Ilyin, V. K.; Korniushenkova, I. N.; Starkova, L. V.; Lauriniavichius, K. S.
2005-02-01
The waste management strategy for the future should meet the benefits of human safety, respect principles of planet ecology, and compatibility with other habitability systems. For these purposes waste management technologies relevant to application of the biodegradation properties of bacteria are of great value. Biological treatment method is based on the biodegradation of organic substances by various microorganisms. The objectives of our study were: to evaluate the effectiveness of microbial biodegradation of vegetable non-edible residual, using artificial inoculum, and to study the peculiarities of biogas, and possibilities of optimizing or reducing the share of methane. The diminution rate of organic gained 76% from initial mass within 9 days of fermentation. The biogas production achieved 46 l/kg of substrate. The microbial studies of biodegradation process revealed the following peculiarities: (i) gradual quantitative increase of Lactobacillus sp. (from 103 to 105 colony-forming units (CFU) per ml); (ii) activation of Clostridia sp. (from 102 to 10 4 CFU/ml); and (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae, Protea sp., Staphylococci). Chromatography analysis revealed the constant presence of carbon dioxide (up to 90.9%). The methane content measures revealed traces 0.1-0.4%. However, when we optimized the methane production in "boiling layer" using methanogenic granules, the amount of methane in biogas reached 80-90%. Based on the results obtained the artificial inoculum was created which was capable of initiating biodegradation of vegetable wastes. This inoculum consisted of active sludge adapted to wastes mixed with excretea of insects which consume plant wastes. Using this inoculum the biodegradation process takes less time than that using active sludge. Regulation of methane concentration from traces to 90% may be achieved by adding methane reactor to the plant digester.
Bergen, Phillip J.; Forrest, Alan; Bulitta, Jürgen B.; Tsuji, Brian T.; Sidjabat, Hanna E.; Paterson, David L.; Li, Jian; Nation, Roger L.
2011-01-01
The use of combination antibiotic therapy may be beneficial against rapidly emerging resistance in Pseudomonas aeruginosa. The aim of this study was to systematically investigate in vitro bacterial killing and resistance emergence with colistin alone and in combination with imipenem against multidrug-resistant (MDR) P. aeruginosa. Time-kill studies were conducted over 48 h using 5 clinical isolates and ATCC 27853 at two inocula (∼106 and ∼108 CFU/ml); MDR, non-MDR, and colistin-heteroresistant and -resistant strains were included. Nine colistin-imipenem combinations were investigated. Microbiological response was examined by log changes at 6, 24, and 48 h. Colistin combined with imipenem at clinically relevant concentrations increased the levels of killing of MDR and colistin-heteroresistant isolates at both inocula. Substantial improvements in activity with combinations were observed across 48 h with all colistin concentrations at the low inoculum and with colistin at 4× and 16× MIC (or 4 and 32 mg/liter) at the high inoculum. Combinations were additive or synergistic against imipenem-resistant isolates (MICs, 16 and 32 mg/liter) at the 106-CFU inoculum in 9, 11, and 12 of 18 cases (i.e., 9 combinations across 2 isolates) at 6, 24, and 48 h, respectively, and against the same isolates at the 108-CFU inoculum in 11, 7, and 8 cases, respectively. Against a colistin-resistant strain (MIC, 128 mg/liter), combinations were additive or synergistic in 9 and 8 of 9 cases at 24 h at the 106- and 108-CFU inocula, respectively, and in 5 and 7 cases at 48 h. This systematic study provides important information for optimization of colistin-imipenem combinations targeting both colistin-susceptible and colistin-resistant subpopulations. PMID:21876058
Fungi isolated from flue-cured tobacco inoculated in the field with storage fungi.
Welty, R E
1971-03-01
Flue-cured tobacco inoculated in the field with A. amstelodami, A. flavus, A. ochraceus, A. repens, A. ruber, and a species of Penicillium was rarely invaded by these fungi. Regardless of inoculum, the predominant fungi reisolated from green tissue were species of Alternaria and Cladosporium. After curing, A. repens, A. niger, and species of Alternaria and a species of Penicillium were the most commonly isolated fungi. The fungus used as inoculum was not the predominant fungus reisolated from green or cured tissue. Conditions during handling and storage prior to marketing probably determine when storage fungi become associated with the leaf and which species becomes predominant.
Effects of selected pectinolytic bacterial strains on water-retting of hemp and fibre properties.
Di Candilo, M; Bonatti, P M; Guidetti, C; Focher, B; Grippo, C; Tamburini, E; Mastromei, G
2010-01-01
To study the effect of selected bacterial strains on hemp water-retting and properties of retted fibre. The trials were performed in laboratory tanks. The traditional water-retting process, without inoculum addition, was compared to a process modified by inoculating water tanks with two selected pectinolytic bacteria: the anaerobic strain Clostridium sp. L1/6 and the aerobic strain Bacillus sp. ROO40B. Six different incubation times were compared. Half the fibre obtained from each tank was combed. Micromorphological analyses were performed by scanning electron microscopy on uncombed and combed fibres. Moreover, organoleptic and chemical analyses of uncombed fibres were performed. The inoculum, besides speeding up the process, significantly improved the fibre quality. The fibre was not damaged by mechanical hackling, thanks to the good retting level obtained by the addition of selected strains, differently to what happened with the traditionally retted fibre. The best fibre quality was obtained after 3-4 days of retting with the addition of the bacterial inoculum. Retting is the major limitation to an efficient production of high-quality hemp fibres. The water-retting process and fibre quality were substantially improved by simultaneously inoculating water tanks with two selected pectinolytic strains.
Production of native arbuscular mycorrhizal fungi inoculum under different environmental conditions.
Torres-Arias, Yamir; Fors, Rosalba Ortega; Nobre, Camila; Gómez, Eduardo Furrazola; Berbara, Ricardo Luis Louro
In order to obtain an arbuscular mycorrhizal fungi (AMF) native inoculum from Sierra de Moa and determine the most appropriate conditions for its big scale production, four light and temperature combinations were tested in three plant species (Calophyllum antillanum, Talipariti elatum and Paspalum notatum). Growth and development parameters, as well as the mycorrhizal functioning of the seedlings were evaluated. The natural light treatment under high temperatures (L-H) was the most suitable for the growth and development of the three plant species, showing the highest total biomass values, mainly of root, and a positive root-shoot ratio balance. This treatment also promoted higher values of root mycorrhizal colonization, external mycelium and AMF spore density. A total of 38 AMF species were identified among the plants and environmental conditions tested. Archaeospora sp.1, Glomus sp.5, Glomus brohultii and G. glomerulatum were observed in all the treatments. The L-H condition can be recommended for native inoculum production, as it promotes a better expression of the AM symbiosis and an elevated production of mycorrhizal propagules. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Ačai, P; Valík, L'; Medved'ová, A; Rosskopf, F
2016-09-01
Modelling and predicting the simultaneous competitive growth of Escherichia coli and starter culture of lactic acid bacteria (Fresco 1010, Chr. Hansen, Hørsholm, Denmark) was studied in milk at different temperatures and Fresco inoculum concentrations. The lactic acid bacteria (LAB) were able to induce an early stationary state in E. coli The developed model described and tested the growth inhibition of E. coli (with initial inoculum concentration 10(3) CFU/mL) when LAB have reached maximum density in different conditions of temperature (ranging from 12 ℃ to 30 ℃) and for various inoculum sizes of LAB (ranging from approximately 10(3) to 10(7) CFU/mL). The prediction ability of the microbial competition model (the Baranyi and Roberts model coupled with the Gimenez and Dalgaard model) was first performed only with parameters estimated from individual growth of E. coli and the LAB and then with the introduced competition coefficients evaluated from co-culture growth of E. coli and LAB in milk. Both the results and their statistical indices showed that the model with incorporated average values of competition coefficients improved the prediction of E. coli behaviour in co-culture with LAB. © The Author(s) 2015.
Succinic Acid Production from Cheese Whey using Actinobacillus succinogenes 130 Z
NASA Astrophysics Data System (ADS)
Wan, Caixia; Li, Yebo; Shahbazi, Abolghasem; Xiu, Shuangning
Actinobacillus succinogenes 130 Z was used to produce succinic acid from cheese whey in this study. At the presence of external CO2 supply, the effects of initial cheese whey concentration, pH, and inoculum size on the succinic acid production were studied. The by-product formation during the fermentation process was also analyzed. The highest succinic acid yield of 0.57 was obtained at initial cheese whey concentration of 50 g/L, while the highest succinic acid productivity of 0.58 g h-1 L-1 was obtained at initial cheese whey concentration of 100 g/L. Increase in pH and inoculum size caused higher succinic acid yield and productivity. At the preferred fermentation condition of pH 6.8, inoculum size of 5% and initial cheese whey concentration of 50 g/L, succinic acid yield of 0.57, and productivity of 0.44 g h-1 L-1 were obtained. Acetic acid and formic acid were the main by-products throughout the fermentation run of 48 h. It is feasible to produce succinic acid using lactose from cheese whey as carbon resource by A. succinogenes 130 Z.
Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues
Muthangya, Mutemi; Mshandete, Anthony Manoni; Kivaisi, Amelia Kajumulo
2009-01-01
Sisal leaf decortications residue (SLDR) is amongst the most abundant agro-industrial residues in Tanzania and is a good feedstock for biogas production. Pre-treatment of the residue prior to its anaerobic digestion (AD) was investigated using a two-stage pre-treatment approach with two fungal strains, CCHT-1 and Trichoderma reesei in succession in anaerobic batch bioreactors. AD of the pre-treated residue with CCTH-1 at 10% (wet weight inoculum/SLDR) inoculum concentration incubated for four days followed by incubation for eight days with 25% (wet weight inoculum/SLDR) of T. reesei gave a methane yield of 0.292 ± 0.04 m3 CH4/kg volatile solids (VS)added. On reversing the pre-treatment succession of the fungal inocula using the same parameters followed by AD, methane yield decreased by about 55%. Generally, an increment in the range of 30–101% in methane yield in comparison to the un-treated SLDR was obtained. The results confirmed the potential of CCHT-1 followed by Trichoderma reesei fungi pre-treatment prior to AD to achieve significant improvement in biogas production from SLDR. PMID:20087466
Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang
2017-07-01
The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.
Methanosarcina plays a main role during methanogenesis of high-solids food waste and cardboard.
Capson-Tojo, Gabriel; Trably, Eric; Rouez, Maxime; Crest, Marion; Bernet, Nicolas; Steyer, Jean-Philippe; Delgenès, Jean-Philippe; Escudié, Renaud
2018-04-07
Anaerobic digestion of food waste is a complex process often hindered by high concentrations of volatile fatty acids and ammonia. Methanogenic archaea are more sensitive to these inhibitors than bacteria and thus the structure of their community is critical to avoid reactor acidification. In this study, the performances of three different inocula were compared using batch digestion tests of food waste and cardboard mixtures. Particular attention was paid to the archaeal communities in the inocula and after digestion. While the tests started with inocula rich in Methanosarcina led to efficient methane production, VFAs accumulated in the reactors where inocula initially were poor in this archaea and no methane was produced. In addition, higher substrate loads were tolerated when greater proportions of Methanosarcina were initially present in the inoculum. Independently of the inoculum origin, Methanosarcina were the dominant methanogens in the digestates from the experiments that efficiently produced methane. These results suggest that the initial archaeal composition of the inoculum is crucial during reactor start-up to achieve stable anaerobic digestion at high concentrations of ammonia and organic acids. Copyright © 2018 Elsevier Ltd. All rights reserved.
Study of Methanogenesis while Bioutilisation of Plant Residuals
NASA Astrophysics Data System (ADS)
Ilyin, V. K.; Korniushenkova, I. N.; Starkova, L. V.; Lauriniavichius, K. S.
respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. Biological treatment method is based upon the biodegradation of organic substances by various microorganisms. vegetable non-edible residual, using artificial inoculum; to study peculiarities of biogas, possibilities to optimize or to reduce the share of methane. fermentation. The biogas production achieved 46 l per 1 kg of substrate. The microbial studies of biodegradation process revealed following peculiarities: (i)gradual quantitative increasing of Lactobacillus sp. (from 103 to 105 colony forming units (CFU) per ml); (ii)activation of Clostridia sp. (from 102 to 104 CFU/ml); (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae sp., Protea sp., staphylococci). methane content measures revealed traces 0.1-0.4%. granules, the amount of methane in biogas reached 80-90%. biodegradation of vegetable wastes. This inoculum consists of active sludge adapted to wastes mixed with excretes of insects which consume plant wastes. Using this inoculum the biodegradation process takes less time, then that using active sludge. Regulation of methane concentration from traces to 90% may be achieved by adding of methane reactor to the plant digester.
Ocasio-Vega, César; Abad-Guamán, Rodrigo; Delgado, Rebeca; Carabaño, Rosa; Carro, María Dolores; García, Javier
2018-06-01
The in vitro caecal fermentation of five substrates low in starch and protein content [d-(+)-glucose (GLU), d-cellobiose (CEL), sugar beet pectin (PEC), sugar beet pulp (SBP) and wheat straw (WS)] was investigated using soft faeces from rabbits receiving different levels of cellobiose and soluble fibre as inoculum. A total of 24 rabbits were supplemented 3 levels of cellobiose in the drinking water (0.0, 7.5, 15.0 g/l) and fed two experimental diets containing either low soluble fibre (LSF) or high soluble fibre (HSF) levels (84.0 and 130 g/kg dry matter). All substrates were subjected to a two-step pepsin/pancreatin in vitro pre-digestion, and the whole residue was used as substrate for the in vitro incubations. Gas production was measured until 144 h, and volatile fatty acid (VFA) production was determined at 24 h incubation. Experimental treatments did not affect SBP fermentation and had only a subtle influence on fermentation of WS and GLU. In contrast, cellobiose supplementation × donors' diet interactions were detected for most gas production parameters for CEL. Both the fractional gas production (k) and maximal gas production rates were linearly increased (p ≤ 0.042) and the initial delay in the onset of gas production (Lag) linearly decreased (p < 0.001) by cellobiose supplementation with the HSF inoculum, with no differences between the 7.5 and 15.0 doses. In contrast, with the LSF inoculum cellobiose supplementation only affected k values, which were quadratically increased (p = 0.043) and had maximal values for the 7.5 dose. A quadratic effect (p ≤ 0.018) of cellobiose supplementation was observed for total VFA production at 24 h when CEL and PEC were fermented, obtaining the maximal VFA production for the 7.5 dose of cellobiose. Total VFA production for CEL was greater with LSF than with HSF inoculum (20.7 vs. 12.9 mmol/l; p = 0.014), but the opposite was found for WS (3.97 vs. 6.21 mmol/l; p = 0.005). The use of LSF inoculum for CEL fermentation sharply reduced acetate (p = 0.001) and increased butyrate proportions (p ≤ 0.001) compared with the HSF inoculum. A positive relationship between total VFA caecal concentrations in rabbits receiving the same experimental treatments and in vitro values was only observed when WS was used as substrate (r = 0.90; p = 0.015; n = 6). The results suggest that experimental factors influenced the fermentative activity of caecal digesta, but the observed response differed with the incubated substrate, being the CEL the most affected.
Sabin-to-Mahoney Transition Model of Quasispecies Replication
DOE Office of Scientific and Technical Information (OSTI.GOV)
2009-05-31
Qspp is an agent-based stochastic simulation model of the Poliovirus Sabin-to-Mahoney transition. This code simulates a cell-to-cell model of Poliovirus replication. The model tracks genotypes (virus genomes) as they are replicated in cells, and as the cells burst and release particles into the medium of a culture dish. An inoculum is then taken from the pool of virions and is used to inoculate cells on a new dish. This process repeats. The Sabin genotype comprises the initial inoculum. Nucleotide positions that match the Sabin1 (vaccine strain) and Mahoney (wild type) genotypes, as well as the neurovirulent phenotype (from the literature)more » are enumerated as constants.« less
Zeolite and swine inoculum effect on poultry manure biomethanation
NASA Astrophysics Data System (ADS)
Kougias, P. G.; Fotidis, I. A.; Zaganas, I. D.; Kotsopoulos, T. A.; Martzopoulos, G. G.
2013-03-01
Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum.
Yang, Zhihong; Chambers, Heather; DiCaprio, Erin; Gao, Gary; Li, Jianrong
2018-02-01
Human norovirus (NoV) is a leading cause of fresh produce associated outbreaks. Previous research indicates that the roots of growing leafy greens and berries internalize human NoV. However the effect of plant type and inoculum level on internalization rates has not been directly compared. In this study we compared the internalization and dissemination rates of human NoV and its surrogate, Tulane virus (TV) in green onion, radishes, and Romaine lettuce. We also evaluated the effect inoculum level and plant growth matrix on the rate of viral internalization. In the hydroponic growth system, we detected internalization and dissemination of human NoV RNA in green onions. In hydroponically growing green onions inoculated with high titer TV, we found higher rates of internalization and dissemination compared to green onions inoculated with low titer TV. In soil growth systems, no infectious TV was detected in either green onion or radishes. However, in Romaine lettuce plants grown in soil approximately 4 log 10 PFU/g was recovered from all tissues on day 14 p.i. Overall, we found that the type of plant, growth matrix, and the inoculum level influences the internalization and dissemination of human NoV and TV. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ascorbate modulates antibacterial mechanisms in experimental pneumococcal pneumonia.
Esposito, A L
1986-04-01
To evaluate the influence of vitamin C on pulmonary antibacterial mechanisms, normal CD-1 mice were administered sodium ascorbate (200 mg/kg/24 h) and challenged intratracheally with type 3 Streptococcus pneumoniae. Survival rates were similar in ascorbate-treated and control animals. When infected with a high inoculum (1 X 10(6) cfu), animals given vitamin C demonstrated a significant enhancement in their capacity to clear viable pneumococci from the lungs at 24 h after challenge; the augmented pulmonary clearance was associated with an increased influx of granulocytes at 6 and 24 h. After infection with a lower inoculum (1 X 10(5) cfu), animals treated with the vitamin exhibited a significant advantage in pulmonary clearance and granulocyte recruitment but at 6 h only. After a very low inoculum challenge (1 X 10(4) cfu), the clearance of viable pneumococci was retarded in ascorbate-treated mice. In vitro, the pneumococcidal capacity of resident alveolar macrophages from animals given vitamin C was significantly reduced, but the ability of these cells to generate leukocyte chemoattractant activity after stimulation with the calcium ionophore A23187 remained unaltered. We conclude that in the mouse, large doses of vitamin C alter pulmonary defense mechanisms against S. pneumoniae; however, these changes do not appear to convey a substantial advantage to the host.
Fichtner, E J; Lynch, S C; Rizzo, D M
2009-05-01
Because the role of soil inoculum of Phytophthora ramorum in the sudden oak death disease cycle is not well understood, this work addresses survival, chlamydospore production, pathogen suppression, and splash dispersal of the pathogen in infested forest soils. Colonized rhododendron and bay laurel leaf disks were placed in mesh sachets before transfer to the field in January 2005 and 2006. Sachets were placed under tanoak, bay laurel, and redwood at three vertical locations: leaf litter surface, litter-soil interface, and below the soil surface. Sachets were retrieved after 4, 8, 20, and 49 weeks. Pathogen survival was higher in rhododendron leaf tissue than in bay tissue, with >80% survival observed in rhododendron tissue after 49 weeks in the field. Chlamydospore production was determined by clearing infected tissue in KOH. Moist redwood-associated soils suppressed chlamydospore production. Rain events splashed inoculum as high as 30 cm from the soil surface, inciting aerial infection of bay laurel and tanoak. Leaf litter may provide an incomplete barrier to splash dispersal. This 2-year study illustrates annual P. ramorum survival in soil and the suppressive nature of redwood-associated soils to chlamydospore production. Infested soil may serve as primary inoculum for foliar infections by splash dispersal during rain events.
Rodríguez-Gómez, Francisco; Romero-Gil, Verónica; Arroyo-López, Francisco N; Roldán-Reyes, Juan C; Torres-Gallardo, Rosa; Bautista-Gallego, Joaquín; García-García, Pedro; Garrido-Fernández, Antonio
2017-01-01
This work studies the inoculation conditions for allowing the survival/predominance of a potential probiotic strain ( Lactobacillus pentosus TOMC-LAB2) when used as a starter culture in large-scale fermentations of green Spanish-style olives. The study was performed in two successive seasons (2011/2012 and 2012/2013), using about 150 tons of olives. Inoculation immediately after brining (to prevent wild initial microbiota growth) followed by re-inoculation 24 h later (to improve competitiveness) was essential for inoculum predominance. Processing early in the season (September) showed a favorable effect on fermentation and strain predominance on olives (particularly when using acidified brines containing 25 L HCl/vessel) but caused the disappearance of the target strain from both brines and olives during the storage phase. On the contrary, processing in October slightly reduced the target strain predominance on olives (70-90%) but allowed longer survival. The type of inoculum used (laboratory vs. industry pre-adapted) never had significant effects. Thus, this investigation discloses key issues for the survival and predominance of starter cultures in large-scale industrial fermentations of green Spanish-style olives. Results can be of interest for producing probiotic table olives and open new research challenges on the causes of inoculum vanishing during the storage phase.
He, Zhanfei; Cai, Chen; Shen, Lidong; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan
2015-01-01
Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered biological process that couples anaerobic oxidation of methane (AOM) to nitrite reduction. In this study, three different inocula, methanogenic sludge, paddy soil, and freshwater sediment were used to enrich n-damo bacteria in three sequencing batch reactors (SBRs), and three n-damo enrichment cultures, C1, C2 and C3, were obtained, respectively. After 500 days of incubation, Methylomirabilis oxyfera-like bacteria and n-damo activities were observed in cultures C1, C2, and C3, and the specific activities were 0.8 ± 0.1, 1.4 ± 0.1, and 1.0 ± 0.1 μmol CH4 h(-1) g(-1) VSS, respectively. The copy numbers of 16S rRNA genes from cultures C1, C2, and C3 were 5.0 ± 0.4 × 10(8), 6.1 ± 0.1 × 10(9), and 1.0 ± 0.2 × 10(9) copies g(-1) dry weight, respectively. The results indicated that paddy soil is an excellent inoculum for n-damo bacterial enrichment. This work expanded the alternative source of n-damo inoculum and benefited the further research of n-damo process.
El-Naggar, Noura El-Ahmady; Moawad, Hassan; El-Shweihy, Nancy M; El-Ewasy, Sara M
2015-01-01
Among the antitumor drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological, and biochemical properties together with 16S rRNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product (1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett-Burman experimental design and response surface methodology was carried out. Fifteen variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4·7H2O, NaCl, and FeSO4·7H2O) were screened using Plackett-Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age, and agitation speed) were further optimized by the face-centered central composite design-response surface methodology.
Enhanced ecological succession following phosphate mining. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, G.R.; Wallace, P.M.; Dunn, W.J.
This research addressed four components thought to be essential for enhancing establishment of native forested ecosystems on phosphate surface-mined lands. Those components were: multispecies mixture of seeds, mycorrhizal fungi symbionts, soil nutrients, and organic matter. Studies of plant community succession and mycorrhizal colonization revealed that within three years the majority of invading plants had levels of mycorrhizal infection higher than the level in mature ecosystems. Mycorrhizal inoculation greatly enhanced the growth of sweat gum (Liquidambor styraciflun), and a composite of mycorrhizal species from phosphate lands was more effective than Glomus macrocarpum, a common Florida nature mycorrhizal fungus. Soil seed banksmore » in reclaimed wetlands approached the density and diversity of seed banks in natural marshes in about five years, although the actual vegetation present was not always as diverse, dense, or well developed in the reclaimed marshes unless wetland soil had been applied. An effective method for mechanically planting several species of seeds plus mycorrhizal inoculum was the use of several row planters attached to a tractor mounted tool bar. During the initial growing season, mulch, topsoil and endomycorrhizal inoculum enhanced growth, density, and species richness of tree seedlings, while ectomycorrhizal inoculum had almost no effect, and gypsum application and phosphate-free fertilizer had negative effects.« less
El-Naggar, Noura El-Ahmady; Moawad, Hassan; El-Shweihy, Nancy M.; El-Ewasy, Sara M.
2015-01-01
Among the antitumor drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological, and biochemical properties together with 16S rRNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product (1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett-Burman experimental design and response surface methodology was carried out. Fifteen variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4·7H2O, NaCl, and FeSO4·7H2O) were screened using Plackett-Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age, and agitation speed) were further optimized by the face-centered central composite design-response surface methodology. PMID:26180806
Abinandan, S; Shanthakumar, S
2016-06-01
Bicarbonate species in the aqueous phase is the primary source for CO 2 for the growth of microalgae. The potential of carbon dioxide (CO 2 ) fixation by Chlorella pyrenoidosa in enriched bicarbonate medium was evaluated. In the present study, effects of parameters such as pH, sodium bicarbonate concentration and inoculum size were assessed for the removal of CO 2 by C. pyrenoidosa under mixotrophic condition. Central composite design tool from response surface methodology was used to validate statistical methods in order to study the influence of these parameters. The obtained results reveal that the maximum removal of CO 2 was attained at pH 8 with sodium bicarbonate concentration of 3.33 g/l, and inoculum size of 30 %. The experimental results were statistically significant with R 2 value of 0.9527 and 0.960 for CO 2 removal and accumulation of chlorophyll content, respectively. Among the various interactions, interactive effects between the parameters pH and inoculum size was statistically significant (P < 0.05) for CO 2 removal and chlorophyll accumulation. Based on the studies, the application of C. pyrenoidosa as a potential source for carbon dioxide removal at alkaline pH from bicarbonate source is highlighted.
Albornoz, Felipe E; Teste, François P; Lambers, Hans; Bunce, Michael; Murray, Dáithí C; White, Nicole E; Laliberté, Etienne
2016-10-01
Ectomycorrhizal (ECM) fungal communities covary with host plant communities along soil fertility gradients, yet it is unclear whether this reflects changes in host composition, fungal edaphic specialization or priority effects during fungal community establishment. We grew two co-occurring ECM plant species (to control for host identity) in soils collected along a 2-million-year chronosequence representing a strong soil fertility gradient and used soil manipulations to disentangle the effects of edaphic properties from those due to fungal inoculum. Ectomycorrhizal fungal community composition changed and richness declined with increasing soil age; these changes were linked to pedogenesis-driven shifts in edaphic properties, particularly pH and resin-exchangeable and organic phosphorus. However, when differences in inoculum potential or soil abiotic properties among soil ages were removed while host identity was held constant, differences in ECM fungal communities and richness among chronosequence stages disappeared. Our results show that ECM fungal communities strongly vary during long-term ecosystem development, even within the same hosts. However, these changes could not be attributed to short-term fungal edaphic specialization or differences in fungal inoculum (i.e. density and composition) alone. Rather, they must reflect longer-term ecosystem-level feedback between soil, vegetation and ECM fungi during pedogenesis. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Gloria, J.; Tafsin, M.; Hanafi, N. D.; Daulay, A. H.
2018-02-01
Apu-apu lives at tropical and subtropical fresh waterways. The apu-apu meals ultization as feed still limited. The problem of ultization apu-apu meals as ingredients is a high crude fiber and need a treatment to decrease crude fiber. This study aim to find out the influence of Aspergillus niger inoculums dosage on apu-apu meal (Pistia stratiotes L.) on metabolizable energy on broiler chicken. This research used completely randomize design (CRD). The treatments consists of Aspergillus niger inoculum dosage (CFU/g) such as P0 (0), P1 (104 CFU/g), P2 (106 CFU/g), and P3 (108 CFU/g). The variable were observed : apparent metabolizable energy (AME), true metabolizable energy (TME), apparent metabolizable energy nitrogen corrected (AMEn) and true metabolizable energy nitrogen corrected (TMEn).The results showed that the dosage of Aspergillus niger increase nutritive value of Aspergillus niger. Dosage of Aspergillus niger also influence (P<0.05) metabolizable energy of apu-apu meals. Dosage 108 CFU/g had metabolizable energy significantly higher than other treatments. Conclusion of this research is the Aspergillus niger at the dosage 108 CFU/g increased nutritive value and metabolizable energy of apu-apu meal.
Wu, Kang; Ding, Lijian; Zhu, Peng; Li, Shuang; He, Shan
2018-04-22
The aim of this study was to determine the cumulative effect of fermentation parameters and enhance the production of docosahexaenoic acid (DHA) by Thraustochytrium sp. ATCC 26185 using response surface methodology (RSM). Among the eight variables screened for effects of fermentation parameters on DHA production by Plackett-Burman design (PBD), the initial pH, inoculum volume, and fermentation volume were found to be most significant. The Box-Behnken design was applied to derive a statistical model for optimizing these three fermentation parameters for DHA production. The optimal parameters for maximum DHA production were initial pH: 6.89, inoculum volume: 4.16%, and fermentation volume: 140.47 mL, respectively. The maximum yield of DHA production was 1.68 g/L, which was in agreement with predicted values. An increase in DHA production was achieved by optimizing the initial pH, fermentation, and inoculum volume parameters. This optimization strategy led to a significant increase in the amount of DHA produced, from 1.16 g/L to 1.68 g/L. Thraustochytrium sp. ATCC 26185 is a promising resource for microbial DHA production due to the high-level yield of DHA that it produces, and the capacity for large-scale fermentation of this organism.
Wang, Dong-Wei; Peng, Xiao-Fang; Xie, Hui; Xu, Chun-Ling; Cheng, De-Qiang; Li, Jun-Yi; Wu, Wen-Jia; Wang, Ke
2016-12-02
The rice white tip nematode (RWTN), Aphelenchoides besseyi and the chrysanthemum foliar nematode (CFN), Aphelenchoides ritzemabosi are migratory plant parasitic nematodes that infect the aboveground parts of plants. In this research, Arabidopsis thaliana was infected by RWTN and CFN under indoor aseptic cultivation, and the nematodes caused recognizable symptoms in the leaves. Furthermore, RWTN and CFN completed their life cycles and proliferated. Therefore, A. thaliana was identified as a new host of RWTN and CFN. The optimum inoculum concentration for RWTN and CFN was 100 nematodes/plantlet, and the optimum inoculum times were 21 and 24 days, respectively. For different RWTN populations, the pathogenicity and reproduction rates were different in the A. thaliana Col-0 ecotype and were positively correlated. The optimum A. thaliana ecotypes were Col-0 and WS, which were the most susceptible to RWTN and CFN, respectively. Additionally, RWTN was ectoparasitic and CFN was ecto- and endoparasitic in A. thaliana. The RWTN and CFN migrated from inoculated leaves to the entire plantlet, and the number of nematodes in different parts of A. thaliana was not correlated with distance from the inoculum point. This is a detailed study of the behavior and infection process of foliar nematodes on A. thaliana.
Shi, Chaohong; Zhu, Nengwu; Shang, Ru; Kang, Naixin; Wu, Pingxiao
2015-11-01
The heavy metals content and dewaterability of municipal sewage sludge (MSS) are important parameters affecting its subsequent disposal and land application. Six kinds of inoculums were prepared to examine the characteristics of heavy metals removal and MSS dewaterability improvement in bioleaching processes. The results showed that Cu, Zn and Cd bioleaching efficiencies (12 days) were 81-91, 87-93 and 81-89%, respectively, which were significantly higher than those of Fe-S control (P < 0.05) and blank control (P < 0.01). The bioleaching boosted by the prepared inoculums could also significantly enhance MSS dewaterability (P < 0.01). The centrifugal dehydration efficiency of MSS rose from 73.00 to 90.00% at day 12. Microscopic observations and energy dispersive spectrum analysis demonstrated that the dewaterability improvement might be attributed to the changes of sludge structure from flocculent to obvious granular and the formation of secondary minerals mainly consisting of iron, oxygen and sulfur elements. The results above demonstrated that bacterial consortium enriched from acid mine drainage (AMD) was suitable to boost sludge bioleaching for heavy metals removal and dewaterability improvement. It also suggested that the synergy of sulfur/ferrous-oxidizing bacteria (SFOB) enriched from AMD and the cooperation of exogenous and indigenous SFOB significantly promoted bioleaching efficiencies.
Maciel, A S; Araújo, J V; Campos, A K; Lopes, E A; Freitas, L G
2009-05-12
In the present work, it was evaluated the in vitro effect of 12 isolates from the fungal species Arthrobotrys, Duddingtonia, Nematoctonus and Monacrosporium genera in different conidial concentrations on the capture of Ancylostoma spp. dog infective larvae (L(3)), on 2% water-agar medium at 25 degrees C, at the end of a period of 7 days. The concentrations used for each nematophagous fungus were 1000, 5000, 10,000, 15,000 and 20,000conidia/Petri dish plated with 1000 Ancylostoma spp. L(3). All nematode-trapping fungi isolates tested reduced the averages of the uncaptured Ancylostoma spp. L(3) recovered, with the increase of the fungal inoculum concentration, in comparison to the fungus-free control (p<0.05). The adhesive network producing species were better predators than the constricting ring or adhesive knob producing species. Duddingtonia flagrans (Isolate CG768) was the most effective, reducing the averages of the uncaptured Ancylostoma spp. L(3) recovered in 92.8%, 96.3%, 97.5%, 98.3% and 98.9%, respectively in five fungal inoculum concentrations established. Other effective nematophagous fungi were Arthrobotrys robusta (Isolate I31), which reduced the averages of the uncaptured Ancylostoma spp. L(3) recovered in 85.4%, 88.3%, 90.7%, 92.5% and 95.2%, and Arthrobotrys oligospora (Isolate A183), with reductions of 66.6%, 79.8%, 86.8%, 89.5% and 90.8%, respectively for both, in the five fungal inoculum concentrations established. No difference was found between Isolates A183 and I31 in the conidial concentrations of 15,000/Petri dish. Nematoctonus robustus (Isolate D1) and Arthrobotrys bronchophaga (Isolate AB) had the smallest percentages of reduction among the tested isolates and showed the lowest predacious activity. The Isolates CG768, I31 and A183 were considered potential biological control agents of Ancylostoma spp. dog free-living stages, being directly influenced by the fungal inoculum concentration.
Liu, Jiqing; Bacosa, Hernando P.; Liu, Zhanfei
2017-01-01
Understanding bacterial community dynamics as a result of an oil spill is important for predicting the fate of oil released to the environment and developing bioremediation strategies in the Gulf of Mexico. In this study, we aimed to elucidate the roles of temperature, water chemistry (nutrients), and initial bacterial community in selecting oil degraders through a series of incubation experiments. Surface (2 m) and bottom (1537 m) waters, collected near the Deepwater Horizon site, were amended with 200 ppm light Louisiana sweet crude oil and bacterial inoculums from surface or bottom water, and incubated at 4 or 24°C for 50 days. Bacterial community and residual oil were analyzed by pyrosequencing and gas chromatography-mass spectrometry (GC-MS), respectively. The results showed that temperature played a key role in selecting oil-degrading bacteria. Incubation at 4°C favored the development of Cycloclasticus, Pseudoalteromonas, Sulfitobacter, and Reinekea, while 24°C incubations enhanced Oleibacter, Thalassobius, Phaeobacter, and Roseobacter. Water chemistry and the initial community also had potential roles in the development of hydrocarbon-degrading bacterial communities. Pseudoalteromonas, Oleibacter, and Winogradskyella developed well in the nutrient-enriched bottom water, while Reinekea and Thalassobius were favored by low-nutrient surface water. We revealed that the combination of 4°C, crude oil and bottom inoculum was a key factor for the growth of Cycloclasticus, while the combination of surface inoculum and bottom water chemistry was important for the growth of Pseudoalteromonas. Moreover, regardless of the source of inoculum, bottom water at 24°C was a favorable condition for Oleibacter. Redundancy analysis further showed that temperature and initial community explained 57 and 19% of the variation observed, while oil and water chemistry contributed 14 and 10%, respectively. Overall, this study revealed the relative roles of temperature, water chemistry, and initial bacterial community in selecting oil degraders and regulating their evolution in the northern Gulf of Mexico. PMID:28119669
Argyri, Anthoula A; Papadopoulou, Olga S; Nisiotou, Aspasia; Tassou, Chrysoula C; Chorianopoulos, Nikos
2018-04-01
High pressure processing (HPP) is a preservation technology alternative to heat treatment that is mild for food, but effectively inactivates the spoilage microbiota and foodborne pathogens of several foods. The purpose of the current study was to evaluate the effect of HPP on Salmonella ser. Enteritidis, indigenous microbiota and shelf-life of chicken fillets. Chicken fillets were inoculated with S. Enteritidis at three different initial inocula (3, 5, 7 log CFU/g), packed under vacuum, treated or not with HPP (500 MPa/10 min) and stored at 4 and 12 °C. Total viable counts, S. Enteritidis, pseudomonads, Brochothrix thermosphacta, lactic acid bacteria, Enterobacteriaceae and yeasts/molds populations were determined in parallel with sensory analysis of non-inoculated samples. The HPP resulted in the reduction of the pathogen population below the detection limit of the enumeration method (0.48 log CFU/g), irrespective of the inoculum. During the shelf life of the HPP samples, the pathogens population remained below or near the detection limit of the enumeration method at both temperatures, except from the high inoculum case that an increase was observed at 12 °C. At the low inoculum level, the pathogen could not be detected with the enrichment method after the first storage days (2nd day for 4 °C and 0 day for 12 °C). The survival of Salmonella strains was assessed by pulsed field gel electrophoresis and it was shown that the survival of the different strains depended on the inoculum and storage temperature. Regarding the indigenous microbiota, Br. thermosphacta was reported for the first time to be the main spoilage microorganism that survived and dominated after the HPP. From the results it was evident that, HPP may enhance the safety and increase the shelf life (6 at 4 °C and 2 days at 12 °C) of chicken meat. Copyright © 2017 Elsevier Ltd. All rights reserved.
