Ding, Ming-Zhu; Tian, Hong-Chi; Cheng, Jing-Sheng; Yuan, Ying-Jin
2009-12-01
To investigate the metabolic regulation against inoculum density and stress response to high cell density, comparative metabolomic analysis was employed on Saccharomyces cerevisiae under fermentations with five different inoculum sizes by gas chromatography time-of-flight mass spectrometry. Samples from these fermentations were clearly distinguished by principal components analysis, indicating that inoculum size had a profound effect on the metabolism of S. cerevisiae. Potential biomarkers responsible for the discrimination were identified as glycerol, phosphoric acid, succinate, glycine, isoleucine, proline, palmitoleic acid, myo-inositol and ethanolamine. It indicated that enhanced stress protectants in glycerol biosynthesis and amino acid metabolism, depressed citric acid cycle intermediates, as well as decreased metabolites relating to membrane structure and function were involved as the inoculum size of yeast increased. Furthermore, significantly higher levels of glycerol and proline in yeast cells of higher inoculum size fermentation (40 g l(-1)) revealed that they played important roles in protecting yeast from stresses in high cell density fermentation. These findings provided new insights into characterizing the metabolic regulation and stress response depending on inoculum density during ethanol fermentation.
The effect of cultivation on the size, shape, and persistence of disease patches in fields.
Truscott, J E; Gilligan, C A
2001-06-19
Epidemics of soil-borne plant disease are characterized by patchiness because of restricted dispersal of inoculum. The density of inoculum within disease patches depends on a sequence comprising local amplification during the parasitic phase followed by dispersal of inoculum by cultivation during the intercrop period. The mechanisms that control size, shape, and persistence have received very little rigorous attention in epidemiological theory. Here we derive a model for dispersal of inoculum in soil by cultivation that takes account into the discrete stochastic nature of the system in time and space. Two parameters, probability of movement and mean dispersal distance, characterize lateral dispersal of inoculum by cultivation. The dispersal parameters are used in combination with the characteristic area and dimensions of host plants to identify criteria that control the shape and size of disease patches. We derive a critical value for the probability of movement for the formation of cross-shaped patches and show that this is independent of the amount of inoculum. We examine the interaction between local amplification of inoculum by parasitic activity and subsequent dilution by dispersal and identify criteria whereby asymptomatic patches may persist as inoculum falls below a threshold necessary for symptoms to appear in the subsequent crop. The model is motivated by the spread of rhizomania, an economically important soil-borne disease of sugar beet. However, the results have broad applicability to a very wide range of diseases that survive as discrete units of inoculum. The application of the model to patch dynamics of weed seeds and local introductions of genetically modified seeds is also discussed.
Ferrario, Mariana I; Guerrero, Sandra N
The purpose of this study was to analyze the response of different initial contamination levels of Alicyclobacillus acidoterrestris ATCC 49025 spores in apple juice as affected by pulsed light treatment (PL, batch mode, xenon lamp, 3pulses/s, 0-71.6J/cm 2 ). Biphasic and Weibull frequency distribution models were used to characterize the relationship between inoculum size and treatment time with the reductions achieved after PL exposure. Additionally, a second order polynomial model was computed to relate required PL processing time to inoculum size and requested log reductions. PL treatment caused up to 3.0-3.5 log reductions, depending on the initial inoculum size. Inactivation curves corresponding to PL-treated samples were adequately characterized by both Weibull and biphasic models (R adj 2 94-96%), and revealed that lower initial inoculum sizes were associated with higher inactivation rates. According to the polynomial model, the predicted time for PL treatment increased exponentially with inoculum size. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Shrestha, Sourya; Foxman, Betsy; Dawid, Suzanne; Aiello, Allison E.; Davis, Brian M.; Berus, Joshua; Rohani, Pejman
2013-01-01
A significant fraction of seasonal and in particular pandemic influenza deaths are attributed to secondary bacterial infections. In animal models, influenza virus predisposes hosts to severe infection with both Streptococcus pneumoniae and Staphylococcus aureus. Despite its importance, the mechanistic nature of the interaction between influenza and pneumococci, its dependence on the timing and sequence of infections as well as the clinical and epidemiological consequences remain unclear. We explore an immune-mediated model of the viral–bacterial interaction that quantifies the timing and the intensity of the interaction. Taking advantage of the wealth of knowledge gained from animal models, and the quantitative understanding of the kinetics of pathogen-specific immunological dynamics, we formulate a mathematical model for immune-mediated interaction between influenza virus and S. pneumoniae in the lungs. We use the model to examine the pathogenic effect of inoculum size and timing of pneumococcal invasion relative to influenza infection, as well as the efficacy of antivirals in preventing severe pneumococcal disease. We find that our model is able to capture the key features of the interaction observed in animal experiments. The model predicts that introduction of pneumococcal bacteria during a 4–6 day window following influenza infection results in invasive pneumonia at significantly lower inoculum size than in hosts not infected with influenza. Furthermore, we find that antiviral treatment administered later than 4 days after influenza infection was not able to prevent invasive pneumococcal disease. This work provides a quantitative framework to study interactions between influenza and pneumococci and has the potential to accurately quantify the interactions. Such quantitative understanding can form a basis for effective clinical care, public health policies and pandemic preparedness. PMID:23825111
Abinandan, S; Shanthakumar, S
2016-06-01
Bicarbonate species in the aqueous phase is the primary source for CO 2 for the growth of microalgae. The potential of carbon dioxide (CO 2 ) fixation by Chlorella pyrenoidosa in enriched bicarbonate medium was evaluated. In the present study, effects of parameters such as pH, sodium bicarbonate concentration and inoculum size were assessed for the removal of CO 2 by C. pyrenoidosa under mixotrophic condition. Central composite design tool from response surface methodology was used to validate statistical methods in order to study the influence of these parameters. The obtained results reveal that the maximum removal of CO 2 was attained at pH 8 with sodium bicarbonate concentration of 3.33 g/l, and inoculum size of 30 %. The experimental results were statistically significant with R 2 value of 0.9527 and 0.960 for CO 2 removal and accumulation of chlorophyll content, respectively. Among the various interactions, interactive effects between the parameters pH and inoculum size was statistically significant (P < 0.05) for CO 2 removal and chlorophyll accumulation. Based on the studies, the application of C. pyrenoidosa as a potential source for carbon dioxide removal at alkaline pH from bicarbonate source is highlighted.
Context-dependency of arbuscular mycorrhizal fungi on plant-insect interactions in an agroecosystem
Barber, Nicholas A.; Kiers, E. Toby; Hazzard, Ruth V.; Adler, Lynn S.
2013-01-01
Plants interact with a variety of other community members that have the potential to indirectly influence each other through a shared host plant. Arbuscular mycorrhizal fungi (AMF) are generally considered plant mutualists because of their generally positive effects on plant nutrient status and growth. AMF may also have important indirect effects on plants by altering interactions with other community members. By influencing plant traits, AMF can modify aboveground interactions with both mutualists, such as pollinators, and antagonists, such as herbivores. Because herbivory and pollination can dramatically influence plant fitness, comprehensive assessment of plant–AMF interactions should include these indirect effects. To determine how AMF affect plant–insect interactions, we grew Cucumis sativus (Cucurbitaceae) under five AMF inoculum treatments and control. We measured plant growth, floral production, flower size, and foliar nutrient content of half the plants, and transferred the other half to a field setting to measure pollinator and herbivore preference of wild insects. Mycorrhizal treatment had no effect on plant biomass or floral traits but significantly affected leaf nutrients, pollinator behavior, and herbivore attack. Although total pollinator visitation did not vary with AMF treatment, pollinators exhibited taxon-specific responses, with honey bees, bumble bees, and Lepidoptera all responding differently to AMF treatments. Flower number and size were unaffected by treatments, suggesting that differences in pollinator preference were driven by other floral traits. Mycorrhizae influenced leaf K and Na, but these differences in leaf nutrients did not correspond to variation in herbivore attack. Overall, we found that AMF indirectly influence both antagonistic and mutualistic insects, but impacts depend on the identity of both the fungal partner and the interacting insect, underscoring the context-dependency of plant–AMF interactions. PMID:24046771
Influence of inoculum size of Aspergillus parasiticus spores on aflatoxin production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, A.; Behere, A.G.; Padwal-Desai, S.R.
The influence of the inoculum size on growth and aflatoxin production was examined in Aspergillus parasiticus (NRRL 3145) by using a synthetic medium. The reduction in the number of spores by 4 to 5 log cycles either by serial dilution or by gamma irradiation caused a two fold increase in the toxin production. The decrease in the inoculum size induced a lag in growth of the culture, though the final yield of the mycelium over the 28-day experimental period was the same. The maximal accumulation of aflatoxin was observed on day 14 of incubation. A transition from the biphasic tomore » monophasic pattern in aflatoxin production could be correlated with the size of the inoculum. The enhanced toxin production from dilute inocula was similar to that obtained with the surviving fraction of the spores after gamma irradiation (0 to 150 krads).« less
Kesteman, Anne-Sylvie; Ferran, Aude A.; Perrin-Guyomard, Agnès; Laurentie, Michel; Sanders, Pascal; Toutain, Pierre-Louis; Bousquet-Mélou, Alain
2009-01-01
We tested the hypothesis that the bacterial load at the infection site could impact considerably on the pharmacokinetic/pharmacodynamic (PK/PD) parameters of fluoroquinolones. Using a rat lung infection model, we measured the influence of different marbofloxacin dosage regimens on selection of resistant bacteria after infection with a low (105 CFU) or a high (109 CFU) inoculum of Klebsiella pneumoniae. For daily fractionated doses of marbofloxacin, prevention of resistance occurred for an area-under-the-concentration-time-curve (AUC)/MIC ratio of 189 h for the low inoculum, whereas for the high inoculum, resistant-subpopulation enrichment occurred for AUC/MIC ratios up to 756 h. For the high-inoculum-infected rats, the AUC/MIC ratio, Cmax/MIC ratio, and time within the mutant selection window (TMSW) were not found to be effective predictors of resistance prevention upon comparison of fractionated and single administrations. An index corresponding to the ratio of the time that the drug concentrations were above the mutant prevention concentration (MPC) over the time that the drug concentrations were within the MSW (T>MPC/TMSW) was the best predictor of the emergence of resistance: a T>MPC/TMSW ratio of 0.54 was associated with prevention of resistance for both fractionated and single administrations. These results suggest that the enrichment of resistant bacteria depends heavily on the inoculum size at the start of an antimicrobial treatment and that classical PK/PD parameters cannot adequately describe the impact of different dosage regimens on enrichment of resistant bacteria. We propose an original index, the T>MPC/TMSW ratio, which reflects the ratio of the time that the less susceptible bacterial subpopulation is killed over the time that it is selected, as a potentially powerful indicator of prevention of enrichment of resistant bacteria. This ratio is valid only if plasma concentrations achieve the MPC. PMID:19738020
Sheared-root inocula of vesicular-arbuscular mycorrhizal fungi.
Sylvia, D M; Jarstfer, A G
1992-01-01
For efficient handling, vesicular-arbuscular mycorrhizal fungi should be processed into small and uniform inocula; however, processing can reduce the inoculum density. In this article we describe the preparation and use of sheared-root inocula of Glomus spp. in which inoculum densities were increased during processing. Our objectives were to determine inoculum viability and density after shearing and to ascertain if the sheared inocula could be pelletized or used with a gel carrier. Root samples were harvested from aeroponic cultures, blotted dry, cut into 1-cm lengths, and sheared in a food processor for up to 80 s. After shearing, the inoculum was washed over sieves, and the propagule density in each fraction was determined. Sheared inocula were also encapsulated in carrageenan or used in a gel carrier. Shearing aeroponically produced root inocula reduced particle size. Propagule density increased with decreasing size fraction down to a size of 63 mum, after which propagule density decreased. The weighted-average propagule density of the inoculum was 135,380 propagules g (dry weight) of sheared root material. Sheared roots were encapsulated successfully in carrageenan, and the gel served as an effective carrier. Aeroponic root inoculum was stored dry at 4 degrees C for 23 months without significant reduction in propagule density; however, this material was not appropriate for shearing. Moist roots, useful for shearing, began to lose propagule density after 1 month of storage. Shearing proved to be an excellent method to prepare viable root inocula of small and uniform size, allowing for more efficient and effective use of limited inoculum supplies.
Bedenić, B; Boras, A
2001-01-01
The plasmid-mediated extended-spectrum beta-lactamases (ESBL) confer resistance to oxymino-cephalosporins, such as cefotaxime, ceftazidime, and ceftriaxone and to monobactams such as aztreonam. It is well known fact that ESBL producing bacteria exhibit a pronounced inoculum effect against broad spectrum cephalosporins like ceftazidime, cefotaxime, ceftriaxone and cefoperazone. The aim of this investigation was to determine the effect of inoculum size on the sensitivity and specificity of double-disk synergy test (DDST) which is the test most frequently used for detection of ESBLs, in comparison with other two methods (determination of ceftazidime MIC with and without clavulanate and inhibitor potentiated disk-diffusion test) which are seldom used in clinical laboratories. The experiments were performed on a set of K. pneumoniae strains with previously characterized beta-lactamases which comprise: 10 SHV-5 beta-lactamase producing K. pneumoniae, 20 SHV-2 + 1 SHV 2a beta-lactamase producing K. pneumoniae, 7 SHV-12 beta-lactamase producing K. pneumoniae, 39 putative SHV ESBL producing K. pneumoniae and 26 K. pneumoniae isolates highly susceptible to ceftazidime according to Kirby-Bauer disk-diffusion method and thus considered to be ESBL negative. According to the results of this investigation, increase in inoculum size affected more significantly the sensitivity of DDST than of other two methods. The sensitivity of the DDST was lower when a higher inoculum size of 10(8) CFU/ml was applied, in distinction from other two methods (MIC determination and inhibitor potentiated disk-diffusion test) which retained high sensitivity regardless of the density of bacterial suspension. On the other hand, DDST displayed higher specificity compared to other two methods regardless of the inoculum size. This investigation found that DDST is a reliable method but it is important to standardize the inoculum size.
Jung, Yong-Gyun; Kim, Hyejin; Lee, Sangyeop; Kim, Suyeoun; Jo, EunJi; Kim, Eun-Geun; Choi, Jungil; Kim, Hyun Jung; Yoo, Jungheon; Lee, Hye-Jeong; Kim, Haeun; Jung, Hyunju; Ryoo, Sungweon; Kwon, Sunghoon
2018-06-05
The Disc Agarose Channel (DAC) system utilizes microfluidics and imaging technologies and is fully automated and capable of tracking single cell growth to produce Mycobacterium tuberculosis (MTB) drug susceptibility testing (DST) results within 3~7 days. In particular, this system can be easily used to perform DSTs without the fastidious preparation of the inoculum of MTB cells. Inoculum effect is one of the major problems that causes DST errors. The DAC system was not influenced by the inoculum effect and produced reliable DST results. In this system, the minimum inhibitory concentration (MIC) values of the first-line drugs were consistent regardless of inoculum sizes ranging from ~10 3 to ~10 8 CFU/mL. The consistent MIC results enabled us to determine the critical concentrations for 12 anti-tuberculosis drugs. Based on the determined critical concentrations, further DSTs were performed with 254 MTB clinical isolates without measuring an inoculum size. There were high agreement rates (96.3%) between the DAC system and the absolute concentration method using Löwenstein-Jensen medium. According to these results, the DAC system is the first DST system that is not affected by the inoculum effect. It can thus increase reliability and convenience for DST of MTB. We expect that this system will be a potential substitute for conventional DST systems.
López-Gálvez, Francisco; Gil, Maria Isabel; Allende, Ana
2018-04-01
The effects of relative humidity (RH), fluctuating climate conditions, inoculum size and carrier on the survival of Salmonella enterica serovar Typhimurium on baby lettuce in environmental test chambers were studied. Buffered peptone water (BPW), distilled water (DW), and irrigation water (IW) were compared as inoculum carriers. Additionally, survival of Salmonella in suspensions prepared using filtered and unfiltered IW was assessed. Salmonella Typhimurium survived better on baby lettuce plants at high RH independently of the inoculum size. When lettuce plants were grown under fluctuating environmental conditions, Salmonella survival was similar under both RH conditions. Regarding the inoculum carrier, the inoculated microorganism survived better on lettuce plants when BPW was used as carrier both at high and low RH. Survival rate of Salmonella in IW was affected by the presence of native microbiota. Native microbiota present in IW did not affect survival of Salmonella or the levels of mesophilic bacteria on the baby lettuce leaves. The information obtained in the present study contributes to the knowledge on the effect of environmental conditions on pathogenic bacteria survival on growing edible plants. These results are useful when selecting the methodology to carry out experimental studies on the survival of microbial pathogens under different pre-harvest conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Validation of model predictions for independent variables not included in model development can save time and money by identifying conditions for which new models are not needed. A single strain of Salmonella Typhimurium DT104 was used to develop a general regression neural network model for growth...
Griffith, Candace L; Ribeiro, Gabriel O; Oba, Masahito; McAllister, Tim A; Beauchemin, Karen A
2016-01-01
The purpose of this study was to determine the effect of rumen inoculum from heifers with fast vs. slow rate of in situ fiber digestion on the fermentation of complex versus easily digested fiber sources in the forms of untreated and Ammonia Fiber Expansion (AFEX) treated barley straw, respectively, using an artificial rumen simulation technique (Rusitec). In situ fiber digestion was measured in a previous study by incubating untreated barley straw in the rumen of 16 heifers fed a diet consisting of 700 g/kg barley straw and 300 g/kg concentrate. The two heifers with fastest rate of digestion (Fast ≥ 4.18% h -1 ) and the two heifers with the slowest rate of digestion (Slow ≤ 3.17% h -1 ) were chosen as inoculum donors for this study. Two Rusitec apparatuses each equipped with eight fermenters were used in a completely randomized block design with two blocks (apparatus) and four treatments in a 2 × 2 factorial arrangement of treatments (Fast or Slow rumen inoculum and untreated or AFEX treated straw). Fast rumen inoculum and AFEX straw both increased ( P < 0.05) disappearance of dry matter (DMD), organic matter, true DMD, neutral detergent fiber, acid detergent fiber, and nitrogen (N) with an interactive effect between the two ( P < 0.05). Fast rumen inoculum increased ( P > 0.05) methane production per gram of digested material for both untreated and AFEX straw, and reduced (interaction, P < 0.05) acetate: propionate ratio for untreated straw. Greater relative populations of Ruminococcus albus ( P < 0.05) and increased microbial N production ( P = 0.045) were observed in Fast rumen inoculum. AFEX straw in Fast inoculum had greater total bacterial populations than Slow, but for untreated straw this result was reversed (interaction, P = 0.013). These findings indicate that differences in microbial populations in rumen fluid contribute to differences in the capacity of rumen inoculum to digest fiber.
Effects of superheated steam on Geobacillus stearothermophilus spore viability.
Head, D S; Cenkowski, S; Holley, R; Blank, G
2008-04-01
To examine the effect of processing with superheated steam (SS) on Geobacillus stearothermophilus ATCC 10149 spores. Two inoculum levels of spores of G. stearothermophilus were mixed with sterile sand and exposed to SS at 105-175 degrees C. The decimal reduction time (D-value) and the thermal resistance constant (z-value) were calculated. The effect of cooling of spores between periods of exposure to SS was also examined. A mean z-value of 25.4 degrees C was calculated for both inoculum levels for SS processing temperatures between 130 degrees C and 175 degrees C. Spore response to SS treatment depends on inoculum size. SS treatment may be effective for reduction in viability of thermally resistant bacterial spores provided treatments are separated by intermittent cooling periods. There is a need for technologies that require short thermal processing times to eliminate bacterial spores in foods. The SS processing technique has the potential to reduce microbial load and to modify food texture with less energy in comparison to commonly used hot air treatment. This work provides information on the effect of SS processing parameters on the viability of G. stearothermophilus spores.
Bailey, T.A.; Bradford, K.; Bland, C.E.
1990-01-01
Because the infective stage of most mycoses of aquatic organisms is the zoospore, we attempted to establish optimum conditions under which zoospores could be produced for use in antifungal testing. Optimum sporulation time, incubation time, inoculum size, and growth temperature were determined for each oftwo saprolegniaceous fungi, Achlya flagellata Coker and Saprolegnia hypogyna (Pringsheim) de Bary. Both species produced the largest number of zoospores after 18 hours (51.7 spores/ml for A. jlagellata and 848.0 spores/ml for S. hypogyna), and yielded maximum growth after 48 hours at 22 'C. The recommended test inoculum size for S. hypogyna (5,600 spores/ml was nearly three times that for A. flagellata (2,000 spores/ml),
Allsopp, N; Stock, W D
1992-08-01
The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.
Susceptibility of Haemophilus influenzae to chloramphenicol and eight beta-lactam antibiotics.
Thirumoorthi, M C; Kobos, D M; Dajani, A S
1981-01-01
We examined the minimal inhibitory concentrations and minimal bactericidal concentrations of chloramphenicol, ampicillin, ticarcillin, cefamandole, cefazolin, cefoxitin, cefotaxime, ceforanide, and moxalactam for 100 isolates of Haemophilus influenzae, 25 of which produced beta-lactamase. Susceptibility was not influenced by the capsular characteristic of the organism. The mean minimal inhibitory concentrations of cefamandole, ticarcillin, and ampicillin for beta-lactamase-producing strains were 3-, 120-, and 400-fold higher than their respective mean minimal inhibitory concentrations for beta-lactamase-negative strains. No such difference was noted for the other antibiotics. We performed time-kill curve studies, using chloramphenicol, ampicillin, cefamandole, cefotaxime, and moxalactam with two concentrations of the antimicrobial agents (4 or 20 times the minimal inhibitory concentrations) and two inoculum sizes (10(4) or 10(6) colony-forming units per ml). The inoculum size had no appreciable effect on the rate of killing of beta-lactamase-negative strains. The rates at which beta-lactamase-producing strains were killed by chloramphenicol, cefotaxime, and moxalactam was not influenced by the inoculum size. Whereas cefamandole in high concentrations was able to kill at 10(6) colony-forming units/ml of inoculum, it had only a temporary inhibiting effect at low drug concentrations. Methicillin and the beta-lactamase inhibitor CP-45,899 were able to neutralize the inactivation of cefamandole by a large inoculum of beta-lactamase-producing H. influenzae. PMID:6974541
Susceptibility of Legionella pneumophila to twenty antimicrobial agents.
Edelstein, P H; Meyer, R D
1980-01-01
Thirty-three isolates of Legionella pneumophila, all except one of which were clinical isolates, were tested against 20 antimicrobial agents by using an agar dilution technique. Erythromycin, rifamp]in, and rosaramycin were the most active agents tested. Aminoglycosides, chloramphenicol, and cefoxitin also inhibited the organisms at low concentrations. Other agents, including moxalactam, cefoperazone, and cephalosporins, exhibited moderate to little activity. Tetracycline, doxycycline and minocyeline were apparently inactivated by charcoal-yeast extract medium. There was slight inoculum dependence noted with most of the antimicrobials tested, particularly the beta-lactam agents. There was no consistent difference in susceptibility between Center for Disease Control-supplied stock strains and recent clinical isolates, but there were marked differences with some agents. Susceptibility testing needs to be standardized in view of the influence of inoculum size, strain variation, and the medium used. PMID:7425611
Griffith, Candace L.; Ribeiro, Gabriel O.; Oba, Masahito; McAllister, Tim A.; Beauchemin, Karen A.
2016-01-01
The purpose of this study was to determine the effect of rumen inoculum from heifers with fast vs. slow rate of in situ fiber digestion on the fermentation of complex versus easily digested fiber sources in the forms of untreated and Ammonia Fiber Expansion (AFEX) treated barley straw, respectively, using an artificial rumen simulation technique (Rusitec). In situ fiber digestion was measured in a previous study by incubating untreated barley straw in the rumen of 16 heifers fed a diet consisting of 700 g/kg barley straw and 300 g/kg concentrate. The two heifers with fastest rate of digestion (Fast ≥ 4.18% h-1) and the two heifers with the slowest rate of digestion (Slow ≤ 3.17% h-1) were chosen as inoculum donors for this study. Two Rusitec apparatuses each equipped with eight fermenters were used in a completely randomized block design with two blocks (apparatus) and four treatments in a 2 × 2 factorial arrangement of treatments (Fast or Slow rumen inoculum and untreated or AFEX treated straw). Fast rumen inoculum and AFEX straw both increased (P < 0.05) disappearance of dry matter (DMD), organic matter, true DMD, neutral detergent fiber, acid detergent fiber, and nitrogen (N) with an interactive effect between the two (P < 0.05). Fast rumen inoculum increased (P > 0.05) methane production per gram of digested material for both untreated and AFEX straw, and reduced (interaction, P < 0.05) acetate: propionate ratio for untreated straw. Greater relative populations of Ruminococcus albus (P < 0.05) and increased microbial N production (P = 0.045) were observed in Fast rumen inoculum. AFEX straw in Fast inoculum had greater total bacterial populations than Slow, but for untreated straw this result was reversed (interaction, P = 0.013). These findings indicate that differences in microbial populations in rumen fluid contribute to differences in the capacity of rumen inoculum to digest fiber. PMID:27899919
Abu, Mary Ladidi; Nooh, Hisham Mohd; Oslan, Siti Nurbaya; Salleh, Abu Bakar
2017-11-10
Pichia guilliermondii was found capable of expressing the recombinant thermostable lipase without methanol under the control of methanol dependent alcohol oxidase 1 promoter (AOXp 1). In this study, statistical approaches were employed for the screening and optimisation of physical conditions for T1 lipase production in P. guilliermondii. The screening of six physical conditions by Plackett-Burman Design has identified pH, inoculum size and incubation time as exerting significant effects on lipase production. These three conditions were further optimised using, Box-Behnken Design of Response Surface Methodology, which predicted an optimum medium comprising pH 6, 24 h incubation time and 2% inoculum size. T1 lipase activity of 2.0 U/mL was produced with a biomass of OD 600 23.0. The process of using RSM for optimisation yielded a 3-fold increase of T1 lipase over medium before optimisation. Therefore, this result has proven that T1 lipase can be produced at a higher yield in P. guilliermondii.
Medina, K; Carrau, F M; Gioia, O; Bracesco, N
1997-01-01
The competition between selected or commercial killer strains of type K2 and sensitive commercial strains of Saccharomyces cerevisiae was studied under various conditions in sterile grape juice fermentations. The focus of this study was the effect of yeast inoculation levels and the role of assimilable nitrogen nutrition on killer activity. A study of the consumption of free amino nitrogen (FAN) by pure and mixed cultures of killer and sensitive cells showed no differences between the profiles of nitrogen assimilation in all cases, and FAN was practically depleted in the first 2 days of fermentation. The effect of the addition of assimilable nitrogen and the size of inoculum was examined in mixed killer and sensitive strain competitions. Stuck and sluggish wine fermentations were observed to depend on nitrogen availability when the ratio of killer to sensitive cells was low (1:10 to 1:100). A relationship between the initial assimilable nitrogen content of must and the proportion of killer cells during fermentation was shown. An indirect relationship was found between inoculum size and the percentage of killer cells: a smaller inoculum resulted in a higher proportion of killer cells in grape juice fermentations. In all cases, wines obtained with pure-culture fermentations were preferred to mixed-culture fermentations by sensory analysis. The reasons why killer cells do not finish fermentation under competitive conditions with sensitive cells are discussed. PMID:9212430
Kebriaei, Razieh; Rice, Seth A; Singh, Kavindra V; Stamper, Kyle C; Dinh, An Q; Rios, Rafael; Diaz, Lorena; Murray, Barbara E; Munita, Jose M; Tran, Truc T; Arias, Cesar A; Rybak, Michael J
2018-05-14
Enterococcus faecium that harbor LiaFSR substitutions but are phenotypically susceptible to daptomycin (DAP) by current breakpoints are problematic since predisposition to resistance may lead to therapeutic failure. Using a simulated endocardial vegetation (SEV) PK/PD model, we investigated DAP regimens (6, 8 and 10 mg/kg/day) as monotherapy and in combination with ampicillin (AMP), ceftaroline (CPT) or ertapenem (ERT) against E. faecium HOU503, a DAP-susceptible strain that harbors common LiaS and LiaR substitutions found in clinical isolates (T120S and W73C, respectively). Of interest, the efficacy of DAP monotherapy, at any dose regimen, was dependent on the size of the inoculum. At an inoculum of ∼10 9 CFU/g, DAP doses of 6-8 mg/kg/d were not effective and led to significant regrowth with emergence of resistant derivatives. In contrast, at an inoculum of ∼10 7 , marked reductions in bacterial counts were observed with DAP 6 mg/kg/d with no resistance. The inoculum effect was confirmed in a rat model using humanized DAP exposures. Combinations of DAP with AMP, CPT or ERT demonstrated enhanced eradication and reduced potential for resistance allowing for de-escalation of the DAP dose. Persistence of the LiaRS substitutions were identified in DAP-resistant isolates recovered from the SEV model and in DAP-resistant derivatives of an initially DAP-susceptible clinical isolate of E. faecium (HOU668) harboring LiaSR substitutions and recovered from a patient with a recurrent bloodstream infection. Our results provide novel data for the use of DAP monotherapy and combinations for recalcitrant E. faecium infections and paves the way for testing these approaches in humans. Copyright © 2018 American Society for Microbiology.
Impact of the start-up process on the microbial communities in biocathodes for electrosynthesis.
Mateos, Raúl; Sotres, Ana; Alonso, Raúl M; Escapa, Adrián; Morán, Antonio
2018-06-01
This study seeks to understand how the bacterial communities that develop on biocathodes are influenced by inocula diversity and electrode potential during start-up. Two different inocula are used: one from a highly diverse environment (river mud) and the other from a low diverse milieu (anaerobic digestion). In addition, both inocula were subjected to two different polarising voltages: oxidative (+0.2 V vs. Ag/AgCl) and reductive (-0.8 V vs. Ag/AgCl). Bacterial communities were analysed by means of high throughput sequencing. Possible syntrophic interactions and competitions between archaea and eubacteria were described together with a discussion of their potential role in product formation and current production. The results confirmed that reductive potentials lead to an inconsistent start-up procedure regardless of the inoculum used. However, imposing oxidative potentials help to quickly develop an electroactive biofilm ready to withstand reductive potentials (i.e. biocathodic operation). The microbial structure that finally developed on them was highly dependent on the raw community present in the inoculum. Using a non-specialised inoculum resulted in a highly specialised biofilm, which was accompanied by an improved performance in terms of consumed current and product generation. Interestingly, a much more specialised inoculum promoted a rediversification in the biofilm, with a lower general cell performance. Copyright © 2018 Elsevier B.V. All rights reserved.
Smith, Kenneth P; Kirby, James E
2018-05-21
The observed MIC may depend on the number of bacteria initially inoculated into the assay. This phenomenon is termed the inoculum effect (IE) and is often most pronounced for β-lactams in strains expressing β-lactamase enzymes. The Clinical and Laboratory Standards Institute (CLSI) recommended inoculum is 5 x 10 5 CFU mL -1 with an acceptable range of 2-8 x 10 5 CFU mL -1 IE testing is typically performed using an inoculum 100-fold greater than the CLSI recommended inoculum. Therefore, it remains unknown whether the IE influences MICs during testing performed according to CLSI guidelines. Here, we utilized inkjet printing technology to test the IE on cefepime, meropenem, and ceftazidime-avibactam. First, we determined that inkjet dispense volume correlated well with the number of bacteria delivered to microwells in two-fold (R 2 = 0.99) or 1.1-fold (R 2 = 0.98) serial dilutions. We then quantified the IE by dispensing orthogonal titrations of bacterial cells and antibiotics. For cefepime resistant and susceptible dose-dependent strains, a 2-fold increase in inoculum resulted in a 1.6 Log 2 -fold increase in MIC. For carbapenemase-producing strains, each 2-fold reduction in inoculum resulted in a 1.26 Log 2 -fold reduction in meropenem MIC. At the lower end of the CLSI allowable inoculum range, minor error rates of 34.8% were observed for meropenem when testing a resistant strain set. Ceftazidime-avibactam was not subject to an appreciable IE. Our results suggest that IE is sufficiently pronounced for meropenem and cefepime in multidrug-resistant Gram-negative pathogens to affect categorical interpretations during standard laboratory testing. Copyright © 2018 American Society for Microbiology.
Ahmad, Fiaz; Anwar, Samina; Firdous, Sadiqa; Da-Chuan, Yin; Iqbal, Samina
2018-05-05
Bispyribac sodium (BS), is a selective, systemic and post emergent herbicide used to eradicate grasses and broad leaf weeds. Extensive use of this herbicide has engendered serious environmental concerns. Hence it is important to develop strategies for bioremediation of BS in a cost effective and environment friendly way. In this study a bacterial consortium named BDAM, comprising three novel isolates Achromobacter xylosoxidans (BD1), Achromobacter pulmonis (BA2), and Ochrobactrum intermedium (BM2), was developed by virtue of its potential for degradation of BS. Different culture conditions (temperature, pH and inoculum size) were optimized for degradation of BS by the consortium BDAM and the mutual interactions of these parameters were analysed using a 2 3 full factorial central composite design (CCD) based on Response Surface Methodology (RSM). The optimal values for temperature, pH and inoculum size were found to be 40 °C, 8 and 0.4 g/L respectively to achieve maximum degradation of BS (85.6%). Moreover, the interactive effects of these parameters were investigated using three dimensional surface plots in terms of maximum fitness function. Importantly, it was concluded that the newly developed consortium is a potential candidate for biodegradation of BS in a safe, cost-effective and environmentally friendly manner. Copyright © 2017. Published by Elsevier B.V.
van Kuijk, Sandra J A; Sonnenberg, Anton S M; Baars, Johan J P; Hendriks, Wouter H; Cone, John W
2016-01-01
The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains (0.5, 1.5 or 3.0 % per g of wet weight of substrate) added to the substrates. Also, wheat straw and wood chips were chopped to either 0.5 or 2 cm. Effectiveness of the fungal treatment after 0, 2, 4, 6, or 8 wk of incubation was determined by changes in chemical composition, in vitro gas production (IVGP) as a measure for rumen degradability, and ergosterol content as a measure of fungal biomass. Incomplete colonization was observed for C. subvermispora treated wheat straw and L. edodes treated wood chips. The different particle sizes and amounts of inoculum tested, had no significant effects on the chemical composition and the IVGP of C. subvermispora treated wood chips. Particle size did influence L. edodes treatment of wheat straw. The L. edodes treatment of 2 cm wheat straw resulted in a more selective delignification and a higher IVGP than the smaller particles. Addition of 1.5 % or 3 % L. edodes inoculum to wheat straw resulted in more selective delignification and a higher IVGP than addition of 0.5 % inoculum. Particle size and amount of inoculum did not have an effect on C. subvermispora treatment of wood chips. At least 1.5 % L. edodes colonized millet grains should be added to 2 cm wheat straw to result in an increased IVGP and acid detergent lignin (ADL) degradation.
Shu, Guowei; Yang, Hui; Chen, He; Zhang, Qiuhong; Tian, Yue
2015-01-01
Angiotensin I converting enzyme (ACE) plays an important physiological role in regulating hypertension. Lactic acid bacteria are known to produce ACE inhibitory peptides which can lower hypertension during fermentation. The effect of incubation time (0~36 h), inoculum size (3, 4, 5, 6 and 7%, v/v), temperature (25, 30, 35, 40 and 45°C), sterilization time (5, 10, 15, 20 and 25 min), concentration of goat milk powder (8, 10, 12, 14 and 16%, w/v) and whey powder (0.5, 0.6, 0.7, 0.8 and 0.9%, w/v) on ACE inhibitory peptides fermented from goat milk by Lactobacillus plantarum LP69 was investigated using single factor experiment. The optimal incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder in fermented milk by L. plantarum LP69 was 14 h, 3.0%, 35°C, 20 min, 14% and 0.70% for ACE inhibitory activity and 22 h, 3.0%, 40°C, 25 min, 16% and 0.60% for viable cell counts, respectively. The incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder had a significant influence on ACE inhibitory activity in fermented milk by Lactobacillus plantarum LP69, the results are beneficial for further screening of main factors by using fractional factorial designs.
Koslowsky, S D; Boener, R E
1989-01-01
The effects of Al on Panicum virgatum (switchgrass), a widespread perennial grass, were determined in relation to factors which might interact with Al in the soil. Plants were grown for 8 weeks in sand culture and were treated with 3 Al levels (0.5, 2.0, 5.0 mM), 2 P levels (0.065, 0.161 mM), 2 inoculum types (vesicular-arbuscular mycorrhizal (VAM) inoculum or VAM-free soil inoculum) and 2 inoculum sources (a high Al forest in NY or a low Al forest in Ohio) in a factorial design. Plant growth decreased with increasing Al and increased with increasing P, but the Al effect was less at high P than low P. VAM-inoculated plants outgrew non-VAM plants, especially at low and medium Al levels. Total P and Ca uptake decreased with increasing Al concentration, especially at low P levels. VAM inoculation did not result in increased P uptake at any Al level though VAM plants took up significantly more Ca than non-VAM plants at any Al level. VAM plants had lower tissue Al concentrations and took up less Al than non-VAM plants; Al uptake increased with increasing soil Al in non-VAM plants but not in VAM plants. Plants given inoculum from the high Al site had significantly lower tissue Al than plants given the low Al site inoculum, regardless of VAM status. We conclude that the presence of a VAM infection, moderate levels of soil P, and the source of the inoculum can reduce the effects of soluble Al. We discuss potential physiological and edaphic mechanisms by which Al may be immobilized and Ca availability increased in the presence of VAM fungi and other soil microflora.
Guo, Chunna; Liao, Xiaoping; Wang, Mingru; Wang, Feng; Yan, Chaoqun; Xiao, Xia; Sun, Jiang
2015-01-01
Streptococcus suis serotype 2 is an emerging zoonotic pathogen and causes severe disease in both pigs and human beings. Cefquinome (CEQ), a fourth-generation cephalosporin, exhibits broad-spectrum activity against Gram-positive bacteria such as S. suis. This study evaluated the in vitro and in vivo antimicrobial activities of CEQ against four strains of S. suis serotype 2 in a murine neutropenic thigh infection model. We investigated the effect of varied inoculum sizes (106 to 108 CFU/thigh) on the pharmacokinetic (PK)/pharmacodynamic (PD) indices and magnitudes of a particular PK/PD index or dose required for efficacy. Dose fractionation studies included total CEQ doses ranging from 0.625 to 640 mg/kg/24 h. Data were analyzed via a maximum effect (Emax) model using nonlinear regression. The PK/PD studies demonstrated that the percentage of time that serum drug levels were above the MIC of free drug (%ƒT>MIC) in a 24-h dosing interval was the primary index driving the efficacy of both inoculum sizes (R2 = 91% and R2 = 63%). CEQ doses of 2.5 and 40 mg/kg body weight produced prolonged postantibiotic effects (PAEs) of 2.45 to 8.55 h. Inoculum sizes had a significant influence on CEQ efficacy. Compared to the CEQ exposure and dosages in tests using standard inocula, a 4-fold dose (P = 0.006) and a 2-fold exposure time (P = 0.01) were required for a 1-log kill using large inocula of 108 CFU/thigh. PMID:26666923
Bahaloo-Horeh, Nazanin; Mousavi, Seyyed Mohammad
2017-02-01
In the present study, spent medium bioleaching method was performed using organic acids produced by Aspergillus niger to dissolve Ni, Co, Mn, Li, Cu and Al from spent lithium-ion batteries (LIBs). Response surface methodology was used to investigate the effects and interactions between the effective factors of sucrose concentration, initial pH, and inoculum size to optimize organic acid production. Maximum citric acid, malic acid, and gluconic acid concentrations of 26,478, 1832.53 and 8433.76ppm, respectively, and a minimum oxalic acid concentration of 305.558ppm were obtained under optimal conditions of 116.90 (gl -1 ) sucrose concentration, 3.45% (vv -1 ) inoculum size, and a pH value of 5.44. Biogenically-produced organic acids are used for leaching of spent LIBs at different pulp densities. The highest metal recovery of 100% Cu, 100% Li, 77% Mn, and 75% Al occurred at 2% (wv -1 ) pulp density; 64% Co and 54% Ni recovery occurred at 1% (wv -1 ) pulp density. The bioleaching of metals from spent LIBs can decrease the environmental impact of this waste. The results of this study suggest that the process can be used for large scale industrial purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Motte, J-C; Escudié, R; Bernet, N; Delgenes, J-P; Steyer, J-P; Dumas, C
2013-09-01
Among all the process parameters of solid-state anaerobic digestion (SS-AD), total solid content (TS), inoculation (S/X ratio) and size of the organic solid particles can be optimized to improve methane yield and process stability. To evaluate the effects of each parameter and their interactions on methane production, a three level Box-Behnken experimental design was implemented in SS-AD batch tests degrading wheat straw by adjusting: TS content from 15% to 25%, S/X ratio (in volatile solids) between 28 and 47 and particle size with a mean diameter ranging from 0.1 to 1.4mm. A dynamic analysis of the methane production indicates that the S/X ratio has only an effect during the start-up phase of the SS-AD. During the growing phase, TS content becomes the main parameter governing the methane production and its strong interaction with the particle size suggests the important role of water compartmentation on SS-AD. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rashel, Rakib H; Patiño, Reynaldo
2017-06-01
Salinity (5-30) effects on golden alga growth were determined at a standard laboratory temperature (22°C) and one associated with natural blooms (13°C). Inoculum-size effects were determined over a wide size range (100-100,000cellsml -1 ). A strain widely distributed in the USA, UTEX-2797 was the primary study subject but another of limited distribution, UTEX-995 was used to evaluate growth responses in relation to genetic background. Variables examined were exponential growth rate (r), maximum cell density (max-D) and, when inoculum size was held constant (100cellsml -1 ), density at onset of exponential growth (early-D). In UTEX-2797, max-D increased as salinity increased from 5 to ∼10-15 and declined thereafter regardless of temperature but r remained generally stable and only declined at salinity of 25-30. In addition, max-D correlated positively with r and early-D, the latter also being numerically highest at salinity of 15. In UTEX-995, max-D and r responded similarly to changes in salinity - they remained stable at salinity of 5-10 and 5-15, respectively, and declined at higher salinity. Also, max-D correlated with r but not early-D. Inoculum size positively and negatively influenced max-D and r, respectively, in both strains and these effects were significant even when the absolute size difference was small (100 versus 1000 cells ml -1 ). When cultured under similar conditions, UTEX-2797 grew faster and to much higher density than UTEX-995. In conclusion, (1) UTEX-2797's superior growth performance may explain its relatively wide distribution in the USA, (2) the biphasic growth response of UTEX-2797 to salinity variation, with peak abundance at salinity of 10-15, generally mirrors golden alga abundance-salinity associations in US inland waters, and (3) early cell density - whether artificially manipulated or naturally attained - can influence UTEX-2797 bloom potential. Published by Elsevier B.V.
Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D
2017-02-01
Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P < 0.001) and had more discriminant taxa delineating groups (linear discriminant analysis). Living inoculum soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P < 0.05), and more discriminant taxa than conventionally farmed inoculum-treated soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.
Niwa, Rieko; Koyama, Takuya; Sato, Takumi; Adachi, Katsuki; Tawaraya, Keitaro; Sato, Shusei; Hirakawa, Hideki; Yoshida, Shigenobu; Ezawa, Tatsuhiro
2018-05-09
Arbuscular mycorrhizal (AM) fungi associate with most land plants and deliver phosphorus to the host. Identification of biotic/abiotic factors that determine crop responses to AM fungal inoculation is an essential step for successful application of the fungi in sustainable agriculture. We conducted three field trials on soybean with a commercial inoculum and developed a new molecular tool to dissect interactions between the inoculum and indigenous fungi on the MiSeq sequencing platform. Regression analysis indicated that sequence read abundance of the inoculum fungus was the most significant factor that determined soybean yield responses to the inoculation, suggesting that dominance of the inoculum fungus is a necessary condition for positive yield responses. Agricultural practices (fallow/cropping in the previous year) greatly affected the colonization levels (i.e. read abundances) of the inoculum fungus via altering the propagule density of indigenous AM fungi. Analysis of niche competition revealed that the inoculum fungus competed mainly with the indigenous fungi that are commonly distributed in the trial sites, probably because their life-history strategy is the same as that of the inoculum fungus. In conclusion, we provide a new framework for evaluating the significance of environmental factors towards successful application of AM fungi in agriculture.
Guo, Chunna; Liao, Xiaoping; Wang, Mingru; Wang, Feng; Yan, Chaoqun; Xiao, Xia; Sun, Jiang; Liu, Yahong
2016-02-01
Streptococcus suis serotype 2 is an emerging zoonotic pathogen and causes severe disease in both pigs and human beings. Cefquinome (CEQ), a fourth-generation cephalosporin, exhibits broad-spectrum activity against Gram-positive bacteria such as S. suis. This study evaluated the in vitro and in vivo antimicrobial activities of CEQ against four strains of S. suis serotype 2 in a murine neutropenic thigh infection model. We investigated the effect of varied inoculum sizes (10(6) to 10(8) CFU/thigh) on the pharmacokinetic (PK)/pharmacodynamic (PD) indices and magnitudes of a particular PK/PD index or dose required for efficacy. Dose fractionation studies included total CEQ doses ranging from 0.625 to 640 mg/kg/24 h. Data were analyzed via a maximum effect (Emax) model using nonlinear regression. The PK/PD studies demonstrated that the percentage of time that serum drug levels were above the MIC of free drug (%ƒT>MIC) in a 24-h dosing interval was the primary index driving the efficacy of both inoculum sizes (R(2) = 91% and R(2) = 63%). CEQ doses of 2.5 and 40 mg/kg body weight produced prolonged postantibiotic effects (PAEs) of 2.45 to 8.55 h. Inoculum sizes had a significant influence on CEQ efficacy. Compared to the CEQ exposure and dosages in tests using standard inocula, a 4-fold dose (P = 0.006) and a 2-fold exposure time (P = 0.01) were required for a 1-log kill using large inocula of 10(8) CFU/thigh. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Davis, Kathryn E. R.; Joseph, Shayne J.; Janssen, Peter H.
2005-01-01
Soils are inhabited by many bacteria from phylogenetic groups that are poorly studied because representatives are rarely isolated in cultivation studies. Part of the reason for the failure to cultivate these bacteria is the low frequency with which bacterial cells in soil form visible colonies when inoculated onto standard microbiological media, resulting in low viable counts. We investigated the effects of three factors on viable counts, assessed as numbers of CFU on solid media, and on the phylogenetic groups to which the isolated colony-forming bacteria belong. These factors were inoculum size, growth medium, and incubation time. Decreasing the inoculum size resulted in significant increases in the viable count but did not appear to affect colony formation by members of rarely isolated groups. Some media that are traditionally used for soil microbiological studies returned low viable counts and did not result in the isolation of members of rarely isolated groups. Newly developed media, in contrast, resulted in high viable counts and in the isolation of many members of rarely isolated groups, regardless of the inoculum size. Increased incubation times of up to 3 months allowed the development of visible colonies of members of rarely isolated groups in conjunction with the use of appropriate media. Once isolated, pure cultures of members of rarely isolated groups took longer to form visible colonies than did members of commonly isolated groups. Using these new media and extended incubation times, we were able to isolate many members of the phyla Acidobacteria (subdivisions 1, 2, 3, and 4), Gemmatimonadetes, Chloroflexi, and Planctomycetes (including representatives of the previously uncultured WPS-1 lineage) as well as members of the subclasses Rubrobacteridae and Acidimicrobidae of the phylum Actinobacteria. PMID:15691937
Seasonal availability of inoculum of the Heterobasidion root disease pathogen in central Wisconsin
Glen R. Stanosz; Denise R. Smith; Jennifer Juzwik
2016-01-01
After deposition of airborne basidiospores, the root disease pathogen Heterobasidion irregulare Garbelotto and Otrosina infects fresh conifer stumps and spreads through root grafts or by root contact to adjacent trees. Infection can be prevented, however, by borate application. Because the need for stump protection depends on inoculum availability...
Virupakshappa, Praveen Kumar Siddalingappa; Mishra, Gaurav; Mehkri, Mohammed Ameenuddin
2016-01-01
The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R 2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and % removal of crude oil. PMID:28116165
Zaouchi, Yousr; Bahri, Nada Ben; Rezgui, S; Bettaieb, Taoufik
2013-10-01
The effects of fertilization and the nature of the inoculum as well as the variation of the dose intake of the latter on the level of Jacaranda mimosifolia D.Don mycorhization were tested. Young plants were treated with two inoculums presenting different origins, compositions and modes of application: one is a commercial product containing Glomus irregulare, and the other is a composite indigenous inoculum resulting from trapping five species of genus Glomus and also from multiplication on mycotrophic plants: leek (Allium porrum L.) and vetch (Vicia sativa L.). For each inoculum, two doses were tested and for each dose of inoculum, four levels of fertilization based on a complete commercial fertilizer (Osmocote) were tested: 0 g/plant, 2 g/plant, 4 g/plant, and 6g/plant. Three repetitions were performed for each combination treatment of inoculum/fertilizer. One-year-old young Jacaranda plants, being about 40 cm high, were cultured under greenhouse in 10/12 cm caliber pots. After six months, all the inoculated plants were mycorrhized. According to endomycorrhizal structures found on their roots, plants receiving doses of composite indigenous inoculum reached a more advanced stage of mycorrhization than those treated with the commercial inoculum. The existence of an interaction effect between the inoculum dose and the level of fertilization on Jacaranda mycorhization rate was excluded. These two parameters of variation were studied as simple effects. The increase in commercial inoculum dose had a significant positive influence on the level of Jacaranda plants mycorrhization (P=0.05). The rate of mycorrhization jumped from 12.69% to 21.92%. Nonetheless, for plants receiving increasing doses of composite indigenous inoculum, the level of mycorrhization has varied randomly. In both instances of inoculum treatments, increasing the dose of fertilizer significantly inhibited endomycorrhizal colonization of Jacaranda roots (P=0.01). Thus, the rate of root colonization decreased from 47.43% to 2.41% for plants receiving the composite indigenous inoculums. It decreased from 32.35% to 3.95% for those treated with the commercial inoculum. Mycorrhization had a positive effect on root dry biomass of Jacaranda, as in the case of unfertilize ave the highest rates of colonization. Copyright © 2013. Published by Elsevier SAS.
Fermentative hydrogen gas production using biosolids pellets as the inoculum source.
Kalogo, Youssouf; Bagley, David M
2008-02-01
Biosolids pellets produced from anaerobically digested municipal wastewater sludge by drying to greater than 90% total solids at 110-115 degrees C for at least 75 min, were tested for their suitability as an inoculum source for fermentative hydrogen production. The hydrogen recoveries (mg gaseous H(2) produced as COD/mg added substrate COD) for glucose-fed batch systems were equal, 20.2-21.5%, between biosolids pellets and boiled anaerobic digester sludge as inoculum sources. Hydrogen recoveries from primary sludge were 2.4% and 3.5% using biosolids pellets and boiled sludge, respectively, and only 0.2% and 0.8% for municipal wastewater. Biosolids pellets should be a practical inoculum source for fermentative hydrogen reactors, although the effectiveness will depend on the wastewater treated.
Huang, Zhi-Hong; Feng, Ming-Guang
2008-07-01
Resting spore formation of some aphid-pathogenic Entomophthorales is important for the seasonal pattern of their prevalence and survival but this process is poorly understood. To explore the possible mechanism involved in the process, Pandora nouryi (obligate aphid pathogen) interacted with green peach aphid Myzus persicae on cabbage leaves under favourable conditions. Host nymphs showered with primary conidia of an isolate (LC(50): 0.9-6.7 conidia mm(-2) 4-7 days post shower) from air captures in the low-latitude plateau of China produced resting spores (azygospores), primary conidia or both spore types. Surprisingly, the proportion of mycosed cadavers forming resting spores (P(CFRS)) increased sharply within the concentrations (C) of 28-240 conidia mm(-2), retained high levels at 240-1760, but was zero or extremely low at 0.3-16. The P(CFRS)-C relationship fit well the logistic equation P(CFRS) = 0.6774/[1 + exp(3.1229-0.0270C)] (r(2) = 0.975). This clarified for the first time the dependence of in vivo resting spore formation of P. nouryi upon the concentration of infective inoculum. A hypothesis is thus proposed that some sort of biochemical signals may exist in the host-pathogen interaction so that the fungal pathogen perceives the signals for prompt response to forthcoming host-density changes by either producing conidia for infecting available hosts or forming resting spores for surviving host absence in situ.
Succinic Acid Production from Cheese Whey using Actinobacillus succinogenes 130 Z
NASA Astrophysics Data System (ADS)
Wan, Caixia; Li, Yebo; Shahbazi, Abolghasem; Xiu, Shuangning
Actinobacillus succinogenes 130 Z was used to produce succinic acid from cheese whey in this study. At the presence of external CO2 supply, the effects of initial cheese whey concentration, pH, and inoculum size on the succinic acid production were studied. The by-product formation during the fermentation process was also analyzed. The highest succinic acid yield of 0.57 was obtained at initial cheese whey concentration of 50 g/L, while the highest succinic acid productivity of 0.58 g h-1 L-1 was obtained at initial cheese whey concentration of 100 g/L. Increase in pH and inoculum size caused higher succinic acid yield and productivity. At the preferred fermentation condition of pH 6.8, inoculum size of 5% and initial cheese whey concentration of 50 g/L, succinic acid yield of 0.57, and productivity of 0.44 g h-1 L-1 were obtained. Acetic acid and formic acid were the main by-products throughout the fermentation run of 48 h. It is feasible to produce succinic acid using lactose from cheese whey as carbon resource by A. succinogenes 130 Z.
NASA Astrophysics Data System (ADS)
Assamoi, Antoine A.; Destain, Jacqueline; Delvigne, Frank; Lognay, Georges; Thonart, Philippe
Xylanase is produced by Penicillium canescens 10-10c from soya oil cake in static conditions using solid-state fermentation. The impact of several parameters such as the nature and the size of inoculum, bed-loading, and aeration is evaluated during the fermentation process. Mycelial inoculum gives more production than conidial inoculum. Increasing the quantity of inoculum enhances slightly xylanase production. Forced aeration induces more sporulation of strain and reduces xylanase production. However, forced moistened air improves the production compared to production obtained with forced dry air. In addition, increasing bed-loading reduces the specific xylanase production likely due to the incapacity of the Penicillium strain to grow deeply in the fermented soya oil cake mass. Thus, the best cultivation conditions involve mycelial inoculum form, a bed loading of 1-cm height and passive aeration. The maximum xylanase activity is obtained after 7 days of fermentation and attains 10,200 U/g of soya oil cake. These levels are higher than those presented in the literature and, therefore, show all the potentialities of this stock and this technique for the production of xylanase.
Rashel, Rakib H.; Patino, Reynaldo
2017-01-01
Salinity (5–30) effects on golden alga growth were determined at a standard laboratory temperature (22 °C) and one associated with natural blooms (13 °C). Inoculum-size effects were determined over a wide size range (100–100,000 cells ml−1). A strain widely distributed in the USA, UTEX-2797 was the primary study subject but another of limited distribution, UTEX-995 was used to evaluate growth responses in relation to genetic background. Variables examined were exponential growth rate (r), maximum cell density (max-D) and, when inoculum size was held constant (100 cells ml−1), density at onset of exponential growth (early-D). In UTEX-2797, max-D increased as salinity increased from 5 to ∼10–15 and declined thereafter regardless of temperature but r remained generally stable and only declined at salinity of 25–30. In addition, max-D correlated positively with r and early-D, the latter also being numerically highest at salinity of 15. In UTEX-995, max-D and r responded similarly to changes in salinity − they remained stable at salinity of 5–10 and 5–15, respectively, and declined at higher salinity. Also, max-D correlated with r but not early-D. Inoculum size positively and negatively influenced max-D and r, respectively, in both strains and these effects were significant even when the absolute size difference was small (100 versus 1000 cells ml−1). When cultured under similar conditions, UTEX-2797 grew faster and to much higher density than UTEX-995. In conclusion, (1) UTEX-2797’s superior growth performance may explain its relatively wide distribution in the USA, (2) the biphasic growth response of UTEX-2797 to salinity variation, with peak abundance at salinity of 10–15, generally mirrors golden alga abundance-salinity associations in US inland waters, and (3) early cell density – whether artificially manipulated or naturally attained – can influence UTEX-2797 bloom potential.
Yin, Tan Tzy; Pin, Ui Li; Ghazali, Amir Hamzah Ahmad
2015-04-01
The production of nitrogenase enzyme and auxins by free living diazotrophs has the potential to influence the growth of host plants. In this study, diazotrophs were grown in the presence of various concentrations of nitogen (N) to determine the optimal concentration of N for microbial growth stimulation, promotion of gaseous N (N2) fixation, and phytohormone production. Therefore, we investigate whether different levels of N supplied to Herbaspirillum seropedicae (Z78) have significant effects on nitrogenase activity and auxin production. The highest nitrogenase activity and the lowest auxin production of H. seropedicae (Z78) were both recorded at 0 gL(-1) of NH4Cl. Higher levels of external N caused a significant decrease in the nitrogenase activity and an increased production of auxins. In a subsequent test, two different inoculum sizes of Z78 (10(6) and 10(12) cfu/ml) were used to study the effect of different percentages of acetylene on nitrogenase activity of the inoculum via the acetylene reduction assay (ARA). The results showed that the optimal amount of acetylene required for nitrogenase enzyme activity was 5% for the 10(6) cfu/ml inoculum, whereas the higher inoculum size (10(12) cfu/ml) required at least 10% of acetylene for optimal nitrogenase activity. These findings provide a clearer understanding of the effects of N levels on diazotrophic nitrogenase activity and auxin production, which are important factors influencing plant growth.
Yin, Tan Tzy; Pin, Ui Li; Ghazali, Amir Hamzah Ahmad
2015-01-01
The production of nitrogenase enzyme and auxins by free living diazotrophs has the potential to influence the growth of host plants. In this study, diazotrophs were grown in the presence of various concentrations of nitogen (N) to determine the optimal concentration of N for microbial growth stimulation, promotion of gaseous N (N2) fixation, and phytohormone production. Therefore, we investigate whether different levels of N supplied to Herbaspirillum seropedicae (Z78) have significant effects on nitrogenase activity and auxin production. The highest nitrogenase activity and the lowest auxin production of H. seropedicae (Z78) were both recorded at 0 gL−1 of NH4Cl. Higher levels of external N caused a significant decrease in the nitrogenase activity and an increased production of auxins. In a subsequent test, two different inoculum sizes of Z78 (106 and 1012 cfu/ml) were used to study the effect of different percentages of acetylene on nitrogenase activity of the inoculum via the acetylene reduction assay (ARA). The results showed that the optimal amount of acetylene required for nitrogenase enzyme activity was 5% for the 106 cfu/ml inoculum, whereas the higher inoculum size (1012 cfu/ml) required at least 10% of acetylene for optimal nitrogenase activity. These findings provide a clearer understanding of the effects of N levels on diazotrophic nitrogenase activity and auxin production, which are important factors influencing plant growth. PMID:26868594
Arumugam, A; Senthamizhan, S G; Ponnusami, V; Sudalai, S
2018-06-01
Polyhydroxyalkanoates (PHA) are biodegradable polymers found in the cellular masses of a wide range of bacterial species and the demand for PHA is steadily growing. In this work we have produced PHA from a low-cost substrate, Calophyllum inophyllum oil, using Cupriavidus necator. Effects of various process parameters such as Oil concentration, Nitrogen source and inoculum size on the production of PHA were studied using Response Surface Methodology. A quadratic equation was used in the model to fit the experimental data. It was found that the model could satisfactorily predict the PHA yield (R 2 =99.17%). Linear, quadratic and interaction terms used in the model were found to be statistically significant. Maximum PHA yield of 10.6gL -1 was obtained under the optimized conditions of oil concentration - 17.5%, inoculum concentration - 50mL/L and nitrogen content - 1.125gL -1 , respectively. The product obtained was characterized using FTIR and NMR to confirm that it was PHA. The results demonstrate that C. inophyllum oil, a non-edible oil, can be potentially used as a low-cost substrate for the production of PHA. Copyright © 2018 Elsevier B.V. All rights reserved.
Different substrates and starter inocula govern microbial community structures in biogas reactors.
Satpathy, Preseela; Steinigeweg, Sven; Cypionka, Heribert; Engelen, Bert
2016-01-01
The influence of different starter inocula on the microbial communities in biogas batch reactors fed with fresh maize and maize silage as substrates was investigated. Molecular biological analysis by Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rRNA gene fragments showed that each inoculum bore specific microbial communities with varying predominant phylotypes. Both, bacterial and archaeal DGGE profiles displayed three distinct communities that developed depending on the type of inoculum. Although maize and silage are similar substrates, different communities dominated the lactate-rich silage compared to lactate-free fresh maize. Cluster analysis of DGGE gels showed the communities of the same substrates to be stable with their respective inoculum. Bacteria-specific DGGE analysis revealed a rich diversity with Firmicutes being predominant. The other abundant phylotypes were Bacteroidetes and Synergistetes. Archaea-specific DGGE analysis displayed less diverse community structures, identifying members of the Methanosarcinales as the dominant methanogens present in all the three biogas digesters. In general, the source of inoculum played a significant role in shaping microbial communities. Adaptability of the inoculum to the substrates fed also influenced community compositions which further impacted the rates of biogas production.
Parra-Flores, Julio; Juneja, Vijay; Garcia de Fernando, Gonzalo; Aguirre, Juan
2016-01-01
Cronobacter spp. have been responsible for severe infections in infants associated with consumption of powdered infant formula and follow-up formulae. Despite several risk assessments described in published studies, few approaches have considered the tremendous variability in cell response that small micropopulations or single cells can have in infant formula during storage, preparation or post process/preparation before the feeding of infants. Stochastic approaches can better describe microbial single cell response than deterministic models as we prove in this study. A large variability of lag phase was observed in single cell and micropopulations of ≤50 cells. This variability increased as the heat shock increased and growth temperature decreased. Obviously, variability of growth of individual Cronobacter sakazakii cell is affected by inoculum size, growth temperature and the probability of cells able to grow at the conditions imposed by the experimental conditions should be taken into account, especially when errors in bottle-preparation practices, such as improper holding temperatures, or manipulation, may lead to growth of the pathogen to a critical cell level. The mean probability of illness from initial inoculum size of 1 cell was below 0.2 in all the cases and for inoculum size of 50 cells the mean probability of illness, in most of the cases, was above 0.7. PMID:27148223
Shu, Guowei; Bao, Chunju; Chen, He; Wang, Changfeng; Yang, Hui
2016-01-01
Goat milk is only limited to the processing of goat milk powder and liquid milk, the products are mainly about milk powder and a few of them are made as milk tablet. Therefore, the study of probiotic goat milk will have great significance in the full use of goats and the development of the goat milk industry in China. The effect of fermentation temperature (35°C, 37°C, 39°C), strain ratio (1:1:1, 2:1:1, 3:1:1) and inoculum size (4%, 5%, 6%) on viable counts of L. acidophilus and B. bifidum, total bacteria and sensory value during fermentation process of L. acidophilus and B. bifidum goat yogurt (AB-goat yogurt) was investigated. The optimum fermentation conditions for AB-goat yogurt were: fermentation temperature 38°C, the strain ratio 2:1:1, inoculum size 6%. Under the optimum conditions, the viable counts of B. bifidum, L. acidophilus, total bacteria and sensory value reached (4.30 ±0.11)×107 cfu/mL, (1.39 ±0.09)×108 cfu/mL, (1.82±0.06)×109 cfu/mL and 7.90 ±0.14, respectively. The fermentation temperature, the strain ratio and inoculum size had a significant effect on the fermentation of AB-goat yogurt and these results are beneficial for developing AB-goat yogurt.