A model for multiseasonal spread of verticillium wilt of lettuce.
Wu, B M; Subbarao, K V
2014-09-01
Verticillium wilt, caused by Verticillium dahliae, is a destructive disease in lettuce, and the pathogen is seedborne. Even though maximum seed infestation rates of <5% have been detected in commercial lettuce seed lots, it is necessary to establish acceptable contamination thresholds to prevent introduction and establishment of the pathogen in lettuce production fields. However, introduction of inoculum into lettuce fields for experimental purposes to determine its long term effects is undesirable. Therefore, we constructed a simulation model to study the spread of Verticillium wilt following pathogen introduction from seed. The model consists of four components: the first for simulating infection of host plants, the second for simulating reproduction of microsclerotia on diseased plants, the third for simulating the survival of microsclerotia, and the fourth for simulating the dispersal of microsclerotia. The simulation results demonstrated that the inoculum density-disease incidence curve parameters and the dispersal gradients affect disease spread in the field. Although a steep dispersal gradient facilitated the establishment of the disease in a new field with a low inoculum density, a long-tail gradient allowed microsclerotia to be dispersed over greater distances, promoting the disease spread in fields with high inoculum density. The simulation results also revealed the importance of avoiding successive lettuce crops in the same field, reducing survival rate of microsclerotia between crops, and the need for breeding resistance against V. dahliae in lettuce cultivars to lower the number of microsclerotia formed on each diseased plant. The simulation results, however, suggested that, even with a low seed infestation rate, the pathogen would eventually become established if susceptible lettuce cultivars were grown consecutively in the same field for many years. A threshold for seed infestation can be established only when two of the three drivers of the disease-(i) low microsclerotia production per diseased plant, (ii) long-tail dispersal gradient, and (iii) low microsclerotia survival between lettuce crops-are present.
Liu, Jiqing; Bacosa, Hernando P; Liu, Zhanfei
2016-01-01
Understanding bacterial community dynamics as a result of an oil spill is important for predicting the fate of oil released to the environment and developing bioremediation strategies in the Gulf of Mexico. In this study, we aimed to elucidate the roles of temperature, water chemistry (nutrients), and initial bacterial community in selecting oil degraders through a series of incubation experiments. Surface (2 m) and bottom (1537 m) waters, collected near the Deepwater Horizon site, were amended with 200 ppm light Louisiana sweet crude oil and bacterial inoculums from surface or bottom water, and incubated at 4 or 24°C for 50 days. Bacterial community and residual oil were analyzed by pyrosequencing and gas chromatography-mass spectrometry (GC-MS), respectively. The results showed that temperature played a key role in selecting oil-degrading bacteria. Incubation at 4°C favored the development of Cycloclasticus, Pseudoalteromonas , Sulfitobacter , and Reinekea , while 24°C incubations enhanced Oleibacter, Thalassobius, Phaeobacter, and Roseobacter. Water chemistry and the initial community also had potential roles in the development of hydrocarbon-degrading bacterial communities. Pseudoalteromonas , Oleibacter , and Winogradskyella developed well in the nutrient-enriched bottom water, while Reinekea and Thalassobius were favored by low-nutrient surface water. We revealed that the combination of 4°C, crude oil and bottom inoculum was a key factor for the growth of Cycloclasticus , while the combination of surface inoculum and bottom water chemistry was important for the growth of Pseudoalteromonas . Moreover, regardless of the source of inoculum, bottom water at 24°C was a favorable condition for Oleibacter. Redundancy analysis further showed that temperature and initial community explained 57 and 19% of the variation observed, while oil and water chemistry contributed 14 and 10%, respectively. Overall, this study revealed the relative roles of temperature, water chemistry, and initial bacterial community in selecting oil degraders and regulating their evolution in the northern Gulf of Mexico.
Rashel, Rakib H; Patiño, Reynaldo
2017-06-01
Salinity (5-30) effects on golden alga growth were determined at a standard laboratory temperature (22°C) and one associated with natural blooms (13°C). Inoculum-size effects were determined over a wide size range (100-100,000cellsml -1 ). A strain widely distributed in the USA, UTEX-2797 was the primary study subject but another of limited distribution, UTEX-995 was used to evaluate growth responses in relation to genetic background. Variables examined were exponential growth rate (r), maximum cell density (max-D) and, when inoculum size was held constant (100cellsml -1 ), density at onset of exponential growth (early-D). In UTEX-2797, max-D increased as salinity increased from 5 to ∼10-15 and declined thereafter regardless of temperature but r remained generally stable and only declined at salinity of 25-30. In addition, max-D correlated positively with r and early-D, the latter also being numerically highest at salinity of 15. In UTEX-995, max-D and r responded similarly to changes in salinity - they remained stable at salinity of 5-10 and 5-15, respectively, and declined at higher salinity. Also, max-D correlated with r but not early-D. Inoculum size positively and negatively influenced max-D and r, respectively, in both strains and these effects were significant even when the absolute size difference was small (100 versus 1000 cells ml -1 ). When cultured under similar conditions, UTEX-2797 grew faster and to much higher density than UTEX-995. In conclusion, (1) UTEX-2797's superior growth performance may explain its relatively wide distribution in the USA, (2) the biphasic growth response of UTEX-2797 to salinity variation, with peak abundance at salinity of 10-15, generally mirrors golden alga abundance-salinity associations in US inland waters, and (3) early cell density - whether artificially manipulated or naturally attained - can influence UTEX-2797 bloom potential. Published by Elsevier B.V.
Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures.
Omar, Basma; Abou-Shanab, Reda; El-Gammal, Maie; Fotidis, Ioannis A; Kougias, Panagiotis G; Zhang, Yifeng; Angelidaki, Irini
2018-05-29
A novel biological process to upgrade biogas was developed and optimised during the current study. In this process, CO 2 in the biogas and externally provided H 2 were fermented under mesophilic conditions to volatile fatty acids (VFAs), which are building blocks of higher-value biofuels. Meanwhile, the biogas was upgraded to biomethane (CH 4 >95%), which can be used as a vehicle fuel or injected into the natural gas grid. To establish an efficient fermentative microbial platform, a thermal (at two different temperatures of 70 °C and 90 °C) and a chemical pretreatment method using 2-bromoethanesulfonate were investigated initially to inhibit methanogenesis and enrich the acetogenic bacterial inoculum. Subsequently, the effect of different H 2 :CO 2 ratios on the efficiency of biogas upgrading and production of VFAs were further explored. The composition of the microbial community under different treatment methods and gas ratios has also been unravelled using 16S rRNA analysis. The chemical treatment of the inoculum had successfully blocked the activity of methanogens and enhanced the VFAs production, especially acetate. The chemical treatment led to a significantly better acetate production (291 mg HAc/L) compared to the thermal treatment. Based upon 16S rRNA gene sequencing, it was found that H 2 -utilizing methanogens were the dominant species in the thermally treated inoculum, while a significantly lower abundance of methanogens was observed in the chemically treated inoculum. The highest biogas content (96% (v/v)) and acetate production were achieved for 2H 2 :1CO 2 ratio (v/v), with Acetoanaerobium noterae, as the dominant homoacetogenic hydrogen scavenger. Results from the present study can pave the way towards more development with respect to microorganisms and conditions for high efficient VFAs production and biogas upgrading. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shrestha, D; McAuslane, H J; Adkins, S T; Smith, H A; Dufault, N; Webb, S E
2016-08-01
Since 2003, growers of Florida watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] have periodically suffered large losses from a disease caused by Squash vein yellowing virus (SqVYV), which is transmitted by the whitefly Middle East-Asia Minor 1 (MEAM1), formerly Bemisia tabaci (Gennadius) biotype B. Common cucurbit weeds like balsam apple (Momordica charantia L.) and smellmelon [Cucumis melo var. dudaim (L.) Naud.] are natural hosts of SqVYV, and creeping cucumber (Melothria pendula L.) is an experimental host. Study objectives were to compare these weeds and 'Mickylee' watermelon as sources of inoculum for SqVYV via MEAM1 transmission, to determine weed susceptibility to SqVYV, and to evaluate whitefly settling and oviposition behaviors on infected vs. mock-inoculated (inoculated with buffer only) creeping cucumber leaves. We found that the lowest percentage of watermelon recipient plants was infected when balsam apple was used as a source of inoculum. Watermelon was more susceptible to infection than balsam apple or smellmelon. However, all weed species were equally susceptible to SqVYV when inoculated by whitefly. For the first 5 h after release, whiteflies had no preference to settle on infected vs. mock-inoculated creeping cucumber leaves. After 24 h, whiteflies preferred to settle on mock-inoculated leaves, and more eggs were laid on mock-inoculated creeping cucumber leaves than on SqVYV-infected leaves. The transmission experiments (source of inoculum and susceptibility) show these weed species as potential inoculum sources of the virus. The changing settling preference of whiteflies from infected to mock-inoculated plants could lead to rapid spread of virus in the agroecosystem. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the United States.
Hodges, Lisa R; Rose, Laura J; O'Connell, Heather; Arduino, Matthew J
2010-05-01
Twelve Laboratory Response Network (LRN) affiliated laboratories participated in a validation study of a macrofoam swab protocol for the recovery, detection, and quantification of viable B. anthracis (BA) Sterne spores from steel surfaces. CDC personnel inoculated steel coupons (26cm(2)) with 1-4 log(10) BA spores and recovered them by sampling with pre-moistened macrofoam swabs. Phase 1 (P1) of the study evaluated swabs containing BA only, while dust and background organisms were added to swabs in Phase 2 (P2) to mimic environmental conditions. Laboratories processed swabs and enumerated spores by culturing eluted swab suspensions and counting colonies with morphology consistent with BA. Processed swabs were placed in enrichment broth, incubated 24h, and cultured by streaking for isolation. Real-time PCR was performed on selected colonies from P2 samples to confirm the identity of BA. Mean percent recovery (%R) of spores from the surface ranged from 15.8 to 31.0% (P1) and from 27.9 to 55.0% (P2). The highest mean percent recovery was 31.0% (sd 10.9%) for P1 (4 log(10) inoculum) and 55.0% (sd 27.6%) for P2 (1 log(10) inoculum). The overall %R was higher for P2 (44.6%) than P1 (24.1%), but the overall reproducibility (between-lab variability) was lower in P2 than in P1 (25.0 vs 16.5%CV, respectively). The overall precision (within-lab variability) was close to identical for P1 and P2 (44.0 and 44.1, respectively), but varied greatly between inoculum levels. The protocol demonstrated linearity in %R over the three inoculum levels and is able to detect between 26 and 5x10(6)spores/26cm(2). Sensitivity as determined by culture was >98.3% for both phases and all inocula, suggesting that the culture method maintains sensitivity in the presence of contaminants. The enrichment broth method alone was less sensitive for sampled swabs (66.4%) during P2, suggesting that the presence of background organisms inhibited growth or isolation of BA from the broth. The addition of real-time PCR testing to the assay increased specificity from >85.4% to >95.0% in P2. Although the precision was low at the 1 log(10) inoculum level in both phases (59.0 and 50.2%), this swab processing protocol, was sensitive, specific, precise, and reproducible at 2-4 log(10)/26cm(2) spore concentrations. Published by Elsevier B.V.
Citric acid production by Koji fermentation using banana peel as a novel substrate.
Karthikeyan, Alagarsamy; Sivakumar, Nallusamy
2010-07-01
The growing demand for citric acid and the current need for alternative sources have encouraged biotechnologists to search for novel and economical substrates. Koji fermentation was conducted using the peels of banana (Musa acuminata) as an inexpensive substrate for the production of citric acid using Aspergillus niger. Various crucial parameters that affect citric acid production such as moisture content, temperature, pH, inoculum level and incubation time were quantified. Moisture (70%), 28 degrees C temperature, an initial pH 3, 10(8) spores/ml as inoculum and 72h incubation was found to be suitable for maximum citric acid production by A. niger using banana peel as a substrate. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Ballal, Nidambur Vasudev; Yegneswaran, Prakash Peralam; Mala, Kundabala; Bhat, Kadengodlu Seetharama
2011-11-01
The aim of this study was to evaluate the antimicrobial efficacy of 7% maleic acid (MA) and 17% ethylenediaminetetraacetic acid (EDTA) in elimination of Enterococcus faecalis, Candida albicans, and Staphylococcus aureus at different time intervals. Transfer culture of microbial strains were used for inoculum preparation and determination of time-kill assay. The viability counts of 7% MA and 17% EDTA suspensions were performed at 0, 2, 4, 6, 12, and 24 hours. Assay results were analyzed by determining number of strains that yielded log(10) CFU/mL of -1 compared with counts at 0 hours, for test medicaments at time intervals. Medicaments were considered to be microbicidal at a minimum inhibitory concentration that reduced original inoculum by >3 log(10) CFU/mL (99.9%) and microbiostatic if inoculum was reduced by <3 log(10) CFU/mL. Statistical analysis was performed using chi-square and Fisher exact tests as well as Friedman test for comparison of the time interval within the MA and EDTA groups. At all time intervals, there was no significant difference between MA and EDTA for all of the organisms (P > .05). However, within the MA and EDTA groups at various time intervals, there were significant differences (P < .001). Equivalent antimicrobial activity was observed by MA and EDTA against all of the organisms tested at various periods. Copyright © 2011 Mosby, Inc. All rights reserved.
Horel, Agota; Schiewer, Silke
2014-08-01
To achieve effective bioremediation within short warm seasons of cold climates, microbial adaptation periods to the contaminant should be brief. The current study investigated growth phases for soil spiked with diesel, Syntroleum, or fish biodiesel, using microbial inocula adapted to the specific substrates. For modeling hydrocarbon degradation, multi-phase first order kinetics was assumed, comparing linear regression with nonlinear parameter optimization of rate constants and phase durations. Lag phase periods of 5 to >28d were followed by short and intense exponential growth phases with high rate constants (e.g. from kFish=0.0013±0.0002 to kSyntr=0.015±0.001d(-1)). Hydrocarbon mineralization was highest for Syntroleum contamination, where up to three times higher cumulative CO2 production was achieved than for diesel fuel, with fish biodiesel showing initially the slowest degradation. The amount of hydrocarbons recovered from the soil by GC-MS decreased in the order fish biodiesel>diesel>Syntroleum. During initial weeks, biodegradation was higher for microbial inocula adapted to a specific fuel type, whereby the main effect of the inoculum was to shorten the lag phase duration; however, the inoculum's importance diminished after daily respiration peaked. In conclusion, addition of an inoculum to increase biodegradation rates was not necessary. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hughes, D; Mahony, T; Cysneiros, D; Ijaz, U Z; Smith, C J; O'Flaherty, V
2018-01-01
ABSTRACT The development and activity of a cold-adapting microbial community was monitored during low-temperature anaerobic digestion (LtAD) treatment of wastewater. Two replicate hybrid anaerobic sludge bed-fixed-film reactors treated a synthetic sewage wastewater at 12°C, at organic loading rates of 0.25–1.0 kg chemical oxygen demand (COD) m−3 d−1, over 889 days. The inoculum was obtained from a full-scale anaerobic digestion reactor, which was operated at 37°C. Both LtAD reactors readily degraded the influent with COD removal efficiencies regularly exceeding 78% for both the total and soluble COD fractions. The biomass from both reactors was sampled temporally and tested for activity against hydrolytic and methanogenic substrates at 12°C and 37°C. Data indicated that significantly enhanced low-temperature hydrolytic and methanogenic activity developed in both systems. For example, the hydrolysis rate constant (k) at 12°C had increased 20–30-fold by comparison to the inoculum by day 500. Substrate affinity also increased for hydrolytic substrates at low temperature. Next generation sequencing demonstrated that a shift in a community structure occurred over the trial, involving a 1-log-fold change in 25 SEQS (OTU-free approach) from the inoculum. Microbial community structure changes and process performance were replicable in the LtAD reactors. PMID:29846574
Gacitúa, Manuel A; Muñoz, Enyelbert; González, Bernardo
2018-02-01
Microbial electrolysis batch reactor systems were studied employing different conditions, paying attention on the effect that biocathode potential has on pH and system performance, with the overall aim to distinguish sulphate reduction from H 2 evolution. Inocula from pure strains (Desulfovibrio paquesii and Desulfobacter halotolerans) were compared to a natural source conditioned inoculum. The natural inoculum possess the potential for sulphate reduction on serum bottles experiments due to the activity of mutualistic bacteria (Sedimentibacter sp. and Bacteroides sp.) that assist sulphate-reducing bacterial cells (Desulfovibrio sp.) present in the consortium. Electrochemical batch reactors were monitored at two different potentials (graphite-bar cathodes poised at -900 and -400mV versus standard hydrogen electrode) in an attempt to isolate bioelectrochemical sulphate reduction from hydrogen evolution. At -900mV all inocula were able to reduce sulphate with the consortium demonstrating superior performance (SO 4 2- consumption: 25.71gm -2 day -1 ), despite the high alkalinisation of the media. At -400mV only the pure Desulfobacter halotolerans inoculated system was able to reduce sulphate (SO 4 2- consumption: 17.47gm -2 day -1 ) and, in this potential condition, pH elevation was less for all systems, confirming direct (or at least preferential) bioelectrochemical reduction of sulphate over H 2 production. Copyright © 2017 Elsevier B.V. All rights reserved.
Metugriachuk, Yussef; Kuroi, Olivia; Pavasuthipaisit, Kanok; Tsuchiya, Junji; Minelli, Emilio; Okura, Ruichi; Fesce, Edoardo; Marotta, F
2005-01-01
In view of the raising concern for gut fungal infection, the aim of the present research was to carry out a systematic in vitro study testing the antifungal activity and possible toxicity of a polygodyal-anethole compound (Kolorex) in several strains of Candida albicans and in other fungal pathogens. The in vitro susceptibility tests were carried out on 4 strains of C. albicans (C. krusei, C. lipolytica, C. tropicalis, C. utilis), Aspergillus flavus and A. fumigatus. Cultures were also analyzed by varying medium, pH and inoculum size, and a time-course killing test was carried out. In the present study the polygodyal-anethole compound showed remarkable in vitro activity against the most common fungi, which was significantly better than polygodyal alone. Moreover, such mixture compound was shown to exert its activity against a wide spectrum of fungi, including C. lipolytica and C. tropicalis, which required significantly higher MIC of polygodyal to be unfeasible in clinical application. The activity of the polygodyal-anethole compound was significantly better than polygodyal alone with high inoculum size and low pH. Moreover, it proved to exert a significantly faster biological activity against low inoculum. This study suggests that the mixture compound Kolorex has a very good profile of antifungal activity in terms of effectiveness and spectrum of action while being devoid of any significant toxicity.
Lozano, Yudi M; Armas, Cristina; Hortal, Sara; Casanoves, Fernando; Pugnaire, Francisco I
2017-12-01
Nurse plants promote establishment of other plant species by buffering climate extremes and improving soil properties. Soil biota plays an important role, but an analysis to disentangle the effects of soil microorganisms, soil properties and microclimate on facilitation is lacking. In three microhabitats (gaps, small and large Retama shrubs), we placed six microcosms with sterilized soil, two per soil origin (i.e. from each microhabitat). One in every pair received an alive, and the other a sterile, inoculum from its own soil. Seeds of annual plants were sown into the microcosms. Germination, survival and biomass were monitored. Soil bacterial communities were characterized by pyrosequencing. Germination in living Retama inoculum was nearly double that of germination in sterile inoculum. Germination was greater under Retama canopies than in gaps. Biomass was up to three times higher in nurse than in gap soils. Soil microorganisms, soil properties and microclimate showed a range of positive to negative effects on understory plants depending on species identity and life stage. Nurse soil microorganisms promoted germination, but the effect was smaller than the positive effects of soil properties and microclimate under nurses. Nurse below-ground environment (soil properties and microorganisms) promoted plant growth and survival more than nurse microhabitat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Bowker, K E; Garvey, M I; Noel, A R; Tomaselli, S G; Macgowan, A P
2013-05-01
We aim to further define the impact of the mechanism of fluoroquinolone resistance and inoculum load on the pharmacodynamic effects of levofloxacin and moxifloxacin on Streptococcus pneumoniae. The antibacterial effects of and emergence of resistance (EoR) to moxifloxacin (400 mg once daily) or levofloxacin (750 mg once daily or 500 mg twice daily) were compared using five S. pneumoniae strains containing no known resistance mechanisms, efflux resistance mechanisms, a parC mutation or parC and gyrA mutations, at high (10(8) cfu/mL) and low (10(6) cfu/mL) inocula. An in vitro pharmacokinetic model was used and simulations were performed over 96 h. After drug exposure, isolates were tested for the presence of efflux pumps and mutations in the quinolone resistance-determining regions. A high inoculum diminished the antibacterial effect of moxifloxacin and levofloxacin. Levofloxacin at both dosages produced EoR with all strains. Levofloxacin regimens with AUC/MIC ratios <100 produced EoR. Moxifloxacin produced EoR with the parC strain only. Levofloxacin dosing regimens with low AUC/MIC ratios select for efflux pump overexpression, leading to fluoroquinolone resistance. Levofloxacin dosing may select for gyrA mutations, inducing moxifloxacin resistance. These data confirm that a fluoroquinolone AUC/MIC ratio of >100 is required for prevention of EoR.
Spinelli, Ana Cláudia N F; Sant'Ana, Anderson S; Pacheco-Sanchez, Cristiana P; Massaguer, Pilar R
2010-02-28
In this study, the influence of the hot-fill water-spray-cooling process after continuous pasteurization on the number of decimal reductions (gamma) and growth parameters (lag time; lambda, ratio N(f)/N(o); kappa, maximum growth rate; mu) of Alicyclobacillus acidoterrestris CRA 7152 in orange juice stored at 35 degrees C were investigated. Two different inoculum levels of A. acidoterrestris CRA 7152 (10(2) and 10(3) spores/mL) in orange juice (11(0)Brix, pH 3.7) and a Microthermics UHT-HTST pilot plant were used to simulate industrial conditions. Results have shown that regardless of the inoculum level (10(2) or 10(3) spores/mL), the pasteurization processes were unable to cause even 1 gamma. Predictive modeling using the Baranyi model showed that only kappa and time to reach 10(4)spores/mL (t10(4) - time to juice spoilage) were affected by the spore inoculum used (p<0.05). It has been concluded that A. acidoterrestris was able to survive the hot-fill process and to grow and spoil orange juice in 5-6 days when the final storage temperature was 35 degrees C. (c) 2009 Elsevier B.V. All rights reserved.
Ebersole, Jeffery L.; de Villiers, Willem J. S.
2014-01-01
Objectives and design Microbial products can act via stress-induced signaling cascades to link dysregulated endogenous microbiota to immune activation (e.g., macrophages) and pregnancy loss. Our previous studies demonstrated that mice deficient in the macrophage pattern recognition scavenger receptors, SR-A and CD36, are more susceptible to inflammatory complications including gut leakiness and experimental colitis. We hypothesized that bacterial penetration of the maternal mucosal surfaces and replication in embryonic fluids compromise the fetal status and can result in miscarriage. Materials and methods Eighty pregnant ICR and SR-A/CD36-deficient mice were injected via tail vein or intraperitoneally with commensal bacteria (Streptococcus cricetus and/or Actinobacillus sp.) or sham controls. Dams were monitored daily for physical distress, pain and abortion. Results Dams injected with single dose bacterial inoculum did not develop clinical symptoms. Day old pups injected with bacteria developed internal focal abscesses, lost weight but recovered after 1 week. Dams receiving a second bacterial inoculum delivered dead fetuses. However, SR-A/CD36-deficnet dams demonstrated 100% fetal death via aborted fetuses, and significant up-regulation of the proinflammatory markers (IL-6, serum Amyloid A) 24–74 h after single inoculum. Conclusions These data indicate that macrophage scavenger receptors are required for the fetal protection against microbial attack and support that maternal transfer of innate immunity contributes to this protection. PMID:20711846
NASA Astrophysics Data System (ADS)
Bakrie, B.; Sente, U.; Mayasari, K.; Syah, R. F.
2018-02-01
The goat’s rumen contents is slaughterhouse waste that has potential to be used as animal feed, but it has to be first processed into silage. This study aims to determine the type of accelerator and to investigate whether the addition of inoculum was required during the fermentation process. The research was conducted using a Completely Randomized Factorial Design, consisting of 2 treatment factors and 6 replications. The treatment factors were: a) Accelerator (rice bran or cassava pomade/onggok); b) Inoculum Lactobacillus plantarum (with or without using inoculant). Results showed that there was an increase in crude protein (CP) content with the use of rice bran at after fermentation compared to before fermentation. The CP contents with the use of onggok almost the same at after and before fermentation. Increase in the content of crude fiber (CF) after fermentation was both for using rice bran or onggok. However, the content of CF using onggok was much higher than with rice bran. There was no significant effect for both types of accelerators used in CP and CF contents at after fermentation with or without the addition of Lactobacillus plantarum as the inoculant. It can be concluded that for the fermentation of goat’s rumen contents it is better to use rice bran rather than onggok as the accelerator and inoculant is not required during the fermentationprocess.
Rodríguez-Gómez, Francisco; Romero-Gil, Verónica; Arroyo-López, Francisco N.; Roldán-Reyes, Juan C.; Torres-Gallardo, Rosa; Bautista-Gallego, Joaquín; García-García, Pedro; Garrido-Fernández, Antonio
2017-01-01
This work studies the inoculation conditions for allowing the survival/predominance of a potential probiotic strain (Lactobacillus pentosus TOMC-LAB2) when used as a starter culture in large-scale fermentations of green Spanish-style olives. The study was performed in two successive seasons (2011/2012 and 2012/2013), using about 150 tons of olives. Inoculation immediately after brining (to prevent wild initial microbiota growth) followed by re-inoculation 24 h later (to improve competitiveness) was essential for inoculum predominance. Processing early in the season (September) showed a favorable effect on fermentation and strain predominance on olives (particularly when using acidified brines containing 25 L HCl/vessel) but caused the disappearance of the target strain from both brines and olives during the storage phase. On the contrary, processing in October slightly reduced the target strain predominance on olives (70–90%) but allowed longer survival. The type of inoculum used (laboratory vs. industry pre-adapted) never had significant effects. Thus, this investigation discloses key issues for the survival and predominance of starter cultures in large-scale industrial fermentations of green Spanish-style olives. Results can be of interest for producing probiotic table olives and open new research challenges on the causes of inoculum vanishing during the storage phase. PMID:28567038
Parra-Flores, Julio; Juneja, Vijay; Garcia de Fernando, Gonzalo; Aguirre, Juan
2016-01-01
Cronobacter spp. have been responsible for severe infections in infants associated with consumption of powdered infant formula and follow-up formulae. Despite several risk assessments described in published studies, few approaches have considered the tremendous variability in cell response that small micropopulations or single cells can have in infant formula during storage, preparation or post process/preparation before the feeding of infants. Stochastic approaches can better describe microbial single cell response than deterministic models as we prove in this study. A large variability of lag phase was observed in single cell and micropopulations of ≤50 cells. This variability increased as the heat shock increased and growth temperature decreased. Obviously, variability of growth of individual Cronobacter sakazakii cell is affected by inoculum size, growth temperature and the probability of cells able to grow at the conditions imposed by the experimental conditions should be taken into account, especially when errors in bottle-preparation practices, such as improper holding temperatures, or manipulation, may lead to growth of the pathogen to a critical cell level. The mean probability of illness from initial inoculum size of 1 cell was below 0.2 in all the cases and for inoculum size of 50 cells the mean probability of illness, in most of the cases, was above 0.7. PMID:27148223
Deepika, Sharma; Kothamasi, David
2015-01-01
Multiple species of arbuscular mycorrhizal fungi (AMF) can colonize roots of an individual plant species but factors which determine the selection of a particular AMF species in a plant root are largely unknown. The present work analysed the effects of drought, flooding and optimal soil moisture (15-20 %) on AMF community composition and structure in Sorghum vulgare roots, using PCR-RFLP. Rhizophagus irregularis (isolate BEG 21), and rhizosphere soil (mixed inoculum) of Heteropogon contortus, a perennial C4 grass, collected from the semi-arid Delhi ridge, were used as AMF inocula. Soil moisture functioned as an abiotic filter and affected AMF community assembly inside plant roots by regulating AMF colonization and phylotype diversity. Roots of plants in flooded soils had lowest AMF diversity whilst root AMF diversity was highest under the soil moisture regime of 15-20 %. Although plant biomass was not affected, root P uptake was significantly influenced by soil moisture. Plants colonized with R. irregularis or mixed AMF inoculum showed higher root P uptake than non-mycorrhizal plants in drought and control treatments. No differences in root P levels were found in the flooded treatment between plants colonized with R. irregularis and non-mycorrhizal plants, whilst under the same treatment, root P uptake was lower in plants colonized with mixed AMF inoculum than in non-mycorrhizal plants.
Evaluation of an anaerobic digestion system for processing CELSS crop residues for resource recovery
NASA Astrophysics Data System (ADS)
Strayer, R. F.; Finger, B. W.; Alazraki, M. P.
1997-01-01
Three bioreactors, connected in series, were used to process CELSS potato residues for recovery of resources. The first stage was an anaerobic digestor (8 L working volume; cow rumen contents inoculum; fed-batch; 8 day retention time; feed rate 25 gdw day^-1) that converted 33% of feed (dry weight loss) to CO_2 and ``volatile fatty acids'' (vfa, 83:8:8 mmolar ratio acetic:propionic:butyric). High nitrate-N in the potato residue feed was absent in the anaerobic effluent, with a high portion converted to NH_4^+-N and the remainder unaccounted and probably lost to denitrification and NH_4^+ volatilization. Liquid anaerobic effluent was fed to an aerobic, yeast biomass production vessel (2 L volume; Candida ingens inoculum; batch [pellicle] growth; 2 day retention time) where the VFAs and some NH_4^+-N were converted into yeast biomass. Yeast yields accounted for up to 8% of potato residue fed into the anaerobic bioreactor. The third bioreactor (0.5 L liquid working volume; commercial nitrifier inoculum; packed-bed biofilm; continuous yeast effluent feed; recirculating; constant volume; 2 day hydraulic retention time) was used to convert successfully the remaining NH_4^+-N into nitrate-N (preferred form of N for CELSS crop production) and to remove the remaining degradable soluble organic carbon. Effluents from the last two stages were used for partial replenishment of minerals for hydroponic potato production.
Keating, C; Hughes, D; Mahony, T; Cysneiros, D; Ijaz, U Z; Smith, C J; O'Flaherty, V
2018-07-01
The development and activity of a cold-adapting microbial community was monitored during low-temperature anaerobic digestion (LtAD) treatment of wastewater. Two replicate hybrid anaerobic sludge bed-fixed-film reactors treated a synthetic sewage wastewater at 12°C, at organic loading rates of 0.25-1.0 kg chemical oxygen demand (COD) m-3 d-1, over 889 days. The inoculum was obtained from a full-scale anaerobic digestion reactor, which was operated at 37°C. Both LtAD reactors readily degraded the influent with COD removal efficiencies regularly exceeding 78% for both the total and soluble COD fractions. The biomass from both reactors was sampled temporally and tested for activity against hydrolytic and methanogenic substrates at 12°C and 37°C. Data indicated that significantly enhanced low-temperature hydrolytic and methanogenic activity developed in both systems. For example, the hydrolysis rate constant (k) at 12°C had increased 20-30-fold by comparison to the inoculum by day 500. Substrate affinity also increased for hydrolytic substrates at low temperature. Next generation sequencing demonstrated that a shift in a community structure occurred over the trial, involving a 1-log-fold change in 25 SEQS (OTU-free approach) from the inoculum. Microbial community structure changes and process performance were replicable in the LtAD reactors.
Fate of Listeria spp. on parsley leaves grown in laboratory and field cultures.
Dreux, N; Albagnac, C; Carlin, F; Morris, C E; Nguyen-The, C
2007-11-01
To investigate the population dynamics of Listeria monocytogenes and Listeria innocua on the aerial surfaces of parsley. Under 100% relative humidity (RH) in laboratory and regardless of the inoculum tested (10(3)-10(8) CFU per leaf), counts of L. monocytogenes EGDe, LO28, LmP60 and L. innocua CIP 80-12 tended towards approx. 10(5) CFU per leaf. Under low RH, Listeria spp. populations declined regardless to the inoculum size (10(4)-10(8) CFU per leaf). L. innocua CIP 80-12 survived slightly better than L. monocytogenes in the laboratory and was used in field cultures. Under field cultures, counts of L. innocua decreased more rapidly than in the laboratory, representing a decrease of 9 log(10) in 2 days in field conditions compared to a decrease of 4.5 log(10) in 8 days in the laboratory. Counts of L. innocua on tunnel parsley cultures were always higher (at least by 100 times) than those on unprotected parsley culture. Even with a high inoculum and under protected conditions (i.e. plastic tunnels), population of L. monocytogenes on the surface of parsley on the field would decrease by several log(10) scales within 2 days. Direct contamination of aerial surfaces of parsley with L. monocytogenes (i.e. through contaminated irrigation water) will not lead to contaminated produce unless it occurs very shortly before harvest.
Muñoz-Palazon, Barbara; Pesciaroli, Chiara; Rodriguez-Sanchez, Alejandro; Gonzalez-Lopez, Jesús; Gonzalez-Martinez, Alejandro
2018-08-01
Three aerobic granular sequencing batch reactors were inoculated using different inocula from Finland, Spain and a mix of both in order to investigate the effect over the degradation performance and the microbial community structure. The Finnish inoculum achieved a faster granulation and a higher depollution performance within the first two month of operation. However, after 90 days of operation, similar physico-chemical values were observed. On the other hand, the Real-time PCR showed that Archaea diminished from inoculum to granular biomass, while Bacteria and Fungi numbers remained stable. All granular biomass massive parallel sequencing studies were similar regardless of the inocula from which they formed, as confirmed by singular value decomposition principal coordinates analysis, expected effect size of OTUs, and β-diversity analyses. Thermoproteaceae, Meganema and a Trischosporonaceae members were the dominant phylotypes for the three domains studied. The analysis of oligotype distribution demonstrated that a fungal oligotype was ubiquitous. The dominant OTUs of Bacteria were correlated with bioreactors performance. The results obtained determined that the microbial community structure of aerobic granular sludge was similar regardless of their inocula, showing that the granulation of biomass is related to several phylotypes. This will be of future importance for the implementation of aerobic granular sludge to full-scale systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ishii, Shun'ichi; Suzuki, Shino; Yamanaka, Yuko; Wu, Angela; Nealson, Kenneth H; Bretschger, Orianna
2017-10-01
Microbial fuel cells (MFCs) are one of the bioelectrochemical systems that exploit microorganisms as biocatalysts to degrade organic matters and recover energy as electric power. Here, we explored how the established electrogenic microbial communities were influenced by three different inoculum sources; anaerobic sludge of the wastewater plant, rice paddy field soil, and coastal lagoon sediment. We periodically characterized both electricity generation with sucrose consumption and 16S rRNA-basis microbial community composition. The electrochemical features of MFCs were slightly different among three inocula, and the lagoon sediment-inoculated MFC showed the highest performance in terms of the treatment time. Meanwhile, although the inoculated microbial communities were highly diverse and quite different, only twelve genera affiliated with δ-Proteobacteria, γ-Proteobacteria, Bacilli, Clostridia/Negativicutes or Bacteroidetes were abundantly enriched in all MFC anode communities. Within them, several fermentative genera were clearly different due to the inocula, while the inocula-specific phylotypes were identified in an electrogenic genus Geobacter. The relative abundances of phylotypes closely-related to Geobacter metallireducens were increased in later stages of all the sucrose-fed MFCs. These results indicate that key microbial members for the functional electrogenic community widely exist in natural ecosystems, but the community members presenting in inoculum sources affected the MFC performances. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of an Anaerobic Digestion System for Processing CELSS Crop Residues for Resource Recovery
NASA Technical Reports Server (NTRS)
Strayer, R. F.; Finger, B. W.; Alazraki, M. P.
1997-01-01
Three bioreactors, connected in series, were used to process CELSS potato residues for recovery of resources. The first stage was an anaerobic digestor (8 L working volume; cow rumen contents inoculum; fed-batch; 8 day retention time; feed rate 25 gdw/day) that converted 33% of feed (dry weight loss) to CO2 and "volatile fatty acids" (vfa, 83:8:8 mmolar ratio acetic:propionic:butyric). High nitrate-N in the potato residue feed was absent in the anaerobic effluent, with a high portion converted to NH4(+)-N and the remainder unaccounted and probably lost to denitrification and NH4(+) volatilization. Liquid anaerobic effluent was fed to an aerobic, yeast biomass production vessel (2 L volume; Candida ingens inoculum; batch [pellicle] growth; 2 day retention time) where the VFAs and some NH4(+)-N were converted into yeast biomass. Yeast yields accounted for up to 8% of potato residue fed into the anaerobic bioreactor. The third bioreactor (0.5 L liquid working volume; commercial nitrifier inoculum; packed-bed biofilm; continuous yeast effluent feed; recirculating; constant volume; 2 day hydraulic retention time) was used to convert successfully the remaining NH4(+)-N into nitrate-N (preferred form of N for CELSS crop production) and to remove the remaining degradable soluble organic carbon. Effluents from the last two stages were used for partial replenishment of minerals for hydroponic potato production.
Shu, Guowei; Bao, Chunju; Chen, He; Wang, Changfeng; Yang, Hui
2016-01-01
Goat milk is only limited to the processing of goat milk powder and liquid milk, the products are mainly about milk powder and a few of them are made as milk tablet. Therefore, the study of probiotic goat milk will have great significance in the full use of goats and the development of the goat milk industry in China. The effect of fermentation temperature (35°C, 37°C, 39°C), strain ratio (1:1:1, 2:1:1, 3:1:1) and inoculum size (4%, 5%, 6%) on viable counts of L. acidophilus and B. bifidum, total bacteria and sensory value during fermentation process of L. acidophilus and B. bifidum goat yogurt (AB-goat yogurt) was investigated. The optimum fermentation conditions for AB-goat yogurt were: fermentation temperature 38°C, the strain ratio 2:1:1, inoculum size 6%. Under the optimum conditions, the viable counts of B. bifidum, L. acidophilus, total bacteria and sensory value reached (4.30 ±0.11)×107 cfu/mL, (1.39 ±0.09)×108 cfu/mL, (1.82±0.06)×109 cfu/mL and 7.90 ±0.14, respectively. The fermentation temperature, the strain ratio and inoculum size had a significant effect on the fermentation of AB-goat yogurt and these results are beneficial for developing AB-goat yogurt.
Application of bio-huff-`n`-puff technology at Jilin oil field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiu-Yuan Wang; Yan-Fed Xue; Gang Dai
1995-12-31
An enriched culture 48, capable of adapting to the reservoir conditions and fermenting molasses to produce gas and acid, was used as an inoculum for bio- huff-`n`-puff tests at Fuyu oil area of Jilin oil field. The production well was injected with water containing 4-6% (v/v) molasses and inoculum, and then shut in. After 15-21 days, the well was placed back in operation. A total of 44 wells were treated, of which only two wells showed no effects. The daily oil production of treated wells increased by 33.3-733.3%. Up to the end of 1994, the oil production was increased bymore » 204 tons per well on average. Results obtained from various types of production wells were discussed.« less
[Detection of viable metabolically active yeast cells using a colorimetric assay].
Růzicka, F; Holá, V
2008-02-01
The increasing concern of yeasts able to form biofilm brings about the need for susceptibility testing of both planktonic and biofilm cells. Detection of viability or metabolic activity of yeast cells after exposure to antimicrobials plays a key role in the assessment of susceptibility testing results. Colorimetric assays based on the color change of the medium in the presence of metabolically active cells proved suitable for this purpose. In this study, the usability of a colorimetric assay with the resazurin redox indicator for monitoring the effect of yeast inoculum density on the reduction rate was tested. As correlation between the color change rate and inoculum density was observed, approximate quantification of viable cells was possible. The assay would be of relevance to antifungal susceptibility testing in both planktonic and biofilm yeasts.
Dumón, A D; Argüello Caro, E B; Mattio, M F; Alemandri, V; Del Vas, M; Truol, G
2018-04-01
Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae) causes one of the most important diseases in maize (Zea mays L.) in Argentina and has been detected in mixed infections with a rhabdovirus closely related to Maize yellow striate virus. In nature both viruses are able to infect maize and several grasses including wheat, and are transmitted in a persistent propagative manner by Delphacodes kuscheli Fennah (Hemiptera: Delphacidae). This work describes the interactions between MRCV and rhabdovirus within their natural vector and the consequences of such co-infection regarding virus transmission and symptom expression. First- and third-instar D. kuscheli nymphs were fed on MRCV-infected wheat plants or MRCV-rhabdovirus-infected oat plants, and two latency periods were considered. Transmission efficiency and viral load of MRCV-transmitting and non-transmitting planthoppers were determined by real-time quantitative polymerase chain reaction analysis (RTqPCR). Vector transmission efficiency was related to treatments (life stages at acquisition and latency periods). Nevertheless, no correlation between transmission efficiency and type of inoculum used to infect insects with MRCV was found. Treatment by third-instar nymphs 17 days after Acquisition Access Period was the most efficient for MRCV transmission, regardless of the type of inoculum. Plants co-infected with MRCV and rhabdovirus showed the typical MRCV symptoms earlier than plants singly infected with MRCV. The transmitting planthoppers showed significantly higher MRCV titers than non-transmitting insects fed on single or mixed inocula, confirming that successful MRCV transmission is positively associated with viral accumulation in the insect. Furthermore, MRCV viral titers were higher in transmitting planthoppers that acquired this virus from a single inoculum than in those that acquired the virus from a mixed inoculum, indicating that the presence of the rhabdovirus somehow impaired MRCV replication and/or acquisition. This is the first study about interactions between MRCV and a rhabdovirus closely related to Maize yellow striate virus in this insect vector (D. kuscheli), and contributes to a better understanding of planthopper-virus interactions and their epidemiological implications.
Rashel, Rakib H.; Patino, Reynaldo
2017-01-01
Salinity (5–30) effects on golden alga growth were determined at a standard laboratory temperature (22 °C) and one associated with natural blooms (13 °C). Inoculum-size effects were determined over a wide size range (100–100,000 cells ml−1). A strain widely distributed in the USA, UTEX-2797 was the primary study subject but another of limited distribution, UTEX-995 was used to evaluate growth responses in relation to genetic background. Variables examined were exponential growth rate (r), maximum cell density (max-D) and, when inoculum size was held constant (100 cells ml−1), density at onset of exponential growth (early-D). In UTEX-2797, max-D increased as salinity increased from 5 to ∼10–15 and declined thereafter regardless of temperature but r remained generally stable and only declined at salinity of 25–30. In addition, max-D correlated positively with r and early-D, the latter also being numerically highest at salinity of 15. In UTEX-995, max-D and r responded similarly to changes in salinity − they remained stable at salinity of 5–10 and 5–15, respectively, and declined at higher salinity. Also, max-D correlated with r but not early-D. Inoculum size positively and negatively influenced max-D and r, respectively, in both strains and these effects were significant even when the absolute size difference was small (100 versus 1000 cells ml−1). When cultured under similar conditions, UTEX-2797 grew faster and to much higher density than UTEX-995. In conclusion, (1) UTEX-2797’s superior growth performance may explain its relatively wide distribution in the USA, (2) the biphasic growth response of UTEX-2797 to salinity variation, with peak abundance at salinity of 10–15, generally mirrors golden alga abundance-salinity associations in US inland waters, and (3) early cell density – whether artificially manipulated or naturally attained – can influence UTEX-2797 bloom potential.
Viazis, Stelios; Akhtar, Mastura; Feirtag, Joellen; Diez-Gonzalez, Francisco
2011-02-01
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 has been recognized as a major foodborne pathogen responsible for frequent gastroenteritis outbreaks. Phages and essential oils can be used as a natural antimicrobial method to reduce bacterial pathogens from the food supply. The objective of this study was to determine the effect of a bacteriophage cocktail, BEC8, alone and in combination with the essential oil trans-cinnameldehyde (TC) on the viability of a mixture of EHEC O157:H7 strains applied on whole baby romaine lettuce and baby spinach leaves. The EHEC O157:H7 strains used were Nal(R) mutants of EK27, ATCC 43895, and 472. Exponentially growing cells from tryptic soy (TS) broth cultures were spot inoculated on leaves and dried. EHEC cells were placed at low, medium, and high inoculum levels (10(4), 10(5), and 10(6) CFU/mL, respectively). Appropriate controls, BEC8 (approx. 10(6) PFU/leaf), and TC (0.5% v/v) were applied on treated leaves. The leaves were incubated at 4, 8, 23, and 37 °C in Petri dishes with moistened filter papers. EHEC survival was determined using standard plate count on nalidixic acid (50 μg/mL) Sorbitol MacConkey agar. No survivors were detected when both leaves were treated with BEC8 or TC individually at low inoculum levels after 24 h at 23 and 37 °C. When the EHEC inoculum size increased and/or incubation temperature decreased, the efficacy of BEC8 and TC decreased. However, when the two treatments were combined, no survivors were detected after 10 min at all temperatures and inoculum levels on both leafy greens. These results indicated that the BEC8/TC combination was highly effective against EHEC on both leafy greens. This combination could potentially be used as an antimicrobial to inactivate EHEC O157:H7 and reduce their incidence in the food chain. Copyright © 2010 Elsevier Ltd. All rights reserved.
Effect of Methyl Bromide on Mycorrhizae and Growth of Sweetgum Seedlings
T. H. Filer; E. R. Toole
1968-01-01
Fumigation of nursery beds with methyl bromide improved sweetgum, growth by reducing the population of soil-inhabiting pathogens . Although mycorrhizal fungi were reduced, sufficient inoculum survived for rapid mycorrhizal development
Enhancement of 2,3-Butanediol Production by Klebsiella oxytoca PTCC 1402
Anvari, Maesomeh; Safari Motlagh, Mohammad Reza
2011-01-01
Optimal operating parameters of 2,3-Butanediol production using Klebsiella oxytoca under submerged culture conditions are determined by using Taguchi method. The effect of different factors including medium composition, pH, temperature, mixing intensity, and inoculum size on 2,3-butanediol production was analyzed using the Taguchi method in three levels. Based on these analyses the optimum concentrations of glucose, acetic acid, and succinic acid were found to be 6, 0.5, and 1.0 (% w/v), respectively. Furthermore, optimum values for temperature, inoculum size, pH, and the shaking speed were determined as 37°C, 8 (g/L), 6.1, and 150 rpm, respectively. The optimal combinations of factors obtained from the proposed DOE methodology was further validated by conducting fermentation experiments and the obtained results revealed an enhanced 2,3-Butanediol yield of 44%. PMID:21318172
Susceptibility of Legionella pneumophila to twenty antimicrobial agents.
Edelstein, P H; Meyer, R D
1980-01-01
Thirty-three isolates of Legionella pneumophila, all except one of which were clinical isolates, were tested against 20 antimicrobial agents by using an agar dilution technique. Erythromycin, rifamp]in, and rosaramycin were the most active agents tested. Aminoglycosides, chloramphenicol, and cefoxitin also inhibited the organisms at low concentrations. Other agents, including moxalactam, cefoperazone, and cephalosporins, exhibited moderate to little activity. Tetracycline, doxycycline and minocyeline were apparently inactivated by charcoal-yeast extract medium. There was slight inoculum dependence noted with most of the antimicrobials tested, particularly the beta-lactam agents. There was no consistent difference in susceptibility between Center for Disease Control-supplied stock strains and recent clinical isolates, but there were marked differences with some agents. Susceptibility testing needs to be standardized in view of the influence of inoculum size, strain variation, and the medium used. PMID:7425611
Ku, Ting-Wei; Tsai, Ruei-Lan; Pan, Tzu-Ming
2009-01-14
Subtilisin NAT, formerly designated nattokinase or subtilisin BSP, is a potent cardiovascular drug because of its strong fibrinolytic activity and safety. In this study, one Bacillus subtilis natto strain with high fibrinolytic activity was isolated. We further studied the optimal conditions for subtilisin NAT production by submerged cultivation and three variables/three levels of response surface methodology (RSM) using various inoculum densities, glucose concentrations, and defatted soybean concentrations as the three variables. According to the RSM analysis, while culturing by 2.93% defatted soybean, 1.75% glucose, and 4.00% inoculum density, we obtained an activity of 13.78 SU/mL. Processing the batch fermentation with this optimal condition, the activity reached 13.69 SU/mL, which is equal to 99.3% of the predicted value.
Kasprzycka, Agnieszka; Lalak-Kańczugowska, Justyna; Tys, Jerzy
2018-05-09
In this study fungal pretreatment of non-sterile tall wheat grass via the white rot fungi Flammulina velutipes was studied and the effect on biodegradability of lignocellulosic biomass and methane production, was evaluated. Degradation of lignin, cellulose, hemicellulose, and dry matter in non-sterile tall wheat grass during 28 days of fungal pretreatment using different inoculum ratio (0%-50%) and moisture content (MC) (45% MC, 65% MC, and 75% MC) were assessed via comparison to untreated biomass. Pretreatment with F. velutipes was most effective at 65% MC and 40% inoculum ratio, resulting in 22% lignin removal. The corresponding methane yields were 181.3 Ndm 3 ·kg VS -1 , which were 280% higher than for the untreated tall wheat grass. Copyright © 2018 Elsevier Ltd. All rights reserved.
Will, M E; Sylvia, D M
1990-07-01
Plants must be established quickly on replenished beaches in order to stabilize the sand and begin the dune-building process. The objective of this research was to determine whether inoculation of sea oats (Uniola paniculata L.) with bacteria (indigenous rhizosphere bacteria and N(2) fixers) alone or in combination with vesicular-arbuscular mycorrhizal fungi would enhance plant growth in beach sand. At two fertilizer-N levels, Klebsiella pneumoniae and two Azospirillum spp. did not provide the plants with fixed atmospheric N; however, K. pneumoniae increased root and shoot growth. When a sparingly soluble P source (CaHPO(4)) was added to two sands, K. pneumoniae increased plant growth in sand with a high P content. The phosphorus content of shoots was not affected by bacterial inoculation, indicating that a mechanism other than bacterially enhanced P availability to plants was responsible for the growth increases. When sea oats were inoculated with either K. pneumoniae or Acaligenes denitrificans and a mixed Glomus inoculum, there was no consistent evidence of a synergistic effect on plant growth. Nonetheless, bacterial inoculation increased root colonization by vesicular-arbuscular mycorrhizal fungi when the fungal inoculum consisted of colonized roots but had no effect on colonization when the inoculum consisted of spores alone. K. pneumoniae was found to increase spore germination and hyphal growth of Glomus deserticola compared with the control. The use of bacterial inoculants to enhance establishment of pioneer dune plants warrants further study.
Starzynska-Janiszewska, A; Stodolak, B; Dulinski, R; Mickowska, B
2012-04-01
Tempeh is a popular Indonesian product obtained from legume seeds by solid-state fermentation with Rhizopus sp. The aim of this research was to study the effect of simultaneous mixed-culture fermentation of grass pea seeds on selected parameters of products as compared to traditional tempeh. The inoculum contained different ratios of Rhizopus oligosporus and Aspergillus oryzae spores. The simultaneous fermentation of grass pea seeds with inoculum consisting of 1.2 × 10(6) R. oligosporus and 0.6 × 10(6) A. oryzae spores (per 60 g of seeds) resulted in a product of improved quality, as compared with traditionally made tempeh (obtained after inoculation with 1.2 × 10(6) R. oligosporus spores), at the same fermentation time. This product had radical scavenging ability 70% higher than the one obtained with pure R. oligosporus culture and contained 2.23 g/kg dm of soluble phenols. The thiamin and riboflavin levels were above three (340 µg/g dm) and two (50.50 µg/g dm) folds higher than in traditionally made tempeh, respectively. The product had 65% in vitro bioavailability of proteins and 33% in vitro bioavailability of sugars. It also contained 40% less 3-N-oxalyl-L-2, 3-diaminopropionic acid (0.074 g/kg dm), as compared to traditional tempeh.
Medina, K; Carrau, F M; Gioia, O; Bracesco, N
1997-01-01
The competition between selected or commercial killer strains of type K2 and sensitive commercial strains of Saccharomyces cerevisiae was studied under various conditions in sterile grape juice fermentations. The focus of this study was the effect of yeast inoculation levels and the role of assimilable nitrogen nutrition on killer activity. A study of the consumption of free amino nitrogen (FAN) by pure and mixed cultures of killer and sensitive cells showed no differences between the profiles of nitrogen assimilation in all cases, and FAN was practically depleted in the first 2 days of fermentation. The effect of the addition of assimilable nitrogen and the size of inoculum was examined in mixed killer and sensitive strain competitions. Stuck and sluggish wine fermentations were observed to depend on nitrogen availability when the ratio of killer to sensitive cells was low (1:10 to 1:100). A relationship between the initial assimilable nitrogen content of must and the proportion of killer cells during fermentation was shown. An indirect relationship was found between inoculum size and the percentage of killer cells: a smaller inoculum resulted in a higher proportion of killer cells in grape juice fermentations. In all cases, wines obtained with pure-culture fermentations were preferred to mixed-culture fermentations by sensory analysis. The reasons why killer cells do not finish fermentation under competitive conditions with sensitive cells are discussed. PMID:9212430
Zhang, Chunjing; Qi, Xiaodan; Shi, Yan; Sun, Yan; Li, Shuyan; Gao, Xiulan; Yu, Haitao
2012-01-01
The present paper is mainly aimed at optimization of cultivation conditions of fermented mushrooms of Coprinus comatus rich in vanadium (CCRV). Initial screening of effects of carbon source, temperature, pH, and inoculum size were done by using a one-factor-at-a-time method. The results obtained in that study showed that the optimal medium composition was 30 g glucose/Lin YEPG medium, initial pH 6.0, inoculum volume 10%, and incubation time 120 h. Then the medium was subjected to screening of the most significant parameters using the L9 orthogonal array to solve multivariable equations simultaneously. The results obtained in this study showed that the optimal medium composition was 0.4% V and 30 g glucose/Lin YEPG medium, initial pH 5.0, inoculum volume 15%, and incubation time 120 h. At this medium composition, the mycelial biomass and V content were 7.18 ± 0.24 g/L and 3786.0 ± 17 μg/g, respectively. The anti-diabetic potential of CCRV produced with the optimal level was tested in alloxan-induced diabetes. After the mice were administered (i.g.) with CCRV, the level of blood sugar in the CCRV group was very close to that of the control group. These findings suggested that CCRV produced with the optimal level is useful in the control of diabetes mellitus.
Efficiency improvement of an antibody production process by increasing the inoculum density.
Hecht, Volker; Duvar, Sevim; Ziehr, Holger; Burg, Josef; Jockwer, Alexander
2014-01-01
Increasing economic pressure is the main driving force to enhance the efficiency of existing processes. We developed a perfusion strategy for a seed train reactor to generate a higher inoculum density for a subsequent fed batch production culture. A higher inoculum density can reduce culture duration without compromising product titers. Hence, a better capacity utilization can be achieved. The perfusion strategy was planned to be implemented in an existing large scale antibody production process. Therefore, facility and process constraints had to be considered. This article describes the initial development steps. Using a proprietary medium and a Chinese hamster ovary cell line expressing an IgG antibody, four different cell retention devices were compared in regard to retention efficiency and reliability. Two devices were selected for further process refinement, a centrifuge and an inclined gravitational settler. A concentrated feed medium was developed to meet facility constraints regarding maximum accumulated perfundate volume. A 2-day batch phase followed by 5 days of perfusion resulted in cell densities of 1.6 × 10(10) cells L(-1) , a 3.5 fold increase compared to batch cultivations. Two reactor volumes of concentrated feed medium were needed to achieve this goal. Eleven cultivations were carried out in bench and 50 L reactors showing acceptable reproducibility and ease of scale up. In addition, it was shown that at least three perfusion phases can be combined within a repeated perfusion strategy. © 2014 American Institute of Chemical Engineers.
Darban, Daim Ali; Pathan, Mumtaz Ali; Bhatti, Abdul Ghaffar; Maitelo, Sultan Ahmed
2005-02-01
Pasteuria penetrans will build-up faster where there is a high initial nematode density and can suppress root-knot nematode populations in the roots of tomato plants. The effect of different initial densities of nematode (Meloidogyne javanica) (150, 750, 1500, 3000) and P. penetrans infected females (F1, F3) densities (F0=control and AC=absolute control without nematode or P. penetrans inoculum) on the build-up of Pasteuria population was investigated over four crop cycles. Two major points of interest were highlighted. First, that within a confined soil volume, densities of P. penetrans can increase >100 times within 2 or 3 crop cycles. Second, from a relatively small amount of spore inoculum, infection of the host is very high. There were more infected females in the higher P. penetrans doses. The root growth data confirms the greater number of females in the controls particularly at the higher inoculum densities in the third and fourth crops. P. penetrans generally caused the fresh root weights to be higher than those in the control. P. penetrans has shown greater reduction of egg masses per plant at most densities. The effects of different initial densities of M. javanica and P. penetrans on the development of the pest and parasite populations were monitored. And no attempt was made to return the P. penetrans spores to the pots after each crop so the build-up in actual numbers of infected females and spores under natural conditions may be underestimated.
Derakhshani, Hooman; Corley, Sean W; Al Jassim, Rafat
2016-05-01
The presence of the toxic amino acid mimosine in Leucaena leucocephala restricts its use as a protein source for ruminants. Rumen bacteria degrade mimosine to 3,4- and 2,3-dihydroxypyridine (DHP), which remain toxic. Synergistes jonesii is believed to be the main bacterium responsible for degradation of these toxic compounds but other bacteria may also be involved. In this study, a commercial inoculum provided by the Queensland's Department of Agriculture, Fisheries, and Forestry was screened for isolation and characterization of mimosine, 3,4- and 2,3-DHP degrading bacterial strains. A new medium for screening of 2,3-DHP degrading bacteria was developed. Molecular and biochemical approaches used in this study revealed four bacterial isolates - Streptococcus lutetiensis, Clostridium butyricum, Lactobacillus vitulinus, and Butyrivibrio fibrisolvens - to be able to completely degrade mimosine within 7 days of incubation. It was also observed that C. butyricum and L. vitulinus were able to partially degrade 2,3-DHP within 12 days of incubation, while S. lutetiensis, was able to fully degrade both 3,4 and 2,3 DHP. Collectively, we concluded that S. jonesii is not the sole bacterium responsible for detoxification of Leucaena. Comprehensive screening of rumen fluid of cattle grazing on Leucaena pastures is needed to identify additional mimosine-detoxifying bacteria and contribute to development of more effective inoculums to be used by farmers against Leucaena toxicity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phytophthora ramorum disease transmission from artificially infested potting media
Jennifer L. Parke; Melody L. Roth; Carrie Lewis; Caroline J. Choquette
2006-01-01
Potted rhododendrons grown in potting media amended with inoculum of Phytophthora ramorum became infected and showed symptoms of stem necrosis, leaf wilting, and death. P. ramorum was isolated from roots and stems of infected plants.
Optimization of the Alkaline Pretreatment of Rice Straw for Enhanced Methane Yield
Song, Zilin; Yang, Gaihe; Han, Xinhui; Feng, Yongzhong; Ren, Guangxin
2013-01-01
The lime pretreatment process for rice straw was optimized to enhance the biodegradation performance and increase biogas yield. The optimization was implemented using response surface methodology (RSM) and Box-Behnken experimental design. The effects of biodegradation, as well as the interactive effects of Ca(OH)2 concentration, pretreatment time, and inoculum amount on biogas improvement, were investigated. Rice straw compounds, such as lignin, cellulose, and hemicellulose, were significantly degraded with increasing Ca(OH)2 concentration. The optimal conditions for the use of pretreated rice straw in anaerobic digestion were 9.81% Ca(OH)2 (w/w TS), 5.89 d treatment time, and 45.12% inoculum content, which resulted in a methane yield of 225.3 mL/g VS. A determination coefficient (R 2) of 96% was obtained, indicating that the model used to predict the anabolic digestion process shows a favorable fit with the experimental parameters. PMID:23509824
Laboratory grown subaerial biofilms on granite: application to the study of bioreceptivity.
Vázquez-Nion, Daniel; Silva, Benita; Troiano, Federica; Prieto, Beatriz
2017-01-01
Simulated environmental colonisation of granite was induced under laboratory conditions in order to develop an experimental protocol for studying bioreceptivity. The experimental set-up proved suitable for producing subaerial biofilms by inoculating granite blocks with planktonic multi-species phototrophic cultures derived from natural biofilms. The ability of four different cultures to form biofilms was monitored over a three-month growth period via colour measurements, quantification of photosynthetic pigments and EPS, and CLSM observations. One of the cultures under study, which comprised several taxa including Bryophyta, Charophyta, Chlorophyta and Cyanobacteria, was particularly suitable as an inoculum, mainly because of its microbial richness, its rapid adaptability to the substratum and its high colonisation capacity. The use of this culture as an inoculum in the proposed experimental set-up to produce subaerial biofilms under laboratory conditions will contribute to standardising the protocols involved, thus enabling more objective assessment of the bioreceptivity of granite in further experiments.
Muñiz-Márquez, Diana B; Contreras, Juan C; Rodríguez, Raúl; Mussatto, Solange I; Teixeira, José A; Aguilar, Cristóbal N
2016-08-01
The aim of this work was to improve the production of fructosyltransferase (FTase) by Solid-State Fermentation (SSF) using aguamiel (agave sap) as culture medium and Aspergillus oryzae DIA-MF as producer strain. SSF was carried out evaluating the following parameters: inoculum rate, incubation temperature, initial pH and packing density to determine the most significant factors through Box-Hunter and Hunter design. The significant factors were then further optimized using a Box-Behnken design and response surface methodology. The maximum FTase activity (1347U/L) was obtained at 32°C, using packing density of 0.7g/cm(3). Inoculum rate and initial pH had no significant influence on the response. FOS synthesis applying the enzyme produced by A. oryzae DIA-MF was also studied using aguamiel as substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nuchdang, Sasikarn; Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn
2015-05-01
The effect of inoculum sources on the anaerobic digestion of paragrass was investigated. Two types of sludge were used as the inoculums: an anaerobic sludge obtained from a domestic wastewater treatment plant (OS) and a sludge acclimated to fibrous substrates in raw palm oil mill effluent (AMC). Microbial activity assays showed that the AMC had hydrolytic and acetogenic activities two times greater than the activities of the OS. In addition, the production of methane from acetate by the AMC occurred without a lag phase, while it took 8 days for the OS to start producing methane from the same substrate. The biochemical methane potential after 80 days digestion was 316 ml STP/g VS(added) using the AMC, and 277 ml STP/g VS(added) using the OS. The methane potential of the paragrass was estimated to be 3337 Nm(3) CH4/ha a. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sharma, Archana; Satyanarayana, Tulasi
2011-05-01
The production of acidic α-amylase by a novel acidophilic bacterium Bacillus acidicola TSAS1 was optimized in submerged fermentation using statistical approaches. The process parameters that significantly affected α-amylase production (starch, K(2)HPO(4), inoculum size and temperature) were identified by Plackett and Burman design. The optimum levels of the significant variables as determined using central composite design of response surface methodology are starch (2.75%), K(2)HPO(4) (0.01%), inoculum size [2% (v/v) containing 1.9×10(8) CFU ml(-1)], and temperature (33°C). An overall 2.4 and 2.9-fold increase in enzyme production has been attained in batch and fed-batch fermentations in the laboratory fermentor, respectively. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Opitz v Boberfeld, W; Theobald, P C; Laser, H
2003-06-01
Regarding the estimation of the energy concentration or digestibility of herb-dominated forage and plant samples from winter pastures, it could be expected that the estimation is only reliable when in vitro methods with rumen fluid as inoculum (= gas production techniques) are used. For the verification of this thesis based on logical reflections, an in vitro-method with rumen fluid added as inoculum, as well as chemical, and enzymatic methods were applied under consideration of existing estimating functions. As a possible reason for the observed divergence of the methods, effects of fungal infections or, respectively, secondary compounds in herbs are discussed. At the present state of knowledge, it is adequate to estimate the energy concentration in vitro by gas tests, as far as fattening types like suckler cows and beef cattle are concerned, maybe in contrast to the forage evaluation for dairy cows.
A Laboratory Assessment of Factors That Affect Bacterial Adhesion to Contact Lenses
Dutta, Debarun; Willcox, Mark DP
2013-01-01
Adhesion of pathogenic microbes, particularly bacteria, to contact lenses is implicated in contact lens related microbial adverse events. Various in vitro conditions such as type of bacteria, the size of initial inoculum, contact lens material, nutritional content of media, and incubation period can influence bacterial adhesion to contact lenses and the current study investigated the effect of these conditions on bacterial adhesion to contact lenses. There was no significant difference in numbers of bacteria that adhered to hydrogel etafilcon A or silicone hydrogel senofilcon A contact lenses. Pseudomonas aeruginosa adhered in higher numbers compared to Staphylococcus aureus. Within a genera/species, adhesion of different bacterial strains did not differ appreciably. The size of initial inoculum, nutritional content of media, and incubation period played significant roles in bacterial adhesion to lenses. A set of in vitro assay conditions to help standardize adhesion between studies have been recommended. PMID:24833224
Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing
2007-05-01
The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of alpha-galactosidase production in SSF were 60% initial moisture of medium, 28 degrees C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0 approximately 6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum alpha-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation.
Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing
2007-01-01
The work is intended to achieve optimum culture conditions of α-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of α-galactosidase production in SSF were 60% initial moisture of medium, 28 °C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0~6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum α-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation. PMID:17542067
Hewitt, Rebecca E; Chapin, F Stuart; Hollingsworth, Teresa N; Taylor, D Lee
2017-07-01
Root-associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially limit tree-seedling establishment beyond current treeline. We investigated whether ectomycorrhizal shrubs that resprout after fire support similar fungal taxa to those that associate with tree seedlings that establish naturally after fire. We then assessed whether mycobiont identity correlates with the biomass or nutrient status of these tree seedlings. The majority of fungal taxa observed on shrub and seedling root systems were EMF, with some dark septate endophytes and ericoid mycorrhizal taxa. Seedlings and adjacent shrubs associated with similar arrays of fungal taxa, and there were strong correlations between the structure of seedling and shrub fungal communities. These results show that resprouting postfire shrubs support fungal taxa compatible with tree seedlings that establish after wildfire. Shrub taxon, distance to the nearest shrub and fire severity influenced the similarity between seedling and shrub fungal communities. Fungal composition was correlated with both foliar C:N ratio and seedling biomass and was one of the strongest explanatory variables predicting seedling biomass. While correlative, these results suggest that mycobionts are important to nutrient acquisition and biomass accrual of naturally establishing tree seedlings at treeline and that mycobiont taxa shared by resprouting postfire vegetation may be a significant source of inoculum for tree-seedling establishment beyond current treeline. © 2017 John Wiley & Sons Ltd.
Kanjilal, Baishali; Noshadi, Iman; Bautista, Eddy J; Srivastava, Ranjan; Parnas, Richard S
2015-03-01
1,3-propanediol (1,3-PD) was produced with a robust fermentation process using waste glycerol feedstock from biodiesel production and a soil-based bacterial inoculum. An iterative inoculation method was developed to achieve independence from soil and selectively breed bacterial populations capable of glycerol metabolism to 1,3-PD. The inoculum showed high resistance to impurities in the feedstock. 1,3-PD selectivity and yield in batch fermentations was optimized by appropriate nutrient compositions and pH control. The batch yield of 1,3-PD was maximized to ~0.7 mol/mol for industrial glycerol which was higher than that for pure glycerin. 16S rDNA sequencing results show a systematic selective enrichment of 1,3-PD producing bacteria with iterative inoculation and subsequent process control. A statistical design of experiments was carried out on industrial glycerol batches to optimize conditions, which were used to run two continuous flow stirred-tank reactor (CSTR) experiments over a period of >500 h each. A detailed analysis of steady states at three dilution rates is presented. Enhanced specific 1,3-PD productivity was observed with faster dilution rates due to lower levels of solvent degeneration. 1,3-PD productivity, specific productivity, and yield of 1.1 g/l hr, 1.5 g/g hr, and 0.6 mol/mol of glycerol were obtained at a dilution rate of 0.1 h(-1)which is bettered only by pure strains in pure glycerin feeds.
Yoon, Young-Man; Kim, Seung-Hwan; Shin, Kook-Sik; Kim, Chang-Hyun
2014-04-01
The aim of this study was to assess the effect of substrate to inoculum ratio (S/I ratio) on the biochemical methane potential (BMP) and anaerobic biodegradability (Ddeg) of different piggery slaughterhouse wastes, such as piggery blood, intestine residue, and digestive tract content. These wastes were sampled from a piggery slaughterhouse located in Kimje, South Korea. Cumulative methane production curves for the wastes were obtained from the anaerobic batch fermentation having different S/I ratios of 0.1, 0.5, 1.0, and 1.5. BMP and anaerobic biodegradabilities (Ddeg) of the wastes were calculated from cumulative methane production data for the tested conditions. At the lowest S/I ration of 0.1, BMPs of piggery blood, intestine residue, and digestive tract content were determined to be 0.799, 0.848, and 1.076 Nm(3) kg(-1)-VSadded, respectively, which were above the theoretical methane potentials of 0.539, 0.644, and 0.517 Nm(3) kg(-1)-VSadded for blood, intestine residue, and digestive tract content, respectively. However, BMPs obtained from the higher S/I ratios of 0.5, 1.0, and 1.5 were within the theoretical range for all three types of waste and were not significantly different for the different S/I ratios tested. Anaerobic biodegradabilities calculated from BMP data showed a similar tendency. These results imply that, for BMP assay in an anaerobic reactor, the S/I ratio of anaerobic reactor should be above 0.1 and the inoculum should be sufficiently stabilized to avoid further degradation during the assay.
Yoon, Young-Man; Kim, Seung-Hwan; Shin, Kook-Sik; Kim, Chang-Hyun
2014-01-01
The aim of this study was to assess the effect of substrate to inoculum ratio (S/I ratio) on the biochemical methane potential (BMP) and anaerobic biodegradability (Ddeg) of different piggery slaughterhouse wastes, such as piggery blood, intestine residue, and digestive tract content. These wastes were sampled from a piggery slaughterhouse located in Kimje, South Korea. Cumulative methane production curves for the wastes were obtained from the anaerobic batch fermentation having different S/I ratios of 0.1, 0.5, 1.0, and 1.5. BMP and anaerobic biodegradabilities (Ddeg) of the wastes were calculated from cumulative methane production data for the tested conditions. At the lowest S/I ration of 0.1, BMPs of piggery blood, intestine residue, and digestive tract content were determined to be 0.799, 0.848, and 1.076 Nm3 kg−1-VSadded, respectively, which were above the theoretical methane potentials of 0.539, 0.644, and 0.517 Nm3 kg−1-VSadded for blood, intestine residue, and digestive tract content, respectively. However, BMPs obtained from the higher S/I ratios of 0.5, 1.0, and 1.5 were within the theoretical range for all three types of waste and were not significantly different for the different S/I ratios tested. Anaerobic biodegradabilities calculated from BMP data showed a similar tendency. These results imply that, for BMP assay in an anaerobic reactor, the S/I ratio of anaerobic reactor should be above 0.1 and the inoculum should be sufficiently stabilized to avoid further degradation during the assay. PMID:25049994
Bird, Patrick; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Monteroso, Lisa; Benesh, DeAnn
2015-01-01
The 3M™ Molecular Detection Assay (MDA) Listeria is used with the 3M Molecular Detection System for the detection of Listeria species in food, food-related, and environmental samples after enrichment. The assay utilizes loop-mediated isothermal amplification to rapidly amplify Listeria target DNA with high specificity and sensitivity, combined with bioluminescence to detect the amplification. The 3M MDA Listeria method was evaluated using an unpaired study design in a multilaboratory collaborative study and compared to the AOAC Official Method of AnalysisSM (OMA) 993.12 Listeria monocytogenes in Milk and Dairy Products reference method for the detection of Listeria species in full-fat (4% milk fat) cottage cheese (25 g test portions). A total of 15 laboratories located in the continental United States and Canada participated. Each matrix had three inoculation levels: an uninoculated control level (0 CFU/test portion), and two levels artificially contaminated with Listeria monocytogenes, a low inoculum level (0.2-2 CFU/test portion) and a high inoculum level (2-5 CFU/test portion) using nonheat-stressed cells. In total, 792 unpaired replicate portions were analyzed. Statistical analysis was conducted according to the probability of detection (POD) model. Results obtained for the low inoculum level test portions produced a difference in cross-laboratory POD value of -0.07 with a 95% confidence interval of (-0.19, 0.06). No statistically significant differences were observed in the number of positive samples detected by the 3M MDA Listeria method versus the AOAC OMA method.