Marín-Guirao, J I; Rodríguez-Romera, P; Lupión-Rodríguez, B; Camacho-Ferre, F; Tello-Marquina, J C
2016-10-01
The biostimulant effect of Trichoderma spp. on horticultural crops are highly variable. Thus, practical use of Trichoderma sp. requires feasible formulated products and suitable substrates. This study evaluates the survival and the growth-promotion effect of a Trichoderma saturnisporum rice formulation compared with a nonformulated conidia suspension (seven treatments in total), on tomato, pepper and cucumber seedlings grown in two substrates: (i) rich in organic matter (OM) and (ii) mineral substrate without OM. The results showed beneficial effects on seedling growth in the OM-rich substrate when T. saturnisporum rice formulation (mainly at maximum concentration) was applied, but the effects were opposite when the mineral substrate without OM was used. The effects were closely linked to the level of inoculum in the substrate, which was greater upon application of the formulated inoculum as opposed to the nonformulated one. The use of rice to prepare the inoculum of T. saturnisporum seems to be promising for seedling growth in the nursery when it is applied in a substrate that is rich in organic matter, but it must be considered that under certain conditions of food shortage, Trichoderma sp. could show pathogenicity to seedlings. This study provides evidence of the complexity inherent in the use of micro-organisms in agriculture, while also confirming that the activity of the biofertilizers based on Trichoderma depends on the type of inoculum and its concentration, as well as the properties of the medium in which the fungi develop. Further studies assessing the effectiveness or possible pathogenicity of Trichoderma in different soils under greenhouse conditions must be addressed. © 2016 The Society for Applied Microbiology.
Sargent, Dorian; Verchère, Jérémy; Lazizzera, Corinne; Gaillard, Damien; Lakhdar, Latifa; Streichenberger, Nathalie; Morignat, Eric; Bétemps, Dominique; Baron, Thierry
2017-10-01
The M83 transgenic mouse is a model of human synucleinopathies that develops severe motor impairment correlated with accumulation of the pathological Ser129-phosphorylated α-synuclein (α-syn P ) in the brain and spinal cord. M83 disease can be accelerated by intracerebral inoculation of brain extracts from sick M83 mice. This has also recently been described using peripheral routes, injecting recombinant preformed α-syn fibrils into the muscle or the peritoneum. Here, we inoculated homozygous and/or hemizygous M83 neonates via the intraperitoneal and/or intracerebral routes with two different brain extracts: one from sick M83 mice inoculated with brain extract from other sick M83 mice, and the other derived from a human multiple system atrophy source passaged in M83 mice. Detection of α-syn P using ELISA and western blot confirmed the disease in mice. The distribution of α-syn P in the central nervous system was similar, independently of the inoculum or inoculation route, consistent with previous studies describing M83 disease. ELISA tests revealed higher levels of α-syn P in homozygous than in hemizygous sick M83 mice, at least after IC inoculation. Interestingly, the immunoreactivity of α-syn P detected by ELISA was significantly lower in M83 mice inoculated with the multiple system atrophy inoculum than in M83 mice inoculated with the M83 inoculum, at the first two passages. 'Prion-like' propagation of the synucleinopathy up to the clinical disease was accelerated by both intracerebral and intraperitoneal inoculations of brain extracts from sick mice. This acceleration, however, depends on the levels of α-syn expression by the mouse and the type of inoculum. © 2017 International Society for Neurochemistry.
Microbial detection method based on sensing molecular hydrogen
NASA Technical Reports Server (NTRS)
Wilkins, J. R.; Stoner, G. E.; Boykin, E. H.
1974-01-01
A simple method for detecting bacteria, based on the time of hydrogen evolution, was developed and tested against various members of the Enterobacteriaceae group. The test system consisted of (1) two electrodes, platinum and a reference electrode, (2) a buffer amplifier, and (3) a strip-chart recorder. Hydrogen evolution was measured by an increase in voltage in the negative (cathodic) direction. A linear relationship was established between inoculum size and the time hydrogen was detected (lag period). Lag times ranged from 1 h for 1 million cells/ml to 7 h for 1 cell/ml. For each 10-fold decrease in inoculum, length of the lag period increased 60 to 70 min. Based on the linear relationship between inoculum and lag period, these results indicate the potential application of the hydrogen-sensing method for rapidly detecting coliforms and other gas-producing microorganisms in a variety of clinical, food, and other samples.
Enhancement of 2,3-Butanediol Production by Klebsiella oxytoca PTCC 1402
Anvari, Maesomeh; Safari Motlagh, Mohammad Reza
2011-01-01
Optimal operating parameters of 2,3-Butanediol production using Klebsiella oxytoca under submerged culture conditions are determined by using Taguchi method. The effect of different factors including medium composition, pH, temperature, mixing intensity, and inoculum size on 2,3-butanediol production was analyzed using the Taguchi method in three levels. Based on these analyses the optimum concentrations of glucose, acetic acid, and succinic acid were found to be 6, 0.5, and 1.0 (% w/v), respectively. Furthermore, optimum values for temperature, inoculum size, pH, and the shaking speed were determined as 37°C, 8 (g/L), 6.1, and 150 rpm, respectively. The optimal combinations of factors obtained from the proposed DOE methodology was further validated by conducting fermentation experiments and the obtained results revealed an enhanced 2,3-Butanediol yield of 44%. PMID:21318172
Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System.
Gulbudak, Hayriye; Cannataro, Vincent L; Tuncer, Necibe; Martcheva, Maia
2017-02-01
Vector-borne disease transmission is a common dissemination mode used by many pathogens to spread in a host population. Similar to directly transmitted diseases, the within-host interaction of a vector-borne pathogen and a host's immune system influences the pathogen's transmission potential between hosts via vectors. Yet there are few theoretical studies on virulence-transmission trade-offs and evolution in vector-borne pathogen-host systems. Here, we consider an immuno-epidemiological model that links the within-host dynamics to between-host circulation of a vector-borne disease. On the immunological scale, the model mimics antibody-pathogen dynamics for arbovirus diseases, such as Rift Valley fever and West Nile virus. The within-host dynamics govern transmission and host mortality and recovery in an age-since-infection structured host-vector-borne pathogen epidemic model. By considering multiple pathogen strains and multiple competing host populations differing in their within-host replication rate and immune response parameters, respectively, we derive evolutionary optimization principles for both pathogen and host. Invasion analysis shows that the [Formula: see text] maximization principle holds for the vector-borne pathogen. For the host, we prove that evolution favors minimizing case fatality ratio (CFR). These results are utilized to compute host and pathogen evolutionary trajectories and to determine how model parameters affect evolution outcomes. We find that increasing the vector inoculum size increases the pathogen [Formula: see text], but can either increase or decrease the pathogen virulence (the host CFR), suggesting that vector inoculum size can contribute to virulence of vector-borne diseases in distinct ways.
Sharma, Archana; Satyanarayana, Tulasi
2011-05-01
The production of acidic α-amylase by a novel acidophilic bacterium Bacillus acidicola TSAS1 was optimized in submerged fermentation using statistical approaches. The process parameters that significantly affected α-amylase production (starch, K(2)HPO(4), inoculum size and temperature) were identified by Plackett and Burman design. The optimum levels of the significant variables as determined using central composite design of response surface methodology are starch (2.75%), K(2)HPO(4) (0.01%), inoculum size [2% (v/v) containing 1.9×10(8) CFU ml(-1)], and temperature (33°C). An overall 2.4 and 2.9-fold increase in enzyme production has been attained in batch and fed-batch fermentations in the laboratory fermentor, respectively. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
A Laboratory Assessment of Factors That Affect Bacterial Adhesion to Contact Lenses
Dutta, Debarun; Willcox, Mark DP
2013-01-01
Adhesion of pathogenic microbes, particularly bacteria, to contact lenses is implicated in contact lens related microbial adverse events. Various in vitro conditions such as type of bacteria, the size of initial inoculum, contact lens material, nutritional content of media, and incubation period can influence bacterial adhesion to contact lenses and the current study investigated the effect of these conditions on bacterial adhesion to contact lenses. There was no significant difference in numbers of bacteria that adhered to hydrogel etafilcon A or silicone hydrogel senofilcon A contact lenses. Pseudomonas aeruginosa adhered in higher numbers compared to Staphylococcus aureus. Within a genera/species, adhesion of different bacterial strains did not differ appreciably. The size of initial inoculum, nutritional content of media, and incubation period played significant roles in bacterial adhesion to lenses. A set of in vitro assay conditions to help standardize adhesion between studies have been recommended. PMID:24833224
The role of rain in dispersal of the primary inoculum of Plasmopara viticola.
Rossi, Vittorio; Caffi, Tito
2012-02-01
Although primary infection of grapevines by Plasmopara viticola requires splash dispersal of inoculum from soil to leaves, little is known about the role of rain in primary inoculum dispersal. Distribution of rain splashes from soil to grapevine canopy was evaluated over 20 rain periods (0.2 to 64.2 mm of rain) with splash samplers placed within the canopy. Samplers at 40, 80, and 140 cm above the soil caught 4.4, 0.03, and 0.003 drops/cm(2) of sampler area, respectively. Drops caught at 40 and 80 cm (1.5 cm in diameter) were larger than drops at 140 cm (1.3 cm). Leaf coverage by splashed drops, total drop number, and drop size increased with an increase in the maximum intensity of rain (mm/h) during any rain period. Any rainfall led to infection in potted grapevines placed outside on leaf litter containing oospores, if the litter contained germinated oospores at the time of rain; infection severity was unrelated to rain amount or intensity. Results from vineyards also indicate that any rain can carry P. viticola inoculum from soil to leaves and should be considered a splash event in disease prediction systems. Sampling for early disease detection should focus on the lower canopy, where the probability of splash impact is greatest.
Ghribi, Dhouha; Abdelkefi-Mesrati, Lobna; Mnif, Ines; Kammoun, Radhouan; Ayadi, Imen; Saadaoui, Imen; Maktouf, Sameh; Chaabouni-Ellouze, Semia
2012-01-01
During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth.
Aira, Manuel; Domínguez, Jorge
2011-01-01
Background Earthworms are key organisms in organic matter decomposition because of the interactions they establish with soil microorganisms. They enhance decomposition rates through the joint action of direct effects (i.e. effects due to direct earthworm activity such as digestion, burrowing, etc) and indirect effects (i.e. effects derived from earthworm activities such as cast ageing). Here we test whether indirect earthworm effects affect microbial community functioning in the substrate, as when earthworms are present (i. e., direct effects). Methodology/Principal Findings To address these questions we inoculated fresh organic matter (pig manure) with worm-worked substrates (vermicompost) produced by three different earthworm species. Two doses of each vermicompost were used (2.5 and 10%). We hypothesized that the presence of worm-worked material in the fresh organic matter will result in an inoculum of different microorganisms and nutrients. This inoculum should interact with microbial communities in fresh organic matter, thus promoting modifications similar to those found when earthworms are present. Inoculation of worm-worked substrates provoked significant increases in microbial biomass and enzyme activities (β-glucosidase, cellulase, phosphatase and protease). These indirect effects were similar to, although lower than, those obtained in pig manure with earthworms (direct and indirect earthworm effects). In general, the effects were not dose-dependent, suggesting the existence of a threshold at which they were triggered. Conclusion/Significance Our data reveal that the relationships between earthworms and microorganisms are far from being understood, and suggest the existence of several positive feedbacks during earthworm activity as a result of the interactions between direct and indirect effects, since their combination produces stronger modifications to microbial biomass and enzyme activity. PMID:21298016
Cannibalism by damselflies increases with rising temperature
Kirk, Devin; Shea, Dylan
2017-01-01
Trophic interactions are likely to change under climate warming. These interactions can be altered directly by changing consumption rates, or indirectly by altering growth rates and size asymmetries among individuals that in turn affect feeding. Understanding these processes is particularly important for intraspecific interactions, as direct and indirect changes may exacerbate antagonistic interactions. We examined the effect of temperature on activity rate, growth and intraspecific size asymmetries, and how these temperature dependencies affected cannibalism in Lestes congener, a damselfly with marked intraspecific variation in size. Temperature increased activity rates and exacerbated differences in body size by increasing growth rates. Increased activity and changes in body size interacted to increase cannibalism at higher temperatures. We argue that our results are likely to be general to species with life-history stages that vary in their temperature dependencies, and that the effects of climate change on communities may depend on the temperature dependencies of intraspecific interactions. PMID:28515331
Cannibalism by damselflies increases with rising temperature.
Start, Denon; Kirk, Devin; Shea, Dylan; Gilbert, Benjamin
2017-05-01
Trophic interactions are likely to change under climate warming. These interactions can be altered directly by changing consumption rates, or indirectly by altering growth rates and size asymmetries among individuals that in turn affect feeding. Understanding these processes is particularly important for intraspecific interactions, as direct and indirect changes may exacerbate antagonistic interactions. We examined the effect of temperature on activity rate, growth and intraspecific size asymmetries, and how these temperature dependencies affected cannibalism in Lestes congener , a damselfly with marked intraspecific variation in size. Temperature increased activity rates and exacerbated differences in body size by increasing growth rates. Increased activity and changes in body size interacted to increase cannibalism at higher temperatures. We argue that our results are likely to be general to species with life-history stages that vary in their temperature dependencies, and that the effects of climate change on communities may depend on the temperature dependencies of intraspecific interactions. © 2017 The Author(s).
Wockner, Leesa F; Hoffmann, Isabell; O'Rourke, Peter; McCarthy, James S; Marquart, Louise
2017-08-25
The efficacy of vaccines aimed at inhibiting the growth of malaria parasites in the blood can be assessed by comparing the growth rate of parasitaemia in the blood of subjects treated with a test vaccine compared to controls. In studies using induced blood stage malaria (IBSM), a type of controlled human malaria infection, parasite growth rate has been measured using models with the intercept on the y-axis fixed to the inoculum size. A set of statistical models was evaluated to determine an optimal methodology to estimate parasite growth rate in IBSM studies. Parasite growth rates were estimated using data from 40 subjects published in three IBSM studies. Data was fitted using 12 statistical models: log-linear, sine-wave with the period either fixed to 48 h or not fixed; these models were fitted with the intercept either fixed to the inoculum size or not fixed. All models were fitted by individual, and overall by study using a mixed effects model with a random effect for the individual. Log-linear models and sine-wave models, with the period fixed or not fixed, resulted in similar parasite growth rate estimates (within 0.05 log 10 parasites per mL/day). Average parasite growth rate estimates for models fitted by individual with the intercept fixed to the inoculum size were substantially lower by an average of 0.17 log 10 parasites per mL/day (range 0.06-0.24) compared with non-fixed intercept models. Variability of parasite growth rate estimates across the three studies analysed was substantially higher (3.5 times) for fixed-intercept models compared with non-fixed intercept models. The same tendency was observed in models fitted overall by study. Modelling data by individual or overall by study had minimal effect on parasite growth estimates. The analyses presented in this report confirm that fixing the intercept to the inoculum size influences parasite growth estimates. The most appropriate statistical model to estimate the growth rate of blood-stage parasites in IBSM studies appears to be a log-linear model fitted by individual and with the intercept estimated in the log-linear regression. Future studies should use this model to estimate parasite growth rates.
Temporal Epidemiology of Sudden Oak Death in Oregon.
Peterson, Ebba K; Hansen, Everett M; Kanaskie, Alan
2015-07-01
An effort to eradicate Phytophthora ramorum, causal agent of sudden oak death, has been underway since its discovery in Oregon forests. Using an information-theoretical approach, we sought to model yearly variation in the size of newly infested areas and dispersal distance. Maximum dispersal distances were best modeled by spring and winter precipitation 2 years before detection, and infestation size the year prior. Infestation size was best modeled by infestation size and spring precipitation the year prior. In our interpretation, there is a 2-year delay between the introduction of inoculum and onset of mortality for a majority of sites. The year-long gap in between allows ample time for the production of inoculum contributing to the spread of P. ramorum. This is supported by epidemic development following changes in eradication protocols precipitated by an outbreak in 2011, attributable to a 2009 treatment delay and an uncharacteristically wet spring in 2010. Posteradication, we have observed an increase in the total area of new outbreaks and increased frequency in dispersal distances greater than 4 km. Although the eradication program has not eliminated P. ramorum from Oregon forests, it has likely moderated this epidemic, emphasizing the need for prompt treatment of future invasive forest pathogens.
Update on cutaneous tuberculosis*
Dias, Maria Fernanda Reis Gavazzoni; Bernardes Filho, Fred; Quaresma, Maria Victória; do Nascimento, Leninha Valério; Nery, José Augusto da Costa; Azulay, David Rubem
2014-01-01
Tuberculosis continues to draw special attention from health care professionals and society in general. Cutaneous tuberculosis is an infection caused by M. tuberculosis complex, M. bovis and bacillus Calmette-Guérin. Depending on individual immunity, environmental factors and the type of inoculum, it may present varied clinical and evolutionary aspects. Patients with HIV and those using immunobiological drugs are more prone to infection, which is a great concern in centers where the disease is considered endemic. This paper aims to review the current situation of cutaneous tuberculosis in light of this new scenario, highlighting the emergence of new and more specific methods of diagnosis, and the molecular and cellular mechanisms that regulate the parasite-host interaction. PMID:25387498
Torres, Miquel Perez; Entwistle, Frances; Coote, Peter J
2016-08-01
The aim was to evaluate whether immunosuppression with dexamethasone 21-phosphate could be applied to the Galleria mellonella in vivo infection model. Characterised clinical isolates of Escherichia coli or Klebsiella pneumoniae were employed, and G. mellonella larvae were infected with increasing doses of each strain to investigate virulence in vivo. Virulence was then compared with larvae exposed to increasing doses of dexamethasone 21-phosphate. The effect of dexamethasone 21-phosphate on larval haemocyte phagocytosis in vitro was determined via fluorescence microscopy and a burden assay measured the growth of infecting bacteria inside the larvae. Finally, the effect of dexamethasone 21-phosphate treatment on the efficacy of ceftazidime after infection was also noted. The pathogenicity of K. pneumoniae or E. coli in G. mellonella larvae was dependent on high inoculum numbers such that virulence could not be attributed specifically to infection by live bacteria but also to factors associated with dead cells. Thus, for these strains, G. mellonella larvae do not constitute an ideal infection model. Treatment of larvae with dexamethasone 21-phosphate enhanced the lethality induced by infection with E. coli or K. pneumoniae in a dose- and inoculum size-dependent manner. This correlated with proliferation of bacteria in the larvae that could be attributed to dexamethasone inhibiting haemocyte phagocytosis and acting as an immunosuppressant. Notably, prior exposure to dexamethasone 21-phosphate reduced the efficacy of ceftazidime in vivo. In conclusion, demonstration of an effective immunosuppressant regimen can improve the specificity and broaden the applications of the G. mellonella model to address key questions regarding infection.
Metugriachuk, Yussef; Kuroi, Olivia; Pavasuthipaisit, Kanok; Tsuchiya, Junji; Minelli, Emilio; Okura, Ruichi; Fesce, Edoardo; Marotta, F
2005-01-01
In view of the raising concern for gut fungal infection, the aim of the present research was to carry out a systematic in vitro study testing the antifungal activity and possible toxicity of a polygodyal-anethole compound (Kolorex) in several strains of Candida albicans and in other fungal pathogens. The in vitro susceptibility tests were carried out on 4 strains of C. albicans (C. krusei, C. lipolytica, C. tropicalis, C. utilis), Aspergillus flavus and A. fumigatus. Cultures were also analyzed by varying medium, pH and inoculum size, and a time-course killing test was carried out. In the present study the polygodyal-anethole compound showed remarkable in vitro activity against the most common fungi, which was significantly better than polygodyal alone. Moreover, such mixture compound was shown to exert its activity against a wide spectrum of fungi, including C. lipolytica and C. tropicalis, which required significantly higher MIC of polygodyal to be unfeasible in clinical application. The activity of the polygodyal-anethole compound was significantly better than polygodyal alone with high inoculum size and low pH. Moreover, it proved to exert a significantly faster biological activity against low inoculum. This study suggests that the mixture compound Kolorex has a very good profile of antifungal activity in terms of effectiveness and spectrum of action while being devoid of any significant toxicity.
Hirao, Ayako; Ehlers, Ralf-Udo
2010-01-01
For improvement of mass production of the rhabditid biocontrol nematodes Steinernema carpocapsae and Steinernema feltiae in monoxenic liquid culture with their bacterial symbionts Xenorhabdus nematophila and Xenorhabdus bovienii, respectively, the effect of the initial nematode inoculum density on population development and final concentration of dauer juveniles (DJs) was investigated. Symbiotic bacterial cultures are pre-incubated for 1 day prior to inoculation of DJs. DJs are developmentally arrested and recover development as a reaction to food signals provided by their symbionts. After development to adults, the nematodes produce DJ offspring. Inoculum density ranged from 1 to 10 x 10(3) DJ per milliliter for S. carpocapsae and 1 to 8 x 10(3) DJs per milliliter for S. feltiae. No significant influence of the inoculum density on the final DJ yields in both nematode species was recorded, except for S. carpocapsae cultures with a parental female density <2 x 10(3) DJs per milliliter, in which the yields increased with increasing inoculation density. A strong negative response of the parental female fecundity to increasing DJ inoculum densities was recorded for both species with a maximum offspring number per female of >300 for S. carpocapsae and almost 200 for S. feltiae. The compensative adaptation of fecundity to nematode population density is responsible for the lack of an inoculum (or parental female) density effect on DJ yields. At optimal inoculation density of S. carpocapsae, offspring were produced by the parental female population, whereas S. feltiae always developed a F1 female population, which contributed to the DJ yields and was the reason for a more scattered distribution of the yields. The F1 female generation was accompanied by a second peak in X. bovienii density. The optimal DJ inoculum density for S. carpocapsae is 3-6 x 10(3) DJs per milliliter in order to obtain >10(3) parental females per milliliter. Density-dependent effects were neither observed on the DJ recovery nor on the sex ratio in the parental adult generation. As recovery varied between different batches, assessment of the recovery of inoculum DJ batches is recommended. S. feltiae was less variable in DJ recovery usually reaching >90%. The recommended DJ inoculum density is >5 x 10(3) DJs per milliliter to reach >2 x 10(3) parental females per milliliter. The mean yield recorded for S. carpocapsae was 135 x 10(3) and 105 x 10(3) per mililiter for S. feltiae.
Ethanol production from carob extract by using Saccharomyces cerevisiae.
Turhan, Irfan; Bialka, Katherine L; Demirci, Ali; Karhan, Mustafa
2010-07-01
Carob has been widely grown in the Mediterranean region for a long time. It has been regarded as only a forest tree and has been neglected for other economical benefits. However, in recent years, this fruit has gained attention for several applications. As petroleum has become depleted, renewable energy production has started to gain attention all over the world; including the production of ethanol from underutilized agricultural products such as carob. In this project, the optimum extraction conditions were determined for the carob fruit by using the response surface design method. The obtained extract was utilized for production of ethanol by using suspended Saccharomyces cerevisiae fermentation. The effect of various fermentation parameters such as pH, media content and inoculum size were evaluated for ethanol fermentation in carob extract. Also, in order to determine economically appropriate nitrogen sources, four different nitrogen sources were evaluated. The optimum extraction condition for carob extract was determined to be 80 degrees C, 2h in 1:4 dilution rate (fruit: water ratio) according to the result of response surface analysis (115.3g/L). When the fermentation with pH at 5.5 was applied, the final ethanol concentration and production rates were 42.6g/L and 3.37 g/L/h, respectively, which were higher than using an uncontrolled pH. Among inoculum sizes of 1%, 3%, and 5%, 3% was determined as the best inoculum size. The maximum production rate and final ethanol concentration were 3.48 g/L/h and 44.51%, respectively, with an alternative nitrogen source of meat-bone meal. Overall, this study suggested that carob extract can be utilized for production of ethanol in order to meet the demands of renewable energy. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
El-Naggar, Noura El-Ahmady; Abdelwahed, Nayera A M; Darwesh, Osama M M
2014-04-01
The current research was focused on the extracellular biosynthesis of bactericidal silver nanoparticles (AgNPs) using cell-free supernatant of a local isolate previously identified as a novel Streptomyces aegyptia NEAE 102. The biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102 was quite fast and required far less time than previously published strains. The produced particles showed a single surface plasmon resonance peak at 400 nm by UV-Vis spectroscopy, which confirmed the presence of AgNPs. Response surface methodology was chosen to evaluate the effects of four process variables (AgNO3 concentration, incubation period, pH levels, and inoculum size) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. Statistical analysis of the results showed that the linear and quadratic effects of incubation period, initial pH, and inoculum size had a significant effect (p < 0.05) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. The maximum silver nanoparticles biosynthesis (2.5 OD, at 400 nm ) was achieved in runs number 5 and 14 under the conditions of 1 mM AgNO3 (1-1.5% (v/v)), incubation period (72-96 h), initial pH (9-10), and inoculum size (2-4% (v/v)). An overall 4-fold increase in AgNPs biosynthesis was obtained as compared with that of unoptimized conditions. The biosynthesized silver nanoparticles were characterized using UV-VIS spectrophotometer and Fourier transform infrared spectroscopy analysis, in addition to antimicrobial properties. The biosynthesized AgNPs significantly inhibited the growth of medically important pathogenic gram-positive (Staphylococcus aureus) and gram-negative bacteria (Pseudomonas aeruginosa) and yeast (Candida albicans).
Ghribi, Dhouha; Abdelkefi-Mesrati, Lobna; Mnif, Ines; Kammoun, Radhouan; Ayadi, Imen; Saadaoui, Imen; Maktouf, Sameh; Chaabouni-Ellouze, Semia
2012-01-01
During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth. PMID:22536017
Thouand, Gérald; Durand, Marie-José; Maul, Armand; Gancet, Christian; Blok, Han
2011-01-01
The European REACH Regulation (Registration, Evaluation, Authorization of CHemical substances) implies, among other things, the evaluation of the biodegradability of chemical substances produced by industry. A large set of test methods is available including detailed information on the appropriate conditions for testing. However, the inoculum used for these tests constitutes a “black box.” If biodegradation is achievable from the growth of a small group of specific microbial species with the substance as the only carbon source, the result of the test depends largely on the cell density of this group at “time zero.” If these species are relatively rare in an inoculum that is normally used, the likelihood of inoculating a test with sufficient specific cells becomes a matter of probability. Normally this probability increases with total cell density and with the diversity of species in the inoculum. Furthermore the history of the inoculum, e.g., a possible pre-exposure to the test substance or similar substances will have a significant influence on the probability. A high probability can be expected for substances that are widely used and regularly released into the environment, whereas a low probability can be expected for new xenobiotic substances that have not yet been released into the environment. Be that as it may, once the inoculum sample contains sufficient specific degraders, the performance of the biodegradation will follow a typical S shaped growth curve which depends on the specific growth rate under laboratory conditions, the so called F/M ratio (ratio between food and biomass) and the more or less toxic recalcitrant, but possible, metabolites. Normally regulators require the evaluation of the growth curve using a simple approach such as half-time. Unfortunately probability and biodegradation half-time are very often confused. As the half-time values reflect laboratory conditions which are quite different from environmental conditions (after a substance is released), these values should not be used to quantify and predict environmental behavior. The probability value could be of much greater benefit for predictions under realistic conditions. The main issue in the evaluation of probability is that the result is not based on a single inoculum from an environmental sample, but on a variety of samples. These samples can be representative of regional or local areas, climate regions, water types, and history, e.g., pristine or polluted. The above concept has provided us with a new approach, namely “Probabio.” With this approach, persistence is not only regarded as a simple intrinsic property of a substance, but also as the capability of various environmental samples to degrade a substance under realistic exposure conditions and F/M ratio. PMID:21863143
He, Zhanfei; Cai, Chen; Shen, Lidong; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan
2015-01-01
Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered biological process that couples anaerobic oxidation of methane (AOM) to nitrite reduction. In this study, three different inocula, methanogenic sludge, paddy soil, and freshwater sediment were used to enrich n-damo bacteria in three sequencing batch reactors (SBRs), and three n-damo enrichment cultures, C1, C2 and C3, were obtained, respectively. After 500 days of incubation, Methylomirabilis oxyfera-like bacteria and n-damo activities were observed in cultures C1, C2, and C3, and the specific activities were 0.8 ± 0.1, 1.4 ± 0.1, and 1.0 ± 0.1 μmol CH4 h(-1) g(-1) VSS, respectively. The copy numbers of 16S rRNA genes from cultures C1, C2, and C3 were 5.0 ± 0.4 × 10(8), 6.1 ± 0.1 × 10(9), and 1.0 ± 0.2 × 10(9) copies g(-1) dry weight, respectively. The results indicated that paddy soil is an excellent inoculum for n-damo bacterial enrichment. This work expanded the alternative source of n-damo inoculum and benefited the further research of n-damo process.
Dumón, A D; Argüello Caro, E B; Mattio, M F; Alemandri, V; Del Vas, M; Truol, G
2018-04-01
Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae) causes one of the most important diseases in maize (Zea mays L.) in Argentina and has been detected in mixed infections with a rhabdovirus closely related to Maize yellow striate virus. In nature both viruses are able to infect maize and several grasses including wheat, and are transmitted in a persistent propagative manner by Delphacodes kuscheli Fennah (Hemiptera: Delphacidae). This work describes the interactions between MRCV and rhabdovirus within their natural vector and the consequences of such co-infection regarding virus transmission and symptom expression. First- and third-instar D. kuscheli nymphs were fed on MRCV-infected wheat plants or MRCV-rhabdovirus-infected oat plants, and two latency periods were considered. Transmission efficiency and viral load of MRCV-transmitting and non-transmitting planthoppers were determined by real-time quantitative polymerase chain reaction analysis (RTqPCR). Vector transmission efficiency was related to treatments (life stages at acquisition and latency periods). Nevertheless, no correlation between transmission efficiency and type of inoculum used to infect insects with MRCV was found. Treatment by third-instar nymphs 17 days after Acquisition Access Period was the most efficient for MRCV transmission, regardless of the type of inoculum. Plants co-infected with MRCV and rhabdovirus showed the typical MRCV symptoms earlier than plants singly infected with MRCV. The transmitting planthoppers showed significantly higher MRCV titers than non-transmitting insects fed on single or mixed inocula, confirming that successful MRCV transmission is positively associated with viral accumulation in the insect. Furthermore, MRCV viral titers were higher in transmitting planthoppers that acquired this virus from a single inoculum than in those that acquired the virus from a mixed inoculum, indicating that the presence of the rhabdovirus somehow impaired MRCV replication and/or acquisition. This is the first study about interactions between MRCV and a rhabdovirus closely related to Maize yellow striate virus in this insect vector (D. kuscheli), and contributes to a better understanding of planthopper-virus interactions and their epidemiological implications.
Schmidt, Kathrin R; Chand, Shivangini; Gostomski, Peter A; Boyd-Wilson, Kirsty S H; Ford, Chris; Walter, Monika
2005-01-01
The effect of fungal inoculum properties on colonization of nonsterile soil by three isolates of the white-rot fungus Trametes versicolor was investigated. Fungal inoculum properties were examined in separate experiments and were fungal inoculum composition, age of fungal inoculum, concentration of the inoculum and inoculation method. The fungal inoculum composition study compared pine versus poplar sawdust as the basic carrier with varying amounts of corn grit, corn meal and starch. The age of the fungal inoculum studied ranged from 3 to 21 days. The inoculum concentration gradually increased from 0 to 50% (v/v). The study assessing inoculation method compared mixing with layering techniques. The effect of moisture conditions of soil, sawdust and sand in combination with two inoculation methods (mixing versus point source inoculation) on colonization by T. versicolor was also determined. Colonization of soil was always assessed visually and enzymatically monitoring mycelial growth, biological potential (fluorescein diacetate assay) and laccase levels. Generally, the three different assessment methods correlated (P < 0.05) with each other. A fungal inoculum based on pine sawdust supported white-rot fungal growth in soil better than a poplar sawdust basis. Colonization of soil by T. versicolor was improved by increasing the corn content of the fungal inoculum. Younger (<7 days old) fungal inoculum resulted in better soil colonization than older (>10 days). A strong correlation (P < 0.001) was observed between the amount of fungal inoculum used in the soil augmentation and white-rot fungal colonization of soil. Inoculation of the fungal inoculum into soil by mixing was preferable over application in layers or point source inoculation. Moisture level did not influence biological potential measurements, but affected mycelial growth and laccase expression.
Galetto, Luciana; Miliordos, Dimitrios E; Pegoraro, Mattia; Sacco, Dario; Veratti, Flavio; Marzachì, Cristina; Bosco, Domenico
2016-09-15
Flavescence dorée (FD) is a threat for wine production in the vineyard landscape of Piemonte, Langhe-Roero and Monferrato, Italy. Spread of the disease is dependent on complex interactions between insect, plant and phytoplasma. In the Piemonte region, wine production is based on local cultivars. The role of six local grapevine varieties as a source of inoculum for the vector Scaphoideus titanus was investigated. FD phytoplasma (FDP) load was compared among red and white varieties with different susceptibility to FD. Laboratory-reared healthy S. titanus nymphs were caged for acquisition on infected plants to measure phytoplasma acquisition efficiency following feeding on different cultivars. FDP load for Arneis was significantly lower than for other varieties. Acquisition efficiency depended on grapevine variety and on FDP load in the source plants, and there was a positive interaction for acquisition between variety and phytoplasma load. S. titanus acquired FDP with high efficiency from the most susceptible varieties, suggesting that disease diffusion correlates more with vector acquisition efficiency than with FDP load in source grapevines. In conclusion, although acquisition efficiency depends on grapevine variety and on FDP load in the plant, even varieties supporting low FDP multiplication can be highly susceptible and good sources for vector infection, while poorly susceptible varieties may host high phytoplasma loads.
Wang, Kun; Yin, Jun; Shen, Dongsheng; Li, Na
2014-06-01
Food waste anaerobic fermentation was carried out under acidic conditions using inocula based on aerobic activated sludge (Inoculum AE) or anaerobic activated sludge (Inoculum AN) for volatile fatty acids (VFAs) production. The results showed that food waste hydrolysis increased obviously when Inoculum AN was used relative to Inoculum AE at any pH investigated. Hydrolysis at pH 4.0 and uncontrolled pH was higher than that at other pHs when either inoculum was used. Additionally, VFAs production at pH 6.0 was the highest, regardless of the inoculum used. The optimum VFA yields were 0.482g/gVSSremoval with Inoculum AE and 0.918g/gVSSremoval with Inoculum AN, which were observed after 4d and 20d of fermentation, respectively. VFAs composition analysis showed that butyrate acid was the prevalent acid at pH 6.0, followed by acetate acid and propionic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of acidic precipitation on host-parasite interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shriner, D.S.
1974-01-01
During the past decade, the average acidity of rain and snow increased by 1-2 pH units in many parts of Europe and North America. Little is known of the effects of acid rain resulting from dissolution of sulfur dioxide on biological systems. The effects of simulated sulfuric acid rain on four host-pathogen system were studied. Plants were exposed in greenhouse and field to simulated rain of pH 3.2 or pH 6.0 in amounts and intervals common to weather patterns of the eastern United States. Simulated acid rain resulted in: (1) an 86% inhibition in telia production of Cronartium fusiforme onmore » willow oak (Quercus phellos); (2) a 66% inhibition in the production of root-knot nematodes (Meloidogyne hapla) on field grown kidney beans (Phaseolus vulgaris Red Kidney); (3) a 20% decrease in the severity of Uromyces phaseoli infection of field grown kidney beans; and (4) either stimulated or inhibited development of halo blight on kidney bean (caused by Pseudomonas phaseolicola) depending upon the segment of the disease cycle in which the stress occurred: (a) simulated acid rain before inoculation stimulated disease development; (b) suspension of inoculum in acid rain decreased inoculum potential; and (c) acid rain after infection inhibited disease development. Results suggest that the pH of rain is a new environmental parameter of concern to plant pathologists.« less
Karslake, Jason; Maltas, Jeff; Brumm, Peter; Wood, Kevin B
2016-10-01
The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.
Maltas, Jeff; Brumm, Peter; Wood, Kevin B.
2016-01-01
The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095
Suffert, Frédéric; Delestre, Ghislain; Gélisse, Sandrine
2018-06-06
This study provides empirical evidence for antagonistic density dependence mechanisms driving sexual reproduction in the wheat fungal pathogen Zymoseptoria tritici. Biparental crosses with 12 increasing inoculum concentrations, in controlled conditions, showed that sexual reproduction in Z. tritici was impacted by an Allee effect due to mate limitation and a competition with asexual multiplication for resource allocation. The highest number of ascospores discharged was reached at intermediate inoculum concentrations (from 5 × 10 4 conidia mL -1 to 10 6 conidia mL -1 ). Consistent with these results for controlled co-inoculation, we found that the intensity of sexual reproduction varied with both cropping period and the vertical position of the host tissues in the field, with a maximum between 25 and 35 cm above the ground. An optimal lesion density (disease severity of 30 to 45%) maximizing offspring (ascospores) number was established, and its eco-evolutionary consequences are considered here. Two ecological mechanisms may be involved: competition for resources between the two modes of reproduction (decrease in the host resources available for sexual reproduction due to their prior use in asexual multiplication), and competitive disequilibrium between the two parental isolates, due to differential interaction dynamics with the host, for example, leading to an imbalance between mating types. A conceptual model based on these results suggests that sexual reproduction plays a key role in the evolution of pathogenicity traits, including virulence and aggressiveness. Ecological knowledge about the determinants of sexual reproduction in Z. tritici may, therefore, open up new perspectives for the management of other fungal foliar pathogens with dual modes of reproduction.
Ačai, P; Valík, L'; Medved'ová, A; Rosskopf, F
2016-09-01
Modelling and predicting the simultaneous competitive growth of Escherichia coli and starter culture of lactic acid bacteria (Fresco 1010, Chr. Hansen, Hørsholm, Denmark) was studied in milk at different temperatures and Fresco inoculum concentrations. The lactic acid bacteria (LAB) were able to induce an early stationary state in E. coli The developed model described and tested the growth inhibition of E. coli (with initial inoculum concentration 10(3) CFU/mL) when LAB have reached maximum density in different conditions of temperature (ranging from 12 ℃ to 30 ℃) and for various inoculum sizes of LAB (ranging from approximately 10(3) to 10(7) CFU/mL). The prediction ability of the microbial competition model (the Baranyi and Roberts model coupled with the Gimenez and Dalgaard model) was first performed only with parameters estimated from individual growth of E. coli and the LAB and then with the introduced competition coefficients evaluated from co-culture growth of E. coli and LAB in milk. Both the results and their statistical indices showed that the model with incorporated average values of competition coefficients improved the prediction of E. coli behaviour in co-culture with LAB. © The Author(s) 2015.
Rajer, Faheem Uddin; Wu, Huijun; Xie, Yongli; Xie, Shanshan; Raza, Waseem; Tahir, Hafiz Abdul Samad; Gao, Xuewen
2017-04-01
Rhizobacterial volatile organic compounds (VOCs) play an important role in the suppression of soil-borne phytopathogens. In this study, the VOCs produced by a soil-isolate, Bacillus subtilis FA26, were evaluated in vitro for their antibacterial activity against Clavibacter michiganensis ssp. sepedonicus (Cms), the causal agent of bacterial ring rot of potato. The VOCs emitted by FA26 inhibited the growth of Cms significantly compared with the control. Scanning and transmission electron microscopy analyses revealed distorted colony morphology and a wide range of abnormalities in Cms cells exposed to the VOCs of FA26. Varying the inoculation strategy and inoculum size showed that the production and activity of the antibacterial VOCs of FA26 were dependent on the culture conditions. Headspace solid-phase microextraction/gas chromatography-mass spectrometry analyses revealed that FA26 produced 11 VOCs. Four VOCs (benzaldehyde, nonanal, benzothiazole and acetophenone) were associated with the antibacterial activity against Cms. The results suggested that the VOCs produced by FA26 could control the causal agent of bacterial ring rot of potato. This information will increase our understanding of the microbial interactions mediated by VOCs in nature and aid the development of safer strategies for controlling plant disease.
Sequestration of carbon dioxide and production of biomolecules using cyanobacteria.
Upendar, Ganta; Singh, Sunita; Chakrabarty, Jitamanyu; Chandra Ghanta, Kartik; Dutta, Susmita; Dutta, Abhishek
2018-07-15
A cyanobacterial strain, Synechococcus sp. NIT18, has been applied to sequester CO 2 using sodium carbonate as inorganic carbon source due to its efficiency of CO 2 bioconversion and high biomass production. The biomass obtained is used for the extraction of biomolecules - protein, carbohydrate and lipid. The main objective of the study is to maximize the biomass and biomolecules production with CO 2 sequestration using cyanobacterial strain cultivated under different concentrations of CO 2 (5-20%), pH (7-11) and inoculum size (5-12.5%) within a statistical framework. Maximum sequestration of CO 2 and maximum productivities of protein, carbohydrate and lipid are 71.02%, 4.9 mg/L/day, 6.7 mg/L/day and 1.6 mg/L/day respectively, at initial CO 2 concentration: 10%, pH: 9 and inoculum size: 12.5%. Since flue gas contains 10-15% CO 2 and the present strain is able to sequester CO 2 in this range, the strain could be considered as a useful tool for CO 2 mitigation for greener world. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hallenbeck, Patrick C; Grogger, Melanie; Mraz, Megan; Veverka, Donald
2015-05-01
Biodiesel produced from microalgal lipids is being considered as a potential source of renewable energy. However, a number of hurdles will have to be overcome if such a process is to become practical. One important factor is the volumetric production of biomass and lipid that can be achieved. The marine alga Nannochloropsis gaditana is under study since it is known to be highly oleaginous and has a number of other attractive properties. Factors that might be important in biomass and lipid production by this alga are light intensity, inoculum size and CO2. Here we have carried out for the first time a RSM-DOE study of the influence of these important culture variables and define conditions that maximize biomass production, lipid content (BODIPY® fluorescence) and total lipid production. Moreover, flow cytometry allowed the examination on a cellular level of changes that occur in cellular populations as they age and accumulate lipids. Copyright © 2014 Elsevier Ltd. All rights reserved.
López-Cerero, L; Picón, E; Morillo, C; Hernández, J R; Docobo, F; Pachón, J; Rodríguez-Baño, J; Pascual, A
2010-02-01
A significant inoculum-size effect has been observed with piperacillin-tazobactam, and has been associated with beta-lactamase production in extended-spectrum beta-lactamase (ESBL) producers. This association has not been previously studied in the case of amoxycillin-clavulanate. Piperacillin-tazobactam and amoxycillin-clavulanate were compared, using high inocula of susceptible strains either harbouring ESBLs or not. Two non-ESBL-producing and 15 amoxycillin-clavulanate-susceptible and piperacillin-tazobactam-susceptible ESBL-producing Escherichia coli isolates, and their respective transconjugants, were tested in dilution susceptibility tests using standard and 100-fold higher inocula. Three ESBL-producing strains and E. coli ATCC 25922 were selected for time-kill studies using standard and high initial inocula. At high inocula, MICs of piperacillin increased >eight-fold for non-ESBL-producing strains, and MICs of piperacillin-tazobactam (8:1 ratio or with tazobactam fixed at 4 mg/L) increased>eight-fold for all ESBL-producing strains. However, amoxycillin MICs were not affected by a high inoculum with non-ESBL-producing strains, whereas the MICs of amoxycillin-clavulanate (2:1 and 4:1) increased
Effects and optimization of the use of biochar in anaerobic digestion of food wastes.
Cai, Jiao; He, Pinjing; Wang, Ying; Shao, Liming; Lü, Fan
2016-05-01
The addition of various amounts of biochar to anaerobic digestion of food wastes at different ratios of inoculum to substrate (ISR) was investigated to evaluate the effect of biochar as a functional additive and to optimize the additive dosage of biochar. The biochar treatments at ISR 2, 1, and 0.8 shortened the lag phase of digestion by -20.0%-10.9%, 43.3%-54.4%, and 36.3%-54.0%, and raised the maximum methane production rate by 100%-275%, 100%-133.3%, and 33.3%-100%, respectively, compared to control without biochar. Biochar also enhanced the degradation rate of dissolved organics and volatile fatty acids. Furthermore, the amount of biochar with best effectiveness at ISR = 2, 1, and 0.8 was 2.5, 0.625, and 0.5 g g(-1)-waste, respectively. Therefore, the effectiveness of biochar depended on the additive amount of biochar and at the same time the inoculum amount, implying a complementary role of abiotic biochar to biotic inoculum. © The Author(s) 2016.
Population dynamics of Vibrio fischeri during infection of Euprymna scolopes.
McCann, Jessica; Stabb, Eric V; Millikan, Deborah S; Ruby, Edward G
2003-10-01
The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host, Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V. fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability to infect and multiply within the host during coinoculation experiments. Studies of the early stages of colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels; nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that symbiotic infection is highly efficient.
Zicarelli, Fabio; Calabrò, Serena; Cutrignelli, Monica I; Infascelli, Federico; Tudisco, Raffaella; Bovera, Fulvia; Piccolo, Vincenzo
2011-05-01
The aim of this trial was to evaluate the replacement of rumen fluid with faeces as inoculum in studying the in vitro fermentation characteristics of diets for ruminants using the in vitro gas production technique. Six iso-protein diets with different forage/concentrate ratios were incubated with rumen fluid (RI) or faeces (FI) collected from sheep. Most of the fermentation parameters were influenced by diet and inoculum (P < 0.01). With both inocula, organic matter degradability (dOM), cumulative gas production (OMCV) and maximum fermentation rate (R(max) ) increased as the amount of concentrate in the diet increased. R(max) was lower with FI vs RI (P < 0.01); dOM was higher with FI vs RI and the diet × inoculum interaction was significant. As expected, with both inocula, R(max) increased as the neutral detergent fibre content of the diet decreased. Significant correlations were obtained using both inocula between OMCV/dOM and gas/volatile fatty acid (VFA), while the correlation VFA/dOM was significant only with FI. The microbial biomass yield calculated by stoichiometric analysis for all diets was higher with FI vs RI. With FI the organic matter used for microbial growth showed an overall decreasing trend as the amount of concentrate in the diet increased. The results indicate that both faeces and rumen fluid from sheep have the potential to be used as inoculum for the in vitro gas production technique. Copyright © 2011 Society of Chemical Industry.
Noninvasive monitoring of salmonella infections in young mice
NASA Astrophysics Data System (ADS)
Olomu, Isoken N.; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.
1999-07-01
A recently developed bioluminescent assay was used to study the influence of age and inoculum size on the acute susceptibility of newborn and juvenile BALB/c mice to Salmonella gastrointestinal infection. Three strains of Salmonella were tagged by expression of the lux operon from Photohabdus luminescenes. Using a range of inoculum sizes varied over 6 orders of magnitude, mice aged 0-6 weeks were infected by oral inoculation. LIght emitted from the tagged bacteria and transmitted through mouse tissues was used to noninvasively monitor disease progression over 7 days. In neonatal mice there was evidence of gastrointestinal infection at 24 hours even with small inocular, and at 4-7 days, the patterns of photon emission and remained and healthy throughout the study period. Inoculation of neonates with tagged LB5000 and BJ66 resulted in severe gastrointestinal infections with low and intermediate sizes of inocula respectively. These strains are known to be of reduced virulence in adult mice. These age-related differences in susceptibility emphasize the need to define virulence in the context of age of the host, and implicate maturation of innate resistance factors in determining disease patterns. Identifying these host-factors and further defining the bacterial determinants of virulence in the neonatal host will be facilitated by this noninvasive study of infection using bioluminenscent methods.
Inactivation of Escherichia coli by citral.
Somolinos, M; García, D; Condón, S; Mackey, B; Pagán, R
2010-06-01
The aim was to evaluate (i) the resistance of Escherichia coli BJ4 to citral in a buffer system as a function of citral concentration, treatment medium pH, storage time and initial inoculum size, (ii) the role of the sigma factor RpoS on citral resistance of E. coli, (iii) the role of the cell envelope damage in the mechanism of microbial inactivation by citral and (iiii) possible synergistic effects of mild heat treatment and pulsed electric fields (PEF) treatment combined with citral. The initial inoculum size greatly affected the efficacy of citral against E. coli cells. Exposure to 200 microl l(-1) of citral at pH 4.0 for 24 h at 20 degrees C caused the inactivation of more than 5 log(10) cycles of cells starting at an inoculum size of 10(6) or 10(7) CFU ml(-1), whereas increasing the cell concentration to 10(9) CFU ml(-1) caused <1 log(10) cycle of inactivation. Escherichia coli showed higher resistance to citral at pH 4.0 than pH 7.0. The rpoS null mutant strain E. coli BJ4L1 was less resistant to citral than the wild-type strain. Occurrence of sublethal injury to both the cytoplasmic and outer membranes was demonstrated by adding sodium chloride or bile salts to the recovery media. The majority of sublethally injured cells by citral required energy and lipid synthesis for repair. A strongly synergistic lethal effect was shown by mild heat treatment combined with citral but the presence of citral during the application of a PEF treatment did not show any advantage. This work confirms that cell envelope damage is an important event in citral inactivation of bacteria, and it describes the key factors on the inactivation of E. coli cells by citral. Knowledge about the mechanism of microbial inactivation by citral helps establish successful combined preservation treatments.
Zaragoza, Oscar; Mesa-Arango, Ana C.; Gómez-López, Alicia; Bernal-Martínez, Leticia; Rodríguez-Tudela, Juan Luis; Cuenca-Estrella, Manuel
2011-01-01
Nonfermentative yeasts, such as Cryptococcus spp., have emerged as fungal pathogens during the last few years. However, standard methods to measure their antifungal susceptibility (antifungal susceptibility testing [AST]) are not completely reliable due to the impaired growth of these yeasts in standard media. In this work, we have compared the growth kinetics and the antifungal susceptibilities of representative species of nonfermentative yeasts such as Cryptococcus neoformans, Cryptococcus gattii, Cryptococcus albidus, Rhodotorula spp., Yarrowia lipolytica, Geotrichum spp., and Trichosporon spp. The effect of the growth medium (RPMI medium versus yeast nitrogen base [YNB]), glucose concentration (0.2% versus 2%), nitrogen source (ammonium sulfate), temperature (30°C versus 35°C), shaking, and inoculum size (103, 104, and 105 cells) were analyzed. The growth rate, lag phase, and maximum optical density were obtained from each growth experiment, and after multivariate analysis, YNB-based media demonstrated a significant improvement in the growth of yeasts. Shaking, an inoculum size of 105 CFU/ml, and incubation at 30°C also improved the growth kinetics of organisms. Supplementation with ammonium sulfate and with 2% glucose did not have any effect on growth. We also tested the antifungal susceptibilities of all the isolates by the reference methods of the CLSI and EUCAST, the EUCAST method with shaking, YNB under static conditions, and YNB with shaking. MIC values obtained under different conditions showed high percentages of agreement and significant correlation coefficient values between them. MIC value determinations according to CLSI and EUCAST standards were rather complicated, since more than half of isolates tested showed a limited growth index, hampering endpoint determinations. We conclude that AST conditions including YNB as an assay medium, agitation of the plates, reading after 48 h of incubation, an inoculum size of 105 CFU/ml, and incubation at 30°C made MIC determinations easier without an overestimation of MIC values. PMID:21245438
[Production of a compost accelerator inoculant].
Medina Lara, M Socorro; Quintero Lizaola, Roberto; Espinosa Victoria, David; Alarcón, Alejandro; Etchevers Barra, Jorge D; Trinidad Santos, Antonio; Conde Martínez, F Víctor
2017-10-26
Composting was performed using a mixture of ovine manure and straw. Inoculum was extracted at five different phases of the composting process (18, 23, 28, 33 and 38 days after the start of the composting process) and its effect on reducing biotransformation time was evaluated in the composted ovine manure. The samples were preserved in a deep freezer, then lyophilized to obtain the inoculum, 50g of which was added to each treatment in the second experimental phase. Six treatments were established; C=straw (P)+ovine manure (E), T1=P+ E+inoculum 18 days after the start of the composting process (I18), T2=P+E+I23, T3=P+E+I28, T4=P+E+I33, T5=P+E+I38, with three replications. Treatments were placed in a controlled-environment chamber at 45% relative humidity and 30°C along with flasks containing 50g of material to measure daily production, CO 2 accumulation, temperature, pH, electric conductivity (dS/m), organic matter (%), total nitrogen (%), total carbon (%), C: N ratio, particle size (Tp) and bulk density (g/l). CO 2 production (mg) showed a significant difference (p ≤.05) of treatments T2 and T5 with respect to the others, which demonstrated that the inoculum of these treatments accelerated the dynamics of microorganisms and the composting process. The quality and maturity of the compost are guaranteed as the amount of CO 2 decreases. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Roche, Sylvain; El Garch, Hanane; Brunet, Sylvie; Poulet, Hervé; Iwaz, Jean; Ecochard, René; Vanhems, Philippe
2013-01-01
The early events of human immunodeficiency virus infection seem critical for progression toward disease and antiretroviral therapy initiation. We wanted to clarify some still unknown prognostic relationships between inoculum size and changes in various immunological and virological markers. Feline immunodeficiency virus infection could be a helpful model. Viremia and T-cell markers (number of CD4, CD8, CD8β(low)CD62L(neg) T-cells, CD4/CD8 ratio, and percentage of CD8β(low)CD62L(neg) cells among CD8 T-cells) were measured over 12 weeks in 102 cats infected with different feline immunodeficiency virus strains and doses. Viremia and T-cell markers trajectory groups were determined and the dose-response relationships between inoculum titres and trajectory groups investigated. Cats given the same inoculum showed different patterns of changes in viremia and T-cell markers. A statistically significant positive dose-response relationship was observed between inoculum titre and i) viremia trajectory-groups (r = 0.80, p<0.01), ii) CD8β(low)CD62L(neg) cell-fraction trajectory-groups (r = 0.56, p<0.01). Significant correlations were also found between viremia and the CD4/CD8 ratio and between seven out of ten T-cell markers. In cats, the infectious dose determines early kinetics of viremia and initial CD8+ T-cell activation. An expansion of the CD8β(low)CD62L(neg) T-cells might be an early predictor of progression toward disease. The same might be expected in humans but needs confirmation.
Groten, Karin; Pahari, Nabin T; Xu, Shuqing; Miloradovic van Doorn, Maja; Baldwin, Ian T
2015-01-01
Most land plants live in a symbiotic association with arbuscular mycorrhizal fungi (AMF) that belong to the phylum Glomeromycota. Although a number of plant genes involved in the plant-AMF interactions have been identified by analyzing mutants, the ability to rapidly manipulate gene expression to study the potential functions of new candidate genes remains unrealized. We analyzed changes in gene expression of wild tobacco roots (Nicotiana attenuata) after infection with mycorrhizal fungi (Rhizophagus irregularis) by serial analysis of gene expression (SuperSAGE) combined with next generation sequencing, and established a virus-induced gene-silencing protocol to study the function of candidate genes in the interaction. From 92,434 SuperSAGE Tag sequences, 32,808 (35%) matched with our in-house Nicotiana attenuata transcriptome database and 3,698 (4%) matched to Rhizophagus genes. In total, 11,194 Tags showed a significant change in expression (p<0.05, >2-fold change) after infection. When comparing the functions of highly up-regulated annotated Tags in this study with those of two previous large-scale gene expression studies, 18 gene functions were found to be up-regulated in all three studies mainly playing roles related to phytohormone metabolism, catabolism and defense. To validate the function of identified candidate genes, we used the technique of virus-induced gene silencing (VIGS) to silence the expression of three putative N. attenuata genes: germin-like protein, indole-3-acetic acid-amido synthetase GH3.9 and, as a proof-of-principle, calcium and calmodulin-dependent protein kinase (CCaMK). The silencing of the three plant genes in roots was successful, but only CCaMK silencing had a significant effect on the interaction with R. irregularis. Interestingly, when a highly activated inoculum was used for plant inoculation, the effect of CCaMK silencing on fungal colonization was masked, probably due to trans-complementation. This study demonstrates that large-scale gene expression studies across different species induce of a core set of genes of similar functions. However, additional factors seem to influence the overall pattern of gene expression, resulting in high variability among independent studies with different hosts. We conclude that VIGS is a powerful tool with which to investigate the function of genes involved in plant-AMF interactions but that inoculum strength can strongly influence the outcome of the interaction.
O'Donnell, Michelle M; Rea, Mary C; O'Sullivan, Órla; Flynn, Cal; Jones, Beth; McQuaid, Albert; Shanahan, Fergus; Ross, R Paul
2016-10-01
In-vitro gut fermentation systems provide suitable models for studying gut microbiota composition and functionality. However, such methods depend on the availability of donors and the assumption of reproducibility between microbial communities before experimental treatments commence. The aim of this study was to develop a frozen standardised inoculum (FSI) which minimizes inter-individual variation and to determine its stability over time using culture-dependent and culture-independent techniques. A method for the preparation difference of a FSI is described which involves pooling the faecal samples, centrifugation and pelleting of the cell biomass and finally homogenising the cell pellets with phosphate buffer and glycerol. Using this approach, no significant difference in total anaerobe cell viability was observed between the fresh standardised inoculum (before freezing) and the 12days post freezing FSI. Moreover, Quantitative PCR revealed no significant alterations in the estimated bacterial numbers in the FSI preparations for any of the phyla. MiSeq sequencing revealed minute differences in the relative abundance at phylum, family and genus levels between the FSI preparations. Differences in the microbiota denoted as significant were limited between preparations in the majority of cases to changes in percentage relative abundance of ±0.5%. The independently prepared FSIs revealed a high degree of reproducibility in terms of microbial composition between the three preparations. This study provides a method to produce a standardised human faecal inoculum suitable for freezing. Based on culture-dependent and independent analysis, the method ensures a degree of reproducibility between preparations by lessening the effect of inter-individual variation among the donors, thereby making the system more suitable for the accurate interpretation of the effects of experimental treatments. Copyright © 2016 Elsevier B.V. All rights reserved.
Mohana, Sarayu; Shrivastava, Shalini; Divecha, Jyoti; Madamwar, Datta
2008-02-01
Decolorization and degradation of polyazo dye Direct Black 22 was carried out by distillery spent wash degrading mixed bacterial consortium, DMC. Response surface methodology (RSM) involving a central composite design (CCD) in four factors was successfully employed for the study and optimization of decolorization process. The hyper activities and interactions between glucose concentration, yeast extract concentration, dye concentration and inoculum size on dye decolorization were investigated and modeled. Under optimized conditions the bacterial consortium was able to decolorize the dye almost completely (>91%) within 12h. Bacterial consortium was able to decolorize 10 different azo dyes. The optimum combination of the four variables predicted through RSM was confirmed through confirmatory experiments and hence this bacterial consortium holds potential for the treatment of industrial waste water. Dye degradation products obtained during the course of decolorization were analyzed by HPTLC.
Forest type influences transmission of Phytophthora ramorum in California oak woodlands.
Davidson, Jennifer M; Patterson, Heather A; Wickland, Allison C; Fichtner, Elizabeth J; Rizzo, David M
2011-04-01
The transmission ecology of Phytophthora ramorum from bay laurel (Umbellularia californica) leaves was compared between mixed-evergreen and redwood forest types throughout winter and summer disease cycles in central, coastal California. In a preliminary multisite study, we found that abscission rates of infected leaves were higher at mixed-evergreen sites. In addition, final infection counts were slightly higher at mixed-evergreen sites or not significantly different than at redwood sites, in part due to competition from other foliar pathogens at redwood sites. In a subsequent, detailed study of paired sites where P. ramorum was the main foliar pathogen, summer survival of P. ramorum in bay laurel leaves was lower in mixed-evergreen forest due to lower recovery from infected attached leaves and higher abscission rates of infected leaves. Onset of inoculum production and new infections of bay laurel leaves occurred later in mixed-evergreen forest. Mean inoculum levels in rainwater and final infection counts on leaves were higher in redwood forest. Based on these two studies, lower summer survival of reservoir inoculum in bay laurel leaves in mixed-evergreen forest may result in delayed onset of both inoculum production and new infections, leading to slower disease progress in the early rainy season compared with redwood forest. Although final infection counts also will depend on other foliar pathogens and disease history, in sites where P. ramorum is the main foliar pathogen, these transmission patterns suggest higher rates of disease spread in redwood forests during rainy seasons of short or average length.
Supriya Sharma; Wolfgang Schweigkofler; Karen Suslow; Timothy L. Widmer
2017-01-01
There is a continuing desire to investigate the potential of biological control to manage the spread of Phytophthora ramorum. A specific isolate of Trichoderma asperellum has been demonstrated to be effective in reducing P. ramorum soil populations to non-detectable levels. This study was conducted...
Habouzit, Frédéric; Hamelin, Jérôme; Santa-Catalina, Gaëlle; Steyer, Jean-P; Bernet, Nicolas
2014-01-01
To evaluate the impact of the nature of the support material on its colonization by a methanogenic consortium, four substrata made of different materials: polyvinyl chloride, 2 polyethylene and polypropylene were tested during the start-up of lab-scale fixed-film reactors. The reactor performances were evaluated and compared together with the analysis of the biofilms. Biofilm growth was quantified and the structure of bacterial and archaeal communities were characterized by molecular fingerprinting profiles (capillary electrophoresis-single strand conformation polymorphism). The composition of the inoculum was shown to have a major impact on the bacterial composition of the biofilm, whatever the nature of the support material or the organic loading rate applied to the reactors during the start-up period. In contrast, the biofilm archaeal populations were independent of the inoculum used but highly dependent on the support material. Supports favouring Archaea colonization, the limiting factor in the overall process, should be preferred. PMID:24612643
Selvaraj, Thangaswamy; Kim, Hoon
2004-03-01
A sucrose-agar globule (SAG) was newly introduced to increase production of the vesicular arbuscular mycorrhizal (VAM) fungal spores, Gigaspora gigantea and Glomus fasciculatum. An SAG inoculum and a sucrose-agar globule with root exudates (SAGE) inoculum were prepared, and their spore productions were compared with a soil inoculum. When the SAGE was used as the inoculum on sucrose-agar medium plates the number of spores was increased (35% more than the soil inoculum). After the soil inoculum and SAGE were inoculated on an experimental plant, Zingiber officinale, the percentage root colonization, number of VAM spores, and dry matter content were analyzed. It was observed that the SAGE showed a higher percentage of root colonization (about 10% more), and increases in the number of spores (about 26%) and dry matter (more than 13%) for the two VAM fungal spores than the soil inoculum. The results of this study suggested that the SAGE inoculum may be useful for the mass production of VAM fungi and also for the large scale production of VAM fungal fertilizer.