Pánková, Hana; Lepinay, Clémentine; Rydlová, Jana; Voříšková, Alena; Janoušková, Martina; Dostálek, Tomáš; Münzbergová, Zuzana
2018-03-01
After abandonment of agricultural fields, some grassland plant species colonize these sites with a frequency equivalent to dry grasslands (generalists) while others are missing or underrepresented in abandoned fields (specialists). We aimed to understand the inability of specialists to spread on abandoned fields by exploring whether performance of generalists and specialists depended on soil abiotic and/or biotic legacy. We performed a greenhouse experiment with 12 species, six specialists and six generalists. The plants were grown in sterile soil from dry grassland or abandoned field inoculated with microbial communities from one or the other site. Plant growth, abundance of mycorrhizal structures and plant response to inoculation were evaluated. We focused on arbuscular mycorrhizal fungi (AMF), one of the most important parts of soil communities affecting plant performance. The abandoned field soil negatively affected plant growth, but positively affected plant response to inoculation. The AMF community from both sites differed in infectivity and taxa frequencies. The lower AMF taxa frequency in the dry grassland soil suggested a lack of functional complementarity. Despite the fact that dry grassland AMF produced more arbuscules, the dry grassland inoculum did not improve phosphorus nutrition of specialists contrary to the abandoned field inoculum. Inoculum origin did not affect phosphorus nutrition of generalists. The lower effectiveness of the dry grassland microbial community toward plant performance excludes its inoculation in the abandoned field soil as a solution to allow settlement of specialists. Still, the distinct response of specialists and generalists to inoculation suggested that they differ in AMF responsiveness.
Bird, Patrick; Flannery, Jonathan; Crowley, Erin; Agin, James R; Goins, David; Monteroso, Lisa
2016-07-01
The 3M™ Molecular Detection Assay (MDA) 2 - Salmonella uses real-time isothermal technology for the rapid and accurate detection of Salmonella spp. from enriched select food, feed, and food-process environmental samples. The 3M MDA 2 - Salmonella was evaluated in a multilaboratory collaborative study using an unpaired study design. The 3M MDA 2 - Salmonella was compared to the U.S. Food and Drug Administration Bacteriological Analytical Manual Chapter 5 reference method for the detection of Salmonella in creamy peanut butter, and to the U.S. Department of Agriculture, Food Safety and Inspection Service Microbiology Laboratory Guidebook Chapter 4.08 reference method "Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg and Catfish Products and Carcass and Environmental Samples" for the detection of Salmonella in raw ground beef (73% lean). Technicians from 16 laboratories located within the continental United States participated. Each matrix was evaluated at three levels of contamination: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). Statistical analysis was conducted according to the probability of detection (POD) statistical model. Results obtained for the low inoculum level test portions produced difference in collaborator POD values of 0.03 (95% confidence interval, -0.10 to 0.16) for raw ground beef and 0.06 (95% confidence interval, -0.06 to 0.18) for creamy peanut butter, indicating no statistically significant difference between the candidate and reference methods.
Psychrophilic dry anaerobic digestion of dairy cow feces: Long-term operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massé, Daniel I., E-mail: Daniel.masse@agr.gc.ca; Cata Saady, Noori M.
2015-02-15
Highlights: • Psychrophilic dry anaerobic digestion (PDAD) of cow feces (CF) is feasible. • PDAD of CF is as efficient as mesophilic and thermophilic AD at TCL 21 days. • CF (13–16% TS at OLR 5.0 g TCOD{sub fed} kg{sup −1} inoculum d{sup −1}) yielded 222 ± 27 {sub N}L CH{sub 4} kg{sup −1} VS fed. - Abstract: This paper reports experimental results which demonstrate psychrophilic dry anaerobic digestion of cow feces during long-term operation in sequence batch reactor. Cow feces (13–16% total solids) has been anaerobically digested in 12 successive cycles (252 days) at 21 days treatment cycle lengthmore » (TCL) and temperature of 20 °C using psychrotrophic anaerobic mixed culture. An average specific methane yield (SMY) of 184.9 ± 24.0, 189.9 ± 27.3, and 222 ± 27.7 {sub N}L CH{sub 4} kg{sup −1} of VS fed has been achieved at an organic loading rate of 3.0, 4.0, and 5.0 g TCOD kg{sup −1} inoculum d{sup −1} and TCL of 21 days, respectively. The corresponding substrate to inoculum ratio (SIR) was 0.39 ± 0.06, 0.48 ± .02, 0.53 ± 0.05, respectively. Average methane production rate of 10 ± 1.4 {sub N}L CH{sub 4} kg{sup −1} VS fed d{sup −1} has been obtained. The low concentration of volatile fatty acids indicated that hydrolysis was the reaction limiting step.« less
de Graaf, Hans; Gbesemete, Diane; Gorringe, Andrew R.; Diavatopoulos, Dimitri A.; Kester, Kent E.; Faust, Saul N.; Read, Robert C.
2017-01-01
Introduction We summarise an ethically approved protocol for the development of an experimental human challenge colonisation model. Globally Bordetella pertussis is one of the leading causes of vaccine-preventable death. Many countries have replaced whole cell vaccines with acellular vaccines over the last 20 years during which pertussis appears to be resurgent in a number of countries in the developed world that boast high immunisation coverage. The acellular vaccine provides relatively short-lived immunity and, in contrast to whole cell vaccines, may be less effective against colonisation and subsequent transmission. To improve vaccine strategies, a greater understanding of human B. pertussis colonisation is required. This article summarises a protocol and does not contain any results. Methods and analysis A controlled human colonisation model will be developed over two phases. In phase A, a low dose of the inoculum will be given intranasally to healthy participants. This dose will be escalated or de-escalated until colonisation is achieved in approximately 70% (95% CI 47% to 93%) of the exposed volunteers without causing disease. The colonisation period, shedding and exploratory immunology will be assessed during a 17-day inpatient stay and follow-up over 1 year. The dose of inoculum that achieves 70% colonisation will then be confirmed in phase B, comparing healthy participants exposed to B. pertussis with a control group receiving a sham inoculum. Ethics and dissemination This study has been approved by the ethical committee reference: 17/SC/0006, 24 February 2017. Findings will be published in peer-reviewed open access journals as soon as possible. PMID:29025851
Torquato, Lilian D M; Pachiega, Renan; Crespi, Marisa S; Nespeca, Maurílio Gustavo; de Oliveira, José Eduardo; Maintinguer, Sandra I
2017-01-01
Citrus crops are among the most abundant crops in the world, which processing is mainly based on juice extraction, generating large amounts of effluents with properties that turn them into potential pollution sources if they are improperly discarded. This study evaluated the potential for bioconversion of effluents from citrus-processing industry (wastewater and vinasse) into hydrogen through the dark fermentation process, by applying anaerobic sewage sludge as inoculum. The inoculum was previously heat treated to eliminate H 2 -consumers microorganisms and improve its activity. Anaerobic batch reactors were operated in triplicate with increasing proportions (50, 80 and 100%) of each effluent as substrate at 37°C, pH 5.5. Citrus effluents had different effects on inoculum growth and H 2 yields, demonstrated by profiles of acetic acid, butyric acid, propionic acid and ethanol, the main by-products generated. It was verified that there was an increase in the production of biogas with the additions of either wastewater (7.3, 33.4 and 85.3mmolL -1 ) or vinasse (8.8, 12.7 and 13.4mmolL -1 ) in substrate. These effluents demonstrated remarkable energetic reuse perspectives: 24.0MJm -3 and 4.0MJm -3 , respectively. Besides promoting the integrated management and mitigation of anaerobic sludge and effluents from citrus industry, the biohydrogen production may be an alternative for the local energy supply, reducing the operational costs in their own facilities, while enabling a better utilization of the biological potential contained in sewage sludges. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Y K; Xiao, C L; Rogers, J D
2005-01-01
Sphaeropsis pyriputrescens, the causal agent of Sphaeropsis rot of pears and apples, is a recently described species. In this study the effects of culture media, temperature, water potential, pH and light on mycelial growth and pycnidial production of S. pyriputrescens were evaluated. Apple juice agar and pear juice agar were most suitable for mycelial growth of all six isolates tested. Cornmeal agar was not suitable for either mycelial growth or pycnidial production. The fungus grew from -3 to 25 C, with optimum growth at 20 C and no growth at 30 C. The fungus grew at water potential as low as -5.6 MPa on potassium chloride-amended potato-dextrose agar (PDA). Hyphal extension was not observed at -7.3 MPa after 10 d incubation, but growth resumed when the inoculum plugs were placed on PDA. The fungus grew at pH 3.3-6.3 and optimum growth was at pH 3.3-4.2. No mycelial growth was observed at pH above 7.2 after 10 d incubation, but growth resumed when the inoculum plugs were transferred onto PDA. Regardless of medium tested, few pycnidia formed at 20 C in the dark. Pycnidial production was enhanced significantly by fluorescent light, but continuous light appeared to reduce pycnidial production, depending on the medium. Oatmeal agar (OMA) was most suitable for production of pycnidia and conidia. Pycnidia that formed on 3 wk old OMA cultures at 20 C under 12 h light/12 h dark produced abundant conidia, and the technique is recommended for inoculum production.
Oufir, L E; Barry, J L; Flourié, B; Cherbut, C; Cloarec, D; Bornet, F; Galmiche, J P
2000-08-01
To assess the effects of drug-induced changes in mean transit time (MTT) on the activity of human fecal flora in vitro. The activity of fecal flora was estimated by the ability of a fecal inoculum to ferment a substrate (beet fiber) in vitro in a batch system for 24 h. The inoculum was collected from 8 healthy volunteers studied during three 3-week randomized periods, who received a controlled diet alone (control period) or the same diet with either cisapride or loperamide. Cisapride and loperamide were adjusted in order to halve and double MTT measured during the control period. At the end of each period, the percentage disappearance of the initial added substrate and the concentration and the profile of short-chain fatty acids (SCFAs), were determined. In the control period, the pH of the inoculum and SCFA concentration were inversely related to MTT (P=0.0001). Individual SCFA production was also significantly related to MTT (P<0.01). Cisapride-reduced transit time was associated with a significant rise in the concentrations of total SCFAs (P<0.05), propionic and butyric acids (P<0.05) and the percentage substrate disappearance (P<0.05). Inverse relations were observed during the loperamide period. Moreover, MTT was inversely related to the percentage substrate disappearance (P<0.001), SCFA production (P<0.001) and butyrate production (P<0.0005). Changes in MTT alter bacterial activity and modify the bacterial pathways affecting the proportion of individual SCFAs. European Journal of Clinical Nutrition (2000) 54, 603-609
Kasan, Nor Azman; Ghazali, Nurarina Ayuni; Ikhwanuddin, Mhd; Ibrahim, Zaharah
2017-01-01
A new green technology to reduce environmental damages while optimizing production of Pacific Whiteleg shrimp, Litopenaeus vannamei was developed known as "Biofloc technology". Microbial communities in biofloc aggregates are responsible in eliminating water exchange and producing microbial proteins that can be used as supplemented feed for L. vannamei. This study aimed to isolate and identify potential bioflocculant-producing bacteria to be used as inoculum for rapid formation of biofloc. For the purpose of this study, bacterial communities during 0, 30 and 70 days of culture (DOC) of L. vannamei grow-out ponds were isolated and identified through phenotypic and 16S rDNA sequences analysis. Phylogenetic relationships between isolated bacteria were then evaluated through phylogenetic tree analysis. One-way analysis of variance (ANOVA) was used to compare the differences of microbial communities at each DOC. Out of 125 bacterial isolates, nine species of bacteria from biofloc were identified successfully. Those bacteria species were identified as Halomonas venusta, H. aquamarina, Vibrio parahaemolyticus, Bacillus infantis, B. cereus, B. safensis, Providencia vermicola, Nitratireductor aquimarinus and Pseudoalteromonas sp., respectively. Through phylogenetic analysis, these isolates belong to Proteobacteria and Firmicutes families under the genera of Halomonas sp., Vibrio sp., Bacillus sp., Providencia sp., Nitratireductor sp. and Pseudoalteromonas sp. In this study, bioflocculant-producing bacteria were successfully identified which are perfect candidates in forming biofloc to reduce water pollution towards a sustainable aquaculture industry. Presence of Halomonas sp. and Bacillus sp. in all stages of biofloc formation reinforces the need for new development regarding the ability of these species to be used as inoculum in forming biofloc rapidly.
Oliveira, Rui S; Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena
2016-01-01
The exploitation of arbuscular mycorrhizal (AM) fungi has become of great interest in agriculture due to their potential roles in reducing the need for agrochemicals, while improving plant growth and nutrition. Nevertheless, the application of AM fungi by dispersing inocula in granular form to open agricultural fields is not feasible because nontargeted spreading of inocula over large surface areas results in high cost per plant. Seed coating has the potential to significantly reduce the amount of inoculum needed, resulting in cost reduction and increased efficiency. The aim of this study was to assess whether seed coating with AM fungal inoculum is a feasible delivery system for production of common wheat (Triticum aestivum L.). Wheat seeds were coated with inoculum of Rhizophagus irregularis BEG140 and grown under different fertilization conditions: (1) none, (2) partial, or (3) complete. Data indicated that mycorrhizal inoculation via seed coating significantly increased the dry weight of shoot and seed spikes of wheat associated with reduced fertilization. Assessment of nutritional status of wheat showed that plants inoculated with R. irregularis via seed coating displayed enhanced stem concentrations of potassium (K), sulfur (S), and zinc (Zn). There were no significant differences in root colonization between plants conventionally inoculated with R. irregularis in soil and those inoculated via seed coating. Seed coating with AM fungi may be as effective as conventional soil inoculation and may contribute to reduce the utilization of chemical fertilizers. The application of AM via seed coating is proposed as an ecotechnological approach for sustainable agricultural wheat production.
Liu, Bin; Schaffner, Donald W
2007-02-01
Raw seed sprouts have been implicated in several food poisoning outbreaks in the last 10 years. Few studies have included investigations of factors influencing the effectiveness of testing spent irrigation water, and in no studies to date has a nonpathogenic surrogate been identified as suitable for large-scale irrigation water testing trials. Alfalfa seeds were inoculated with Salmonella Stanley or its presumptive surrogate (nalidixic acid-resistant Enterobacter aerogenes) at three concentrations (-3, -30, and -300 CFU/g) and were then transferred into either flasks or a bench top-scale sprouting chamber. Microbial concentrations were determined in seeds, sprouts, and irrigation water at various times during a 4-day sprouting process. Data were fit to logistic regression models, and growth rates and maximum concentrations were compared using the generalized linear model procedure of SAS. No significant differences in growth rates were observed among samples taken from flasks or the chamber. Microbial concentrations in irrigation water were not significantly different from concentrations in sprout samples obtaihed at the same time. E. aerogenes concentrations were similar to those of Salmonella Stanley at corresponding time points for all three inoculum concentrations. Growth rates were also constant regardless of inoculum concentration or strain, except that lower inoculum concentrations resulted in lower final concentrations proportional to their initial concentrations. This research demonstrated that a nonpathogenic easy-to-isolate surrogate (nalidixic acid-resistant E. aerogenes) provides results similar to those obtained with Salmonella Stanley, supporting the use of this surrogate in future large-scale experiments.
Hagen, Live Heldal; Vivekanand, Vivekanand; Pope, Phillip B; Eijsink, Vincent G H; Horn, Svein J
2015-07-01
A new biogas process is initiated by adding a microbial community, typically in the form of a sample collected from a functional biogas plant. This inoculum has considerable impact on the initial performance of a biogas reactor, affecting parameters such as stability, biogas production yields and the overall efficiency of the anaerobic digestion process. In this study, we have analyzed changes in the microbial composition and performance of an inoculum during storage using barcoded pyrosequencing of bacterial and archaeal 16S ribosomal RNA (rRNA) genes, and determination of the biomethane potential, respectively. The inoculum was stored at room temperature, 4 and -20 °C for up to 11 months and cellulose was used as a standard substrate to test the biomethane potential. Storage up to 1 month resulted in similar final methane yields, but the rate of methane production was reduced by storage at -20 °C. Longer storage times resulted in reduced methane yields and slower production kinetics for all storage conditions, with room temperature and frozen samples consistently giving the best and worst performance, respectively. Both storage time and temperature affected the microbial community composition and methanogenic activity. In particular, fluctuations in the relative abundance of Bacteroidetes were observed. Interestingly, a shift from hydrogenotrophic methanogens to methanogens with the capacity to perform acetoclastic methanogensis was observed upon prolonged storage. In conclusion, this study suggests that biogas inocula may be stored up to 1 month with low loss of methanogenic activity, and identifies bacterial and archaeal species that are affected by the storage.
Taniguchi, Takeshi; Kataoka, Ryota; Tamai, Shigenobu; Yamanaka, Norikazu; Futai, Kazuyoshi
2009-04-01
The nitrogen-fixing tree black locust (Robinia pseudoacacia L.) seems to affect ectomycorrhizal (ECM) colonization and disease severity of Japanese black pine (Pinus thunbergii Parl.) seedlings. We examined the effect of black locust on the distribution of ECM and pathogenic fungi in soil. DNA was extracted from soil at depths of 0-5 and 5-10 cm, collected from the border between a Japanese black pine- and a black locust-dominated forest, and the distribution of these fungi was investigated by denaturing gradient gel electrophoresis. The effect of soil nutrition and pH on fungal distribution was also examined. Tomentella sp. 1 and Tomentella sp. 2 were not detected from some subplots in the Japanese black pine-dominated forest. Ectomycorrhizas formed by Tomentella spp. were dominant in black locust-dominated subplots and very little in the Japanese black pine-dominated forest. Therefore, the distribution may be influenced by the distribution of inoculum potential, although we could not detect significant relationships between the distribution of Tomentella spp. on pine seedlings and in soils. The other ECM fungi were detected in soils in subplots where the ECM fungi was not detected on pine seedlings, and there was no significant correlation between the distribution of the ECM fungi on pine seedlings and in soils. Therefore, inoculum potential seemed to not always influence the ECM community on roots. The distribution of Lactarius quieticolor and Tomentella sp. 2 in soil at a depth of 0-5 cm positively correlated with soil phosphate (soil P) and that of Tomentella sp. 2 also positively correlated with soil nitrogen (soil N). These results suggest the possibility that the distribution of inoculum potential of the ECM fungi was affected by soil N and soil P. Although the mortality of the pine seedlings was higher in the black locust-dominated area than in the Japanese black pine-dominated area, a pathogenic fungus of pine seedlings, Cylindrocladium pacificum, was detected in soil at depths of 0-5 and 5-10 cm from both these areas. This indicates that the disease severity of pine seedlings in this study was influenced by environmental conditions rather than the distribution of inoculum potential.
Wockner, Leesa F; Hoffmann, Isabell; O'Rourke, Peter; McCarthy, James S; Marquart, Louise
2017-08-25
The efficacy of vaccines aimed at inhibiting the growth of malaria parasites in the blood can be assessed by comparing the growth rate of parasitaemia in the blood of subjects treated with a test vaccine compared to controls. In studies using induced blood stage malaria (IBSM), a type of controlled human malaria infection, parasite growth rate has been measured using models with the intercept on the y-axis fixed to the inoculum size. A set of statistical models was evaluated to determine an optimal methodology to estimate parasite growth rate in IBSM studies. Parasite growth rates were estimated using data from 40 subjects published in three IBSM studies. Data was fitted using 12 statistical models: log-linear, sine-wave with the period either fixed to 48 h or not fixed; these models were fitted with the intercept either fixed to the inoculum size or not fixed. All models were fitted by individual, and overall by study using a mixed effects model with a random effect for the individual. Log-linear models and sine-wave models, with the period fixed or not fixed, resulted in similar parasite growth rate estimates (within 0.05 log 10 parasites per mL/day). Average parasite growth rate estimates for models fitted by individual with the intercept fixed to the inoculum size were substantially lower by an average of 0.17 log 10 parasites per mL/day (range 0.06-0.24) compared with non-fixed intercept models. Variability of parasite growth rate estimates across the three studies analysed was substantially higher (3.5 times) for fixed-intercept models compared with non-fixed intercept models. The same tendency was observed in models fitted overall by study. Modelling data by individual or overall by study had minimal effect on parasite growth estimates. The analyses presented in this report confirm that fixing the intercept to the inoculum size influences parasite growth estimates. The most appropriate statistical model to estimate the growth rate of blood-stage parasites in IBSM studies appears to be a log-linear model fitted by individual and with the intercept estimated in the log-linear regression. Future studies should use this model to estimate parasite growth rates.
Stream baiting in southern Louisiana for Phytophthora ramorum
Jason Preuette; Daniel Collins; Ashley Williams; Kenneth Deahl; Richard Jones
2013-01-01
The use of stream monitoring is an important method for early detection of Phytophthora ramorum. Five different waterway locations representing different ecosystems and potential P. ramorum inoculum sources across southern Louisiana were monitored for P. ramorum using bait bags containing whole ...
Timing fungicide application intervals based on airborne Erysiphe necator concentrations
USDA-ARS?s Scientific Manuscript database
Management of grape powdery mildew (Erysiphe necator) and other polycyclic diseases relies on numerous fungicide applications that follow a calendar or model-based application intervals, both of which assume that inoculum is always present. Quantitative molecular assays have been previously develope...
APPARENT BIAS IN RIVER WATER INOCULUM FOLLOWING CENTRIFUGATION
We collected four measures of viable bacterial concentration (heterotrophic plate count, total coliform, fecal coliform, and Escherichia coli) and three measures of well color development in Biolog GN2 microtiter plates from water samples that were collected on two or three separ...
MICROBIAL POPULATION CHANGES DURING BIOREMEDIATION OF AN EXPERIMENTAL OIL SPILL
Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil-spill. Four treatments (no oil control, oil alone, oil + nutrients, and oil + nutrients + an indigenous inoculum) were applied. In-situ microbial community str...
Survival of Xanthomonas fragariae on common materials found in strawberry nurseries
USDA-ARS?s Scientific Manuscript database
Xanthomonas fragariae causes strawberry angular leaf spot, an important disease in strawberry nursery production. To identify potential inoculum sources, the ability of X. fragariae to survive was examined on 10 common materials typically associated with strawberry nurseries (cardboard, glass, latex...
Influence of nanohydroxyapatite surface properties on Staphylococcus epidermidis biofilm formation.
Barros, J; Grenho, L; Manuel, C M; Ferreira, C; Melo, L; Nunes, O C; Monteiro, F J; Ferraz, M P
2014-05-01
Nanohydroxyapatite (nanoHA), due to its chemical properties, has appeared as an exceptionally promising bioceramic to be used as bone regeneration material. Staphylococcus epidermidis have emerged as major nosocomial pathogens associated with infections of implanted medical devices. In this work, the purpose was to study the influence of the nanoHA surface characteristics on S. epidermidis RP62A biofilm formation. Therefore, two different initial inoculum concentrations (Ci) were used in order to check if these would affect the biofilm formed on the nanoHA surfaces. Biofilm formation was followed by the enumeration of cultivable cells and by scanning electron microscopy. Surface topography, contact angle, total surface area and porosimetry of the biomaterials were studied and correlated with the biofilm data. The surface of nanoHA sintered at 830 (nanoHA830) showed to be more resistant to S. epidermidis attachment and accumulation than that of nanoHA sintered at 1000 (nanoHA1000). The biofilm formed on nanoHA830 presented differences in terms of structure, surface coverage and EPS production when compared to the one formed on nanoHA1000 surface. It was observed that topography and surface area of nanoHA surfaces had influence on the bacterial attachment and accumulation. Ci influenced bacteria attachment and accumulation on nanoHA surfaces over time. The choice of the initial inoculum concentration was relevant proving to have an effect on the extent of adherence thus being a critical point for human health if these materials are used in implantable devices. This study showed that the initial inoculum concentration and surface material properties determine the rate of microbial attachment to substrata and consequently are related to biofilm-associated infections in biomaterials.
Różańska, Anna; Chmielarczyk, Agnieszka; Romaniszyn, Dorota; Sroka-Oleksiak, Agnieszka; Bulanda, Małgorzata; Walkowicz, Monika; Osuch, Piotr; Knych, Tadeusz
2017-01-01
Background: Hospital equipment made from copper alloys can play an important role in complementing traditional methods of disinfection. Aims of the study: The aim of this study was to assess the dynamics of the antimicrobial properties of selected copper alloys in different simulations of environmental conditions (with organic contamination vs. without organic contamination), and to test alternatives to the currently used testing methods. Materials and Methods: A modification of Japanese standard JIS Z 2801 as well as Staphylococcus aureus (SA) and Escherichia coli (EC) suspended in NaCl vs. tryptic soy broth (TSB) were used in tests performed on seven commonly used copper alloys, copper, and stainless steel. Results: A much faster reduction of the bacterial suspension was observed for the inoculum prepared in NaCl than in TSB. A faster reduction for EC than for SA was observed in the inoculum prepared in NaCl. The opposite results were found for the inoculum based on TSB. A significant correlation between the copper concentration in the copper alloys and the time and degree of bacterial suspension reduction was only observed in the case of EC. Conclusions: This study confirmed the antimicrobial properties of copper alloys, and additionally showed that Staphylococcus aureus was more resistant than Escherichia coli in the variant of the experiment without organic contamination. However, even for SA, a total reduction of the bacterial inoculum’s density took no longer than 2 h. Under conditions simulating organic contamination, all of the tested alloys were shown to have bactericidal or bacteriostatic properties, which was contrary to the results from stainless steel. PMID:28726753
Stoffels, M; Amann, R; Ludwig, W; Hekmat, D; Schleifer, K H
1998-03-01
This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a care painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor.
Stoffels, Marion; Amann, Rudolf; Ludwig, Wolfgang; Hekmat, Dariusch; Schleifer, Karl-Heinz
1998-01-01
This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a car painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor. PMID:9501433
de Souza, Tancredo Augusto Feitosa; de Andrade, Leonaldo Alves; Freitas, Helena; da Silva Sandim, Aline
2017-05-30
Plant-soil feedback is recognized as the mutual interaction between plants and soil microorganisms, but its role on the biological invasion of the Brazilian tropical seasonal dry forest by invasive plants still remains unclear. Here, we analyzed and compared the arbuscular mycorrhizal fungi (AMF) communities and soil characteristics from the root zone of invasive and native plants, and tested how these AMF communities affect the development of four invasive plant species (Cryptostegia madagascariensis, Parkinsonia aculeata, Prosopis juliflora, and Sesbania virgata). Our field sampling revealed that AMF diversity and frequency of the Order Diversisporales were positively correlated with the root zone of the native plants, whereas AMF dominance and frequency of the Order Glomerales were positively correlated with the root zone of invasive plants. We grew the invasive plants in soil inoculated with AMF species from the root zone of invasive (I changed ) and native (I unaltered ) plant species. We also performed a third treatment with sterilized soil inoculum (control). We examined the effects of these three AMF inoculums on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas. We found that I unaltered and I changed promoted the growth of all invasive plants and led to a higher plant dry biomass, mycorrhizal colonization, and P uptake than control, but I changed showed better results on these variables than I unaltered . For plant responsiveness to mycorrhizas and fungal inoculum effect on plant P concentration, we found positive feedback between changed-AMF community (I changed ) and three of the studied invasive plants: C. madagascariensis, P. aculeata, and S. virgata.
NASA Technical Reports Server (NTRS)
Garland, J. L.; Mills, A. L.; Young, J. S.
2001-01-01
The relative effectiveness of average-well-color-development-normalized single-point absorbance readings (AWCD) vs the kinetic parameters mu(m), lambda, A, and integral (AREA) of the modified Gompertz equation fit to the color development curve resulting from reduction of a redox sensitive dye from microbial respiration of 95 separate sole carbon sources in microplate wells was compared for a dilution series of rhizosphere samples from hydroponically grown wheat and potato ranging in inoculum densities of 1 x 10(4)-4 x 10(6) cells ml-1. Patterns generated with each parameter were analyzed using principal component analysis (PCA) and discriminant function analysis (DFA) to test relative resolving power. Samples of equivalent cell density (undiluted samples) were correctly classified by rhizosphere type for all parameters based on DFA analysis of the first five PC scores. Analysis of undiluted and 1:4 diluted samples resulted in misclassification of at least two of the wheat samples for all parameters except the AWCD normalized (0.50 abs. units) data, and analysis of undiluted, 1:4, and 1:16 diluted samples resulted in misclassification for all parameter types. Ordination of samples along the first principal component (PC) was correlated to inoculum density in analyses performed on all of the kinetic parameters, but no such influence was seen for AWCD-derived results. The carbon sources responsible for classification differed among the variable types with the exception of AREA and A, which were strongly correlated. These results indicate that the use of kinetic parameters for pattern analysis in CLPP may provide some additional information, but only if the influence of inoculum density is carefully considered. c2001 Elsevier Science Ltd. All rights reserved.
Webb, Kimberly M; Calderón, Francisco J
2015-10-01
The amount of Rhizoctonia solani in the soil and how much must be present to cause disease in sugar beet (Beta vulgaris L.) is relatively unknown. This is mostly because of the usually low inoculum densities found naturally in soil and the low sensitivity of traditional serial dilution assays. We investigated the usefulness of Fourier transform mid-infrared (MIR) and near-infrared (NIR) spectroscopic properties in identifying the artificial colonization of barley grains with R. solani AG 2-2 IIIB and in detecting R. solani populations in plant tissues and inoculants. The objectives of this study were to compare the ability of traditional plating assays to NIR and MIR spectroscopies to identify R. solani in different-size fractions of colonized ground barley (used as an artificial inoculum) and to differentiate colonized from non-inoculated barley. We found that NIR and MIR spectroscopies were sensitive in resolving different barley particle sizes, with particles that were <0.25 and 0.25-0.5 mm having different spectral properties than coarser particles. Moreover, we found that barley colonized with R. solani had different MIR spectral properties than the non-inoculated samples for the larger fractions (0.5-1.0, 1.0-2.0, and >2.0 mm) of the ground barley. This colonization was confirmed using traditional plating assays. Comparisons with the spectra from pure fungal cultures and non-inoculated barley suggest that the MIR spectrum of colonized barley is different because of the consumption of C substrates by the fungus rather than because of the presence of fungal bands in the spectra of the colonized samples. We found that MIR was better than NIR spectroscopy in differentiating the colonized from the control samples.
NASA Technical Reports Server (NTRS)
Ward, D. M.; Santegoeds, C. M.; Nold, S. C.; Ramsing, N. B.; Ferris, M. J.; Bateson, M. M.
1997-01-01
We have begun to examine the basis for incongruence between hot spring microbial mat populations detected by cultivation or by 16S rRNA methods. We used denaturing gradient gel electrophoresis (DGGE) to monitor enrichments and isolates plated therefrom. At near extincting inoculum dilutions we observed Chloroflexus-like and cyanobacterial populations whose 16S rRNA sequences have been detected in the 'New Pit' Spring Chloroflexus mat and the Octopus Spring cyanobacterial mat. Cyanobacterial populations enriched from 44 to 54 degrees C and 56 to 63 degrees C samples at near habitat temperatures were similar to those previously detected in mat samples of comparable temperatures. However, a lower temperature enrichment from the higher temperature sample selected for the populations found in the lower temperature sample. Three Thermus populations detected by both DGGE and isolation exemplify even more how enrichment may bias our view of community structure. The most abundant population was adapted to the habitat temperature (50 degrees C), while populations adapted to 65 degrees C and 70 degrees C were 10(2)- and 10(4)-fold less abundant, respectively. However, enrichment at 70 degrees C favored the least abundant strain. Inoculum dilution and incubation at the habitat temperature favored the more numerically relevant populations. We enriched many other aerobic chemoorganotrophic populations at various inoculum dilutions and substrate concentrations, most of whose 16S rRNA sequences have not been detected in mats. A common feature of numerically relevant cyanobacterial, Chloroflexus-like and aerobic chemorganotrophic populations, is that they grow poorly and resist cultivation on solidified medium, suggesting plating bias, and that the medium composition and incubation conditions may not reflect the natural microenvironments these populations inhabit.
Baxi, Nandita N.
2014-01-01
Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA. PMID:27379328
Baxi, Nandita N
2014-01-01
Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA.
Mehdi, S M; Sarfraz, M; Shabbir, G; Abbas, G
2007-07-15
Saline sodic soils after reclamation become infertile due to leaching of most of the nutrients along with salts from the rooting medium. Microbes can play a vital role in the productivity improvement of such soils. In this study a saline sodic field having EC, 6.5 dS m(-1), pH, 9.1 and gypsum requirement (GR) 3.5 tons acre(-1) was reclaimed by applying gypsum at the rate of 100% GR. Rice and wheat crops were transplanted/sown for three consecutive years. Inorganic nitrogenous fertilizer was used with and without biofertilizers i.e., Biopower (Azospirillum) for rice and diazotroph inoculums for wheat. Nitrogen was applied at the rate of 0, 75% of recommended dose (RD), RD, 125% of RD and 150% of RD. Recommended dose of P without K was applied to all the plots. Biopower significantly improved Paddy and straw yield of rice over inorganic nitrogenous fertilizer. In case of wheat diazotroph inoculum improved grain and straw yield significantly over inorganic nitrogenous fertilizer. Among N fertilizer rates, RD + 25% additional N fertilizer was found to be the best dose for rice and wheat production in recently reclaimed soils. Nitrogen concentration and its uptake by paddy, grain and straw were also increased by biopower and diazotroph inoculum over inorganic nitrogenous fertilizer. Among N fertilizer rates, RD + 25% additional N fertilizer was found to be the best dose for nitrogen concentration and its uptake by paddy, grain and straw. Total soil N, available P and extractable K were increased while salinity/sodicity parameters were decreased with the passage of time. The productivity of the soil was improved more by biofertilizers over inorganic N fertilizers.
Ethanol production from carob extract by using Saccharomyces cerevisiae.
Turhan, Irfan; Bialka, Katherine L; Demirci, Ali; Karhan, Mustafa
2010-07-01
Carob has been widely grown in the Mediterranean region for a long time. It has been regarded as only a forest tree and has been neglected for other economical benefits. However, in recent years, this fruit has gained attention for several applications. As petroleum has become depleted, renewable energy production has started to gain attention all over the world; including the production of ethanol from underutilized agricultural products such as carob. In this project, the optimum extraction conditions were determined for the carob fruit by using the response surface design method. The obtained extract was utilized for production of ethanol by using suspended Saccharomyces cerevisiae fermentation. The effect of various fermentation parameters such as pH, media content and inoculum size were evaluated for ethanol fermentation in carob extract. Also, in order to determine economically appropriate nitrogen sources, four different nitrogen sources were evaluated. The optimum extraction condition for carob extract was determined to be 80 degrees C, 2h in 1:4 dilution rate (fruit: water ratio) according to the result of response surface analysis (115.3g/L). When the fermentation with pH at 5.5 was applied, the final ethanol concentration and production rates were 42.6g/L and 3.37 g/L/h, respectively, which were higher than using an uncontrolled pH. Among inoculum sizes of 1%, 3%, and 5%, 3% was determined as the best inoculum size. The maximum production rate and final ethanol concentration were 3.48 g/L/h and 44.51%, respectively, with an alternative nitrogen source of meat-bone meal. Overall, this study suggested that carob extract can be utilized for production of ethanol in order to meet the demands of renewable energy. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Zhou, Cheng; Liu, Zhang; Huang, Zhao-Lin; Dong, Ming; Yu, Xiao-Long; Ning, Ping
2015-06-01
In considering the impact of inoculation time and the characteristics of composting material and inoculants on the usefulness of inoculation, a new composting strategy has been proposed and studied, in which three inocula were inoculated at three stages of composting process respectively: inoculum A (Thermoactinomyces sp. GF1 and GF2) was inoculated before fermentation to increase or maintain high temperature of pile, inoculum B (Coprinus cinerea and Coprinus comatus) was inoculated after thermophilic phase to promote degradation of lignin, and inoculum C (Trichoderma harzianum and Rhizopus oryzae) was inoculated after 30-day fermentation to promote degradation of cellulose. The results showed that the inoculations could significantly enhance the temperature of pile and the degradation of lignocelluloses. When inocula A, B, and C were inoculated into pile, temperature increased from 25°C to 65°C, from 33°C to 39°C and from 33°C to 38°C respectively and 35% lignin and 43% cellulose had been degraded in inoculated pile compared to the degradation of 15% lignin and 25% cellulose in control pile. As a result, the C/N ratio dropped more rapidly degraded in the inoculated pile (reached 20 after 33-day fermentation) than that in the control pile (reached 21.7 after 45-day fermentation). In addition, the volume loss in inoculated pile (76.5%) was higher than that in control pile (53.2%). The study, therefore, indicated that inoculating proper microorganisms at appropriate time improved the composting process and our new composting strategy would be propitious to the co-composting dairy manure with rice straw. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pachapur, Vinayak Laxman; Kutty, Prianka; Brar, Satinder Kaur; Ramirez, Antonio Avalos
2016-01-01
Anaerobic digestion using mixed-culture with broader choice of pretreatments for hydrogen (H2) production was investigated. Pretreatment of wastewater sludge by five methods, such as heat, acid, base, microwave and chloroform was conducted using crude glycerol (CG) as substrate. Results for heat treatment (100 °C for 15 min) showed the highest H2 production across the pretreatment methods with 15.18 ± 0.26 mmol/L of medium at 30 °C in absence of complex media and nutrient solution. The heat-pretreated inoculum eliminated H2 consuming bacteria and produced twice as much as H2 as compared to other pretreatment methods. The fermentation conditions, such as CG concentration (1.23 to 24 g/L), percentage of inoculum size (InS) (1.23% to 24% v/v) along with initial pH (2.98 to 8.02) was tested using central composite design (CCD) with H2 production as response parameter. The maximum H2 production of 29.43 ± 0.71 mmol/L obtained at optimum conditions of 20 g/L CG, 20% InS and pH 7. Symbiotic correlation of pH over CG and InS had a significant (p-value: 0.0011) contribution to H2 production. The mixed-culture possessed better natural acclimatization activity for degrading CG, at substrate inhibition concentration and provided efficient inoculum conditions in comparison to mono- and co-culture systems. The heat pretreatment step used across mixed-culture system is simple, cheap and industrially applicable in comparison to mono-/co-culture systems for H2 production. PMID:26771607
NASA Astrophysics Data System (ADS)
Lin, Binbin; Ross, Shane D.; Prussin, Aaron J.; Schmale, David G.
2014-09-01
Spores of fungi in the genus Fusarium may be transported through the atmosphere over long distances. New information is needed to characterize seasonal trends in atmospheric loads of Fusarium and to pinpoint the source(s) of inoculum at both local (farm) and regional (state or country) scales. We hypothesized that (1) atmospheric concentrations of Fusarium spores in an agricultural ecosystem vary with height and season and (2) transport distances from potential inoculum source(s) vary with season. To test these hypotheses, spores of Fusarium were collected from the atmosphere in an agricultural ecosystem in Blacksburg, VA, USA using a Burkard volumetric sampler (BVS) 1 m above ground level and autonomous unmanned aerial vehicles (UAVs) 100 m above ground level. More than 2200 colony forming units (CFUs) of Fusarium were collected during 104 BVS sampling periods and 180 UAV sampling periods over four calendar years (2009-2012). Spore concentrations ranged from 0 to 13 and 0 to 23 spores m-3 for the BVS and the UAVs, respectively. Spore concentrations were generally higher in the fall, spring, and summer, and lower in the winter. Spore concentrations from the BVS were generally higher than those from the UAVs for both seasonal and hourly collections. A Gaussian plume transport model was used to estimate distances to the potential inoculum source(s) by season, and produced mean transport distances of 1.4 km for the spring, 1.7 km for the summer, 1.2 km for the fall, and 4.1 km for the winter. Environmental signatures that predict atmospheric loads of Fusarium could inform disease spread, air pollution, and climate change.
Processing of poultry feathers by alkaline keratin hydrolyzing enzyme from Serratia sp. HPC 1383.
Khardenavis, Anshuman A; Kapley, Atya; Purohit, Hemant J
2009-04-01
The present study describes the production and characterization of a feather hydrolyzing enzyme by Serratia sp. HPC 1383 isolated from tannery sludge, which was identified by the ability to form clear zones around colonies on milk agar plates. The proteolytic activity was expressed in terms of the micromoles of tyrosine released from substrate casein per ml per min (U/mL min). Induction of the inoculum with protein was essential to stimulate higher activity of the enzyme, with 0.03% feathermeal in the inoculum resulting in increased enzyme activity (45U/mL) that further increased to 90U/mL when 3d old inoculum was used. The highest enzyme activity, 130U/mL, was observed in the presence of 0.2% yeast extract. The optimum assay temperature and pH for the enzyme were found to be 60 degrees C and 10.0, respectively. The enzyme had a half-life of 10min at 60 degrees C, which improved slightly to 18min in presence of 1mM Ca(2+). Inhibition of the enzyme by phenylmethyl sulfonyl fluoride (PMSF) indicated that the enzyme was a serine protease. The enzyme was also partially inhibited (39%) by the reducing agent beta-mercaptoethanol and by divalent metal ions such as Zn(2+) (41% inhibition). However, Ca(2+) and Fe(2+) resulted in increases in enzyme activity of 15% and 26%, respectively. The kinetic constants of the keratinase were found to be 3.84 microM (K(m)) and 108.7 microM/mLmin (V(max)). These results suggest that this extracellular keratinase may be a useful alternative and eco-friendly route for handling the abundant amount of waste feathers or for applications in other industrial processes.
Pettersson, Marie; Bååth, Erland
2013-08-01
The relationship between community structure and growth and pH tolerance of a soil bacterial community was studied after liming in a reciprocal inoculum study. An unlimed (UL) humus soil with a pH of 4.0 was fumigated with chloroform for 4 h, after which < 1 % of the initial bacterial activity remained. Half of the fumigated soil was experimentally limed (EL) to a pH of 7.6. Both the UL and the EL soil were then reciprocally inoculated with UL soil or field limed (FL) soil with a pH of 6.2. The FL soil was from a 15-year-old experiment. The structural changes were measured on both bacteria in soil and on bacteria able to grow on agar plates using phospholipids fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analysis. The developing community pH tolerance and bacterial growth were also monitored over time using thymidine incorporation. The inoculum source had a significant impact on both growth and pH tolerance of the bacterial community in the EL soil. These differences between the EL soil inoculated with UL soil and FL soil were correlated to structural changes, as evidenced by both PLFA and DGGE analyses on the soil. Similar correlations were seen to the fraction of the community growing on agar plates. There were, however, no differences between the soil bacterial communities in the unlimed soils with different inocula. This study showed the connection between the development of function (growth), community properties (pH tolerance) and the structure of the bacterial community. It also highlighted the importance of both the initial properties of the community and the selection pressure after environmental changes in shaping the resulting microbial community.
Birch, Heidi; Hammershøj, Rikke; Comber, Mike; Mayer, Philipp
2017-10-01
Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons. A new biodegradation method for testing mixtures of hydrophobic chemicals at trace concentrations was demonstrated: Aqueous solutions containing 9 hydrocarbons were generated by passive dosing and diluted with surface water resulting in test systems containing native microorganisms exposed to test substances at ng-μg/L levels. Automated Headspace Solid Phase Microextraction coupled to GC-MS was applied directly to these test systems to determine substrate depletion relative to abiotic controls. Lag phases were generally less than 8 days. First order rate constants were within one order of magnitude for each hydrocarbon in four of the five waters but lower in water from a rural lake. The sequence of degradation between the 9 hydrocarbons showed similar patterns in the five waters indicating the potential for using selected hydrocarbons for benchmarking between biodegradation tests. Degradation half-times were shorter than or within one order of magnitude of BioHCwin predictions for 8 of 9 hydrocarbons. These results showed that location choice is important for biodegradation kinetics and can provide a relevant input to aquatic exposure and fate models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jiao, Rui; Gao, Jina; Zhang, Xiyan; Zhang, Maofeng; Chen, Jiren; Wu, Qingping; Zhang, Jumei; Ye, Yingwang
2017-03-01
Vacuum freeze-drying is an important food-processing technology for valid retention of nutrients and bioactive compounds. Cronobacter sakazakii has been reported to be associated with severe infections in neonates through consumption of contaminated powdered infant formula. In this study, effects of vacuum freeze-drying treatment for 12, 24, and 36 h on inactivation of C. sakazakii with different initial inoculum levels in sterile water, tryptic soy broth (TSB), skim milk, and whole milk were determined. Results indicated that the lethality rate of C. sakazakii in each sample increased with the extension of vacuum freeze-drying time. With initial inoculum levels of 10 2 and 10 3 cfu/mL, the survival of C. sakazakii in different liquid media was significantly affected by vacuum freeze-drying for 12, 24, and 36 h. In addition, the lethality rates of C. sakazakii in whole milk, skim milk, and TSB was significantly reduced compared with those in sterile water. Furthermore, whole milk showed the strongest protective role for C. sakazakii cells, followed by skim milk and TSB medium. Using the scanning electron microscope, the intracellular damage and obvious distortion of C. sakazakii cells were observed after vacuum freeze-drying for 24 and 36 h compared with the untreated sample, and the injured cells increased with the extension of vacuum-drying time. We concluded that inactivation of vacuum freeze-drying on C. sakazakii cells is related to the food matrix, and a combination with other methods for inactivating C. sakazakii is required for ensuring microbial safety of powdered infant formula. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Awobusuyi, Temitope D; Siwela, Muthulisi; Kolanisi, Unathi; Amonsou, Eric O
2016-03-15
Vitamin A deficiency is a major public health problem in sub-Saharan Africa. Amahewu is a popular southern African lactic acid fermented non-alcoholic maize-based beverage, which is deficient in vitamin A. In this study, provitamin A retention and sensory acceptability of amahewu processed using provitamin A-biofortified maize and three types of inoculums during fermentation (malted maize, wheat bran and Lactobacillus starter culture) were investigated. The total provitamin A content of amahewu samples, estimated as β-carotene, β-cryptoxanthin and α-carotene content, ranged from 3.3 to 3.8 g kg(-1) (dry weight). Provitamin A was substantially retained (79- 90% β-carotene equivalent) in amahewu after fermentation. Amahewu samples prepared with added starter cultures had the lowest retention of provitamin A. Consumers (approx. 69%) liked provitamin A-biofortified amahewu either moderately or very much. Principal component analysis of amahewu sensory data showed that 71% of variation was due to maize types and 18% of variation could be due to the inoculum used during fermentation. Amahewu samples prepared using provitamin A-biofortified maize were slightly more liked (mean score: 7.0 ± 1.2) compared to those of white maize reference samples. The use of starter culture combined with either malted maize or wheat bran as inoculum during fermentation improved the taste and aroma of amahewu and hence its acceptability. Provitamin A is substantially retained in amahewu after fermentation. The slightly high acceptability of amahewu prepared using provitamin A-biofortified maize compared to that of white maize thus suggests that fermented product like amahewu can potentially be used to deliver provitamin A to vulnerable individuals. © 2015 Society of Chemical Industry.
Konold, Timm; Lee, Yoon Hee; Stack, Michael J; Horrocks, Claire; Green, Robert B; Chaplin, Melanie; Simmons, Marion M; Hawkins, Steve AC; Lockey, Richard; Spiropoulos, John; Wilesmith, John W; Wells, Gerald AH
2006-01-01
Background Given the theoretical proposal that bovine spongiform encephalopathy (BSE) could have originated from sheep scrapie, this study investigated the pathogenicity for cattle, by intracerebral (i.c.) inoculation, of two pools of scrapie agents sourced in Great Britain before and during the BSE epidemic. Two groups of ten cattle were each inoculated with pools of brain material from sheep scrapie cases collected prior to 1975 and after 1990. Control groups comprised five cattle inoculated with sheep brain free from scrapie, five cattle inoculated with saline, and for comparison with BSE, naturally infected cattle and cattle i.c. inoculated with BSE brainstem homogenate from a parallel study. Phenotypic characterisation of the disease forms transmitted to cattle was conducted by morphological, immunohistochemical, biochemical and biological methods. Results Disease occurred in 16 cattle, nine inoculated with the pre-1975 inoculum and seven inoculated with the post-1990 inoculum, with four cattle still alive at 83 months post challenge (as at June 2006). The different inocula produced predominantly two different disease phenotypes as determined by histopathological, immunohistochemical and Western immunoblotting methods and biological characterisation on transmission to mice, neither of which was identical to BSE. Whilst the disease presentation was uniform in all scrapie-affected cattle of the pre-1975 group, the post-1990 inoculum produced a more variable disease, with two animals sharing immunohistochemical and molecular profile characteristics with animals in the pre-1975 group. Conclusion The study has demonstrated that cattle inoculated with different pooled scrapie sources can develop different prion disease phenotypes, which were not consistent with the phenotype of BSE of cattle and whose isolates did not have the strain typing characteristics of the BSE agent on transmission to mice. PMID:17044917
Martyniuk, Stefan; Stochmal, Anna; Macías, Francisco A; Marín, David; Oleszek, Wieslaw
2006-02-22
The benzoxazolinones benzoxazolin-2(3H)-one (BOA) and 6-methoxybenzoxazolin-2(3H)-one (MBOA) and selected degradation products of these compounds were examined for their in vitro antifungal activity against Cephalosporium gramineum, Gaeumannomyces graminis var. graminis, and Fusarium culmorum. BOA was also applied to the soil-incorporated inoculum of C. gramineum to test its capability of reducing Cephalosporium stripe disease in winter wheat. MBOA reduced the mycelial growth of G. graminis var. tritici, C. gramineum, and F. culmorum by 50% (EC50) at the concentrations of 77, 134, and 271 microg/mL of corn meal agar, respectively, and the corresponding BOA EC50 values for the fungi were 11, 189, and 456 microg/mL. BOA degradation products 2-amino-3H-phenoxazin-3-one (APO), 2-acetylamino-3H-phenoxazin-3-one (AAPO), and o-aminophenol (o-AP) were much more inhibitory to the growth of C. gramineum and G. graminis var. tritici than the parent compounds. APO, AAPO, and o-AP EC50 values were found to be as low as 0.58, 4.57, and 1.4 microg/mL, respectively, for C. gramineum and 0.78, 2.18, and 0.80 microg/mL for G. graminis var. tritici. These compounds applied at the corresponding concentrations did not significantly affect the mycelial growth of F. culmorum. The treatment of C. gramineum inoculum with a 1% water solution of BOA resulted in a significant reduction infection of winter wheat with C. gramineum as compared to the control with the untreated inoculum,but this treatment was not as effective as the application of a commercial fungicide.
Mendonça Costa, Mônica Sarolli Silva de; Lucas, Jorge de; Mendonça Costa, Luiz Antonio de; Orrico, Ana Carolina Amorim
2016-02-01
The increasing demand for animal protein has driven significant changes in cattle breeding systems, mainly in feedlots, with the use of young bulls fed on diets richer in concentrate (C) than in forage (F). These changes are likely to affect animal manure, demanding re-evaluation of the biogas production per kg of TS and VS added, as well as of its agronomic value as a biofertilizer, after anaerobic digestion. Here, we determined the biogas production and agronomic value (i.e., the macronutrient concentration in the final biofertilizer) of the manure of young bulls fed on diets with more (80% C+20% F; 'HighC' diet) or less (65% C+35% F; 'LowC' diet) concentrate, evaluating the effects of temperature (25, 35, and 40°C) and the use of an inoculum, during anaerobic digestion. A total of 24 benchtop reactors were used, operating in a semi-continuous system, with a 40-day hydraulic retention time (HRT). The manure from animals given the HighC diet had the greatest potential for biogas production, when digested with the use of an inoculum and at 35 or 40°C (0.6326 and 0.6207m(3)biogas/kg volatile solids, or VS, respectively). We observed the highest levels of the macronutrients N, P, and K in the biofertilizer from the manure of animals given HighC. Our results show that the manure of young bulls achieves its highest potential for biogas production and agronomic value when animals are fed diets richer in concentrate, and that biogas production increases if digestion is performed at higher temperatures, and with the use of an inoculum. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rockx-Brouwer, Dedeke; Chong, Audrey; Wehrly, Tara D.; Child, Robert; Crane, Deborah D.
2012-01-01
Tularemia, caused by the Gram-negative bacterium Francisella tularensis, is a severe, sometimes fatal disease. Interest in tularemia has increased over the last decade due to its history as a biological weapon. In particular, development of novel vaccines directed at protecting against pneumonic tularemia has been an important goal. Previous work has demonstrated that, when delivered at very high inoculums, administration of live, highly attenuated strains of virulent F. tularensis can protect against tularemia. However, lower vaccinating inoculums did not offer similar immunity. One concern of using live vaccines is that the host may develop mild tularemia in response to infection and use of high inoculums may contribute to this issue. Thus, generation of a live vaccine that can efficiently protect against tularemia when delivered in low numbers, e.g. <100 organisms, may address this concern. Herein we describe the ability of three defined, attenuated mutants of F. tularensis SchuS4, deleted for FTT0369c, FTT1676, or FTT0369c and FTT1676, respectively, to engender protective immunity against tularemia when delivered at concentrations of approximately 50 or fewer bacteria. Attenuated strains for use as vaccines were selected by their inability to efficiently replicate in macrophages in vitro and impaired replication and dissemination in vivo. Although all strains were defective for replication in vitro within macrophages, protective efficacy of each attenuated mutant was correlated with their ability to modestly replicate and disseminate in the host. Finally, we demonstrate the parenteral vaccination with these strains offered superior protection against pneumonic tularemia than intranasal vaccination. Together our data provides proof of principle that low dose attenuated vaccines may be a viable goal in development of novel vaccines directed against tularemia. PMID:22662210
Effect of Sodium Chloride and pH on Enterotoxin C Production
Genigeorgis, Constantin; Foda, Mohamed S.; Mantis, Antony; Sadler, Walter W.
1971-01-01
Growth and production of enterotoxin C by Staphylococcus aureus strain 137 in 3% + 3% protein hydrolysate powder N-Z Amine NAK broths with 0 to 12% NaCl and an initial pH of 4.00 to 9.83 were studied during an 8-day incubation period at 37 C. Growth was initiated at pH values as low as 4.00 and as high as 9.83 at 0% salt level as long as the inoculum contained at least 108 cells per ml. Rate of growth decreased as the NaCl concentration was increased gradually to 12%. Enterotoxin C was produced in broths inoculated with 108 cells per ml and above and having initial pH ranges of 4.00 to 9.83, 4.40 to 9.43, 4.50 to 8.55 and respective NaCl concentrations of 0, 4, and 8%. In the presence of 10% NaCl, the pH range supporting enterotoxin C production was 5.45 to 7.30 for an inoculum level of 108 cells per ml and 6.38 to 7.30 for 3.6 × 106 cells per ml. In repeated experiments in which the inoculum contained 108 cells per ml, we failed to demonstrate enterotoxin C production in broths with 12% NaCl and a pH range of 4.50 to 8.55 and concentrated up to 14 times. The effect of NaCl on enterotoxin C production followed the same pattern as its effect on enterotoxin B production. As the concentration of NaCl increased from 0 to 10%, yields of enterotoxin B and C decreased to undetectable amounts. PMID:5574320
El-Naggar, Noura El-Ahmady; Abdelwahed, Nayera A M; Darwesh, Osama M M
2014-04-01
The current research was focused on the extracellular biosynthesis of bactericidal silver nanoparticles (AgNPs) using cell-free supernatant of a local isolate previously identified as a novel Streptomyces aegyptia NEAE 102. The biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102 was quite fast and required far less time than previously published strains. The produced particles showed a single surface plasmon resonance peak at 400 nm by UV-Vis spectroscopy, which confirmed the presence of AgNPs. Response surface methodology was chosen to evaluate the effects of four process variables (AgNO3 concentration, incubation period, pH levels, and inoculum size) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. Statistical analysis of the results showed that the linear and quadratic effects of incubation period, initial pH, and inoculum size had a significant effect (p < 0.05) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. The maximum silver nanoparticles biosynthesis (2.5 OD, at 400 nm ) was achieved in runs number 5 and 14 under the conditions of 1 mM AgNO3 (1-1.5% (v/v)), incubation period (72-96 h), initial pH (9-10), and inoculum size (2-4% (v/v)). An overall 4-fold increase in AgNPs biosynthesis was obtained as compared with that of unoptimized conditions. The biosynthesized silver nanoparticles were characterized using UV-VIS spectrophotometer and Fourier transform infrared spectroscopy analysis, in addition to antimicrobial properties. The biosynthesized AgNPs significantly inhibited the growth of medically important pathogenic gram-positive (Staphylococcus aureus) and gram-negative bacteria (Pseudomonas aeruginosa) and yeast (Candida albicans).
O'Donnell, Michelle M; Rea, Mary C; O'Sullivan, Órla; Flynn, Cal; Jones, Beth; McQuaid, Albert; Shanahan, Fergus; Ross, R Paul
2016-10-01
In-vitro gut fermentation systems provide suitable models for studying gut microbiota composition and functionality. However, such methods depend on the availability of donors and the assumption of reproducibility between microbial communities before experimental treatments commence. The aim of this study was to develop a frozen standardised inoculum (FSI) which minimizes inter-individual variation and to determine its stability over time using culture-dependent and culture-independent techniques. A method for the preparation difference of a FSI is described which involves pooling the faecal samples, centrifugation and pelleting of the cell biomass and finally homogenising the cell pellets with phosphate buffer and glycerol. Using this approach, no significant difference in total anaerobe cell viability was observed between the fresh standardised inoculum (before freezing) and the 12days post freezing FSI. Moreover, Quantitative PCR revealed no significant alterations in the estimated bacterial numbers in the FSI preparations for any of the phyla. MiSeq sequencing revealed minute differences in the relative abundance at phylum, family and genus levels between the FSI preparations. Differences in the microbiota denoted as significant were limited between preparations in the majority of cases to changes in percentage relative abundance of ±0.5%. The independently prepared FSIs revealed a high degree of reproducibility in terms of microbial composition between the three preparations. This study provides a method to produce a standardised human faecal inoculum suitable for freezing. Based on culture-dependent and independent analysis, the method ensures a degree of reproducibility between preparations by lessening the effect of inter-individual variation among the donors, thereby making the system more suitable for the accurate interpretation of the effects of experimental treatments. Copyright © 2016 Elsevier B.V. All rights reserved.
Boyer, J N
1994-01-01
Potential rates of chitin degradation (Cd) and mineralization (Cm) by estuarine water and sediment bacteria were measured as a function of inoculum source, temperature, and oxygen condition. In the water column inoculum, 88 to 93% of the particulate chitin was mineralized to CO2 with no apparent lag between degradation and mineralization. No measurable dissolved pool of radiolabel was found in the water column. For the sediment inocula, 70 to 90% of the chitin was degraded while only 55 to 65% was mineralized to CO2. 14C label recoveries in the dissolved pool were 19 to 21% for sand, 17 to 24% in aerobic mud, and 12 to 21% for the anaerobic mud. This uncoupling between degradation and mineralization occurred in all sediment inocula. More than 98% of the initial 14C-chitin was recovered in the three measured fractions. The highest Cd and Cm values, 30 and 27% day-1, occurred in the water column inoculum at 25 degrees C. The lowest Cd and Cm values were found in the aerobic and anaerobic mud inocula incubated at 15 degrees C. Significant differences in Cd and Cm values among water column and sediment inocula as well as between temperature treatments were evident. An increased incubation temperature resulted in shorter lag times before the onset of chitinoclastic bacterial growth, degradation, and mineralization and resulted in apparent Q10 values of 1.1 for water and 1.3 to 2.1 for sediment inocula. It is clear that chitin degradation and mineralization occur rapidly in the estuary and that water column bacteria may be more important in this process than previously acknowledged. PMID:8117075
Optimization of the liquid biofertilizer production in batch fermentation with by-product from MSG
NASA Astrophysics Data System (ADS)
Namfon, Panjanapongchai; Ratchanok, Sahaworarak; Chalida, Daengbussade
2017-03-01
The long term use of chemical fertilizers destroyed the friability of soil which obviously decreased quantity and quality of crops and especially affect microorganisms living in soils. The bio-fertilizer with microbial consortium is an environmental friendly alternative to solve this bottleneck due to harboring soil microorganisms such as Bacillus sp., Micrococcus sp., Pseudomonas sp., Staphylococcus sp. and Deinococcus sp. produced with natural by-product or waste from industries that is alternative and sustainable such as nutrient-rich (by-product) from Mono Sodium Glutamate (MSG) for producing liquid biofertilizer by batch fermentation. In this work, the concentration of reducing sugar from substrate as main carbon source was evaluated in shake flask with mixed cultures. The optimal conditions were studied comparing with two levels of reducing sugar concentration (10, 20 g/L) and inoculums concentration (10, 20 %v/v) with using (2×2) full factorial design. The results indicated that the by-product from monosodium glutamate is feasible for fermentation and inoculums concentration is mainly influenced the batch fermentation process. Moreover, the combined 20 g/L and 10%v/v were considerably concluded as an optimal condition, of which the concentration of vegetative cells and spores attained at 8.29×109 CFU/mL and 1.97×105 CFU/mL, respectively. Their spores cell yields from reducing sugar (Yx/s) were obtained at 1.22×106 and 3.34×105 CFU/g were markedly different. In conclusion, the liquid Biofertilizer was produced satisfactorily at 20 g/L reducing sugar and 10% v/v inoculums in shake flask culture. Moreover, these results suggested that the by-product from monosodium glutamate is feasible for low-cost substrate in economical scale and environmental-friendly.
Cotter, John J; O'Gara, James P; Casey, Eoin
2009-08-01
Biofilm-related research using 96-well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96-well plates irrespective of the oxygen concentration in the gaseous environment in which the plates are incubated. These data indicate that depletion of dissolved oxygen during growth of bacterial biofilm cultures in 96-well plates may significantly influence biofilm production. Furthermore higher inoculum cell concentrations are associated with more rapid consumption of dissolved oxygen and higher levels of S. epidermidis biofilm production. Our data reveal that oxygen depletion during bacterial growth in 96-well plates may significantly influence biofilm production and should be considered in the interpretation of experimental data using this biofilm model.
Production of electricity from proteins using a microbial fuel cell.
Heilmann, Jenna; Logan, Bruce E
2006-05-01
Electricity generation was examined from proteins and a protein-rich wastewater using a single chamber microbial fuel cell (MFC). The maximum power densities achieved were 354 +/- 10 mW/m2 using bovine serum albumin (BSA) and 269 +/- 14 mW/m2 using peptone (1100 mg/L BSA and 300 mg/L peptone). The recovery of organic matter as electricity, defined as the Coulombic efficiency (CE), was comparable to that obtained with other substrates with CE = 20.6% for BSA and CE = 6.0% for peptone. A meat packing wastewater (MPW), diluted to 1420 mg/L chemical oxygen demand, produced 80 +/- 1 mW/m2, and power was increased by 33% by adding salt (300 mg/L sodium chloride) to increase solution conductivity. A wastewater inoculum generated 33% less power than the MPW inoculum. The MFC was an effective method of wastewater treatment, demonstrated by >86% of biochemical oxygen demand and total organic carbon removal from wastewater.
NASA Astrophysics Data System (ADS)
Nursiwi, A.; Ishartani, D.; Sari, AM; Nisyah, K.
2018-01-01
Lamtoro (Leucaena leucocephala) seed is one of the leguminosae which have high level of protein but it contains toxic compound such as mimosine and some anti nutritional compounds such as phitic acid and tannin. The objectives of the research was to investigate the sensory characteristic and the changes onanti nutritional compounds and mimosine level in Leucaena leucochepala seed during fermentation. Lamtoro tempeh processing was carried out by boiling the seed, crushing to separate the hull, soaking, boiling, and fermentation. The best concentration inoculum in lamtoro tempeh processing was determined by hedonic test. Fermentation was carried out in 36 hours and every 6 hours mimosine, tannin, and phitic acid content was analyzed. From hedonic test, inoculum concentration of 1% was used in lamtoro tempeh processing. During 36 hours fermentation, phytic acid content and mimosine content was decreased significantly, from 0.0558 % to 0.0453 % and from 0.00393 % to 0.00173 % respectively. Whereas tannin content was increased signifacantly, from 0.0822 % to 0.00173 %.
Biochemical methane potential (BMP) of agro-food wastes from the Cider Region (Spain).
Nieto, P P; Hidalgo, D; Irusta, R; Kraut, D
2012-01-01
An inventory of agro-food industry organic waste streams with a high potential for biogas transformation was studied in a logistically viable area (Cider Region, Asturias, Spain). Three industries were selected as the most viable ones: livestock, dairy and beverage. The potential for methane production from six wastes (beverage waste, BW; milled apple waste, MA; milk waste, MK; yogurt waste, YG; fats and oils from dairy wastewater treatment, F&O and cattle manure, CM) at five different substrate:inoculum ratios (0.25, 0.50, 0.75, 1.00 and 1.50) was evaluated in laboratory batch assays. Obtained methane yields ranged from 202-549 mL STP CH(4)·g VS waste(-1), and the methane content in biogas ranged from 58-76%. The ultimate practical biochemical methane potentials were slightly affected by the substrate:inoculum ratio. The estimation of the regional fluxes of waste and methane potentials suggests anaerobic digestion as a sustainable solution for the valorization of the organic wastes generated in this Region.
Colla, Eliane; Santos, Lucielen Oliveira; Deamici, Kricelle; Magagnin, Glênio; Vendruscolo, Mauricio; Costa, Jorge Alberto Vieira
2017-02-01
Simultaneous production of amyloglucosidase (AMG) and exo-polygalacturonase (exo-PG) was carried out by Aspergillus niger in substrate of defatted rice bran in a rotating drum bioreactor (RDB) and studied by a 3 1 × 2 2 factorial experimental design. Variables under study were A. niger strains (A. niger NRRL 3122 and A. niger t0005/007-2), types of inoculum (spore suspension and fermented bran), and types of inducer (starch, pectin, and a mix of both). Solid-state fermentation process (SSF) was conducted at 30 °C under 60-vvm aeration for 96 h in a pilot scale. Production of AMG and exo-PG was significantly affected by the fungal strain and the type of inoculum, but inducers did not trigger any significant effect, an evidence of the fact that these enzymes are constitutive. The maximum activity of exo-PG was 84 U g dm -1 whereas the maximum yield of AMG was 886.25 U g dm -1 .
Rapid start-up of one-stage deammonification MBBR without addition of external inoculum.
Kanders, Linda; Ling, Daniel; Nehrenheim, Emma
2016-12-01
In recent years, the anammox process has emerged as a useful method for robust and efficient nitrogen removal in wastewater treatment plants (WWTPs). This paper evaluates a one-stage deammonification (nitritation and anammox) start-up using carrier material without using anammox inoculum. A continuous laboratory-scale process was followed by full-scale operation with reject water from the digesters at Bekkelaget WWTP in Oslo, Norway. A third laboratory reactor was run in operational mode to verify the suitability of reject water from thermophilic digestion for the deammonification process. The two start-ups presented were run with indigenous bacterial populations, intermittent aeration and dilution, to favour growth of the anammox bacterial branches. Evaluation was done by chemical and fluorescence in situ hybridization analyses. The results demonstrate that anammox culture can be set up in a one-stage process only using indigenous anammox bacteria and that a full-scale start-up process can be completed in less than 120 days.
Integrated bioconversion of syngas into bioethanol and biopolymers.
Lagoa-Costa, Borja; Abubackar, Haris Nalakath; Fernández-Romasanta, María; Kennes, Christian; Veiga, María C
2017-09-01
Syngas bioconversion is a promising method for bioethanol production, but some VFA remains at the end of fermentation. A two-stage process was set-up, including syngas fermentation as first stage under strict anaerobic conditions using C. autoethanogenum as inoculum, with syngas (CO/CO 2 /H 2 /N 2 , 30/10/20/40) as gaseous substrate. The second stage consisted in various fed-batch assays using a highly enriched PHA accumulating biomass as inoculum, where the potential for biopolymer production from the remaining acetic acid at the end of the syngas fermentation was evaluated. All of the acetic acid was consumed and accumulated as biopolymer, while ethanol and 2,3-butanediol remained basically unused. It can be concluded that a high C/N ratio in the effluent from the syngas fermentation stage was responsible for non-consumption of alcohols. A maximum PHA content of 24% was reached at the end of the assay. Copyright © 2017 Elsevier Ltd. All rights reserved.
Titanium-tethered vancomycin prevents resistance to rifampicin in Staphylococcus aureus in vitro.
Rottman, Martin; Goldberg, Joel; Hacking, S Adam
2012-01-01
Rifampicin is currently recognized as the most potent drug against Gram positive implant related infections. The use of rifampicin is limited by the emergence of bacterial resistance, which is often managed by coadministration of a second antibiotic. The purpose of this study was to determine the effectiveness of soluble rifampicin in combination with vancomycin tethered to titanium metal as a means to control bacterial growth and resistance in vitro. Bacterial growth was inhibited when the vancomycin-tethered titanium discs were treated with Staphylococcus aureus inocula of ≤2×10⁶ CFU, however inocula greater than 2×10⁶ CFU/disc adhered and survived. The combination of surface-tethered vancomycin with soluble rifampicin enhanced the inhibitory effect of rifampicin for an inoculum of 10⁶ CFU/cm² by one dilution (combination MIC of 0.008 mg/L versus 0.015 mg/L for rifampicin alone). Moreover, surface tethered vancomycin prevented the emergence of a rifampicin resistant population in an inoculum of 2×10⁸ CFU.
Titanium-Tethered Vancomycin Prevents Resistance to Rifampicin in Staphylococcus aureus in vitro
Hacking, S. Adam
2012-01-01
Rifampicin is currently recognized as the most potent drug against Gram positive implant related infections. The use of rifampicin is limited by the emergence of bacterial resistance, which is often managed by coadministration of a second antibiotic. The purpose of this study was to determine the effectiveness of soluble rifampicin in combination with vancomycin tethered to titanium metal as a means to control bacterial growth and resistance in vitro. Bacterial growth was inhibited when the vancomycin-tethered titanium discs were treated with Staphylococcus aureus inocula of ≤2×106 CFU, however inocula greater than 2×106 CFU/disc adhered and survived. The combination of surface-tethered vancomycin with soluble rifampicin enhanced the inhibitory effect of rifampicin for an inoculum of 106 CFU/cm2 by one dilution (combination MIC of 0.008 mg/L versus 0.015 mg/L for rifampicin alone). Moreover, surface tethered vancomycin prevented the emergence of a rifampicin resistant population in an inoculum of 2×108 CFU. PMID:23285213
Chemometric approach to texture profile analysis of kombucha fermented milk products.
Malbaša, Radomir; Jevrić, Lidija; Lončar, Eva; Vitas, Jasmina; Podunavac-Kuzmanović, Sanja; Milanović, Spasenija; Kovačević, Strahinja
2015-09-01
In the present work, relationships between the textural characteristics of fermented milk products obtained by kombucha inoculums with various teas were investigated by using chemometric analysis. The presented data which describe numerically the textural characteristics (firmness, consistency, cohesiveness and index of viscosity) were analysed. The quadratic correlation was determined between the textural characteristics of fermented milk products obtained at fermentation temperatures of 40 and 43 °C, using milk with 0.8, 1.6 and 2.8% milk fat and kombucha inoculums cultivated on the extracts of peppermint, stinging nettle, wild thyme and winter savory. Hierarchical cluster analysis (HCA) was performed to identify the similarities among the fermented products. The best mathematical models predicting the textural characteristics of investigated samples were developed. The results of this study indicate that textural characteristics of sample based on winter savory have a significant effect on textural characteristics of samples based on peppermint, stinging nettle and wild thyme, which can be very useful in the determination of products texture profile.
Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation.
Tan, Yulong; Leonhard, Matthias; Ma, Su; Schneider-Stickler, Berit
2016-11-01
Non-albicans Candida species have been isolated in increasing numbers in patients. Moreover, they are adept at forming biofilms. This study analyzed biofilm formation of clinically isolated non-albicans Candida, including Candida tropicalis, Candida krusei and Candida parapsilosis under the influence of different growth media (RPMI 1640, YPD and BHI) and several culture variables (inoculum concentration, incubation period and feeding conditions). The results showed that culture conditions strongly influenced non-albicans Candida species biofilm formation. YPD and BHI resulted in larger amount of biofilm formation with higher metabolic activity of biofilms. Furthermore, the growth media seems to have varying effects on adhesion and biofilm development. Growth conditions may also influence biofilm formation, which was enhanced when starting the culture with a larger inoculum, longer incubation period and using a fed-batch system. Therefore, the potential influences of external environmental factors should be considered when studying the non-albicans Candida biofilms in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.