Sutherland, Alastair D; Varela, Joao C
2014-01-23
The hydrolysis of seaweed polysaccharides is the rate limiting step in anaerobic digestion (AD) of seaweeds. Seven different microbial inocula and a mixture of these (inoculum 8) were therefore compared in triplicate, each grown over four weeks in static culture for the ability to degrade Laminaria hyperborea seaweed and produce methane through AD. All the inocula could degrade L. hyperborea and produce methane to some extent. However, an inoculum of slurry from a human sewage anaerobic digester, one of rumen contents from seaweed-eating North Ronaldsay sheep and inoculum 8 used most seaweed volatile solids (VS) (means ranged between 59 and 68% used), suggesting that these each had efficient seaweed polysaccharide digesting bacteria. The human sewage inoculum, an inoculum of anaerobic marine mud mixed with rotting seaweed and inoculum 8 all developed to give higher volumes of methane (means between 41 and 62.5 ml g-1 of seaweed VS by week four) ,compared to other inocula (means between 3.5 and 27.5 ml g-1 VS). Inoculum 8 also gave the highest acetate production (6.5 mmol g-1 VS) in a single-stage fermenter AD system and produced most methane (8.4 mL mmol acetate-1) in phase II of a two-stage AD system. Overall inoculum 8 was found to be the most efficient inoculum for AD of seaweed. The study therefore showed that selection and inclusion of efficient polysaccharide hydrolysing bacteria and methanogenic archaea in an inoculum offer increased methane productivity in AD of L. hyperborea. This inoculum will now being tested in larger scale (10L) continuously stirred reactors optimised for feed rate and retention time to determine maximum methane production under single-stage and two-stage AD systems.
2014-01-01
Background The hydrolysis of seaweed polysaccharides is the rate limiting step in anaerobic digestion (AD) of seaweeds. Seven different microbial inocula and a mixture of these (inoculum 8) were therefore compared in triplicate, each grown over four weeks in static culture for the ability to degrade Laminaria hyperborea seaweed and produce methane through AD. Results All the inocula could degrade L. hyperborea and produce methane to some extent. However, an inoculum of slurry from a human sewage anaerobic digester, one of rumen contents from seaweed-eating North Ronaldsay sheep and inoculum 8 used most seaweed volatile solids (VS) (means ranged between 59 and 68% used), suggesting that these each had efficient seaweed polysaccharide digesting bacteria. The human sewage inoculum, an inoculum of anaerobic marine mud mixed with rotting seaweed and inoculum 8 all developed to give higher volumes of methane (means between 41 and 62.5 ml g-1 of seaweed VS by week four) ,compared to other inocula (means between 3.5 and 27.5 ml g-1 VS). Inoculum 8 also gave the highest acetate production (6.5 mmol g-1 VS) in a single-stage fermenter AD system and produced most methane (8.4 mL mmol acetate-1) in phase II of a two-stage AD system. Conclusions Overall inoculum 8 was found to be the most efficient inoculum for AD of seaweed. The study therefore showed that selection and inclusion of efficient polysaccharide hydrolysing bacteria and methanogenic archaea in an inoculum offer increased methane productivity in AD of L. hyperborea. This inoculum will now being tested in larger scale (10L) continuously stirred reactors optimised for feed rate and retention time to determine maximum methane production under single-stage and two-stage AD systems. PMID:24456825
Boylan, Brendan T; Moreira, Fernando R; Carlson, Tim W; Bernard, Kristen A
2017-02-01
Half of the human population is at risk of infection by an arthropod-borne virus. Many of these arboviruses, such as West Nile, dengue, and Zika viruses, infect humans by way of a bite from an infected mosquito. This infectious inoculum is insect cell-derived giving the virus particles distinct qualities not present in secondary infectious virus particles produced by infected vertebrate host cells. The insect cell-derived particles differ in the glycosylation of virus structural proteins and the lipid content of the envelope, as well as their induction of cytokines. Thus, in order to accurately mimic the inoculum delivered by arthropods, arboviruses should be derived from arthropod cells. Previous studies have packaged replicon genome in mammalian cells to produce replicon particles, which undergo only one round of infection, but no studies exist packaging replicon particles in mosquito cells. Here we optimized the packaging of West Nile virus replicon genome in mosquito cells and produced replicon particles at high concentration, allowing us to mimic mosquito cell-derived viral inoculum. These particles were mature with similar genome equivalents-to-infectious units as full-length West Nile virus. We then compared the mosquito cell-derived particles to mammalian cell-derived particles in mice. Both replicon particles infected skin at the inoculation site and the draining lymph node by 3 hours post-inoculation. The mammalian cell-derived replicon particles spread from the site of inoculation to the spleen and contralateral lymph nodes significantly more than the particles derived from mosquito cells. This in vivo difference in spread of West Nile replicons in the inoculum demonstrates the importance of using arthropod cell-derived particles to model early events in arboviral infection and highlights the value of these novel arthropod cell-derived replicon particles for studying the earliest virus-host interactions for arboviruses.
Webb, Kimberly M; Calderón, Francisco J
2015-10-01
The amount of Rhizoctonia solani in the soil and how much must be present to cause disease in sugar beet (Beta vulgaris L.) is relatively unknown. This is mostly because of the usually low inoculum densities found naturally in soil and the low sensitivity of traditional serial dilution assays. We investigated the usefulness of Fourier transform mid-infrared (MIR) and near-infrared (NIR) spectroscopic properties in identifying the artificial colonization of barley grains with R. solani AG 2-2 IIIB and in detecting R. solani populations in plant tissues and inoculants. The objectives of this study were to compare the ability of traditional plating assays to NIR and MIR spectroscopies to identify R. solani in different-size fractions of colonized ground barley (used as an artificial inoculum) and to differentiate colonized from non-inoculated barley. We found that NIR and MIR spectroscopies were sensitive in resolving different barley particle sizes, with particles that were <0.25 and 0.25-0.5 mm having different spectral properties than coarser particles. Moreover, we found that barley colonized with R. solani had different MIR spectral properties than the non-inoculated samples for the larger fractions (0.5-1.0, 1.0-2.0, and >2.0 mm) of the ground barley. This colonization was confirmed using traditional plating assays. Comparisons with the spectra from pure fungal cultures and non-inoculated barley suggest that the MIR spectrum of colonized barley is different because of the consumption of C substrates by the fungus rather than because of the presence of fungal bands in the spectra of the colonized samples. We found that MIR was better than NIR spectroscopy in differentiating the colonized from the control samples.
Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H
2015-05-14
Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds.
Thomas, P; Mujawar, M M; Sekhar, A C; Upreti, R
2014-04-01
To understand the factors that contribute to the variations in colony-forming units (CFU) in different bacteria during spread plating. Employing a mix culture of vegetative cells of ten organisms varying in cell characteristics (Gram reaction, cell shape and cell size), spread plating to the extent of just drying the agar surface (50-60 s) was tested in comparison with the alternate spotting-and-tilt-spreading (SATS) approach where 100 μl inoculum was distributed by mere tilting of plate after spotting as 20-25 microdrops. The former imparted a significant reduction in CFU by 20% over the spreader-independent SATS approach. Extending the testing to single organisms, Gram-negative proteobacteria with relatively larger cells (Escherichia, Enterobacter, Agrobacterium, Ralstonia, Pantoea, Pseudomonas and Sphingomonas spp.) showed significant CFU reduction with spread plating except for slow-growing Methylobacterium sp., while those with small rods (Xenophilus sp.) and cocci (Acinetobacter sp.) were less affected. Among Gram-positive nonspore formers, Staphylococcus epidermidis showed significant CFU reduction while Staphylococcus haemolyticus and actinobacteria (Microbacterium, Cellulosimicrobium and Brachybacterium spp.) with small rods/cocci were unaffected. Vegetative cells of Bacillus pumilus and B. subtilis were generally unaffected while others with larger rods (B. thuringiensis, Brevibacillus, Lysinibacillus and Paenibacillus spp.) were significantly affected. A simulated plating study coupled with live-dead bacterial staining endorsed the chances of cell disruption with spreader impaction in afflicted organisms. Significant reduction in CFU could occur during spread plating due to physical impaction injury to bacterial cells depending on the spreader usage and the variable effects on different organisms are determined by Gram reaction, cell size and cell shape. The inoculum spreader could impart physical disruption of vegetative cells against a hard surface. Possibility of CFU reduction in sensitive organisms and the skewed selection of hardier organisms during spread plating, and the recommendation of SATS as an easier and safer alternative for CFU enumerations. © 2013 The Society for Applied Microbiology.
El-Naggar, Noura El-Ahmady; Moawad, Hassan; El-Shweihy, Nancy M; El-Ewasy, Sara M
2015-01-01
Among the antitumor drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological, and biochemical properties together with 16S rRNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product (1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett-Burman experimental design and response surface methodology was carried out. Fifteen variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4·7H2O, NaCl, and FeSO4·7H2O) were screened using Plackett-Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age, and agitation speed) were further optimized by the face-centered central composite design-response surface methodology.
El-Naggar, Noura El-Ahmady; Moawad, Hassan; El-Shweihy, Nancy M.; El-Ewasy, Sara M.
2015-01-01
Among the antitumor drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological, and biochemical properties together with 16S rRNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product (1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett-Burman experimental design and response surface methodology was carried out. Fifteen variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4·7H2O, NaCl, and FeSO4·7H2O) were screened using Plackett-Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age, and agitation speed) were further optimized by the face-centered central composite design-response surface methodology. PMID:26180806
Gounadaki, Antonia S; Skandamis, Panagiotis N; Drosinos, Eleftherios H; Nychas, George-John E
2007-10-01
The survival of postprocess Listeria monocytogenes contamination on sliced salami, stored under the temperatures associated with retail and domestic storage, was investigated. Sliced salami was inoculated with low and high concentrations of L. monocytogenes before being packaged under vacuum or air. Survival of L. monocytogenes was determined after storage of sausages for 45 or 90 days for low or high sample inocula, respectively, at 5, 15, and 25 degrees C. All survival curves of L. monocytogenes were characterized by an initial rapid inactivation within the first days of storage, followed by a second, slower inactivation phase or "tailing." Greater reduction of L. monocytogenes was observed at the high storage temperature (25 degrees C), followed by ambient (15 degrees C) and chill (5 degrees C) storage conditions. Moreover, vacuum packaging resulted in a slower destruction of L. monocytogenes than air packaging, and this effect increased as storage temperature decreased. Although L. monocytogenes numbers decreased to undetectable levels by the end of the storage period, the time (in days) needed for this reduction and for the total elimination of the pathogen decreased with high temperature, aerobic storage, and high inoculum. Results of this study clearly indicated that the kinetics of L. monocytogenes were highly dependent on the interaction of factors such as storage temperature, packaging conditions, and initial level of contamination (inoculum). These results may contribute to the exposure assessment of quantitative microbial risk assessment and to the establishment of storage-packaging recommendations of fermented sausages.
Ismaiel, Ahmed A; Ahmed, Ashraf S; Hassan, Ismail A; El-Sayed, El-Sayed R; Karam El-Din, Al-Zahraa A
2017-07-01
Among 60 fungal endophytes isolated from twigs, bark, and mature leaves of different plant species, two fungal isolates named TXD105 and TER995 were capable of producing paclitaxel in amounts of up to 84.41 and 37.92 μg L -1 , respectively. Based on macroscopic and microscopic characteristics, ITS1-5.8S-ITS2 rDNA sequence, and phylogenetic characteristic analysis, the two respective isolates were identified as Aspergillus fumigatus and Alternaria tenuissima. In the effort to increase paclitaxel magnitude by the two fungal strains, several fermentation conditions including selection of the proper fermentation medium, agitation rate, incubation temperature, fermentation period, medium pH, medium volume, and inoculum nature (size and age of inoculum) were tried. Fermentation process carried out in M1D medium (pH 6.0) and maintained at 120 rpm for 10 days and at 25 °C using 4% (v/v) inoculum of 5-day-old culture stimulated the highest paclitaxel production to attain 307.03 μg L -1 by the A. fumigatus strain. In the case of the A. tenuissima strain, fermentation conditions conducted in flask basal medium (pH 6.0) and maintained at 120 rpm for 14 days and at 25 °C using 8% (v/v) inoculum of 7-day-old culture were found the most favorable to attain the highest paclitaxel production of 124.32 μg L -1 . Using the MTT-based assay, fungal paclitaxel significantly inhibited the proliferation of five different cancer cell lines with 50% inhibitory concentration values varied from 3.04 to 14.8 μg mL -1 . Hence, these findings offer new and alternate sources with excellent biotechnological potential for paclitaxel production by fungal fermentation.
Universality and tails of long-range interactions in one dimension
NASA Astrophysics Data System (ADS)
Valiente, Manuel; Öhberg, Patrik
2017-07-01
Long-range interactions and, in particular, two-body potentials with power-law long-distance tails are ubiquitous in nature. For two bosons or fermions in one spatial dimension, the latter case being formally equivalent to three-dimensional s -wave scattering, we show how generic asymptotic interaction tails can be accounted for in the long-distance limit of scattering wave functions. This is made possible by introducing a generalization of the collisional phase shifts to include space dependence. We show that this distance dependence is universal, in that it does not depend on short-distance details of the interaction. The energy dependence is also universal, and is fully determined by the asymptotic tails of the two-body potential. As an important application of our findings, we describe how to eliminate finite-size effects with long-range potentials in the calculation of scattering phase shifts from exact diagonalization. We show that even with moderately small system sizes it is possible to accurately extract phase shifts that would otherwise be plagued with finite-size errors. We also consider multichannel scattering, focusing on the estimation of open channel asymptotic interaction strengths via finite-size analysis.
Characterization of a U.S. Sheep Scrapie Isolate with Short Incubation Time
USDA-ARS?s Scientific Manuscript database
Scrapie is a naturally occurring fatal neurodegenerative disease of sheep and goats. Susceptibility to the disease is partly dependent upon the genetic makeup of the host. In a previous study it was shown that sheep intracerebrally inoculated with US scrapie inoculum (No. 13-7) developed terminal di...
Statistical optimization for improved production of cyclosporin a in solid-state fermentation.
Survase, Shrikant A; Annapure, Uday S; Singhal, Rekha S
2009-11-01
This work evaluates the effect of different amino acids on production of CyA production in solid-state fermentation that was previously optimized for different fermentation parameters by one-factor-at-a-time for the maximum production of CyA by Tolypocladium inflatum MTCC 557. Based on the Plackett-Burman design, glycerol, ammonium sulfate, FeCl3, and inoculum size were selected for further optimization by response surface methodology (RSM). After identifying effective nutrients, RSM was used to develop mathematical model equations, study responses, and establish the optimum concentrations of the key nutrients for higher CyA production. It was observed that supplementation of medium containing (% w/w) glycerol, 1.53; ammonium sulfate, 0.95; FeCl3, 0.18; and inoculum size 6.4 ml/5g yielded a maximum of 7,106 mg/kg as compared with 6,480 mg CyA/kg substrate using one factor at a time. In the second step, the effect of amino acids on the production of CyA was studied. Addition of L-valine and L-leucine in combination after 20 h of fermentation resulted in maximum production of 8,166 mg/kg.
Protein Production Through Microbial Conversion of Rice Straw by Multi-Strain Fermentation.
Jia, Jinru; Chen, Huayou; Wu, Bangguo; Cui, Fengjie; Fang, Hua; Wang, Hongcheng; Ni, Zhong
2018-06-20
Multi-strain mixed fermentation can provide a relatively complete lignocellulosic enzyme system compared with single-strain fermentation. This study was firstly to screen strains which have a strong ability to hydrolyse rice straw (RS) enzymatically and enrich true protein (TP). Then, the conditions in the process of SSF, including the optimum inoculum size of mixed strains, inoculation ratio, and different inoculation time of N. crassa 14-8, were optimized. The experimental results showed that the highest TP content could be obtained by using N. crassa 14-8, C. utilis, and P. chrysosporium as mixed strains, and 5 mM Mn 2+ and 50 mM veratryl alcohol were used as inducers of lignin peroxidase (LiP) to improve the efficiency of enzymatic hydrolysis. When N. crassa 14-8 was inoculated 1 day later than P. chrysosporium, the total inoculum size was 10%, and the optimum ratio of N. crassa 14-8 to P. chrysosporium was 1:2, the maximum TP yield (8.89%) was obtained, with 123.37% of its increase rate. This work proposed a technique with potential application in large-scale feedstuff protein conversion.
Liao, C-H
2008-02-01
To investigate the growth of salmonellae on sprouting alfalfa seeds as affected by the inoculum size, microbial load and Pseudomonas fluorescens 2-79. Alfalfa seeds pre-inoculated with < or =10(1)-10(3) CFU g(-1) of salmonellae and with or without Ps. fluorescens 2-79 were sprouted in glass jars and the population of salmonellae were determined daily for up to 6 days. The population of salmonellae on germinating seeds reached the maximum 2-3 days after sprouting when total bacterial count reached the maximum (10(9) CFU g(-1)). The population of salmonellae on sprouting seeds not treated with Ps. fluorescens 2-79 showed a net increase of 3-4 log units. However, the population of salmonellae on alfalfa seeds treated with Ps. fluorescens 2-79 showed a net increase of only 1-2 log units. Disinfection of seeds with calcium hypochlorite enhanced the growth of salmonellae. Treatment of seeds with Ps. fluorescens 2-79 reduced the growth of salmonellae by 2-3 log units. The potential of Ps. fluorescens 2-79 as a biological agent for use in control of salmonellae on sprouting seeds was demonstrated and warrants further investigation.
Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing
2007-05-01
The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of alpha-galactosidase production in SSF were 60% initial moisture of medium, 28 degrees C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0 approximately 6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum alpha-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation.
Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing
2007-01-01
The work is intended to achieve optimum culture conditions of α-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of α-galactosidase production in SSF were 60% initial moisture of medium, 28 °C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0~6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum α-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation. PMID:17542067
Schmalreck, Arno; Willinger, Birgit; Czaika, Viktor; Fegeler, Wolfgang; Becker, Karsten; Blum, Gerhard; Lass-Flörl, Cornelia
2012-12-01
In vitro susceptibility testing of clinically important fungi becomes more and more essential due to the rising number of fungal infections in patients with impaired immune system. Existing standardized microbroth dilution methods for in vitro testing of molds (CLSI, EUCAST) are not intended for routine testing. These methods are very time-consuming and dependent on sporulating of hyphomycetes. In this multicentre study, a new (independent of sporulation) inoculum preparation method (containing a mixture of vegetative cells, hyphae, and conidia) was evaluated. Minimal inhibitory concentrations (MIC) of amphotericin B, posaconazole, and voriconazole of 180 molds were determined with two different culture media (YST and RPMI 1640) according to the DIN (Deutsches Institut für Normung) microdilution assay. 24 and 48 h MIC of quality control strains, tested per each test run, prepared with the new inoculum method were in the range of DIN. YST and RPMI 1640 media showed similar MIC distributions for all molds tested. MIC readings at 48 versus 24 h yield 1 log(2) higher MIC values and more than 90 % of the MICs read at 24 and 48 h were within ± 2 log(2) dilution. MIC end point reading (log(2 MIC-RPMI 1640)-log(2 MIC-YST)) of both media demonstrated a tendency to slightly lower MICs with RPMI 1640 medium. This study reports the results of a new, time-saving, and easy-to-perform method for inoculum preparation for routine susceptibility testing that can be applied for all types of spore-/non-spore and hyphae-forming fungi.
Plumridge, Andrew; Hesse, Stephan J A; Watson, Adrian J; Lowe, Kenneth C; Stratford, Malcolm; Archer, David B
2004-06-01
The growth of the filamentous fungus Aspergillus niger, a common food spoilage organism, is inhibited by the weak acid preservative sorbic acid (trans-trans-2,4-hexadienoic acid). Conidia inoculated at 10(5)/ml of medium showed a sorbic acid MIC of 4.5 mM at pH 4.0, whereas the MIC for the amount of mycelia at 24 h developed from the same spore inoculum was threefold lower. The MIC for conidia and, to a lesser extent, mycelia was shown to be dependent on the inoculum size. A. niger is capable of degrading sorbic acid, and this ability has consequences for food preservation strategies. The mechanism of action of sorbic acid was investigated using (31)P nuclear magnetic resonance (NMR) spectroscopy. We show that a rapid decline in cytosolic pH (pH(cyt)) by more than 1 pH unit and a depression of vacuolar pH (pH(vac)) in A. niger occurs in the presence of sorbic acid. The pH gradient over the vacuole completely collapsed as a result of the decline in pH(cyt). NMR spectra also revealed that sorbic acid (3.0 mM at pH 4.0) caused intracellular ATP pools and levels of sugar-phosphomonoesters and -phosphodiesters of A. niger mycelia to decrease dramatically, and they did not recover. The disruption of pH homeostasis by sorbic acid at concentrations below the MIC could account for the delay in spore germination and retardation of the onset of subsequent mycelial growth.
Sources of inoculum for Phytophthora ramorum in a redwood forest.
Davidson, J M; Patterson, H A; Rizzo, D M
2008-08-01
ABSTRACT Sources of inoculum were investigated for dominant hosts of Phytophthora ramorum in a redwood forest. Infected trunks, twigs, and/or leaves of bay laurel (Umbellularia californica), tanoak (Lithocarpus densiflorus), and redwood (Sequoia sempervirens) were tested in the laboratory for sporangia production. Sporangia occurred on all plant tissues with the highest percentage on bay laurel leaves and tanoak twigs. To further compare these two species, field measurements of inoculum production and infection were conducted during the rainy seasons of 2003-04 and 2004-05. Inoculum levels in throughfall rainwater and from individual infections were significantly higher for bay laurel as opposed to tanoak for both seasons. Both measurements of inoculum production from bay laurel were significantly greater during 2004-05 when rainfall extended longer into the spring, while inoculum quantities for tanoak were not significantly different between the 2 years. Tanoak twigs were more likely to be infected than bay laurel leaves in 2003-04, and equally likely to be infected in 2004-05. These results indicate that the majority of P. ramorum inoculum in redwood forest is produced from infections on bay laurel leaves. Years with extended rains pose an elevated risk for tanoak because inoculum levels are higher and infectious periods continue into late spring.
Rúa, Megan A; Umbanhowar, James; Hu, Shuijin; Burkey, Kent O; Mitchell, Charles E
2013-07-01
Plants form ubiquitous associations with diverse microbes. These interactions range from parasitism to mutualism, depending partly on resource supplies that are being altered by global change. While many studies have considered the separate effects of pathogens and mutualists on their hosts, few studies have investigated interactions among microbial mutualists and pathogens in the context of global change. Using two wild grass species as model hosts, we grew individual plants under ambient or elevated CO(2), and ambient or increased soil phosphorus (P) supply. Additionally, individuals were grown with or without arbuscular mycorrhizal inoculum, and after 2 wk, plants were inoculated or mock-inoculated with a phloem-restricted virus. Under elevated CO(2), mycorrhizal association increased the titer of virus infections, and virus infection reciprocally increased the colonization of roots by mycorrhizal fungi. Additionally, virus infection decreased plant allocation to root biomass, increased leaf P, and modulated effects of CO(2) and P addition on mycorrhizal root colonization. These results indicate that plant mutualists and pathogens can alter each other's success, and predict that these interactions will respond to increased resource availability and elevated CO(2). Together, our findings highlight the importance of interactions among multiple microorganisms for plant performance under global change. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
On the context-dependent scaling of consumer feeding rates.
Barrios-O'Neill, Daniel; Kelly, Ruth; Dick, Jaimie T A; Ricciardi, Anthony; MacIsaac, Hugh J; Emmerson, Mark C
2016-06-01
The stability of consumer-resource systems can depend on the form of feeding interactions (i.e. functional responses). Size-based models predict interactions - and thus stability - based on consumer-resource size ratios. However, little is known about how interaction contexts (e.g. simple or complex habitats) might alter scaling relationships. Addressing this, we experimentally measured interactions between a large size range of aquatic predators (4-6400 mg over 1347 feeding trials) and an invasive prey that transitions among habitats: from the water column (3D interactions) to simple and complex benthic substrates (2D interactions). Simple and complex substrates mediated successive reductions in capture rates - particularly around the unimodal optimum - and promoted prey population stability in model simulations. Many real consumer-resource systems transition between 2D and 3D interactions, and along complexity gradients. Thus, Context-Dependent Scaling (CDS) of feeding interactions could represent an unrecognised aspect of food webs, and quantifying the extent of CDS might enhance predictive ecology. © The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Afzali, R.; Alizadeh, A.
2017-12-01
The behavior of non-interacting and interacting polarization under influence of fluctuations of the superconducting gap with D-wave symmetry and under consideration of the gap dependence on nano- grain size is obtained in terms of the frequency, temperature and the size at zero and finite temperatures for rectangular cuprate nano-superconducting grains. By using Eliashberg equations and applying the relations of the fermionic dispersion for the hole-doped and electron-doped cuprates, we numerically compute the real part of size-dependent polarization for both types of cuprates. We show that the peak of real part of polarization moves to higher frequency by including the additional fluctuating part of gap (or the nano-size effect). Also, we obtain the temperatures for different frequencies, in which the effect of gap fluctuations fades. In the case of size-dependent gap, there is a critical frequency; for frequencies lower (higher) than the critical frequency, the nano-effect weakens (improves) the superconducting state. Moreover, it is concluded that the real part of polarization for hole- doped cuprates in terms of the grain size has more significant amount in comparison with electron-doped ones.
Wang, Dong-Wei; Peng, Xiao-Fang; Xie, Hui; Xu, Chun-Ling; Cheng, De-Qiang; Li, Jun-Yi; Wu, Wen-Jia; Wang, Ke
2016-12-02
The rice white tip nematode (RWTN), Aphelenchoides besseyi and the chrysanthemum foliar nematode (CFN), Aphelenchoides ritzemabosi are migratory plant parasitic nematodes that infect the aboveground parts of plants. In this research, Arabidopsis thaliana was infected by RWTN and CFN under indoor aseptic cultivation, and the nematodes caused recognizable symptoms in the leaves. Furthermore, RWTN and CFN completed their life cycles and proliferated. Therefore, A. thaliana was identified as a new host of RWTN and CFN. The optimum inoculum concentration for RWTN and CFN was 100 nematodes/plantlet, and the optimum inoculum times were 21 and 24 days, respectively. For different RWTN populations, the pathogenicity and reproduction rates were different in the A. thaliana Col-0 ecotype and were positively correlated. The optimum A. thaliana ecotypes were Col-0 and WS, which were the most susceptible to RWTN and CFN, respectively. Additionally, RWTN was ectoparasitic and CFN was ecto- and endoparasitic in A. thaliana. The RWTN and CFN migrated from inoculated leaves to the entire plantlet, and the number of nematodes in different parts of A. thaliana was not correlated with distance from the inoculum point. This is a detailed study of the behavior and infection process of foliar nematodes on A. thaliana.
Dudhagara, Pravin; Tank, Shantilal
2018-01-01
The thermophilic bacterium, Bacillus licheniformis U1 is used for the optimization of bacterial growth (R1), laccase production (R2) and synthetic disperse blue DBR textile dye decolorization (R3) in the present study. Preliminary optimization has been performed by one variable at time (OVAT) approach using four media components viz., dye concentration, copper sulphate concentration, pH, and inoculum size. Based on OVAT result further statistical optimization of R1, R2 and R3 performed by Box–Behnken design (BBD) using response surface methodology (RSM) in R software with R Commander package. The total 29 experimental runs conducted in the experimental design study towards the construction of a quadratic model. The model indicated that dye concentration 110 ppm, copper sulphate 0.2 mM, pH 7.5 and inoculum size 6% v/v were found to be optimum to maximize the laccase production and bacterial growth. Whereas, maximum dye decolorization achieved in media containing dye concentration 110 ppm, copper sulphate 0.6 mM, pH 6 and inoculum size 6% v/v. R package predicted R2 of R1, R2 and R3 were 0.9917, 0.9831 and 0.9703 respectively; likened to Design-Expert (Stat-Ease) (DOE) predicted R2 of R1, R2, and R3 were 0.9893, 0.9822 and 0.8442 respectively. The values obtained by R software were more precise, reliable and reproducible, compared to the DOE model. The laccase production was 1.80 fold increased, and 2.24 fold enhancement in dye decolorization was achieved using optimized medium than initial experiments. Moreover, the laccase-treated sample demonstrated the less cytotoxic effect on L132 and MCF-7 cell lines compared to untreated sample using MTT assay. Higher cell viability and lower cytotoxicity observed in a laccase-treated sample suggest the impending application of bacterial laccase in the reduction of toxicity of dye to design rapid biodegradation process. PMID:29718934
William R. Jacobi; Betsy A. Goodrich; Holly S. J. Kearns; Kelly S. Burns; Brian W. Geils
2011-01-01
White pine blister rust occurs when there are compatible interactions between susceptible hosts (white pines and Ribes spp.), inoculum (Cronartium ribicola spores), and local weather conditions during infection. The five spore stages of the white pine blister rust (WPBR) fungus have specific temperature and moisture conditions necessary for production, germination, and...
Aaron D. Stottlemyer; G. Geoff Wang; Thomas A. Waldrop; Christina E. Wells; Mac A. Callaham
2013-01-01
Heavy fuel loads were created by southern pine beetle (Dendroctonus frontalis Ehrh.) outbreak throughout the southeastern Piedmont during the early 2000s. Prescribed burning and mechanical mulching (mastication) were used to reduce fuel loading, but many ecological impacts are unknown. Successful forest regeneration depends on ectomycorrhizal (ECM)...
Srinivasan, R; Alvarez, J M
2008-09-01
Hairy nightshade, Solanum sarrachoides, is a solanaceous weed found abundantly in Pacific Northwest potato ecosystems. It serves as a reservoir for one of the important potato viruses, Potato leafroll virus (PLRV) (Luteoviridae: Polerovirus), and its most important vector, the green peach aphid, Myzus persicae (Homoptera: Aphididae). Laboratory research indicated an increased green peach aphid settling and performance on S. sarrachoides than on potato. It also revealed that green peach aphids transmitted PLRV more efficiently from S. sarrachoides to potato than from potato to potato. To test the efficiency of S. sarrachoides as an inoculum source in the field, a two season (2004 and 2005) trial was conducted at Kimberly, Idaho. Two inoculum sources, PLRV-infected potato and PLRV-infected S. sarrachoides, were compared in this trial. Green peach aphid density and temporal and spatial PLRV spread were monitored at weekly intervals. Higher densities of green peach aphids were observed on plots with S. sarrachoides and inoculum sources (PLRV-infected S. sarrachoides and potato) than on plots without S. sarrachoides and inoculum sources. PLRV infection in plots with PLRV-infected S. sarrachoides was similar to or slightly higher than in plots with PLRV-infected potato as an inoculum source. Temporal and spatial PLRV spread was similar in plots with either inoculum source. Thus, S. sarrachoides is as efficient as or a better PLRV inoculum source than potato.
NASA Astrophysics Data System (ADS)
Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.
2016-11-01
Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow.
Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.
2016-01-01
Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow. PMID:27830697
Tagaya, Motohiro; Ogawa, Makoto
2008-12-07
The states of tris(8-quinolinato)aluminum(III) (Alq3) adsorbed in mesoporous silicas with different pore sizes (2.5, 3.1 and 5.0 nm) were investigated. Alq3 was successfully occluded into the mesoporous silicas from solution and the adsorbed amount of Alq3 per BET surface area was effectively controlled by changing the added amount Alq3 to the solution. The state of Alq3 in the mesopore varied depending on the pore size as well as the adsorbed amount of Alq3 as revealed by variation of the photoluminescence spectra. The luminescence of the adsorbed Alq3 was found to be temperature-dependent, indicating the mobility of the adsorbed Alq3 to temperature variations. The temperature-dependence also depended on the pore size. The guest-guest interactions between Alq3 molecules as well as the host-guest interactions between Alq3 and the mesopore were controlled by the pore size.
Fate of Listeria spp. on parsley leaves grown in laboratory and field cultures.
Dreux, N; Albagnac, C; Carlin, F; Morris, C E; Nguyen-The, C
2007-11-01
To investigate the population dynamics of Listeria monocytogenes and Listeria innocua on the aerial surfaces of parsley. Under 100% relative humidity (RH) in laboratory and regardless of the inoculum tested (10(3)-10(8) CFU per leaf), counts of L. monocytogenes EGDe, LO28, LmP60 and L. innocua CIP 80-12 tended towards approx. 10(5) CFU per leaf. Under low RH, Listeria spp. populations declined regardless to the inoculum size (10(4)-10(8) CFU per leaf). L. innocua CIP 80-12 survived slightly better than L. monocytogenes in the laboratory and was used in field cultures. Under field cultures, counts of L. innocua decreased more rapidly than in the laboratory, representing a decrease of 9 log(10) in 2 days in field conditions compared to a decrease of 4.5 log(10) in 8 days in the laboratory. Counts of L. innocua on tunnel parsley cultures were always higher (at least by 100 times) than those on unprotected parsley culture. Even with a high inoculum and under protected conditions (i.e. plastic tunnels), population of L. monocytogenes on the surface of parsley on the field would decrease by several log(10) scales within 2 days. Direct contamination of aerial surfaces of parsley with L. monocytogenes (i.e. through contaminated irrigation water) will not lead to contaminated produce unless it occurs very shortly before harvest.
Muñoz-Palazon, Barbara; Pesciaroli, Chiara; Rodriguez-Sanchez, Alejandro; Gonzalez-Lopez, Jesús; Gonzalez-Martinez, Alejandro
2018-08-01
Three aerobic granular sequencing batch reactors were inoculated using different inocula from Finland, Spain and a mix of both in order to investigate the effect over the degradation performance and the microbial community structure. The Finnish inoculum achieved a faster granulation and a higher depollution performance within the first two month of operation. However, after 90 days of operation, similar physico-chemical values were observed. On the other hand, the Real-time PCR showed that Archaea diminished from inoculum to granular biomass, while Bacteria and Fungi numbers remained stable. All granular biomass massive parallel sequencing studies were similar regardless of the inocula from which they formed, as confirmed by singular value decomposition principal coordinates analysis, expected effect size of OTUs, and β-diversity analyses. Thermoproteaceae, Meganema and a Trischosporonaceae members were the dominant phylotypes for the three domains studied. The analysis of oligotype distribution demonstrated that a fungal oligotype was ubiquitous. The dominant OTUs of Bacteria were correlated with bioreactors performance. The results obtained determined that the microbial community structure of aerobic granular sludge was similar regardless of their inocula, showing that the granulation of biomass is related to several phylotypes. This will be of future importance for the implementation of aerobic granular sludge to full-scale systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamdiyati, Yanti; Kusnadi, Yuliani, Lia Amelia
2016-02-01
The used of synthetic dyes have various negative effects on human health. Roomates pigment produced by Monascus purpureus mold can be used as an alternative natural food coloring. The research on the effect of inoculum concentration's M. purpureus to pigment production on the jackfruit seed flour has been done. The objective of research to is to investigate the effect of inoculum concentration's M. purpureus to the production of red, yellow and orange pigment on the jackfruit seed flour. The concentrations used were 0%, 5%, 10%, and 15% (v/w). The result of the data analysed using One-Way ANOVA showed that the inoculum concentration affected the production of red pigment M. purpureus, as well as the data analysis using the Kruskal-Wallis showed that inoculum concentration has influence on the production of yellow and orange pigments. Inoculum concentration of 15% is the optimum concentration for the production of red, yellow and orange pigments with 0:10, 0:50 and 0:20 absorbance units per gram of sample respectively. Based on the results of the research, it can be concluded that inoculum concentration of M. purpureus influenced the production of red, yellow and orange pigments.
Inoculum selection influences the biochemical methane potential of agro-industrial substrates
De Vrieze, Jo; Raport, Linde; Willems, Bernard; Verbrugge, Silke; Volcke, Eveline; Meers, Erik; Angenent, Largus T; Boon, Nico
2015-01-01
Obtaining a reliable estimation of the methane potential of organic waste streams in anaerobic digestion, for which a biochemical methane potential (BMP) test is often used, is of high importance. Standardization of this BMP test is required to ensure inter-laboratory repeatability and accuracy of the BMP results. Therefore, guidelines were set out; yet, these do not provide sufficient information concerning origin of and the microbial community in the test inoculum. Here, the specific contribution of the methanogenic community on the BMP test results was evaluated. The biomethane potential of four different substrates (molasses, bio-refinery waste, liquid manure and high-rate activated sludge) was determined by means of four different inocula from full-scale anaerobic digestion plants. A significant effect of the selected inoculum on the BMP result was observed for two out of four substrates. This inoculum effect could be attributed to the abundance of methanogens and a potential inhibiting effect in the inoculum itself, demonstrating the importance of inoculum selection for BMP testing. We recommend the application of granular sludge as an inoculum, because of its higher methanogenic abundance and activity, and protection from bulk solutions, compared with other inocula. PMID:25756301
Culture growth of testate amoebae under different silicon concentrations.
Wanner, Manfred; Seidl-Lampa, Barbara; Höhn, Axel; Puppe, Daniel; Meisterfeld, Ralf; Sommer, Michael
2016-10-01
Testate amoebae with self-secreted siliceous shell platelets ("idiosomes") play an important role in terrestrial silicon (Si) cycles. In this context, Si-dependent culture growth dynamics of idiosomic testate amoebae are of interest. Clonal cultures of idiosomic testate amoebae were analyzed under three different Si concentrations: low (50μmolL -1 ), moderate/site-specific (150μmolL -1 ) and high Si supply (500μmolL -1 ). Food (Saccharomyces cerevisiae) was provided in surplus. (i) Shell size of four different clones of idiosomic testate amoebae either decreased (Trinema galeata, Euglypha filifera cf.), increased (E. rotunda cf.), or did not change (E. rotunda) under the lowest Si concentration (50μmolSiL -1 ). (ii) Culture growth of idiosomic Euglypha rotunda was dependent on Si concentration. The more Si available in the culture medium, the earlier the entry into exponential growth phase. (iii) Culture growth of idiosomic Euglypha rotunda was dependent on origin of inoculum. Amoebae previously cultured under a moderate Si concentration revealed highest sustainability in consecutive cultures. Amoebae derived from cultures with high Si concentrations showed rapid culture growth which finished early in consecutive cultures. (iv) Si (diluted in the culture medium) was absorbed by amoebae and fixed in the amoeba shells resulting in decreased Si concentrations. Copyright © 2016 Elsevier GmbH. All rights reserved.
Koch, Konrad; Lippert, Thomas; Drewes, Jörg E
2017-11-01
The impact of the inoculum's origin on the methane yield in Biochemical Methane Potential (BMP) tests was investigated. The three most commonly applied inocula were chosen, originating from (i) a digester of a wastewater treatment plant, (ii) an agricultural biogas plant treating manure and energy crops, and (iii) a biowaste treatment plant. The performance of each inoculum was tested with four different substrates, namely sewage sludge, dried whole crop maize, food waste, and microcrystalline cellulose as a typical reference material. The results revealed that the choice of inoculum had no significant impact on the specific methane yield of the tested substrates except for cellulose. Still, the specific methane production rate was significantly influenced by the choice of the inoculum especially for sewage sludge, but also for food waste and cellulose, whereas it became clear that an inoculum adapted to a substrate is beneficial for a speedy digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Zhihong; Chambers, Heather; DiCaprio, Erin; Gao, Gary; Li, Jianrong
2018-02-01
Human norovirus (NoV) is a leading cause of fresh produce associated outbreaks. Previous research indicates that the roots of growing leafy greens and berries internalize human NoV. However the effect of plant type and inoculum level on internalization rates has not been directly compared. In this study we compared the internalization and dissemination rates of human NoV and its surrogate, Tulane virus (TV) in green onion, radishes, and Romaine lettuce. We also evaluated the effect inoculum level and plant growth matrix on the rate of viral internalization. In the hydroponic growth system, we detected internalization and dissemination of human NoV RNA in green onions. In hydroponically growing green onions inoculated with high titer TV, we found higher rates of internalization and dissemination compared to green onions inoculated with low titer TV. In soil growth systems, no infectious TV was detected in either green onion or radishes. However, in Romaine lettuce plants grown in soil approximately 4 log 10 PFU/g was recovered from all tissues on day 14 p.i. Overall, we found that the type of plant, growth matrix, and the inoculum level influences the internalization and dissemination of human NoV and TV. Copyright © 2017 Elsevier Ltd. All rights reserved.
Benneouala, Mourad; Bareha, Younès; Mengelle, Evrard; Bounouba, Mansour; Sperandio, Mathieu; Bessiere, Yolaine; Paul, Etienne
2017-11-15
Up to half of the organic fraction of an urban wastewater is made up of particulate settleable solids (PSS). In activated sludge process (AS) this material is rapidly adsorbed on to microbial flocs but is only slowly and partially degraded. To better understand and predict the degradation kinetics observed, a determination of the proportion of hydrolytic bacteria is required. As inoculum is usually added in the biodegradation tests, a comparison is required between the roles of bacteria introduced with the inoculum and those attached to the substrate. In this work, respirometric batch experiments were performed on PSS collected from upstream or downstream of the sewers of Toulouse city. Toilet paper (TP) and cellulose, two model particulate substrates, were also investigated. To understand the role of the active biomass in hydrolysis, increasing concentrations of AS were added to a certain amount of PSS or TP. No correlation was observed between the concentration of AS and the rate and duration of degradation of the particulate matter. Simulations performed after calibration of the model ASM-1 allowed the fraction of hydrolytic bacteria to be estimated in both the substrate and the AS-inoculum. Only a very small fraction of the bacteria of AS and of the substrate samples were found to be efficient for hydrolysis. Hydrolysis was mainly initiated by a small proportion of the microorganisms, and especially by cells already attached to PSSs. Moreover, the fraction of bacteria able to hydrolyse large particles present in an inoculum of AS depended on the initial contamination of the surface of the particles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huss, Magnus; Gårdmark, Anna; Van Leeuwen, Anieke; de Roos, André M
2012-04-01
Patterns of coexistence among competing species exhibiting size- and food-dependent growth remain largely unexplored. Here we studied mechanisms behind coexistence and shifts in competitive dominance in a size-structured fish guild, representing sprat and herring stocks in the Baltic Sea, using a physiologically structured model of competing populations. The influence of degree of resource overlap and the possibility of undergoing ontogenetic diet shifts were studied as functions of zooplankton and zoobenthos productivity. By imposing different size-dependent mortalities, we could study the outcome of competition under contrasting environmental regimes representing poor and favorable growth conditions. We found that the identity of the dominant species shifted between low and high productivity. Adding a herring-exclusive benthos resource only provided a competitive advantage over sprat when size-dependent mortality was high enough to allow for rapid growth in the zooplankton niche. Hence, the importance of a bottom-up effect of varying productivity was dependent on a strong top-down effect. Although herring could depress shared resources to lower levels than could sprat and also could access an exclusive resource, the smaller size at maturation of sprat allowed it to coexist with herring and, in some cases, exclude it. Our model system, characterized by interactions among size cohorts, allowed for consumer coexistence even at full resource overlap at intermediate productivities when size-dependent mortality was low. Observed shifts in community patterns were crucially dependent on the explicit consideration of size- and food-dependent growth. Accordingly, we argue that accounting for food-dependent growth and size-dependent interactions is necessary to better predict changes in community structure and dynamics following changes in major ecosystem drivers such as resource productivity and mortality, which are fundamental for our ability to manage exploitation of living resources in, e.g., fisheries.
Hakalehto, Elias; Heitto, Anneli; Heitto, Lauri
2013-09-01
Laboratory strains of coliforms Escherichia coli and Klebsiella mobilis were used to artificially contaminate water samples in two different cultivation and detection systems, without and with bubble flow. Samples were collected with an automated system (ASCS). The positive coliform signal caused the color change into yellow (at 550-570nm). This signal could also be transmitted on-line to cell phones. E. coli containing samples emitted UV fluorescence at 480-560nm when activated by UV light. If cultivation was started with inocula varying from 10,000 to 1cfu/ml, the positive detection was obtained between 2 and 18h, respectively, in Colilert medium using Coline PMEU device without gas bubbling. Accordingly, a single K. mobilis cell produced detectable growth in 18h. Various clinical E. coli strains were compared to each other with equal inoculum sizes, and they showed slight variations in the initiation and speed of growth. The gas bubble flow in PMEU Spectrion promoted the mixing and interaction of bacteria and indicator media and speeded the onset of growth. Carbon dioxide also accelerated bacterial growth. In the presence of vancomycin, the onset of E. coli culture growth was speeded up by the volatile outlet flow from previous cultures. In the last cultivation syringe in a series of five, the lag phase disappeared and the growth of the inoculum continued without major interruption. the stimulation of the cultures by the gas flow turned out to be a useful means for improving the detection of indicator bacteria. It could also be used in combination with antibiotic selection in the broth medium. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Highly efficient decolorization of Malachite Green by a novel Micrococcus sp. strain BD15.
Du, Lin-Na; Zhao, Ming; Li, Gang; Zhao, Xiao-Ping; Zhao, Yu-Hua
2011-08-01
Malachite Green (MG) is used for a variety of applications but is also known to be carcinogenic and mutagenic. In this study, a novel Micrococcus sp. (strain BD15) was observed to efficiently decolorize MG. The purposes of this study were to explore the optimal conditions for decolorization and to evaluate the potential use of this strain for MG decolorization. Optical microscope and UV-visible analyses were carried out to determine whether the decolorization was due to biosorption or biodegradation. A Plackett-Burman design was employed to investigate the effect of various parameters on decolorization, and response surface methodology was then used to explore the optimal decolorization conditions. Kinetics analysis and antimicrobial activity tests were also performed. The results indicated that the decolorization by the strain was mainly due to biodegradation. Concentrations of MG, urea, and yeast extract and inoculum size had significantly positive effects on MG decolorization, while concentrations of CuCl(2) and MgCl(2), and temperature had significantly negative effects. The interaction between different parameters could significantly affect decolorization, and the optimal conditions for decolorization were 1.0 g/L urea, 0.9 g/L yeast extract, 100 mg/L MG, 0.1 g/L inoculums (dry weight), and incubation at 25.2°C. Under the optimal conditions, 96.9% of MG was removed by the strain within 1 h, which represents highly efficient microbial decolorization. Moreover, the kinetic data for decolorization fit a second-order model well, and the strain showed a good MG detoxification capability. Based on the results of this study, we propose Micrococcus sp. strain BD15 as an excellent candidate strain for MG removal from wastewater.
Towards a universal microbial inoculum for dissolved organic carbon degradation experiments
NASA Astrophysics Data System (ADS)
Pastor, Ada; Catalán, Núria; Gutiérrez, Carmen; Nagar, Nupur; Casas-Ruiz, Joan P.; Obrador, Biel; von Schiller, Daniel; Sabater, Sergi; Petrovic, Mira; Borrego, Carles M.; Marcé, Rafael
2017-04-01
Dissolved organic carbon (DOC) is the largest biologically available pool of organic carbon in aquatic ecosystems and its degradation along the land-to-ocean continuum has implications for carbon cycling from local to global scales. DOC biodegradability is usually assessed by incubating filtered water inoculated with native microbial assemblages in the laboratory. However, the use of a native inoculum from several freshwaters, without having a microbial-tailored design, hampers our ability to tease apart the relative contribution of the factors driving DOC degradation from the effects of local microbial communities. The use of a standard microbial inoculum would allow researchers to disentangle the drivers of DOC degradation from the metabolic capabilities of microbial communities operating in situ. With this purpose, we designed a bacterial inoculum to be used in experiments of DOC degradation in freshwater habitats. The inoculum is composed of six bacterial strains that easily grow under laboratory conditions, possess a versatile metabolism and are able to grow under both aerobic and anaerobic conditions. The mixed inoculum showed higher DOC degradation rates than those from their isolated bacterial components and the consumption of organic substrates was consistently replicated. Moreover, DOC degradation rates obtained using the designed inoculum were responsive across a wide range of natural water types differing in DOC concentration and composition. Overall, our results show the potential of the designed inoculum as a tool to discriminate between the effects of environmental drivers and intrinsic properties of DOC on degradation dynamics.
Optimization of the Alkaline Pretreatment of Rice Straw for Enhanced Methane Yield
Song, Zilin; Yang, Gaihe; Han, Xinhui; Feng, Yongzhong; Ren, Guangxin
2013-01-01
The lime pretreatment process for rice straw was optimized to enhance the biodegradation performance and increase biogas yield. The optimization was implemented using response surface methodology (RSM) and Box-Behnken experimental design. The effects of biodegradation, as well as the interactive effects of Ca(OH)2 concentration, pretreatment time, and inoculum amount on biogas improvement, were investigated. Rice straw compounds, such as lignin, cellulose, and hemicellulose, were significantly degraded with increasing Ca(OH)2 concentration. The optimal conditions for the use of pretreated rice straw in anaerobic digestion were 9.81% Ca(OH)2 (w/w TS), 5.89 d treatment time, and 45.12% inoculum content, which resulted in a methane yield of 225.3 mL/g VS. A determination coefficient (R 2) of 96% was obtained, indicating that the model used to predict the anabolic digestion process shows a favorable fit with the experimental parameters. PMID:23509824
A meta-analysis of the published literature on the effectiveness of antimicrobial soaps.
Montville, Rebecca; Schaffner, Donald W
2011-11-01
The goal of this research was to conduct a systematic quantitative analysis of the existing data in the literature in order to determine if there is a difference between antimicrobial and nonantimicrobial soaps and to identify the methodological factors that might affect this difference. Data on hand washing efficacy and experimental conditions (sample size, wash duration, soap quantity, challenge organism, inoculum size, and neutralization method) from published studies were compiled and transferred to a relational database. A total of 25 publications, containing 374 observations, met the study selection criteria. The majority of the studies included fewer than 15 observations with each treatment and included a direct comparison between nonantimicrobial soap and antimicrobial soap. Although differences in efficacy between antimicrobial and nonantimicrobial soap were small (∼0.5-log CFU reduction difference), antimicrobial soap produced consistently statistically significantly greater reductions. This difference was true for any of the antimicrobial compounds investigated where n was >20 (chlorhexidine gluconate, iodophor, triclosan, or povidone). Average log reductions were statistically significantly greater (∼2 log CFU) when either gram-positive or gram-negative transient organisms were deliberately added to hands compared with experiments done with resident hand flora (∼0.5 log CFU). Our findings support the importance of using a high initial inoculum on the hands, well above the detection limit. The inherent variability in hand washing seen in the published literature underscores the importance of using a sufficiently large sample size to detect differences when they occur.
Ramírez, Raúl; Bakke, Tor A; Harris, Philip D
2015-07-25
Gyrodactylus salaris is a directly transmitted ectoparasite that reproduces in situ on its fish host. Wild Norwegian (East Atlantic) salmon stocks are thought to be especially susceptible to the parasite due to lack of co-adaptation, contrary to Baltic salmon stocks. This study i) identifies whether time- and density-dependent mechanisms in gyrodactylid population growth exist in G. salaris-Atlantic salmon interactions and ii) based on differences between Norwegian and Baltic stocks, determines whether the 'Atlantic susceptible, Baltic resistant' paradigm holds as an example of local adaptation. A total of 18 datasets of G. salaris population growth on individually isolated Atlantic salmon (12 different stocks) infected with three parasite strains were re-analysed using a Bayesian approach. Datasets included over 2000 observations of 388 individual fish. The best fitting model of population growth was time-limited; parasite population growth rate declined consistently from the beginning of infection. We found no evidence of exponential population growth in any dataset. In some stocks, a density dependence in the size of the initial inoculum limited the maximum rate of parasite population growth. There is no evidence to support the hypothesis that all Norwegian and Scottish Atlantic salmon stocks are equally susceptible to G. salaris, while Baltic stocks control and limit infections due to co-evolution. Northern and Western Norwegian as well as the Scottish Shin stocks, support higher initial parasite population growth rates than Baltic, South-eastern Norwegian, or the Scottish Conon stocks, and several Norwegian stocks tested (Akerselva, Altaelva, Lierelva, Numedalslågen), and the Scottish stocks (i.e. Conon, Shin), were able to limit infections after 40-50 days. No significant differences in performance of the three parasite strains (Batnfjordselva, Figga, and Lierelva), or the two parasite mitochondrial haplotypes (A and F) were observed. Our study shows a spectrum of growth rates, with some fish of the South-eastern Norwegian stocks sustaining parasite population growth rates overlapping those seen on Baltic Neva and Indalsälv stocks. This observation is inconsistent with the 'Baltic-resistant, Atlantic-susceptible' hypothesis, but suggests heterogeneity, perhaps linked to other host resistance genes driven by selection for local disease syndromes.
Potumarthi, Ravichandra; Subhakar, Ch; Pavani, A; Jetty, Annapurna
2008-04-01
Calcium-alginate immobilization method for the production of alkaline protease by Bacillus licheniformis NCIM-2042 was optimized statistically. Four variables, such as sodium-alginate concentration, calcium chloride concentration, inoculum size and agitation speed were optimized by 2(4) full factorial central composite design and subsequent analysis and model validation by a second-order regression equation. Eleven carbon, 11 organic nitrogen and seven inorganic nitrogen sources were screened by two-level Plackett-Burman design for maximum alkaline protease production by using optimized immobilized conditions. The levels of four variables, such as Na-alginate 2.78%; CaCl(2), 2.15%; inoculum size, 8.10% and agitation, 139 rpm were found to be optimum for maximal production of protease. Glucose, soybean meal and ammonium sulfate were resulted in maximum protease production at 644 U/ml, 720 U/ml, and 806 U/ml when screened for carbon, organic nitrogen and inorganic nitrogen sources, respectively, using optimized immobilization conditions. Repeated fed batch mode of operation, using optimized immobilized conditions, resulted in continuous operation for 12 cycles without disintegration of beads. Cross-sectional scanning electron microscope images have shown the growth pattern of B. licheniformis in Ca-alginate immobilized beads.
Ogunremi, Omotade R; Agrawal, Renu; Sanni, Abiodun I
2015-11-01
Probiotic strains contribute to the functionality of foods during fermentation. In this present work, cereal-mix was fermented with probiotic Pichia kudriavzevii OG32. Selected fermentation parameters and functional properties of the product were determined. The growth of Pichia kudriavzevii OG32 was supported by the cereal-mix containing 1% salt and 0.2% red chili powder to counts of between 7.46 and 8.22 Log10 cfu/mL within 24 h. Pichia kudriavzevii OG32 increased the viscosity of cereal-mix with the highest inoculum size (1.84x105cfu/ml) giving the highest viscosity of 1793.6 mPa.S. An inoculum size of 1.98 × 10(4) cfu/mL gave the most acceptable product based on the sensory evaluation by the panelist. Forty volatile compounds were identified in the fermented product, while acids (32.21%) and esters (32.37%) accounted for the largest proportions. The cereal-based fermented product scavenged DPPH from 200 μmol/L methanolic solution by 55.71%. Probiotic yeast improved the sensory and some functional properties of cereal-based substrate during fermentation. This is one of the first reports on the volatile composition of cereal-based functional food produced with probiotic yeast.
NASA Astrophysics Data System (ADS)
Podder, M. S.; Majumder, C. B.
2017-11-01
An artificial neural network (ANN) model was developed to predict the phycoremediation efficiency of Chlorella pyrenoidosa for the removal of both As(III) and As(V) from synthetic wastewater based on 49 data-sets obtained from experimental study and increased the data using CSCF technique. The data were divided into training (60%) validation (20%) and testing (20%) sets. The data collected was used for training a three-layer feed-forward back propagation (BP) learning algorithm having 4-5-1 architecture. The model used tangent sigmoid transfer function at input to hidden layer ( tansing) while a linear transfer function ( purelin) was used at output layer. Comparison between experimental results and model results gave a high correlation coefficient (R allANN 2 equal to 0.99987 for both ions and exhibited that the model was able to predict the phycoremediation of As(III) and As(V) from wastewater. Experimental parameters influencing phycoremediation process like pH, inoculum size, contact time and initial arsenic concentration [either As(III) or As(V)] were investigated. A contact time of 168 h was mainly required for achieving equilibrium at pH 9.0 with an inoculum size of 10% (v/v). At optimum conditions, metal ion uptake enhanced with increasing initial metal ion concentration.
Steve Tjosvold; David Chambers; Gary Chastagner; Marianne Elliott
2013-01-01
Once Phytophthora ramorum is introduced into a nursery on a host, its local spread and establishment is primarily dependent on sporangia and zoospore production. Nursery operators commonly use fungicides to prevent the establishment of Phytophthora âcaused diseases, although current research only supports the use of fungicides...
Effect of seed sludge on characteristics and microbial community of aerobic granular sludge.
Song, Zhiwei; Pan, Yuejun; Zhang, Kun; Ren, Nanqi; Wang, Aijie
2010-01-01
Aerobic granular sludge was cultivated by using different kinds of seed sludge in sequencing batch airlift reactor. The influence of seed sludge on physical and chemical properties of granular sludge was studied; the microbial community structure was probed by using scanning electron microscope and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that seed sludge played an important role on the formation of aerobic granules. Seed sludge taken from beer wastewater treatment plant (inoculum A) was more suitable for cultivating aerobic granules than that of sludge from municipal wastewater treatment plant (inoculum B). Cultivated with inoculum A, large amount of mature granules formed after 35 days operation, its SVI reached 32.75 mL/g, and SOUR of granular sludge was beyond 1.10 mg/(g x min). By contrast, it needed 56 days obtaining mature granules using inoculum B. DGGE profiles indicated that the dominant microbial species in mature granules were 18 and 11 OTU when inoculum A and B were respectively employed as seed sludge. The sequencing results suggested that dominant species in mature granules cultivated by inoculum A were Paracoccus sp., Devosia hwasunensi, Pseudoxanthomonas sp., while the dominant species were Lactococcus raffinolactis and Pseudomonas sp. in granules developed from inoculum B.
NASA Astrophysics Data System (ADS)
Papp, Orsolya; Biro, Borbala; Abod, Eva; Jung, Timea; Tirczka, Imre; Drexler, Dora
2017-04-01
Soil biological functioning and proper agrotechnical management are of key importance in organic agriculture. Beneficial microbial inoculums are used either as plant strengthening products (psp) or also as plant protecting products (ppp). Question is, which type of microbes should be applied to certain soil-plant systems to improve yield or reduce the damage of soil-born plant pathogens? Objective of present study was to compare the effect of inoculums 1 (PPS) with plant growth promoting bacterium strains (PGPR) and inoculums 2 (TPB) with potential biocontrol-agents, including both fungi and bacteria in organic potato production. Field experiment was conducted at the Organic Research Station of the Szent István University (Babatpuszta, Hungary). Growth and quality of potato (Solanum tuberosum var. Demon) was studied in the two microbial treatments and control, in four replicates. The PPS inoculums included Pseudomonas protegens, Ps. jessenii and Strenotrophomonas maltophylia, with plant growth promoting (PGPR) effect. TPB inoculums consisted of Trichoderma hartianum, Pseudomonas putida and Bacillus subtilis strains with main biocontrol effects of fungal and bacterium combination. Strains were incubated for 24 hours at 28 oC in a rotary shaker (140 rpm/min) up till cell-number about 1010 cell.ml-1 in Nutrient broth substrate, and mixed to prepare combined inoculums. Each potato tuber was treated by 10 ml inoculums that was added to 100 ml water respectively with only water at the controls. Yield of potato (10 plants/plot) and tuber quality, i.e. the percentage ratio of scabbiness (Streptomyces scabies), Rhizoctonia solani, and Fusarium sp. infection was estimated. Abundance of total aerob and anaerob heterotrophs, total microscopic fungi, pseudomonads bacteria and some sporeforming microorganisms was assessed by the most probable number (MPN) method in soil samples, collected four times during vegetation. Soil enzyme, dehydrogenase (DH) and fluorescein diacetate (FDA) activity was estimated, beside soil physical and chemical characteristics. Statistics, including binomial logistic regression was used for evaluation (IBM SPSS Statistics 22 software). Aerobic MPN counts were reduced by 0,5 value, anaerobic however were increased by 2 order of magnitude at the end of vegetation period. Both inoculums reduced the fungal counts at 60% of flowering stage, but PPS inoculums improved also the abundance of pseudomonads bacteria in the soil at all sampling stages. Soil dehydrogenase (DH) activity showed a strong seasonal variability, which was about 20-times higher at flowering of potato, more particularly at TPB inoculums. Although yield parameters were only tendentiously improved, the presence of Rhizoctonia solani infected tubers was significantly less likely (by 70,3%) with TPB inoculums combination. We assumed that presence of biocontrol type of Trichoderma fungi in TPB inoculums was the reason for such a significant reduction of Rhizoctonia infection. Necessity of previous monitoring of soil-health, including the microbial status of potential biocontrol strains is concluded. The tuber quality of organic potato may be enhanced by using the inoculums tested in this study. Thematically belongs to Biochar (Piac-13-1-2013-0274) and Biofector (GA 312117) projects.
Induction of potent local cellular immunity with low dose X4 SHIV{sub SF33A} vaginal exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasca, Silvana; Tsai, Lily; Trunova, Nataliya
2007-10-10
Intravaginal inoculation of rhesus macaques with varying doses of the CXCR4 (X4)-tropic SHIV{sub SF33A} isolate revealed a threshold inoculum for establishment of systemic virus infection and a dose dependency in overall viral burden and CD4+ T cell depletion. While exposure to inoculum size of 1000 or greater 50% tissue infectious dose (TCID{sub 50}) resulted in high viremia and precipitous CD4+ T cell loss, occult infection was observed in seven of eight macaques exposed to 500 TCID{sub 50} of the same virus. The latter was characterized by intermittent detection of low level virus with no evidence of seroconversion or CD4+ Tmore » cell decline, but with signs of an ongoing antiviral T cell immune response. Upon vaginal re-challenge with the same limiting dose 11-12 weeks after the first, classic pathogenic X4 SHIV{sub SF33A} infection was established in four of the seven previously exposed seronegative macaques, implying enhanced susceptibility to systemic infection with prior exposure. Pre-existing peripheral SIV gag-specific CD4+ T cells were more readily demonstrable in macaques that became systemically infected following re-exposure than those that were not. In contrast, early presence of circulating polyfunctional cytokine secreting CD8+ T cells or strong virus-specific proliferative responses in draining lymph nodes and in the gut associated lymphoid tissue (GALT) following the first exposure was associated with protection from systemic re-infection. These studies identify the gut and lymphoid tissues proximal to the genital tract as sites of robust CD8 T lymphocyte responses that contribute to containment of virus spread following vaginal transmission.« less
Rizzello, Carlo G.; Filannino, Pasquale; Calasso, Maria; Gobbetti, Marco
2014-01-01
This study aimed at investigating the regulatory system of bacteriocin synthesis by Lactobacillus plantarum strains in vegetables and fruits in a model system. Sterile and neutralized cell-free supernatant (CFS) from L. plantarum strains grown in MRS broth showed in vitro antimicrobial activities toward various indicator strains. The highest activity was that of L. plantarum C2. The antimicrobial activity was further assayed on vegetable and fruit agar plates (solid conditions) and in juices (liquid conditions). A regulatory mechanism of bacteriocin synthesis via quorum sensing was hypothesized. The synthesis of antimicrobial compounds seemed to be constitutive under solid conditions of growth on vegetable and fruit agar plates. In contrast, it depended on the size of the inoculum when L. plantarum C2 was grown in carrot juice. Only the inoculum of ca. 9.0 log CFU ml−1 produced detectable activity. The genes plnA, plnEF, plnG, and plnH were found in all L. plantarum strains. The genes plnJK and plnN were detected in only three or four strains. Reverse-phase high-performance liquid chromatography purification and mass spectrometry analysis revealed the presence of a mixture of eight peptides in the most active fraction of the CFS from L. plantarum C2. Active peptides were encrypted into bacteriocin precursors, such as plantaricins PlnJ/K and PlnH and PlnG, which are involved in the ABC transport system. A real-time PCR assay showed an increase in the expression of plnJK and plnG during growth of L. plantarum C2 in carrot juice. PMID:24242246
Valero, A; Rodríguez, M; Carrasco, E; Pérez-Rodríguez, F; García-Gimeno, R M; Zurera, G
2010-09-01
The presence of Escherichia coli in contaminated food products is commonly attributed to faecal contamination when they are improperly handled and/or when inactivation treatments fail. Adaptation of E. coli at low pH and a(w) levels can vary at different temperatures depending on the serotype, thus more detailed studies are needed. In this work, a screening to assess the growth of four pathogenic serotypes of E. coli (O55:H6; O59:H21; O158:H23 and O157:H7) was performed. Subsequently, boundary models were elaborated with the fastest serotype selected at different temperatures (8, 12 and 16 degrees C), and inoculum levels (2, 3 and 4log cfu/mL) as function of pH (7.00-5.00) and a(w) (0.999-0.960). Finally, the growth kinetics of E. coli was described in the conditions that allowed growth. Results obtained showed that the serotypes O157:H7 and O59:H21 did not grow at more stringent conditions (8 degrees C; pH 5.50), while the E. coli O158:H23 was the best adapted, resulting in faster growth. The logistic regression models presented a good adjustment to data observed since more than 96.7% of cases were correctly classified. The growth interface was shifted to more limited conditions as the inoculum size was higher. Detection times (t(d), h) and their variability were higher at low levels of the environmental factors studied. This work provides insight on the growth kinetics of E. coli at various environmental conditions. Copyright 2010 Elsevier Ltd. All rights reserved.
Minchin, Dan; Gollasch, Stephan
2003-04-01
Organisms fouling ships' hulls are continually in transit worldwide. Although effective antifouling paints incorporating organotins have considerably reduced fouling biomass these paints have a limited period of effectiveness, which may be less than the ships' inter-docking period, depending on sea temperature and abrasion. Vessels immersed over several years can allow fouling communities to develop and spread beyond their native distribution. This process of establishment is not fully understood. This review proposes that short rapid turn-around of vessels with mature attached biota can result in synchronized spawnings and production of sufficient zygotes to form a founder population. Spawning may be induced by changes in temperature or salinity on entry into a port, according to season. The diversity of taxa in transit on ships' hulls includes commercial molluscs, which have the potential to transmit their diseases or pests to port regions. Several factors may act in the further enhancement of exotic species establishment including changes of in-port berthing regions to more marine conditions. Ships today are generally larger, and faster, and have a high frequency of port visits thereby increasing the number of spawning opportunities, perhaps with a larger inoculum size. With trade expansion, new trading routes, political events and changes in climate, new pathways for invasion will emerge. Greater controls on industrial discharges, improved treatments of urban wastes and better management of waste runoff into rivers as well as a phasing out of organotin antifoulants will mean a reduced toxicity in port regions. This may enable a smaller inoculum to colonize by creating opportunities for establishment not present in the previous 25 years. Some invaders will have unwanted consequences for the environment, economies and human health.
Infection of five Phytophthora ramorum hosts in response to increasing inoculum levels
Paul Tooley; Marsha Browning; Robert Leighty
2013-01-01
The objective of this work was to establish inoculum density relationships between Phytophthora ramorum and selected hosts based on whole plant inoculations. Knowledge of levels of initial inoculum needed to generate epidemics is needed for disease prediction and development of pest risk assessments. Sporangia of six P. ramorum...
Wilson, L Paige; Sharvelle, Sybil E; De Long, Susan K
2016-11-01
Suboptimal conditions in anaerobic digesters (e.g., presence of common inhibitors ammonia and salinity) limit waste hydrolysis and lead to unstable performance and process failures. Application of inhibitor-tolerant inocula improves hydrolysis, but approaches are needed to establish and maintain these desired waste-hydrolyzing bacteria in high-solids reactors. Herein, performance was compared for leach bed reactors (LBRs) seeded with unacclimated or acclimated inoculum (0-60% by mass) at start-up and over long-term operation. High quantities of inoculum (∼60%) increase waste hydrolysis and are beneficial at start-up or when inhibitors are increasing. After start-up (∼112days) with high inoculum quantities, leachate recirculation leads to accumulation of inhibitor-tolerant hydrolyzing bacteria in leachate. During long-term operation, low inoculum quantities (∼10%) effectively increase waste hydrolysis relative to without solids-derived inoculum. Molecular analyses indicated that combining digested solids with leachate-based inoculum doubles quantities of Bacteria contacting waste over a batch and supplies additional desirable phylotypes Bacteriodes and Clostridia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Ling; Wang, Shuqi; Guo, Xiaoping; Zhao, Tingning; Zhang, Bolin
2018-03-01
A comprehensive characterization of the bacterial diversity associated to thermophilic stages of green waste composting was achieved. In this study, eight different treatments (T1-T8) and three replicated lab-scale green waste composting were carried out to compare the effect of the cellulase (i.e. 0, 2%), microbial inoculum (i.e. 0, 2 and 4%) and particle size (i.e. 2 and 5 mm) on bacterial community structure. Physicochemical properties and bacterial communities of T1-T8 composts were observed, and the bacterial structure and diversity were examined by high-throughput sequencing via a MiSeq platform. The results showed that the most abundant phyla among the treatments were the Firmicutes, Chloroflexi and Proteobacteria. The shannon index and non-metric multidimensional scaling (NMDS) showed higher bacterial abundance and diversity at the metaphase of composting. Comparing with 5-mm treatments, particle size of 2-mm had a richer diversity of bacterial communities. The addition of cellulase and a microbial inoculum could promote the fermentation temperature, reduce the compost pH and C/N ratio and result in higher GI index. The humic substance (HS) and humic acid (HA) contents for 2-mm particle size treatments were higher than those of 5-mm treatments. Canonical correspondence analysis suggested that differences in bacterial abundance and diversity significantly correlated with HA, E 4 /E 6 and temperature, and the relationship between bacterial diversity and environmental parameters was affected by composting stages. Based on these results, the application of cellulase to promote green waste composting was feasible, and particle size was identified as a potential control of composting physicochemical properties and bacterial diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Perdew, John P.; Tang, Hong; Shahi, Chandra
2018-02-01
Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment or from the vdW-DF-cx functional). We consider the competition in each term -C2k/d2k (k = 3, 4, 5) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient C2k and that of the 2kth power of the center-to-center distance d. The damping of these vdW terms can be negligible, but in any case, it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. The size dependences of other morphologies or bonding types lie between, as shown by sodium clusters.
Vidal, T; Gigot, C; de Vallavieille-Pope, C; Huber, L; Saint-Jean, S
2018-06-08
Growing cultivars differing by their disease resistance level together (cultivar mixtures) can reduce the propagation of diseases. Although architectural characteristics of cultivars are little considered in mixture design, they could have an effect on disease, in particular through spore dispersal by rain splash, which occurs over short distances. The objective of this work was to assess the impact of plant height of wheat cultivars in mixtures on splash dispersal of Zymoseptoria tritici, which causes septoria tritici leaf blotch. We used a modelling approach involving an explicit description of canopy architecture and splash dispersal processes. The dispersal model computed raindrop interception by a virtual canopy as well as the production, transport and interception of splash droplets carrying inoculum. We designed 3-D virtual canopies composed of susceptible and resistant plants, according to field measurements at the flowering stage. In numerical experiments, we tested different heights of virtual cultivars making up binary mixtures to assess the influence of this architectural trait on dispersal patterns of spore-carrying droplets. Inoculum interception decreased exponentially with the height relative to the main inoculum source (lower diseased leaves of susceptible plants), and little inoculum was intercepted further than 40 cm above the inoculum source. Consequently, tall plants intercepted less inoculum than smaller ones. Plants with twice the standard height intercepted 33 % less inoculum than standard height plants. In cases when the height of suscpeptible plants was doubled, inoculum interception by resistant leaves was 40 % higher. This physical barrier to spore-carrying droplet trajectories reduced inoculum interception by tall susceptible plants and was modulated by plant height differences between cultivars of a binary mixture. These results suggest that mixture effects on spore dispersal could be modulated by an adequate choice of architectural characteristics of cultivars. In particular, even small differences in plant height could reduce spore dispersal.
Size-density scaling in protists and the links between consumer-resource interaction parameters.
DeLong, John P; Vasseur, David A
2012-11-01
Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are widely observed but apparently have little influence on population size and fitness, at least at this level of organization. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Zhang, Chunjing; Qi, Xiaodan; Shi, Yan; Sun, Yan; Li, Shuyan; Gao, Xiulan; Yu, Haitao
2012-01-01
The present paper is mainly aimed at optimization of cultivation conditions of fermented mushrooms of Coprinus comatus rich in vanadium (CCRV). Initial screening of effects of carbon source, temperature, pH, and inoculum size were done by using a one-factor-at-a-time method. The results obtained in that study showed that the optimal medium composition was 30 g glucose/Lin YEPG medium, initial pH 6.0, inoculum volume 10%, and incubation time 120 h. Then the medium was subjected to screening of the most significant parameters using the L9 orthogonal array to solve multivariable equations simultaneously. The results obtained in this study showed that the optimal medium composition was 0.4% V and 30 g glucose/Lin YEPG medium, initial pH 5.0, inoculum volume 15%, and incubation time 120 h. At this medium composition, the mycelial biomass and V content were 7.18 ± 0.24 g/L and 3786.0 ± 17 μg/g, respectively. The anti-diabetic potential of CCRV produced with the optimal level was tested in alloxan-induced diabetes. After the mice were administered (i.g.) with CCRV, the level of blood sugar in the CCRV group was very close to that of the control group. These findings suggested that CCRV produced with the optimal level is useful in the control of diabetes mellitus.
Nina Shishkoff
2013-01-01
In Oregon, efforts to eradicate Phytophthora ramorum from forested areas have included use of herbicides to kill infected plants. Use of herbicides on disease-infected plants leads to various outcomes, from decreased spread of disease to greater spread of disease, depending on the plant-pathogen system being examined. In this study, viburnum (
Oss, Daniela B; Ribeiro, Gabriel O; Marcondes, Marcos I; Yang, WenZhu; Beauchemin, Karen A; Forster, Robert J; McAllister, Tim A
2016-01-01
This study evaluated the effect of increasing the proportion of bison relative to cattle inoculum on fermentation and microbial populations within an artificial rumen (Rusitec). The experiment was a completely randomized design with a factorial treatment structure (proportion cattle:bison inoculum; 0:100, 33:67, 67:33, and 100:0) replicated in two Rusitec apparatuses ( n = 8 fermenters). The experiment was 15 d with 8 d of adaptation and 7 d of sampling. Fermenters were fed a diet of 70:30 barley straw:concentrate (DM basis). True digestibility of DM was determined after 48 h of incubation from d 13 to 15, and daily ammonia (NH 3 ) and volatile fatty acid (VFA) production were measured on d 9-12. Protozoa counts were determined at d 9, 11, 13, and 15 and particle-associated bacteria (PAB) from d 13 to 15. Select bacterial populations in the PAB were measured using RT-qPCR. Fermenter was considered the experimental unit and day of sampling as a repeated measure. Increasing the proportion of bison inoculum resulted in a quadratic effect ( P < 0.05) on straw, concentrate and total true DM disappearance and on straw and total neutral detergent fiber (aNDF) disappearance, with greater disappearances observed with mixed inoculum. There were no effect of source or proportion of inoculum on ADF disappearance ( P > 0.05). Increasing bison inoculum linearly increased ( P < 0.05) concentrate aNDF disappearance, total and concentrate N disappearance as well as total daily VFA and acetate production. A positive quadratic response ( P < 0.05) was observed for daily NH 3 -N, propionate, butyrate, valerate, isovalerate and isobutyrate production, as well as the acetate:propionate ratio. Increasing the proportion of bison inoculum linearly increased ( P < 0.05) total protozoa numbers. No effects were observed on pH, total gas and methane production, microbial N synthesis, or copies of 16S rRNA associated with total bacteria, Selenomonas ruminantium or Prevotella bryantii . Increasing bison inoculum had a quadratic effect ( P < 0.05) on Fibrobacter succinogenes , and tended to linearly ( P < 0.10) increase Ruminococcus flavefaciens and decrease ( P < 0.05) Ruminococcus albus copy numbers. In conclusion, bison inoculum increased the degradation of feed protein and fiber. A mixture of cattle and bison rumen inoculum acted synergistically, increasing the DM and aNDF disappearance of barley straw.
Oss, Daniela B.; Ribeiro, Gabriel O.; Marcondes, Marcos I.; Yang, WenZhu; Beauchemin, Karen A.; Forster, Robert J.; McAllister, Tim A.
2016-01-01
This study evaluated the effect of increasing the proportion of bison relative to cattle inoculum on fermentation and microbial populations within an artificial rumen (Rusitec). The experiment was a completely randomized design with a factorial treatment structure (proportion cattle:bison inoculum; 0:100, 33:67, 67:33, and 100:0) replicated in two Rusitec apparatuses (n = 8 fermenters). The experiment was 15 d with 8 d of adaptation and 7 d of sampling. Fermenters were fed a diet of 70:30 barley straw:concentrate (DM basis). True digestibility of DM was determined after 48 h of incubation from d 13 to 15, and daily ammonia (NH3) and volatile fatty acid (VFA) production were measured on d 9–12. Protozoa counts were determined at d 9, 11, 13, and 15 and particle-associated bacteria (PAB) from d 13 to 15. Select bacterial populations in the PAB were measured using RT-qPCR. Fermenter was considered the experimental unit and day of sampling as a repeated measure. Increasing the proportion of bison inoculum resulted in a quadratic effect (P < 0.05) on straw, concentrate and total true DM disappearance and on straw and total neutral detergent fiber (aNDF) disappearance, with greater disappearances observed with mixed inoculum. There were no effect of source or proportion of inoculum on ADF disappearance (P > 0.05). Increasing bison inoculum linearly increased (P < 0.05) concentrate aNDF disappearance, total and concentrate N disappearance as well as total daily VFA and acetate production. A positive quadratic response (P < 0.05) was observed for daily NH3-N, propionate, butyrate, valerate, isovalerate and isobutyrate production, as well as the acetate:propionate ratio. Increasing the proportion of bison inoculum linearly increased (P < 0.05) total protozoa numbers. No effects were observed on pH, total gas and methane production, microbial N synthesis, or copies of 16S rRNA associated with total bacteria, Selenomonas ruminantium or Prevotella bryantii. Increasing bison inoculum had a quadratic effect (P < 0.05) on Fibrobacter succinogenes, and tended to linearly (P < 0.10) increase Ruminococcus flavefaciens and decrease (P < 0.05) Ruminococcus albus copy numbers. In conclusion, bison inoculum increased the degradation of feed protein and fiber. A mixture of cattle and bison rumen inoculum acted synergistically, increasing the DM and aNDF disappearance of barley straw. PMID:28018336
Experimental rhinovirus infection in volunteers.
Bardin, P G; Sanderson, G; Robinson, B S; Holgate, S T; Tyrrell, D A
1996-11-01
Experimental viral disease studies in volunteers have clarified many aspects of the pathogenesis of human viral disease. Recently, interest has focused on rhinovirus-associated asthma exacerbations, and new volunteer studies have suggested that airway responsiveness (AR) is enhanced during a cold. For scientific, ethical and safety reasons, it is important to use validated methods for the preparation of a virus inoculum and that the particular virological characteristics and host responses should not be altered. We have prepared a new human rhinovirus (HRV) inoculum using recent guidelines and assessed whether disease characteristics (for example, severity of colds or changes in AR) were retained. Studies were conducted in 25 clinically healthy volunteers using a validated HRV inoculum in the first 17 and a new inoculum in the subsequent eight subjects. Severity of cold symptoms, nasal wash albumin levels and airway responsiveness were measured, and the new inoculum was prepared from nasal washes obtained during the cold. The new inoculum was tested using standard virological and serological techniques, as well as a polymerase chain reaction for Mycoplasma pneumoniae. No contaminating viruses or organisms were detected and the methods suggested were workable. Good clinical colds developed in 20 of the 25 subjects and median symptom scores were similar in the validated and new inoculum groups (18 and 17.5, respectively; p=0.19). All subjects shed virus, and there were no differences noted in viral culture scores, nasal wash albumin and rates of seroconversion in the two groups. Although airway responsiveness increased in both groups (p=0.02 and p=0.05), the degree of change was similar. We have performed experimental rhinovirus infection studies and demonstrated similar clinical disease in two inoculum groups. Amplified airway responsiveness was induced; continuing studies will define the mechanisms and suggest modes of treatment.
Cheng, Xiaju; Tian, Xin; Wu, Anqing; Li, Jianxiang; Tian, Jian; Chong, Yu; Chai, Zhifang; Zhao, Yuliang; Chen, Chunying; Ge, Cuicui
2015-09-23
The interaction at nanobio is a critical issue in designing safe nanomaterials for biomedical applications. Recent studies have reported that it is nanoparticle-protein corona rather than bare nanoparticle that determines the nanoparticle-cell interactions, including endocytic pathway and biological responses. Here, we demonstrate the effects of protein corona on cellular uptake of different sized gold nanoparticles in different cell lines. The experimental results show that protein corona significantly decreases the internalization of Au NPs in a particle size- and cell type-dependent manner. Protein corona exhibits much more significant inhibition on the uptake of large-sized Au NPs by phagocytic cell than that of small-sized Au NPs by nonphagocytic cell. The endocytosis experiment indicates that different endocytic pathways might be responsible for the differential roles of protein corona in the interaction of different sized Au NPs with different cell lines. Our findings can provide useful information for rational design of nanomaterials in biomedical application.
Hansen, Ryan H.; Timm, Andrea C.; Timm, Collin M.; Bible, Amber N.; Morrell-Falvey, Jennifer L.; Pelletier, Dale A.; Simpson, Michael L.; Doktycz, Mitchel J.; Retterer, Scott T.
2016-01-01
The structure and function of microbial communities is deeply influenced by the physical and chemical architecture of the local microenvironment and the abundance of its community members. The complexity of this natural parameter space has made characterization of the key drivers of community development difficult. In order to facilitate these characterizations, we have developed a microwell platform designed to screen microbial growth and interactions across a wide variety of physical and initial conditions. Assembly of microbial communities into microwells was achieved using a novel biofabrication method that exploits well feature sizes for control of innoculum levels. Wells with incrementally smaller size features created populations with increasingly larger variations in inoculum levels. This allowed for reproducible growth measurement in large (20 μm diameter) wells, and screening for favorable growth conditions in small (5, 10 μm diameter) wells. We demonstrate the utility of this approach for screening and discovery using 5 μm wells to assemble P. aeruginosa colonies across a broad distribution of innoculum levels, and identify those conditions that promote the highest probability of survivial and growth under spatial confinement. Multi-member community assembly was also characterized to demonstrate the broad potential of this platform for studying the role of member abundance on microbial competition, mutualism and community succession. PMID:27152511
Lozano, Yudi M; Armas, Cristina; Hortal, Sara; Casanoves, Fernando; Pugnaire, Francisco I
2017-12-01
Nurse plants promote establishment of other plant species by buffering climate extremes and improving soil properties. Soil biota plays an important role, but an analysis to disentangle the effects of soil microorganisms, soil properties and microclimate on facilitation is lacking. In three microhabitats (gaps, small and large Retama shrubs), we placed six microcosms with sterilized soil, two per soil origin (i.e. from each microhabitat). One in every pair received an alive, and the other a sterile, inoculum from its own soil. Seeds of annual plants were sown into the microcosms. Germination, survival and biomass were monitored. Soil bacterial communities were characterized by pyrosequencing. Germination in living Retama inoculum was nearly double that of germination in sterile inoculum. Germination was greater under Retama canopies than in gaps. Biomass was up to three times higher in nurse than in gap soils. Soil microorganisms, soil properties and microclimate showed a range of positive to negative effects on understory plants depending on species identity and life stage. Nurse soil microorganisms promoted germination, but the effect was smaller than the positive effects of soil properties and microclimate under nurses. Nurse below-ground environment (soil properties and microorganisms) promoted plant growth and survival more than nurse microhabitat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Nina Shishkoff
2008-01-01
Leaves with lesions caused by Phytophthora ramorum Werres, de Cock & Man in?t Veld often drop off infected plants. Because fallen leaves might serve as sources of inoculum both for the above-ground tissues of host plants and for their roots, this study quantified the inoculum produced by such leaves on the surface of pots when exposed to...
USDA-ARS?s Scientific Manuscript database
The sustainability and profitability of many agricultural systems can be enhanced through the utilization of inoculum of arbuscular mycorrhizal fungi. Inocula are commercially available, but inoculum can also be produced on-farm in mixtures of compost and vermiculite with a nurse host plant. Demon...
R. Kasten Dumroese; Robert L. James; David L. Wenny
2002-01-01
Inoculum of Douglas fir root diseases caused by the fungi Fusarium and Cylindrocarpon is carried from crop to crop in reused containers. Soaking containers for 90 seconds in 80 °C water removed ~99% of Fusarium and 100% of Cylindrocarpon inoculum between growing cycles. Overall seedling growth was also improved:...
Leung, H M; Leung, A O W; Ye, Z H; Cheung, K C; Yung, K K L
2013-08-01
A greenhouse pot experiment was conducted to study the effects of three types of single inoculum [indigenous mycorrhizas (IM) isolated from As mine, Glomus mosseae (GM) and Glomus intraradices (GI)] and two types of mixed inoculum (mixed with IM and either GM or GI) on the growth response of Pteris vittata (hyperaccumulator) and Cynodon dactylon (non-hyperaccumulator) at three levels of As concentrations (0, 100 and 200mgkg(-1)). Both mycorrhizal plants exhibited significantly higher biomass, and N and P accumulation in its tissue than the control. Among the mycorrhizal inoculum, the mixed inoculum IM/GM promoted substantially higher mycorrhizal colonization and arsenate reductase activity in P. vittata than C. dactylon, among all As levels. The portion of Paris arbuscular mycorrhizal structure (observed in colonized roots) together with the highest As translocation factor of 10.2 in P. vittata inoculated with IM/GM was also noted. It was deduced that IM/GM inoculum may be the best choice for field inoculation at any contaminated lands as the inoculum exhibited better adaptation to variable environmental conditions and hence benefited the host plants. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Protection of large predators in a marine reserve alters size-dependent prey mortality
Gaines, Steven D.; Hamilton, Scott L.; Warner, Robert R.
2017-01-01
Where predator–prey interactions are size-dependent, reductions in predator size owing to fishing has the potential to disrupt the ecological role of top predators in marine ecosystems. In southern California kelp forests, we investigated the size-dependence of the interaction between herbivorous sea urchins and one of their predators, California sheephead (Semicossyphus pulcher). Empirical tests examined how differences in predator size structure between reserve and fished areas affected size-specific urchin mortality. Sites inside marine reserves had greater sheephead size and biomass, while empirical feeding trials indicated that larger sheephead were required to successfully consume urchins of increasing test diameter. Evaluations of the selectivity of sheephead for two urchin species indicated that shorter-spined purple urchins were attacked more frequently and successfully than longer-spined red urchins of the same size class, particularly at the largest test diameters. As a result of these size-specific interactions and the higher biomass of large sheephead inside reserves, urchin mortality rates were three times higher inside the reserve for both species. In addition, urchin mortality rates decreased with urchin size, and very few large urchins were successfully consumed in fished areas. The truncation of sheephead size structure that commonly occurs owing to fishing will probably result in reductions in urchin mortality, which may reduce the resilience of kelp beds to urchin barren formation. By contrast, the recovery of predator size structure in marine reserves may restore this resilience, but may be delayed until fish grow to sizes capable of consuming larger urchins. PMID:28123086
ten Brink, Hanna; Mazumdar, Abul Kalam Azad; Huddart, Joseph; Persson, Lennart; Cameron, Tom C
2015-03-01
Coexistence of predators that share the same prey is common. This is still the case in size-structured predator communities where predators consume prey species of different sizes (interspecific prey responses) or consume different size classes of the same species of prey (intraspecific prey responses). A mechanism has recently been proposed to explain coexistence between predators that differ in size but share the same prey species, emergent facilitation, which is dependent on strong intraspecific responses from one or more prey species. Under emergent facilitation, predators can depend on each other for invasion, persistence or success in a size-structured prey community. Experimental evidence for intraspecific size-structured responses in prey populations remains rare, and further questions remain about direct interactions between predators that could prevent or limit any positive effects between predators [e.g. intraguild predation (IGP)]. Here, we provide a community-wide experiment on emergent facilitation including natural predators. We investigate both the direct interactions between two predators that differ in body size (fish vs. invertebrate predator), and the indirect interaction between them via their shared prey community (zooplankton). Our evidence supports the most likely expectation of interactions between differently sized predators that IGP rates are high, and interspecific interactions in the shared prey community dominate the response to predation (i.e. predator-mediated competition). The question of whether emergent facilitation occurs frequently in nature requires more empirical and theoretical attention, specifically to address the likelihood that its pre-conditions may co-occur with high rates of IGP. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Mutagenic activity of overnight urine from healthy non-smoking subjects.
Pavanello, Sofia; Lupi, Silvia; Pulliero, Alessandra; Gregorio, Pasquale; Saia, Bruno Onofrio; Clonfero, Erminio
2007-03-01
Urinary mutagenicity was evaluated in relation to environmental mutagen exposure (i.e., diet, indoor/outdoor activities, residential area etc.) on the day prior to sample collection, and also considering factors that contribute to the variability of Salmonella mutagenicity assay results. Overnight urine samples from 283 healthy non-smoking residents of northeast Italy (46% males, 20-62 years) were analyzed for mutagenicity on sensitive Salmonella typhimurium strain YG1024 with S9 mix employing the preincubation version of the plate incorporation assay (i.e., the Salmonella reverse mutation test). Urinary mutagenicity varied between 0.02 and 9.84 rev/ equiv. ml, and 7% of samples were positive (i.e., sample elicited a two-fold increase in revertants). There was an evident increase in mutagenicity in subjects with increased intake of mutagen-rich meals (n = 80) (P < 0.01 and positive urine 13% vs. 5%, P = 0.025). Indoor-exposed subjects (n = 65) also showed a higher percentage of positive urine (14% vs. 5%, P = 0.015). In particular, those subjects exposed to cooking fumes the previous evening (n = 28) revealed higher urinary mutagenicity (P = 0.035, positive urine 25% vs. 5%, P < 0.001) than non-indoor exposed. The sources of variability of the mutagenicity assay, mainly the histidine content of the urine concentrate (z = 4.06, P < 0.0001), and to a lesser extent bacterial inoculum size (z = 2.33, P = 0.019), also significantly influenced urinary mutagenicity values. In a linear multiple regression analysis, their effects were still significant (i.e., histidine content P = 0.026 and inoculum size P = 0.021), but the effects of diet, indoor exposure, and other environmental exposures (i.e., traffic and heating system exhausts, residential area) were not. It is concluded that the previous day's exposure to mutagen-rich meals and cooking fumes may influence the presence of mutagenic activity in the overnight urine of non-smoking subjects. This mutagenic activity, which remains in contact with bladder mucosa for several hours, could be considered risk factors for colorectal adenoma and possibly other cancers (i.e., bladder) in non-smokers. Accurate control of histidine content and bacterial inoculum size is strongly recommended when investigating the mutagenic activity of urine from non-smokers. (c) 2007 Wiley-Liss, Inc.
Temperature and size-dependent Hamaker constants for metal nanoparticles
NASA Astrophysics Data System (ADS)
Jiang, K.; Pinchuk, P.
2016-08-01
Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.
Temperature and size-dependent Hamaker constants for metal nanoparticles.
Jiang, K; Pinchuk, P
2016-08-26
Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.
Freitas, Adriana C.; Castro, Ruann J. S.; Fontenele, Maria A.; Egito, Antonio S.; Farinas, Cristiane S.; Pinto, Gustavo A. S.
2013-01-01
Oil cakes have excellent nutritional value and offer considerable potential for use in biotechnological processes that employ solid-state fermentation (SSF) for the production of high value products. This work evaluates the feasibility of using canola cake as a substrate for protease production by a selected strain of Aspergillus oryzae cultivated under SSF. The influences of the following process parameters were considered: initial substrate moisture content, incubation temperature, inoculum size, and pH of the buffer used for protease extraction and activity analysis. Maximum protease activity was obtained after cultivating Aspergillus oryzae CCBP 001 at 20°C, using an inoculum size of 107 spores/g in canola cake medium moistened with 40 mL of water to 100 g of cake. Cultivation and extraction under selected conditions increased protease activity 5.8-fold, compared to the initial conditions. Zymogram analysis of the enzymatic extract showed that the protease molecular weights varied between 31 and 200 kDa. The concentrated protease extract induced clotting of casein in 5 min. The results demonstrate the potential application of canola cake for protease production under SSF and contribute to the technological advances needed to increase the efficiency of processes designed to add value to agroindustrial wastes. PMID:24455400
Dinarvand, Mojdeh; Rezaee, Malahat; Foroughi, Majid
The aim of this study was obtain a model that maximizes growth and production of inulinase and invertase by Aspergillus niger ATCC 20611, employing response surface methodology (RSM). The RSM with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. Results showed that the experimental data could be appropriately fitted into a second-order polynomial model with a coefficient of determination (R 2 ) more than 0.90 for all responses. This model adequately explained the data variation and represented the actual relationships between the parameters and responses. The pH and temperature value of the cultivation medium were the most significant variables and the effects of inoculum size and agitation speed were slightly lower. The intra-extracellular inulinase, invertase production and biomass content increased 10-32 fold in the optimized medium condition (pH 6.5, temperature 30°C, 6% (v/v), inoculum size and 150rpm agitation speed) by RSM compared with medium optimized through the one-factor-at-a-time method. The process development and intensification for simultaneous production of intra-extracellular inulinase (exo and endo inulinase) and invertase from A. niger could be used for industrial applications. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp
Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun
2014-01-01
The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced. The maximum yield was obtained at the pH of 2 with citric acid of 1.15 g/L and reducing sugar content of 0.541 mMol−1, 3% vegetative inoculum size with citric acid yield of 0.53 g/L and reducing sugar content of 8.87 mMol−1, 2% of the substrate concentration with citric acid yield of 0.83 g/L and reducing sugar content of 9.36 mMol−1, incubation temperature of 55°C with citric acid yield of 0.62 g/L and reducing sugar content of 8.37 mMol−1, and fermentation period of 5 days with citric acid yield of 0.61 g/L and reducing sugar content of 3.70 mMol−1. The results of this study are encouraging and suggest that Parkia biglobosa pulp can be harnessed at low concentration for large scale citric acid production. PMID:27433535
Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull.
Zhang, Jianguo; Hu, Bo
2012-02-01
Soybean hull, generated from soybean processing, is a lignocellulosic material with limited industrial applications and little market value. This research is exploring a new application of soybean hull to be converted to fungal lipids for biodiesel production through solid-state fermentation. Mortierella isabellina was selected as the oil producer because of its high lipid content at low C/N ratio. Several cultivation factors were investigated, including moisture content, inoculums size, fungal spore age, and nutrient supplements, in an attempt to enhance the lipid production of the solid-state fermentation process. The results showed that lipid production with the increase of the moisture content and the spore age, while decreased as the size of inoculums increased. Nutrients addition (KH₂PO₄ 1.2 mg and MgSO₄ 0.6 mg/g soybean hull) improved the lipid production. The total final lipid reached 47.9 mg lipid from 1 g soybean hull after the conversion, 3.3-fold higher than initial lipid reserve in the soybean hull. The fatty acid profile analysis indicated that fatty acid content consisted of 30.0% of total lipid, and 80.4% of total fatty acid was C16 and C18. Therefore, lipid production from soybean hull is a possible option to enable soybean hull as a new resource for biodiesel production and to enhance the overall oil production from soybeans.
Vasilev, Nikolay; Schmitz, Christian; Grömping, Ulrike; Fischer, Rainer; Schillberg, Stefan
2014-01-01
A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources. PMID:25117009
Vasilev, Nikolay; Schmitz, Christian; Grömping, Ulrike; Fischer, Rainer; Schillberg, Stefan
2014-01-01
A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼ 5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources.
In vitro activity of FK037, a new parenteral cephalosporin, against anaerobic bacteria.
Kato, N; Kato, H; Tanaka, Y; Bando, K; Watanabe, K; Ueno, K
1993-01-01
The activity of FK037, a new parenteral cephalosporin, was compared with those of cefpirome, ceftazidime, and flomoxef against 322 recent clinical isolates of anaerobic bacteria. A fastidious facultative anaerobe, Gardnerella vaginalis, was also studied. FK037 inhibited 90% of isolates of Peptostreptococcus anaerobius, Peptostreptococcus asaccharolyticus, Clostridium perfringens, Mobiluncus spp., G. vaginalis, and Porphyromonas gingivalis at < or = 0.78 micrograms/ml. The MICs of FK037 for 50 and 90% of Bacteroides fragilis isolates were 25 and > 200 micrograms/ml, respectively; the activity of FK037 was comparable to those of cefpirome and ceftazidime but lower than that of flomoxef. The activity of FK037 against Fusobacterium nucleatum, Fusobacterium varium, and Bilophila wadsworthia decreased when inoculum size was increased from 10(6) to 10(8) CFU/ml. Little influence of inoculum size on the activity of FK037 was observed for other isolates tested. Medium pH affected the activity of FK037 against F. varium (MICs at pHs 5 and 7, 3.13 and 100 micrograms/ml, respectively) and Bacteroides gracilis (MICs at pHs 5 and 7, 12.5 and 1.56 micrograms/ml, respectively) but not against other organisms tested. FK037 was less resistant than flomoxef to hydrolysis by beta-lactamase group 2e derived from B. fragilis GAI 0558 and GAI 10150. PMID:8517721
NASA Astrophysics Data System (ADS)
Awrejcewicz, J.; Krysko, V. A.; Yakovleva, T. V.; Pavlov, S. P.; Krysko, V. A.
2018-05-01
A mathematical model of complex vibrations exhibited by contact dynamics of size-dependent beam-plate constructions was derived by taking the account of constraints between these structural members. The governing equations were yielded by variational principles based on the moment theory of elasticity. The centre of the investigated plate was supported by a beam. The plate and the beam satisfied the Kirchhoff/Euler-Bernoulli hypotheses. The derived partial differential equations (PDEs) were reduced to the Cauchy problems by the Faedo-Galerkin method in higher approximations, whereas the Cauchy problem was solved using a few Runge-Kutta methods. Reliability of results was validated by comparing the solutions obtained by qualitatively different methods. Complex vibrations were investigated with the help of methods of nonlinear dynamics such as vibration signals, phase portraits, Fourier power spectra, wavelet analysis, and estimation of the largest Lyapunov exponents based on the Rosenstein, Kantz, and Wolf methods. The effect of size-dependent parameters of the beam and plate on their contact interaction was investigated. It was detected and illustrated that the first contact between the size-dependent structural members implies chaotic vibrations. In addition, problems of chaotic synchronization between a nanoplate and a nanobeam were addressed.
USDA-ARS?s Scientific Manuscript database
Utilization of arbuscular mycorrhizal [AM] fungus inoculum has been encouraged as a way for vegetable farmers to better utilize the AM symbiosis. On-farm systems can economically produce inoculum that has been shown to increase the yield of specific crops. We conducted seven years of field studies...
NASA Astrophysics Data System (ADS)
Tien, Hai Minh; Le, Kien Anh; Le, Phung Thi Kim
2017-09-01
Bio hydrogen is a sustainable energy resource due to its potentially higher efficiency of conversion to usable power, high energy efficiency and non-polluting nature resource. In this work, the experiments have been carried out to indicate the possibility of generating bio hydrogen as well as identifying effective factors and the optimum conditions from cassava starch. Experimental design was used to investigate the effect of operating temperature (37-43 °C), pH (6-7), and inoculums ratio (6-10 %) to the yield hydrogen production, the COD reduction and the ratio of volume of hydrogen production to COD reduction. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. The interaction effects between them seem not significant. The central composite design showed that the polynomial regression models were in good agreement with the experimental results. This result will be applied to enhance the process of cassava starch processing wastewater treatment.
NASA Astrophysics Data System (ADS)
Pinchuk, P.; Pinchuk, A. O.
2016-09-01
Hamaker-Lifshitz constants are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the free-electron Drude model for metals. For bulk metals, the Drude model does is size independent. However, the conducting electrons in small metal nanoparticles exhibit surface scattering, which changes the complex dielectric permittivity function. Additionally, the Drude model can be modified to include temperature dependence. That is, an increase in temperature leads to thermal volume expansion and increased phonon population, which affect the scattering rate of the electrons and the plasma frequency. Both of these terms contribute significantly to the Drude model for the dielectric permittivity of the particles. In this work, we show theoretically that scattering of the free conducting electrons inside noble metal nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. In addition, we calculate numerically the Hamaker-Lifshitz constants for a variety of temperatures. The results of the study might be of interest for understanding colloidal stability of metal nanoparticles.
Survivial Strategies in Bacterial Range Expansions
NASA Astrophysics Data System (ADS)
Frey, Erwin
2014-03-01
Bacterial communities represent complex and dynamic ecological systems. Different environmental conditions as well as bacterial interactions determine the establishment and sustainability of bacterial diversity. In this talk we discuss the competition of three Escherichia coli strains during range expansions on agar plates. In this bacterial model system, a colicin E2 producing strain C competes with a colicin resistant strain R and with a colicin sensitive strain S for new territory. Genetic engineering allows us to tune the growth rates of the strains and to study distinct ecological scenarios. These scenarios may lead to either single-strain dominance, pairwise coexistence, or to the coexistence of all three strains. In order to elucidate the survival mechanisms of the individual strains, we also developed a stochastic agent-based model to capture the ecological scenarios in silico. In a combined theoretical and experimental approach we are able to show that the level of biodiversity depends crucially on the composition of the inoculum, on the relative growth rates of the three strains, and on the effective reach of colicin toxicity.
Temperature alters food web body-size structure.
Gibert, Jean P; DeLong, John P
2014-08-01
The increased temperature associated with climate change may have important effects on body size and predator-prey interactions. The consequences of these effects for food web structure are unclear because the relationships between temperature and aspects of food web structure such as predator-prey body-size relationships are unknown. Here, we use the largest reported dataset for marine predator-prey interactions to assess how temperature affects predator-prey body-size relationships among different habitats ranging from the tropics to the poles. We found that prey size selection depends on predator body size, temperature and the interaction between the two. Our results indicate that (i) predator-prey body-size ratios decrease with predator size at below-average temperatures and increase with predator size at above-average temperatures, and (ii) that the effect of temperature on predator-prey body-size structure will be stronger at small and large body sizes and relatively weak at intermediate sizes. This systematic interaction may help to simplify forecasting the potentially complex consequences of warming on interaction strengths and food web stability. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Adding arbuscular mycorrhizal [AM] fungus inoculum to potting media enables vegetable farmers to better take advantage of the AM symbiosis. On-farm production of AM fungus inoculum is a viable alternative to commercially-available inocula. We conducted a seven year experiment at a conventional veg...
Will, M E; Sylvia, D M
1990-07-01
Plants must be established quickly on replenished beaches in order to stabilize the sand and begin the dune-building process. The objective of this research was to determine whether inoculation of sea oats (Uniola paniculata L.) with bacteria (indigenous rhizosphere bacteria and N(2) fixers) alone or in combination with vesicular-arbuscular mycorrhizal fungi would enhance plant growth in beach sand. At two fertilizer-N levels, Klebsiella pneumoniae and two Azospirillum spp. did not provide the plants with fixed atmospheric N; however, K. pneumoniae increased root and shoot growth. When a sparingly soluble P source (CaHPO(4)) was added to two sands, K. pneumoniae increased plant growth in sand with a high P content. The phosphorus content of shoots was not affected by bacterial inoculation, indicating that a mechanism other than bacterially enhanced P availability to plants was responsible for the growth increases. When sea oats were inoculated with either K. pneumoniae or Acaligenes denitrificans and a mixed Glomus inoculum, there was no consistent evidence of a synergistic effect on plant growth. Nonetheless, bacterial inoculation increased root colonization by vesicular-arbuscular mycorrhizal fungi when the fungal inoculum consisted of colonized roots but had no effect on colonization when the inoculum consisted of spores alone. K. pneumoniae was found to increase spore germination and hyphal growth of Glomus deserticola compared with the control. The use of bacterial inoculants to enhance establishment of pioneer dune plants warrants further study.
Argyri, Anthoula A; Papadopoulou, Olga S; Nisiotou, Aspasia; Tassou, Chrysoula C; Chorianopoulos, Nikos
2018-04-01
High pressure processing (HPP) is a preservation technology alternative to heat treatment that is mild for food, but effectively inactivates the spoilage microbiota and foodborne pathogens of several foods. The purpose of the current study was to evaluate the effect of HPP on Salmonella ser. Enteritidis, indigenous microbiota and shelf-life of chicken fillets. Chicken fillets were inoculated with S. Enteritidis at three different initial inocula (3, 5, 7 log CFU/g), packed under vacuum, treated or not with HPP (500 MPa/10 min) and stored at 4 and 12 °C. Total viable counts, S. Enteritidis, pseudomonads, Brochothrix thermosphacta, lactic acid bacteria, Enterobacteriaceae and yeasts/molds populations were determined in parallel with sensory analysis of non-inoculated samples. The HPP resulted in the reduction of the pathogen population below the detection limit of the enumeration method (0.48 log CFU/g), irrespective of the inoculum. During the shelf life of the HPP samples, the pathogens population remained below or near the detection limit of the enumeration method at both temperatures, except from the high inoculum case that an increase was observed at 12 °C. At the low inoculum level, the pathogen could not be detected with the enrichment method after the first storage days (2nd day for 4 °C and 0 day for 12 °C). The survival of Salmonella strains was assessed by pulsed field gel electrophoresis and it was shown that the survival of the different strains depended on the inoculum and storage temperature. Regarding the indigenous microbiota, Br. thermosphacta was reported for the first time to be the main spoilage microorganism that survived and dominated after the HPP. From the results it was evident that, HPP may enhance the safety and increase the shelf life (6 at 4 °C and 2 days at 12 °C) of chicken meat. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brulé, Mathieu; Bolduan, Rainer; Seidelt, Stephan; Schlagermann, Pascal; Bott, Armin
2013-01-01
Batch biochemical methane potential (BMP) assays to evaluate the methane yield of biogas substrates such as energy crops are usually carried out with undiluted inoculum. A BMP assay was performed on two energy crops (green cuttings and grass silage). Anaerobic digestion was performed both with and without supplementation of three commercial additives containing trace metals in liquid, solid or adsorbed form (on clay particles). In order to reveal positive effects of trace metal supplementation on the methane yield, besides undiluted inoculum, 3-fold and 10-fold dilutions of the inoculum were applied for substrate digestion. Diluted inoculum variants were supplemented with both mineral nutrients and pH-buffering substances to prevent a collapse of the digestion process. As expected, commercial additives had no effect on the digestion process performed with undiluted inoculum, while significant increases of methane production through trace element supplementation could be observed on the diluted variants. The effect of inoculum dilution may be twofold: (1) decrease in trace metal supplementation from the inoculum and (2) reduction in the initial number of bacterial cells. Bacteria require higher growth rates for substrate degradation and hence have higher trace element consumption. According to common knowledge of the biogas process, periods with volatile fatty acids accumulation and decreased pH may have occurred in the course ofanaerobic digestion. These effects may have led to inhibition, not only ofmethanogenes and acetogenes involved in the final phases of methane production, but also offibre-degrading bacterial strains involved in polymer hydrolysis. Further research is required to confirm this hypothesis.
Development of an In Vivo and In Vitro Ileal Fermentation Method in a Growing Pig Model.
Montoya, Carlos A; de Haas, Edward S; Moughan, Paul J
2018-02-01
Substantial microbial fermentation may occur mainly in the lower small intestine (SI) of human adults, but there is no established methodology to determine this. The study aimed to develop a combined in vivo and in vitro methodology for ileal fermentation based on the pig as an animal model for digestion in human adults. Several aspects of a combined in vivo/in vitro ileal fermentation assay were evaluated. Male 9-wk-old pigs (n = 30; mean ± SD body weight: 23 ± 1.6 kg) were fed a human-type diet (143, 508, 45, 49, and 116 g/kg dry matter diet of crude protein, starch, total lipid, ash, and total dietary fiber) for 15 d. On day 15, pigs were killed, and the last third of the SI was collected to prepare an ileal digesta-based inoculum. Terminal jejunal digesta (last 50 cm of the second third of the SI) were collected as substrate for the assay to test the form of substrate (fresh or freeze-dried), origin (location in jejunum or SI) of the substrate, storage of the inoculum, incubation time (1.2-6.8 h), pH of the medium, and inoculum concentration (6-26 mg inoculum/100 mg substrate). The group of donor pigs used to prepare the inoculum, form of the substrate, origin of the substrate, origin of the inoculum (location in the SI), storage of the inoculum, incubation time, and inoculum concentration did not influence the in vitro ileal organic matter (OM) fermentability (P > 0.05). The in vitro ileal OM fermentability decreased when the pH of the medium increased from 5.5 to 7.5 (31% to 28%; P ≤ 0.05). Predicted (in vivo/in vitro) apparent ileal OM digestibility was similar to the value measured in vivo. Thirty-percent of the terminal jejunal digesta OM was fermented in the ileum. Fiber fermentation in the ileum can be studied using the optimized in vivo/in vitro ileal fermentation method.
Development of a robust, versatile, and scalable inoculum train for the production of a DNA vaccine.
Okonkowski, J; Kizer-Bentley, L; Listner, K; Robinson, D; Chartrain, M
2005-01-01
For many microbial fermentation processes, the inoculum train can have a substantial impact on process performance in terms of productivity, profitability, and process control. In general, it is understood that a well-characterized and flexible inoculum train is essential for future scale-up and implementation of the process in a pilot plant or manufacturing setting. A fermentation process utilizing E. coli DH5 for the production of plasmid DNA carrying the HIV gag gene for use as a vaccine is currently under development in our laboratory. As part of the development effort, we evaluated inoculum train schemes that incorporate one, two, or three stages. In addition, we investigated the effect of inoculum viable-cell concentrations, either thawed or actively growing, over a wide range (from 2.5 x 10(4) to 1.0 x 10(8) viable cells/mL or approximately 0.001% to 4% of final working volume). The various inoculum trains were evaluated in terms of final plasmid yield, process time, reproducibility, robustness, and feasibility at large scale. The results of these studies show that final plasmid yield remained in the desired range, despite the number of stages or inoculation viable-cell concentrations comprising the inoculum train. On the basis of these observations and because it established a large database, the first part of these investigations supports an exceptional flexibility in the design of scalable inoculum trains for this DNA vaccine process. This work also highlighted that a slightly higher level of process reproducibility, as measured by the time for the culture to reach mid-exponential growth, was observed when using actively growing versus frozen cells. It also demonstrated the existence of a viable-cell concentration threshold for the one-stage process, since we observed that inoculation of the production stage with very low amounts of viable cells from a frozen source could lead to increased process sensitivity to external factors such as variation in the quality of the raw materials used in the medium formulation. However, our analysis indicates that, despite this slight disadvantage, a one-stage inoculum train was a viable option in many situations, especially if the inoculation viable-cell concentration was kept above 4.8 x 10(6) viable cells/mL. Because it leads to a reduction in process steps and eliminates some capital investments (i.e., inoculum fermenter), when feasible a one-stage process configuration will positively impact process economics.
Pasula, Rajamouli; Azad, Abul K.; Gardner, Jason C.; Schlesinger, Larry S.; McCormack, Francis X.
2015-01-01
Augmentation of innate immune defenses is an appealing adjunctive strategy for treatment of pulmonary Mycobacterium tuberculosis infections, especially those caused by drug-resistant strains. The effect of intranasal administration of keratinocyte growth factor (KGF), an epithelial mitogen and differentiation factor, on M. tuberculosis infection in mice was tested in prophylaxis, treatment, and rescue scenarios. Infection of C57BL6 mice with M. tuberculosis resulted in inoculum size-dependent weight loss and mortality. A single dose of KGF given 1 day prior to infection with 105 M. tuberculosis bacilli prevented weight loss and enhanced pulmonary mycobacterial clearance (compared with saline-pretreated mice) for up to 28 days. Similar effects were seen when KGF was delivered intranasally every third day for 15 days, but weight loss and bacillary growth resumed when KGF was withdrawn. For mice with a well established M. tuberculosis infection, KGF given every 3 days beginning on day 15 postinoculation was associated with reversal of weight loss and an increase in M. tuberculosis clearance. In in vitro co-culture experiments, M. tuberculosis-infected macrophages exposed to conditioned medium from KGF-treated alveolar type II cell (MLE-15) monolayers exhibited enhanced GM-CSF-dependent killing through mechanisms that included promotion of phagolysosome fusion and induction of nitric oxide. Alveolar macrophages from KGF-treated mice also exhibited enhanced GM-CSF-dependent phagolysosomal fusion. These results provide evidence that administration of KGF promotes M. tuberculosis clearance through GM-CSF-dependent mechanisms and enhances host defense against M. tuberculosis infection. PMID:25605711
NASA Astrophysics Data System (ADS)
Kudo, Kazue; Deguchi, Tetsuo
2018-06-01
We present a finite-size scaling for both interaction and disorder strengths in the critical regime of the many-body localization (MBL) transition for a spin-1/2 X X Z spin chain with a random field by studying level statistics. We show how the dynamical transition from the thermal to MBL phase depends on interaction together with disorder by evaluating the ratio of adjacent level spacings, and thus, extend previous studies in which interaction coupling is fixed. We introduce an extra critical exponent in order to describe the nontrivial interaction dependence of the MBL transition. It is characterized by the ratio of the disorder strength to the power of the interaction coupling with respect to the extra critical exponent and not by the simple ratio between them.
Wang, C L; Li, D F; Lu, W Q; Wang, Y H; Lai, C H
2004-01-01
The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Penicillium sp. in solid-state fermentation (SSF). Certain fermentation parameters involving incubation temperature, moisture content, initial pH value, inoculum and load size of medium, and incubation time were investigated separately. The optimal temperature and moisture level for alpha-galactosidase biosynthesis was found to be 30 degrees C and 50%, respectively. The range of pH 5.5-6.5 was favourable. About 40-50 g of medium in 250-ml flask and inoculum over 1.0 x 10(6) spores were suitable for enzyme production. Seventy-five hours of incubation was enough for maximum alpha-galactosidase production. Substrate as wheat bran supplemented with soyabean meal and beet pulp markedly improved the enzyme yield in trays. Under optimum culture conditions, the alpha-galactosidase activity from Penicillium sp. MAFIC-6 indicated 185.2 U g(-1) in tray of SSF. The process on alpha-galactosidase production in laboratory scale may have a potentiality of scaling-up.
John, Gernot T; Goelling, Detlef; Klimant, Ingo; Schneider, Holger; Heinzle, Elmar
2003-08-01
A new method for characterization of acid production by dairy starter cultures is presented. Microplates with integrated optical pH sensors are developed. Two fluorophores, a pH-sensitive and a pH-insensitive one are immobilised at the bottom of a polystyrene 96-well microtitre plate. The pH-insensitive fluorophore serves as an internal reference and makes calibration unnecessary. The sensor measures pH accurately in optically well-defined media. Particles and fluorophores contained in the bulk medium disturbed the measurements. Despite these disturbances it was possible to clearly sense differences in inoculum type and in inoculum sizes of cultures of Lactococcus lactis and of Streptococcus thermophilus at 30 and 37 degrees C. Besides a pH-related signal there is information about other changes during milk fermentation. The cultivation results were compared with those from the established CINAC-method. From this comparison it can be concluded that the new method can be used reliably to characterize particularly a large number of strains for screening purposes but also for quality control.
Studying Pellet Formation of a Filamentous Fungus Rhizopus oryzae to Enhance Organic Acid Production
NASA Astrophysics Data System (ADS)
Liao, Wei; Liu, Yan; Chen, Shulin
Using pelletized fungal biomass can effectively improve the fermentation performance for most of fugal strains. This article studied the effects of inoculum and medium compositions such as potato dextrose broth (PDB) as carbon source, soybean peptone, calcium carbonate, and metal ions on pellet formation of Rhizopus oryzae. It has been found that metal ions had significantly negative effects on pellet formation whereas soybean peptone had positive effects. In addition PDB and calcium carbonate were beneficial to R. oryzae for growing small smooth pellets during the culture. The study also demonstrated that an inoculum size of less than 1.5×109 spores/L had no significant influence on pellet formation. Thus, a new approach to form pellets has been developed using only PDB, soybean peptone, and calcium carbonate. Meanwhile, palletized fungal fermentation significantly enhanced organic acid production. Lactic acid concentration reached 65.0 g/L in 30 h using pelletized R. oryzae NRRL 395, and fumeric acid concentration reached 31.0 g/L in 96 h using pelletized R. oryzae ATCC 20344.
Harvey, R. W.; Price, T. H.
1982-01-01
The relation of salmonella isolation efficiency and the size of inoculum introduced from a buffered peptone water culture of sewage polluted water into strontium chloride B medium was investigated. Two separate studies were made, one using enrichment at 37 degrees C, the other at 43 degrees C. From these trials, two inocula suitable for efficient salmonella isolation were determined. Using this information, strontium chloride B medium was compared with modified Rappaport's broth (R25). The inoculum used with R25 was 0.005 ml, determined in an earlier study. Two incubation temperatures were employed with strontium chloride enrichment (37 and 43 degrees C). Rappaport's medium was incubated at 37 degrees C only. Elevated temperature enrichment at 43 degrees C improved the performance of strontium chloride B, but Rappaport's broth still gave significantly better results. This supports earlier studies on simplification of salmonella isolation and standardization of routine technique on a single enrichment medium: Rappaport broth (R25) incubated at 37 degrees C. PMID:7047641
Bonilla-Hermosa, Verónica Alejandra; Duarte, Whasley Ferreira; Schwan, Rosane Freitas
2014-08-01
The semi-dry processing of coffee generates significant amounts of coffee pulp and wastewater. This study evaluated the production of bioethanol and volatile compounds of eight yeast strains cultivated in a mixture of these residues. Hanseniaspora uvarum UFLA CAF76 showed the best fermentation performance; hence it was selected to evaluate different culture medium compositions and inoculum size. The best results were obtained with 12% w/v of coffee pulp, 1 g/L of yeast extract and 0.3 g/L of inoculum. Using these conditions, fermentation in 1 L of medium was carried out, achieving higher ethanol yield, productivity and efficiency with values of 0.48 g/g, 0.55 g/L h and 94.11% respectively. Twenty-one volatile compounds corresponding to higher alcohols, acetates, terpenes, aldehydes and volatile acids were identified by GC-FID. Such results indicate that coffee residues show an excellent potential as substrates for production of value-added compounds. H. uvarum demonstrated high fermentative capacity using these residues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jianmin
Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure properly as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment, or from the vdW-DF-cx functional). We consider the competition in each termmore » $$-C_{2k}/d^{2k}$$ ($k=3, 4, 5$) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient $$C_{2k}$$ and that of the $2k$-th power of the center-to-center distance $d$. The damping of these vdW terms can be negligible, but in any case it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. Other cases are between, as shown by sodium clusters.« less
Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures
Tao, Jianmin
2018-02-21
Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure properly as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment, or from the vdW-DF-cx functional). We consider the competition in each termmore » $$-C_{2k}/d^{2k}$$ ($k=3, 4, 5$) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient $$C_{2k}$$ and that of the $2k$-th power of the center-to-center distance $d$. The damping of these vdW terms can be negligible, but in any case it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. Other cases are between, as shown by sodium clusters.« less
Jain, Kavish Kumar; Kumar, Sandeep; Deswal, Deepa; Kuhad, Ramesh Chander
2017-02-01
Thermostable cellulases have wide variety of applications and distinctive advantages, but their low titer becomes the hurdle in their commercialization. In the present work, an assessment of optimum levels of significant factors (temperature, moisture ratio, inoculum size, and ammonium sulfate) and the effect of their interactions on production of thermostable CMCase, FPase, and β-glucosidase by Thermoascus aurantiacus RCKK under solid-state fermentation (SSF) was carried out using central composite design (CCD) of response surface methodology (RSM). The study revealed 33, 13, and 8 % improvement in FPase, CMCase, and β-glucosidase production, respectively. Moreover, crude cellulase from T. aurantiacus RCKK efficiently hydrolyzed office waste paper, algal pulp (Gracillaria verulosa), and biologically treated wheat straw at 60 °C with sugar release of about 830 mg/ml, 285 mg/g, and 260 mg/g of the substrate, respectively. The thermostable enzyme from T. aurantiacus RCKK holds potential to be used in biofuel industry.
Mohana, Sarayu; Shah, Amita; Divecha, Jyoti; Madamwar, Datta
2008-11-01
Xylanase production by a newly isolated strain of Burkholderia sp. was studied under solid state fermentation using anaerobically treated distillery spent wash. Response surface methodology (RSM) involving Box-Behnken design was employed for optimizing xylanase production. The interactions between distillery effluent concentration, initial pH, moisture ratio and inoculum size were investigated and modeled. Under optimized conditions, xylanase production was found to be in the range of 5200-5600 U/g. The partially purified enzyme recovered after ammonium sulphate fractionation showed maximum activity at 50 degrees C and pH 8.6. Kinetic parameters like Km and Vmax for xylan were found to be 12.75 mg/ml and 165 micromol/mg/min. In the presence of metal ions such as Ca2+, Co2+, Mn2+, Ba2+, Mg2+ and protein disulphide reducing agents such as beta-mercaptoethanol and dithiotheritol (DTT) the activity of enzyme increased, where as strong inhibition of enzyme activity was observed in the presence of Cu2+, Ag+, Fe2+ and SDS. The crude enzyme hydrolysed lignocellulosic substrate, wheat bran as well as industrial pulp.
Nandal, Preeti; Ravella, Sreenivas Rao; Kuhad, Ramesh Chander
2013-01-01
Laccase production by Coriolopsis caperata RCK2011 under solid state fermentation was optimized following Taguchi design of experiment. An orthogonal array layout of L18 (21 × 37) was constructed using Qualitek-4 software with eight most influensive factors on laccase production. At individual level pH contributed higher influence, whereas, corn steep liquor (CSL) accounted for more than 50% of the severity index with biotin and KH2PO4 at the interactive level. The optimum conditions derived were; temperature 30°C, pH 5.0, wheat bran 5.0 g, inoculum size 0.5 ml (fungal cell mass = 0.015 g dry wt.), biotin 0.5% w/v, KH2PO4 0.013% w/v, CSL 0.1% v/v and 0.5 mM xylidine as an inducer. The validation experiments using optimized conditions confirmed an improvement in enzyme production by 58.01%. The laccase production to the level of 1623.55 Ugds−1 indicates that the fungus C. caperata RCK2011 has the commercial potential for laccase. PMID:23463372
Thomas, Jibu; Jayachithra, E V
2015-11-01
Economically viable production facilities for microalgae depend on the optimization of growth parameters with regard to nutrient requirements. Using microalgae to treat industrial effluents containing heavy metals presents an alternative to the current practice of using physical and chemical methods. Present work focuses on the statistical optimization of growth of Chlorococcum humicola to ascertain the maximum production of biomass. Plackett Burman design was carried out to screen the significant variables influencing biomass production. Further, Response Surface Methodology was employed to optimize the effect of inoculum, light intensity and pH on net biomass yield. Optimum conditions for maximum biomass yield were identified to be inoculum at 15%, light intensity to be 1500lx and pH 8.5. Theoretical and predicted values were in agreement and thus the model was found to be significant. Gas chromatography analyses of the FAME derivatives showed a high percentage of saturated fatty acids thereby confirming the biofuel properties of the oil derived from algal biomass. Copyright © 2015 Elsevier Inc. All rights reserved.
Rajagopal, Rajinikanth; Béline, Fabrice
2011-05-01
This study aimed to develop a biochemical-test mainly to evaluate the hydrolytic-potential of different substrates and to apply this test to characterize various organic substrates. Outcome of this study can be used for optimization of the WWTPs through enhancement of N/P removal or anaerobic digestion. Out of four series of batch experiments, the first two tests were conducted to determine the optimal operating conditions (test duration, inoculum-ratio etc.) for the hydrolytic-potential test using secondary and synthetically-prepared sludges. Based on the results (generation of CODs, pH and VFA), test duration was fixed between 6 and 7d allowing to attain maximum hydrolysis and to avoid methanogenesis. Effect of inoculum-ratios on acid fermentation of sludge was not significantly noticed. Using this methodology, third and fourth tests were performed to characterize various organic substrates namely secondary, pre-treated sludge, pig and two different cattle slurries. VFA production was shown to be substantially dependent on substrates types. Copyright © 2011 Elsevier Ltd. All rights reserved.
Do natural biofilm impact nZVI mobility and interactions with porous media? A column study.
Crampon, Marc; Hellal, Jennifer; Mouvet, Christophe; Wille, Guillaume; Michel, Caroline; Wiener, Anke; Braun, Juergen; Ollivier, Patrick
2018-01-01
Nanoparticles (NP) used as remediation agents for groundwater treatment may interact with biofilms naturally present, altering NP mobility and/or reactivity and thereby NP effectiveness. The influence of the presence of a multi species biofilm on the mobility of two types of zero-valent iron NP (nZVI; NANOFER 25S and optimized NANOFER STAR, NanoIron s.r.o. (Czech Republic)) was tested in laboratory experiments with columns mimicking aquifer conditions. Biofilms were grown in columns filled with sand in nitrate reducing conditions using groundwater from an industrial site as inoculum. After two months growth, they were composed of several bacterial species, dominated by Pseudomonas stutzeri. Biofilm strongly affected the physical characteristics of the sand, decreasing total porosity from ~30% to ~15%, and creating preferential pathways with high flow velocities. nZVI suspensions were injected into the columns at a seepage velocity of 10mday - 1 . Presence of biofilm did not impact the concentrations of Fe at the column outlet nor the amount of total Fe retained in the sand, as attested by the measurement of magnetic susceptibility. However, it had a significant impact on NP size sorting as well as on total Fe distribution along the column. This suggests nZVI-biofilm interactions that were confirmed by microscopic observations using SEM/STEM coupled with energy-dispersive X-ray spectroscopy. Our study shows that biofilm modifies the water flow velocity in the porous media, favoring the transport of large aggregates and decreased NP mobility due to physical and chemical interactions. Copyright © 2017 Elsevier B.V. All rights reserved.
Tack, Ignace L M M; Logist, Filip; Noriega Fernández, Estefanía; Van Impe, Jan F M
2015-02-01
Traditional kinetic models in predictive microbiology reliably predict macroscopic dynamics of planktonically-growing cell cultures in homogeneous liquid food systems. However, most food products have a semi-solid structure, where microorganisms grow locally in colonies. Individual colony cells exhibit strongly different and non-normally distributed behavior due to local nutrient competition. As a result, traditional models considering average population behavior in a homogeneous system do not describe colony dynamics in full detail. To incorporate local resource competition and individual cell differences, an individual-based modeling approach has been applied to Escherichia coli K-12 MG1655 colonies, considering the microbial cell as modeling unit. The first contribution of this individual-based model is to describe single colony growth under nutrient-deprived conditions. More specifically, the linear and stationary phase in the evolution of the colony radius, the evolution from a disk-like to branching morphology, and the emergence of a starvation zone in the colony center are simulated and compared to available experimental data. These phenomena occur earlier at more severe nutrient depletion conditions, i.e., at lower nutrient diffusivity and initial nutrient concentration in the medium. Furthermore, intercolony interactions have been simulated. Higher inoculum densities lead to stronger intercolony interactions, such as colony merging and smaller colony sizes, due to nutrient competition. This individual-based model contributes to the elucidation of characteristic experimentally observed colony behavior from mechanistic information about cellular physiology and interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bill Eugene Davidson
2015-01-01
Inoculation of seedlings with arbuscular mycorrhizal fungi (AMF) is a common practice aimed at improving seedling establishment. The success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These events were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush...