Ojiambo, Peter S; Gent, David H; Quesada-Ocampo, Lina M; Hausbeck, Mary K; Holmes, Gerald J
2015-01-01
The resurgence of cucurbit downy mildew has dramatically influenced production of cucurbits and disease management systems at multiple scales. Long-distance dispersal is a fundamental aspect of epidemic development that influences the timing and extent of outbreaks of cucurbit downy mildew. The dispersal potential of Pseudoperonospora cubensis appears to be limited primarily by sporangia production in source fields and availability of susceptible hosts and less by sporangia survival during transport. Uncertainty remains regarding the role of locally produced inoculum in disease outbreaks, but evidence suggests multiple sources of primary inoculum could be important. Understanding pathogen diversity and population differentiation is a critical aspect of disease management and an active research area. Underpinning advances in our understanding of pathogen biology and disease management has been the research capacity and coordination of stakeholders, scientists, and extension personnel. Concepts and approaches developed in this pathosystem can guide future efforts when responding to incursions of new or reemerging downy mildew pathogens.
Valorization of indigenous dairy cattle breed through salami production.
Gaglio, Raimondo; Francesca, Nicola; Maniaci, Giuseppe; Corona, Onofrio; Alfonzo, Antonio; Giosuè, Cristina; Di Noto, Annamaria; Cardamone, Cinzia; Sardina, Maria Teresa; Portolano, Baldassare; Alabiso, Marco
2016-04-01
The aim of the research was to produce salami manufactured with meat of three different commercial categories of bovine breed: cow on retirement, beef and young bull. A total of six experimental productions, at small-scale plant, were carried out with and without starter culture inoculums. The evolution of physico-chemical parameters in all trials followed the trend already registered for other fermented meat products. Several LAB species were found during process with different levels of species diversity and frequency of isolation among inoculated (mainly Pediococcus pentosaceus and Staphylococcus xylosus) and uninoculated (mainly Enterococcus devriesei, Lactobacillus curvatus and Lactobacillus sakei) trials. Enterobacteriaceae were found at very low levels during the entire ripening period and no pathogenic bacteria were found in any samples. The multivariate analysis showed that starter inoculums and meat affected significantly the physico-chemical and the microbiological composition of salami. The sensory analysis evidenced the highest overall acceptability was displayed by salami produced with meat from cow on retirement. Copyright © 2015 Elsevier Ltd. All rights reserved.
Janke, Leandro; Weinrich, Sören; Leite, Athaydes F; Schüch, Andrea; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter
2017-12-01
Anaerobic digestion of sugarcane straw co-digested with sugarcane filter cake was investigated with a special focus on macronutrients supplementation for an optimized conversion process. Experimental data from batch tests and a semi-continuous experiment operated in different supplementation phases were used for modeling the conversion kinetics based on continuous stirred-tank reactors. The semi-continuous experiment showed an overall decrease in the performance along the inoculum washout from the reactors. By supplementing nitrogen alone or in combination to phosphorus and sulfur the specific methane production significantly increased (P<0.05) by 17% and 44%, respectively. Although the two-pool one-step model has fitted well to the batch experimental data (R 2 >0.99), the use of the depicted kinetics did not provide a good estimation for process simulation of the semi-continuous process (in any supplementation phase), possibly due to the different feeding modes and inoculum source, activity and adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing
2016-10-01
The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimization of trehalose production by a novel strain Brevibacterium sp. SY361.
Wang, Lei; Huang, Rui; Gu, Guanbin; Fang, Hongying
2008-10-01
Trehalose production by a novel strain of Brevibacterium sp. SY361 was optimized in submerged fermentation. Different chemical and physical parameters such as carbon and nitrogen sources, inoculum level, initial pH, incubation temperature, aeration and time-course of fermentation, were studied in order to increase trehalose productivity. An optimal production medium containing 3% (w/v) glucose, 0.9% (v/v) corn steep liquor, 0.5% (w/v) KH(2)PO(4) and 0.4% (w/v) MgSO(4).7 H(2)O was found suitable for trehalose production. An optimal volume of medium in a 500 ml flask was 80 ml. The optimal levels of other parameters were 4.0% (v/v) of inoculum, initial pH of 6.0, incubation temperature of 28-32 degrees C and time-course of 60 h. Optimized parameters gave a maximum trehalose of 12.2 mg/ml with a conversion rate of 58.4%. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Perner, Henrike; Rohn, Sascha; Driemel, Gregor; Batt, Natalie; Schwarz, Dietmar; Kroh, Lothar W; George, Eckhard
2008-05-28
The aim of the present study was to test whether variations in the root environment affect the content of health-related organosulfur compounds, total phenolic compounds, and flavonol glycoside concentrations in onions. For this purpose, greenhouse-grown onions ( Allium cepa L.) were either inoculated with a commercial arbuscular mycorrhizal inoculum or a sterile inoculum and were provided with two NH(4)(+):NO(3)(-) ratios as a nitrogen source. Onion growth, arbuscular mycorrhizal colonization rate, sugars, and nutrient element concentrations were also quantified. The plant antioxidant activity and quercetin monoglucoside and organosulfur compound concentrations increased with dominant nitrate supply. Furthermore, mycorrhizal colonization increased the antioxidant activity and also concentrations of the major quercetin glucosides. The present study provides clear evidence that antioxidant activity, quercetin glycosides, and organosulfur compounds can be increased in sufficiently supplied onion plants by dominant nitrate supply or application of arbuscular mycorrhizal fungi. This was probably due to increased precursor production and induced defense mechanisms.
Preparation and Antioxidant Activity of Purple Potato Wine
Zhong-hua, Liu; Jie, Guo
2015-01-01
Purple potatoes were used as raw material to study the purple potato wine production process and antioxidant activity. This paper analyzed different fermentation time, fermentation temperature, yeast inoculum, initial pH, the initial sugar content on alcohol and anthocyanin contents of purple potato wine by single factor experiments and response surface methodology(RSM). The results showed that the optimum fermentation conditions of purple potato wine were as follows: fermentation temperature was 26oC, yeast inoculum was 0.15%, fermentation time was 7 d, initial pH was 3.0 and initial sugar content was 11 %. Under these conditions the alcohol and anthocyanin contents of purple potato wine could reach 10.55%/Vol and 6.42 μg/mL, respectively. The purple potato wine was purple, bright in colour, pleasant fragrance and pure taste. Prepared purple potato wine had the ability of reducing Fe3+ and scavenging superoxide anion radicals, which meant that purple potato wine had certain antioxidant activity. PMID:26998173
Thomas, Jibu; Jayachithra, E V
2015-11-01
Economically viable production facilities for microalgae depend on the optimization of growth parameters with regard to nutrient requirements. Using microalgae to treat industrial effluents containing heavy metals presents an alternative to the current practice of using physical and chemical methods. Present work focuses on the statistical optimization of growth of Chlorococcum humicola to ascertain the maximum production of biomass. Plackett Burman design was carried out to screen the significant variables influencing biomass production. Further, Response Surface Methodology was employed to optimize the effect of inoculum, light intensity and pH on net biomass yield. Optimum conditions for maximum biomass yield were identified to be inoculum at 15%, light intensity to be 1500lx and pH 8.5. Theoretical and predicted values were in agreement and thus the model was found to be significant. Gas chromatography analyses of the FAME derivatives showed a high percentage of saturated fatty acids thereby confirming the biofuel properties of the oil derived from algal biomass. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tien, Hai Minh; Le, Kien Anh; Le, Phung Thi Kim
2017-09-01
Bio hydrogen is a sustainable energy resource due to its potentially higher efficiency of conversion to usable power, high energy efficiency and non-polluting nature resource. In this work, the experiments have been carried out to indicate the possibility of generating bio hydrogen as well as identifying effective factors and the optimum conditions from cassava starch. Experimental design was used to investigate the effect of operating temperature (37-43 °C), pH (6-7), and inoculums ratio (6-10 %) to the yield hydrogen production, the COD reduction and the ratio of volume of hydrogen production to COD reduction. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. The interaction effects between them seem not significant. The central composite design showed that the polynomial regression models were in good agreement with the experimental results. This result will be applied to enhance the process of cassava starch processing wastewater treatment.
Ramakrishnan, Vrinda; Goveas, Louella Concepta; Prakash, Maya; Halami, Prakash M; Narayan, Bhaskar
2014-11-01
Enterococcus faecium MTCC 5695 possessing potential probiotic properties as well as enterocin producing ability was used as starter culture. Effect of time (12-24 h) and inoculum level (3-7 % v/v) on cell growth, bacteriocin production, antioxidant property, titrable acidity and pH of curd was studied by response surface methodology (RSM). The optimized conditions were 26.48 h and 2.17%v/v inoculum and the second order model validated. Co cultivation studies revealed that the formulated product had the ability to prevent growth of foodborne pathogens that affect keeping quality of the product during storage. The results indicated that application of E. faecium MTCC 5695 along with usage of optimized conditions attributed to the formation of highly consistent well set curd with bioactive and bioprotective properties. Formulated curd with potential probiotic attributes can be used as therapeutic agent for the treatment of foodborne diseases like Traveler's diarrhea and gastroenteritis which thereby help in improvement of bowel health.
Habouzit, Frédéric; Hamelin, Jérôme; Santa-Catalina, Gaëlle; Steyer, Jean-P; Bernet, Nicolas
2014-01-01
To evaluate the impact of the nature of the support material on its colonization by a methanogenic consortium, four substrata made of different materials: polyvinyl chloride, 2 polyethylene and polypropylene were tested during the start-up of lab-scale fixed-film reactors. The reactor performances were evaluated and compared together with the analysis of the biofilms. Biofilm growth was quantified and the structure of bacterial and archaeal communities were characterized by molecular fingerprinting profiles (capillary electrophoresis-single strand conformation polymorphism). The composition of the inoculum was shown to have a major impact on the bacterial composition of the biofilm, whatever the nature of the support material or the organic loading rate applied to the reactors during the start-up period. In contrast, the biofilm archaeal populations were independent of the inoculum used but highly dependent on the support material. Supports favouring Archaea colonization, the limiting factor in the overall process, should be preferred. PMID:24612643
Rajagopal, Rajinikanth; Béline, Fabrice
2011-05-01
This study aimed to develop a biochemical-test mainly to evaluate the hydrolytic-potential of different substrates and to apply this test to characterize various organic substrates. Outcome of this study can be used for optimization of the WWTPs through enhancement of N/P removal or anaerobic digestion. Out of four series of batch experiments, the first two tests were conducted to determine the optimal operating conditions (test duration, inoculum-ratio etc.) for the hydrolytic-potential test using secondary and synthetically-prepared sludges. Based on the results (generation of CODs, pH and VFA), test duration was fixed between 6 and 7d allowing to attain maximum hydrolysis and to avoid methanogenesis. Effect of inoculum-ratios on acid fermentation of sludge was not significantly noticed. Using this methodology, third and fourth tests were performed to characterize various organic substrates namely secondary, pre-treated sludge, pig and two different cattle slurries. VFA production was shown to be substantially dependent on substrates types. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tomei, M C; Braguglia, C M; Mininni, G
2008-09-01
Degradation kinetics of particulate matter in anaerobic digestion of secondary sludge, untreated and sonicated, was investigated by carrying out batch tests at different feed/inoculum ratio (F/I) (in the range of 0.1-4.0). Particulate COD degradation data were analysed using the four equations most widely utilized to model the hydrolysis process and the related kinetic parameters were evaluated. The increase of F/I results in a correspondent increase of the process rate up to one order of magnitude in the investigated interval for both untreated and sonicated sludge. The maximum step increase is observed in the range of 0.1-2.0 while for F/I varying from 2.0 to 4.0 only a modest enhancement of the process kinetics is detected. The effect of sonication on kinetics is not appreciable at low F/I, due to the low fraction of fed sludge and to the consequent strong substrate limitation, whereas at high F/I a slight increase is evidenced.
On-farm production and utilization of arbusclar mycorrhizal fungus inoculum
USDA-ARS?s Scientific Manuscript database
Arbuscular mycorrhizal [AM] fungi are naturally occuring soil fungi that form a mutualistic symbiosis with the majority of crop plants. Among the benefits to the plant that are accredited to living in this symbiosis are: increased mineral nutrient uptake, drought resistance, and disease resistance....
On-farm production and utilization of mycorrhizal fungus inoculum
USDA-ARS?s Scientific Manuscript database
Arbuscular mycorrhizal fungi are naturally occurring soil fungi that form a symbiosis with the roots of most crop plants. Among the benefits plants receive from the symbiosis are enhanced nutrient uptake, water relations, and disease resistance. Farmers can better take advantage of the symbiosis e...
Investigations of Fusarium diseases within Inland Pacific Northwest forest nurseries
Robert L. James; R. Kasten Dumroese
2007-01-01
Fusarium spp. cause important diseases that limit production of seedlings in forest nurseries worldwide. Several aspects of these diseases have been investigated for many years within Inland Pacific Northwest nurseries to better understand disease etiology, pathogen inoculum sources, and epidemiology. Investigations have also involved improving...
Rapid quantification of soilborne pathogen communities in wheat-based long-term field experiments
USDA-ARS?s Scientific Manuscript database
Traditional isolation and quantification of inoculum density is difficult for most soilborne pathogens. Quantitative PCR methods have been developed to rapidly identify and quantify many of these pathogens using a single DNA extract from soil. Rainfed experiments operated continuously for up to 84 y...
1988-08-01
following initial incubation of the inoculum in lactose broth. The presence of Vibrio parahemolyticus was determined using trypticase citrate 0 bile salts...SaZmonella (enteritis), SalmonelZa typhosa (typhoid fever), ShigeZla (dysentery), and Vibrio cholerae (cholera). The organisms causing these diseases do not
USDA-ARS?s Scientific Manuscript database
Arbuscular Mycorrhizal Fungi (AMF) increase nutrient and water acquisition for mycorrhizal-susceptible plants, which may lead to higher yields. However, intensive agricultural practices such as tilling, fallow treatments, and inorganic nutrient application reduce soil AMF. The purpose of the three e...
Characterization of a U.S. Sheep Scrapie Isolate with Short Incubation Time
USDA-ARS?s Scientific Manuscript database
Scrapie is a naturally occurring fatal neurodegenerative disease of sheep and goats. Susceptibility to the disease is partly dependent upon the genetic makeup of the host. In a previous study it was shown that sheep intracerebrally inoculated with US scrapie inoculum (No. 13-7) developed terminal di...
Distribution of canker lesions on the surface of diseased grapefruit
USDA-ARS?s Scientific Manuscript database
Citrus canker (caused by Xanthomonas citri subsp. citri) can cause direct yield loss of citrus, and infection of fruit can result in trade restriction being imposed on canker endemic areas. Developing fruit become infected through splash dispersed inoculum. The objective of this study was to describ...
Enhancement of xylose utilization from corn stover by a recombinant bacterium for ethanol production
USDA-ARS?s Scientific Manuscript database
Effects of substrate-selective inoculum prepared by growing on glucose, xylose, arabinose, GXA (glucose, xylose, arabinose, 1:1:1) and corn stover hydrolyzate (dilute acid pretreated and enzymatically hydrolyzed, CSH) on ethanol production from CSH by a mixed sugar utilizing recombinant Escherichia ...
USDA-ARS?s Scientific Manuscript database
Gray leaf spot (GLS) is a destructive disease of perennial ryegrass caused by a host specific pathotype of the ascomycete Magnaporthe oryzae. Early diagnosis is crucial for effective disease management and the implementation of Integrated Pest Management practices. However, a rapid diagnostic protoc...
Quince (Cydonia oblonga) emerges from the ashes of fire blight
USDA-ARS?s Scientific Manuscript database
The two-decade history of fire blight in Bulgaria revealed quince as one of the most frequently attacked hosts and its production on a large scale has almost been entirely eliminated. Nevertheless, this species will play an important epidemiological role as a permanent source of inoculum for other p...
American chestnut (Castanea dentata) was once a dominant overstory tree in the eastern United States but was decimated by chestnut blight (Cryphonectria parasitica). Blight resistant chestnut is being developed as part of a concerted restoration effort to bring this heritage tree...
USDA-ARS?s Scientific Manuscript database
Trichoderma conidia are mostly produced by solid fermentation systems. Inoculum is produced by liquid culturing, and then transferred to solid substrate for aerial conidial production. Aerial conidia of T. harzianum are hydrophilic in nature, and it is difficult to separate them from the solid subst...
Supriya Sharma; Wolfgang Schweigkofler; Karen Suslow; Timothy L. Widmer
2017-01-01
There is a continuing desire to investigate the potential of biological control to manage the spread of Phytophthora ramorum. A specific isolate of Trichoderma asperellum has been demonstrated to be effective in reducing P. ramorum soil populations to non-detectable levels. This study was conducted...
Yana Valachovic; Chris Lee; Brendan Twieg; David Rizzo; Richard Cobb; Radoslaw Glebocki
2013-01-01
In 2006, three forested sites infested with Phytophthora ramorum in Humboldt County, California were subjected to different combinations of treatments designed to reduce inoculum and control spread. One treatment, consisting of removal of all California bay laurel (Umbellularia californica (Hook. & Arn.) Nutt.) and tanoak...
Synthesis of Pisolithus Ectomycorrhizae on Pecan Seedlings in Fumigated Soil
Donald H. Marx
1979-01-01
Curtis variety of pecan (Carya illinoensis) seedlings were grown for 8 months in fumigated soil infested at sowing with mycelial inoculum of Pisolithus tinctorius. Pisolithus ectomycorrhizae were formed on all inoculated seedlings and significantly improved their growth over control seedlings. Inoculated and control seedlings also formed ectomycorrhizae with naturally...
USDA-ARS?s Scientific Manuscript database
Evaluation of physical, compositional, and digestion characteristics of protozoal glycogen is best performed on a pure substrate in order to avoid interference from other cell components. A method for isolating protozoal glycogen without use of detergents was developed. Rumen inoculum was incubated ...
Role of mycorrhizae in forestation of surface mines
Donald H. Marx
1980-01-01
A brief introduction to ecto- and endomycorrhizae and their importance to plants is presented. Recent findings confirm the significance of ectomycorrhizae, particularly those formed by Pisolithus tinctorius in nurseries, to survival and growth of pine seedlings on strip-mined lands. Commercial inoculum of this fungus may be available in 1981. Recent...
Bioremediation of treated wood with fungi
Barbara L. Illman; Vina W. Yang
2006-01-01
The authors have developed technologies for fungal bioremediation of waste wood treated with oilborne or metal-based preservatives. The technologies are based on specially formulated inoculum of wood-decay fungi, obtained through strain selection to obtain preservative-tolerant fungi. This waste management approach provides a product with reduced wood volume and the...
USDA-ARS?s Scientific Manuscript database
Arbuscular mycorrhizal [AM] fungi are naturally-occurring soil fungi that form a mutualistic symbiosis with the roots of most crop plants. The plant benefits through increased: nutrient uptake from the soil, disease resistance, and water stress resistance. Optimal utilization of AM fungi is essen...
USDA-ARS?s Scientific Manuscript database
Entomopathogenic nematodes (EPNs) of the families Steinernematidae and Heterorhabditidae have a symbiotic association with bacteria which makes them virulent against insects. EPNs have been mass produced using in vivo and in vitro methods including both solid and liquid fermentation. This study asse...
Exogenous superoxide dismutase may lose its antidotal ability on rice leaves
USDA-ARS?s Scientific Manuscript database
Leaf diffusates of the resistant rice cultivars suppressed spore germination of blast fungus (Magnaporthe grisea). Bovine Cu-Zn superoxide dismutase (SOD) added to the diffusate abolished its toxicity. However, the enzyme added to the inoculum did not affect the toxicity of the diffusate. Even the s...
40 CFR 796.3100 - Aerobic aquatic biodegradation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Aerobic aquatic biodegradation. (a) Introduction—(1) Purpose. (i) This Guideline is designed to develop... biodegradability of a series of functionally or structurally related chemicals, media from all inoculum flasks may..., and control system should be analyzed at time zero and at a minimum of four other times from time zero...
40 CFR 796.3100 - Aerobic aquatic biodegradation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Aerobic aquatic biodegradation. (a) Introduction—(1) Purpose. (i) This Guideline is designed to develop... biodegradability of a series of functionally or structurally related chemicals, media from all inoculum flasks may..., and control system should be analyzed at time zero and at a minimum of four other times from time zero...
40 CFR 796.3100 - Aerobic aquatic biodegradation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Aerobic aquatic biodegradation. (a) Introduction—(1) Purpose. (i) This Guideline is designed to develop... biodegradability of a series of functionally or structurally related chemicals, media from all inoculum flasks may..., and control system should be analyzed at time zero and at a minimum of four other times from time zero...
One of the significant discoveries following the bioterrorist episodes beginning in October 2001 was that a modified form of Bacillus anthracis (Ames strain) was the causative agent. Physical alteration of the inoculum had occurred; the electrostatic charge had been removed and t...
USDA-ARS?s Scientific Manuscript database
Mycobacterium bovis (M. bovis) causes tuberculosis in white-tailed deer (WTD). Natural infection of WTD with M. bovis is most closely mimicked by instilling inoculum into palatine tonsilar crypts. One hundred fifty days after intratonsilar inoculation, M. bovis was cultured from 30 tissues originati...
Summer survival of Phytophthora ramorum in California bay laurel leaves
Elizabeth J. Fichtner; David M. Rizzo; Shannon C. Lynch; Jennifer Davidson; Gerri Buckles; Jennifer Parker
2008-01-01
Sudden oak death manifests as non-lethal foliar lesions on bay laurel (Umbellularia californica), which support sporulation and survival of Phytophthora ramorum in forest ecosystems. Infected bay laurel leaves are more likely to abscise than uninfected leaves, resulting in an accumulation of inoculum at the forest floor. The pathogen survives the dry...
2012-10-01
protective of subsistence fishers at an excess life time cancer risk of 1 in one million (1 × 10-6). The trophic transfer model, which is calibrated...In Progress) ER-2135-11, Application of Biofilm Covered Activated Carbon Particles as a Microbial Inoculum Delivery System for Enhanced
SURVIVAL OF ESCHERICHIA COLI 0157:H7 IN DAIRY CATTLE FEED WATER
Cattle feed waters from two dairy farms were used in a study to determine the survival characteristics of the bacterial pathogen Escherichia coli )157:H7 and wild-type E. coli. The E. coli 0157:H7 inoculum consisted of a consortium of isolates obtained from dairy cattle. Fresh ma...
The distribution of peach scab lesions on the surface of diseased peaches
USDA-ARS?s Scientific Manuscript database
Peach canker (Fusicladium effusum) can cause yield loss of peach and results in rejection of fruit for fresh sale. Developing peach fruit become infected through splash dispersed inoculum. The aim of this study was to describe and quantify the distribution of lesions on the fruit surface, and prov...
USDA-ARS?s Scientific Manuscript database
Initiation of asexual sporulation in powdery mildews is preceded by a period of superficial vegetative growth of mildew colonies. We found evidence of signaling in Erysiphe necator that was promulgated at the colony center as early as five days after inoculation and stimulated sporulation throughout...
Soil treatments for the potential elimination of Phytophthora ramorum in ornamental nursery beds
L. E. Yakabe; J. D. MacDonald
2010-01-01
Ramorum leaf blight, caused by Phytophthora ramorum, has reemerged at several California nurseries after removal of infested material. In many cases, reemergence was not associated with reintroduction of the pathogen and may be attributed to inoculum surviving in soil beds because P. ramorum propagules can survive for over a...
USDA-ARS?s Scientific Manuscript database
Stagonospora nodorum blotch (SNB), caused by the ascomycete fungus Stagonospora nodorum, is a major disease of wheat. Wheat residue can be an important source of inoculum, but the effect of different densities of infected debris on disease severity has not been previously determined. Experiments wer...
Effect of levels of wheat residue on the severity of stagonospora nodorum blotch in winter wheat
USDA-ARS?s Scientific Manuscript database
Stagonospora nodorum blotch (SNB), caused by the ascomycete fungus Stagonospora nodorum, is a major disease of wheat. Wheat residue can be an important source of inoculum, but the effect of different densities of infected debris on disease severity has not been previously determined. Experiments wer...
Aaron D. Stottlemyer; G. Geoff Wang; Thomas A. Waldrop; Christina E. Wells; Mac A. Callaham
2013-01-01
Heavy fuel loads were created by southern pine beetle (Dendroctonus frontalis Ehrh.) outbreak throughout the southeastern Piedmont during the early 2000s. Prescribed burning and mechanical mulching (mastication) were used to reduce fuel loading, but many ecological impacts are unknown. Successful forest regeneration depends on ectomycorrhizal (ECM)...
USDA-ARS?s Scientific Manuscript database
Plant pathogen detection systems have been useful tools to monitor inoculum presence and initiate management schedules. More recently, a LAMP assay was successfully designed for field use in the grape powdery mildew pathosystem; however, false negatives or false positives were prevalent in grower-co...
Human Challenge Pilot Study with Cyclospora cayetanensis
Eberhard, Mark L.; Seed, John R.; Weber, David J.; Won, Kimberly Y.; Nace, Eva K.; Moe, Christine L.
2004-01-01
We describe a pilot study that attempted to infect human volunteers with Cyclospora cayetanensis. Seven healthy volunteers ingested an inoculum of Cyclospora oocysts (approximately 200–49,000 oocysts). The volunteers did not experience symptoms of gastroenteritis, and no oocysts were detected in any stool samples during the 16 weeks volunteers were monitored. PMID:15200870
Summer survival of Phytophthora ramorum in forest soils
Elizabeth J. Fichtner; Shannon C. Lynch; David M. Rizzo
2006-01-01
Recovery of Phytophthora ramorum from soils throughout Sudden Oak Death-affected regions of California illustrates that soil serves as an inoculum reservoir for the pathogen, but the potential for survival in soils throughout the summer is largely unknown. In this study we assess pathogen survival in infected leaf tissue in the upper soil profile in...
Jane E. Stewart; Mee-Sook Kim; Robert L. James; R. Kasten Dumroese; Ned B. Klopfenstein
2006-01-01
Fusarium species can cause severe root disease and damping-off in conifer nurseries. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Isolates of Fusarium spp. can differ in virulence; however, virulence and...
Wildland management of Phytophthora ramorum in northern California forests
Yana Valachovic; Chris Lee; Jack Marshall; Hugh Scanlon
2008-01-01
In early 2006 we implemented a series of comparative silvicultural treatments aimed at managing the spread of Phytophthora ramorum Werres, de Cock & Man in?t Veld by reducing inoculum densities in isolated infestations on one public and three private properties in southern Humboldt County. These treatments, which took place on over 56 forested ha...
Epidemiology of Phytophthora ramorum infecting rhododendrons under simulated nursery conditions
S.A. Tjosvold; D.L. Chambers; S. Koike; E. Fichtner
2006-01-01
The current understanding of diseases caused by Phytophthora ramorum and their dynamics in nursery crops is almost entirely derived from casual field observations. The objectives of the study are to help understand basic biological factors such as, inoculum viability, dispersal, and infectivity that influence disease occurrence and severity in a...
9 CFR 113.43 - Detection of chlamydial agents.
Code of Federal Regulations, 2014 CFR
2014-01-01
... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...
9 CFR 113.43 - Detection of chlamydial agents.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...
9 CFR 113.43 - Detection of chlamydial agents.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...
9 CFR 113.43 - Detection of chlamydial agents.
Code of Federal Regulations, 2012 CFR
2012-01-01
... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...
USDA-ARS?s Scientific Manuscript database
Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases in the United States. Epidemiological regions were determined based on epidemic patterns, cropping systems, geographic barriers, weather patterns, and inoculum exchanges. Areas where Ps...
Susceptibility of larch, hemlock, Sitka spruce, and Douglas-fir to Phytophthora ramorum
Gary Chastagner; Kathy Riley; Marianne Elliott
2013-01-01
The recent determination that Phytophthora ramorum is causing bleeding stem cankers on Japanese larch (Larix kaempferi (Lam.) Carrière) in the United Kingdom (Forestry Commission 2012, Webber et al. 2010), and that inoculum from this host appears to have resulted in disease and canker development on other conifers, including...
USDA-ARS?s Scientific Manuscript database
Biodegradability of three types of bioplastic pots was evaluated by measuring carbon dioxide (CO2) produced from lab-scale compost reactors containing mixtures of pot fragments and compost inoculum held at 58 C for 60 days. Biodegradability of pot type A (composed of 100% polylactic acid (PLA)) was...
The performance of pilot-scale bioslurry treatment on creosote-contaminated soil was evaluated. Five reactors containing 66 L of slurry (30% soil by weight), were operated in parallel. The soil was a sandy soil with minor gravel content. The pilot-scale phase utilized an inoculum...
Recurrent selection performance for FOV race 4 resistance in selected cotton germplasm and progeny
USDA-ARS?s Scientific Manuscript database
Recurrent selection is being used to improve Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) resistance in Upland (Gossypium hirsutum L.) and Pima (G. barbadense L.) cotton using naturally infested fields and artificially inoculum-greenhouse sites. One of our target objectives is to introduce a ...
Seasonal trends in response to inoculation of coast live oak with Phytophthora ramorum
Richard S. Dodd; Daniel Hüberli; Tamar Y. Harnik; Brenda O' Dell; Matteo Garbelotto
2006-01-01
We developed a branch cutting inoculation method to provide a controlled system for studying variation in response to inoculation of coast live oak (Quercus agrifolia) with Phytophthora ramorum. This method has advantages over inoculations of trees in the field, in containing the inoculum and in allowing high levels of replication...
Bioremediation and degradation of CCA-treated wood waste.
Barbara L Illman; Vina W. Yang
2004-01-01
Bioprocessing CCA wood waste is an efficient and economical alternative to depositing the waste in landfills, especially if landfill restrictions on CCA waste are imposed nation wide. We have developed bioremediation and degradation technologies for microbial processing of CCA waste. The technologies are based on specially formulated inoculum of wood decay fungi,...
Sequestration of carbon dioxide and production of biomolecules using cyanobacteria.
Upendar, Ganta; Singh, Sunita; Chakrabarty, Jitamanyu; Chandra Ghanta, Kartik; Dutta, Susmita; Dutta, Abhishek
2018-07-15
A cyanobacterial strain, Synechococcus sp. NIT18, has been applied to sequester CO 2 using sodium carbonate as inorganic carbon source due to its efficiency of CO 2 bioconversion and high biomass production. The biomass obtained is used for the extraction of biomolecules - protein, carbohydrate and lipid. The main objective of the study is to maximize the biomass and biomolecules production with CO 2 sequestration using cyanobacterial strain cultivated under different concentrations of CO 2 (5-20%), pH (7-11) and inoculum size (5-12.5%) within a statistical framework. Maximum sequestration of CO 2 and maximum productivities of protein, carbohydrate and lipid are 71.02%, 4.9 mg/L/day, 6.7 mg/L/day and 1.6 mg/L/day respectively, at initial CO 2 concentration: 10%, pH: 9 and inoculum size: 12.5%. Since flue gas contains 10-15% CO 2 and the present strain is able to sequester CO 2 in this range, the strain could be considered as a useful tool for CO 2 mitigation for greener world. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mahdy, Ahmed; Fotidis, Ioannis A; Mancini, Enrico; Ballesteros, Mercedes; González-Fernández, Cristina; Angelidaki, Irini
2017-02-01
This study investigated the ability of an ammonia-acclimatized inoculum to digest efficiently protein-rich microalgae for continuous 3rd generation biogas production. Moreover, we investigated whether increased C/N ratio could alleviate ammonia toxicity. The biochemical methane potential (BMP) of five different algae (Chlorella vulgaris)/manure (cattle) mixtures showed that the mixture of 80/20 (on VS basis) resulted in the highest BMP value (431mLCH 4 gVS -1 ), while the BMP of microalgae alone (100/0) was 415mLCH 4 gVS -1 . Subsequently, anaerobic digestion of those two substrates was tested in continuous stirred tank reactors (CSTR). Despite of the high ammonium levels (3.7-4.2g NH 4 + -NL -1 ), CSTR reactors using ammonia tolerant inoculum resulted in relatively high methane yields (i.e. 77.5% and 84% of the maximum expected, respectively). These results demonstrated that ammonia tolerant inocula could be a promising approach to successfully digest protein-rich microalgae and achieve a 3rd generation biogas production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Muniz, Aleksander Westphal; de Sá, Enilson Luiz; Dalagnol, Gilberto Luíz; Filho, João Américo
2013-01-01
In vitro rooting and the acclimatization of micropropagated rootstocks of apple trees is essential for plant development in the field. The aim of this work was to assess the use of rhizobia of Adesmia latifolia to promote rooting and acclimatization in micropropagated Marubakaido apple rootstock. An experiment involving in vitro rooting and acclimatization was performed with four strains of rhizobium and two controls, one with and the other without the addition of synthetic indoleacetic acid. The inoculated treatments involved the use of sterile inoculum and inoculum containing live rhizobia. The most significant effects on the rooting rate, primary-root length, number of roots, root length, fresh-shoot biomass, and fresh-root biomass were obtained by inoculation with strain EEL16010B and with synthetic indole acetic acid. However, there was no difference in the growth of apple explants in the acclimatization experiments. Strain EEL16010B can be used to induce in vitro rooting of the Marubakaido rootstock and can replace the use of synthetic indoleacetic acid in the rooting of this cultivar.
Abu, Mary Ladidi; Nooh, Hisham Mohd; Oslan, Siti Nurbaya; Salleh, Abu Bakar
2017-11-10
Pichia guilliermondii was found capable of expressing the recombinant thermostable lipase without methanol under the control of methanol dependent alcohol oxidase 1 promoter (AOXp 1). In this study, statistical approaches were employed for the screening and optimisation of physical conditions for T1 lipase production in P. guilliermondii. The screening of six physical conditions by Plackett-Burman Design has identified pH, inoculum size and incubation time as exerting significant effects on lipase production. These three conditions were further optimised using, Box-Behnken Design of Response Surface Methodology, which predicted an optimum medium comprising pH 6, 24 h incubation time and 2% inoculum size. T1 lipase activity of 2.0 U/mL was produced with a biomass of OD 600 23.0. The process of using RSM for optimisation yielded a 3-fold increase of T1 lipase over medium before optimisation. Therefore, this result has proven that T1 lipase can be produced at a higher yield in P. guilliermondii.
Chatzidimopoulos, Michael; Ganopoulos, Ioannis; Vellios, Evangelos; Madesis, Panagiotis; Tsaftaris, Athanasios; Pappas, Athanassios C
2014-11-01
A rapid, high-resolution melting (HRM) analysis protocol was developed to detect sequence variations associated with resistance to the QoIs, benzimidazoles and dicarboximides in Botrytis cinerea airborne inoculum. HRM analysis was applied directly in fungal DNA collected from air samplers with selective medium. Three and five different genotypes were detected and classified according to their melting profiles in BenA and bos1 genes associated with resistance to benzimidazoles and dicarboximides, respectively. The sensitivity of the methodology was evident in the case of the QoIs, where genotypes varying either by a single nucleotide polymorphism or an additional 1205-bp intron were separated accurately with a single pair of primers. The developed two-step protocol was completed in 82 min and showed reduced variation in the melting curves' formation. HRM analysis rapidly detected the major mutations found in greenhouse strains providing accurate data for successfully controlling grey mould. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Influence of Aphelenchus avenae on Vesicular-arbuscular Endomycorrhizal Growth Response in Cotton.
Hussey, R S; Roncadori, R W
1981-01-01
The influence of Aphelenchus avenae on the relationship between cotton (Gossypium hirsutum 'Stoneville 213') and Gigaspora margarita or Glomus etunicatus was assessed by its effect on the mycorrhizal stimulation of plant growth and microorganism reproduction. The mycophagous nematode usually did not suppress stimulation of shoot growth resulting from mycorrhizae (G. margarita) at inoculum levels of 3,000 or 6,000 nematodes per pot, but retarded root growth at 6,000 per pot. When the nematode inoculum was increased to 10, 40, or 80 thousand, G. margarita stimulation of shoot or root growth was retarded at the two higher rates. Shoot growth enhancement by G. etunicatus was suppressed by 10 thousand A. avenae but not by 40 or 80 thousand. A. avenae reproduced better when the nematode was added 3 wk after G. margarita than with simultaneous inoculations. Sporulation of both fungi was affected little by the mycophagous nematode. The high numbers of A. avenae required for an antagonistic effect probably precludes the occurrence of any significant interaction between these two organisms under field conditions.
Wang, C L; Li, D F; Lu, W Q; Wang, Y H; Lai, C H
2004-01-01
The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Penicillium sp. in solid-state fermentation (SSF). Certain fermentation parameters involving incubation temperature, moisture content, initial pH value, inoculum and load size of medium, and incubation time were investigated separately. The optimal temperature and moisture level for alpha-galactosidase biosynthesis was found to be 30 degrees C and 50%, respectively. The range of pH 5.5-6.5 was favourable. About 40-50 g of medium in 250-ml flask and inoculum over 1.0 x 10(6) spores were suitable for enzyme production. Seventy-five hours of incubation was enough for maximum alpha-galactosidase production. Substrate as wheat bran supplemented with soyabean meal and beet pulp markedly improved the enzyme yield in trays. Under optimum culture conditions, the alpha-galactosidase activity from Penicillium sp. MAFIC-6 indicated 185.2 U g(-1) in tray of SSF. The process on alpha-galactosidase production in laboratory scale may have a potentiality of scaling-up.