Drakulic, Jassy; Caulfield, John; Woodcock, Christine; Jones, Stephen P. T.; Linforth, Robert; Bruce, Toby J. A.
2015-01-01
We hypothesized that interactions between fusarium head blight-causing pathogens and herbivores are likely to occur because they share wheat as a host plant. Our aim was to investigate the interactions between the grain aphid, Sitobion avenae, and Fusarium graminearum on wheat ears and the role that host volatile chemicals play in mediating interactions. Wheat ears were treated with aphids and F. graminearum inoculum, together or separately, and disease progress was monitored by visual assessment and by quantification of pathogen DNA and mycotoxins. Plants exposed to both aphids and F. graminearum inoculum showed accelerated disease progression, with a 2-fold increase in disease severity and 5-fold increase in mycotoxin accumulation over those of plants treated only with F. graminearum. Furthermore, the longer the period of aphid colonization of the host prior to inoculation with F. graminearum, the greater the amount of pathogen DNA that accumulated. Headspace samples of plant volatiles were collected for use in aphid olfactometer assays and were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC-coupled electroantennography. Disease-induced plant volatiles were repellent to aphids, and 2-pentadecanone was the key semiochemical underpinning the repellent effect. We measured aphid survival and fecundity on infected wheat ears and found that both were markedly reduced on infected ears. Thus, interactions between F. graminearum and grain aphids on wheat ears benefit the pathogen at the expense of the pest. Our findings have important consequences for disease epidemiology, because we show increased spread and development of host disease, together with greater disease severity and greater accumulation of pathogen DNA and mycotoxin, when aphids are present. PMID:25769834
Drakulic, Jassy; Caulfield, John; Woodcock, Christine; Jones, Stephen P T; Linforth, Robert; Bruce, Toby J A; Ray, Rumiana V
2015-05-15
We hypothesized that interactions between fusarium head blight-causing pathogens and herbivores are likely to occur because they share wheat as a host plant. Our aim was to investigate the interactions between the grain aphid, Sitobion avenae, and Fusarium graminearum on wheat ears and the role that host volatile chemicals play in mediating interactions. Wheat ears were treated with aphids and F. graminearum inoculum, together or separately, and disease progress was monitored by visual assessment and by quantification of pathogen DNA and mycotoxins. Plants exposed to both aphids and F. graminearum inoculum showed accelerated disease progression, with a 2-fold increase in disease severity and 5-fold increase in mycotoxin accumulation over those of plants treated only with F. graminearum. Furthermore, the longer the period of aphid colonization of the host prior to inoculation with F. graminearum, the greater the amount of pathogen DNA that accumulated. Headspace samples of plant volatiles were collected for use in aphid olfactometer assays and were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC-coupled electroantennography. Disease-induced plant volatiles were repellent to aphids, and 2-pentadecanone was the key semiochemical underpinning the repellent effect. We measured aphid survival and fecundity on infected wheat ears and found that both were markedly reduced on infected ears. Thus, interactions between F. graminearum and grain aphids on wheat ears benefit the pathogen at the expense of the pest. Our findings have important consequences for disease epidemiology, because we show increased spread and development of host disease, together with greater disease severity and greater accumulation of pathogen DNA and mycotoxin, when aphids are present. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Viazis, Stelios; Akhtar, Mastura; Feirtag, Joellen; Diez-Gonzalez, Francisco
2011-02-01
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 has been recognized as a major foodborne pathogen responsible for frequent gastroenteritis outbreaks. Phages and essential oils can be used as a natural antimicrobial method to reduce bacterial pathogens from the food supply. The objective of this study was to determine the effect of a bacteriophage cocktail, BEC8, alone and in combination with the essential oil trans-cinnameldehyde (TC) on the viability of a mixture of EHEC O157:H7 strains applied on whole baby romaine lettuce and baby spinach leaves. The EHEC O157:H7 strains used were Nal(R) mutants of EK27, ATCC 43895, and 472. Exponentially growing cells from tryptic soy (TS) broth cultures were spot inoculated on leaves and dried. EHEC cells were placed at low, medium, and high inoculum levels (10(4), 10(5), and 10(6) CFU/mL, respectively). Appropriate controls, BEC8 (approx. 10(6) PFU/leaf), and TC (0.5% v/v) were applied on treated leaves. The leaves were incubated at 4, 8, 23, and 37 °C in Petri dishes with moistened filter papers. EHEC survival was determined using standard plate count on nalidixic acid (50 μg/mL) Sorbitol MacConkey agar. No survivors were detected when both leaves were treated with BEC8 or TC individually at low inoculum levels after 24 h at 23 and 37 °C. When the EHEC inoculum size increased and/or incubation temperature decreased, the efficacy of BEC8 and TC decreased. However, when the two treatments were combined, no survivors were detected after 10 min at all temperatures and inoculum levels on both leafy greens. These results indicated that the BEC8/TC combination was highly effective against EHEC on both leafy greens. This combination could potentially be used as an antimicrobial to inactivate EHEC O157:H7 and reduce their incidence in the food chain. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kwon, Sun-Jung
2012-01-01
Despite overwhelming interest in the impact exerted by recombination during evolution of RNA viruses, the relative contribution of the polarity of inoculum templates remains poorly understood. Here, by agroinfiltrating Nicotiana benthamiana leaves, we show that brome mosaic virus (BMV) replicase is competent to initiate positive-strand [(+)-strand] synthesis on an ectopically expressed RNA3 negative strand [(−) strand] and faithfully complete the replication cycle. Consequently, we sought to examine the role of RNA polarity in BMV recombination by expressing a series of replication-defective mutants of BMV RNA3 in (+) or (−) polarity. Temporal analysis of progeny sequences revealed that the genetic makeup of the primary recombinant pool is determined by the polarity of the inoculum template. When the polarity of the inoculum template was (+), the recombinant pool that accumulated during early phases of replication was a mixture of nonhomologous recombinants. These are longer than the inoculum template length, and a nascent 3′ untranslated region (UTR) of wild-type (WT) RNA1 or RNA2 was added to the input mutant RNA3 3′ UTR due to end-to-end template switching by BMV replicase during (−)-strand synthesis. In contrast, when the polarity of the inoculum was (−), the progeny contained a pool of native-length homologous recombinants generated by template switching of BMV replicase with a nascent UTR from WT RNA1 or RNA2 during (+)-strand synthesis. Repair of a point mutation caused by polymerase error occurred only when the polarity of the inoculum template was (+). These results contribute to the explanation of the functional role of RNA polarity in recombination mediated by copy choice mechanisms. PMID:22357282
Lu, Haifeng; Dong, Shan; Zhang, Guangming; Han, Ting; Zhang, Yuanhui; Li, Baoming
2018-02-15
Photosynthetic bacteria (PSB) wastewater treatment technology can simultaneously realize wastewater purification and biomass production. The produced biomass contains high value-added products, which can be used in medical and agricultural industry. However, because of the small size and high electronegativity, PSB are hard to be collected from wastewater, which hampers the commercialization of PSB-based industrial processes. Auto-flocculation is a low cost, energy saving, non-toxic biomass collection method for microbiology. In this work, the influence factors with their optimal levels and mechanism for enhancing the auto-flocculation of PSB were investigated in pure cultivation medium. Then PSB auto-flocculation performance in real brewery wastewater was probed. Results showed that Na + concentration, pH and light intensity were three crucial factors except the initial inoculum sizes and temperature. In the pure medium cultivation system, the optimal condition for PSB auto-flocculation was as follows: pH was 9.5, inoculum size was 420 mg l -1 , Na + concentration was 0.067 mol l -1 , light intensity was 5000 lux, temperature was 30°C. Under the optimal condition, the auto-flocculation ratio and biomass recovery reached 85.0% and 1488 mg l -1 , which improved by 1.67-fold and 2.14-fold compared with the PSB enrichment cultivation conditions, respectively. Mechanism analysis showed that the protein/polysaccharides ratio and absolute Zeta potential value had a liner relationship. For the brewery wastewater treatment, under the above optimal condition, the chemical oxygen demand removal reached 94.3% with the auto-flocculation ratio and biomass recovery of 89.6% and 1510 mg l -1 , which increased 2.75-fold and 2.77-fold, respectively.
Wi, Yu Mi; Choi, Ji-Young; Lee, Ji-Young; Kang, Cheol-In; Chung, Doo Ryeon; Peck, Kyong Ran; Song, Jae-Hoon
2017-01-01
ABSTRACT We studied the resistance mechanism and antimicrobial effects of β-lactams on imipenem-resistant Pseudomonas aeruginosa isolates that were susceptible to ceftazidime as detected by time-kill curve methods. Among 215 P. aeruginosa isolates from hospitalized patients in eight hospitals in the Republic of Korea, 18 isolates (23.4% of 77 imipenem-resistant isolates) were imipenem resistant and ceftazidime susceptible. Multilocus sequence typing revealed diverse genotypes, which indicated independent emergence. These 18 isolates were negative for carbapenemase genes. All 18 imipenem-resistant ceftazidime-susceptible isolates showed decreased mRNA expression of oprD, and overexpression of mexB was observed in 13 isolates. In contrast, overexpression of ampC, mexD, mexF, or mexY was rarely found. Time-kill curve methods were applied to three selected imipenem-resistant ceftazidime-susceptible isolates at a standard inoculum (5 × 105 CFU/ml) or at a high inoculum (5 × 107 CFU/ml) to evaluate the antimicrobial effects of β-lactams. Inoculum effects were detected for all three β-lactam antibiotics, ceftazidime, cefepime, and piperacillin-tazobactam, against all three isolates. The antibiotics had significant killing effects in the standard inoculum, but no effects in the high inoculum were observed. Our results suggest that β-lactam antibiotics should be used with caution in patients with imipenem-resistant ceftazidime-susceptible P. aeruginosa infection, especially in high-inoculum infections such as endocarditis and osteomyelitis. PMID:28373200
Temperature-dependent body size effects determine population responses to climate warming.
Lindmark, Max; Huss, Magnus; Ohlberger, Jan; Gårdmark, Anna
2018-02-01
Current understanding of animal population responses to rising temperatures is based on the assumption that biological rates such as metabolism, which governs fundamental ecological processes, scale independently with body size and temperature, despite empirical evidence for interactive effects. Here, we investigate the consequences of interactive temperature- and size scaling of vital rates for the dynamics of populations experiencing warming using a stage-structured consumer-resource model. We show that interactive scaling alters population and stage-specific responses to rising temperatures, such that warming can induce shifts in population regulation and stage-structure, influence community structure and govern population responses to mortality. Analysing experimental data for 20 fish species, we found size-temperature interactions in intraspecific scaling of metabolic rate to be common. Given the evidence for size-temperature interactions and the ubiquity of size structure in animal populations, we argue that accounting for size-specific temperature effects is pivotal for understanding how warming affects animal populations and communities. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Rufeil-Fiori, Elena; Banchio, Adolfo J.
Lipid monolayers with phase coexistence are a frequently used model for lipid membranes. In these systems, domains of the liquid-condensed phase always present size polydispersity. However, very few theoretical works consider size distribution effects on the monolayer properties. Because of the difference in surface densities, domains have excess dipolar density with respect to the surrounding liquid expanded phase, originating a dipolar inter-domain interaction. This interaction depends on the domain area, and hence the presence of a domain size distribution is associated with interaction polydispersity. Inter-domain interactions are fundamental to understanding the structure and dynamics of the monolayer. For this reason, it is expected that polydispersity significantly alters monolayer properties. By means of Brownian dynamics simulations, we study the radial distribution function (RDF), the average mean square displacement and the average time-dependent self-diffusion coefficient, D(t), of lipid monolayers with normal distributed size domains. It was found that polydispersity strongly affects the value of the interaction strength obtained, which is greatly underestimated if polydispersity is not considered. However, within a certain range of parameters, the RDF obtained from a polydisperse model can be well approximated by that of a monodisperse model, suitably fitting the interaction strength, even for 40% polydispersities. For small interaction strengths or small polydispersities, the polydisperse systems obtained from fitting the experimental RDF have an average mean square displacement and D(t) in good agreement with that of the monodisperse system.
Rodriguez, Renata P; Zaiat, Marcelo
2011-04-01
This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optimization of the production of mycorrhizal inoculum on substrate with organic fertilizer
Coelho, Ieda R; Pedone-Bonfim, Maria VL; Silva, Fábio SB; Maia, Leonor C
2014-01-01
The system for production of inoculum of arbuscular mycorrhizal fungi (AMF) using sand and vermiculite irrigated with nutrient solution is promising. However, organic amendments added to the substrate can stimulate sporulation of AMF and replace the nutrient solution. The aim of this study was to maximize the production of AMF (Acaulospora longula, Claroideoglomus etunicatum, Dentiscutata heterogama and Gigaspora albida) using selected organic substrates (vermicompost, coir dust and Tropstrato) together with sand and vermiculite. The production of spores varied among the tested AMF and according to the organic source added to the substrate. The vermicompost promoted higher sporulation of A. longula in relation to the other AMF and substrates. The Tropstrato® inhibited the sporulation of D. heterogama while the reproduction of C. etunicatum was not affected by the organic compounds. The inoculum of A. longula also showed a high number of infective propagules and promoted biomass accumulation in maize plants. The system of inoculum production using sand and vermiculite + 10% vermicompost favors the production of infective inoculum of A. longula with the fungus benefiting growth of corn plants. PMID:25763020
Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins
NASA Astrophysics Data System (ADS)
Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim
2016-05-01
The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be more attractive for larger sized nanoparticles. The nanoparticle aggregates are characterized by mass fractal.
Blom, D; Fabbri, C; Connor, E C; Schiestl, F P; Klauser, D R; Boller, T; Eberl, L; Weisskopf, L
2011-11-01
Recent studies have suggested that bacterial volatiles play an important role in bacterial-plant interactions. However, few reports of bacterial species that produce plant growth modulating volatiles have been published, raising the question whether this is just an anecdotal phenomenon. To address this question, we performed a large screen of strains originating from the soil for volatile-mediated effects on Arabidopsis thaliana. All of the 42 strains tested showed significant volatile-mediated plant growth modulation, with effects ranging from plant death to a sixfold increase in plant biomass. The effects of bacterial volatiles were highly dependent on the cultivation medium and the inoculum quantity. GC-MS analysis of the tested strains revealed over 130 bacterial volatile compounds. Indole, 1-hexanol and pentadecane were selected for further studies because they appeared to promote plant growth. None of these compounds triggered a typical defence response, using production of ethylene and of reactive oxygen species (ROS) as read-outs. However, when plants were challenged with the flg-22 epitope of bacterial flagellin, a prototypical elicitor of defence responses, additional exposure to the volatiles reduced the flg-22-induced production of ethylene and ROS in a dose-dependent manner, suggesting that bacterial volatiles may act as effectors to inhibit the plant's defence response. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Tran, T H T; Boudry, C; Everaert, N; Théwis, A; Portetelle, D; Daube, G; Nezer, C; Taminiau, B; Bindelle, J
2016-02-01
Adding mucus to in vitro fermentation models of the large intestine shows that some genera, namely lactobacilli, are dependent on host-microbiota interactions and that they rely on mucosal layers to increase their activity. This study investigated whether this dependence on mucus is substrate dependent and to what extent other genera are impacted by the presence of mucus. Inulin and cellulose were fermented in vitro by a fecal inoculum from pig in the presence or not of mucin beads in order to compare fermentation patterns and bacterial communities. Mucins increased final gas production with inulin and shifted short-chain fatty acid molar ratios (P < 0.001). Quantitative real-time PCR analyses revealed that Lactobacillus spp. and Bifidobacterium spp. decreased with mucins, but Bacteroides spp. increased when inulin was fermented. A more in-depth community analysis indicated that the mucins increased Proteobacteria (0.55 vs 0.25%, P = 0.013), Verrucomicrobia (5.25 vs 0.03%, P = 0.032), Ruminococcaceae, Bacteroidaceae and Akkermansia spp. Proteobacteria (5.67 vs 0.55%, P < 0.001) and Lachnospiraceae (33 vs 10.4%) were promoted in the mucus compared with the broth, while Ruminococcaceae decreased. The introduction of mucins affected many microbial genera and fermentation patterns, but from PCA results, the impact of mucus was independent of the fermentation substrate. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Palihawadana-Arachchige, Maheshika; Nemala, Humeshkar; Naik, Vaman M.; Naik, Ratna
2017-01-01
Magnetic hyperthermia (MHT), where localized heating is generated when magnetic nanoparticles (MNPs) are subjected to a radiofrequency magnetic field, has a great potential as a non-invasive cancer therapy treatment. The efficiency of heat generation depends on the magnetic properties of MNPs, such as saturation magnetization (Ms) and magnetic anisotropy (K), as well as the particle size distribution and magnetic dipolar interactions. We have investigated MHT in two Fe3O4 ferrofluids prepared by co-precipitation (CP) and hydrothermal (HT) synthesis methods showing similar physical particle size distribution (14 ± 4 nm) and saturation magnetization (70 ± 2 emu/g of Fe3O4) but very different specific absorption rates (SAR) of ˜110 W/g and ˜40 W/g at room temperature (measured with an ac magnetic field amplitude of 240 Oe and a frequency of 375 kHz). This observed reduction in SAR has been explained by taking into account the dipolar interactions and the distribution of the magnetic core size of MNPs in ferrofluids. The HT ferrofluid shows a higher effective dipolar interaction and a wider distribution of the magnetic core size of MNPs compared to those of the CP ferrofluid. We have fitted the temperature dependent SAR data using the linear response theory, incorporating an effective dipolar interaction, to determine the magnetic anisotropy constant of MNPs prepared by CP (22 ± 2 kJ/m3) and HT (26 ± 2 kJ/m3) synthesis methods. These values are in good agreement with the magnetic anisotropy constant determined using frequency and temperature dependent magnetic susceptibility data obtained on powder samples.
Ocasio-Vega, César; Abad-Guamán, Rodrigo; Delgado, Rebeca; Carabaño, Rosa; Carro, María Dolores; García, Javier
2018-06-01
The in vitro caecal fermentation of five substrates low in starch and protein content [d-(+)-glucose (GLU), d-cellobiose (CEL), sugar beet pectin (PEC), sugar beet pulp (SBP) and wheat straw (WS)] was investigated using soft faeces from rabbits receiving different levels of cellobiose and soluble fibre as inoculum. A total of 24 rabbits were supplemented 3 levels of cellobiose in the drinking water (0.0, 7.5, 15.0 g/l) and fed two experimental diets containing either low soluble fibre (LSF) or high soluble fibre (HSF) levels (84.0 and 130 g/kg dry matter). All substrates were subjected to a two-step pepsin/pancreatin in vitro pre-digestion, and the whole residue was used as substrate for the in vitro incubations. Gas production was measured until 144 h, and volatile fatty acid (VFA) production was determined at 24 h incubation. Experimental treatments did not affect SBP fermentation and had only a subtle influence on fermentation of WS and GLU. In contrast, cellobiose supplementation × donors' diet interactions were detected for most gas production parameters for CEL. Both the fractional gas production (k) and maximal gas production rates were linearly increased (p ≤ 0.042) and the initial delay in the onset of gas production (Lag) linearly decreased (p < 0.001) by cellobiose supplementation with the HSF inoculum, with no differences between the 7.5 and 15.0 doses. In contrast, with the LSF inoculum cellobiose supplementation only affected k values, which were quadratically increased (p = 0.043) and had maximal values for the 7.5 dose. A quadratic effect (p ≤ 0.018) of cellobiose supplementation was observed for total VFA production at 24 h when CEL and PEC were fermented, obtaining the maximal VFA production for the 7.5 dose of cellobiose. Total VFA production for CEL was greater with LSF than with HSF inoculum (20.7 vs. 12.9 mmol/l; p = 0.014), but the opposite was found for WS (3.97 vs. 6.21 mmol/l; p = 0.005). The use of LSF inoculum for CEL fermentation sharply reduced acetate (p = 0.001) and increased butyrate proportions (p ≤ 0.001) compared with the HSF inoculum. A positive relationship between total VFA caecal concentrations in rabbits receiving the same experimental treatments and in vitro values was only observed when WS was used as substrate (r = 0.90; p = 0.015; n = 6). The results suggest that experimental factors influenced the fermentative activity of caecal digesta, but the observed response differed with the incubated substrate, being the CEL the most affected.
Diffusion within the cytoplasm: a mesoscale model of interacting macromolecules.
Trovato, Fabio; Tozzini, Valentina
2014-12-02
Recent experiments carried out in the dense cytoplasm of living cells have highlighted the importance of proteome composition and nonspecific intermolecular interactions in regulating macromolecule diffusion and organization. Despite this, the dependence of diffusion-interaction on physicochemical properties such as the degree of poly-dispersity and the balance between steric repulsion and nonspecific attraction among macromolecules was not systematically addressed. In this work, we study the problem of diffusion-interaction in the bacterial cytoplasm, combining theory and experimental data to build a minimal coarse-grained representation of the cytoplasm, which also includes, for the first time to our knowledge, the nucleoid. With stochastic molecular-dynamics simulations of a virtual cytoplasm we are able to track the single biomolecule motion, sizing from 3 to 80 nm, on submillisecond-long trajectories. We demonstrate that the size dependence of diffusion coefficients, anomalous exponents, and the effective viscosity experienced by biomolecules in the cytoplasm is fine-tuned by the intermolecular interactions. Accounting only for excluded volume in these potentials gives a weaker size-dependence than that expected from experimental data. On the contrary, adding nonspecific attraction in the range of 1-10 thermal energy units produces a stronger variation of the transport properties at growing biopolymer sizes. Normal and anomalous diffusive regimes emerge straightforwardly from the combination of high macromolecular concentration, poly-dispersity, stochasticity, and weak nonspecific interactions. As a result, small biopolymers experience a viscous cytoplasm, while the motion of big ones is jammed because the entanglements produced by the network of interactions and the entropic effects caused by poly-dispersity are stronger. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Ethylene Inhibits Aflatoxin Biosynthesis in Aspergillus parasiticus Grown on Peanuts
Gunterus, A.; Roze, L.V.; Beaudry, R.; Linz, J. E.
2007-01-01
The filamentous fungi Aspergillus parasiticus and A. flavus synthesize aflatoxins when they grow on a variety of susceptible food and feed crops. These mycotoxins are among the most carcinogenic naturally occurring compounds known and they pose significant health risks to humans and animals. We previously demonstrated that ethylene and CO2 act alone and together to reduce aflatoxin synthesis by A. parasiticus grown on laboratory media. To demonstrate the potential efficacy of treatment of stored seeds and grains with these gases, we tested ethylene and CO2 for ability to inhibit aflatoxin accumulation on Georgia Green peanuts stored for up to 5 days. We demonstrated an inverse relationship between A. parasiticus spore inoculum size and the level of toxin accumulation. We showed that ethylene inhibits aflatoxin synthesis in a dose-dependent manner on peanuts; CO2 also inhibits aflatoxin synthesis over a narrow dose range. Treatments had not discernable effect on mold growth. These observations support further exploration of this technology to reduce aflatoxin contamination of susceptible crops in the field and during storage. PMID:17418318
Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Sarubbo, Leonie A.
2017-01-01
Biosurfactant production optimization by Candida tropicalis UCP0996 was studied combining central composite rotational design (CCRD) and response surface methodology (RSM). The factors selected for optimization of the culture conditions were sugarcane molasses, corn steep liquor, waste frying oil concentrations and inoculum size. The response variables were surface tension and biosurfactant yield. All factors studied were important within the ranges investigated. The two empirical forecast models developed through RSM were found to be adequate for describing biosurfactant production with regard to surface tension (R2 = 0.99833) and biosurfactant yield (R2 = 0.98927) and a very strong, negative, linear correlation was found between the two response variables studied (r = −0.95). The maximum reduction in surface tension and the highest biosurfactant yield were 29.98 mNm−1 and 4.19 gL−1, respectively, which were simultaneously obtained under the optimum conditions of 2.5% waste frying oil, 2.5%, corn steep liquor, 2.5% molasses, and 2% inoculum size. To validate the efficiency of the statistically optimized variables, biosurfactant production was also carried out in 2 and 50 L bioreactors, with yields of 5.87 and 7.36 gL−1, respectively. Finally, the biosurfactant was applied in motor oil dispersion, reaching up to 75% dispersion. Results demonstrated that the CCRD was suitable for identifying the optimum production conditions and that the new biosurfactant is a promising dispersant for application in the oil industry. PMID:28223971
Fadel, M; Keera, Abeer A; Mouafi, Foukia E; Kahil, Tarek
2013-01-01
A new local strain of S. cerevisiae F-514, for ethanol production during hot summer season, using Egyptian sugar cane molasses was applied in Egyptian distillery factory. The inouluum was propagated through 300 L, 3 m(3), and 12 m(3) fermenters charged with diluted sugar cane molasses containing 4%-5% sugars. The yeast was applied in fermentation vessels 65 m(3) working volume to study the varying concentrations of urea, DAP, orthophosphoric acid (OPA), and its combinations as well as magnesium sulfate and inoculum size. The fermenter was allowed to stay for a period of 20 hours to give time for maximum conversion of sugars into ethanol. S. cerevisiae F-514 at molasses sugar level of 18% (w/v), inoculum size of 20% (v/v) cell concentration of 3.0 × 10(8)/mL, and combinations of urea, diammonium phosphate (DAP), orthophosphoric acid (OPA), and magnesium sulfate at amounts of 20, 10, 5, and 10 kg/65 m(3) working volume fermenters, respectively, supported maximum ethanol production (9.8%, v/v), fermentation efficiency (FE) 88.1%, and remaining sugars (RS) 1.22%. The fermentation resulted 13.4 g dry yeast/L contained 34.6% crude protein and 8.2% ash. By selecting higher ethanol yielding yeast strain and optimizing, the fermentation parameters both yield and economics of the fermentation process can be improved.
pH-dependent interaction and resultant structures of silica nanoparticles and lysozyme protein.
Kumar, Sugam; Aswal, Vinod K; Callow, P
2014-02-18
Small-angle neutron scattering (SANS) and UV-visible spectroscopy studies have been carried out to examine pH-dependent interactions and resultant structures of oppositely charged silica nanoparticles and lysozyme protein in aqueous solution. The measurements were carried out at fixed concentration (1 wt %) of three differently sized silica nanoparticles (8, 16, and 26 nm) over a wide concentration range of protein (0-10 wt %) at three different pH values (5, 7, and 9). The adsorption curve as obtained by UV-visible spectroscopy shows exponential behavior of protein adsorption on nanoparticles. The electrostatic interaction enhanced by the decrease in the pH between the nanoparticle and protein (isoelectric point ∼11.4) increases the adsorption coefficient on nanoparticles but decreases the overall amount protein adsorbed whereas the opposite behavior is observed with increasing nanoparticle size. The adsorption of protein leads to the protein-mediated aggregation of nanoparticles. These aggregates are found to be surface fractals at pH 5 and change to mass fractals with increasing pH and/or decreasing nanoparticle size. Two different concentration regimes of interaction of nanoparticles with protein have been observed: (i) unaggregated nanoparticles coexisting with aggregated nanoparticles at low protein concentrations and (ii) free protein coexisting with aggregated nanoparticles at higher protein concentrations. These concentration regimes are found to be strongly dependent on both the pH and nanoparticle size.
Omnibus Tests for Interactions in Repeated Measures Designs with Dichotomous Dependent Variables.
ERIC Educational Resources Information Center
Serlin, Ronald C.; Marascuilo, Leonard A.
When examining a repeated measures design with independent groups for a significant group by trial interaction, classical analysis of variance or multivariate procedures can be used if the assumptions underlying the tests are met. Neither procedure may be justified for designs with small sample sizes and dichotomous dependent variables. An omnibus…
Rufeil-Fiori, Elena; Banchio, Adolfo J
2018-03-07
In lipid monolayers with phase coexistence, domains of the liquid-condensed phase always present size polydispersity. However, very few theoretical works consider size distribution effects on the monolayer properties. Because of the difference in surface densities, domains have excess dipolar density with respect to the surrounding liquid expanded phase, originating a dipolar inter-domain interaction. This interaction depends on the domain area, and hence the presence of a domain size distribution is associated with interaction polydispersity. Inter-domain interactions are fundamental to understanding the structure and dynamics of the monolayer. For this reason, it is expected that polydispersity significantly alters monolayer properties. By means of Brownian dynamics simulations, we study the radial distribution function (RDF), the average mean square displacement and the average time-dependent self-diffusion coefficient, D(t), of lipid monolayers with normally distributed size domains. For this purpose, we vary the relevant system parameters, polydispersity and interaction strength, within a range of experimental interest. We also analyze the consequences of using a monodisperse model to determine the interaction strength from an experimental RDF. We find that polydispersity strongly affects the value of the interaction strength, which is greatly underestimated if polydispersity is not considered. However, within a certain range of parameters, the RDF obtained from a polydisperse model can be well approximated by that of a monodisperse model, by suitably fitting the interaction strength, even for 40% polydispersities. For small interaction strengths or small polydispersities, the polydisperse systems obtained from fitting the experimental RDF have an average mean square displacement and D(t) in good agreement with that of the monodisperse system.
Forgrave, R; Donaghy, J A; Fisher, A; Rowe, M T
2016-11-01
Persistence of Mycobacterium bovis was investigated in UK raw milk cheeses. Replicating traditional cheese production methods under stringent CL3 containment conditions, Cheddar and Caerphilly cheeses were produced with Myco. bovis inoculated raw milk. High-inoculum investigations used three Myco. bovis genotypes; later low-inoculum investigations used only Myco. bovis AF2122/97. High-inoculum Cheddar (n = 9) and Caerphilly (n = 9) were matured for a minimum of 12 and 4 months respectively; maturation of low-inoculum Cheddar (n = 3) and Caerphilly (n = 3) was up to 11 weeks. Survival of Myco. bovis was monitored by enumeration at different points throughout cheese manufacture and ripening. D values were calculated as follows: 57 and 59 days in high-inoculum Cheddar and Caerphilly, respectively, and 41 and 24 days in low-inoculum Cheddar and Caerphilly respectively. Mycobacterium bovis is concentrated in cheese curd and a proportion lost with the whey. Reduction in viability during manufacturing is limited, while significant Myco. bovis inactivation occurs during maturation. Inactivation was improved, during Caerphilly ripening, when acid development was enhanced by increasing the proportion of starter culture. Mycobacterium bovis inactivation data obtained could be used to inform assessment of the risk posed to consumers by raw milk dairy products. © 2016 The Society for Applied Microbiology.
Wi, Yu Mi; Choi, Ji-Young; Lee, Ji-Young; Kang, Cheol-In; Chung, Doo Ryeon; Peck, Kyong Ran; Song, Jae-Hoon; Ko, Kwan Soo
2017-06-01
We studied the resistance mechanism and antimicrobial effects of β-lactams on imipenem-resistant Pseudomonas aeruginosa isolates that were susceptible to ceftazidime as detected by time-kill curve methods. Among 215 P. aeruginosa isolates from hospitalized patients in eight hospitals in the Republic of Korea, 18 isolates (23.4% of 77 imipenem-resistant isolates) were imipenem resistant and ceftazidime susceptible. Multilocus sequence typing revealed diverse genotypes, which indicated independent emergence. These 18 isolates were negative for carbapenemase genes. All 18 imipenem-resistant ceftazidime-susceptible isolates showed decreased mRNA expression of oprD , and overexpression of mexB was observed in 13 isolates. In contrast, overexpression of ampC , mexD , mexF , or mexY was rarely found. Time-kill curve methods were applied to three selected imipenem-resistant ceftazidime-susceptible isolates at a standard inoculum (5 × 10 5 CFU/ml) or at a high inoculum (5 × 10 7 CFU/ml) to evaluate the antimicrobial effects of β-lactams. Inoculum effects were detected for all three β-lactam antibiotics, ceftazidime, cefepime, and piperacillin-tazobactam, against all three isolates. The antibiotics had significant killing effects in the standard inoculum, but no effects in the high inoculum were observed. Our results suggest that β-lactam antibiotics should be used with caution in patients with imipenem-resistant ceftazidime-susceptible P. aeruginosa infection, especially in high-inoculum infections such as endocarditis and osteomyelitis. Copyright © 2017 American Society for Microbiology.
Signature of hydrophobic hydration in a single polymer
Li, Isaac T. S.; Walker, Gilbert C.
2011-01-01
Hydrophobicity underpins self-assembly in many natural and synthetic molecular and nanoscale systems. A signature of hydrophobicity is its temperature dependence. The first experimental evaluation of the temperature and size dependence of hydration free energy in a single hydrophobic polymer is reported, which tests key assumptions in models of hydrophobic interactions in protein folding. Herein, the hydration free energy required to extend three hydrophobic polymers with differently sized aromatic side chains was directly measured by single molecule force spectroscopy. The results are threefold. First, the hydration free energy per monomer is found to be strongly dependent on temperature and does not follow interfacial thermodynamics. Second, the temperature dependence profiles are distinct among the three hydrophobic polymers as a result of a hydrophobic size effect at the subnanometer scale. Third, the hydration free energy of a monomer on a macromolecule is different from a free monomer; corrections for the reduced hydration free energy due to hydrophobic interaction from neighboring units are required. PMID:21911397
Surface charge-induced EDL interaction on the contact angle of surface nanobubbles.
Jing, Dalei; Li, Dayong; Pan, Yunlu; Bhushan, Bharat
2016-11-01
The contact angle (CA) of surface nanobubbles is believed to affect the stability of nanobubbles and fluid drag in micro/nanofluidic systems. The CA of nanobubbles is dependent on size and is believed to be affected by the surface charge-induced electrical double layer (EDL). However, neither of these of attributes are well understood. In this paper, by introducing an EDL-induced electrostatic wetting tension, a theoretical model is first established to study the effect of EDLs formed near the solid-liquid interface and the liquid-nanobubble interface on the gas phase CA of nanobubbles. The size-dependence of this EDL interaction is studied as well. Next, by using atomic force microscopy (AFM), the effect of the EDL on nanobubbles' gas phase CA is studied with variable electrical potential at the solid-liquid interface, which is adjusted by an applied voltage. Both the theoretical and the experimental results show that the EDLs formed near the solid-liquid interface and the liquid-nanobubble interface lead to a reduction of gas phase CA of the surface nanobubbles because of an electrostatic wetting tension on the nanobubble due to the attractive electrostatic interaction between the liquid and nanobubble within the EDL, which is in the nanobubbles' outward direction. An EDL with a larger zeta potential magnitude leads to a larger gas phase CA reduction. Furthermore, the effect of EDL on the nanobubbles' gas phase CA shows a significant size-dependence considering the size dependence of the electrostatic wetting tension. The gas phase CA reduction due to the EDL decreases with increasing nanobubble height and increases with the nanobubble's increasing curvature radius, indicating that a surface charge-induced EDL could possibly explain the size dependence of the gas phase CA of nanobubbles.
Pachapur, Vinayak Laxman; Kutty, Prianka; Brar, Satinder Kaur; Ramirez, Antonio Avalos
2016-01-01
Anaerobic digestion using mixed-culture with broader choice of pretreatments for hydrogen (H2) production was investigated. Pretreatment of wastewater sludge by five methods, such as heat, acid, base, microwave and chloroform was conducted using crude glycerol (CG) as substrate. Results for heat treatment (100 °C for 15 min) showed the highest H2 production across the pretreatment methods with 15.18 ± 0.26 mmol/L of medium at 30 °C in absence of complex media and nutrient solution. The heat-pretreated inoculum eliminated H2 consuming bacteria and produced twice as much as H2 as compared to other pretreatment methods. The fermentation conditions, such as CG concentration (1.23 to 24 g/L), percentage of inoculum size (InS) (1.23% to 24% v/v) along with initial pH (2.98 to 8.02) was tested using central composite design (CCD) with H2 production as response parameter. The maximum H2 production of 29.43 ± 0.71 mmol/L obtained at optimum conditions of 20 g/L CG, 20% InS and pH 7. Symbiotic correlation of pH over CG and InS had a significant (p-value: 0.0011) contribution to H2 production. The mixed-culture possessed better natural acclimatization activity for degrading CG, at substrate inhibition concentration and provided efficient inoculum conditions in comparison to mono- and co-culture systems. The heat pretreatment step used across mixed-culture system is simple, cheap and industrially applicable in comparison to mono-/co-culture systems for H2 production. PMID:26771607
Tzelepis, Fanny; Persechini, Pedro M; Rodrigues, Mauricio M
2007-04-25
Following infection with viruses, bacteria or protozoan parasites, naïve antigen-specific CD8(+) T cells undergo a process of differentiation and proliferation to generate effector cells. Recent evidences suggest that the timing of generation of specific effector CD8(+) T cells varies widely according to different pathogens. We hypothesized that the timing of increase in the pathogen load could be a critical parameter governing this process. Using increasing doses of the protozoan parasite Trypanosoma cruzi to infect C57BL/6 mice, we observed a significant acceleration in the timing of parasitemia without an increase in mouse susceptibility. In contrast, in CD8 deficient mice, we observed an inverse relationship between the parasite inoculum and the timing of death. These results suggest that in normal mice CD8(+) T cells became protective earlier, following the accelerated development of parasitemia. The evaluation of specific cytotoxic responses in vivo to three distinct epitopes revealed that increasing the parasite inoculum hastened the expansion of specific CD8(+) cytotoxic T cells following infection. The differentiation and expansion of T. cruzi-specific CD8(+) cytotoxic T cells is in fact dependent on parasite multiplication, as radiation-attenuated parasites were unable to activate these cells. We also observed that, in contrast to most pathogens, the activation process of T. cruzi-specific CD8(+) cytotoxic T cells was dependent on MHC class II restricted CD4(+) T cells. Our results are compatible with our initial hypothesis that the timing of increase in the pathogen load can be a critical parameter governing the kinetics of CD4(+) T cell-dependent expansion of pathogen-specific CD8(+) cytotoxic T cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Xin, Le; Uzunoglu, Aytekin
In making a catalyst ink, the interaction between Nafion ionomer and catalyst support are the key factors that directly affect both ionic conductivity and electronic conductivity of the catalyst layer in a membrane electrode assembly (MEA). One of the major aims of this investigation is to understand the behavior of the catalyst support, Vulcan XC-72 (XC-72) aggregates, in the existence of the Nafion ionomer in a catalyst ink to fill the knowledge gap of the interaction of these components. The dispersion of catalyst ink not only depends on the solvent, but also depends on the interaction of Nafion and carbonmore » particles in the ink. The interaction of Nafion ionomer particles and XC-72 catalyst aggregates in liquid media was studied using ultra small angle x-ray scattering (USAXS) and cryogenic TEM techniques. Carbon black XC-72) and functionalized carbon black systems were introduced to study the interaction behaviors. A multiple curve fitting was used to extract the particle size and size distribution from scattering data. The results suggest that the particle size and size distribution of each system changed significantly in Nafion + XC-72 system, Nafion + NH2-XC72 system, and Nafion + SO3H-XC-72 system, which indicates that an interaction among these components (i.e. ionomer particles and XC-72 aggregates) exists. The cryogenic TEM, which allows for the observation the size of particles in a liquid, was used to validate the scattering results and shows excellent agreement.« less
Alvioli, M.; Cole, B. A.; Frankfurt, L.; ...
2016-01-21
The centrality dependence of forward jet production in pA collisions at the Large Hadron Collider (LHC) has been found to grossly violate the Glauber model prediction in a way that depends on the x in the proton. In this paper, we argue that this modification pattern provides the first experimental evidence for x-dependent proton color fluctuation effects. On average, parton configurations in the projectile proton containing a parton with large x interact with a nuclear target with a significantly smaller than average cross section and have smaller than average size. We implement the effects of fluctuations of the interaction strengthmore » and, using the ATLAS analysis of how hadron production at backward rapidities depends on the number of wounded nucleons, make quantitative predictions for the centrality dependence of the jet production rate as a function of the x-dependent interaction strength σ(x). We find that σ(x) ~ 0.6(σ) gives a good description of the data at x = 0.6. Finally, these findings support an explanation of the European Muon Collaboration effect as arising from the suppression of small-size nucleon configurations in the nucleus.« less
Influence of Aphelenchus avenae on Vesicular-arbuscular Endomycorrhizal Growth Response in Cotton.
Hussey, R S; Roncadori, R W
1981-01-01
The influence of Aphelenchus avenae on the relationship between cotton (Gossypium hirsutum 'Stoneville 213') and Gigaspora margarita or Glomus etunicatus was assessed by its effect on the mycorrhizal stimulation of plant growth and microorganism reproduction. The mycophagous nematode usually did not suppress stimulation of shoot growth resulting from mycorrhizae (G. margarita) at inoculum levels of 3,000 or 6,000 nematodes per pot, but retarded root growth at 6,000 per pot. When the nematode inoculum was increased to 10, 40, or 80 thousand, G. margarita stimulation of shoot or root growth was retarded at the two higher rates. Shoot growth enhancement by G. etunicatus was suppressed by 10 thousand A. avenae but not by 40 or 80 thousand. A. avenae reproduced better when the nematode was added 3 wk after G. margarita than with simultaneous inoculations. Sporulation of both fungi was affected little by the mycophagous nematode. The high numbers of A. avenae required for an antagonistic effect probably precludes the occurrence of any significant interaction between these two organisms under field conditions.
The Prevention of Surgical Site Infection in Elective Colon Surgery
Fry, Donald E.
2013-01-01
Infections at the surgical site continue to occur in as many as 20% of elective colon resection cases. Methods to reduce these infections are inconsistently applied. Surgical site infection (SSI) is the result of multiple interactive variables including the inoculum of bacteria that contaminate the site, the virulence of the contaminating microbes, and the local environment at the surgical site. These variables that promote infection are potentially offset by the effectiveness of the host defense. Reduction in the inoculum of bacteria is achieved by appropriate surgical site preparation, systemic preventive antibiotics, and use of mechanical bowel preparation in conjunction with the oral antibiotic bowel preparation. Intraoperative reduction of hematoma, necrotic tissue, foreign bodies, and tissue dead space will reduce infections. Enhancement of the host may be achieved by perioperative supplemental oxygenation, maintenance of normothermia, and glycemic control. These methods require additional research to identify optimum application. Uniform application of currently understood methods and continued research into new methods to reduce microbial contamination and enhancement of host responsiveness can lead to better outcomes. PMID:24455434
Microbial ecology of anaerobic digesters: the key players of anaerobiosis.
Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed
2014-01-01
Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed.
Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis
Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed
2014-01-01
Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142
Kinetics of Coinfection with Influenza A Virus and Streptococcus pneumoniae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Amber M.; Adler, Frederick R.; Ribeiro, Ruy M.
Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. In this paper, to address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determinedmore » that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Finally, our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.« less
Kinetics of Coinfection with Influenza A Virus and Streptococcus pneumoniae
Smith, Amber M.; Adler, Frederick R.; Ribeiro, Ruy M.; ...
2013-03-21
Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. In this paper, to address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determinedmore » that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Finally, our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.« less
Clifton, Eric H; Jaronski, Stefan T; Coates, Brad S; Hodgson, Erin W; Gassmann, Aaron J
2018-01-01
Terrestrial plants can harbor endophytic fungi that may induce changes in plant physiology that in turn affect interactions with herbivorous insects. We evaluated whether the application of entomopathogenic fungi Beauveria bassiana and Metarhizium brunneum to soybean seeds could become endophytic and affect interactions with soybean aphid (Aphis glycines Matsumura). It was found that A. glycines population sizes increased on plants with M. brunneum (strain F52) seed inoculum, but no significant effects were shown with analogous treatments with B. bassiana (strain GHA). Fungi recovered from soybean plant tissues indicate that endophytism was established, and that B. bassiana was more prevalent. Metarhizium brunneum was only recovered from stems, but B. bassiana was recovered from stems and leaves. This work confirms that some entomopathogenic fungi can be endophytic in soybean, however, some of these fungi may have a negative effect on the plants by increasing susceptibility of soybean to A. glycines. We also used DNA sequence data to identify species of Metarhizium obtained from agricultural fields in Iowa. Phylogenetic analyses, based on DNA sequence data, found that all isolates were Metarhizium robertsii, which is consistent with past studies indicating a cosmopolitan distribution and wide host range for this species. These results are important for understanding the dynamics of implementing environmentally sustainable measures for the control of pest insects.
NASA Astrophysics Data System (ADS)
Nguyen, Trung N.; Siegmund, Thomas; Tomar, Vikas; Kruzic, Jamie J.
2017-12-01
Size effects occur in non-uniform plastically deformed metals confined in a volume on the scale of micrometer or sub-micrometer. Such problems have been well studied using strain gradient rate-independent plasticity theories. Yet, plasticity theories describing the time-dependent behavior of metals in the presence of size effects are presently limited, and there is no consensus about how the size effects vary with strain rates or whether there is an interaction between them. This paper introduces a constitutive model which enables the analysis of complex load scenarios, including loading rate sensitivity, creep, relaxation and interactions thereof under the consideration of plastic strain gradient effects. A strain gradient viscoplasticity constitutive model based on the Kocks-Mecking theory of dislocation evolution, namely the strain gradient Kocks-Mecking (SG-KM) model, is established and allows one to capture both rate and size effects, and their interaction. A formulation of the model in the finite element analysis framework is derived. Numerical examples are presented. In a special virtual creep test with the presence of plastic strain gradients, creep rates are found to diminish with the specimen size, and are also found to depend on the loading rate in an initial ramp loading step. Stress relaxation in a solid medium containing cylindrical microvoids is predicted to increase with decreasing void radius and strain rate in a prior ramp loading step.
Inouye, Shigeharu; Nishiyama, Yayoi; Uchida, Katsuhisa; Hasumi, Yayoi; Yamaguchi, Hideyo; Abe, Shigeru
2006-12-01
The vapor activity of six essential oils against a Trichophyton mentagrophytes was examined using a closed box. The antifungal activity was determined from colony size, which was correlated with the inoculum size. As judged from the minimum inhibitory dose and the minimum fungicidal dose determined after vapor exposure for 24 h, the vapor activity of the six essential oils was ranked in the following order: oregano > clove, perilla > geranium, lavender, tea tree. The vapors of oregano, perilla, tea tree, and lavender oils killed the mycelia by short exposure, for 3 h, but the vapors of clove and geranium oils were only active after overnight exposure. The vapor of oregano and other oils induced lysis of the mycelia. Morphological examination by scanning electron microscope (SEM) revealed that the cell membrane and cell wall were damaged in a dose- and time-dependent manner by the action of oregano vapor, causing rupture and peeling of the cell wall, with small bulges coming from the cell membrane. The vapor activity increased after 24 h, but mycelial accumulation of the active oil constituents was maximized around 15 h, and then decreased in parallel with the decrease of vapor concentration. This suggested that the active constituent accumulated on the fungal cells around 15 h caused irreversible damage, which eventually led to cellular death.
Transmission of Phytophthora ramorum in Mixed-Evergreen Forest in California.
Davidson, Jennifer M; Wickland, Allison C; Patterson, Heather A; Falk, Kristen R; Rizzo, David M
2005-05-01
ABSTRACT During 2001 to 2003, the transmission biology of Phytophthora ramorum, the causal agent of sudden oak death, was studied in mixedevergreen forest, a common forest type in northern, coastal California. Investigation of the sources of spore production focused on coast live oak (Quercus agrifolia) and bay laurel (Umbellularia californica), dominant hosts that comprised 39.7 and 46.2% of the individuals at the study site, respectively. All tests for inoculum production from the surface of infected coast live oak bark or exudates from cankers were negative. In contrast, sporangia and chlamydospores were produced on the surface of infected bay laurel leaves. Mean number of zoospores produced from infected bay laurel leaves under natural field conditions during rainstorms was 1,173.0 +/- SE 301.48, and ranged as high as 5,200 spores/leaf. P. ramorum was recovered from rainwater, soil, litter, and streamwater during the mid- to late rainy season in all 3 years of the study. P. ramorum was not recovered from sporadic summer rains or soil and litter during the hot, dry summer months. Concentrations of inoculum in rainwater varied significantly from year to year and increased as the rainy season progressed for the two complete seasons that were studied. Potential dispersal distances were investigated for rainwater, soil, and streamwater. In rainwater, inoculum moved 5 and 10 m from the inoculum source. For soil, transmission of inoculum was demonstrated from infested soil to bay laurel green leaf litter, and from bay laurel green leaf litter to aerial leaves of bay laurel seedlings. One-third to one-half of the hikers tested at the study site during the rainy season also were carrying infested soil on their shoes. In streamwater, P. ramorum was recovered from an unforested site in pasture 1 km downstream of forest with inoculum sources. In total, these studies provide details on the production and spread of P. ramorum inoculum in mixed-evergreen forest to aid forecasting and managing disease transmission of this environmentally destructive pathogen.
The survival of salmonellas in shell eggs cooked under simulated domestic conditions.
Humphrey, T. J.; Greenwood, M.; Gilbert, R. J.; Rowe, B.; Chapman, P. A.
1989-01-01
Strains of Salmonella enteritidis, S. typhimurium and S. senftenberg inoculated into the yolks of shell eggs were found to survive forms of cooking where some of the yolk remained liquid. Survival was largely independent of the size of the initial inoculum. The organisms also grew rapidly in eggs stored at room temperature and after 2 days the number of cells per gram of yolk exceeded log10 8.0. With this level of contamination viable cells could be recovered from eggs cooked in any manner. PMID:2673824
Pánková, Hana; Lepinay, Clémentine; Rydlová, Jana; Voříšková, Alena; Janoušková, Martina; Dostálek, Tomáš; Münzbergová, Zuzana
2018-03-01
After abandonment of agricultural fields, some grassland plant species colonize these sites with a frequency equivalent to dry grasslands (generalists) while others are missing or underrepresented in abandoned fields (specialists). We aimed to understand the inability of specialists to spread on abandoned fields by exploring whether performance of generalists and specialists depended on soil abiotic and/or biotic legacy. We performed a greenhouse experiment with 12 species, six specialists and six generalists. The plants were grown in sterile soil from dry grassland or abandoned field inoculated with microbial communities from one or the other site. Plant growth, abundance of mycorrhizal structures and plant response to inoculation were evaluated. We focused on arbuscular mycorrhizal fungi (AMF), one of the most important parts of soil communities affecting plant performance. The abandoned field soil negatively affected plant growth, but positively affected plant response to inoculation. The AMF community from both sites differed in infectivity and taxa frequencies. The lower AMF taxa frequency in the dry grassland soil suggested a lack of functional complementarity. Despite the fact that dry grassland AMF produced more arbuscules, the dry grassland inoculum did not improve phosphorus nutrition of specialists contrary to the abandoned field inoculum. Inoculum origin did not affect phosphorus nutrition of generalists. The lower effectiveness of the dry grassland microbial community toward plant performance excludes its inoculation in the abandoned field soil as a solution to allow settlement of specialists. Still, the distinct response of specialists and generalists to inoculation suggested that they differ in AMF responsiveness.
Kim, Y K; Xiao, C L; Rogers, J D
2005-01-01
Sphaeropsis pyriputrescens, the causal agent of Sphaeropsis rot of pears and apples, is a recently described species. In this study the effects of culture media, temperature, water potential, pH and light on mycelial growth and pycnidial production of S. pyriputrescens were evaluated. Apple juice agar and pear juice agar were most suitable for mycelial growth of all six isolates tested. Cornmeal agar was not suitable for either mycelial growth or pycnidial production. The fungus grew from -3 to 25 C, with optimum growth at 20 C and no growth at 30 C. The fungus grew at water potential as low as -5.6 MPa on potassium chloride-amended potato-dextrose agar (PDA). Hyphal extension was not observed at -7.3 MPa after 10 d incubation, but growth resumed when the inoculum plugs were placed on PDA. The fungus grew at pH 3.3-6.3 and optimum growth was at pH 3.3-4.2. No mycelial growth was observed at pH above 7.2 after 10 d incubation, but growth resumed when the inoculum plugs were transferred onto PDA. Regardless of medium tested, few pycnidia formed at 20 C in the dark. Pycnidial production was enhanced significantly by fluorescent light, but continuous light appeared to reduce pycnidial production, depending on the medium. Oatmeal agar (OMA) was most suitable for production of pycnidia and conidia. Pycnidia that formed on 3 wk old OMA cultures at 20 C under 12 h light/12 h dark produced abundant conidia, and the technique is recommended for inoculum production.
Characterization of Founder Viruses in Very Early SIV Rectal Transmission
Yuan, Zhe; Ma, Fangrui; Demers, Andrew J.; Wang, Dong; Xu, Jianqing; Lewis, Mark G.; Li, Qingsheng
2016-01-01
A better understanding of HIV-1 transmission is critical for developing preventative strategies. To that end, we analyzed 524 full-length env sequences of SIVmac251 at 6 and 10 days post intrarectal infection of rhesus macaques. There was no tissue compartmentalization of founder viruses across plasma, rectal and distal lymphatic tissues for most animals; however one animal has evidence of virus tissue compartmentalization. Despite identical viral inoculums, founder viruses were animal-specific, primarily derived from rare variants in the inoculum, and have a founder virus signature that can distinguish dominant founder variants from minor founder or untransmitted variants in the inoculum. Importantly, the sequences of post-transmission defective viruses were phylogenetically associated with competent viral variants in the inoculum and were mainly converted from competent viral variants by frameshift rather than APOBEC mediated mutations, suggesting the converting the transmitted viruses into defective viruses through frameshift mutation is an important component of rectal transmission bottleneck. PMID:28027479
Crowding is size and eccentricity dependent.
Gurnsey, Rick; Roddy, Gabrielle; Chanab, Waël
2011-06-17
Crowding is a form of lateral interaction in which flanking items interfere with the detection or discrimination of a target stimulus. It is believed that crowding is a property of peripheral vision only and that no crowding occurs at fixation. If these two claims are true, then there must be a change in the nature of crowding interactions across the visual field. In three different tasks, we determined target size and flanker separation at threshold for eccentricities of 0 to 16° in the lower visual field for 7 relative separations (1.25 to 8 times target size). In all three tasks, the magnitude of crowding increases with eccentricity; there was no crowding at fixation and extreme crowding at 16°. Using a novel double-scaling procedure, we show that the non-foveal data in all three tasks can be characterized as shifted versions of the same psychometric function such that different sections of the function characterize data at each eccentricity. This pattern of results can be understood in terms of size-dependent responses to the target and distance-dependent interference from the flankers. The data suggest that the distance-dependent interference increases with eccentricity.
Dorey, L; Hobson, S; Lees, P
2017-04-01
For the pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida, Minimum Inhibitory Concentration (MIC) of marbofloxacin was determined in recommended broths and pig serum at three inoculum strengths. MICs in both growth matrices increased progressively from low, through medium to high starting inoculum counts, 10 4 , 10 6 and 10 8 CFU/mL, respectively. P. multocida MIC ratios for high:low inocula were 14:4:1 for broth and 28.2:1 for serum. Corresponding MIC ratios for A. pleuropneumoniae were lower, 4.1:1 (broth) and 9.2:1 (serum). MIC high:low ratios were therefore both growth matrix and bacterial species dependent. The effect of alterations to the chemical composition of broths and serum on MIC were also investigated. Neither adjusting broth or serum pH in six increments over the range 7.0 to 8.0 nor increasing calcium and magnesium concentrations of broth in seven incremental steps significantly affected MICs for either organism. In time-kill studies, the killing action of marbofloxacin had the characteristics of concentration dependency against both organisms in both growth matrices. It is concluded that MIC and time-kill data for marbofloxacin, generated in serum, might be preferable to broth data, for predicting dosages of marbofloxacin for clinical use. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of domestication on microorganism diversity and anaerobic digestion of food waste.
Bi, S J; Hong, X J; Wang, G X; Li, Y; Gao, Y M; Yan, L; Wang, Y J; Wang, W D
2016-08-19
To accomplish the rapid start-up and stable operation of biogas digesters, an efficient inoculum is required. To obtain such an inoculum for food waste anaerobic digestion, we domesticated dairy manure anaerobic digestion residue by adding food waste every day. After 36 days, the pH and biogas yield stabilized signifying the completion of domestication. During domestication, the microbial communities in the inocula were investigated by constructing 16S rDNA clone libraries. We evaluated the effect of the domesticated inoculum by testing batch food waste anaerobic digestion with a non-domesticated inoculum as a control. The pH and methane yield of the digestion systems were determined as measurement indices. Domestication changed the composition and proportion of bacteria and archaea in the inocula. Of the bacteria, Clostridia (49.3%), Bacteroidales (19.5%), and Anaerolinaceae (8.1%) species were dominant in the seed sludge; Anaerolinaceae (49.0%), Clostridia (28.4%), and Bacteroidales (9.1%), in domestication sludge. Methanosaeta was the dominant genus in both of the seed (94.3%) and domestication (74.3%) sludge. However, the diversity of methanogenic archaea was higher in the domestication than in seed sludge. Methanoculleus, which was absent from the seed sludge, appeared in the domestication sludge (21.7%). When the domesticated inoculum was used, the digestion system worked stably (organic loading rate: 20 gVS/L; methane yield: 292.2 ± 9.8 mL/gVS; VS = volatile solids), whereas the digestion system inoculated with seed sludge failed to generate biogas. The results indicate that inoculum domestication ensures efficient and stable anaerobic digestion by enriching the methanogenic strains.
NASA Astrophysics Data System (ADS)
Harbowo, Danni Gathot; Choesin, Devi Nandita
2014-03-01
Synergism between wetland systems and the provision of degrading bacterial inoculum is now being developed for the recovery of areas polluted waters of pollutants. In connection with the frequent cases of diesel oil pollution in the waters of Indonesia, we need a way of water treatment as an efficient. In this study conducted a series of tests to develop an construcred wetland design that can effectively degrade diesel oil. Tested five systems: blanko (A), substrated, without bacterial inoculums, and vegetation (B); with the addition of inoculum (C); subsrated and vegetated (D); substrated and vegetated with the addition of inoculum (E). Vegetation used in this study is Cyperus papyrus because it has the ability to absorb pollutants. Inoculum used was Pseudomonas aeruginosa and Enterobacter aerogenes which is a bacteria degrading organic compounds commonly found in water. To measure the effectiveness of the system, use several indicators to see the degradation of pollutants, namely changes in viscosity, surface tension of pollutants, and the emergence of compound degradation. Based on the results of the study can be determined that the substrated and vegetated system with Cyperus papyrus inoculum (E) was considered the most capable of degrading diesel oil due to the large changes in all parameters. In the system E, 40.6% increase viscosity, surface tension decreased 32.7%, the appearance of degradation compounds with relatively 3614.7 points, and increased to 227.8% TDS. In addition the environmental conditions in the system E also supports the growth of vegetation and degrading microbes.
Rapid Detection of Ceratocystis platani Inoculum by Quantitative Real-Time PCR Assay
Ghelardini, Luisa; Belbahri, Lassaâd; Quartier, Marion; Santini, Alberto
2013-01-01
Ceratocystis platani is the causal agent of canker stain of plane trees, a lethal disease able to kill mature trees in one or two successive growing seasons. The pathogen is a quarantine organism and has a negative impact on anthropogenic and natural populations of plane trees. Contaminated sawdust produced during pruning and sanitation fellings can contribute to disease spread. The goal of this study was to design a rapid, real-time quantitative PCR assay to detect a C. platani airborne inoculum. Airborne inoculum traps (AITs) were placed in an urban setting in the city of Florence, Italy, where the disease was present. Primers and TaqMan minor groove binder (MGB) probes were designed to target cerato-platanin (CP) and internal transcribed spacer 2 (ITS2) genes. The detection limits of the assay were 0.05 pg/μl and 2 fg/μl of fungal DNA for CP and ITS, respectively. Pathogen detection directly from AITs demonstrated specificity and high sensitivity for C. platani, detecting DNA concentrations as low as 1.2 × 10−2 to 1.4 × 10−2 pg/μl, corresponding to ∼10 conidia per ml. Airborne inoculum traps were able to detect the C. platani inoculum within 200 m of the closest symptomatic infected plane tree. The combination of airborne trapping and real-time quantitative PCR assay provides a rapid and sensitive method for the specific detection of a C. platani inoculum. This technique may be used to identify the period of highest risk of pathogen spread in a site, thus helping disease management. PMID:23811499
Sharma, Naresh; Kalra, K L; Oberoi, Harinder Singh; Bansal, Sunil
2007-12-01
A study was taken up to evaluate the role of some fermentation parameters like inoculum concentration, temperature, incubation period and agitation time on ethanol production from kinnow waste and banana peels by simultaneous saccharification and fermentation using cellulase and co-culture of Saccharomyces cerevisiae G and Pachysolen tannophilus MTCC 1077. Steam pretreated kinnow waste and banana peels were used as substrate for ethanol production in the ratio 4:6 (kinnow waste: banana peels). Temperature of 30°C, inoculum size of S. cerevisiae G 6% and (v/v) Pachysolen tannophilus MTCC 1077 4% (v/v), incubation period of 48 h and agitation for the first 24 h were found to be best for ethanol production using the combination of two wastes. The pretreated steam exploded biomass after enzymatic saccharification containing 63 gL(-1) reducing sugars was fermented with both hexose and pentose fermenting yeast strains under optimized conditions resulting in ethanol production, yield and fermentation efficiency of 26.84 gL(-1), 0.426 gg (-1) and 83.52 % respectively. This study could establish the effective utilization of kinnow waste and banana peels for bioethanol production using optimized fermentation parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Ryan H.; Timm, Andrea C.; Timm, Collin M.
The structure, function and evolving composition of microbial communities is deeply influenced by the physical and chemical architecture of the local microenvironment. The complexity of this parameter space in naturally occurring systems has made a clear understanding of the key drivers of community development elusive. Here, we examine the role of spatial confinement on community development using a microwell platform that allows for assembly and monitoring of unique microbial communities en masse. This platform was designed to contain microwells with varied size features in order to mimic various levels of spatial confinement found in natural systems. Microbial populations assembled inmore » wells with incrementally smaller size features showed increasingly larger variations in inoculum levels. By exploiting this size dependence, large wells were used to assemble homogenous initial populations of Pseudomonas aeruginosa, allowing for reproducible, directed growth trajectories. In contrast, smaller wells were used to assemble a heterogeneous range of initial populations, resulting in a variety of growth and decay trajectories. This allowed for parallel screening of single member communities across different levels of confinement to identify initial conditions in which P. aeruginosa colonies have dramatically higher probabilities of survival. These results demonstrate a unique approach for manipulating the distribution of initial microbial populations assembled into controlled microenvironments to rapidly identify population and environmental parameters conducive or inhibitive to growth. Additionally, multi-member community assembly was characterized to demonstrate the power of this platform for studying the role of member abundance on microbial competition, mutualism and community succession.« less
Hansen, Ryan H.; Timm, Andrea C.; Timm, Collin M.; ...
2016-05-06
The structure, function and evolving composition of microbial communities is deeply influenced by the physical and chemical architecture of the local microenvironment. The complexity of this parameter space in naturally occurring systems has made a clear understanding of the key drivers of community development elusive. Here, we examine the role of spatial confinement on community development using a microwell platform that allows for assembly and monitoring of unique microbial communities en masse. This platform was designed to contain microwells with varied size features in order to mimic various levels of spatial confinement found in natural systems. Microbial populations assembled inmore » wells with incrementally smaller size features showed increasingly larger variations in inoculum levels. By exploiting this size dependence, large wells were used to assemble homogenous initial populations of Pseudomonas aeruginosa, allowing for reproducible, directed growth trajectories. In contrast, smaller wells were used to assemble a heterogeneous range of initial populations, resulting in a variety of growth and decay trajectories. This allowed for parallel screening of single member communities across different levels of confinement to identify initial conditions in which P. aeruginosa colonies have dramatically higher probabilities of survival. These results demonstrate a unique approach for manipulating the distribution of initial microbial populations assembled into controlled microenvironments to rapidly identify population and environmental parameters conducive or inhibitive to growth. Additionally, multi-member community assembly was characterized to demonstrate the power of this platform for studying the role of member abundance on microbial competition, mutualism and community succession.« less
Robbins, R T; Barker, K R
1974-01-01
Effects of soil type, particle size, temperature, and moisture on the reproduction of Belonolaimus longicaudatus were investigated under greenhouse conditions. Nematode increases occurred only in soils with a minimum of 80% sand and a maximum of 10% clay. Optimum soil particle size for reproduction of the Tarboro, N.C. and Tifton, Ga. populations of the nematode was near that of 120-370 mum (65-mesh) silica sand. Reproduction was greatest at 25-30 C. Some reproduction by the Tifton, Ga. population occurred at 35 C, whereas the Tarboro, N.C. population declined, as compared to the initial inoculum. Both populations reproduced slightly at 20 C. Nematode reproduction was greater at a moisture level of 7% than at a high of 30% or a low of 2%. Reproduction occurred at the high moisture level only when the nutrient solution was aerated.
Alzate, M E; Muñoz, R; Rogalla, F; Fdz-Polanco, F; Pérez-Elvira, S I
2012-11-01
The anaerobic digestion of three microalgae mixtures was evaluated at different substrate to inoculum (S/I) ratios (0.5, 1 and 3), biomass concentrations (3, 10 and 20gTS/kg) and pretreatments (thermal hydrolysis, ultrasound and biological treatment). An S/I ratio of 0.5 and 10gTS/kg resulted in the highest final methane productivities regardless of the microalgae tested (ranging from 188 to 395mL CH(4)/gVS(added)). The biological pretreatment supported negligible enhancements on CH(4) productivity, while the highest increase (46-62%) was achieved for the thermal hydrolysis. The optimum temperature of this pretreatment depended on the microalgae species. The ultrasound pretreatment brought about increases in CH(4) productivity ranging from 6% to 24% at 10,000kJ/kgTS, without further increases at higher energy inputs. The results here obtained confirmed the lack of correlation between the solubilization degree and the methane enhancement potential and pointed out that anaerobic digestion of algae after thermal pretreatment is a promising technology for renewable energy production. Copyright © 2012 Elsevier Ltd. All rights reserved.
High density growth of T7 expression strains with auto-induction option
Studier, F William [Stony Brook, NY
2009-07-14
Disclosed is a method for promoting auto-induction of transcription of cloned DNA in cultures of bacterial cells grown batchwise, the transcription being under the control of a promoter whose activity can be induced by an exogenous inducer whose ability to induce said promoter is dependent on the metabolic state of said bacterial cells. Initially, a culture media is provided which includes: i) an inducer that causes induction of transcription from said promoter in said bacterial cells; and ii) a metabolite that prevents induction by said inducer, the concentration of said metabolite being adjusted so as to substantially preclude induction by said inducer in the early stages of growth of the bacterial culture, but such that said metabolite is depleted to a level that allows induction by said inducer at a later stage of growth. The culture medium is inoculated with a bacterial inoculum, the inoculum comprising bacterial cells containing cloned DNA, the transcription of which is induced by said inducer. The culture is then incubated under conditions appropriate for growth of the bacterial cells.
Characterization of pomegranate juice and whey based novel beverage fermented by kefir grains.
Sabokbar, Nayereh; Khodaiyan, Faramarz
2015-06-01
Mixture of pomegranate juice and whey was evaluated as a potential substrate for production of a novel probiotic beverage by kefir grains. Different fermentation conditions were used as viz: two fermentation temperature (19 ºC and 25 ºC) and two levels of kefir grains inoculum (5 % and 8%w/v). pH, acidity, lactose consumption as well as organic acids formation were determined during 32 hours of fermentation. Results showed that kefir grains were able to utilize lactose and decrease pH, increase acidity, produce lactic acid and acetic acid, while the level of citric acid decreased. It was observed these change depended on temperature and level of kefir grains with the highest changes at the temperature of 25 ºC and kefir grains inoculum of 8%w/v. Pomegranate juice and whey mixture therefore may serve as a suitable substrate for the production of novel probiotic dairy-fruit juice beverage by kefir grains and the sensory characteristics of this beverage were shown desirable results.
Lankau, Richard A; Strauss, Sharon Y
2011-01-01
Environmental management typically seeks to increase or maintain the population sizes of desirable species and to decrease population sizes of undesirable pests, pathogens, or invaders. With changes in population size come long-recognized changes in ecological processes that act in a density-dependent fashion. While the ecological effects of density dependence have been well studied, the evolutionary effects of changes in population size, via changes in ecological interactions with community members, are underappreciated. Here, we provide examples of changing selective pressures on, or evolution in, species as a result of changes in either density of conspecifics or changes in the frequency of heterospecific versus conspecific interactions. We also discuss the management implications of such evolutionary responses in species that have experienced rapid increases or decreases in density caused by human actions. PMID:25567977
Root infections may challenge management of invasive Phytophthora spp
E.J. Fichtner; D.M. Rizzo; S.A. Kirk; J.F. Webber
2011-01-01
Because sporulation of Phytophthora ramorum and P. kernoviae on Rhododendron ponticum, an invasive plant, serves as primary inoculum for trunk infections on trees, R. ponticum clearance from pathogen-infested woodlands is pivotal to inoculum management. The efficacy of clearance for...
Inoculum and zeolite synergistic effect on anaerobic digestion of poultry manure.
Fotidis, Ioannis A; Kougias, Panagiotis G; Zaganas, Ioannis D; Kotsopoulos, Thomas A; Martzopoulos, Gerasimos G
2014-01-01
Poultry manure is an ammonia-rich substrate due to its high content of proteins and amino acids. Ammonia is the major inhibitor of anaerobic digestion (AD) process, affecting biogas production and causing great economic losses to the biogas plants. In this study, the effect of different natural zeolite dosages on the mesophilic AD of poultry manure inoculated with a non-acclimatized to ammonia inoculum (dairy manure) was investigated. Additionally, a comparative analysis was performed between the data extracted from this study and the results of a previous study, which has been conducted under the same experimental conditions but with the use of ammonia acclimatized inoculum (swine manure). At 5 and 10 g zeolite L(-1), the methane yield of poultry manure was 43.4% and 80.3% higher compared with the experimental set without zeolite addition. However, the ammonia non-acclimatized inoculum was not efficient in digesting poultry manure even in the presence of 10 g zeolite L(-1), due to low methane production (only 39%) compared with the maximum theoretical yield. Finally, ammonia acclimatized inoculum and zeolite have demonstrated a possible 'synergistic effect', which led to a more efficient AD of poultry manure. The results of this study could potentially been used by the biogas plant operators to efficiently digest poultry manure.
Yang, Qian; Wei, Liang-Huan; Li, Wei-Zun; Chen, Yu; Ju, Mei-Ting
2017-11-01
Different inoculum sources and acclimatization methods result in different substrate adaptation and biodegradability. To increase straw degradation rate, shorten the digester start-up time, and enhance the biogas production, we domesticated anaerobic sludge by adding microcrystalline cellulose (MCC). During acclimatization, the start-up strategies and reactor performance were investigated to analyze changes in feedstock adaption, biodegradability, and methanogen activity. The effect of the domesticated inoculum was evaluated by testing batch un-pretreated corn stover with a dewatered sludge (DS)-domesticated inoculum as a control. The results showed that (1) using MCC as a substrate rapidly improved microorganism biodegradability and adaptation. (2) MCC as domesticated substrate has relatively stable system and high mass conversion, but with low buffer capacity. (3) Macro- and micronutrients should be added for improving the activity of methanogenic and system's buffer capacity. (4) Using the domesticated inoculums and batch tests to anaerobically digest untreated corn stover yielded rapid biogas production of 292 mL, with an early peak value on the first day. The results indicated that cultivating directional inoculum can efficiently and quickly start-up digester. These investigated results to promote anaerobic digestion of straw for producing biogas speed up the transformation of achievements of biomass solid waste utilization have a positive promoting significance.
Laureys, D; De Vuyst, L
2017-03-01
To investigate the influence of the water kefir grain inoculum on the characteristics of the water kefir fermentation process. Three water kefir fermentation processes were started with different water kefir grain inocula and followed as a function of time regarding microbial species diversity, community dynamics, substrate consumption profile and metabolite production course. The inoculum determined the water kefir grain growth, the viable counts on the grains, the time until total carbohydrate exhaustion, the final metabolite concentrations and the microbial species diversity. There were always 2-10 lactic acid bacterial cells for every yeast cell and the majority of these micro-organisms was always present on the grains. Lactobacillus paracasei, Lactobacillus hilgardii, Lactobacillus nagelii and Saccharomyces cerevisiae were always present and may be the key micro-organisms during water kefir fermentation. Low water kefir grain growth was associated with small grains with high viable counts of micro-organisms, fast fermentation and low pH values, and was not caused by the absence of exopolysaccharide-producing lactic acid bacteria. The water kefir grain inoculum influences the microbial species diversity and characteristics of the fermentation process. A select group of key micro-organisms was always present during fermentation. This study allows a rational selection of a water kefir grain inoculum. © 2016 The Society for Applied Microbiology.
Development and evaluation of the quick anaero-system-a new disposable anaerobic culture system.
Yang, Nam Woong; Kim, Jin Man; Choi, Gwang Ju; Jang, Sook Jin
2010-04-01
We developed a new disposable anaerobic culture system, namely, the Quick anaero-system, for easy culturing of obligate anaerobes. Our system consists of 3 components: 1) new disposable anaerobic gas pack, 2) disposable culture-envelope and sealer, and 3) reusable stainless plate rack with mesh containing 10 g of palladium catalyst pellets. To evaluate the efficiency of our system, we used 12 anaerobic bacteria. We prepared 2 sets of ten-fold serial dilutions of the 12 anaerobes, and inoculated these samples on Luria-Bertani (LB) broth and LB blood agar plate (LB-BAP) (BD Diagnostic Systems, USA). Each set was incubated in the Quick anaero-system (DAS Tech, Korea) and BBL GasPak jar with BD GasPak EZ Anaerobe Container System (BD Diagnostic Systems) at 35-37 degrees C for 48 hr. The minimal inoculum size showing visible growth of 12 anaerobes when incubated in both the systems was compared. The minimal inoculum size showing visible growth for 2 out of the 12 anaerobes in the LB broth and 9 out of the 12 anaerobes on LB-BAP was lower for the Quick anaero-system than in the BD GasPak EZ Anaerobe Container System. The mean time (+/-SD) required to achieve absolute anaerobic conditions of the Quick anaero-system was 17 min and 56 sec (+/-3 min and 25 sec). The Quick anaero-system is a simple and effective method of culturing obligate anaerobes, and its performance is superior to that of the BD GasPak EZ Anaerobe Container System.
Tan, Joo Shun; Abbasiliasi, Sahar; Kadkhodaei, Saeid; Tam, Yew Joon; Tang, Teck-Kim; Lee, Yee-Ying; Ariff, Arbakariya B
2018-01-04
Demand for high-throughput bioprocessing has dramatically increased especially in the biopharmaceutical industry because the technologies are of vital importance to process optimization and media development. This can be efficiently boosted by using microtiter plate (MTP) cultivation setup embedded into an automated liquid-handling system. The objective of this study was to establish an automated microscale method for upstream and downstream bioprocessing of α-IFN2b production by recombinant Escherichia coli. The extraction performance of α-IFN2b by osmotic shock using two different systems, automated microscale platform and manual extraction in MTP was compared. The amount of α-IFN2b extracted using automated microscale platform (49.2 μg/L) was comparable to manual osmotic shock method (48.8 μg/L), but the standard deviation was 2 times lower as compared to manual osmotic shock method. Fermentation parameters in MTP involving inoculum size, agitation speed, working volume and induction profiling revealed that the fermentation conditions for the highest production of α-IFN2b (85.5 μg/L) was attained at inoculum size of 8%, working volume of 40% and agitation speed of 1000 rpm with induction at 4 h after the inoculation. Although the findings at MTP scale did not show perfect scalable results as compared to shake flask culture, but microscale technique development would serve as a convenient and low-cost solution in process optimization for recombinant protein.
Gamal, Rawia F; El-Tayeb, Tarek S; Raffat, Enas I; Ibrahim, Haytham M M; Bashandy, A S
2016-10-01
Chitin and chitosan have been produced from the exoskeletons of crustacean shells such as shrimps. In this study, seventy bacterial isolates, isolated from soil, were tested for proteolytic enzymes production. The most efficient one, identified as Bacillus subtilis, was employed to extract chitin from shrimp shell waste (SSW). Following one-variable-at-a-time approach, the relevant factors affecting deproteinization (DP) and demineralization (DM) were sucrose concentration (10%, w/v), SSW concentration (5%, w/v), inoculum size (15%, v/v), and fermentation time (6days). These factors were optimized subsequently using Box-Behnken design and response surface methodology. Maximum DP (97.65%) and DM (82.94%) were predicted at sucrose concentration (5%), SSW concentration (12.5%), inoculum size (10%, containing 35×10(8) CFU/mL), and fermentation time (7days). The predicted optimum values were verified by additional experiment. The values of DP (96.0%) and DM (82.1%) obtained experimentally correlated to the predicted values which justify the authenticity of optimum points. Overall 1.3-fold increase in DP% and DM% was obtained compared with 75.27% and 63.50%, respectively, before optimization. Gamma-irradiation (35kGy) reduced deacetylation time of irradiated chitin by 4.5-fold compared with non-irradiated chitin. The molecular weight of chitosan was decreased from 1.9×10(6) (non-irradiated) to 3.7×10(4)g/mol (at 35kGy). Copyright © 2016 Elsevier B.V. All rights reserved.
Samantaray, Shilalipi; Nayak, Jitendra Kumar; Mallick, Nirupama
2011-01-01
Intensive aquaculture releases large quantities of nutrients into aquatic bodies, which can lead to eutrophication. The objective of this study was the development of a biological recirculatory wastewater treatment system with a diazotrophic cyanobacterium, Aulosira fertilissima, and simultaneous production of valuable product in the form of poly-β-hydroxybutyrate (PHB). To investigate this possible synergy, batch scale tests were conducted under a recirculatory aquaculture system in fiber-reinforced plastic tanks enhanced by several manageable parameters (e.g., sedimentation, inoculum size, depth, turbulence, and light intensity), an adequate combination of which showed better productivity. The dissolved-oxygen level increased in the range of 3.2 to 6.9 mg liter−1 during the culture period. Nutrients such as ammonia, nitrite, and phosphate decreased to as low as zero within 15 days of incubation, indicating the system's bioremediation capability while yielding valuable cyanobacterial biomass for PHB production. Maximum PHB accumulation in A. fertilissima was found in sedimented fish pond discharge at 20-cm culture depth with stirring and an initial inoculum size of 80 mg dry cell weight (dcw) liter−1. Under optimized conditions, the PHB yield was boosted to 92, 89, and 80 g m−2, respectively for the summer, rainy, and winter seasons. Extrapolation of the result showed that a hectare of A. fertilissima cultivation in fish pond discharge would give an annual harvest of ∼17 tons dry biomass, consisting of 14 tons of PHB with material properties comparable to those of the bacterial polymer, with simultaneous treatment of 32,640 m3 water discharge. PMID:21984242
Samantaray, Shilalipi; Nayak, Jitendra Kumar; Mallick, Nirupama
2011-12-01
Intensive aquaculture releases large quantities of nutrients into aquatic bodies, which can lead to eutrophication. The objective of this study was the development of a biological recirculatory wastewater treatment system with a diazotrophic cyanobacterium, Aulosira fertilissima, and simultaneous production of valuable product in the form of poly-β-hydroxybutyrate (PHB). To investigate this possible synergy, batch scale tests were conducted under a recirculatory aquaculture system in fiber-reinforced plastic tanks enhanced by several manageable parameters (e.g., sedimentation, inoculum size, depth, turbulence, and light intensity), an adequate combination of which showed better productivity. The dissolved-oxygen level increased in the range of 3.2 to 6.9 mg liter⁻¹ during the culture period. Nutrients such as ammonia, nitrite, and phosphate decreased to as low as zero within 15 days of incubation, indicating the system's bioremediation capability while yielding valuable cyanobacterial biomass for PHB production. Maximum PHB accumulation in A. fertilissima was found in sedimented fish pond discharge at 20-cm culture depth with stirring and an initial inoculum size of 80 mg dry cell weight (dcw) liter⁻¹. Under optimized conditions, the PHB yield was boosted to 92, 89, and 80 g m⁻², respectively for the summer, rainy, and winter seasons. Extrapolation of the result showed that a hectare of A. fertilissima cultivation in fish pond discharge would give an annual harvest of ∼17 tons dry biomass, consisting of 14 tons of PHB with material properties comparable to those of the bacterial polymer, with simultaneous treatment of 32,640 m³ water discharge.
de Souza, Tancredo Augusto Feitosa; de Andrade, Leonaldo Alves; Freitas, Helena; da Silva Sandim, Aline
2017-05-30
Plant-soil feedback is recognized as the mutual interaction between plants and soil microorganisms, but its role on the biological invasion of the Brazilian tropical seasonal dry forest by invasive plants still remains unclear. Here, we analyzed and compared the arbuscular mycorrhizal fungi (AMF) communities and soil characteristics from the root zone of invasive and native plants, and tested how these AMF communities affect the development of four invasive plant species (Cryptostegia madagascariensis, Parkinsonia aculeata, Prosopis juliflora, and Sesbania virgata). Our field sampling revealed that AMF diversity and frequency of the Order Diversisporales were positively correlated with the root zone of the native plants, whereas AMF dominance and frequency of the Order Glomerales were positively correlated with the root zone of invasive plants. We grew the invasive plants in soil inoculated with AMF species from the root zone of invasive (I changed ) and native (I unaltered ) plant species. We also performed a third treatment with sterilized soil inoculum (control). We examined the effects of these three AMF inoculums on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas. We found that I unaltered and I changed promoted the growth of all invasive plants and led to a higher plant dry biomass, mycorrhizal colonization, and P uptake than control, but I changed showed better results on these variables than I unaltered . For plant responsiveness to mycorrhizas and fungal inoculum effect on plant P concentration, we found positive feedback between changed-AMF community (I changed ) and three of the studied invasive plants: C. madagascariensis, P. aculeata, and S. virgata.
Reyes, Leticia; Reinhard, Mary; Brown, Mary B
2009-01-26
Epidemiologic studies show a strong association between Ureaplasmas and urogenital tract disease in humans. Since healthy humans can be colonized with Ureaplasmas, its role as a pathogen remains controversial. In order to begin to define the role of the host in disease, we developed a rodent model of urinary tract infection (UTI) using Fischer 344 (F344) rats. Animals were inoculated with sterile broth, 10(1), 10(3), 10(5), 10(7), or 10(9) log CFU of a rat-adapted strain of Ureaplasma parvum. Infected animals exhibited two distinct profiles, asymptomatic UTI and UTI complicated with struvite urolithiasis. Inoculum dose of U. parvum affected the incidence of UTI, and 50% to 57% of animals inoculated with >or= 10(7) CFU of U. parvum remained infected (p < 0.04). However, inoculum dose did not influence immune response to U. parvum. Asymptomatic UTI was characterized by a minimal immune response that was predominantly monocytic and lymphocytic, with limited lesions, and elevated urinary levels of IFN-gamma, IL-18 and MCP-1 (P
A test system to quantify inoculum in runoff from Phytophthora ramorum-infected plant roots
Nina. Shishkoff
2010-01-01
Foliar hosts of Phytophthora ramorum are often susceptible to root infection, but the epidemiological significance of such infections is unknown. We used a standardized test system to study inoculum in runoff from root-infected Viburnum tinus cuttings.
Offspring size effects mediate competitive interactions in a colonial marine invertebrate.
Marshall, Dustin J; Cook, Carly N; Emlet, Richard B
2006-01-01
Over the past 30 years, numerous attempts to understand the relationship between offspring size and fitness have been made, and it has become clear that this critical relationship is strongly affected by environmental heterogeneity. For marine invertebrates, there has been a long-standing interest in the evolution of offspring size, but there have been very few empirical and theoretical examinations of post-metamorphic offspring size effects, and almost none have considered the effect of environmental heterogeneity on the offspring size/fitness relationship. We investigated the post-metamorphic effects of offspring size in the field for the colonial marine invertebrate Botrylloides violaceus. We also examined how the relationship between offspring size and performance was affected by three different types of intraspecific competition. We found strong and persistent effects of offspring size on survival and growth, but these effects depended on the level and type of intraspecific competition. Generally, competition strengthened the advantages of increasing maternal investment. Interestingly, we found that offspring size determined the outcome of competitive interaction: juveniles that had more maternal investment were more likely to encroach on another juvenile's territory. This suggests that mothers have the previously unrecognized potential to influence the outcome of competitive interactions in benthic marine invertebrates. We created a simple optimality model, which utilized the data generated from our field experiments, and found that increasing intraspecific competition resulted in an increase in predicted optimal size. Our results suggest that the relationship between offspring size and fitness is highly variable in the marine environment and strongly dependent on the density of conspecifics.
Sudhakar, N; Nagendra-Prasad, D; Mohan, N; Murugesan, K
2007-12-01
Studies were undertaken to evaluate ozone for inactivation of Cucumber mosaic virus present in the inoculum and to stimulate Lycopersicon esculentum cv. PKM1 (tomato) plants against Cucumber mosaic virus infection by using the inactivated Cucumber mosaic virus inoculum. Application of a T(4) (0.4mg/l) concentration of ozone to the inoculum containing Cucumber mosaic virus resulted in complete inactivation of the virus. The inactivated viral inoculum was mixed with a penetrator (delivery agent), referred to as T(4) preparation, and it was evaluated for the development of systemic acquired resistance in the tomato plants. Application of a T(4) preparation 5 days before inoculation with the Cucumber mosaic virus protected tomato plants from the effects of Cucumber mosaic virus. Among the components of the inactivated virus tested, coat protein subunits and aggregates were responsible for the acquired resistance in tomato plants. In field trials, the results of enzyme-linked immunosorbent assay revealed that, Cucumber mosaic virus accumulation was significantly less for all the test plants (16%) sprayed with the T(4) preparation than untreated control plants (89.5%) at 28 days postinoculation (dpi). A remarkable increase in the activities of the total soluble phenolics (10-fold) and salicylic acid (16-fold) was detected 5 days after the treatment in foliar extracts of test plants relative to untreated control plants. The results showed that treatment of tomato plants with inactivated viral inoculum led to a significant enhancement of protection against Cucumber mosaic virus attack in a manner that mimics a real pathogen and induces systemic acquired resistance.
Paul-Pont, Ika; Evans, Olivia; Dhand, Navneet K; Whittington, Richard J
2015-03-09
In Australia, the spread of the ostreid herpesvirus-1 microvariant (OsHV-1 µVar) threatens the Pacific oyster industry. There is an urgent need to develop an experimental infection model in order to study the pathogenesis of the virus under controlled laboratory conditions. The present study constitutes the first attempt to use archived frozen oysters as a source of inoculum, based on the Australian OsHV-1 µVar strain. Experiments were conducted to test (1) virus infectivity, (2) the dose-response relationship for OsHV-1, and (3) the best conditions in which to store infective viral inoculum. Intramuscular injection of a viral inoculum consistently led to an onset of mortality 48 h post-injection and a final cumulative mortality exceeding 90%, in association with high viral loads (1 × 105 to 3 × 107 copies of virus mg-1) in dead individuals. For the first time, an infective inoculum was produced from frozen oysters (tissues stored at -80°C for 6 mo). Storage of purified viral inoculum at +4°C for 3 mo provided similar results to use of fresh inoculum, whereas storage at -20°C, -80°C and room temperature was detrimental to infectivity. A dose-response relationship for OsHV-1 was identified but further research is recommended to determine the most appropriate viral concentration for development of infection models that would be used for different purposes. Overall, this work highlights the best practices and potential issues that may occur in the development of a reproducible and transferable infection model for studying the pathogenicity of the Australian OsHV-1 strain in Crassostrea gigas under experimental conditions.
Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review.
Bundhoo, M A Zumar; Mohee, Romeela; Hassan, M Ali
2015-07-01
Biohydrogen production from dark fermentation of lignocellulosic materials represents a huge potential in terms of renewable energy exploitation. However, the low hydrogen yield is currently hindering its development on industrial scale. This study reviewed various technologies that have been investigated for enhancing dark fermentative biohydrogen production. The pre-treatment technologies can be classified based on their applications as inoculum or substrates pre-treatment or they can be categorised into physical, chemical, physicochemical and biological based on the techniques used. From the different technologies reviewed, heat and acid pre-treatments are the most commonly studied technologies for both substrates and inoculum pre-treatment. Nevertheless, these two technologies need not necessarily be the most suitable since across different studies, a wide array of other emerging techniques as well as combined technologies have yielded positive findings. To date, there exists no perfect technology for either inoculum or substrate pre-treatment. Although the aim of inoculum pre-treatment is to suppress H2-consumers and enrich H2-producers, many sporulating H2-consumers survive the pre-treatment while some non-spore H2-producers are inhibited. Besides, several inoculum pre-treatment techniques are not effective in the long run and repeated pre-treatment may be required for continuous suppression of H2-consumers and sustained biohydrogen production. Furthermore, many technologies employed for substrates pre-treatment may yield inhibitory compounds that can eventually decrease biohydrogen production. Consequently, much research needs to be done to find out the best technology for both substrates and inoculum pre-treatment while also taking into consideration the energetic, economic and technical feasibility of implementing such a process on an industrial scale. Copyright © 2015 Elsevier Ltd. All rights reserved.
Das, Siddhartha; Chakraborty, Suman
2011-08-01
In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute-solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.
Anaerobic biodegradability of Category 2 animal by-products: methane potential and inoculum source.
Pozdniakova, Tatiana A; Costa, José C; Santos, Ricardo J; Alves, M M; Boaventura, Rui A R
2012-11-01
Category 2 animal by-products that need to be sterilized with steam pressure according Regulation (EC) 1774/2002 are studied. In this work, 2 sets of experiments were performed in mesophilic conditions: (i) biomethane potential determination testing 0.5%, 2.0% and 5.0% total solids (TS), using sludge from the anaerobic digester of a wastewater treatment plant as inoculum; (ii) biodegradability tests at a constant TS concentration of 2.0% and different inoculum sources (digested sludge from a wastewater treatment plant; granular sludge from an upflow anaerobic sludge blanket reactor; leachate from a municipal solid waste landfill; and sludge from the slaughterhouse wastewater treatment anaerobic lagoon) to select the more adapted inoculum to the substrate in study. The higher specific methane production was of 317 mL CH(4)g(-1) VS(substrate) for 2.0% TS. The digested sludge from the wastewater treatment plant led to the lowest lag-phase period and higher methane potential rate. Copyright © 2012 Elsevier Ltd. All rights reserved.
Maury, Olivier; Poggiale, Jean-Christophe
2013-05-07
Individual metabolism, predator-prey relationships, and the role of biodiversity are major factors underlying the dynamics of food webs and their response to environmental variability. Despite their crucial, complementary and interacting influences, they are usually not considered simultaneously in current marine ecosystem models. In an attempt to fill this gap and determine if these factors and their interaction are sufficient to allow realistic community structure and dynamics to emerge, we formulate a mathematical model of the size-structured dynamics of marine communities which integrates mechanistically individual, population and community levels. The model represents the transfer of energy generated in both time and size by an infinite number of interacting fish species spanning from very small to very large species. It is based on standard individual level assumptions of the Dynamic Energy Budget theory (DEB) as well as important ecological processes such as opportunistic size-based predation and competition for food. Resting on the inter-specific body-size scaling relationships of the DEB theory, the diversity of life-history traits (i.e. biodiversity) is explicitly integrated. The stationary solutions of the model as well as the transient solutions arising when environmental signals (e.g. variability of primary production and temperature) propagate through the ecosystem are studied using numerical simulations. It is shown that in the absence of density-dependent feedback processes, the model exhibits unstable oscillations. Density-dependent schooling probability and schooling-dependent predatory and disease mortalities are proposed to be important stabilizing factors allowing stationary solutions to be reached. At the community level, the shape and slope of the obtained quasi-linear stationary spectrum matches well with empirical studies. When oscillations of primary production are simulated, the model predicts that the variability propagates along the spectrum in a given frequency-dependent size range before decreasing for larger sizes. At the species level, the simulations show that small and large species dominate the community successively (small species being more abundant at small sizes and large species being more abundant at large sizes) and that the total biomass of a species decreases with its maximal size which again corroborates empirical studies. Our results indicate that the simultaneous consideration of individual growth and reproduction, size-structured trophic interactions, the diversity of life-history traits and a density-dependent stabilizing process allow realistic community structure and dynamics to emerge without any arbitrary prescription. As a logical consequence of our model construction and a basis for future studies, we define the function Φ as the relative contribution of each species to the total biomass of the ecosystem, for any given size. We argue that this function is a measure of the functional role of biodiversity characterizing the impact of the structure of the community (its species composition) on its function (the relative proportions of losses, dissipation and biological work). Copyright © 2013 Elsevier Ltd. All rights reserved.
Morphology of size-selected Ptn clusters on CeO2(111)
NASA Astrophysics Data System (ADS)
Shahed, Syed Mohammad Fakruddin; Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide
2018-03-01
Supported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO2(111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Ptn (n = 5-13) clusters on a CeO2(111) surface using scanning tunneling microscopy at room temperature. Ptn clusters prefer a two-dimensional morphology for n = 5 and a three-dimensional (3D) morphology for n ≥ 6. We further observed the preference for a 3D tri-layer structure when n ≥ 10. For each cluster size, we quantitatively estimated the relative fraction of the clusters for each type of morphology. Size-dependent morphology of the Ptn clusters on the CeO2(111) surface was attributed to the Pt-Pt interaction in the cluster and the Pt-O interaction between the cluster and CeO2(111) surface. The results obtained herein provide a clear understanding of the size-dependent morphology of the Ptn clusters on a CeO2(111) surface.
Morphology of size-selected Ptn clusters on CeO2(111).
Shahed, Syed Mohammad Fakruddin; Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide
2018-03-21
Supported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO 2 (111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Pt n (n = 5-13) clusters on a CeO 2 (111) surface using scanning tunneling microscopy at room temperature. Pt n clusters prefer a two-dimensional morphology for n = 5 and a three-dimensional (3D) morphology for n ≥ 6. We further observed the preference for a 3D tri-layer structure when n ≥ 10. For each cluster size, we quantitatively estimated the relative fraction of the clusters for each type of morphology. Size-dependent morphology of the Pt n clusters on the CeO 2 (111) surface was attributed to the Pt-Pt interaction in the cluster and the Pt-O interaction between the cluster and CeO 2 (111) surface. The results obtained herein provide a clear understanding of the size-dependent morphology of the Pt n clusters on a CeO 2 (111) surface.
Garcia, Daiana; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia
2014-09-01
The aim of this work was to compare the radial growth rate (μ) and the lag time (λ) for growth of 25 isolates of Penicillium expansum at 1 and 20 ºC with those of the mixed inoculum of the 25 isolates. Moreover, the evolution of probability of growth through time was also compared for the single strains and mixed inoculum. Working with a mixed inoculum would require less work, time and consumables than if a range of single strains has to be used in order to represent a given species. Suitable predictive models developed for a given species should represent as much as possible the behavior of all strains belonging to this species. The results suggested, on one hand, that the predictions based on growth parameters calculated on the basis of mixed inocula may not accurately predict the behavior of all possible strains but may represent a percentage of them, and the median/mean values of μ and λ obtained by the 25 strains may be substituted by the value obtained with the mixed inoculum. Moreover, the predictions may be biased, in particular, the predictions of λ which may be underestimated (fail-safe). Moreover, the prediction of time for a given probability of growth through a mixed inoculum may not be accurate for all single inocula, but it may represent 92% and 60% of them at 20 and 1 ºC, respectively, and also their overall mean and median values. In conclusion, mixed inoculum could be a good alternative to estimate the mean or median values of high number of isolates, but not to account for those strains with marginal behavior. In particular, estimation of radial growth rate, and time for 0.10 and 0.50 probability of growth using a cocktail inoculum accounted for the estimates of most single isolates tested. For the particular case of probability models, this is an interesting result as for practical applications in the food industry the estimation of t10 or lower probability may be required. Copyright © 2014 Elsevier B.V. All rights reserved.
Thickness Dependence of Magnetic Blocking in Granular Metallic Thin Films
NASA Astrophysics Data System (ADS)
Wang, J.-Q.; Zhao, Z.-D.; Whittenburg, S. L.
2002-03-01
Inter-particle interaction among single domain nano-size magnetic particles embedded in nonmagnetic matrix was studied. Attention was paid to concentrated Cu-Co granular thin films with a fixed magnetic volume fraction. By analyzing theoretical models and comparing with experimental results, we studied a dimensional constraint on the magnetic properties and found that as the film thickness reduces toward thin limit the inter-particle interaction plays important roles in modifying magnetic behavior. Experimental evidence showed that the peak temperature of the susceptibility for Cu80Co20 granular thin films strongly depends on the film thickness in the range of 0 120 nm (1). It was also observed that the spontaneous magnetization of the Co phase varies with the thickness though particle size remains constant. We calculated the dipolar interaction energy among magnetic particles including far-neighbor interaction for films with different thickness values. The calculation revealed that the interaction energy varies across the film from edge to edge and the average interaction energy is strongly dependent on film thickness. Good quantitative agreement of the calculated energy curve with the experimental blocking curve was achieved after taking the magnetization variation into account. In the calculation it is assumed the existence of 100 nm sized domain structures in granular film as demonstrate (2) by previous studies. *supported by DoD/DARPA grant No. MDA972-97-1-003. (1) L. M. Malkinski, J.-Q. Wang, et al, Appl. Phys. Lett. 75, 844 (1999). (2) A. Gavrin, et al, Appl. Phys. Lett. 66, 1683 (1995); Y. J. Chen, et al, Appl. Phys. Lett. 72, 2472 (1998).
Lefrançois, Philippe; Rockmill, Beth; Xie, Pingxing; Roeder, G. Shirleen; Snyder, Michael
2016-01-01
During meiosis, chromosomes undergo a homology search in order to locate their homolog to form stable pairs and exchange genetic material. Early in prophase, chromosomes associate in mostly non-homologous pairs, tethered only at their centromeres. This phenomenon, conserved through higher eukaryotes, is termed centromere coupling in budding yeast. Both initiation of recombination and the presence of homologs are dispensable for centromere coupling (occurring in spo11 mutants and haploids induced to undergo meiosis) but the presence of the synaptonemal complex (SC) protein Zip1 is required. The nature and mechanism of coupling have yet to be elucidated. Here we present the first pairwise analysis of centromere coupling in an effort to uncover underlying rules that may exist within these non-homologous interactions. We designed a novel chromosome conformation capture (3C)-based assay to detect all possible interactions between non-homologous yeast centromeres during early meiosis. Using this variant of 3C-qPCR, we found a size-dependent interaction pattern, in which chromosomes assort preferentially with chromosomes of similar sizes, in haploid and diploid spo11 cells, but not in a coupling-defective mutant (spo11 zip1 haploid and diploid yeast). This pattern is also observed in wild-type diploids early in meiosis but disappears as meiosis progresses and homologous chromosomes pair. We found no evidence to support the notion that ancestral centromere homology plays a role in pattern establishment in S. cerevisiae post-genome duplication. Moreover, we found a role for the meiotic bouquet in establishing the size dependence of centromere coupling, as abolishing bouquet (using the bouquet-defective spo11 ndj1 mutant) reduces it. Coupling in spo11 ndj1 rather follows telomere clustering preferences. We propose that a chromosome size preference for centromere coupling helps establish efficient homolog recognition. PMID:27768699
Paul Tooley; Marsha Browning; Robert Leighty
2013-01-01
Our objectives were to establish inoculum density relationships between P. ramorum and selected hosts using detached leaf and whole-plant inoculations. Young plants and detached leaves of Quercus prinus (Chestnut oak), Q. rubra (Northern red oak), Acer rubrum (red maple), ...
Moore, Ian N; Lamirande, Elaine W; Paskel, Myeisha; Donahue, Danielle; Kenney, Heather; Qin, Jing; Subbarao, Kanta
2014-12-01
Ferrets are a valuable model for influenza virus pathogenesis, virus transmission, and antiviral therapy studies. However, the contributions of the volume of inoculum administered and the ferret's respiratory tract anatomy to disease outcome have not been explored. We noted variations in clinical disease outcomes and the volume of inoculum administered and investigated these differences by administering two influenza viruses (A/California/07/2009 [H1N1 pandemic] and A/Minnesota/11/2010 [H3N2 variant]) to ferrets intranasally at a dose of 10(6) 50% tissue culture infective doses in a range of inoculum volumes (0.2, 0.5, or 1.0 ml) and followed viral replication, clinical disease, and pathology over 6 days. Clinical illness and respiratory tract pathology were the most severe and most consistent when the viruses were administered in a volume of 1.0 ml. Using a modified micro-computed tomography imaging method and examining gross specimens, we found that the right main-stem bronchus was consistently larger in diameter than the left main-stem bronchus, though the latter was longer and straighter. These anatomic features likely influence the distribution of the inoculum in the lower respiratory tract. A 1.0-ml volume of inoculum is optimal for delivery of virus to the lower respiratory tract of ferrets, particularly when evaluation of clinical disease is desired. Furthermore, we highlight important anatomical features of the ferret lung that influence the kinetics of viral replication, clinical disease severity, and lung pathology. Ferrets are a valuable model for influenza virus pathogenesis, virus transmission, and antiviral therapy studies. Clinical disease in ferrets is an important parameter in evaluating the virulence of novel influenza viruses, and findings are extrapolated to virulence in humans. Therefore, it is highly desirable that the data from different laboratories be accurate and reproducible. We have found that, even when the same virus was administered at similar doses, different investigators reported a range of clinical disease outcomes, from asymptomatic infection to severe weight loss, ocular and nasal discharge, sneezing, and lethargy. We found that a wide range of inoculum volumes was used to experimentally infect ferrets, and we sought to determine whether the variations in disease outcome were the result of the volume of inoculum administered. These data highlight some less explored features of the model, methods of experimental infection, and clinical disease outcomes in a research setting. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Moore, Ian N.; Lamirande, Elaine W.; Paskel, Myeisha; Donahue, Danielle; Qin, Jing
2014-01-01
ABSTRACT Ferrets are a valuable model for influenza virus pathogenesis, virus transmission, and antiviral therapy studies. However, the contributions of the volume of inoculum administered and the ferret's respiratory tract anatomy to disease outcome have not been explored. We noted variations in clinical disease outcomes and the volume of inoculum administered and investigated these differences by administering two influenza viruses (A/California/07/2009 [H1N1 pandemic] and A/Minnesota/11/2010 [H3N2 variant]) to ferrets intranasally at a dose of 106 50% tissue culture infective doses in a range of inoculum volumes (0.2, 0.5, or 1.0 ml) and followed viral replication, clinical disease, and pathology over 6 days. Clinical illness and respiratory tract pathology were the most severe and most consistent when the viruses were administered in a volume of 1.0 ml. Using a modified micro-computed tomography imaging method and examining gross specimens, we found that the right main-stem bronchus was consistently larger in diameter than the left main-stem bronchus, though the latter was longer and straighter. These anatomic features likely influence the distribution of the inoculum in the lower respiratory tract. A 1.0-ml volume of inoculum is optimal for delivery of virus to the lower respiratory tract of ferrets, particularly when evaluation of clinical disease is desired. Furthermore, we highlight important anatomical features of the ferret lung that influence the kinetics of viral replication, clinical disease severity, and lung pathology. IMPORTANCE Ferrets are a valuable model for influenza virus pathogenesis, virus transmission, and antiviral therapy studies. Clinical disease in ferrets is an important parameter in evaluating the virulence of novel influenza viruses, and findings are extrapolated to virulence in humans. Therefore, it is highly desirable that the data from different laboratories be accurate and reproducible. We have found that, even when the same virus was administered at similar doses, different investigators reported a range of clinical disease outcomes, from asymptomatic infection to severe weight loss, ocular and nasal discharge, sneezing, and lethargy. We found that a wide range of inoculum volumes was used to experimentally infect ferrets, and we sought to determine whether the variations in disease outcome were the result of the volume of inoculum administered. These data highlight some less explored features of the model, methods of experimental infection, and clinical disease outcomes in a research setting. PMID:25187553
Han, Jian-Rong; Xu, Jun; Zhou, Xiao-Mei
2002-01-01
This study examined the respective effect of inoculum type, inorganic salt and nitrogen to carbon ratio on sclerotium formation and carotenoid production in surface culture of Penicillium sp. PT95. Neither the spore inoculum nor the mycelial pellet inoculum could result in the formation of sclerotium on a modified Czapek agar medium after incubation of 28 days, whereas the inoculum in the form of sclerotium caused the formation of numerous orange, sand-shaped sclerotia after incubation of 14 days. Among four inorganic salts tested, K(2)HPO(4) was more essential to the sclerotium formation and carotenoid production of strain PT95 as compared to KCl, MgSO(4) or FeSO(4). It was also shown that the combination of K(2)HPO(4), KCl and MgSO(4) could produce the best positive cooperation and give the highest sclerotia biomass (782 mg/plate) and carotenoid content in sclerotium (420 microg/g of dry sclerotia) as well as pigment yield (328 microg/plate). The medium containing 0.24 approximately 0.48 g/l sodium nitrate-nitrogen was effective to both the sclerotium formation and carotenoid production of strain PT95 when available maltose-carbon concentrations were at 5.26 approximately 21.05 g/l. The optimal N:C ratio was found to be 1:25.
NASA Astrophysics Data System (ADS)
Ardhi, Muh. Waskito; Sulistyarsi, Ani; Pujiati
2017-06-01
Aspergillus sp is a microorganism which has a high ability to produce cellulase enzymes. In producing Cellulase enzymes requires appropriate concentration and incubation time to obtain optimum enzyme activity. This study aimed to determine the effect of inoculum concentration and incubation time towards production and activity of cellulases from Aspergillus sp substrate bagasse. This research used experiments method; completely randomized design with 2 factorial repeated 2 times. The treatment study include differences inoculum (K) 5% (K1), 15% (K2) 25%, (K3) and incubation time (F) that is 3 days (F1), 6 days (F2), 9 days (F3), 12 days (F4). The data taken from the treatment are glucose reduction and protein levels of crude cellulase enzyme activity that use Nelson Somogyi and Biuret methods. Analysis of variance ANOVA data used two paths with significance level of 5% then continued with LSD test. The results showed that: Fhit>Ftab. Thus, there is effect of inoculum concentrations and incubation time toward activity of crude cellulases of Aspergillus sp. The highest glucose reduction of treatment is K3F4 (concentration of inoculum is 25% with 12 days incubation time) amount 12.834 g / ml and the highest protein content is K3F4 (concentration of inoculum is 25% with with 12 days incubation time) amount 0.740 g / ml.
Calvo-Garrido, Carlos; Usall, Josep; Viñas, Inmaculada; Elmer, Philip Ag; Cases, Elena; Teixidó, Neus
2014-06-01
Epidemiological studies have described the life cycle of B. cinerea in vineyards. However, there is a lack of information on the several infection pathways and the quantitative relationships between secondary inoculum and bunch rot at harvest. Over two seasons, different spray programmes were used to determine key phenological stages for bunch rot development. Secondary inoculum sources within the bunch were also studied. The relative importance of flowering was evidenced in the given conditions, as treatments that included two fungicide applications at flowering were the most effective. In 2010, under conducive meteorological conditions for B. cinerea development after veraison, an extra application provided significantly higher control. Infections of necrotic tissues inside the bunch and latent infections developed mainly during flowering, while very low quantities of B. cinerea conidia were recovered from the fruit surface at veraison. Regression analysis correlated the incidence of latent infections and B. cinerea incidence on calyptras and aborted fruits at veraison with incidence of Botrytis bunch rot at harvest, presenting R2 = 0.95 for the overall regression model. This work points out key phenological stages during the season for bunch rot and B. cinerea secondary inoculum development and relates quantitatively inoculum sources at veraison to bunch rot at harvest. Recommendations for field applications of antibotrytic products are also suggested. © 2013 Society of Chemical Industry.
Fernández, C E; Aspiras, M B; Dodds, M W; González-Cabezas, C; Rickard, A H
2017-03-01
Saliva has been previously used as an inoculum for in vitro oral biofilm studies. However, the microbial community profile of saliva is markedly different from hard- and soft-tissue-associated oral biofilms. Here, we investigated the changes in the biofilm architecture and microbial diversity of in vitro oral biofilms developed from saliva, tongue or plaque-derived inocula under different salivary shear forces. Four inoculum types (saliva, bacteria harvested from the tongue, toothbrush and curette-harvested plaque) were collected and pooled. Biofilms (n ≥ 15) were grown for 20 h in cell-free human saliva flowing at three different shear forces. Stained biofilms were imaged using a confocal laser scanning microscope. Biomass, thickness and roughness were determined by image analysis and bacterial community composition analysed using Ion Torrent. All developed biofilms showed a significant reduction in observed diversity compared with their respective original inoculum. Shear force altered biofilm architecture of saliva and curette-collected plaque and community composition of saliva, tongue and curette-harvested plaque. Different intraoral inocula served as precursors of in vitro oral polymicrobial biofilms which can be influenced by shear. Inoculum selection and shear force are key factors to consider when developing multispecies biofilms within in vitro models. © 2016 The Society for Applied Microbiology.
Sabath, L. D.; Garner, Carol; Wilcox, Clare; Finland, Maxwell
1975-01-01
Because there are few persuasive data for selecting one semisynthetic penicillin or cephalosporin over another for treatment of serious staphylococcal infections, 118 recent clinical isolates of Staphylococcus aureus were studied to determine to what extent the presence of β-lactamase affected the relative anti-staphylococcal activity of six penicillins and seven cephalosporins. In addition, the effect of inoculum was studied for its possible effect on the anti-staphylococcal activity of the 13 β-lactam antibiotics. By all criteria, methicillin and nafcillin were clearly more resistant to both the inoculum effect and the production of staphylococcal β-lactamase, whereas benzylpenicillin and cephaloridine (especially benzyl-penicillin) were the most susceptible to these effects. Cephazolin was clearly more susceptible to staphylococcal β-lactamase and heavy inocula than the other cephalosporins (with the exception of cephaloridine), whereas cephalothin was the most resistant cephalosporin to these factors. The minimal inhibitory concentration for benzylpenicillin for tests with undiluted inoculum, compared to results with inoculum diluted 10−4, differed by a factor up to 16,384, whereas with methicillin and nafcillin the differences were rarely more than twofold. Ratios for the other 10 antibiotics fell between these extremes. These results suggest that methicillin or nafcillin is most stable to staphylococcal β-lactamase, and that benzylpenicillin and cephaloridine are the most susceptible. PMID:1167043
NASA Astrophysics Data System (ADS)
Ai, Binling; Chi, Xue; Meng, Jia; Sheng, Zhanwu; Zheng, Lili; Zheng, Xiaoyan; Li, Jianzheng
2017-12-01
Undefined mixed culture-based fermentation is an alternative strategy for biofuels and bioproducts production from lignocellulosic biomass without supplementary cellulolytic enzymes. Mixed culture produces mixed carboxylates. To estimate the relationship between microbial community structure and product spectrum, carboxylate production was initiated by mixed cultures with different microbial community structure. All the inoculum cultures were derived from the same enrichment culture from the combination of cattle manure, pig manure compost, corn field soil and rotten wood. Due to the differences in the preparation method and culture time, the inoculum cultures for batch fermentation had high similarity in microbial community structure, while the community structure of each inoculum culture for repeated batch fermentation differed from that of another. The inoculum cultures with similar community structure led to a similar product spectrum. In batch fermentation, the selectivity of main product butyric acid stabilized around 76%. The inoculum cultures with different community structures resulted in different product spectra. In repeated batch fermentation, the butyric acid content gradually decreased to 27%, and the by-product acetic acid content steadily increased to 56%. The other by-products including propionic, valeric and caproic acids were also increased. It is deduced that keeping the microbial community structure stable makes the basic and key precondition for steady production of specific carboxylic acid with undefined mixed culture.
Size-dependent surface phase change of lithium iron phosphate during carbon coating
NASA Astrophysics Data System (ADS)
Wang, Jiajun; Yang, Jinli; Tang, Yongji; Liu, Jian; Zhang, Yong; Liang, Guoxian; Gauthier, Michel; Karen Chen-Wiegart, Yu-Chen; Norouzi Banis, Mohammad; Li, Xifei; Li, Ruying; Wang, Jun; Sham, T. K.; Sun, Xueliang
2014-03-01
Carbon coating is a simple, effective and common technique for improving the conductivity of active materials in lithium ion batteries. However, carbon coating provides a strong reducing atmosphere and many factors remain unclear concerning the interface nature and underlying interaction mechanism that occurs between carbon and the active materials. Here, we present a size-dependent surface phase change occurring in lithium iron phosphate during the carbon coating process. Intriguingly, nanoscale particles exhibit an extremely high stability during the carbon coating process, whereas microscale particles display a direct visualization of surface phase changes occurring at the interface at elevated temperatures. Our findings provide a comprehensive understanding of the effect of particle size during carbon coating and the interface interaction that occurs on carbon-coated battery material—allowing for further improvement in materials synthesis and manufacturing processes for advanced battery materials.
Interaction of Graphene ribbon with atmospheric chemical species
2017-04-14
graphene ribbons is an important process in interaction of atmospheric radical with graphene. This study examines how the size of the graphene ribbon...an important process in interaction of atmospheric radical with graphene. This study examines how the size of the graphene ribbon affects the... journals [a1] Journal name:CARBON Title: Size dependence of graphene chemistry: A computational study on CO desorption reaction Date
Ennos, R A; McConnell, K C
2003-09-01
There have been many studies of plant pathogen evolution in systems showing gene-for-gene control of host resistance. However little is known about situations, exemplified by Scots pine, Pinus sylvestris, and its fungal pathogen Crumenulopsis sororia, where variation in host resistance is quantitative. In a field experiment genetically marked isolates of C. sororia from three natural populations were reciprocally inoculated on 1- and 2-year-old branch tissue of P. sylvestris in the three sites from which they had been collected. Quantitative variation in host resistance was measured by comparing the performance of the same inocula on different host populations, individuals and tissues. The selective value of isolates derived from different populations was estimated by comparing the frequency of genotypes in lesion re-isolations with those in the initial inoculum mixtures. Host resistance varied significantly among populations, individuals within populations and between 1- and 2-year-old branch tissue of P. sylvestris. Large differences in the relative selective values of C. sororia isolates from different populations were detected. The selective value of pathogens was independent of the host population on which they were inoculated. However, their selective value did depend on the age of the tissue on which they grew. The implications of these results for modelling evolution in pathogen-host interactions that lack gene-for-gene determination of host resistance are discussed.
Quantifying the entropic cost of cellular growth control
NASA Astrophysics Data System (ADS)
De Martino, Daniele; Capuani, Fabrizio; De Martino, Andrea
2017-07-01
Viewing the ways a living cell can organize its metabolism as the phase space of a physical system, regulation can be seen as the ability to reduce the entropy of that space by selecting specific cellular configurations that are, in some sense, optimal. Here we quantify the amount of regulation required to control a cell's growth rate by a maximum-entropy approach to the space of underlying metabolic phenotypes, where a configuration corresponds to a metabolic flux pattern as described by genome-scale models. We link the mean growth rate achieved by a population of cells to the minimal amount of metabolic regulation needed to achieve it through a phase diagram that highlights how growth suppression can be as costly (in regulatory terms) as growth enhancement. Moreover, we provide an interpretation of the inverse temperature β controlling maximum-entropy distributions based on the underlying growth dynamics. Specifically, we show that the asymptotic value of β for a cell population can be expected to depend on (i) the carrying capacity of the environment, (ii) the initial size of the colony, and (iii) the probability distribution from which the inoculum was sampled. Results obtained for E. coli and human cells are found to be remarkably consistent with empirical evidence.
Camu, Nicholas; González, Ángel; De Winter, Tom; Van Schoor, Ann; De Bruyne, Katrien; Vandamme, Peter; Takrama, Jemmy S.; Addo, Solomon K.; De Vuyst, Luc
2008-01-01
The influence of turning and environmental contamination on six spontaneous cocoa bean heap fermentations performed in Ghana was studied through a multiphasic approach, encompassing both microbiological (culture-dependent and culture-independent techniques) and metabolite target analyses. A sensory analysis of chocolate made from the fermented, dried beans was performed as well. Only four clusters were found among the isolates of acetic acid bacteria (AAB) identified: Acetobacter pasteurianus, Acetobacter ghanensis, Acetobacter senegalensis, and a potential new Acetobacter lovaniensis-like species. Two main clusters were identified among the lactic acid bacteria (LAB) isolated, namely, Lactobacillus plantarum and Lactobacillus fermentum. No differences in biodiversity of LAB and AAB were seen for fermentations carried out at the farm and factory sites, indicating the cocoa pod surfaces and not the general environment as the main inoculum for spontaneous cocoa bean heap fermentation. Turning of the heaps enhanced aeration and increased the relative population size of AAB and the production of acetic acid. This in turn gave a more sour taste to chocolate made from these beans. Bitterness was reduced through losses of polyphenols and alkaloids upon fermentation and cocoa bean processing. PMID:17993565
Improving management of grape powdery mildew with new tools and knowledge
USDA-ARS?s Scientific Manuscript database
The assumption that inoculum of the grape powdery mildew pathogen is always available once conditions are suitable for inoculum release has been shown to be incorrect. Using various molecular techniques, we have shown that viticulturist can reduce their fungicide applications, on average, by 2.4 ap...
A test system to quantify inoculum in runoff from Phytophthora ramorum-infected plant roots
USDA-ARS?s Scientific Manuscript database
Foliar hosts of Phytophthora ramorum are often susceptible to root infection, but the epidemiological significance of such infections is unknown. We used a standardized test system to study inoculum in runoff from root-infected Viburnum tinus cuttings. Viburnum were inoculated by pouring a sporang...
Effects of microbial inoculum composition on rumen microbial ecology of dairy calves
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine if microbial inoculum composition affects dairy calf rumen microbial ecology. Holstein bull calves (n=20) were removed from their dam at birth and individually housed in calf hutches with sand bedding. Responses were studied using a randomized complete bl...
Suzuki, Takahiro; Fujibayashi, Misato; Hataya, Tatsuji; Taneda, Akito; He, Ying-Hong; Tsushima, Taro; Duraisamy, Ganesh Selvaraj; Siglová, Kristyna; Matoušek, Jaroslav; Sano, Teruo
2017-03-01
Apple fruit crinkle viroid (AFCVd) is a tentative member of the genus Apscaviroid, family Pospiviroidae. AFCVd has a narrow host range and is known to infect apple, hop and persimmon as natural hosts. In this study, tomato, cucumber and wild hop have been identified as new experimental herbaceous hosts. Foliar symptoms were very mild or virtually undetectable, but fruits of infected tomato were small, cracked and distorted. These symptoms resemble those observed on some AFCVd-sensitive apple cultivars. After transfer to tomato, cucumber and wild hop, sequence changes were detected in a natural AFCVd isolate from hop, and major variants in tomato, cucumber and wild hop differed in 10, 8 or 2 nucleotides, respectively, from the predominant one in the inoculum. The major variants in tomato and cucumber were almost identical, and the one in wild hop was very similar to the one in cultivated hop. Detailed analyses of the host-dependent sequence changes that appear in a naturally occurring AFCVd isolate from hop after transfer to tomato using small RNA deep sequence data and infectivity studies with dimeric RNA transcripts followed by progeny analysis indicate that the major AFCVd variant in tomato emerged by selection of a minor variant present in the inoculum (i.e. hop) followed by one to two host-dependent de novo mutations. Comparison of the secondary structures of major variants in hop, tomato and persimmon after transfer to tomato suggested that maintenance of stem-loop structures in the left-hand half of the molecule is critical for infection.
Factors influencing the specific interaction of Neisseria gonorrhoeae with transforming DNA.
Goodman, S D; Scocca, J J
1991-01-01
The specific interaction of transformable Neisseria gonorrhoeae with DNA depends on the recognition of specific 10-residue target sequences. The relative affinity for DNA between 3 and 17 kb in size appears to be linearly related to the frequency of targets on the segment and is unaffected by absolute size. The average frequency of targets in chromosomal DNA of N. gonorrhoeae appears to be approximately one per 1,000 bp. PMID:1909325
Lázaro, A.; Totland, Ø.
2014-01-01
Background and Aims The pollinator-mediated stabilizing selection hypothesis suggests that the specialized pollination system of zygomorphic flowers might cause stabilizing selection, reducing their flower size variation compared with actinomorphic flowers. However, the degree of ecological generalization and of dependence on pollinators varies greatly among species of both flower symmetry types and this may also affect flower size variation. Methods Data on 43 species from two contrasting communities (one alpine and one lowland community) were used to test the relationships and interactions between flower size phenotypic variation, floral symmetry, ecological pollination generalization and species' dependence on pollinators. Key Results Contrary to what was expected, higher flower size variation was found in zygomorphic than in actinomorphic species in the lowland community, and no difference in flower size variation was found between symmetry types in the alpine community. The relationship between floral symmetry and flower size variation depended on ecological generalization and species' dependence on pollinators, although the influence of ecological generalization was only detected in the alpine community. Zygomorphic species that were highly dependent on pollinators and that were ecologically specialized were less variable in flower size than ecologically generalist and selfing zygomorphic species, supporting the pollinator-mediated stabilizing selection hypothesis. However, these relationships were not found in actinomorphic species, probably because they are not dependent on any particular pollinator for efficient pollination and therefore their flower size always shows moderate levels of variation. Conclusions The study suggests that the relationship between flower size variation and floral symmetry may be influenced by population-dependent factors, such as ecological generalization and species' dependence on pollinators. PMID:24838838
Lázaro, A; Totland, O
2014-07-01
The pollinator-mediated stabilizing selection hypothesis suggests that the specialized pollination system of zygomorphic flowers might cause stabilizing selection, reducing their flower size variation compared with actinomorphic flowers. However, the degree of ecological generalization and of dependence on pollinators varies greatly among species of both flower symmetry types and this may also affect flower size variation. Data on 43 species from two contrasting communities (one alpine and one lowland community) were used to test the relationships and interactions between flower size phenotypic variation, floral symmetry, ecological pollination generalization and species' dependence on pollinators. Contrary to what was expected, higher flower size variation was found in zygomorphic than in actinomorphic species in the lowland community, and no difference in flower size variation was found between symmetry types in the alpine community. The relationship between floral symmetry and flower size variation depended on ecological generalization and species' dependence on pollinators, although the influence of ecological generalization was only detected in the alpine community. Zygomorphic species that were highly dependent on pollinators and that were ecologically specialized were less variable in flower size than ecologically generalist and selfing zygomorphic species, supporting the pollinator-mediated stabilizing selection hypothesis. However, these relationships were not found in actinomorphic species, probably because they are not dependent on any particular pollinator for efficient pollination and therefore their flower size always shows moderate levels of variation. The study suggests that the relationship between flower size variation and floral symmetry may be influenced by population-dependent factors, such as ecological generalization and species' dependence on pollinators. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Size-dependent diffusion promotes the emergence of spatiotemporal patterns
NASA Astrophysics Data System (ADS)
Zhang, Lai; Thygesen, Uffe Høgsbro; Banerjee, Malay
2014-07-01
Spatiotemporal patterns, indicating the spatiotemporal variability of individual abundance, are a pronounced scenario in ecological interactions. Most of the existing models for spatiotemporal patterns treat species as homogeneous groups of individuals with average characteristics by ignoring intraspecific physiological variations at the individual level. Here we explore the impacts of size variation within species resulting from individual ontogeny, on the emergence of spatiotemporal patterns in a fully size-structured population model. We found that size dependency of animal's diffusivity greatly promotes the formation of spatiotemporal patterns, by creating regular spatiotemporal patterns out of temporal chaos. We also found that size-dependent diffusion can substitute large-amplitude base harmonics with spatiotemporal patterns with lower amplitude oscillations but with enriched harmonics. Finally, we found that the single-generation cycle is more likely to drive spatiotemporal patterns compared to predator-prey cycles, meaning that the mechanism of Hopf bifurcation might be more common than hitherto appreciated since the former cycle is more widespread than the latter in case of interacting populations. Due to the ubiquity of individual ontogeny in natural ecosystems we conclude that diffusion variability within populations is a significant driving force for the emergence of spatiotemporal patterns. Our results offer a perspective on self-organized phenomena, and pave a way to understand such phenomena in systems organized as complex ecological networks.
Size-dependent Hamaker constants for silver and gold nanoparticles
NASA Astrophysics Data System (ADS)
Pinchuk, Pavlo; Jiang, Ke
2015-08-01
Hamaker-Lifshitz constants are material specific constants that are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the Drude model, which is based on the assumption of motion of free conducting electrons. For bulk metals, the Drude model does not predict any sizedependence of the dielectric permittivity. However, the conducting electrons in small noble metal nanoparticles (R ~ 10nm) exhibit surface scattering, which changes the complex permittivity function. In this work, we show theoretically that scattering of the free conducting electrons inside silver and gold nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. We calculate numerically the Hamaker-Lifshitz constants for silver and gold nanoparticles with different diameters. The results of the study might be of interests for understanding colloidal stability of metal nanoparticles.
Rijgersberg, Hajo; Franz, Eelco; Nierop Groot, Masja; Tromp, Seth-Oscar
2013-07-01
Within a microbial risk assessment framework, modeling the maximum population density (MPD) of a pathogenic microorganism is important but often not considered. This paper describes a model predicting the MPD of Salmonella on alfalfa as a function of the initial contamination level, the total count of the indigenous microbial population, the maximum pathogen growth rate and the maximum population density of the indigenous microbial population. The model is parameterized by experimental data describing growth of Salmonella on sprouting alfalfa seeds at inoculum size, native microbial load and Pseudomonas fluorescens 2-79. The obtained model fits well to the experimental data, with standard errors less than ten percent of the fitted average values. The results show that the MPD of Salmonella is not only dictated by performance characteristics of Salmonella but depends on the characteristics of the indigenous microbial population like total number of cells and its growth rate. The model can improve the predictions of microbiological growth in quantitative microbial risk assessments. Using this model, the effects of preventive measures to reduce pathogenic load and a concurrent effect on the background population can be better evaluated. If competing microorganisms are more sensitive to a particular decontamination method, a pathogenic microorganism may grow faster and reach a higher level. More knowledge regarding the effect of the indigenous microbial population (size, diversity, composition) of food products on pathogen dynamics is needed in order to make adequate predictions of pathogen dynamics on various food products.