John, Gernot T; Goelling, Detlef; Klimant, Ingo; Schneider, Holger; Heinzle, Elmar
2003-08-01
A new method for characterization of acid production by dairy starter cultures is presented. Microplates with integrated optical pH sensors are developed. Two fluorophores, a pH-sensitive and a pH-insensitive one are immobilised at the bottom of a polystyrene 96-well microtitre plate. The pH-insensitive fluorophore serves as an internal reference and makes calibration unnecessary. The sensor measures pH accurately in optically well-defined media. Particles and fluorophores contained in the bulk medium disturbed the measurements. Despite these disturbances it was possible to clearly sense differences in inoculum type and in inoculum sizes of cultures of Lactococcus lactis and of Streptococcus thermophilus at 30 and 37 degrees C. Besides a pH-related signal there is information about other changes during milk fermentation. The cultivation results were compared with those from the established CINAC-method. From this comparison it can be concluded that the new method can be used reliably to characterize particularly a large number of strains for screening purposes but also for quality control.
Su, Jun Feng; Ma, Min; Wei, Li; Ma, Fang; Lu, Jin Suo; Shao, Si Cheng
2016-06-15
Acinetobacter sp. J25 exhibited good denitrification and high algicidal activity against toxic Microcystis aeruginosa. Response surface methodology (RSM) experiments showed that the maximum algicidal ratio occurred under the following conditions: temperature, 30.46°C; M. aeruginosa density, 960,000cellsmL(-1); and inoculum, 23.75% (v/v). Of these, inoculum produced the maximum effect. In the eutrophic landscape water experiment, 10% bacterial culture was infected with M. aeruginosa cells in the landscape water. After 24days, the removal ratios of nitrate and chlorophyll-a were high, 100% and 87.86%, respectively. The denitrification rate was approximately 0.118mgNO3(-)-N·L(-1)·h(-1). Moreover, the high-throughput sequencing result showed that Acinetobacter sp. J25 was obviously beneficial for chlorophyll-a and nitrate removal performance in the eutrophic landscape water treatment. Therefore, strain J25 is promising for the simultaneous removal of chlorophyll-a and nitrate in the eutrophic landscape water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Obaid, Najla A; Tristram, Stephen; Narkowicz, Christian K; Jacobson, Glenn A
2016-12-01
Information is lacking regarding the precision of microtitre plate (MTP) assays used to measure biofilm. This study investigated the precision of an MTP assay to measure biofilm production by nontypeable Haemophilus influenzae (NTHi) and the effects of frozen storage and inoculation technique on biofilm production. The density of bacterial final growth was determined by absorbance after 18-20 h incubation, and biofilm production was then measured by absorbance after crystal violet staining. Biofilm formation was categorised as high and low for each strain. For the high biofilm producing strains of NTHi, interday reproducibility of NTHi biofilm formation measured using the MTP assay was excellent and met the acceptance criteria, but higher variability was observed in low biofilm producers. Method of inoculum preparation was a determinant of biofilm formation with inoculum prepared directly from solid media showing increased biofilm production for at least one of the high producing strains. In general, storage of NTHi cultures at -80 °C for up to 48 weeks did not have any major effect on their ability to produce biofilm.
Studying Pellet Formation of a Filamentous Fungus Rhizopus oryzae to Enhance Organic Acid Production
NASA Astrophysics Data System (ADS)
Liao, Wei; Liu, Yan; Chen, Shulin
Using pelletized fungal biomass can effectively improve the fermentation performance for most of fugal strains. This article studied the effects of inoculum and medium compositions such as potato dextrose broth (PDB) as carbon source, soybean peptone, calcium carbonate, and metal ions on pellet formation of Rhizopus oryzae. It has been found that metal ions had significantly negative effects on pellet formation whereas soybean peptone had positive effects. In addition PDB and calcium carbonate were beneficial to R. oryzae for growing small smooth pellets during the culture. The study also demonstrated that an inoculum size of less than 1.5×109 spores/L had no significant influence on pellet formation. Thus, a new approach to form pellets has been developed using only PDB, soybean peptone, and calcium carbonate. Meanwhile, palletized fungal fermentation significantly enhanced organic acid production. Lactic acid concentration reached 65.0 g/L in 30 h using pelletized R. oryzae NRRL 395, and fumeric acid concentration reached 31.0 g/L in 96 h using pelletized R. oryzae ATCC 20344.
Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Vukašinović-Sekulić, Maja S; Rakin, Marica B; Nikolić, Svetlana B; Pejin, Jelena D; Bulatović, Maja L
2012-09-15
Expansion of lactic acid applications, predominantly for the preparation of biodegradable polymers increased the research interest for new, economically favourable production processes. Liquid stillage from bioethanol production can be an inexpensive, valuable source of nutrients for growth of lactic acid bacteria. Utilisation of residual biomass with spent fermentation media as a functional animal feed can greatly influence the process value and its ecological aspect. In this paper, the kinetics of lactic acid and biomass production on liquid stillage by Lactobacillus rhamnosus ATCC 7469 was studied. In addition, the impact of temperature, inoculum concentration, shaking and pH control by addition of CaCO(3) was evaluated. Maximal lactic acid yield of 73.4%, as well as high biomass production (3×10(8) CFU ml(-1)) were achieved under selected conditions (41°C, 5% (v/v) of inoculum, 1% (w/v) of CaCO(3), initial pH of 6.5 and shaking rate of 90 rpm). These results were achieved without supplementation of the stillage with nitrogen or mineral sources. Copyright © 2012 Elsevier Ltd. All rights reserved.
Harvey, R. W.; Price, T. H.
1982-01-01
The relation of salmonella isolation efficiency and the size of inoculum introduced from a buffered peptone water culture of sewage polluted water into strontium chloride B medium was investigated. Two separate studies were made, one using enrichment at 37 degrees C, the other at 43 degrees C. From these trials, two inocula suitable for efficient salmonella isolation were determined. Using this information, strontium chloride B medium was compared with modified Rappaport's broth (R25). The inoculum used with R25 was 0.005 ml, determined in an earlier study. Two incubation temperatures were employed with strontium chloride enrichment (37 and 43 degrees C). Rappaport's medium was incubated at 37 degrees C only. Elevated temperature enrichment at 43 degrees C improved the performance of strontium chloride B, but Rappaport's broth still gave significantly better results. This supports earlier studies on simplification of salmonella isolation and standardization of routine technique on a single enrichment medium: Rappaport broth (R25) incubated at 37 degrees C. PMID:7047641
The Prevention of Surgical Site Infection in Elective Colon Surgery
Fry, Donald E.
2013-01-01
Infections at the surgical site continue to occur in as many as 20% of elective colon resection cases. Methods to reduce these infections are inconsistently applied. Surgical site infection (SSI) is the result of multiple interactive variables including the inoculum of bacteria that contaminate the site, the virulence of the contaminating microbes, and the local environment at the surgical site. These variables that promote infection are potentially offset by the effectiveness of the host defense. Reduction in the inoculum of bacteria is achieved by appropriate surgical site preparation, systemic preventive antibiotics, and use of mechanical bowel preparation in conjunction with the oral antibiotic bowel preparation. Intraoperative reduction of hematoma, necrotic tissue, foreign bodies, and tissue dead space will reduce infections. Enhancement of the host may be achieved by perioperative supplemental oxygenation, maintenance of normothermia, and glycemic control. These methods require additional research to identify optimum application. Uniform application of currently understood methods and continued research into new methods to reduce microbial contamination and enhancement of host responsiveness can lead to better outcomes. PMID:24455434
Mechanisms and pathways of aniline elimination from aquatic environments.
Lyons, C D; Katz, S; Bartha, R
1984-01-01
The fate of aniline, a representative of arylamine pollutants derived from the manufacture of dyes, coal liquefaction, and pesticide degradation, was comprehensively evaluated by use of unpolluted and polluted pond water as model environments. Evaporation plus autoxidation proved to be minor elimination mechanisms, removing ca. 1% of the added aniline per day. Instantaneous binding to humic components of a 0.1% sewage sludge inoculum removed 4%. Biodegradation of aniline in pond water was accelerated by the sewage sludge inoculum. A substantial portion of the degraded aniline carbon was mineralized to CO2 within a 1-week period, and microbial biomass was formed as a result of aniline utilization. Biodegradation was clearly the most significant removal mechanism of polluting aniline from pond water. A gas chromatographic-mass spectrometric analysis of biodegradation intermediates revealed that the major pathway of aniline biodegradation in pond water involved oxidative deamination to catechol, which was further metabolized through cis,cis-muconic, beta-ketoadipic, levulinic, and succinic acid intermediates to CO2. Minor biodegradation pathways involved reversible acylation to acetanilide and formanilide, whereas N-oxidation resulted in small amounts of oligomeric condensation products. PMID:6497369
Yangin-Gomec, Cigdem; Pekyavas, Goksen; Sapmaz, Tugba; Aydin, Sevcan; Ince, Bahar; Akyol, Çağrı; Ince, Orhan
2017-10-01
Performance and microbial community dynamics in an upflow anaerobic sludge bed (UASB) reactor coupled with anaerobic ammonium oxidizing (Anammox) treating diluted chicken manure digestate (Total ammonia nitrogen; TAN=123±10mg/L) were investigated for a 120-d operating period in the presence of anaerobic granular inoculum. Maximum TAN removal efficiency reached to above 80% with as low as 20mg/L TAN concentrations in the effluent. Moreover, total COD (tCOD) with 807±215mg/L in the influent was removed by 60-80%. High-throughput sequencing revealed that Proteobacteria, Actinobacteria, and Firmicutes were dominant phyla followed by Euryarchaeota and Bacteroidetes. The relative abundance of Planctomycetes significantly increased from 4% to 8-9% during the late days of the operation with decreased tCOD concentration, which indicated a more optimum condition to favor ammonia removal through anammox route. There was also significant association between the hzsA gene and ammonia removal in the UASB reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bonilla-Hermosa, Verónica Alejandra; Duarte, Whasley Ferreira; Schwan, Rosane Freitas
2014-08-01
The semi-dry processing of coffee generates significant amounts of coffee pulp and wastewater. This study evaluated the production of bioethanol and volatile compounds of eight yeast strains cultivated in a mixture of these residues. Hanseniaspora uvarum UFLA CAF76 showed the best fermentation performance; hence it was selected to evaluate different culture medium compositions and inoculum size. The best results were obtained with 12% w/v of coffee pulp, 1 g/L of yeast extract and 0.3 g/L of inoculum. Using these conditions, fermentation in 1 L of medium was carried out, achieving higher ethanol yield, productivity and efficiency with values of 0.48 g/g, 0.55 g/L h and 94.11% respectively. Twenty-one volatile compounds corresponding to higher alcohols, acetates, terpenes, aldehydes and volatile acids were identified by GC-FID. Such results indicate that coffee residues show an excellent potential as substrates for production of value-added compounds. H. uvarum demonstrated high fermentative capacity using these residues. Copyright © 2014 Elsevier Ltd. All rights reserved.
In-vessel composting of household wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyengar, Srinath R.; Bhave, Prashant P.
The process of composting has been studied using five different types of reactors, each simulating a different condition for the formation of compost; one of which was designed as a dynamic complete-mix type household compost reactor. A lab-scale study was conducted first using the compost accelerators culture (Trichoderma viridae, Trichoderma harzianum, Trichorus spirallis, Aspergillus sp., Paecilomyces fusisporus, Chaetomium globosum) grown on jowar (Sorghum vulgare) grains as the inoculum mixed with cow-dung slurry, and then by using the mulch/compost formed in the respective reactors as the inoculum. The reactors were loaded with raw as well as cooked vegetable waste for amore » period of 4 weeks and then the mulch formed was allowed to maturate. The mulch was analysed at various stages for the compost and other environmental parameters. The compost from the designed aerobic reactor provides good humus to build up a poor physical soil and some basic plant nutrients. This proves to be an efficient, eco-friendly, cost-effective, and nuisance-free solution for the management of household solid wastes.« less
Effect of temperature on anaerobic treatment of black water in UASB-septic tank systems.
Luostarinen, Sari; Sanders, Wendy; Kujawa-Roeleveld, Katarzyna; Zeeman, Grietje
2007-03-01
The effect of northern European seasonal temperature changes and low temperature on the performance of upflow anaerobic sludge blanket (UASB)-septic tanks treating black water was studied. Three UASB-septic tanks were monitored with different operational parameters and at different temperatures. The results indicated the feasibility of the UASB-septic tank for (pre)treatment of black water at low temperatures with respect to removal of suspended solids and dissolved organic material. Inoculum sludge had little effect on COD(ss) removal, though in the start-up phase some poorly adapted inoculum disintegrated and washed out, thus requiring consideration when designing the process. Removal of COD(dis) was at first negative, but improved as the sludge adapted to low temperature. The UASB-septic tank alone did not comply with Finnish or Dutch treatment requirements and should therefore be considered mainly as a pre-treatment method. However, measuring the requirements as mgCOD l(-1) may not always be the best method, as the volume of the effluent discharged is also an important factor in the final amount of COD entering the receiving water bodies.
Microbial ecology of anaerobic digesters: the key players of anaerobiosis.
Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed
2014-01-01
Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed.
Hallenbeck, Patrick C; Grogger, Melanie; Mraz, Megan; Veverka, Donald
2015-05-01
Biodiesel produced from microalgal lipids is being considered as a potential source of renewable energy. However, a number of hurdles will have to be overcome if such a process is to become practical. One important factor is the volumetric production of biomass and lipid that can be achieved. The marine alga Nannochloropsis gaditana is under study since it is known to be highly oleaginous and has a number of other attractive properties. Factors that might be important in biomass and lipid production by this alga are light intensity, inoculum size and CO2. Here we have carried out for the first time a RSM-DOE study of the influence of these important culture variables and define conditions that maximize biomass production, lipid content (BODIPY® fluorescence) and total lipid production. Moreover, flow cytometry allowed the examination on a cellular level of changes that occur in cellular populations as they age and accumulate lipids. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fykse, Else Marie; Aarskaug, Tone; Madslien, Elisabeth H; Dybwad, Marius
2016-12-01
High-throughput amplicon sequencing of six biomass samples from a full-scale anaerobic reactor at a Norwegian wood and pulp factory using Biothane Biobed Expanded Granular Sludge Bed (EGSB) technology during start-up and first year of operation was performed. A total of 106,166 16S rRNA gene sequences (V3-V5 region) were obtained. The number of operational taxonomic units (OTUs) ranged from 595 to 2472, and a total of 38 different phyla and 143 families were observed. The predominant phyla were Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, and Spirochaetes. A more diverse microbial community was observed in the inoculum biomass coming from an Upflow Anaerobic Sludge Blanket (USAB) reactor, reflecting an adaptation of the inoculum diversity to the specific conditions of the new reactor. In addition, no taxa classified as obligate pathogens were identified and potentially opportunistic pathogens were absent or observed in low abundances. No Legionella bacteria were identified by traditional culture-based and molecular methods. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shrestha, Karuna; Adetutu, Eric M; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Ball, Andrew S; Midmore, David J
2011-09-01
A comparative study was performed on compost extracts prepared from cattle rumen content composted for three and nine months, nine month old compost inoculated with a Nutri-Life 4/20™ inoculum, and two commercial preparations (LivingSoil™ and Nutri-Life 4/20™), all incubated for 48h. Nutri-Life 4/20™ had the highest concentrations of NO(3)(-)-N and K(+)-K, while rumen compost extract had higher humic and fulvic acids concentration. The bacterial and fungal community level functional diversity of three month old compost extract and of LivingSoil™, assessed with Biolog™, were higher than that of nine month old rumen compost extract, with or without Nutri-Life 4/20™ inoculum, or Nutri-Life 4/20™. No difference in fungal diversity was observed between treatments, as indicated by Denaturing Gradient Gel Electrophoresis (DGGE) analysis, however, bacterial diversity was higher in all compost extracts and LivingSoil™ compared to the Nutri-Life 4/20™. Criteria for judging the quality of a microbially enhanced extract are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Alzate, M E; Muñoz, R; Rogalla, F; Fdz-Polanco, F; Pérez-Elvira, S I
2012-11-01
The anaerobic digestion of three microalgae mixtures was evaluated at different substrate to inoculum (S/I) ratios (0.5, 1 and 3), biomass concentrations (3, 10 and 20gTS/kg) and pretreatments (thermal hydrolysis, ultrasound and biological treatment). An S/I ratio of 0.5 and 10gTS/kg resulted in the highest final methane productivities regardless of the microalgae tested (ranging from 188 to 395mL CH(4)/gVS(added)). The biological pretreatment supported negligible enhancements on CH(4) productivity, while the highest increase (46-62%) was achieved for the thermal hydrolysis. The optimum temperature of this pretreatment depended on the microalgae species. The ultrasound pretreatment brought about increases in CH(4) productivity ranging from 6% to 24% at 10,000kJ/kgTS, without further increases at higher energy inputs. The results here obtained confirmed the lack of correlation between the solubilization degree and the methane enhancement potential and pointed out that anaerobic digestion of algae after thermal pretreatment is a promising technology for renewable energy production. Copyright © 2012 Elsevier Ltd. All rights reserved.
Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis
Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed
2014-01-01
Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142
Kumar, Rakesh; Banoth, Linga; Banerjee, Uttam Chand; Kaur, Jagdeep
2017-02-01
In the present study, efficient enzymatic methods were developed using a recombinant metagenomic lipase (LipR1) for the synthesis of corresponding esters by the transesterification of five different pharmaceutically important secondary alcohols. The recombinant lipase (specific activity=87m6U/mg) showed maximum conversion in presence of ionic liquid with Naphthyl-ethanol (eeP=99%), Indanol and Methyl-4 pyridine methanol (eeS of 98% and 99%) respectively in 1h. Vinyl acetate was found as suitable acyl donor in transesterification reactions. It was interesting to observe that maximum eeP of 85% was observed in just 15min with 1-indanol. As this enzyme demonstrated pharmaceutical applications, attempts were made to scale up the enzyme production on a pilot scale in a 5litre bioreactor. Different physical parameters affecting enzyme production and biomass concentration such as agitation rate, aeration rate and inoculum concentration were evaluated. Maximum lipase activity of 8463U/ml was obtained at 7h of cultivation at 1 lpm, 300rpm and 1.5% inoculum. Copyright © 2016 Elsevier B.V. All rights reserved.
Dickerson, O. J.
1979-01-01
In soil temperature tests, rates of Pratylenchus scribneri and P. alleni reproduction were measured at various lemperatures on 'Clark 63' and 'Cutler 71' soybeans and 'Rutgers' tomatoes. Recovered P. scribneri equaled or exceeded initial inoculum levels at temperatures of 27.5 C or higher on soybeans, and at 20 C or higher on tomatoes. Population increases were greatest at 3.5 C on both hosts. Populations increased on soybeans, but not on tomatoes, when soil temperature was raised from 25 to 35 C for either 3 or 9 days. Recovered P. alleni were less than the initial inoculum at 27.5 C but higher at 32 and 37.5 C and at 27.5 C on tomatoes, the lowest temperature tested for this nematode. In the field, soil temperatures 10 cm deep in eastern Kansas soybean growing areas reach 27.5 C only occasionally and for relatively short periods, which probably explains the relatively low and variable populations of P. scribneri and P. alleni on soybeans there. PMID:19305523
Nidheesh, T; Pal, Gaurav Kumar; Suresh, P V
2015-05-05
Solid state fermentation (SSF) conditions were statistically optimized for the production of chitosanase by Purpureocillium lilacinum CFRNT12 using shrimp by-products as substrate. Central composite design and response surface methodology were applied to evaluate the effect of variables and their optimization. Incubation temperature, incubation time, concentration of inoculum and yeast extract were found to influence the chitosanase production significantly. The R(2) value of 0.94 indicates the aptness of the model. The level of variables for optimal production of chitosanase was 32 ± 1°C temperature, 96 h incubation, 10.5% (w/v) inoculum, 1.05% (w/w) yeast extract and 65% (w/w) moisture content. The chitosanase production was found to increase from 2.34 ± 0.07 to 41.78 ± 0.73 units/g initial dry substrate after optimization. The crude chitosanase produced 4.43 mM of chitooligomers as exclusive end product from colloidal chitosan hydrolysis. These results indicate the potential of P. lilacinum CFRNT12 for the chitosanase production employing cost effective SSF using shrimp by-products. Copyright © 2014 Elsevier Ltd. All rights reserved.
High density growth of T7 expression strains with auto-induction option
Studier, F William [Stony Brook, NY
2009-07-14
Disclosed is a method for promoting auto-induction of transcription of cloned DNA in cultures of bacterial cells grown batchwise, the transcription being under the control of a promoter whose activity can be induced by an exogenous inducer whose ability to induce said promoter is dependent on the metabolic state of said bacterial cells. Initially, a culture media is provided which includes: i) an inducer that causes induction of transcription from said promoter in said bacterial cells; and ii) a metabolite that prevents induction by said inducer, the concentration of said metabolite being adjusted so as to substantially preclude induction by said inducer in the early stages of growth of the bacterial culture, but such that said metabolite is depleted to a level that allows induction by said inducer at a later stage of growth. The culture medium is inoculated with a bacterial inoculum, the inoculum comprising bacterial cells containing cloned DNA, the transcription of which is induced by said inducer. The culture is then incubated under conditions appropriate for growth of the bacterial cells.
Parameters for determining inoculated pack/challenge study protocols.
2010-01-01
The National Advisory Committee on Microbiological Criteria for Foods developed guidelines for conducting challenge studies on pathogen inhibition and inactivation studies in a variety of foods. The document is intended for use by the food industry, including food processors, food service operators, and food retailers; federal, state, and local food safety regulators; public health officials; food testing laboratories; and process authorities. The document is focused on and limited to bacterial inactivation and growth inhibition and does not make specific recommendations with respect to public health. The Committee concluded that challenge studies should be designed considering the most current advances in methodologies, current thinking on pathogens of concern, and an understanding of the product preparation, variability, and storage conditions. Studies should be completed and evaluated under the guidance of an expert microbiologist in a qualified laboratory and should include appropriate statistical design and data analyses. This document provides guidelines for choice of microorganisms for studies, inoculum preparation, inoculum level, methods of inoculation, incubation temperatures and times, sampling considerations, and interpreting test results. Examples of appropriately designed growth inhibition and inactivation studies are provided.
Ma, Huanhuan; Li, Zifu; Yin, Fubin; Kao, William; Yin, Yi; Bai, Xiaofeng
2014-01-01
Steel-mill waste rolling oil (SmWRO) is considered as hazardous substance with high treatment and disposal fees. Anaerobic process could not only transform the hazardous substance into activated sludge, but also generate valuable biogas. This study aimed at studying the biochemical methane potential of SmWRO under inoculum to substrate VS ratios (ISRs) of 0.25, 0.5, 1, 1.5, 2 and 3 using septic tank sludge as inoculum in mesophilic and thermophilic conditions, with blank tests for control. Specific biogas yield (mL/g VS(added)), net biogas yield (mL/g VS(removed)) and VS removal were analyzed. The ANOVA results indicated great influence of ISR and temperature on studied parameters. ISR of 1.5 at 55°C and ISR of 1.5 and 2 at 35°C were suggested with the highest specific biogas yield (262-265 and 303mL/g VS(added)). Kinetic analysis showed that Gompertz model fit the experimental data best with the least RMSE and largest R(2). Copyright © 2013 Elsevier Ltd. All rights reserved.
Yu, Jaecheul; Park, Younghyun; Lee, Taeho
2014-04-01
Single-chamber microbial fuel cell (SMFC)-I consisted of 4 separator-electrode assemblies (SEAs) with two types of cation exchange membrane (CEM: Nafion and CMI 7000) and an anion exchange membrane (AEM: AMI 7001). SMFC-II consisted of 4 SEAs with Nafion and three types of nonwoven fabric. SMFC-I and -II were inoculated with anaerobic digested and activated sludge, respectively, and operated under fed-batch mode. In SMFC I, AEM-SEA showed a maximum power density (PDmax). Nafion-SEA showed a PDmax in SMFC II, which was similar to that of Nafion-SEA of SMFC I. Although different bacteria were developed in SMFC-I (Deltaproteobacteria and Firmicutes) and SMFC-II (Gammaproteobacteria, Betaproteobacteria and Bacteroidetes), the inoculum type little affects electricity generation. Variations of pH and oxygen in biofilm have influenced microbial community structure and electricity generation according to the electrode and separator material. Although the electricity generation of non-woven fabric-SEA was less than that of Nafion-SEA, the use of non-woven fabrics is expected to reduce the construction and operating costs of MFCs.
Kumar Rai, Amit; General, Thiyam; Bhaskar, N; Suresh, P V; Sakhare, P Z; Halami, P M; Gowda, Lalitha R; Mahendrakar, N S
2010-03-01
Conditions for fermentation of delimed tannery fleshings--to obtain higher degree of protein hydrolysis and reasonably better antioxidant activity--using Enterococcus faecium HAB01 (GenBank #FJ418568) were optimized. Three independent variables--viz., inoculum level (X1), glucose level (X2) and fermentation time (X3)--were optimized using response surface method considering degree of hydrolysis (DH; %) and total titrable acidity (TTA) as response variables. The optimized conditions were found to be 12.5% (v/w) inoculum, 17.5% (w/w) glucose and 96h of fermentation at 37+/-1 degrees C to obtain a maximum DH%. The usefulness of the predicted model was further validated by considering random combinations of the independent factors. The chemical score of the hydrolysate revealed an excess amount of essential amino acids, viz., arginine and leucine compared to reference protein. The liquor portion had relatively high antioxidant activities, indicating its potential for use as a high value feed ingredient. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Hou, Qingjie; Pei, Haiyan; Hu, Wenrong; Jiang, Liqun; Yu, Ze
2016-03-01
Food waste contains large amount of organic matter that may be troublesome for handing, storage and transportation. A microbial fuel cell (MFC) was successfully constructed with different inoculum densities of Chlorella vulgaris for promoting food waste treatment. Maximum COD removal efficiency was registered with 44% and 25 g CODL(-1)d(-1) of substrate degradation rate when inoculated with the optimal initial density (150 mg L(-1)) of C. vulgaris, which were 2.9 times and 3.1 times higher than that of the abiotic cathode. With the optimum inoculum density of C. vulgaris, the highest open circuit voltage, working voltage and power density of MFC were 260 mV, 170 mV and 19151 mW m(-3), respectively. Besides the high biodiesel quality, promoted by MFC stimulation the biomass productivity and highest total lipid content of C. vulgaris were 207 mg L(-1)d(-1) and 31%, which were roughly 2.7 times and 1.2 times higher than the control group. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hernández, D; Riaño, B; Coca, M; García-González, M C
2013-05-01
Two combined processes were studied in order to produce second generation biofuels: microalgae biomass production and its further use to produce biogas. Two 5 L photobioreactors for treating wastewater from a potato processing industry (from now on RPP) and from a treated liquid fraction of pig manure (from now on RTE) were inoculated with Chlorella sorokiniana and aerobic bacteria at 24±2.7 °C and 6000 lux for 12 h per day of light supply. The maximum biomass growth was obtained for RTE wastewater, with 26.30 mg dry weight L(-1) d(-1). Regarding macromolecular composition of collected biomass, lipid concentration reached 30.20% in RPP and 4.30% in RTE. Anaerobic digestion results showed that methane yield was highly influenced by substrate/inoculum ratio and by lipids concentration of the biomass, with a maximum methane yield of 518 mL CH4 g COD(-1)added using biomass with a lipid content of 30% and a substrate/inoculum ratio of 0.5. Copyright © 2012 Elsevier Ltd. All rights reserved.
A study of weeds as potential inoculum sources for a tomato-infecting begomovirus in central Brazil.
Barreto, S S; Hallwass, M; Aquino, O M; Inoue-Nagata, A K
2013-05-01
Tomato severe rugose virus (ToSRV) is the most important begomovirus species in Brazilian tomato production. Many weeds are associated with tomato, and some are hosts of begomoviruses. Only one species of weed, Nicandra physaloides, has been found to be infected with ToSRV. In this study, four weed species were investigated for their capacity to be infected by ToSRV and serve as a potential source of inoculum for tomato. Begomoviruses from naturally infected Crotalaria spp., Euphorbia heterophylla, N. physaloides, and Sida spp. were successfully transferred to tomato plants by biolistic inoculation. ToSRV was the major virus transferred to tomato. In contrast, other begomoviruses were transferred to weeds, such as Sida micrantha mosaic virus and Euphorbia yellow mosaic virus. Furthermore, a new strain of Sida micrantha mosaic virus is reported. We also confirmed that Crotalaria spp., E. heterophylla, and Sida spp. are infected with ToSRV but at low viral titers and in mixed infections with weed-infecting begomoviruses. Thus, it was demonstrated that weeds are potential sources of ToSRV for tomato in central Brazil.
Characterization of pomegranate juice and whey based novel beverage fermented by kefir grains.
Sabokbar, Nayereh; Khodaiyan, Faramarz
2015-06-01
Mixture of pomegranate juice and whey was evaluated as a potential substrate for production of a novel probiotic beverage by kefir grains. Different fermentation conditions were used as viz: two fermentation temperature (19 ºC and 25 ºC) and two levels of kefir grains inoculum (5 % and 8%w/v). pH, acidity, lactose consumption as well as organic acids formation were determined during 32 hours of fermentation. Results showed that kefir grains were able to utilize lactose and decrease pH, increase acidity, produce lactic acid and acetic acid, while the level of citric acid decreased. It was observed these change depended on temperature and level of kefir grains with the highest changes at the temperature of 25 ºC and kefir grains inoculum of 8%w/v. Pomegranate juice and whey mixture therefore may serve as a suitable substrate for the production of novel probiotic dairy-fruit juice beverage by kefir grains and the sensory characteristics of this beverage were shown desirable results.
Zhao, X.; Moates, G.K.; Elliston, A.; Wilson, D.R.; Coleman, M.J.; Waldron, K.W.
2015-01-01
This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210 °C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g−1 substrate) cellulase plus β-glucosidase (2 U g−1 substrate) and a yeast inoculum of 10% (v/v or 8.0 × 107 cells mL−1). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors. PMID:26210138
Zhao, X; Moates, G K; Elliston, A; Wilson, D R; Coleman, M J; Waldron, K W
2015-10-01
This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210°C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g(-1) substrate) cellulase plus β-glucosidase (2 U g(-1) substrate) and a yeast inoculum of 10% (v/v or 8.0×10(7) cells mL(-1)). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Berbert, Alceu LCV; Faria, Gabriele G; Gennari-Cardoso, Margareth L; Silva, Maria MMD; Mineo, José R; Loyola, Adriano M
2007-01-01
The responses of animal experimental models related to the infectivity, virulence and pathogenicity of Paracoccidioides brasiliensis is constantly used to develop new perspectives of investigation. The rodent Calomys callosus, Rengger 1830 (Rodentia: Cricetidae) is an indigenous inhabitant of the savannah environment found in the central regions of Brazil. The aim of the present work was to evaluate the histopathological and serological features of C. callosus after inoculation with the Pb18 strain of P. brasiliensis. Furthermore, A/Sn and B10.A mice strains were also tested to compare the results obtained in C. callosus to these well-established experimental models of resistance and susceptibility respectively. In every instance, survival analysis was performed, and histopathological study of the lungs, liver and spleen was employed to investigate tissue involvement, degree of inflammation and fungal presence. Levels of antibodies to P. brasiliensis were measured by using an enzyme-linked immunosorbent assay after 4 weeks and at the advanced stage of infection. The mortality rate was proportional to inoculation dose in all groups, but overall it was much superior in C. callosus than in the B10.A-susceptible mice. Macroscopical and microscopical pathological alterations were also more extensive and remarkable for C. callosus, once again proportional to inoculation dose, but more noticeable differences among the studied groups were found with 0.6 × 105 inoculum. In addition, the serological profile of C. callosus was similar to that found for B10.A-susceptible mice. Infection of C. callosus with 0.6 × 108 Pb18 inoculum resulted in more serious illness, and it decreased in severity in proportion to the inoculum dose. This difference was more pronounced in C. callosus, and the clinical, serological and pathological findings in this animal were more intense and precocious compared with the B10.A-susceptible mice. The present results suggest that C. callosus is a potentially alternative experimental animal model for paracoccidioidomycosis infection. PMID:17244339
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Jun Wei; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Wang, Jing-Yuan, E-mail: jywang@ntu.edu.sg
2013-04-15
Highlights: ► Microaeration pretreatment was effective for brown water and food waste mixture. ► The added oxygen was consumed fully by facultative microorganisms. ► Enhanced solubilization, acidification and breakdown of SCFAs to acetate. ► Microaeration pretreatment improved methane yield by 10–21%. ► Nature of inoculum influenced the effects of microaeration. - Abstract: Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little hasmore » been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O{sub 2}/L{sub R}-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied to inoculated substrates, and substrates without inoculum, respectively.« less
Boyer, Louisa Robinson; Brain, Philip; Xu, Xiang-Ming; Jeffries, Peter
2015-04-01
The effect of inoculation with two arbuscular mycorrhizal fungi (AMF) on growth and drought tolerance of cultivated strawberry (Fragaria × ananassa) was studied. Three treatments (a single treatment either of Funneliformis mosseae BEG25, Funneliformis geosporus BEG11 or a 50:50 mixed inoculation treatment of both species) were compared to uninoculated plants. Species-specific primers for qPCR quantification of F. geosporus and F. mosseae DNA were developed to quantify the relative abundance of each fungus in roots of strawberry under different conditions of water stress. Co-occupation of the same root by both species was shown to commonly occur, but their relative abundance varied with water stress (reduced irrigation of up to 40%). Greater root colonisation was observed microscopically under water stress, but this increased colonisation was often accompanied with decreased amounts of fungal DNA in the root. F. mosseae tended to become more abundant under water stress relative to F. geosporus. There was significant correlation in the fungal colonisation measurements from the microscopic and qPCR methods under some conditions, but the nature of this relationship varied greatly with AMF inoculum and abiotic conditions. Single-species inoculation treatments gave similar benefits to the host to the mixed inoculation treatment regardless of irrigation regime; here, amount of colonisation was of greater importance than functional diversity. The addition of AMF inocula to plants subjected to reduced irrigation restored plant growth to the same or higher values as the non-mycorrhizal, fully-watered plants. The water use efficiency of plants was greater under the regulated deficit irrigation (RDI) regime and in AMF-inoculated plants, but there were no significant differences between plants inoculated with the single or combined inoculum. This study demonstrated that the increase in plant growth was directly influenced by an increase in root colonisation by AMF when individual plants were examined.
Iacumin, Lucilla; Manzano, Marisa; Comi, Giuseppe
2016-01-01
The anti-listerial activity of generally recognized as safe (GRAS) bacteriophage Listex P100 (phage P100) was demonstrated in broths and on the surface of slices of dry-cured ham against 5 strains or serotypes (i.e., Scott A, 1/2a, 1/2b, and 4b) of Listeria monocytogenes. In a broth model system, phage P100 at a concentration equal to or greater than 7 log PFU/mL completely inhibited 2 log CFU/cm2 or 3 log CFU/cm2 of L. monocytogenes growth at 30 °C. The temperature (4, 10, 20 °C) seemed to influence P100 activity; the best results were obtained at 4 °C. On dry-cured ham slices, a P100 concentration ranging from 5 to 8 log PFU/cm2 was required to obtain a significant reduction in L. monocytogenes. At 4, 10, and 20 °C, an inoculum of 8 log PFU/cm2 was required to completely eliminate 2 log L. monocytogenes/cm2 and to reach the absence in 25 g product according to USA food law. Conversely, it was impossible to completely eradicate L. monocytogenes with an inoculum of approximately of 3.0 and 4.0 log CFU/cm2 and with a P100 inoculum ranging from 1 to 7 log PFU/cm2. P100 remained stable on dry-cured ham slices over a 14-day storage period, with only a marginal loss of 0.2 log PFU/cm2 from an initial phage treatment of approximately 8 log PFU/cm2. Moreover, phage P100 eliminated free L. monocytogenes cells and biofilms on the machinery surfaces used for dry-cured ham production. These findings demonstrate that the GRAS bacteriophage Listex P100 at level of 8 log PFU/cm2 is listericidal and useful for reducing the L. monocytogenes concentration or eradicating the bacteria from dry-cured ham. PMID:27681898
Indirect effects of an invasive annual grass on seed fates of two native perennial grass species.