Effect of interaction range on phonon relaxation in Fermi-Pasta-Ulam beta chain.
Santhosh, G; Kumar, Deepak
2007-08-01
We study the effect of increasing the range of interactions on phonon relaxation in a chain of atoms with quartic anharmonicity. The study is motivated by recent numerical studies, showing that the value of the exponent alpha characterizing the divergence of conductivity with system size apparently depends on the presence of second neighbor couplings. We perform a quantum calculation of the wave-vector (q) dependent relaxation rate gamma(q) in the second order perturbation theory. The nonanalytic dependence of gamma(q) arises due to small-q singularity of the collision integral. We find that gamma(q) proportional to Aq(5/3) + Bq2. This gives rise to an asymptotic value alpha = 0.4, but the q2 terms lead to a higher apparent value of alpha at small sizes of the chain.
The phylogenetic structure of plant-pollinator networks increases with habitat size and isolation.
Aizen, Marcelo A; Gleiser, Gabriela; Sabatino, Malena; Gilarranz, Luis J; Bascompte, Jordi; Verdú, Miguel
2016-01-01
Similarity among species in traits related to ecological interactions is frequently associated with common ancestry. Thus, closely related species usually interact with ecologically similar partners, which can be reinforced by diverse co-evolutionary processes. The effect of habitat fragmentation on the phylogenetic signal in interspecific interactions and correspondence between plant and animal phylogenies is, however, unknown. Here, we address to what extent phylogenetic signal and co-phylogenetic congruence of plant-animal interactions depend on habitat size and isolation by analysing the phylogenetic structure of 12 pollination webs from isolated Pampean hills. Phylogenetic signal in interspecific interactions differed among webs, being stronger for flower-visiting insects than plants. Phylogenetic signal and overall co-phylogenetic congruence increased independently with hill size and isolation. We propose that habitat fragmentation would erode the phylogenetic structure of interaction webs. A decrease in phylogenetic signal and co-phylogenetic correspondence in plant-pollinator interactions could be associated with less reliable mutualism and erratic co-evolutionary change. © 2015 John Wiley & Sons Ltd/CNRS.
Roy, Sudipta; Halder, Suman Kumar; Banerjee, Debdulal
2016-01-01
Streptomyces thermoviolaceus NT1, an endophytic isolate, was studied for optimization of granaticinic acid production. It is an antimicrobial metabolite active against even drug resistant bacteria. Different media, optimum glucose concentration, initial media pH, incubation temperature, incubation period, and inoculum size were among the selected parameters optimized in the one-variable-at-a-time (OVAT) approach, where glucose concentration, pH, and temperature were found to play a critical role in antibiotic production by this strain. Finally, the Box–Behnken experimental design (BBD) was employed with three key factors (selected after OVAT studies) for response surface methodological (RSM) analysis of this optimization study.RSM analysis revealed a multifactorial combination; glucose 0.38%, pH 7.02, and temperature 36.53 °C as the optimum conditions for maximum antimicrobial yield. Experimental verification of model analysis led to 3.30-fold (61.35 mg/L as compared to 18.64 mg/L produced in un-optimized condition) enhanced granaticinic acid production in ISP2 medium with 5% inoculum and a suitable incubation period of 10 days. So, the conjugated optimization study for maximum antibiotic production from Streptomyces thermoviolaceus NT1 was found to result in significantly higher yield, which might be exploited in industrial applications. PMID:28952581
Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions.
Barber, Nicholas A; Kiers, E Toby; Theis, Nina; Hazzard, Ruth V; Adler, Lynn S
2013-10-01
Agricultural management has profound effects on soil communities. Activities such as fertilizer inputs can modify the composition of arbuscular mycorrhizal fungi (AMF) communities, which form important symbioses with the roots of most crop plants. Intensive conventional agricultural management may select for less mutualistic AMF with reduced benefits to host plants compared to organic management, but these differences are poorly understood. AMF are generally evaluated based on their direct growth effects on plants. However, mycorrhizal colonization also may alter plant traits such as tissue nutrients, defensive chemistry, or floral traits, which mediate important plant-insect interactions like herbivory and pollination. To determine the effect of AMF from different farming practices on plant performance and traits that putatively mediate species interactions, we performed a greenhouse study by inoculating Cucumis sativus (cucumber, Cucurbitaceae) with AMF from conventional farms, organic farms, and a commercial AMF inoculum. We measured growth and a suite of plant traits hypothesized to be important predictors of herbivore resistance and pollinator attraction. Several leaf and root traits and flower production were significantly affected by AMF inoculum. Both conventional and organic AMF reduced leaf P content but increased Na content compared to control and commercial AMF. Leaf defenses were unaffected by AMF treatments, but conventional AMF increased root cucurbitacin C, the primary defensive chemical of C. sativus, compared to organic AMF. These effects may have important consequences for herbivore preference and population dynamics. AMF from both organic and conventional farms decreased flower production relative to commercial and control treatments, which may reduce pollinator attraction and plant reproduction. AMF from both farm types also reduced seed germination, but effects on plant growth were limited. Our results suggest that studies only considering AMF effects on growth may overlook changes in plant traits that have the potential to influence interactions, and hence yield, on farms. Given the effects of AMF on plant traits documented here, and the great importance of both herbivores and pollinators to wild and cultivated plants, we advocate for comprehensive assessments of mycorrhizal effects in complex community contexts, with the aim of incorporating multispecies interactions both above and below the soil surface.
Scaling laws for van der Waals interactions in nanostructured materials.
Gobre, Vivekanand V; Tkatchenko, Alexandre
2013-01-01
Van der Waals interactions have a fundamental role in biology, physics and chemistry, in particular in the self-assembly and the ensuing function of nanostructured materials. Here we utilize an efficient microscopic method to demonstrate that van der Waals interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of van der Waals interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly.
Effect of prior vegetative growth, inoculum density and light on conidiation in Erysiphe necator
USDA-ARS?s Scientific Manuscript database
A driving force in epidemics of grape powdery mildew is the abundant production of conidia. Our objective was to better define the three factors involved in the qualitative change that occurs when a mildew colony switches from vegetative growth to sporulation –inoculum density, light, and a sporulat...
On-farm AM fungus inoculum production: a complete how-to on-farm am fungus inoculum production
USDA-ARS?s Scientific Manuscript database
Arbuscular mycorrhizal (AM) fungi are beneficial soil fungi that form a symbiosis with the majority of crop plants. The benefits to the plant include increased nutrient uptake and disease and drought resistance. This makes utilization of the symbiosis a potentially important part in ensuring the s...
USDA-ARS?s Scientific Manuscript database
Seedlings of three Eastern US forest species (red maple, northern red oak, and chestnut oak) were inoculated by applying Phytophthora ramorum sporangia to stems at different inoculum densities with and without wounding. Disease occurred in all treatments involving wounds, and no disease was observe...
P.W. Tooley; M. Browning; R.M. Leighty
2014-01-01
Seedlings of three Eastern US forest species Quercus rubra (northern red oak), Quercus prinus (chestnut oak) and Acer rubrum (red maple) were inoculated by applying Phytophthora ramorum sporangia to stems at different inoculum densities with and without wounding. Disease occurred in all...
Development of an assay for rapid detection and quantification of Verticillium dahliae in soil
USDA-ARS?s Scientific Manuscript database
Verticillium dahliae is responsible for Verticillium wilt on a wide range of hosts including strawberry, on which low inoculum densities can cause significant crop loss. Determination of inoculum density is currently done by soil plating, but this can take 6-8 weeks to complete and delay the grower...
USDA-ARS?s Scientific Manuscript database
Little is known about root susceptibility of eastern tree species to Phytophthora ramorum. In this study, we examined root susceptibility and inoculum production from roots. Oak radicles of several eastern oak species were exposed to zoospore suspensions of 1, 10, 100, or 1000 zoospores per ml at ...
Corrêa, E K; Ulguim, R R; Corrêa, L B; Castilhos, D D; Bianchi, I; Gil-Turnes, C; Lucia, T
2012-10-01
Thermal and microbiological characteristics of beddings for swine were compared according to their depth and of addition of inoculums. Bedding was added to boxes at 0.25 (25D) and 0.50 m (50D), with three treatments: control (no inoculums); T1, with 250 g of Bacillus cereus var. toyoii at 8.4 × 10(7) CFU; and T2, with 250 g of a pool of B. subtilis, Bacillus licheniformis and Bacillus polymyxa at 8.4 × 10(7) CFU (250 g for 25D and 500 g for 50D). Mean temperatures were 28.5 ± 3.9 at the surface and 35.2 ± 8.9 inside the beddings. The most probable number (MPN) of thermophilic bacteria was higher for T1 and T2 than for the control (P<0.05). The MPN of thermophilic bacteria and fungi was greater for D50 than for D25 (P<0.05). The use of 25D without inoculums is recommended due to the reduction of thermophilic microbiota. Copyright © 2012 Elsevier Ltd. All rights reserved.
Corrêa, E K; Corezzolla, J L; Corrêa, M N; Bianchi, I; Gil-Turnes, C; Lucia, T
2012-11-01
The effect of depths and of addition of inoculums on the chemical content of swine beddings was evaluated. For beddings 0.25m (25D) and 0.50m (50D) deep, three treatments were tested in two repeats with the same beddings: control (no inoculums); T1 (250g of Bacillus cereus var. toyoii at 8.4×10(7)CFU/g); and T2 (250g of a pool of Bacillus sp. at 8.4×10(7)CFU/g) (250g for 25D and 500g for 50D). For 25D, the C:N ratio was lower, but N, K and C contents were greater than for 50D (P<0.05). The inoculums did not benefit any chemical parameter (P>0.05). In the second repeat, beddings presented lower C:N ratio and greater N, P and K contents than in the first repeat (P<0.05). Thus, the compost produced after using 25D twice had greater fertilizer value than that of 50D. Copyright © 2012 Elsevier Ltd. All rights reserved.
Han, Jian-Rong; Yuan, Jing-Ming
2003-10-01
Various inocula and grains were evaluated for carotenoid production by solid-state fermentation using Penicillium sp. PT95. Millet medium was more effective in both sclerotia growth and carotenoid production than other grain media. An inoculum in the form of sclerotia yielded higher sclerotia biomass compared to either a spore inoculum or a mycelial pellet inoculum. Adding wheat bran to grain medium favored the formation of sclerotia. However, neither the inoculum type nor addition of wheat bran resulted in a significant change in the carotenoid content of sclerotia. Among grain media supplemented with wheat bran (wheat bran:grain =1:4 w/w, dry basis), a medium consisting of rice and wheat bran gave the highest sclerotia biomass (15.10 g/100 g grain), a medium consisting of buckwheat and wheat bran gave the highest content of carotenoid in sclerotia (0.826 mg/g dry sclerotia), and a medium consisting of millet and wheat bran gave the highest carotenoid yield (11.457 mg/100 g grain).
Ciofu, Oana; Yang, Liang; Wu, Hong; Song, Zhijun; Oliver, Antonio; Høiby, Niels
2013-01-01
Resistance to β-lactam antibiotics is a frequent problem in Pseudomonas aeruginosa lung infection of cystic fibrosis (CF) patients. This resistance is mainly due to the hyperproduction of chromosomally encoded β-lactamase and biofilm formation. The purpose of this study was to investigate the role of β-lactamase in the pharmacokinetics (PK) and pharmacodynamics (PD) of ceftazidime and imipenem on P. aeruginosa biofilms. P. aeruginosa PAO1 and its corresponding β-lactamase-overproducing mutant, PAΔDDh2Dh3, were used in this study. Biofilms of these two strains in flow chambers, microtiter plates, and on alginate beads were treated with different concentrations of ceftazidime and imipenem. The kinetics of antibiotics on the biofilms was investigated in vitro by time-kill methods. Time-dependent killing of ceftazidime was observed in PAO1 biofilms, but concentration-dependent killing activity of ceftazidime was observed for β-lactamase-overproducing biofilms of P. aeruginosa in all three models. Ceftazidime showed time-dependent killing on planktonic PAO1 and PAΔDDh2Dh3. This difference is probably due to the special distribution and accumulation in the biofilm matrix of β-lactamase, which can hydrolyze the β-lactam antibiotics. The PK/PD indices of the AUC/MBIC and Cmax/MBIC (AUC is the area under concentration-time curve, MBIC is the minimal biofilm-inhibitory concentration, and Cmax is the maximum concentration of drug in serum) are probably the best parameters to describe the effect of ceftazidime in β-lactamase-overproducing P. aeruginosa biofilms. Meanwhile, imipenem showed time-dependent killing on both PAO1 and PAΔDDh2Dh3 biofilms. An inoculum effect of β-lactams was found for both planktonic and biofilm P. aeruginosa cells. The inoculum effect of ceftazidime for the β-lactamase-overproducing mutant PAΔDDh2Dh3 biofilms was more obvious than for PAO1 biofilms, with a requirement of higher antibiotic concentration and a longer period of treatment. PMID:23089750
Yesil, Mustafa; Kasler, David R; Huang, En; Yousef, Ahmed E
2017-07-01
Foodborne disease outbreaks associated with the consumption of fresh produce pose a threat to public health, decrease consumer confidence in minimally processed foods, and negatively impact the sales of these commodities. The aim of the study was to determine the influence of population size of inoculated pathogen on its inactivation by gaseous ozone treatment during vacuum cooling. Spinach leaves were spot inoculated with Escherichia coli O157:H7 at approximate initial populations of 10 8 , 10 7 , and 10 5 CFU/g. Inoculated leaves were vacuum cooled (28.5 inHg; 4°C) in a custom-made vessel and then were subjected to a gaseous ozone treatment under the following conditions: 1.5 g of ozone per kg of gas mixture, vessel pressure at 10 lb/in 2 gauge, 94 to 98% relative humidity, and 30 min of holding time at 9°C. Treatment of the leaves, having the aforementioned inocula, decreased E. coli populations by 0.2, 2.1, and 2.8 log CFU/g, respectively, compared with the inoculated untreated controls. Additionally, spinach leaves were inoculated at 1.4 × 10 3 CFU/g, which approximates natural contamination level, and the small populations remaining after ozone treatment were quantified using the most-probable-number (MPN) method. Vacuum and ozone sequential treatment decreased this E. coli O157:H7 population to <3 MPN/g (i.e., greater than 3-log reduction). Resulting log reductions were greater (P < 0.05) at the lower rather than the higher inoculum levels. In conclusion, treatment of spinach leaves with gaseous ozone is effective against pathogen loads comparable to those found in naturally contaminated fresh produce, but efficacy decreases as inoculum level increases.
Nunkaew, Tomorn; Kantachote, Duangporn; Chaiprapat, Sumate; Nitoda, Teruhiko; Kanzaki, Hiroshi
2018-05-01
This study aimed to produce inexpensive 5-aminolevulinic acid (ALA) in a non-sterile latex rubber sheet wastewater (RSW) by Rhodopseudomonas palustris TN114 and PP803 for the possibility to use in agricultural purposes by investigating the optimum conditions, and applying of wood vinegar (WV) as an economical source of levulinic acid to enhance ALA content. The Box-Behnken Design experiment was conducted under microaerobic-light conditions for 96 h with TN114, PP803 and their mixed culture (1:1) by varying initial pH, inoculum size (% v/v) and initial chemical oxygen demand (COD, mg/L). Results showed that the optimal condition (pH, % inoculum size, COD) of each set to produce extracellular ALA was found at 7.50, 6.00, 2000 for TN114; 7.50, 7.00, 3000 for PP803; and 7.50, 6.00, 4000 for a mixed culture; and each set achieved COD reduction as high as 63%, 71% and 75%, respectively. Addition of the optimal concentration of WV at mid log phase at 0.63% for TN114, and 1.25% for PP803 and the mixed culture significantly increased the ALA content by 3.7-4.2 times (128, 90 and 131 μM, respectively) compared to their controls. ALA production cost could be reduced approximately 31 times with WV on the basis of the amount of levulinic acid used. Effluent containing ALA for using in agriculture could be achieved by treating the RSW with the selected ALA producer R. palustris strains under the optimized condition with a little WV additive.
Ibrahim, Haytham M M
2016-12-01
Used engine oil (UEO) constitutes a serious environmental problem due to the difficulty of disposal off or reuse. Ten bacterial strains with biodegradation potential were isolated from UEO-contaminated soil sample using enrichment technique. Two strains which exhibited the highest degradation %, 51 ± 1.2 and 48 ± 1.5, respectively, were selected. Based on the morphological, biochemical characteristics and 16S rRNA sequence analysis, they were identified as Ochrobactrum anthropi HM-1 (accession no: KR360745) and Citrobacter freundii HM-2 (accession no: KR360746). The different conditions which may influence their biodegradation activity, including UEO concentration (1-6 %, v/v), inoculum size (0.5-4 %, v/v), initial pH (6-8), incubation temperature (25-45 °C), and rotation speed (0-200 rpm), were evaluated. The optimum conditions were found to be 2 % UEO, 2 % inoculum size, pH 7.5, incubation temperature 37 °C, and 150 rpm. Under the optimized conditions, strains HM-1, HM-2, and their mixture efficiently degraded UEO, they achieved 65 ± 2.2, 58 ± 2.1, and 80 ± 1.9 %, respectively, after 21 days of incubation. Biodegradation of UEO was confirmed by employing gas chromatography analysis. Gamma radiation (1.5 kGy) enhanced the degradation efficiency of irradiated bacterial mixture (95 ± 2.1 %) as compared to non-irradiated (79 ± 1.6 %). Therefore, strains HM-1 and HM-2 can be employed to develop a cost-effective method for bioremediation of used engine-oil-polluted soil.
Endo, Yasuyuki; Igarashi, Tatsuhiko; Nishimura, Yoshiaki; Buckler, Charles; Buckler-White, Alicia; Plishka, Ronald; Dimitrov, Dimiter S.; Martin, Malcolm A.
2000-01-01
A highly pathogenic simian/human immunodeficiency virus (SHIV), SHIVDH12R, isolated from a rhesus macaque that had been treated with anti-human CD8 monoclonal antibody at the time of primary infection with the nonpathogenic, molecularly cloned SHIVDH12, induced marked and rapid CD4+ T cell loss in all rhesus macaques intravenously inoculated with 1.0 50% tissue culture infective dose (TCID50) to 4.1 × 105 TCID50s of virus. Animals inoculated with 650 TCID50s of SHIVDH12R or more experienced irreversible CD4+ T lymphocyte depletion and developed clinical disease requiring euthanasia between weeks 12 and 23 postinfection. In contrast, the CD4+ T-cell numbers in four of five monkeys receiving 25 TCID50s of SHIVDH12R or less stabilized at low levels, and these surviving animals produced antibodies capable of neutralizing SHIVDH12R. In the fifth monkey, no recovery from the CD4+ T cell decline occurred, and the animal had to be euthanized. Viral RNA levels, subsequent to the initial peak of infection but not at peak viremia, correlated with the virus inoculum size and the eventual clinical course. Both initial infection rate constants, k, and decay constants, d, were determined, but only the latter were statistically correlated to clinical outcome. The attenuating effects of reduced inoculum size were also observed when virus was inoculated by the mucosal route. Because the uncloned SHIVDH12R stock possessed the genetic properties of a lentivirus quasispecies, we were able to assess the evolution of the input virus swarm in animals surviving the acute infection by monitoring the emergence of neutralization escape viral variants. PMID:10888632
Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G
2012-05-01
Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability.
The Ebb and Flow of Airborne Pathogens: Monitoring and Use in Disease Management Decisions.
Mahaffee, Walter F; Stoll, Rob
2016-05-01
Perhaps the earliest form of monitoring the regional spread of plant disease was a group of growers gathering together at the market and discussing what they see in their crops. This type of reporting continues to this day through regional extension blogs, by crop consultants and more formal scouting of sentential plots in the IPM PIPE network (http://www.ipmpipe.org/). As our knowledge of plant disease epidemiology has increased, we have also increased our ability to detect and monitor the presence of pathogens and use this information to make management decisions in commercial production systems. The advent of phylogenetics, next-generation sequencing, and nucleic acid amplification technologies has allowed for development of sensitive and accurate assays for pathogen inoculum detection and quantification. The application of these tools is beginning to change how we manage diseases with airborne inoculum by allowing for the detection of pathogen movement instead of assuming it and by targeting management strategies to the early phases of the epidemic development when there is the greatest opportunity to reduce the rate of disease development. While there are numerous advantages to using data on inoculum presence to aid management decisions, there are limitations in what the data represent that are often unrecognized. In addition, our understanding of where and how to effectively monitor airborne inoculum is limited. There is a strong need to improve our knowledge of the mechanisms that influence inoculum dispersion across scales as particles move from leaf to leaf, and everything in between.
Deciphering and Imaging Pathogenesis and Cording of Mycobacterium abscessus in Zebrafish Embryos
Bernut, Audrey; Dupont, Christian; Sahuquet, Alain; Herrmann, Jean-Louis; Lutfalla, Georges; Kremer, Laurent
2015-01-01
Zebrafish (Danio rerio) embryos are increasingly used as an infection model to study the function of the vertebrate innate immune system in host-pathogen interactions. The ease of obtaining large numbers of embryos, their accessibility due to external development, their optical transparency as well as the availability of a wide panoply of genetic/immunological tools and transgenic reporter line collections, contribute to the versatility of this model. In this respect, the present manuscript describes the use of zebrafish as an in vivo model system to investigate the chronology of Mycobacterium abscessus infection. This human pathogen can exist either as smooth (S) or rough (R) variants, depending on cell wall composition, and their respective virulence can be imaged and compared in zebrafish embryos and larvae. Micro-injection of either S or R fluorescent variants directly in the blood circulation via the caudal vein, leads to chronic or acute/lethal infections, respectively. This biological system allows high resolution visualization and analysis of the role of mycobacterial cording in promoting abscess formation. In addition, the use of fluorescent bacteria along with transgenic zebrafish lines harbouring fluorescent macrophages produces a unique opportunity for multi-color imaging of the host-pathogen interactions. This article describes detailed protocols for the preparation of homogenous M. abscessus inoculum and for intravenous injection of zebrafish embryos for subsequent fluorescence imaging of the interaction with macrophages. These techniques open the avenue to future investigations involving mutants defective in cord formation and are dedicated to understand how this impacts on M. abscessus pathogenicity in a whole vertebrate. PMID:26382225
Muruganandam, B; Saravanane, R; Lavanya, M; Sivacoumar, R
2008-07-01
Anaerobic treatment has gained tremendous success over the past two decades for treatment of industrial effluents. Over the past 30 years, the popularity of anaerobic wastewater treatment has increased as public utilities and industries have utilized its considerable benefits. Low biomass production, row nutrient requirements and the energy production in terms of methane yield are the significant advantages over aerobic treatment process. Due to the disadvantages reported in the earlier investigations, during the past decade, anaerobic biotechnology now seems to become a stable process technology in respect of generating a high quality effluent. The objective of the present experimental study was to compare the biodegradability of recalcitrant effluent (pharmaceutical effluent) for various inoculum-substrate ratios. The batch experiments were conducted over 6 months to get effect of ratio of inoculum-substrate on the acclimatization of pharmaceutical effluent. The tests were carried out in batch reactors, serum bottles, of volume 2000 mL and plastic canes of 10000 mL. Each inoculum was filled with a cow dung, sewage and phosphate buffer. The batch was made-up of diluted cow dung at various proportions of water and cow dung, i.e., 1:1 and 1:2 (one part of cow dung and one part of water by weight for 1:1). The bottles were incubated at ambient temperature (32 degrees C-35 degrees C). The bottles were closed tightly so that the anaerobic condition is maintained. The samples were collected and biodegradability was measured once in four days. The bottles were carefully stirred before gas measurement. The substrate was added to a mixture of inoculum and phosphate nutrients. The variations in pH, conductivity, alkalinity, COD, TS, TVS, VSS, and VFA were measured for batch process. The biogas productivity was calculated for various batches of inoculum-substrate addition and conclusions were drawn for expressing the biodegradability of pharmaceutical effluent on acclimatization period and influent COD concentration.
Sanchez-Herrera, Diana; Pacheco-Catalan, Daniella; Valdez-Ojeda, Ruby; Canto-Canche, Blondy; Dominguez-Benetton, Xochitl; Domínguez-Maldonado, Jorge; Alzate-Gaviria, Liliana
2014-12-09
A laboratory-scale two-chamber microbial fuel cell employing an aerated cathode with no catalyst was inoculated with mixed inoculum and acetate as the carbon source. Electrochemical impedance spectroscopy (EIS) was used to study the behavior of the MFC during initial biofilm (week 1) and maximum power density (week 20). EIS were performed on the anode chamber, biofilm (without anolyte) and anolyte (without biofilm). Nyquist plots of the EIS data were fitted with two equivalent electrical circuits to estimate the contributions of intrinsic resistances to the overall internal MFC impedance at weeks 1 and 20, respectively. The results showed that the system tended to increase power density from 15 ± 3 (week 1) to 100 ± 15 mW/m(2) (week 20) and current density 211 ± 7 (week 1) to 347 ± 29 mA/m(2) (week 20). The Samples were identified by pyrosequencing of the 16S rRNA gene and showed that initial inoculum (week 1) was constituted by Proteobacteria (40%), Bacteroidetes (22%) and Firmicutes (18%). At week 20, Proteobacterial species were predominant (60%) for electricity generation in the anode biofilm, being 51% Rhodopseudomonas palustris. Meanwhile on anolyte, Firmicutes phylum was predominant with Bacillus sp. This study proved that under the experimental conditions used there is an important contribution from the interaction of the biofilm and the anolyte on cell performance. Table 1 presents a summary of the specific influence of each element of the system under study. The results showed certain members of the bacterial electrode community increased in relative abundance from the initial inoculum. For example, Proteobacterial species are important for electricity generation in the anode biofilms and Firmicutes phylum was predominant on anolyte to transfer electron. R1 is the same in the three systems and no variation is observed over time. The biofilm makes a significant contribution to the charge transfer processes at the electrode (R2 and Cdl) and, consequently, on the performance of the anode chamber. The biofilm can act as a barrier which reduces diffusion of the anolyte towards the electrode, all the while behaving like a porous material. The anolyte and its interaction with the biofilm exert a considerable influence on diffusion processes, given that it presents the highest values for Rd which increased at week 20.
A fitness trade-off between seasons causes multigenerational cycles in phenotype and population size
Betini, Gustavo S; McAdam, Andrew G; Griswold, Cortland K; Norris, D Ryan
2017-01-01
Although seasonality is widespread and can cause fluctuations in the intensity and direction of natural selection, we have little information about the consequences of seasonal fitness trade-offs for population dynamics. Here we exposed populations of Drosophila melanogaster to repeated seasonal changes in resources across 58 generations and used experimental and mathematical approaches to investigate how viability selection on body size in the non-breeding season could affect demography. We show that opposing seasonal episodes of natural selection on body size interacted with both direct and delayed density dependence to cause populations to undergo predictable multigenerational density cycles. Our results provide evidence that seasonality can set the conditions for life-history trade-offs and density dependence, which can, in turn, interact to cause multigenerational population cycles. DOI: http://dx.doi.org/10.7554/eLife.18770.001 PMID:28164780
Looking for the Phase Transition—Recent NA61/SHINE Results
NASA Astrophysics Data System (ADS)
Turko, Ludwik
2018-03-01
The fixed-target NA61/SHINE experiment (SPS CERN) looks for the critical point of strongly interacting matter and the properties of the onset of deconfinement. It is a two dimensional scan of measurements of particle spectra and fluctuations in proton-proton, proton-nucleus and nucleus-nucleus interactions as a function of collision energy and system size, corresponding to a two dimensional phase diagram (temperature T - baryonic chemical potential $\\mu_B$). New NA61/SHINE results are presented here, such as transverse momentum and multiplicity fluctuations in Ar+Sc collisions compared to NA61/SHINE p+p and Be+Be data, as well as to earlier NA49 A+A results. Recently, a preliminary signature for the new size dependent effect - rapid changes in system size dependence was observed in NA61-SHINE data, labeled as percolation threshold or onset of fireball. This would be closely related to the vicinity of the hadronic phase transition region.
NASA Astrophysics Data System (ADS)
Li, Jianguo; Beuerman, Roger; Verma, Chandra
2018-03-01
Molecular aggregation plays a significant role in modulating the solubility, permeability, and bioactivity of drugs. The propensity to aggregate depends on hydrophobicity and on molecular shape. Molecular dynamics simulations coupled with enhanced sampling methods are used to explore the early stages of oligomerization of two drug molecules which have a strong aggregation propensity, but with contrasting molecule shapes: the antibiotic ciprofloxacin and the anticancer drug Nutlin-3A. The planar shape of ciprofloxacin induces the formation of stable oligomers at all cluster sizes. The aggregation of ciprofloxacin is driven by two-body interactions, and transferring one ciprofloxacin molecule to an existing cluster involves the desolvation of two faces and the concomitant hydrophobic interactions between the two faces; thus, the corresponding free energy of oligomerization weakly depends on the oligomer size. By contrast, Nutlin-3A has a star-shape and hence can only form stable oligomers when the cluster size is greater than 8. Free energy simulations further confirmed that the free energy of oligomer formation for Nutlin-3A becomes more favorable as the oligomer becomes larger. The aggregation of star-shaped Nutlin-3A results from many-body interactions and hence the free energy of cluster formation is strongly dependent on the size. The findings of this study provide atomistic insights into how molecular shape modulates the aggregation behavior of molecules and may be factored into the design of drugs or nano-particles.
Influence of the Coulomb interaction on the exchange coupling in granular magnets.
Udalov, O G; Beloborodov, I S
2017-04-20
We develop a theory of the exchange interaction between ferromagnetic (FM) metallic grains embedded into insulating matrix by taking into account the Coulomb blockade effects. For bulk ferromagnets separated by the insulating layer the exchange interaction strongly depends on the height and thickness of the tunneling barrier created by the insulator. We show that for FM grains embedded into insulating matrix the exchange coupling additionally depends on the dielectric properties of this matrix due to the Coulomb blockade effects. In particular, the FM coupling decreases with decreasing the dielectric permittivity of insulating matrix. We find that the change in the exchange interaction due to the Coulomb blockade effects can be a few tens of percent. Also, we study dependence of the intergrain exchange interaction on the grain size and other parameters of the system.
Justice, N. B.; Sczesnak, A.; Hazen, T. C.; ...
2017-08-04
A central goal of microbial ecology is to identify and quantify the forces that lead to observed population distributions and dynamics. However, these forces, which include environmental selection, dispersal, and organism interactions, are often difficult to assess in natural environments. Here in this paper, we present a method that links microbial community structures with selective and stochastic forces through highly replicated subsampling and enrichment of a single environmental inoculum. Specifically, groundwater from a well-studied natural aquifer was serially diluted and inoculated into nearly 1,000 aerobic and anaerobic nitrate-reducing cultures, and the final community structures were evaluated with 16S rRNA genemore » amplicon sequencing. We analyzed the frequency and abundance of individual operational taxonomic units (OTUs) to understand how probabilistic immigration, relative fitness differences, environmental factors, and organismal interactions contributed to divergent distributions of community structures. We further used a most probable number (MPN) method to estimate the natural condition-dependent cultivable abundance of each of the nearly 400 OTU cultivated in our study and infer the relative fitness of each. Additionally, we infer condition-specific organism interactions and discuss how this high-replicate culturing approach is essential in dissecting the interplay between overlapping ecological forces and taxon-specific attributes that underpin microbial community assembly. IMPORTANCEThrough highly replicated culturing, in which inocula are subsampled from a single environmental sample, we empirically determine how selective forces, interspecific interactions, relative fitness, and probabilistic dispersal shape bacterial communities. These methods offer a novel approach to untangle not only interspecific interactions but also taxon-specific fitness differences that manifest across different cultivation conditions and lead to the selection and enrichment of specific organisms. Additionally, we provide a method for estimating the number of cultivable units of each OTU in the original sample through the MPN approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Justice, N. B.; Sczesnak, A.; Hazen, T. C.
A central goal of microbial ecology is to identify and quantify the forces that lead to observed population distributions and dynamics. However, these forces, which include environmental selection, dispersal, and organism interactions, are often difficult to assess in natural environments. Here in this paper, we present a method that links microbial community structures with selective and stochastic forces through highly replicated subsampling and enrichment of a single environmental inoculum. Specifically, groundwater from a well-studied natural aquifer was serially diluted and inoculated into nearly 1,000 aerobic and anaerobic nitrate-reducing cultures, and the final community structures were evaluated with 16S rRNA genemore » amplicon sequencing. We analyzed the frequency and abundance of individual operational taxonomic units (OTUs) to understand how probabilistic immigration, relative fitness differences, environmental factors, and organismal interactions contributed to divergent distributions of community structures. We further used a most probable number (MPN) method to estimate the natural condition-dependent cultivable abundance of each of the nearly 400 OTU cultivated in our study and infer the relative fitness of each. Additionally, we infer condition-specific organism interactions and discuss how this high-replicate culturing approach is essential in dissecting the interplay between overlapping ecological forces and taxon-specific attributes that underpin microbial community assembly. IMPORTANCEThrough highly replicated culturing, in which inocula are subsampled from a single environmental sample, we empirically determine how selective forces, interspecific interactions, relative fitness, and probabilistic dispersal shape bacterial communities. These methods offer a novel approach to untangle not only interspecific interactions but also taxon-specific fitness differences that manifest across different cultivation conditions and lead to the selection and enrichment of specific organisms. Additionally, we provide a method for estimating the number of cultivable units of each OTU in the original sample through the MPN approach.« less
Rebecca E. Hewitt; F. Stuart Chapin; Teresa N. Hollingsworth; D. Lee Taylor
2017-01-01
Root-associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially...
USDA-ARS?s Scientific Manuscript database
Little is known about root susceptibility of eastern U.S. tree species to Phytophthora ramorum. In this study, we examined root susceptibility and inoculum production from roots. Sprouted acorns of Q. rubra, Q. palustrus, Q. coccinia, Q. alba, Q. michauxii and Q. prinus were exposed to motile zoos...
USDA-ARS?s Scientific Manuscript database
Over a three year period, we compared aflatoxin accumulation and kernel infection in maize hybrids inoculated with six inoculum concentrations of Aspergillus flavus isolate NRRL 3357 or A. parasiticus isolate NRRL 6111 which is a norsolorinic acid producer. Aflatoxin resistant and susceptible mai...
Two-leg ladder systems with dipole–dipole Fermion interactions
NASA Astrophysics Data System (ADS)
Mosadeq, Hamid; Asgari, Reza
2018-05-01
The ground-state phase diagram of a two-leg fermionic dipolar ladder with inter-site interactions is studied using density matrix renormalization group (DMRG) techniques. We use a state-of-the-art implementation of the DMRG algorithm and finite size scaling to simulate large system sizes with high accuracy. We also consider two different model systems and explore stable phases in half and quarter filling factors. We find that in the half filling, the charge and spin gaps emerge in a finite value of the dipole–dipole and on-site interactions. In the quarter filling case, s-wave superconducting state, charge density wave, homogenous insulating and phase separation phases occur depend on the interaction values. Moreover, in the dipole–dipole interaction, the D-Mott phase emerges when the hopping terms along the chain and rung are the same, whereas, this phase has been only proposed for the anisotropic Hubbard model. In the half filling case, on the other hand, there is either charge-density wave or charged Mott order phase depends on the orientation of the dipole moments of the particles with respect to the ladder geometry.
Borcherding, Jost; Beeck, Peter; DeAngelis, Donald L.; Scharf, Werner R.
2010-01-01
Summary 1. In gape-limited predators, body size asymmetries determine the outcome of predator-prey interactions. Due to ontogenetic changes in body size, the intensity of intra- and interspecific interactions may change rapidly between the match situation of a predator-prey system and the mismatch situation in which competition, including competition with the prey, dominates. 2. Based on a physiologically structured population model using the European perch (Perca fluviatilis), analysis was performed on how prey density (bream, Abramis brama), initial size differences in the young-of-the-year (YOY) age cohort of the predator, and phenology (time-gap in hatching of predator and prey) influence the size structure of the predator cohort. 3. In relation to the seasonality of reproduction, the match situation of the predator-prey system occurred when perch hatched earlier than bream and when no gape-size limitations existed, leading to decreased size divergence in the predator age cohort. Decreased size divergence was also found when bream hatched much earlier than perch, preventing perch predation on bream occurring, which, in turn, increased the competitive interaction of the perch with bream for the common prey, zooplankton; i.e. the mismatch situation in which also the mean size of the age cohort of the predator decreased. 4. In between the total match and the mismatch, however, only the largest individuals of the perch age cohort were able to prey on the bream, while smaller conspecifics got trapped in competition with each other and with bream for zooplankton, leading to enlarged differences in growth that increased size divergence. 5. The modelling results were combined with 7 years of field data in a lake, where large differences in the length-frequency distribution of YOY perch were observed after their first summer. These field data corroborate that phenology and prey density per predator are important mechanisms in determining size differences within the YOY age cohort of the predator. 6. The results demonstrate that the switch between competitive interactions and a predator-prey relationship depended on phenology. This resulted in pronounced size differences in the YOY age cohort, which had far-reaching consequences for the entire predator population.
Tagawa, Shin-Ichi; Holtshausen, Lucia; McAllister, Tim A; Yang, Wen Zhu; Beauchemin, Karen Ann
2017-04-01
The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM) disappearance (DMD), gas production and fermentation pH were investigated for feedlot cattle. Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ) from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm) at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving) and ENZ addition (0, 1, and 2 mg/g) using dry-rolled barley and 2-mm ground barley. In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (p<0.01). The DMD (g/kg DM) of the dry-rolled barley after 24 h incubation was considerably lower (p<0.05) than that of the ground barley (119.1 dry-rolled barley versus 284.8 for 4-mm, 341.7 for 2-mm; and 358.6 for 1-mm). In Experiment 2, addition of ENZ to dry-rolled barley increased DMD (p<0.01) and tended to increase (p = 0.09) gas production and decreased (p<0.01) fermentation pH, but these variables were not affected by ENZ addition to ground barley. In Experiment 3, there were no interactions between microwaving and ENZ addition after microwaving for any of the variables. Microwaving had minimal effects (except decreased fermentation pH), but consistent with Experiment 2, ENZ addition increased (p<0.01) DMD and gas production, and decreased (p<0.05) fermentation pH of dry-rolled barley, but not ground barley. We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed as in the case of dry-rolled barley. However, microwaving of barley grain offered no further improvements in ruminal fermentation of barley grain.
Arzmi, Mohd Hafiz; Alnuaimi, Ali D; Dashper, Stuart; Cirillo, Nicola; Reynolds, Eric C; McCullough, Michael
2016-11-01
Oral biofilms comprise of extracellular polysaccharides and polymicrobial microorganisms. The objective of this study was to determine the effect of polymicrobial interactions of Candida albicans, Actinomyces naeslundii, and Streptococcus mutans on biofilm formation with the hypotheses that biofilm biomass and metabolic activity are both C. albicans strain and growth medium dependent. To study monospecific biofilms, C. albicans, A. naeslundii, and S. mutans were inoculated into artificial saliva medium (ASM) and RPMI-1640 in separate vials, whereas to study polymicrobial biofilm formation, the inoculum containing microorganisms was prepared in the same vial prior inoculation into a 96-well plate followed by 72 hours incubation. Finally, biofilm biomass and metabolic activity were measured using crystal violet and XTT assays, respectively. Our results showed variability of monospecies and polymicrobial biofilm biomass between C. albicans strains and growth medium. Based on cut-offs, out of 32, seven RPMI-grown biofilms had high biofilm biomass (HBB), whereas, in ASM-grown biofilms, 14 out of 32 were HBB. Of the 32 biofilms grown in RPMI-1640, 21 were high metabolic activity (HMA), whereas in ASM, there was no biofilm had HMA. Significant differences were observed between ASM and RPMI-grown biofilms with respect to metabolic activity (P <01). In conclusion, biofilm biomass and metabolic activity were both C. albicans strain and growth medium dependent. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Entanglement entropy in a one-dimensional disordered interacting system: the role of localization.
Berkovits, Richard
2012-04-27
The properties of the entanglement entropy (EE) in one-dimensional disordered interacting systems are studied. Anderson localization leaves a clear signature on the average EE, as it saturates on the length scale exceeding the localization length. This is verified by numerically calculating the EE for an ensemble of disordered realizations using the density matrix renormalization group method. A heuristic expression describing the dependence of the EE on the localization length, which takes into account finite-size effects, is proposed. This is used to extract the localization length as a function of the interaction strength. The localization length dependence on the interaction fits nicely with the expectations.
{rho}-{omega} mixing and spin dependent charge-symmetry violating potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Subhrajyoti; Roy, Pradip; Dutt-Mazumder, Abhee K.
2008-10-15
We construct the charge symmetry violating (CSV) nucleon-nucleon potential induced by the {rho}{sup 0}-{omega} mixing due to the neutron-proton mass difference driven by the NN loop. Analytical expression for the two-body CSV potential is presented containing both the central and noncentral NN interaction. We show that the {rho}NN tensor interaction can significantly enhance the charge symmetry violating NN interaction even if the momentum dependent off-shell {rho}{sup 0}-{omega} mixing amplitude is considered. It is also shown that the inclusion of form factors removes the divergence arising out of the contact interaction. Consequently, we see that the precise size of the computedmore » scattering length difference depends on how the short-range aspects of the CSV potential are treated.« less
Tunable particles alter macrophage uptake based on combinatorial effects of physical properties
Garapaty, Anusha
2017-01-01
Abstract The ability to tune phagocytosis of particle‐based therapeutics by macrophages can enhance their delivery to macrophages or reduce their phagocytic susceptibility for delivery to non‐phagocytic cells. Since phagocytosis is affected by the physical and chemical properties of particles, it is crucial to identify any interplay between physical properties of particles in altering phagocytic interactions. The combinatorial effect of physical properties size, shape and stiffness was investigated on Fc receptor mediated macrophage interactions by fabrication of layer‐by‐layer tunable particles of constant surface chemistry. Our results highlight how changing particle stiffness affects phagocytic interaction intricately when combined with varying size or shape. Increase in size plays a dominant role over reduction in stiffness in reducing internalization by macrophages for spherical particles. Internalization of rod‐shaped, but not spherical particles, was highly dependent on stiffness. These particles demonstrate the interplay between size, shape and stiffness in interactions of Fc‐functionalized particles with macrophages during phagocytosis. PMID:29313025
Gkana, E; Chorianopoulos, N; Grounta, A; Koutsoumanis, K; Nychas, G-J E
2017-04-01
The objective of the present study was to determine the factors affecting the transfer of foodborne pathogens from inoculated beef fillets to non-inoculated ones, through food processing surfaces. Three different levels of inoculation of beef fillets surface were prepared: a high one of approximately 10 7 CFU/cm 2 , a medium one of 10 5 CFU/cm 2 and a low one of 10 3 CFU/cm 2 , using mixed-strains of Listeria monocytogenes, or Salmonella enterica Typhimurium, or Escherichia coli O157:H7. The inoculated fillets were then placed on 3 different types of surfaces (stainless steel-SS, polyethylene-PE and wood-WD), for 1 or 15 min. Subsequently, these fillets were removed from the cutting boards and six sequential non-inoculated fillets were placed on the same surfaces for the same period of time. All non-inoculated fillets were contaminated with a progressive reduction trend of each pathogen's population level from the inoculated fillets to the sixth non-inoculated ones that got in contact with the surfaces, and regardless the initial inoculum, a reduction of approximately 2 log CFU/g between inoculated and 1st non-inoculated fillet was observed. S. Typhimurium was transferred at lower mean population (2.39 log CFU/g) to contaminated fillets than E. coli O157:H7 (2.93 log CFU/g), followed by L. monocytogenes (3.12 log CFU/g; P < 0.05). Wooden surfaces (2.77 log CFU/g) enhanced the transfer of bacteria to subsequent fillets compared to other materials (2.66 log CFU/g for SS and PE; P < 0.05). Cross-contamination between meat and surfaces is a multifactorial process strongly depended on the species, initial contamination level, kind of surface, contact time and the number of subsequent fillet, according to analysis of variance. Thus, quantifying the cross-contamination risk associated with various steps of meat processing and food establishments or households can provide a scientific basis for risk management of such products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Eldridge, Mark A G; Lerchner, Walter; Saunders, Richard C; Kaneko, Hiroyuki; Krausz, Kristopher W; Gonzalez, Frank J; Ji, Bin; Higuchi, Makoto; Minamimoto, Takafumi; Richmond, Barry J
2015-01-01
To study how the interaction between orbitofrontal (OFC) and rhinal (Rh) cortices influences the judgment of reward size, we reversibly disconnected these regions using the hM4Di-DREADD (Designer Receptor Exclusively Activated by Designer Drug). Repeated inactivation reduced sensitivity to differences in reward size in two monkeys. Results suggest that retrieval of relative stimulus values from memory appears to depend on interaction between Rh and OFC. PMID:26656645
Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J
2012-12-01
An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification. ©2012 Society for Conservation Biology.
Darah, I; Sumathi, G; Jain, K; Lim, S H
2011-09-01
The ability of immobilized cell cultures of Aspergillus niger FETL FT3 to produce extracellular tannase was investigated. The production of enzyme was increased by entrapping the fungus in scouring mesh cubes compared to free cells. Using optimized parameters of six scouring mesh cubes and inoculum size of 1 × 10(6) spores/mL, the tannase production of 3.98 U/mL was obtained from the immobilized cells compared to free cells (2.81 U/mL). It was about 41.64% increment. The immobilized cultures exhibited significant tannase production stability of two repeated runs.
NASA Astrophysics Data System (ADS)
Finnerty, W. R.
1980-07-01
Cellulytic bacteria, cellobiose fermentors, sulfate-reducing bacteria and methanogenic bacteria were isolated from established anaerobic mesophilic and thermophilic cellulose methane fermentations and these isolates, plus known laboratory strains, were employed to partially reconstitute highly active cellulose fermentations. These mixed cultures are utilized as model systems to study the parameters required for maximum production of CH4, H2 and chemical feedstocks such as acetate, ethanol, propionate, etc., from cellulose. The physiology of these reconstituted cultures is investigated as regards cultural conditions, microbial types, inoculum size, interspecies H2 transfer and specific regulatory phenomena, the accumulation of cellobiose and acetate.
Lemercier, G; Mavet, S; Burckhart, M F; Fontanges, R
1979-01-01
Interactions between influenza virus A/PR/8/34 (H0N1) and Balb/c mouse lung alveolar macrophages have been studied in vitro. One day after initiation of alveolar macrophage culture in 35 mm Falcon dishes, the virus suspension was allowed to adsorb to the cells for 1 h. Detachment of cells from the plastic substrate, morphological changes in adherent cells and decreased phagocytosis of heat-killed Candida albicans occured slowly as compared to control cultures. These facts appeared to be directly correlated to the concentration of viruses in the inoculum. Data yielded by virus titrations, electron microscopy and immunofluorescence suggest that mouse lung alveolar macrophages are able to take up a large amount of viral particles and inhibit their replication, allowing only an abortive viral cycle.
Massé, Daniel I; Saady, Noori M Cata
2015-05-01
Cow manure with bedding is renewable organic biomass available around the year on dairy farms. Developing efficient and cost-effective psychrophilic dry anaerobic digestion (PDAD) processes could contribute to solving farm-related environmental, energy, and manure management problems in cold-climate regions. This study was to increase the organic loading rate (OLR), fed to a novel psychrophilic (20 °C) dry anaerobic digestion of 27% total solid dairy manure (cow feces and wheat straw) in sequence batch reactor (PDAD-SBR), by 133 to 160%. The PDAD-SBR process operated at treatment cycle length of 21 days and OLR of 7.0 and 8.0 g total chemical oxygen demand (TCOD) kg(-1) inoculum day(-1) (5.2 ± 0.1 and 5.8 ± 0.0 g volatile solids (VS) kg(-1) inoculum day(-1)) for four successive cycles (84 days) produced average specific methane yields (SMYs) of 147.1 ± 17.2 and 143.2 ± 11.7 normalized liters (NL) CH4 kg(-1) VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.45 at OLR of 8.0 g TCOD kg(-1) inoculum day(-1). Hydrolysis was the limiting step reaction. The VS removal averaged around 57.4 ± 0.5 and 60.5 ± 5.7% at OLR 7.0 and 8.0 g TCOD kg(-1) inoculum day(-1), respectively.
Anaerobic Digestion Performance in the Energy Recovery of Kiwi Residues
NASA Astrophysics Data System (ADS)
Martins, Ramiro; Boaventura, Rui; Paulista, Larissa
2017-12-01
World production and trade of fruits generate losses in the harvest, post-harvest, handling, distribution and consumption phases, corresponding to 6.8% of total production. These residues present high potential as a substrate for the anaerobic digestion process and biogas generation. Thus, the energy valuation of the agro-industrial residues of kiwi production was evaluated by anaerobic digestion, aiming at optimizing the biogas production and its quality. Ten assays were carried out in a batch reactor (500 mL) under mesophilic conditions and varying a number of operational factors: different substrate/inoculum ratios; four distinct values for C: N ratio; inoculum from different digesters; and inoculum collected at different times of the year. The following parameters were used to control and monitor the process: pH, alkalinity, volatile fatty acids (VFA), volatile solids (VS) and chemical oxygen demand (COD). Among the tests performed, the best result obtained for the biogas production corresponded to the use of 2 g of substrate and 98 mL of inoculum of the anaerobic digester of the Wastewater Treatment Plant (WWTP) of Bragança, with addition of 150 mg of bicarbonate leading to a production of 1628 L biogas.kg-1 VS (57% methane). In relation to the biogas quality, the best result was obtained with 20 g of substrate and 380 mL of inoculum from the anaerobic digester sludge of WWTP of Ave (with addition 600 mg of sodium bicarbonate), presenting a value of 85% of CH4, with a production of 464 L biogas.kg-1 VS.
Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.
Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang
2016-01-01
Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).
Contact angle of sessile drops in Lennard-Jones systems.
Becker, Stefan; Urbassek, Herbert M; Horsch, Martin; Hasse, Hans
2014-11-18
Molecular dynamics simulations are used for studying the contact angle of nanoscale sessile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard-Jones potential. The entire range between total wetting and dewetting is investigated by varying the solid-fluid dispersive interaction energy. The temperature is varied between the triple point and the critical temperature. A correlation is obtained for the contact angle in dependence of the temperature and the dispersive interaction energy. Size effects are studied by varying the number of fluid particles at otherwise constant conditions, using up to 150,000 particles. For particle numbers below 10,000, a decrease of the contact angle is found. This is attributed to a dependence of the solid-liquid surface tension on the droplet size. A convergence to a constant contact angle is observed for larger system sizes. The influence of the wall model is studied by varying the density of the wall. The effective solid-fluid dispersive interaction energy at a contact angle of θ = 90° is found to be independent of temperature and to decrease linearly with the solid density. A correlation is developed that describes the contact angle as a function of the dispersive interaction, the temperature, and the solid density. The density profile of the sessile drop and the surrounding vapor phase is described by a correlation combining a sigmoidal function and an oscillation term.
Interaction Between Meloidogyne arenaria and Glomus fascicuqlatus in Grape.
Atilano, R A; Menge, J A; Gundy, S D
1981-01-01
Root zones of grape (Fitis vinifera cv Thompson Seedless) cuttings were infested with chlamydospores of Glomus fasciculatus or eggs of Meloidogyne arenaria or both. Growth of grapevines was greatest in mycorrhizal (G. fasciculatus) plants. Mycorrhizal development and growth of mycorrhizal and nonmycorrhizal plants were reduced in the presence of M. arenaria. At low initial nematode inoculum (PI) levels (approx. 200 eggs/plant), the presence of mycorrhizae enhanced plant growth during 1 yr, but no significant benefit was achieved by mycorrhizae where PI was high (approx. 2,000 eggs/plant). Final nematode populations were highest in mycorrhizal plants.
Ebba K. Peterson; Niklaus J. Grünwald; Jennifer L. ParkeSoil
2017-01-01
Soilborne inoculum (infested leaf debris which has become incorporated into the soil) may be an important contributor to the persistence of the sudden oak death pathogen Phytophthora ramorum in recurrently positive nurseries. To initiate new epidemics, soilborne inoculum must not only be able to survive over time, but also be capable of...
Bacterial Growth in Tray Pack Acidified Rice
1987-01-01
Bacillus coagulans , which were able to survive the pasteurization processing temperature. Because of the potential for spoilage that was indicated...Inoculum A miKed inoculum consisting o-f Bacillus sphaericus, Bacillus circulans and iour strains of Bacillus coagulans was prepared. All cultures...ineffective in preventing growth of sporeforming bacillus species. Moreover, there was nonuniform distribution of the acidulant, which resulted in
Heat transport in oscillator chains with long-range interactions coupled to thermal reservoirs.
Iubini, Stefano; Di Cintio, Pierfrancesco; Lepri, Stefano; Livi, Roberto; Casetti, Lapo
2018-03-01
We investigate thermal conduction in arrays of long-range interacting rotors and Fermi-Pasta-Ulam (FPU) oscillators coupled to two reservoirs at different temperatures. The strength of the interaction between two lattice sites decays as a power α of the inverse of their distance. We point out the necessity of distinguishing between energy flows towards or from the reservoirs and those within the system. We show that energy flow between the reservoirs occurs via a direct transfer induced by long-range couplings and a diffusive process through the chain. To this aim, we introduce a decomposition of the steady-state heat current that explicitly accounts for such direct transfer of energy between the reservoir. For 0≤α<1, the direct transfer term dominates, meaning that the system can be effectively described as a set of oscillators each interacting with the thermal baths. Also, the heat current exchanged with the reservoirs depends on the size of the thermalized regions: In the case in which such size is proportional to the system size N, the stationary current is independent on N. For α>1, heat transport mostly occurs through diffusion along the chain: For the rotors transport is normal, while for FPU the data are compatible with an anomalous diffusion, possibly with an α-dependent characteristic exponent.
Heat transport in oscillator chains with long-range interactions coupled to thermal reservoirs
NASA Astrophysics Data System (ADS)
Iubini, Stefano; Di Cintio, Pierfrancesco; Lepri, Stefano; Livi, Roberto; Casetti, Lapo
2018-03-01
We investigate thermal conduction in arrays of long-range interacting rotors and Fermi-Pasta-Ulam (FPU) oscillators coupled to two reservoirs at different temperatures. The strength of the interaction between two lattice sites decays as a power α of the inverse of their distance. We point out the necessity of distinguishing between energy flows towards or from the reservoirs and those within the system. We show that energy flow between the reservoirs occurs via a direct transfer induced by long-range couplings and a diffusive process through the chain. To this aim, we introduce a decomposition of the steady-state heat current that explicitly accounts for such direct transfer of energy between the reservoir. For 0 ≤α <1 , the direct transfer term dominates, meaning that the system can be effectively described as a set of oscillators each interacting with the thermal baths. Also, the heat current exchanged with the reservoirs depends on the size of the thermalized regions: In the case in which such size is proportional to the system size N , the stationary current is independent on N . For α >1 , heat transport mostly occurs through diffusion along the chain: For the rotors transport is normal, while for FPU the data are compatible with an anomalous diffusion, possibly with an α -dependent characteristic exponent.
Crofoot, Margaret C; Gilby, Ian C; Wikelski, Martin C; Kays, Roland W
2008-01-15
Numerical superiority confers a competitive advantage during contests among animal groups, shaping patterns of resource access, and, by extension, fitness. However, relative group size does not always determine the winner of intergroup contests. Smaller, presumably weaker social groups often defeat their larger neighbors, but how and when they are able to do so remains poorly understood. Models of competition between individuals suggest that location may influence contest outcome. However, because of the logistical difficulties of studying intergroup interactions, previous studies have been unable to determine how contest location and group size interact to shape relationships among groups. We address this question by using an automated radio telemetry system to study intergroup interactions among six capuchin monkey (Cebus capucinus) social groups of varying sizes. We find that the odds of winning increase with relative group size; one additional group member increases the odds of winning an interaction by 10%. However, this effect is not uniform across space; with each 100 m that a group moves away from the center of its home range, its odds of winning an interaction decrease by 31%. We demonstrate that contest outcome depends on an interaction between group size and location, such that small groups can defeat much larger groups near the center of their home range. The tendency of resident groups to win contests may help explain how small groups persist in areas with intense intergroup competition.
Constantinescu, Adi; Golubović, Leonardo; Levandovsky, Artem
2013-09-01
Long range dewetting forces acting across thin films, such as the fundamental van der Waals interactions, may drive the formation of large clusters (tall multilayer islands) and pits, observed in thin films of diverse materials such as polymers, liquid crystals, and metals. In this study we further develop the methodology of the nonequilibrium statistical mechanics of thin films coarsening within continuum interface dynamics model incorporating long range dewetting interactions. The theoretical test bench model considered here is a generalization of the classical Mullins model for the dynamics of solid film surfaces. By analytic arguments and simulations of the model, we study the coarsening growth laws of clusters formed in thin films due to the dewetting interactions. The ultimate cluster growth scaling laws at long times are strongly universal: Short and long range dewetting interactions yield the same coarsening exponents. However, long range dewetting interactions, such as the van der Waals forces, introduce a distinct long lasting early time scaling behavior characterized by a slow growth of the cluster height/lateral size aspect ratio (i.e., a time-dependent Young angle) and by effective coarsening exponents that depend on cluster size. In this study, we develop a theory capable of analytically calculating these effective size-dependent coarsening exponents characterizing the cluster growth in the early time regime. Such a pronounced early time scaling behavior has been indeed seen in experiments; however, its physical origin has remained elusive to this date. Our theory attributes these observed phenomena to ubiquitous long range dewetting interactions acting across thin solid and liquid films. Our results are also applicable to cluster growth in initially very thin fluid films, formed by depositing a few monolayers or by a submonolayer deposition. Under this condition, the dominant coarsening mechanism is diffusive intercluster mass transport while the cluster coalescence plays a minor role, both in solid and in fluid films.
Miller, Lisa K; Brooks, Robert
2005-11-01
The traits thought to advertise genetic quality are often highly susceptible to environmental variation and prone to change with age. These factors may either undermine or reinforce the potential for advertisement traits to signal quality depending on the magnitude of age-dependent expression, environmental variation, and genotype-age and genotype-environment interaction. Measurements of the magnitude of these effects are thus a necessary step toward assessing the implications of age dependence and environmental variability for the evolution of signals of quality. We conducted a longitudinal study of male guppies (Poecilia reticulata) from 22 full-sibling families. Each fish was assigned at maturity to one of three treatments in order to manipulate his allocation of resources to reproduction: a control in which the male was kept alone, a courtship-only treatment in which he could see and court a female across a clear partition, and a mating treatment in which he interacted freely with a female. We measured each male's size, ornamental color patterns, courtship, attractiveness to females, and mating success at three ages. Size was influenced by treatment and age-treatment interactions, indicating that courtship and mating may impose costs on growth. Tail size and color patterns were influenced by age but not by treatment, suggesting fixed age-dependent trajectories in these advertisement traits. By contrast, display rate and attempted sneak copulation rate differed among treatments but not among ages, suggesting greater plasticity of these behavioral traits. As a result of the different patterns of variation in ornamentation and behavior, male attractiveness and mating success responded to male age, treatment, and the interaction between age and treatment. Neither age nor treatment obscured the presence of genetic variation, and the genetic relationship between male ornamentation and attractiveness remained the same among treatments. Our findings suggest that neither age-dependent variation nor environmentally induced variation in reproductive effort is likely to undermine the reliability of male signaling.
Grazers structure the bacterial and algal diversity of aquatic metacommunities.
Birtel, Julia; Matthews, Blake
2016-12-01
Consumers can have strong effects on the biotic and abiotic dynamics of spatially-structured ecosystems. In metacommunities, dispersing consumers can alter local assembly dynamics either directly through trophic interactions or indirectly by modifying local environmental conditions. In aquatic systems, very little is known about how key grazers, such as Daphnia, structure the microbial diversity of metacommunities and influence bacterial-mediated ecosystem functions. In an outdoor mesocosm experiment with replicate metacommunities (two 300 L mesocosms), we tested how the presence and absence of Daphnia and the initial density of the microbial community (manipulated via dilution) influenced the diversity and community structure of algae and bacteria, and several ecosystem properties (e.g., pH, dissolved substances) and functions (e.g., enzyme activity, respiration). We found that Daphnia strongly affected the local and regional diversity of both phytoplankton and bacteria, the taxonomic composition of bacterial communities, the biomass of algae, and ecosystem metabolism (i.e., respiration). Diluting the microbial inoculum (0.2-5 μm size fraction) to the metacommunities increased local phytoplankton diversity, decreased bacteria beta-diversity, and changed the relative abundance of bacterial classes. Changes in the rank abundance of different bacterial groups exhibited phylogenetic signal, implying that closely related bacteria species might share similar responses to the presence of Daphnia. © 2016 by the Ecological Society of America.
Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review.
Cycoń, Mariusz; Mrozik, Agnieszka; Piotrowska-Seget, Zofia
2017-04-01
Bioaugmentation, a green technology, is defined as the improvement of the degradative capacity of contaminated areas by introducing specific microorganisms, has emerged as the most advantageous method for cleaning-up soil contaminated with pesticides. The present review discusses the selection of pesticide-utilising microorganisms from various sources, their potential for the degradation of pesticides from different chemical classes in liquid media as well as soil-related case studies in a laboratory, a greenhouse and field conditions. The paper is focused on the microbial degradation of the most common pesticides that have been used for many years such as organochlorinated and organophosphorus pesticides, triazines, pyrethroids, carbamate, chloroacetamide, benzimidazole and derivatives of phenoxyacetic acid. Special attention is paid to bacterial strains from the genera Alcaligenes, Arthrobacter, Bacillus, Brucella, Burkholderia, Catellibacterium, Pichia, Pseudomonas, Rhodococcus, Serratia, Sphingomonas, Stenotrophomonas, Streptomyces and Verticillum, which have potential applications in the bioremediation of pesticide-contaminated soils using bioaugmentation technology. Since many factors strongly influence the success of bioaugmentation, selected abiotic and biotic factors such as pH, temperature, type of soil, pesticide concentration, content of water and organic matter, additional carbon and nitrogen sources, inoculum size, interactions between the introduced strains and autochthonous microorganisms as well as the survival of inoculants were presented. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Burin, Alexander L.
2015-09-01
Many-body localization in an XY model with a long-range interaction is investigated. We show that in the regime of a high strength of disordering compared to the interaction an off-resonant flip-flop spin-spin interaction (hopping) generates the effective Ising interactions of spins in the third order of perturbation theory in a hopping. The combination of hopping and induced Ising interactions for the power-law distance dependent hopping V (R ) ∝R-α always leads to the localization breakdown in a thermodynamic limit of an infinite system at α <3 d /2 where d is a system dimension. The delocalization takes place due to the induced Ising interactions U (R ) ∝R-2 α of "extended" resonant pairs. This prediction is consistent with the numerical finite size scaling in one-dimensional systems. Many-body localization in an XY model is more stable with respect to the long-range interaction compared to a many-body problem with similar Ising and Heisenberg interactions requiring α ≥2 d which makes the practical implementations of this model more attractive for quantum information applications. The full summary of dimension constraints and localization threshold size dependencies for many-body localization in the case of combined Ising and hopping interactions is obtained using this and previous work and it is the subject for the future experimental verification using cold atomic systems.