Meyer, Susan E; Merrill, Katherine T; Allen, Phil S; Beckstead, Julie; Norte, Anna S
2014-04-01
Invasive plants exhibit both direct and indirect negative effects on recruitment of natives following invasion. We examined indirect effects of the invader Bromus tectorum (cheatgrass) on seed fates of two native grass species, Elymus elymoides and Pseudoroegneria spicata, by removing B. tectorum and by adding inoculum of the shared seed pathogen Pyrenophora semeniperda in factorial experiments at xeric and mesic field sites. We also included a supplemental watering treatment to increase emergence and also the potential for pathogen escape. We recorded emergence and survival of native seedlings and also determined the fate of unemerged seeds. At the xeric site, Pyrenophora-caused mortality was high (34%), and effects of other pathogens and failed emergence of germinants were smaller. Cheatgrass removal negatively affected both emergence (35 vs. 25%) and spring survival (69 vs. 42%). Pyrenophora-caused seed mortality increased with inoculum augmentation for both species (22 vs. 47% overall), but emergence was negatively impacted only for P. spicata (20 vs. 34%). At the mesic site, Pyrenophora-caused mortality was low (6%). Cheatgrass removal doubled emergence (26 vs. 14%). Seed mortality increased significantly with inoculum augmentation for P. spicata (12 vs. 5%) but not E. elymoides, while emergence was not significantly affected in either species. A large fraction of seeds produced germinants that failed to emerge (37%), while another large fraction (35%) was killed by other pathogens. We conclude that facilitation by cheatgrass at the xeric site but interference at the mesic site was probably mediated through litter effects that could be ameliorative or suppressive. Apparent competition between cheatgrass and native grasses could occur through Pyrenophora, especially in a xeric environment, but effects were weak or absent at emergence. This was probably because Pyrenophora attacks the same slow-germinating fraction that is subject to pre-emergence mortality from other causes, including attack by other pathogens such as Fusarium.
Inactivation of Escherichia coli by citral.
Somolinos, M; García, D; Condón, S; Mackey, B; Pagán, R
2010-06-01
The aim was to evaluate (i) the resistance of Escherichia coli BJ4 to citral in a buffer system as a function of citral concentration, treatment medium pH, storage time and initial inoculum size, (ii) the role of the sigma factor RpoS on citral resistance of E. coli, (iii) the role of the cell envelope damage in the mechanism of microbial inactivation by citral and (iiii) possible synergistic effects of mild heat treatment and pulsed electric fields (PEF) treatment combined with citral. The initial inoculum size greatly affected the efficacy of citral against E. coli cells. Exposure to 200 microl l(-1) of citral at pH 4.0 for 24 h at 20 degrees C caused the inactivation of more than 5 log(10) cycles of cells starting at an inoculum size of 10(6) or 10(7) CFU ml(-1), whereas increasing the cell concentration to 10(9) CFU ml(-1) caused <1 log(10) cycle of inactivation. Escherichia coli showed higher resistance to citral at pH 4.0 than pH 7.0. The rpoS null mutant strain E. coli BJ4L1 was less resistant to citral than the wild-type strain. Occurrence of sublethal injury to both the cytoplasmic and outer membranes was demonstrated by adding sodium chloride or bile salts to the recovery media. The majority of sublethally injured cells by citral required energy and lipid synthesis for repair. A strongly synergistic lethal effect was shown by mild heat treatment combined with citral but the presence of citral during the application of a PEF treatment did not show any advantage. This work confirms that cell envelope damage is an important event in citral inactivation of bacteria, and it describes the key factors on the inactivation of E. coli cells by citral. Knowledge about the mechanism of microbial inactivation by citral helps establish successful combined preservation treatments.
Lactic acid fermentation of human urine to improve its fertilizing value and reduce odour emissions.
Andreev, N; Ronteltap, M; Boincean, B; Wernli, M; Zubcov, E; Bagrin, N; Borodin, N; Lens, P N L
2017-08-01
During storage of urine, urea is biologically decomposed to ammonia, which can be lost through volatilization and in turn causes significant unpleasant smell. In response, lactic acid fermentation of urine is a cost-effective technique to decrease nitrogen volatilization and reduce odour emissions. Fresh urine (pH = 5.2-5.3 and NH 4 + -N = 1.2-1.3 g L -1 ) was lacto-fermented for 36 days in closed glass jars with a lactic acid bacterial inoculum from sauerkraut juice and compared to untreated, stored urine. In the lacto-fermented urine, the pH was reduced to 3.8-4.7 and the ammonium content by 22-30%, while the pH of the untreated urine rose to 6.1 and its ammonium content increased by 32% due to urea hydrolysis. The concentration of lactic acid bacteria in lacto-fermented urine was 7.3 CFU ml -1 , suggesting that urine is a suitable growth medium for lactic acid bacteria. The odour of the stored urine was subjectively perceived by four people to be twice as strong as that of lacto-fermented samples. Lacto-fermented urine induced increased radish germination compared to stored urine (74-86% versus 2-31%). Adding a lactic acid bacterial inoculum to one week old urine in the storage tanks in a urine-diverting dry toilet reduced the pH from 8.9 to 7.7 after one month, while the ammonium content increased by 35%, probably due to the high initial pH of the urine. Given that the hydrolyzed stale urine has a high buffering capacity, the lactic acid bacterial inoculum should be added to the urine storage tank of a UDDT before urine starts to accumulate there to increase the efficiency of the lactic acid fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Macedo, Renan; Sales, Lilian Patrícia; Yoshida, Fernanda; Silva-Abud, Lidianne Lemes; Lobo, Murillo
2017-01-01
Root rots are a constraint for staple food crops and a long-lasting food security problem worldwide. In common beans, yield losses originating from root damage are frequently attributed to dry root rot, a disease caused by the Fusarium solani species complex. The aim of this study was to model the current potential distribution of common bean dry root rot on a global scale and to project changes based on future expectations of climate change. Our approach used a spatial proxy of the field disease occurrence, instead of solely the pathogen distribution. We modeled the pathogen environmental requirements in locations where in-situ inoculum density seems ideal for disease manifestation. A dataset of 2,311 soil samples from commercial farms assessed from 2002 to 2015 allowed us to evaluate the environmental conditions associated with the pathogen's optimum inoculum density for disease occurrence, using a lower threshold as a spatial proxy. We encompassed not only the optimal conditions for disease occurrence but also the optimal pathogen's density required for host infection. An intermediate inoculum density of the pathogen was the best disease proxy, suggesting density-dependent mechanisms on host infection. We found a strong convergence on the environmental requirements of both the host and the disease development in tropical areas, mostly in Brazil, Central America, and African countries. Precipitation and temperature variables were important for explaining the disease occurrence (from 17.63% to 43.84%). Climate change will probably move the disease toward cooler regions, which in Brazil are more representative of small-scale farming, although an overall shrink in total area (from 48% to 49% in 2050 and 26% to 41% in 2070) was also predicted. Understanding pathogen distribution and disease risks in an evolutionary context will therefore support breeding for resistance programs and strategies for dry root rot management in common beans.
Macedo, Renan; Sales, Lilian Patrícia; Yoshida, Fernanda; Silva-Abud, Lidianne Lemes
2017-01-01
Root rots are a constraint for staple food crops and a long-lasting food security problem worldwide. In common beans, yield losses originating from root damage are frequently attributed to dry root rot, a disease caused by the Fusarium solani species complex. The aim of this study was to model the current potential distribution of common bean dry root rot on a global scale and to project changes based on future expectations of climate change. Our approach used a spatial proxy of the field disease occurrence, instead of solely the pathogen distribution. We modeled the pathogen environmental requirements in locations where in-situ inoculum density seems ideal for disease manifestation. A dataset of 2,311 soil samples from commercial farms assessed from 2002 to 2015 allowed us to evaluate the environmental conditions associated with the pathogen’s optimum inoculum density for disease occurrence, using a lower threshold as a spatial proxy. We encompassed not only the optimal conditions for disease occurrence but also the optimal pathogen’s density required for host infection. An intermediate inoculum density of the pathogen was the best disease proxy, suggesting density-dependent mechanisms on host infection. We found a strong convergence on the environmental requirements of both the host and the disease development in tropical areas, mostly in Brazil, Central America, and African countries. Precipitation and temperature variables were important for explaining the disease occurrence (from 17.63% to 43.84%). Climate change will probably move the disease toward cooler regions, which in Brazil are more representative of small-scale farming, although an overall shrink in total area (from 48% to 49% in 2050 and 26% to 41% in 2070) was also predicted. Understanding pathogen distribution and disease risks in an evolutionary context will therefore support breeding for resistance programs and strategies for dry root rot management in common beans. PMID:29107985
Analyses of Fusarium wilt race 3 resistance in Upland cotton (Gossypium hirsutum L.).
Abdullaev, Alisher A; Salakhutdinov, Ilkhom B; Egamberdiev, Sharof Sh; Kuryazov, Zarif; Glukhova, Ludmila A; Adilova, Azoda T; Rizaeva, Sofiya M; Ulloa, Mauricio; Abdurakhmonov, Ibrokhim Y
2015-06-01
Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans] represents a serious threat to cotton (Gossypium spp.) production. For the last few decades, the FOV pathogen has become a significant problem in Uzbekistan causing severe wilt disease and yield losses of G. hirsutum L. cultivars. We present the first genetic analyses of FOV race 3 resistance on Uzbek Cotton Germplasm with a series of field and greenhouse artificial inoculation-evaluations and inheritance studies. The field experiments were conducted in two different sites: the experimental station in Zangiota region-Environment (Env) 1 and the Institute of Cotton Breeding (Env-2, Tashkent province). The Env-1 was known to be free of FOV while the Env-2 was known to be a heavily FOV infested soil. In both (Env-1 and Env-2) of these sites, field soil was inoculated with FOV race 3. F2 and an F3 Upland populations ("Mebane B1" × "11970") were observed with a large phenotypic variance for plant survival and FOV disease severity within populations and among control or check Upland accessions. Wilt symptoms among studied F2 individuals and F3 families significantly differed depending on test type and evaluation site. Distribution of Mendelian rations of susceptible (S) and resistant (R) phenotypes were 1S:1R field Env-1 and 3S:1R field Env-2 in the F2 population, and 1S:3R greenhouse site in the F3 population. The different segregation distribution of the Uzbek populations may be explained by differences in FOV inoculum level and environmental conditions during assays. However, genetic analysis indicated a recessive single gene action under high inoculum levels or disease pressure for FOV race 3 resistance. Uzbek germplasm may be more susceptible than expected to FOV race 3, and sources of resistance to FOV may be limited under the FOV inoculum levels present in highly-infested fields making the breeding process more complex.
Gilbert, P; Jones, M V; Allison, D G; Heys, S; Maira, T; Wood, P
1998-12-01
Poloxamer F127 is a non-toxic, di-block copolymer of polyoxyethylene and polyoxypropylene. Aqueous solutions (30% w/v) show thermoreversible gelation, being liquid at temperatures < 15 degrees C and robust gels at temperatures > 15 degrees C. Chilled poloxamer (30% in tryptone soya broth) was mixed with an inoculum of Pseudomonas aeruginosa (10(4) cfu ml-1) and placed as 100 microliters drops onto separate glass cover-slips. These were placed into sealed Petri dishes containing moistened cotton wool and incubated at 35 degrees C. Viable counts could be performed on the poloxamer gels by transfer of the coverslips to diluents at < 15 degrees C. Growth curves in the gels and in liquid batch cultures were indistinguishable from one another with stationary phase cell densities, being approximately 5 x 10(10) cfu ml-1 in each at 16 h. SDS-PAGE of cell envelope preparations showed the poloxamer-grown cells to exhibit a biofilm rather than planktonic phenotype. Susceptibility towards various concentrations of chlorhexidine, iodine and hydrogen peroxide was assessed for 10 min at 35 degrees C for suspensions of broth-grown cells and for incubated poloxamer-gels (1 and 16 h). The gels were immersed in biocide, on their glass supports, before transfer to neutralizer at 10 degrees C where dissolution was complete within 5 min. Further serial dilutions and plate counts were made. While modest decreases in susceptibility towards all biocides were associated with incorporation of the inoculum with the gel (1 h incubation), substantial changes were noted after prolonged incubation and adaptation to a biofilm phenotype (16 h incubation). The gel populations mimic the localized high cell densities observed in biofilms and will also be subject to the same nutrient and chemical gradients as found within natural biofilms. Thermoreversible gelation enables complete recovery of the test inoculum without further trauma. They therefore provide an effective model for assessing biofilm susceptibility towards biocides and would be suitable for screening programmes.
CYTOCHEMICAL STUDIES OF THE NUCLEOPROTEINS OF HELA CELLS INFECTED WITH HERPES VIRUS
Love, Robert; Wildy, Peter
1963-01-01
The morphological and cytochemical changes in HeLa cells infected with herpes virus have been studied at frequent intervals during infection and related to the growth of virus and the multiplicity of the virus inoculum. Infection with a high multiplicity inoculum produced enlargement and extrusion of small ribonucleoprotein (RNP) bodies in the nucleoli (nucleolini) to form RNP bodies in the nucleoplasm (B bodies) beginning ½ hour after infection. 3 hours after infection, RNP of the pars amorpha appeared to diffuse into the adjacent nucleoplasm, where, ½ hour later, the classical type A inclusion or A body first appeared. The A bodies displaced the B bodies and the nucleoli and eventually filled the nucleus. 6 hours after infection, minute granules containing RNA, DNA, and non-histone protein appeared inside the A bodies (A granules) and increased in number until the late stages of infection, when they disappeared. 18 hours after infection, at the time when the A bodies came to fill the nucleus completely, extrusion of RNP from the nucleus produced cytoplasmic masses which have been termed C bodies. B bodies were formed in the majority of cells before the maturation of infectious virus, but the number of B bodies could not be correlated with the amount of virus in the cell or with the multiplicity of the inoculum. It is suggested that the formation of B bodies may be the result of inhibition of the onset of mitotic division by a mechanism which does not inhibit the formation of RNA in the nucleolini. The nature of the A bodies, the A granules, and the C bodies is discussed and it is concluded that the A granules may represent aggregations of maturing virus in the nucleus. The progression of some C mitotic metaphases to the formation of post-C mitotic multinucleated giant cells is described. These are distinct from syncytia formed by cell fusion. PMID:19866625
CYTOCHEMICAL STUDIES OF THE NUCLEOPROTEINS OF HELA CELLS INFECTED WITH HERPES VIRUS.
Love, R; Wildy, P
1963-05-01
The morphological and cytochemical changes in HeLa cells infected with herpes virus have been studied at frequent intervals during infection and related to the growth of virus and the multiplicity of the virus inoculum. Infection with a high multiplicity inoculum produced enlargement and extrusion of small ribonucleoprotein (RNP) bodies in the nucleoli (nucleolini) to form RNP bodies in the nucleoplasm (B bodies) beginning (1/2) hour after infection. 3 hours after infection, RNP of the pars amorpha appeared to diffuse into the adjacent nucleoplasm, where, (1/2) hour later, the classical type A inclusion or A body first appeared. The A bodies displaced the B bodies and the nucleoli and eventually filled the nucleus. 6 hours after infection, minute granules containing RNA, DNA, and non-histone protein appeared inside the A bodies (A granules) and increased in number until the late stages of infection, when they disappeared. 18 hours after infection, at the time when the A bodies came to fill the nucleus completely, extrusion of RNP from the nucleus produced cytoplasmic masses which have been termed C bodies. B bodies were formed in the majority of cells before the maturation of infectious virus, but the number of B bodies could not be correlated with the amount of virus in the cell or with the multiplicity of the inoculum. It is suggested that the formation of B bodies may be the result of inhibition of the onset of mitotic division by a mechanism which does not inhibit the formation of RNA in the nucleolini. The nature of the A bodies, the A granules, and the C bodies is discussed and it is concluded that the A granules may represent aggregations of maturing virus in the nucleus. The progression of some C mitotic metaphases to the formation of post-C mitotic multinucleated giant cells is described. These are distinct from syncytia formed by cell fusion.
Ghatnur, Shashidhar M.; Parvatam, Giridhar; Balaraman, Manohar
2015-01-01
Background: Cordyceps sinensis (CS) is a traditional Chinese medicine contains potent active metabolites such as nucleosides and polysaccharides. The submerged cultivation technique is studied for the large scale production of CS for biomass and metabolites production. Objective: To optimize culture conditions for large-scale production of CS1197 biomass and metabolites production. Materials and Methods: The CS1197 strain of CS was isolated from dead larvae of natural CS and the authenticity was assured by the presence of two major markers adenosine and cordycepin by high performance liquid chromatography and mass spectrometry. A three-level Box-Behnken design was employed to optimize process parameters culturing temperature, pH, and inoculum volume for the biomass yield, adenosine and cordycepin. The experimental results were regressed to a second-order polynomial equation by a multiple regression analysis for the prediction of biomass yield, adenosine and cordycepin production. Multiple responses were optimized based on desirability function method. Results: The desirability function suggested the process conditions temperature 28°C, pH 7 and inoculum volume 10% for optimal production of nutraceuticals in the biomass. The water extracts from dried CS1197 mycelia showed good inhibition for 2 diphenyl-1-picrylhydrazyl and 2,2-azinobis-(3-ethyl-benzo-thiazoline-6-sulfonic acid-free radicals. Conclusion: The result suggests that response surface methodology-desirability function coupled approach can successfully optimize the culture conditions for CS1197. SUMMARY Authentication of CS1197 strain by the presence of adenosine and cordycepin and culturing period was determined to be for 14 daysContent of nucleosides in natural CS was found higher than in cultured CS1197 myceliumBox-Behnken design to optimize critical cultural conditions: temperature, pH and inoculum volumeWater extract showed better antioxidant activity proving credible source of natural antioxidants. PMID:26929580
Restoring the biological crust cover of soils across biomes in arid North America
NASA Astrophysics Data System (ADS)
Garcia-Pichel, Ferran; Antoninka, Anita; Bowker, Matthew; Giraldo Silva, Ana; Nelson, Corey; Velasco Ayuso, Sergio; Barger, Nichole; Belnap, Jayne; Reed, Sasha; Duniway, Michael
2015-04-01
Biological soil crust communities provide important ecosystem services to arid lands, particularly regarding soil fertility and stability against erosion. In North America, and in many other areas of the globe, increasingly intense human activities, ranging from cattle grazing to military training, have resulted in the significant deterioration of biological soil surface cover of soils. With the intent of attaining sustainable land use practices, we are conducting a 5-year, multi-institutional research effort to develop feasible soil crusts restoration strategies for US military lands. We are including field sites of varying climatic regions (warm and cold deserts, in the Chihuahuan Desert and in the Great Basin, respectively) and varying edaphic characteristics (sandy and silty soils in each). We have multiple aims. First, we aim to establishing effective "biocrust nurseries" that produce viable and pedigreed inoculum, as a supply center for biocrust restoration and for research and development. Second, we aim to develop optimal field application methods of biocrust inoculum in a series of field trials. Currently in our second year of research, we will be reporting on significant advances made on optimizing methodologies for the large-scale supply of inoculum based on a) pedigreed laboratory cultures that match the microbial community structure of the original sites, and b) "in soil" biomass enhancement, whereby small amounts of local crusts are nursed under greenhouse conditions to yield hundred-fold increases in biomass without altering significantly community structure. We will also report on field trials for methodologies in field application, which included shading, watering, application of chemical polymers, and soil surface roughening. In a soon-to-be-initiated effort we also aim to evaluate soil and plant responses to biocrust restoration with respect to plant community structure, soil fertility, and soil stability, in multi-factorial field experiments. An important part of the plan will be to construct effective channels for sharing challenges and solutions in biocrust restoration with military and federal land managers.
Zaragoza, Oscar; Mesa-Arango, Ana C.; Gómez-López, Alicia; Bernal-Martínez, Leticia; Rodríguez-Tudela, Juan Luis; Cuenca-Estrella, Manuel
2011-01-01
Nonfermentative yeasts, such as Cryptococcus spp., have emerged as fungal pathogens during the last few years. However, standard methods to measure their antifungal susceptibility (antifungal susceptibility testing [AST]) are not completely reliable due to the impaired growth of these yeasts in standard media. In this work, we have compared the growth kinetics and the antifungal susceptibilities of representative species of nonfermentative yeasts such as Cryptococcus neoformans, Cryptococcus gattii, Cryptococcus albidus, Rhodotorula spp., Yarrowia lipolytica, Geotrichum spp., and Trichosporon spp. The effect of the growth medium (RPMI medium versus yeast nitrogen base [YNB]), glucose concentration (0.2% versus 2%), nitrogen source (ammonium sulfate), temperature (30°C versus 35°C), shaking, and inoculum size (103, 104, and 105 cells) were analyzed. The growth rate, lag phase, and maximum optical density were obtained from each growth experiment, and after multivariate analysis, YNB-based media demonstrated a significant improvement in the growth of yeasts. Shaking, an inoculum size of 105 CFU/ml, and incubation at 30°C also improved the growth kinetics of organisms. Supplementation with ammonium sulfate and with 2% glucose did not have any effect on growth. We also tested the antifungal susceptibilities of all the isolates by the reference methods of the CLSI and EUCAST, the EUCAST method with shaking, YNB under static conditions, and YNB with shaking. MIC values obtained under different conditions showed high percentages of agreement and significant correlation coefficient values between them. MIC value determinations according to CLSI and EUCAST standards were rather complicated, since more than half of isolates tested showed a limited growth index, hampering endpoint determinations. We conclude that AST conditions including YNB as an assay medium, agitation of the plates, reading after 48 h of incubation, an inoculum size of 105 CFU/ml, and incubation at 30°C made MIC determinations easier without an overestimation of MIC values. PMID:21245438
Fate of Listeria monocytogenes in Fresh Apples and Caramel Apples.
Salazar, Joelle K; Carstens, Christina K; Bathija, Vriddi M; Narula, Sartaj S; Parish, Mickey; Tortorello, Mary Lou
2016-05-01
An outbreak of listeriosis in late 2014 and early 2015 associated with caramel apples led to questions about how this product became a vector for Listeria monocytogenes. This investigation aimed to determine information about the survival and growth of L. monocytogenes in both fresh apples and caramel apples, specifically examining the effects of site and level of inoculation, inoculum drying conditions, and storage temperature. At a high inoculation level (7 log CFU per apple), L. monocytogenes inoculated at the stem end proliferated on Gala caramel apples at both 5 and 25°C and on Granny Smith caramel apples at 25°C by as much as 3 to 5 log CFU per apple. Fresh apples and caramel apples inoculated at the equatorial surface supported survival but not growth of the pathogen. Growth rates (μmax) for apples inoculated at the stem end, as determined using the Baranyi and Roberts growth model, were 1.64 ± 0.27 and 1.38 ± 0.20 log CFU per apple per day for Gala and Granny Smith caramel apples, respectively, stored at 25°C. At a low inoculation level (3 log CFU per apple), L. monocytogenes inoculated at the stem end and the equatorial surface survived but did not grow on fresh Gala and Granny Smith apples stored at 25°C for 49 days; however, on caramel apples inoculated at the stem end, L. monocytogenes had significant growth under the same conditions. Although certain conditions did not support growth, the pathogen was always detectable by enrichment culture. The inoculation procedure had a significant effect on results; when the inoculum was allowed to dry for 24 h at 5°C, growth was significantly slowed compared with inoculum allowed to dry for 2 h at 25°C. Variation in stick materials did affect L. monocytogenes survival, but these differences were diminished once sticks were placed into caramel apples.
Baverstock, J; Clark, S J; Pell, J K
2008-03-01
The ability of the aphid pathogenic fungus Pandora neoaphidis to remain active in the absence of a resting stage through a combination of continuous infection and as conidia deposited on soil was assessed alongside the potential for planted field margins to act as a refuge for the fungus. P. neoaphidis was able to infect the pea aphid, Acyrthosiphon pisum, when maintained under controlled conditions that simulated those that occur seasonally in the UK. Although there was a significant inverse relationship between temperature and time-to-kill, with death occurring after 4.2, 6.9 and 13.6 days when maintained under fluctuating summer, autumn and winter temperatures, respectively, there were no additional statistically significant effects of photoperiod. The activity of inoculum on soil was indirectly assessed by baiting with A. pisum. Under controlled conditions P. neoaphidis remained active on soil and was able to infect aphids for up to 80 days. However, the percentage of aphids that became infected decreased from 76% on day 1 to 11% on day 80. Whereas there was little difference in the activity of conidia that had been maintained at 4 degrees C and 10 degrees C, activity at 18 degrees C was considerably reduced. Under field conditions the activity of inoculum was strongly influenced by season. On day 49 there was little or no activity during spring, summer or winter. However, during autumn a mean proportion of 0.08 aphids still became infected with P. neoaphidis. Margin type did not affect the activity of conidia nor was there a difference in activity between blocks that had regenerated naturally and those that had been planted. These results suggest that P. neoaphidis can infect aphids and remain active on soil under the abiotic conditions that occur seasonally in the UK and that this fungus may be able to persist annually without a resting stage.
Huang, Yong-Ju; Qi, Aiming; King, Graham J.; Fitt, Bruce D. L.
2014-01-01
Quantitative resistance against Leptosphaeria maculans in Brassica napus is difficult to assess in young plants due to the long period of symptomless growth of the pathogen from the appearance of leaf lesions to the appearance of canker symptoms on the stem. By using doubled haploid (DH) lines A30 (susceptible) and C119 (with quantitative resistance), quantitative resistance against L. maculans was assessed in young plants in controlled environments at two stages: stage 1, growth of the pathogen along leaf veins/petioles towards the stem by leaf lamina inoculation; stage 2, growth in stem tissues to produce stem canker symptoms by leaf petiole inoculation. Two types of inoculum (ascospores; conidia) and three assessment methods (extent of visible necrosis; symptomless pathogen growth visualised using the GFP reporter gene; amount of pathogen DNA quantified by PCR) were used. In stage 1 assessments, significant differences were observed between lines A30 and C119 in area of leaf lesions, distance grown along veins/petioles assessed by visible necrosis or by viewing GFP and amount of L. maculans DNA in leaf petioles. In stage 2 assessments, significant differences were observed between lines A30 and C119 in severity of stem canker and amount of L. maculans DNA in stem tissues. GFP-labelled L. maculans spread more quickly from the stem cortex to the stem pith in A30 than in C119. Stem canker symptoms were produced more rapidly by using ascospore inoculum than by using conidial inoculum. These results suggest that quantitative resistance against L. maculans in B. napus can be assessed in young plants in controlled conditions. Development of methods to phenotype quantitative resistance against plant pathogens in young plants in controlled environments will help identification of stable quantitative resistance for control of crop diseases. PMID:24454767
Lavrenčič, A
2007-03-01
In vitro gas production kinetics of six different substrates, pectin (PEC), xylan (XYL), starch (STA), cellulose (CEL), commercial compound feed (FEED; 201 g crude protein per kg, 155 g crude fibre per kg, 334 g neutral-detergent fibre (NDF) per kg and 190 g acid-detergent fibre (ADF) per kg) and an NDF prepared from commercial compound feed (NDFFEED) were determined using the caecum contents of weaned rabbits (36 days of age) and of rabbits at slaughter age (78 days of age) as inoculums. The cumulated gas production over 96 h of incubation was modelled with Gompertz model, and the kinetic parameters compared. The total potential gas production (parameter 'B' of the Gompertz model) was not affected (P>0.05) by the inoculum source, except with STA, where rabbits at slaughter weight had significantly higher total potential fermentability (314 ml/g dry matter (DM)) than those at weaning age (189 ml/g DM). Intensities of fermentation (maximum fermentation rate; MFR) of PEC (32.2 ml/h) and XYL (24.4 ml/h) were significantly greater in rabbits at weaning, while that of STA (45 ml/h) was significantly lower than at slaughter age (23.0, 14.3 and 14.0 ml/h for PEC, XYL and STA, respectively). The MFRs of CEL and NDFFEED were very similar between inoculum sources. In the first 10 h of fermentation which correspond to the normal retention time of the substrates in the caecum, the highest amount of gas was produced from PEC, followed by FEED and XYL. These substrates had a time of maximum fermentation rate (TMFR) at both rabbit ages short enough (8.0 and 9.5 h for PEC, 9.5 and 6.6 h for FEED, 13.7 and 14.2 h for XYL at weaning and at slaughter age, respectively) to be almost completely fermented in vivo.
Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation
Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Tittabutr, Panlada; Boonkerd, Nantakorn
2017-01-01
ABSTRACT Bradyrhizobium encompasses a variety of bacteria that can live in symbiotic and endophytic associations with leguminous and nonleguminous plants, such as rice. Therefore, it can be expected that rice endophytic bradyrhizobia can be applied in the rice-legume crop rotation system. Some endophytic bradyrhizobial strains were isolated from rice (Oryza sativa L.) tissues. The rice biomass could be enhanced when supplementing bradyrhizobial strain inoculation with KNO3, NH4NO3, or urea, especially in Bradyrhizobium sp. strain SUTN9-2. In contrast, the strains which suppressed rice growth were photosynthetic bradyrhizobia and were found to produce nitric oxide (NO) in the rice root. The expression of genes involved in NO production was conducted using a quantitative reverse transcription-PCR (qRT-PCR) technique. The nirK gene expression level in Bradyrhizobium sp. strain SUT-PR48 with nitrate was higher than that of the norB gene. In contrast, the inoculation of SUTN9-2 resulted in a lower expression of the nirK gene than that of the norB gene. These results suggest that SUT-PR48 may accumulate NO more than SUTN9-2 does. Furthermore, the nifH expression of SUTN9-2 was induced in treatment without nitrogen supplementation in an endophytic association with rice. The indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase produced in planta by SUTN9-2 were also detected. Enumeration of rice endophytic bradyrhizobia from rice tissues revealed that SUTN9-2 persisted in rice tissues until rice-harvesting season. The mung bean (Vigna radiata) can be nodulated after rice stubbles were decomposed. Therefore, it is possible that rice stubbles can be used as an inoculum in the rice-legume crop rotation system under both low- and high-organic-matter soil conditions. IMPORTANCE This study shows that some rice endophytic bradyrhizobia could produce IAA and ACC deaminase and have a nitrogen fixation ability during symbiosis inside rice tissues. These characteristics may play an important role in rice growth promotion by endophytic bradyrhizobia. However, the NO-producing strains should be of concern due to a possible deleterious effect of NO on rice growth. In addition, this study reports the application of endophytic bradyrhizobia in rice stubbles, and the rice stubbles were used directly as an inoculum for a leguminous plant (mung bean). The degradation of rice stubbles leads to an increased number of SUTN9-2 in the soil and may result in increased mung bean nodulation. Therefore, the persistence of endophytic bradyrhizobia in rice tissues can be developed to use rice stubbles as an inoculum for mung bean in a rice-legume crop rotation system. PMID:28916558
Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation.
Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Tittabutr, Panlada; Boonkerd, Nantakorn; Teaumroong, Neung
2017-11-15
Bradyrhizobium encompasses a variety of bacteria that can live in symbiotic and endophytic associations with leguminous and nonleguminous plants, such as rice. Therefore, it can be expected that rice endophytic bradyrhizobia can be applied in the rice-legume crop rotation system. Some endophytic bradyrhizobial strains were isolated from rice ( Oryza sativa L.) tissues. The rice biomass could be enhanced when supplementing bradyrhizobial strain inoculation with KNO 3 , NH 4 NO 3 , or urea, especially in Bradyrhizobium sp. strain SUTN9-2. In contrast, the strains which suppressed rice growth were photosynthetic bradyrhizobia and were found to produce nitric oxide (NO) in the rice root. The expression of genes involved in NO production was conducted using a quantitative reverse transcription-PCR (qRT-PCR) technique. The nirK gene expression level in Bradyrhizobium sp. strain SUT-PR48 with nitrate was higher than that of the norB gene. In contrast, the inoculation of SUTN9-2 resulted in a lower expression of the nirK gene than that of the norB gene. These results suggest that SUT-PR48 may accumulate NO more than SUTN9-2 does. Furthermore, the nifH expression of SUTN9-2 was induced in treatment without nitrogen supplementation in an endophytic association with rice. The indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase produced in planta by SUTN9-2 were also detected. Enumeration of rice endophytic bradyrhizobia from rice tissues revealed that SUTN9-2 persisted in rice tissues until rice-harvesting season. The mung bean ( Vigna radiata ) can be nodulated after rice stubbles were decomposed. Therefore, it is possible that rice stubbles can be used as an inoculum in the rice-legume crop rotation system under both low- and high-organic-matter soil conditions. IMPORTANCE This study shows that some rice endophytic bradyrhizobia could produce IAA and ACC deaminase and have a nitrogen fixation ability during symbiosis inside rice tissues. These characteristics may play an important role in rice growth promotion by endophytic bradyrhizobia. However, the NO-producing strains should be of concern due to a possible deleterious effect of NO on rice growth. In addition, this study reports the application of endophytic bradyrhizobia in rice stubbles, and the rice stubbles were used directly as an inoculum for a leguminous plant (mung bean). The degradation of rice stubbles leads to an increased number of SUTN9-2 in the soil and may result in increased mung bean nodulation. Therefore, the persistence of endophytic bradyrhizobia in rice tissues can be developed to use rice stubbles as an inoculum for mung bean in a rice-legume crop rotation system. Copyright © 2017 American Society for Microbiology.
Marko Riedel; Sabine Werres; Marianne Elliott; Katie McKeever; Simon Shamoun
2012-01-01
Studies on the relationship between rhododendron and Phytophthora ramorum include the influence of wounds on leaf infection and on the development of leaf necrosis (De Dobbelaere et al. 2010; Denman et al. 2005), the influence of the inoculum type (Widmer 2009), and tissue colonization by P. ramorum (Brown and Brasier 2007;...
We measured growth of a phenanthrene-degrading bacterium, Arthrobacter, strain RP17, in Forbes soil, amended with 500
g g−1 phenanthrene using a quantitati...
USDA-ARS?s Scientific Manuscript database
Field-grown maize is inoculated with Cochliobolus heterostrophus, causal agent of Southern Leaf Blight disease, by dropping sorghum grains infested with the fungus into the whorl of each maize plant at an early stage of growth. The initial lesions produce secondary inoculum that is dispersed by wind...
The extent of tetrachloroethene (PCE) dechlorination in two chemostats was evaluated as a function of hydraulic retention time (HRT). The inoculum of these chemostats was from an upflow anaerobic sludge blanket (UASB) reactor that rapidly converts PCE to vinyl chloride (VC) an...
Soil was taken from the top 10 cm of a soil column that removed halogenated aliphatic hydrocarbons in the presence of natural gas. This soil was used as an enrichment inoculum to determine that the removals seen in the soil column were in fact of a microbiological nature. Methane...
E.K. Peterson
2013-01-01
Phytophthora ramorum-infested soils have been implicated as a source of primary inoculum in natural ecosystems. Implicit in this pathway is the need for infection of understory vegetation during pathogen establishment, preceding infection of bole hosts. In support of soil dispersal, studies using artificiallyinoculated soils have shown that...
Epizootiology of gypsy moth nuclear polyhedrosis virus
Joseph S. Elkinton; John P. Burand; Kathleen D. Murray; Stephen A. Woods
1991-01-01
Recent experimental findings demonstrate that two distinct waves of mortality of gypsy moth larvae from nuclear polyhedrosis virus (NPV) occurs during larval development. The evidence suggests that early instars acquire lethal doses of NPV from the surface of the egg mass and the cadavers of these larvae produce inoculum that causes a second wave of mortality among...
Nina Shishkoff
2013-01-01
In this study, viburnum (Viburnum) cuttings were treated with oomatistats (Subdue Maxx®, Banol®, and Aliette®) at standard rates for use as soil drenches or with biological control organisms (Streptomyces lydicus formulated as Actinovate SP® and used as a soil drench, and Trichoderma...
USDA-ARS?s Scientific Manuscript database
Sugar beet germplasm and commercial check cultivars were evaluated in a sprinkler-irrigated sugar beet field near Kimberly, ID where sugar beet was grown in 2009. The field trial relied on natural inoculum for rhizomania development. The seed was treated with clothianidin (2.1 oz a.i. per 100,000 ...
USDA-ARS?s Scientific Manuscript database
Gray Leaf Spot [(GLS), causal agent Cercospora zeae-maydis and Cercospora zeina] is an important maize disease in the United States. Current control methods for GLS include using resistant cultivars, crop rotation, chemical applications, and conventional tillage to reduce inoculum levels. Teosinte ...
Paul W. Tooley; Marsha Browning
2009-01-01
Twenty-five plant species (21 genera, 14 families), which comprise a portion of the understory in forests of the Eastern United States, were evaluated for susceptibility to infection by Phytophthora ramorum. The degree to which P. ramorum is able to form sporangia and chlamydospores was also assessed on...
USDA-ARS?s Scientific Manuscript database
Like other members from the Pestivirus genus, ‘HoBi’-like pestiviruses cause economic losses for cattle producers due to both acute and persistent infections. Pestivirus exist as quasispecies (swarms of individual viruses) in persistently infected (PI) animals leading to viral populations that are m...