NASA Astrophysics Data System (ADS)
Tien, Hai M.; Le, Kien A.; Tran, An T.; Le, Phung K.
2016-06-01
In this work, a series of batch tests were conducted to investigate the effect of pH, temperature, fermentation time, and inoculums ratio to hydrogen production using cassava starch as a substrate. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. It was fouund that the suitable fermentation conditions of biohydrogen production should be at temperature 40 ° C; pH 6.5, inoculums to medium ratio 10 % and COD operation at 4800 g/mL. The maximum value of hydrogen volume produced was 76.22 mL. These affected has been evaluated and the result can be used as an reference for the pilot or industrial biohydrogen production.
Tree genetics defines fungal partner communities that may confer drought tolerance.
Gehring, Catherine A; Sthultz, Christopher M; Flores-Rentería, Lluvia; Whipple, Amy V; Whitham, Thomas G
2017-10-17
Plant genetic variation and soil microorganisms are individually known to influence plant responses to climate change, but the interactive effects of these two factors are largely unknown. Using long-term observational studies in the field and common garden and greenhouse experiments of a foundation tree species ( Pinus edulis ) and its mutualistic ectomycorrhizal fungal (EMF) associates, we show that EMF community composition is under strong plant genetic control. Seedlings acquire the EMF community of their seed source trees (drought tolerant vs. drought intolerant), even when exposed to inoculum from the alternate tree type. Drought-tolerant trees had 25% higher growth and a third the mortality of drought-intolerant trees over the course of 10 y of drought in the wild, traits that were also observed in their seedlings in a common garden. Inoculation experiments show that EMF communities are critical to drought tolerance. Drought-tolerant and drought-intolerant seedlings grew similarly when provided sterile EMF inoculum, but drought-tolerant seedlings grew 25% larger than drought-intolerant seedlings under dry conditions when each seedling type developed its distinct EMF community. This demonstration that particular combinations of plant genotype and mutualistic EMF communities improve the survival and growth of trees with drought is especially important, given the vulnerability of forests around the world to the warming and drying conditions predicted for the future.
Aanen, Duur K
2006-01-01
At present there is no consensus theory explaining the evolutionary stability of mutualistic interactions. However, the question is whether there are general ‘rules’, or whether each particular mutualism needs a unique explanation. Here, I address the ultimate evolutionary stability of the ‘agricultural’ mutualism between fungus-growing termites and Termitomyces fungi, and provide a proximate mechanism for how stability is achieved. The key to the proposed mechanism is the within-nest propagation mode of fungal symbionts by termites. The termites suppress horizontal fungal transmission by consuming modified unripe mushrooms (nodules) for food. However, these nodules provide asexual gut-resistant spores that form the inoculum of new substrate. This within-nest propagation has two important consequences: (i) the mutualistic fungi undergo severe, recurrent bottlenecks, so that the fungus is likely to be in monoculture and (ii) the termites ‘artificially’ select for high nodule production, because their fungal food source also provides the inoculum for the next harvest. I also provide a brief comparison of the termite–fungus mutualism with the analogous agricultural mutualism between attine ants and fungi. This comparison shows that—although common factors for the ultimate evolutionary stability of mutualisms can be identified—the proximate mechanisms can be fundamentally different between different mutualisms. PMID:17148364
Deng, Yuying; Huang, Zhenxing; Zhao, Mingxing; Ruan, Wenquan; Miao, Hengfeng; Ren, Hongyan
2017-07-01
Ruminal microbiota (RM) were co-inoculated with anaerobic sludge (AS) at different ratios to study the digestion of rice straw in batch experiments. The CH 4 yield reached 273.64 mL/g volatile solid (VS) at a co-inoculum ratio of 1:1. The xylanase and cellulase activities were 198.88-212.88 and 24.51-29.08 U/mL in co-inoculated samples, respectively, and were significantly different compared to the results for single inoculum (p < 0.05). Higher ratios of AS enhanced acetoclastic methanogenesis, and propionate accumulation could be the main reason for the longer lag phase observed in samples with a higher RM ratio. The microbial compositions were clearly altered after digestion. Fibrobacter, Ruminococcus and Butyrivibrio from the rumen did not settle in the co-inoculated system, whereas Clostridiales members became the main polysaccharide degraders. Microbial interactions involving hydrolytic bacteria and acetoclastic methanogens in the residue were considered to be significant for hydrolysis activities and methane production. Syntrophy involving propionate oxidizers with associated methanogens occurred in the liquid phase. Our findings provide a better understanding of the anaerobic digestion of rice straw that is driven by specific microbial populations.
NASA Technical Reports Server (NTRS)
Feiveson, Alan H.; Ploutz-Snyder, Robert; Fiedler, James
2011-01-01
In their 2009 Annals of Statistics paper, Gavrilov, Benjamini, and Sarkar report the results of a simulation assessing the robustness of their adaptive step-down procedure (GBS) for controlling the false discovery rate (FDR) when normally distributed test statistics are serially correlated. In this study we extend the investigation to the case of multiple comparisons involving correlated non-central t-statistics, in particular when several treatments or time periods are being compared to a control in a repeated-measures design with many dependent outcome measures. In addition, we consider several dependence structures other than serial correlation and illustrate how the FDR depends on the interaction between effect size and the type of correlation structure as indexed by Foerstner s distance metric from an identity. The relationship between the correlation matrix R of the original dependent variables and R, the correlation matrix of associated t-statistics is also studied. In general R depends not only on R, but also on sample size and the signed effect sizes for the multiple comparisons.
Large but uneven reduction in fish size across species in relation to changing sea temperatures.
van Rijn, Itai; Buba, Yehezkel; DeLong, John; Kiflawi, Moshe; Belmaker, Jonathan
2017-09-01
Ectotherms often attain smaller body sizes when they develop at higher temperatures. This phenomenon, known as the temperature-size rule, has important consequences for global fisheries, whereby ocean warming is predicted to result in smaller fish and reduced biomass. However, the generality of this phenomenon and the mechanisms that drive it in natural populations remain unresolved. In this study, we document the maximal size of 74 fish species along a steep temperature gradient in the Mediterranean Sea and find strong support for the temperature-size rule. Importantly, we additionally find that size reduction in active fish species is dramatically larger than for more sedentary species. As the temperature dependence of oxygen consumption depends on activity levels, these findings are consistent with the hypothesis that oxygen is a limiting factor shaping the temperature-size rule in fishes. These results suggest that ocean warming will result in a sharp, but uneven, reduction in fish size that will cause major shifts in size-dependent interactions. Moreover, warming will have major implications for fisheries as the main species targeted for harvesting will show the most substantial declines in biomass. © 2017 John Wiley & Sons Ltd.
Rashid, Muhammad Imtiaz; Mujawar, Liyakat Hamid; Shahzad, Tanvir; Almeelbi, Talal; Ismail, Iqbal M I; Oves, Mohammad
2016-02-01
Intensive agricultural practices and cultivation of exhaustive crops has deteriorated soil fertility and its quality in agroecosystems. According to an estimate, such practices will convert 30% of the total world cultivated soil into degraded land by 2020. Soil structure and fertility loss are one of the main causes of soil degradation. They are also considered as a major threat to crop production and food security for future generations. Implementing safe and environmental friendly technology would be viable solution for achieving sustainable restoration of degraded soils. Bacterial and fungal inocula have a potential to reinstate the fertility of degraded land through various processes. These microorganisms increase the nutrient bioavailability through nitrogen fixation and mobilization of key nutrients (phosphorus, potassium and iron) to the crop plants while remediate soil structure by improving its aggregation and stability. Success rate of such inocula under field conditions depends on their antagonistic or synergistic interaction with indigenous microbes or their inoculation with organic fertilizers. Co-inoculation of bacteria and fungi with or without organic fertilizer are more beneficial for reinstating the soil fertility and organic matter content than single inoculum. Such factors are of great importance when considering bacteria and fungi inocula for restoration of degraded soils. The overview of presented mechanisms and interactions will help agriculturists in planning sustainable management strategy for reinstating the fertility of degraded soil and assist them in reducing the negative impact of artificial fertilizers on our environment. Copyright © 2015 Elsevier GmbH. All rights reserved.
The infection rate of Daphnia magna by Pasteuria ramosa conforms with the mass-action principle.
Regoes, R R; Hottinger, J W; Sygnarski, L; Ebert, D
2003-10-01
In simple epidemiological models that describe the interaction between hosts with their parasites, the infection process is commonly assumed to be governed by the law of mass action, i.e. it is assumed that the infection rate depends linearly on the densities of the host and the parasite. The mass-action assumption, however, can be problematic if certain aspects of the host-parasite interaction are very pronounced, such as spatial compartmentalization, host immunity which may protect from infection with low doses, or host heterogeneity with regard to susceptibility to infection. As deviations from a mass-action infection rate have consequences for the dynamics of the host-parasite system, it is important to test for the appropriateness of the mass-action assumption in a given host-parasite system. In this paper, we examine the relationship between the infection rate and the parasite inoculum for the water flee Daphnia magna and its bacterial parasite Pasteuria ramosa. We measured the fraction of infected hosts after exposure to 14 different doses of the parasite. We find that the observed relationship between the fraction of infected hosts and the parasite dose is largely consistent with an infection process governed by the mass-action principle. However, we have evidence for a subtle but significant deviation from a simple mass-action infection model, which can be explained either by some antagonistic effects of the parasite spores during the infection process, or by heterogeneity in the hosts' susceptibility with regard to infection.
Ebba K. Peterson; Niklaus J. Grünwald; Jennifer L. Parke
2017-01-01
Soilborne inoculum (infested leaf debris which has become incorporated into the soil) may be an important contributor to the persistence of the sudden oak death pathogen Phytophthora ramorum in recurrently positive nurseries. To initiate new epidemics, soilborne inoculum must not only be able to survive over time, but also be capable of producing...
Power law relation between particle concentrations and their sizes in the blood plasma
NASA Astrophysics Data System (ADS)
Kirichenko, M. N.; Chaikov, L. L.; Zaritskii, A. R.
2016-08-01
This work is devoted to the investigation of sizes and concentrations of particles in blood plasma by dynamic light scattering (DLS). Blood plasma contains many different proteins and their aggregates, microparticles and vesicles. Their sizes, concentrations and shapes can give information about donor's health. Our DLS study of blood plasma reveals unexpected dependence: with increasing of the particle sizes r (from 1 nm up to 1 μm), their concentrations decrease as r-4 (almost by 12 orders). We found also that such dependence was repeated for model solution of fibrinogen and thrombin with power coefficient is -3,6. We believe that this relation is a fundamental law of nature that shows interaction of proteins (and other substances) in biological liquids.
Hidalgo, Dolores; Martín-Marroquín, Jesús M
2014-09-01
This work aims at selecting a suitable strategy to improve the performance of the anaerobic digestion of residues generated in the treatment of waste vegetable oils (WVO). Biochemical methane potential (BMP) assays were conducted at 35 °C to evaluate the effects of substrate mix ratio between a mixture of WVO residues (M) and pig manure (PM) co-digesting by using different inocula. Inoculum from an industrial digester fed with organic waste from hotels, restaurants and catering leftovers (HORECA) showed higher methanogenic activity (55.5 mLCH4 gVS(-1) d(-1)) than municipal wastewater treatment plant (mWWTP) inoculum (42.6 mL CH4 gVS(-1) d(-1)). Furthermore, the results showed that the resistance to WVO residues toxicity was higher for the HORECA sludge than for the mWWTP sludge. HORECA inoculum produced more biogas in all the assays. Moreover, the resulting biogas was of better quality, containing an average of 71.1% (SD = 1.6) methane compared to an average of 69.5% (SD = 1.2) methane for test with mWWTP sludge. The maximum degradation rate occurred at the higher PM mix ratio (M/PM:1/3), reaching 26.7 ± 4.3 mLCH4 gVS(-1) d(-1) for mWWTP inoculum, versus 42.0 ± 1,5 mLCH4 gVS(-1) d(-1) achieved for HORECA inoculum. A high reduction of volatile solids (between 70% and 81%) was obtained with both inocula at all M/PM ratios assayed (1/0, 1/3, 1/1 and 3/1 v/v) but, bearing in mind the operation of a full-scale anaerobic plant, the optimal scenario assayed corresponds to the ratio M/PM: 1/3 v/v where shorter lag periods will make it possible to operate at lower hydraulic retention times. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lee, Dong-Gun; Murakami, Yoichi; Andes, David R.
2013-01-01
Reduced bactericidal efficacy at a high inoculum is known as the inoculum effect (IE). We used neutropenic mice to compare the IEs of ceftobiprole (CFB), daptomycin (DAP), linezolid (LZD), and vancomycin (VAN) against 6 to 9 strains of Staphylococcus aureus and 4 strains of Streptococcus pneumoniae at 2 inocula in opposite thighs of the same mice. Neutropenic mice had 104.5 to 105.7 CFU/thigh (low inoculum [LI]) in one thigh and 106.4 to 107.2 CFU/thigh (high inoculum [HI]) in the opposite thigh when treated for 24 h with subcutaneous (s.c.) doses every 12 h of DAP at 0.024 to 100 mg/kg of body weight and LZD at 0.313 to 320 mg/kg and s.c. doses every 6 h of CFB at 0.003 to 160 mg/kg and VAN at 0.049 to 800 mg/kg. Dose-response data were analyzed by a maximum effect (Emax) model using nonlinear regression. Static doses for each drug and at each inoculum were calculated, and the difference between HI and LI (IE index) gave the magnitude of IE for each drug-organism combination. Mean (range) IE indexes of S. aureus were 2.9 (1.7 to 4.6) for CFB, 4.1 (2.6 to 9.3) for DAP, 4.6 (1.7 to 7.1) for LZD, and 10.1 (6.3 to 20.3) for VAN. In S. pneumoniae, the IE indexes were 2.5 (1.3 to 3.3) for CFB, 2.0 (1.6 to 2.8) for DAP, 1.9 (1.7 to 2.2) for LZD, and 1.5 (0.8 to 3.2) for VAN; these values were similar for all drugs. In S. aureus, the IE was much larger with VAN than with CFB, DAM, and LZD (P < 0.05). An in vivo time course of vancomycin activity showed initiation of killing at 4- to 16-fold-higher doses at HI than at LI despite similar initial growth of controls. PMID:23295932
Internalization of Murine Norovirus 1 by Lactuca sativa during Irrigation ▿
Wei, Jie; Jin, Yan; Sims, Tom; Kniel, Kalmia E.
2011-01-01
Romaine lettuce (Lactuca sativa) was grown hydroponically or in soil and challenged with murine norovirus 1 (MNV) under two conditions: one mimicking a severe one-time contamination event and another mimicking a lower level of contamination occurring over time. In each condition, lettuce was challenged with MNV delivered at the roots. In the first case, contamination occurred on day one with 5 × 108 reverse transcriptase quantitative PCR (RT-qPCR) U/ml MNV in nutrient buffer, and irrigation water was replaced with virus-free buffer every day for another 4 days. In the second case, contamination with 5 × 105 RT-qPCR U/ml MNV (freshly prepared) occurred every day for 5 days. Virus had a tendency to adsorb to soil particles, with a small portion suspended in nutrient buffer; e.g., ∼8 log RT-qPCR U/g MNV was detected in soil during 5 days of challenge with virus inoculums of 5 × 108 RT-qPCR U/ml at day one, but <6 log was found in nutrient buffer on days 3 and 5. For hydroponically grown lettuce, ∼3.4 log RT-qPCR U of viral RNA/50 mg of plant tissue was detected in some lettuce leaf samples after 5 days at high MNV inoculums, significantly higher than the internalized virus concentration (∼2.6 log) at low inoculums (P < 0.05). For lettuce grown in soil, approximately 2 log RT-qPCR U of viral RNA/50 mg of plant tissue was detected in lettuce with both high and low inoculums, showing no significant difference. For viral infectivity, infectious MNV was found in lettuce samples challenged with high virus inoculums grown hydroponically and in soil but not in lettuce grown with low virus inoculums. Lettuce grown hydroponically was further incubated in 99% and 70% relative humidities (RH) to evaluate plant transpiration relative to virus uptake. More lettuce samples were found positive for MNV at a significantly higher transpiration rate at 70% RH, indicating that transpiration might play an important role in virus internalization into L. sativa. PMID:21296944
Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco
2012-07-02
Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. Copyright © 2012 Elsevier B.V. All rights reserved.
Density-dependence interacts with extrinsic mortality in shaping life histories
Burger, Oskar; Kozłowski, Jan
2017-01-01
The role of extrinsic mortality in shaping life histories is poorly understood. However, substantial evidence suggests that extrinsic mortality interacts with density-dependence in crucial ways. We develop a model combining Evolutionarily Stable Strategies with a projection matrix that allows resource allocation to growth, tissue repairs, and reproduction. Our model examines three cases, with density-dependence acting on: (i) mortality, (ii) fecundity, and (iii) production rate. We demonstrate that density-independent extrinsic mortality influences the rate of aging, age at maturity, growth rate, and adult size provided that density-dependence acts on fertility or juvenile mortality. However, density-independent extrinsic mortality has no effect on these life history traits when density-dependence acts on survival. We show that extrinsic mortality interacts with density-dependence via a compensation mechanism: the higher the extrinsic mortality the lower the strength of density-dependence. However, this compensation fully offsets the effect of extrinsic mortality only if density-dependence acts on survival independently of age. Both the age-pattern and the type of density-dependence are crucial for shaping life history traits. PMID:29049399
Yoshikura, Hiroshi
2018-04-27
Relation between number of measles patients (y) and population size (x) was expressed by an equation y = ax s , where a is a constant and s the slope of the plot; s was 2.04-2.17 for prefectures in Japan, i.e., the number of patients was proportional to square of the prefecture population size. For European countries that joined European Union no later than 2009, the slope was 1.43-1.87. The measles' population dependency found among prefectures in Japan was thus scalable up to European countries. It was surprising because, unlike Japan, population density in EU countries was not uniform and not proportional to the population size. The population size dependency was not observed among Western Pacific and South-East Asian countries probably on account of confounding interacting socioeconomic factors. Correlation between measles incidence and birth rate, infant mortality or GDP per capita was almost insignificant.Size distribution of local infection clusters (LICs) of measles and rubella in Japan followed power law. For measles, though the population dependency remained unchanged after "elimination", there was change in the Zipf-type plot of LIC sizes. After the "elimination", LICs linked to importation-related outbreaks in less populated prefectures emerged as the top-ranked LICs.
Macedo, Renan; Sales, Lilian Patrícia; Yoshida, Fernanda; Silva-Abud, Lidianne Lemes; Lobo, Murillo
2017-01-01
Root rots are a constraint for staple food crops and a long-lasting food security problem worldwide. In common beans, yield losses originating from root damage are frequently attributed to dry root rot, a disease caused by the Fusarium solani species complex. The aim of this study was to model the current potential distribution of common bean dry root rot on a global scale and to project changes based on future expectations of climate change. Our approach used a spatial proxy of the field disease occurrence, instead of solely the pathogen distribution. We modeled the pathogen environmental requirements in locations where in-situ inoculum density seems ideal for disease manifestation. A dataset of 2,311 soil samples from commercial farms assessed from 2002 to 2015 allowed us to evaluate the environmental conditions associated with the pathogen's optimum inoculum density for disease occurrence, using a lower threshold as a spatial proxy. We encompassed not only the optimal conditions for disease occurrence but also the optimal pathogen's density required for host infection. An intermediate inoculum density of the pathogen was the best disease proxy, suggesting density-dependent mechanisms on host infection. We found a strong convergence on the environmental requirements of both the host and the disease development in tropical areas, mostly in Brazil, Central America, and African countries. Precipitation and temperature variables were important for explaining the disease occurrence (from 17.63% to 43.84%). Climate change will probably move the disease toward cooler regions, which in Brazil are more representative of small-scale farming, although an overall shrink in total area (from 48% to 49% in 2050 and 26% to 41% in 2070) was also predicted. Understanding pathogen distribution and disease risks in an evolutionary context will therefore support breeding for resistance programs and strategies for dry root rot management in common beans.
Macedo, Renan; Sales, Lilian Patrícia; Yoshida, Fernanda; Silva-Abud, Lidianne Lemes
2017-01-01
Root rots are a constraint for staple food crops and a long-lasting food security problem worldwide. In common beans, yield losses originating from root damage are frequently attributed to dry root rot, a disease caused by the Fusarium solani species complex. The aim of this study was to model the current potential distribution of common bean dry root rot on a global scale and to project changes based on future expectations of climate change. Our approach used a spatial proxy of the field disease occurrence, instead of solely the pathogen distribution. We modeled the pathogen environmental requirements in locations where in-situ inoculum density seems ideal for disease manifestation. A dataset of 2,311 soil samples from commercial farms assessed from 2002 to 2015 allowed us to evaluate the environmental conditions associated with the pathogen’s optimum inoculum density for disease occurrence, using a lower threshold as a spatial proxy. We encompassed not only the optimal conditions for disease occurrence but also the optimal pathogen’s density required for host infection. An intermediate inoculum density of the pathogen was the best disease proxy, suggesting density-dependent mechanisms on host infection. We found a strong convergence on the environmental requirements of both the host and the disease development in tropical areas, mostly in Brazil, Central America, and African countries. Precipitation and temperature variables were important for explaining the disease occurrence (from 17.63% to 43.84%). Climate change will probably move the disease toward cooler regions, which in Brazil are more representative of small-scale farming, although an overall shrink in total area (from 48% to 49% in 2050 and 26% to 41% in 2070) was also predicted. Understanding pathogen distribution and disease risks in an evolutionary context will therefore support breeding for resistance programs and strategies for dry root rot management in common beans. PMID:29107985
Analyses of Fusarium wilt race 3 resistance in Upland cotton (Gossypium hirsutum L.).
Abdullaev, Alisher A; Salakhutdinov, Ilkhom B; Egamberdiev, Sharof Sh; Kuryazov, Zarif; Glukhova, Ludmila A; Adilova, Azoda T; Rizaeva, Sofiya M; Ulloa, Mauricio; Abdurakhmonov, Ibrokhim Y
2015-06-01
Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans] represents a serious threat to cotton (Gossypium spp.) production. For the last few decades, the FOV pathogen has become a significant problem in Uzbekistan causing severe wilt disease and yield losses of G. hirsutum L. cultivars. We present the first genetic analyses of FOV race 3 resistance on Uzbek Cotton Germplasm with a series of field and greenhouse artificial inoculation-evaluations and inheritance studies. The field experiments were conducted in two different sites: the experimental station in Zangiota region-Environment (Env) 1 and the Institute of Cotton Breeding (Env-2, Tashkent province). The Env-1 was known to be free of FOV while the Env-2 was known to be a heavily FOV infested soil. In both (Env-1 and Env-2) of these sites, field soil was inoculated with FOV race 3. F2 and an F3 Upland populations ("Mebane B1" × "11970") were observed with a large phenotypic variance for plant survival and FOV disease severity within populations and among control or check Upland accessions. Wilt symptoms among studied F2 individuals and F3 families significantly differed depending on test type and evaluation site. Distribution of Mendelian rations of susceptible (S) and resistant (R) phenotypes were 1S:1R field Env-1 and 3S:1R field Env-2 in the F2 population, and 1S:3R greenhouse site in the F3 population. The different segregation distribution of the Uzbek populations may be explained by differences in FOV inoculum level and environmental conditions during assays. However, genetic analysis indicated a recessive single gene action under high inoculum levels or disease pressure for FOV race 3 resistance. Uzbek germplasm may be more susceptible than expected to FOV race 3, and sources of resistance to FOV may be limited under the FOV inoculum levels present in highly-infested fields making the breeding process more complex.
Use of disposable reactors to generate inoculum cultures for E. coli production fermentations.
Mahajan, Ekta; Matthews, Timothy; Hamilton, Ryan; Laird, Michael W
2010-01-01
Disposable technology is being used more each year in the biotechnology industry. Disposable bioreactors allow one to avoid expenses associated with cleaning, assembly and operations, as well as equipment validation. The WAVE bioreactor is well established for Chinese Hamster Ovary (CHO) production, however, it has not yet been thoroughly tested for E. coli production because of the high oxygen demand and temperature maintenance requirements of that platform. The objective of this study is to establish a robust process to generate inoculum for E. coli production fermentations in a WAVE bioreactor. We opted not to evaluate the WAVE system for production cultures because of the high cell densities required in our current E. coli production processes. Instead, the WAVE bioreactor 20/50 system was evaluated at laboratory scale (10-L) to generate inoculum with target optical densities (OD(550)) of 15 within 7-9 h (pre-established target for stainless steel fermentors). The maximum settings for rock rate (40 rpm) and angle (10.5) were used to maximize mass transfer. The gas feed was also supplemented with additional oxygen to meet the high respiratory demand of the culture. The results showed that the growth profiles for the inoculum cultures were similar to those obtained from conventional stainless steel fermentors. These inoculum cultures were subsequently inoculated into 10-L working volume stainless steel fermentors to evaluate the inocula performance of two different production systems during recombinant protein production. The results of these production cultures using WAVE inocula showed that the growth and recombinant protein production was comparable to the control data set. Furthermore, an economic analysis showed that the WAVE system would require less capital investment for installation and operating expenses would be less than traditional stainless steel systems. (c) 2010 American Institute of Chemical Engineers
Bergen, Phillip J.; Tsuji, Brian T.; Bulitta, Jurgen B.; Forrest, Alan; Jacob, Jovan; Sidjabat, Hanna E.; Paterson, David L.; Nation, Roger L.; Li, Jian
2011-01-01
Combination therapy may be required for multidrug-resistant (MDR) Pseudomonas aeruginosa. The aim of this study was to systematically investigate bacterial killing and emergence of colistin resistance with colistin and doripenem combinations against MDR P. aeruginosa. Studies were conducted in a one-compartment in vitro pharmacokinetic/pharmacodynamic model for 96 h at two inocula (∼106 and ∼108 CFU/ml) against a colistin-heteroresistant reference strain (ATCC 27853) and a colistin-resistant MDR clinical isolate (19147 n/m). Four combinations utilizing clinically achievable concentrations were investigated. Microbiological response was examined by log changes and population analysis profiles. Colistin (constant concentrations of 0.5 or 2 mg/liter) plus doripenem (peaks of 2.5 or 25 mg/liter every 8 h; half-life, 1.5 h) substantially increased bacterial killing against both strains at the low inoculum, while combinations containing colistin at 2 mg/liter increased activity against ATCC 27853 at the high inoculum; only colistin at 0.5 mg/liter plus doripenem at 2.5 mg/liter failed to improve activity against 19147 n/m at the high inoculum. Combinations were additive or synergistic against ATCC 27853 in 16 and 11 of 20 cases (4 combinations across 5 sample points) at the 106- and 108-CFU/ml inocula, respectively; the corresponding values for 19147 n/m were 16 and 9. Combinations containing doripenem at 25 mg/liter resulted in eradication of 19147 n/m at the low inoculum and substantial reductions in regrowth (including to below the limit of detection at ∼50 h) at the high inoculum. Emergence of colistin-resistant subpopulations of ATCC 27853 was substantially reduced and delayed with combination therapy. This investigation provides important information for optimization of colistin-doripenem combinations. PMID:21911563
Xie, Binghan; Gong, Weijia; Ding, An; Yu, Huarong; Qu, Fangshu; Tang, Xiaobin; Yan, Zhongsen; Li, Guibai; Liang, Heng
2017-10-01
Microbial fuel cell (MFC) is a sustainable technology to treat cattle manure slurry (CMS) for converting chemical energy to bioelectricity. In this work, two types of allochthonous inoculum including activated sludge (AS) and domestic sewage (DS) were added into the MFC systems to enhance anode biofilm formation and electricity generation. Results indicated that MFCs (AS + CMS) obtained the maximum electricity output with voltage approaching 577 ± 7 mV (~ 196 h), followed by MFCs (DS + CMS) (520 ± 21 mV, ~ 236 h) and then MFCs with autochthonous inoculum (429 ± 62 mV, ~ 263.5 h). Though the raw cattle manure slurry (RCMS) could facilitate electricity production in MFCs, the addition of allochthonous inoculum (AS/DS) significantly reduced the startup time and enhanced the output voltage. Moreover, the maximum power (1.259 ± 0.015 W/m 2 ) and the highest COD removal (84.72 ± 0.48%) were obtained in MFCs (AS + CMS). With regard to microbial community, Illumina HiSeq of the 16S rRNA gene was employed in this work and the exoelectrogens (Geobacter and Shewanella) were identified as the dominant members on all anode biofilms in MFCs. For anode microbial diversity, the MFCs (AS + CMS) outperformed MFCs (DS + CMS) and MFCs (RCMS), allowing the occurrence of the fermentative (e.g., Bacteroides) and nitrogen fixation bacteria (e.g., Azoarcus and Sterolibacterium) which enabled the efficient degradation of the slurry. This study provided a feasible strategy to analyze the anode biofilm formation by adding allochthonous inoculum and some implications for quick startup of MFC reactors for CMS treatment.
Chen, Jian; Ren, Yanqin; Daharsh, Lance; Liu, Lu; Kang, Guobin; Li, Qingsheng; Wei, Qiang; Wan, Yanmin; Xu, Jianqing
2018-01-01
Characterizing the transmitted/founder (T/F) viruses of multi-variant SIV infection may shed new light on the understanding of mucosal transmission. We intrarectally inoculated six Chinese rhesus macaques with a single high dose of SIVmac251 (3.1 × 104 TCID50) and obtained 985 full-length env sequences from multiple tissues at 6 and 10 days post-infection by single genome amplification (SGA). All 6 monkeys were infected with a range of 2 to 8 T/F viruses and the dominant variants from the inoculum were still dominant in different tissues from each monkey. Interestingly, our data showed that a cluster of rare T/F viruses was unequally represented in different tissues. This cluster of rare T/F viruses phylogenetically related to the non-dominant SIV variants in the inoculum and was not detected in any rectum tissues, but could be identified in the descending colon, jejunum, spleen, or plasma. In 2 out of 6 macaques, identical SIVmac251 variants belonging to this cluster were detected simultaneously in descending colon/jejunum and the inoculum. We also demonstrated that the average CG dinucleotide frequency of these rare T/F viruses found in tissues, as well as non-dominant variants in the inoculum, was significantly higher than the dominant T/F viruses in tissues and the inoculum. Collectively, these findings suggest that descending colon/jejunum might be more susceptible than rectum to SIV in the very early phase of infection. And host CG suppression, which was previously shown to inhibit HIV replication in vitro, may also contribute to the bottleneck selection during in vivo transmission. PMID:29651274
Nwokoro, Ogbonnaya; Dibua, Marie Esther Uju
2014-03-01
The aim of this investigation was to study whether certain bacteria could be used for cyanide degradation in soil. The bacteria Pseudomonas stutzeri and Bacillus subtilis were selected based on their good growth in a minimal medium containing 0.8 mg mL-1 potassium cyanide (KCN). In this study we tested their ability to reduce cyanide levels in a medium containing 1.5 mg mL-1 of KCN. Although both microorganisms reduced cyanide levels, Pseudomonas stutzeri was the more effective test organism. Later on, the selected cultures were grown, diluted and their various cell concentrations were used individually and in combination to test their ability of cyanide degradation in soil samples collected around a cassava processing mill. Bacillus subtilis caused degradation of soil cyanide from 0.218 mg g-1 soil immediately with an inoculum concentration of 0.1 (OD600nm) to 0.072 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) implying a 66.9 % reduction. Pseudomonas stutzeri cell concentration of 0.1 (OD600nm) decreased soil cyanide from 0.218 mg g-1 soil initially to 0.061 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) (72 % reduction). The mixed culture of the two bacteria produced the best degradation of soil cyanide from 0.218 mg g-1 soil sample with a combined inoculum concentration of 0.1 (OD600nm) initially to 0.025 mg g-1 soil with a combined inoculum concentration of 0.6 (OD600nm) after 10 days incubation resulting in an 88.5 % degradation of soil cyanide. The analysed bacteria displayed high cyanide degradation potential and may be useful for efficient decontamination of cyanide contaminated sites.
Carminati, Joyce A.; Morishita, Karen N.; Amorim Neto, Dionísio P.; Pinheiro, Hildete P.; Maia, Rafael P.
2018-01-01
Due to recent large outbreaks, peanuts have been considered a product of potential risk for Salmonella. Usually, peanut products show a low water activity (aw) and high fat content, which contribute to increasing the thermal resistance and survival of Salmonella. This study evaluated the long-term kinetics of Salmonella survival on different peanut products under storage at 28°C for 420 days. Samples of raw in-shell peanuts (aw = 0.29), roasted peanuts (aw = 0.39), unblanched peanut kernel (aw = 0.54), peanut brittle (aw = 0.30), paçoca (aw = 0.40) and pé-de-moça (aw = 0.68) were inoculated with Salmonella Typhimurium ATCC 14028 at two inoculum levels (3 and 6 log cfu/ g). The Salmonella behavior was influenced (p<0.05) by aw, lipid, carbohydrate and protein content. In most cases for both inoculum levels, the greatest reductions were seen after the first two weeks of storage, followed by a slower decline phase. The lowest reductions were verified in paçoca and roasted peanuts, with counts of 1.01 and 0.87 log cfu/ g at low inoculum level and 2.53 and 3.82 log cfu/ g at high inoculum level at the end of the storage time. The highest loss of viability was observed in pé-de-moça, with absence of Salmonella in 10-g after 180 days at low inoculum level. The Weibull model provided a suitable fit to the data (R2≥0.81), with δ value ranging from 0.06 to 49.75 days. Therefore, the results demonstrated that Salmonella survives longer in peanut products, beyond the shelf life (>420 days), especially in products with aw around 0.40. PMID:29401480
Narayanaswamy, Arun; Feiner, L F; Meijerink, A; van der Zaag, P J
2009-09-22
Visual color changes between 300 and 510 K were observed in the photoluminescence (PL) of colloidal InP/ZnS core-shell nanocrystals. A subsequent study of PL spectra in the range 2-510 K and fitting the temperature dependent line shift and line width to theoretical models show that the dominant (dephasing) interaction is due to scattering by acoustic phonons of about 23 meV. Low temperature photoluminescence excitation measurements show that the excitonic band gap depends approximately inversely linearly on the quantum dot size d, which is distinctly weaker than the dependence predicted by current theories.
Assay of enterocin AS-48 for inhibition of foodborne pathogens in desserts.
Martinez Viedma, Pilar; Abriouel, Hikmate; Ben Omar, Nabil; Lucas López, Rosario; Valdivia, Eva; Gálvez, Antonio
2009-08-01
Enterocin AS-48 was tested against Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes in different kinds of desserts. The highest activity against S. aureus was detected in baker cream. However, in yogurt-type soy-based desserts and in gelatin pudding, AS-48 (175 arbitrary units [AU]/g) reduced viable cell counts of S. aureus by only 1.5 to 1.8 log units at most. The efficacy of AS-48 in puddings greatly depended on inoculum size, and viable S. aureus counts decreased below detection levels within 24 h for inocula lower than 4 to 5.5 log CFU/g. For L. monocytogenes, bacteriocin concentrations of 52.5 to 87.5 AU/g reduced viable counts below detection levels and avoided regrowth of survivors. The lowest activity was detected in yogurt-type desserts. For B. cereus, viable cell counts were reduced below detection levels for bacteriocin concentrations of 52.5 AU/g in instant pudding without soy or by 175 AU/g in the soy pudding. In gelatin pudding, AS-48 (175 AU/g) reduced viable cell counts of B. cereus below detection levels after 8 h at 10 degrees C or after 48 h at 22 degrees C. Bacteriocin addition also inhibited gelatin liquefaction caused by the proteolytic activity of B. cereus.
Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yi; Xu, Ben; Hu, Shenyang Y.
2015-09-25
The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz–Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening.
Varrone, C; Heggeset, T M B; Le, S B; Haugen, T; Markussen, S; Skiadas, I V; Gavala, H N
2015-01-01
Objective of this study was the selection and adaptation of mixed microbial cultures (MMCs), able to ferment crude glycerol generated from animal fat-based biodiesel and produce building-blocks and green chemicals. Various adaptation strategies have been investigated for the enrichment of suitable and stable MMC, trying to overcome inhibition problems and enhance substrate degradation efficiency, as well as generation of soluble fermentation products. Repeated transfers in small batches and fed-batch conditions have been applied, comparing the use of different inoculum, growth media, and Kinetic Control. The adaptation of activated sludge inoculum was performed successfully and continued unhindered for several months. The best results showed a substrate degradation efficiency of almost 100% (about 10 g/L glycerol in 21 h) and different dominant metabolic products were obtained, depending on the selection strategy (mainly 1,3-propanediol, ethanol, or butyrate). On the other hand, anaerobic sludge exhibited inactivation after a few transfers. To circumvent this problem, fed-batch mode was used as an alternative adaptation strategy, which led to effective substrate degradation and high 1,3-propanediol and butyrate production. Changes in microbial composition were monitored by means of Next Generation Sequencing, revealing a dominance of glycerol consuming species, such as Clostridium, Klebsiella, and Escherichia.
Evaluation of cotton stalk hydrolysate for xylitol production.
Sapcı, Burcu; Akpinar, Ozlem; Bolukbasi, Ufuk; Yilmaz, Levent
2016-07-03
Cotton stalk is a widely distributed and abundant lignocellulosic waste found in Turkey. Because of its rich xylose content, it can be a promising source for the production of xylitol. Xylitol can be produced by chemical or biotechnological methods. Because the biotechnological method is a simple process with great substrate specificity and low energy requirements, it is more of an economic alternative for the xylitol production. This study aimed to use cotton stalk for the production of xylitol with Candida tropicalis Kuen 1022. For this purpose, the combined effects of different oxygen concentration, inoculum level and substrate concentration were investigated to obtain high xylitol yield and volumetric xylitol production rate. Candida tropicalis Kuen 1022 afforded different concentrations of xylitol depending on xylose concentration, inoculum level, and oxygen concentration. The optimum xylose, yeast concentration, and airflow rate for cotton stalk hydrolysate were found as 10.41 g L(-1), 0.99 g L(-1), and 1.02 vvm, respectively, and under these conditions, xylitol yield and volumetric xylitol production rate were obtained as 36% and 0.06 g L(-1) hr(-1), respectively. The results of this study show that cotton stalk can serve as a potential renewable source for the production of xylitol.
Laser cytometric analysis of FIV-induced injury in astroglia.
Zenger, E; Collisson, E W; Barhoumi, R; Burghardt, R C; Danave, I R; Tiffany-Castiglioni, E
1995-02-01
Glia are the predominant brain cells infected by the lentiviruses human immunodeficiency virus (HIV) and feline immunodeficiency virus (FIV). The importance of astrocytes in maintenance of central nervous system homeostasis suggests that astrocytes are likely to play a strategic role in the progression of neurological disease in lentiviral-infected patients. In consideration of this postulate, the ability of FIV to cause injury by infection of cultured feline astroglia was examined via vital fluorescence assays. Intracellular Ca2+ homeostasis, plasma membrane permeability and fluidity, and cytosolic glutathione (GSH) levels were evaluated. Although basal intracellular Ca2+ was not significantly different between groups, FIV-infected astroglia displayed both a significant delay in development of peak Ca2+ levels following ionophore application and a decrease in the amount of Ca2+ released from intracellular stores. Plasma membrane lipid mobility was increased in FIV-infected cells within 24 h of infection. Glutathione levels were affected in a dose dependent fashion. With a standard viral inoculum there was a decrease in GSH which became significant after 8 days postinfection. With a high inoculum dose there was rapid loss of cell viability with an increase in GSH in surviving cells. We have identified several cellular processes altered in FIV-infected astroglia and our findings suggest that FIV-infection of feline astroglia affects cellular membranes, both structurally and functionally.
Venkata Mohan, S; Lalit Babu, V; Sarma, P N
2008-01-01
Influence of different pretreatment methods applied on anaerobic mixed inoculum was evaluated for selectively enriching the hydrogen (H(2)) producing mixed culture using dairy wastewater as substrate. The experimental data showed the feasibility of molecular biohydrogen generation utilizing dairy wastewater as primary carbon source through metabolic participation. However, the efficiency of H(2) evolution and substrate removal efficiency were found to be dependent on the type of pretreatment procedure adopted on the parent inoculum. Among the studied pretreatment methods, chemical pretreatment (2-bromoethane sulphonic acid sodium salt (0.2 g/l); 24 h) procedure enabled higher H(2) yield along with concurrent substrate removal efficiency. On the contrary, heat-shock pretreatment (100 degrees C; 1 h) procedure resulted in relatively low H(2) yield. Compared to control experiments all the adopted pretreatment methods documented higher H(2) generation efficiency. In the case of combination experiments, integration of pH (pH 3; adjusted with ortho-phosphoric acid; 24 h) and chemical pretreatment evidenced higher H(2) production. Data envelopment analysis (DEA), a frontier analysis technique model was successfully applied to enumerate the relative efficiency of different pretreatment methods studied by considered pretreatment procedures as input and cumulative H(2) production rate and substrate degradation rate as corresponding two outputs.
Optical extinction dependence on wavelength and size distribution of airborne dust
NASA Astrophysics Data System (ADS)
Pangle, Garrett E.; Hook, D. A.; Long, Brandon J. N.; Philbrick, C. R.; Hallen, Hans D.
2013-05-01
The optical scattering from laser beams propagating through atmospheric aerosols has been shown to be very useful in describing air pollution aerosol properties. This research explores and extends that capability to particulate matter. The optical properties of Arizona Road Dust (ARD) samples are measured in a chamber that simulates the particle dispersal of dust aerosols in the atmospheric environment. Visible, near infrared, and long wave infrared lasers are used. Optical scattering measurements show the expected dependence of laser wavelength and particle size on the extinction of laser beams. The extinction at long wavelengths demonstrates reduced scattering, but chemical absorption of dust species must be considered. The extinction and depolarization of laser wavelengths interacting with several size cuts of ARD are examined. The measurements include studies of different size distributions, and their evolution over time is recorded by an Aerodynamic Particle Sizer. We analyze the size-dependent extinction and depolarization of ARD. We present a method of predicting extinction for an arbitrary ARD size distribution. These studies provide new insights for understanding the optical propagation of laser beams through airborne particulate matter.
Rhizosphere Protists Change Metabolite Profiles in Zea mays.
Kuppardt, Anke; Fester, Thomas; Härtig, Claus; Chatzinotas, Antonis
2018-01-01
Plant growth and productivity depend on the interactions of the plant with the associated rhizosphere microbes. Rhizosphere protists play a significant role in this respect: considerable efforts have been made in the past to reveal the impact of protist-bacteria interactions on the remobilization of essential nutrients for plant uptake, or the grazing induced changes on plant-growth promoting bacteria and the root-architecture. However, the metabolic responses of plants to the presence of protists or to protist-bacteria interactions in the rhizosphere have not yet been analyzed. Here we studied in controlled laboratory experiments the impact of bacterivorous protists in the rhizosphere on maize plant growth parameters and the bacterial community composition. Beyond that we investigated the induction of plant biochemical responses by separately analyzing above- and below-ground metabolite profiles of maize plants incubated either with a soil bacterial inoculum or with a mixture of soil bacteria and bacterivorous protists. Significantly distinct leaf and root metabolite profiles were obtained from plants which grew in the presence of protists. These profiles showed decreased levels of a considerable number of metabolites typical for the plant stress reaction, such as polyols, a number of carbohydrates and metabolites connected to phenolic metabolism. We assume that this decrease in plant stress is connected to the grazing induced shifts in rhizosphere bacterial communities as shown by distinct T-RFLP community profiles. Protist grazing had a clear effect on the overall bacterial community composition, richness and evenness in our microcosms. Given the competition of plant resource allocation to either defense or growth, we propose that a reduction in plant stress levels caused directly or indirectly by protists may be an additional reason for corresponding positive effects on plant growth.
Rhizosphere Protists Change Metabolite Profiles in Zea mays
Kuppardt, Anke; Fester, Thomas; Härtig, Claus; Chatzinotas, Antonis
2018-01-01
Plant growth and productivity depend on the interactions of the plant with the associated rhizosphere microbes. Rhizosphere protists play a significant role in this respect: considerable efforts have been made in the past to reveal the impact of protist-bacteria interactions on the remobilization of essential nutrients for plant uptake, or the grazing induced changes on plant-growth promoting bacteria and the root-architecture. However, the metabolic responses of plants to the presence of protists or to protist-bacteria interactions in the rhizosphere have not yet been analyzed. Here we studied in controlled laboratory experiments the impact of bacterivorous protists in the rhizosphere on maize plant growth parameters and the bacterial community composition. Beyond that we investigated the induction of plant biochemical responses by separately analyzing above- and below-ground metabolite profiles of maize plants incubated either with a soil bacterial inoculum or with a mixture of soil bacteria and bacterivorous protists. Significantly distinct leaf and root metabolite profiles were obtained from plants which grew in the presence of protists. These profiles showed decreased levels of a considerable number of metabolites typical for the plant stress reaction, such as polyols, a number of carbohydrates and metabolites connected to phenolic metabolism. We assume that this decrease in plant stress is connected to the grazing induced shifts in rhizosphere bacterial communities as shown by distinct T-RFLP community profiles. Protist grazing had a clear effect on the overall bacterial community composition, richness and evenness in our microcosms. Given the competition of plant resource allocation to either defense or growth, we propose that a reduction in plant stress levels caused directly or indirectly by protists may be an additional reason for corresponding positive effects on plant growth. PMID:29780370
Arrested of coalescence of emulsion droplets of arbitrary size
NASA Astrophysics Data System (ADS)
Mbanga, Badel L.; Burke, Christopher; Blair, Donald W.; Atherton, Timothy J.
2013-03-01
With applications ranging from food products to cosmetics via targeted drug delivery systems, structured anisotropic colloids provide an efficient way to control the structure, properties and functions of emulsions. When two fluid emulsion droplets are brought in contact, a reduction of the interfacial tension drives their coalescence into a larger droplet of the same total volume and reduced exposed area. This coalescence can be partially or totally hindered by the presence of nano or micron-size particles that coat the interface as in Pickering emulsions. We investigate numerically the dependance of the mechanical stability of these arrested shapes on the particles size, their shape anisotropy, their polydispersity, their interaction with the solvent, and the particle-particle interactions. We discuss structural shape changes that can be induced by tuning the particles interactions after arrest occurs, and provide design parameters for the relevant experiments.
Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket
NASA Astrophysics Data System (ADS)
Gover, Avraham; Pan, Yiming
2018-06-01
In the foundation of quantum mechanics, the spatial dimensions of electron wavepacket are understood only in terms of an expectation value - the probability distribution of the particle location. One can still inquire how the quantum electron wavepacket size affects a physical process. Here we address the fundamental physics problem of particle-wave duality and the measurability of a free electron quantum wavepacket. Our analysis of stimulated radiative interaction of an electron wavepacket, accompanied by numerical computations, reveals two limits. In the quantum regime of long wavepacket size relative to radiation wavelength, one obtains only quantum-recoil multiphoton sidebands in the electron energy spectrum. In the opposite regime, the wavepacket interaction approaches the limit of classical point-particle acceleration. The wavepacket features can be revealed in experiments carried out in the intermediate regime of wavepacket size commensurate with the radiation wavelength.
Carisse, Odile; McNealis, Vanessa; Kriss, Alissa
2018-01-01
Botrytis fruit rot (BFR), one of the most important diseases of raspberry (Rubus spp.), is controlled primarily with fungicides. Despite the use of fungicides, crop losses due to BFR are high in most years. The aim of this study was to investigate the association between airborne inoculum, weather variables, and BFR in order to improve the management of the disease as well as harvest and storage decisions. Crop losses, measured as the percentage of diseased berries during the harvest period, were monitored in unsprayed field plots at four sites in three successive years, together with meteorological data and the number of conidia in the air. Based on windowpane analysis, there was no evidence of correlation between crop losses and temperature, vapor pressure deficit, wind, solar radiation, or probability of infection. There were significant correlations between crop losses and airborne inoculum and between crop losses and humidity-related variables, and the best window length was identified as 7 days. Using 7-day average airborne inoculum concentration combined with 7-day average relative humidity for periods ending 6 to 8 days before bloom, it was possible to accurately predict crop losses (R 2 of 0.86 to 0.89). These models could be used to assist with managing BFR, timing harvests, and optimizing storage duration in raspberry crops.
Saady, Noori M Cata; Massé, Daniel I
2015-04-01
Development of efficient processes for valorising animal wastes would be a major advancement in cold-climate regions. This paper reports the results of long term (315 days experiment) of novel psychrophilic (20°C) dry anaerobic digestion (PDAD) of cow feces and wheat straw in laboratory scale sequence batch reactor operated at increasing organic loading rate. The PDAD process fed with a mixture of feces and straw (TS of 27%) over a treatment cycle length of 21 days at organic loading rate (OLR) 4.0, 5.0 and 6.0 g TCOD kg(-1) inoculum d(-1) (of 2.9 ± 0.1, 3.7 ± 0.1, and 4.4 ± 0.1g VS kg(-1) inoculum d(-1), respectively) resulted in average specific methane yield (SMY) of 187.3 ± 18.1, 163.6 ± 39.5, 150.8 ± 32.9 N L CH4 kg(-1)VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.4 at OLR of 6.0 g TCOD kg(-1) inoculum d(-1). Hydrolysis was the limiting step reaction. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Calvo-Garrido, Carlos; Viñas, Inmaculada; Elmer, Philip A G; Usall, Josep; Teixidó, Neus
2014-04-01
Necrotic tissues within grape (Vitis vinifera) bunches represent an important source of Botrytis cinerea inoculum for Botrytis bunch rot (BBR) at harvest in vineyards. This research quantified the incidence of B. cinerea on necrotic floral and fruit tissues and the efficacy of biologically based treatments for suppression of B. cinerea secondary inoculum within developing bunches. At veraison (2009 and 2010), samples of aborted flowers, aborted fruits and calyptras were collected, and the incidence and sporulation of B. cinerea were determined. Aborted fruits presented significantly higher incidence in untreated samples. Early-season applications of Candida sake plus Fungicover®, Fungicover alone or Ulocladium oudemansii significantly reduced B. cinerea incidence on aborted flowers and calyptras by 46-85%. Chitosan treatment significantly reduced B. cinerea incidence on calyptras. None of the treatments reduced B. cinerea incidence on aborted fruits. Treatments significantly reduced sporulation severity by 48% or more. Treatments were effective at reducing B. cinerea secondary inoculum on necrotic tissues, in spite of the variable control on aborted fruits. This is the first report to quantify B. cinerea on several tissues of bunch trash and to describe the effective suppression of saprophytic B. cinerea inoculum by biologically based treatments. © 2013 Society of Chemical Industry.
Nordgård, A S R; Bergland, W H; Bakke, R; Vadstein, O; Østgaard, K; Bakke, I
2015-12-01
To elucidate how granular sludge inoculum and particle-rich organic loading affect the structure of the microbial communities and process performance in upflow anaerobic sludge bed (UASB) reactors. We investigated four reactors run on dairy manure filtrate and four on pig manure supernatant for three months achieving similar methane yields. The reactors fed with less particle rich pig manure stabilized faster and had highest capacity. Microbial community dynamics analysed by a PCR/denaturing gradient gel electrophoresis approach showed that influent was a major determinant for the composition of the reactor communities. Comparisons of pre- and non-adapted inoculum in the reactors run on pig manure supernatant showed that the community structure of the nonadapted inoculum adapted in approximately two months. Microbiota variance partitioning analysis revealed that running time, organic loading rate and inoculum together explained 26 and 31% of the variance in bacterial and archaeal communities respectively. The microbial communities of UASBs adapted to the reactor conditions in treatment of particle rich manure fractions, obtaining high capacity, especially on pig manure supernatant. These findings provide relevant insight into the microbial community dynamics in startup and operation of sludge bed reactors for methane production from slurry fractions, a major potential source of biogas. © 2015 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Myasnikov, A. V.; Zhekov, S. A.
1998-11-01
The influence of electron thermal conduction on the 2D gas dynamics of colliding stellar winds is investigated. It is shown that, as a result of the non-linear dependence of the electron thermal flux on the temperature, the pre-heating zones (in which the hot gas in the interaction region heats the cool winds in front of the shocks) have finite sizes. The dependence of the problem of the structure of the flow in the interaction region on the dimensionless parameters is studied, and a simple expression is derived for the size of the pre-heating zones at the axis of symmetry. It is shown that small values of the thermal conductivity do not suppress the Kelvin-Helmholtz instability if the adiabatic flow is subject to it. Further studies, both numerical and analytical, in this direction will be of great interest. The influence of thermal conduction on the X-ray emission from the interaction region is also estimated.
Crofoot, Margaret C.; Gilby, Ian C.; Wikelski, Martin C.; Kays, Roland W.
2008-01-01
Numerical superiority confers a competitive advantage during contests among animal groups, shaping patterns of resource access, and, by extension, fitness. However, relative group size does not always determine the winner of intergroup contests. Smaller, presumably weaker social groups often defeat their larger neighbors, but how and when they are able to do so remains poorly understood. Models of competition between individuals suggest that location may influence contest outcome. However, because of the logistical difficulties of studying intergroup interactions, previous studies have been unable to determine how contest location and group size interact to shape relationships among groups. We address this question by using an automated radio telemetry system to study intergroup interactions among six capuchin monkey (Cebus capucinus) social groups of varying sizes. We find that the odds of winning increase with relative group size; one additional group member increases the odds of winning an interaction by 10%. However, this effect is not uniform across space; with each 100 m that a group moves away from the center of its home range, its odds of winning an interaction decrease by 31%. We demonstrate that contest outcome depends on an interaction between group size and location, such that small groups can defeat much larger groups near the center of their home range. The tendency of resident groups to win contests may help explain how small groups persist in areas with intense intergroup competition. PMID:18184811
The size seems to matter or where lies the “asymptopia”?
NASA Astrophysics Data System (ADS)
Petrov, V. A.; Okorokov, V. A.
2018-05-01
We discuss an apparent correlation between the onset of the rising regime for the total cross-sections and the slowdown of the rise of the forward slopes with energy. It is shown that even at highest energies achieved with the large hadron collider (LHC) the proper sizes of the colliding protons comprise the bulk of the interaction region. This seems to witness that the “asymptopia” — a hypothetical “truly asymptotic” regime — lies at energies no less than 𝒪 (100 TeV). In the course of reasoning, we also discuss the question of the dependence of the effective sizes of hadrons in collision on the type of their interaction.
He, Yi-Ming; Ma, Bin-Guang
2016-01-01
Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions. PMID:27220911
NASA Astrophysics Data System (ADS)
He, Yi-Ming; Ma, Bin-Guang
2016-05-01
Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions.
Ibrahim, Darah; Zhu, Han Li; Yusof, Nuraqilah; Isnaeni; Hong, Lim Sheh
2013-01-01
A total of 34 bacterial isolates were obtained from soil samples collected from Changar Hot Spring, Malang, Indonesia. Of these, 13 isolates produced a zone of hydrolysis in starch-nutrient agar medium and generated various amylases in liquid medium. One isolate was selected as the best amylase producer and was identified as Bacillus licheniformis BT5.9. The improvement of culture conditions (initial medium pH of 5.0, cultivation temperature of 50°C, agitation speed of 100 rpm and inoculum size of 1.7 × 109 cells/ml) provided the highest amylase production (0.327 U/ml). PMID:24575243
Predator Persistence through Variability of Resource Productivity in Tritrophic Systems.
Soudijn, Floor H; de Roos, André M
2017-12-01
The trophic structure of species communities depends on the energy transfer between trophic levels. Primary productivity varies strongly through time, challenging the persistence of species at higher trophic levels. Yet resource variability has mostly been studied in systems with only one or two trophic levels. We test the effect of variability in resource productivity in a tritrophic model system including a resource, a size-structured consumer, and a size-specific predator. The model complies with fundamental principles of mass conservation and the body-size dependence of individual-level energetics and predator-prey interactions. Surprisingly, we find that resource variability may promote predator persistence. The positive effect of variability on the predator arises through periods with starvation mortality of juvenile prey, which reduces the intraspecific competition in the prey population. With increasing variability in productivity and starvation mortality in the juvenile prey, the prey availability increases in the size range preferred by the predator. The positive effect of prey mortality on the trophic transfer efficiency depends on the biologically realistic consideration of body size-dependent and food-dependent functions for growth and reproduction in our model. Our findings show that variability may promote the trophic transfer efficiency, indicating that environmental variability may sustain species at higher trophic levels in natural ecosystems.
Grid-size dependence of Cauchy boundary conditions used to simulate stream-aquifer interactions
Mehl, S.; Hill, M.C.
2010-01-01
This work examines the simulation of stream–aquifer interactions as grids are refined vertically and horizontally and suggests that traditional methods for calculating conductance can produce inappropriate values when the grid size is changed. Instead, different grid resolutions require different estimated values. Grid refinement strategies considered include global refinement of the entire model and local refinement of part of the stream. Three methods of calculating the conductance of the Cauchy boundary conditions are investigated. Single- and multi-layer models with narrow and wide streams produced stream leakages that differ by as much as 122% as the grid is refined. Similar results occur for globally and locally refined grids, but the latter required as little as one-quarter the computer execution time and memory and thus are useful for addressing some scale issues of stream–aquifer interactions. Results suggest that existing grid-size criteria for simulating stream–aquifer interactions are useful for one-layer models, but inadequate for three-dimensional models. The grid dependence of the conductance terms suggests that values for refined models using, for example, finite difference or finite-element methods, cannot be determined from previous coarse-grid models or field measurements. Our examples demonstrate the need for a method of obtaining conductances that can be translated to different grid resolutions and provide definitive test cases for investigating alternative conductance formulations.
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Frequency-dependent hydrodynamic interaction between two solid spheres
NASA Astrophysics Data System (ADS)
Jung, Gerhard; Schmid, Friederike
2017-12-01
Hydrodynamic interactions play an important role in many areas of soft matter science. In simulations with implicit solvent, various techniques such as Brownian or Stokesian dynamics explicitly include hydrodynamic interactions a posteriori by using hydrodynamic diffusion tensors derived from the Stokes equation. However, this equation assumes the interaction to be instantaneous which is an idealized approximation and only valid on long time scales. In the present paper, we go one step further and analyze the time-dependence of hydrodynamic interactions between finite-sized particles in a compressible fluid on the basis of the linearized Navier-Stokes equation. The theoretical results show that at high frequencies, the compressibility of the fluid has a significant impact on the frequency-dependent pair interactions. The predictions of hydrodynamic theory are compared to molecular dynamics simulations of two nanocolloids in a Lennard-Jones fluid. For this system, we reconstruct memory functions by extending the inverse Volterra technique. The simulation data agree very well with the theory, therefore, the theory can be used to implement dynamically consistent hydrodynamic interactions in the increasingly popular field of non-Markovian modeling.
Sahmani, S; Aghdam, M M
2017-06-07
Microtubules including tubulin heterodimers arranging in a parallel shape of cylindrical hollow plays an important role in the mechanical stiffness of a living cell. In the present study, the nonlocal strain gradient theory of elasticity including simultaneously the both nonlocality and strain gradient size dependency is put to use within the framework of a refined orthotropic shell theory with hyperbolic distribution of shear deformation to analyze the size-dependent buckling and postbuckling characteristics of microtubules embedded in cytoplasm under axial compressive load. The non-classical governing differential equations are deduced via boundary layer theory of shell buckling incorporating the nonlinear prebuckling deformation and microtubule-cytoplasm interaction in the living cell environment. Finally, with the aid of a two-stepped perturbation solution methodology, the explicit analytical expressions for nonlocal strain gradient stability paths of axially loaded microtubules are achieved. It is illustrated that by taking the nonlocal size effect into consideration, the critical buckling load of microtubule and its maximum deflection associated with the minimum postbuckling load decreases, while the strain gradient size dependency causes to increase them. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lateral dimension-dependent antibacterial activity of graphene oxide sheets.
Liu, Shaobin; Hu, Ming; Zeng, Tingying Helen; Wu, Ran; Jiang, Rongrong; Wei, Jun; Wang, Liang; Kong, Jing; Chen, Yuan
2012-08-21
Graphene oxide (GO) is a promising precursor to produce graphene-family nanomaterials for various applications. Their potential health and environmental impacts need a good understanding of their cellular interactions. Many factors may influence their biological interactions with cells, and the lateral dimension of GO sheets is one of the most relevant material properties. In this study, a model bacterium, Escherichia coli ( E. coli ), was used to evaluate the antibacterial activity of well-dispersed GO sheets, whose lateral size differs by more than 100 times. Our results show that the antibacterial activity of GO sheets toward E. coli cells is lateral size dependent. Larger GO sheets show stronger antibacterial activity than do smaller ones, and they have different time- and concentration-dependent antibacterial activities. Large GO sheets lead to most cell loss after 1 h incubation, and their concentration strongly influences antibacterial activity at relative low concentration (<10 μg/mL). In contrast, when incubating with small GO sheets up to 4 h, the inactivation rate of E. coli cells continues increasing. The increase of small GO sheet concentration also results in persistent increases in their antibacterial activity. In this study, GO sheets with different lateral sizes are all well dispersed, and their oxidation capacity toward glutathione is similar, consistent with X-ray photoelectron spectroscopy and ultraviolet-visible absorption spectroscopy results. This suggests the lateral size-dependent antibacterial activity of GO sheets is caused by neither their aggregation states, nor oxidation capacity. Atomic force microscope analysis of GO sheets and cells shows that GO sheets interact strongly with cells. Large GO sheets more easily cover cells, and cells cannot proliferate once fully covered, resulting in the cell viability loss observed in the followed colony counting test. In contrast, small GO sheets adhere to the bacterial surfaces, which cannot effectively isolate cells from environment. This study highlights the importance of tailoring the lateral dimension of GO sheets to optimize the application potential with minimal risks for environmental health and safety.
2013-09-01
after anaerobic digestion at thermophilic conditions (60- 70C). Application of biofilm covered activated carbon particles as a microbial inoculum...Sludge Thickener; Sludge = Sludge after anaerobic digestion at thermophilic conditions (60- 70C). C3. Microscopic evaluation of dechlorinating...associated enzymes are capable of opening the biphenyl ring structure and transform the molecule into a linear structure, this changed structure was not
Dispersal of Beauveria bassiana by the activity of nettle insects.
Meyling, Nicolai V; Pell, Judith K; Eilenberg, Jørgen
2006-10-01
Recent studies have shown that the entomopathogenic fungus Beauveria bassiana occurs naturally on the phylloplanes of several plants, including nettles. Insects could, by their activity, be contributing to this inoculum by dispersing it from other sites. The potential of nettle aphids Microlophium carnosum and their predator Anthocoris nemorum to disperse conidia of B. bassiana from soil to nettles and from sporulating cadavers in the nettle canopy was investigated in laboratory experiments. In petri dish assays, aphids showed potential to distribute B. bassiana from soil to nettle leaves. Predators dispersed inoculum from both soil and cadavers to nettle leaves in petri dishes. In microcosms, aphids did not disperse B. bassiana from the soil or from cadavers confined in the canopy, but A. nemorum were able to transfer inoculum from soil into the nettle canopy and to distribute conidia from cryptic cadavers. In some instances, infections were initiated in aphids and predators as a consequence of dispersal.
Biochemical methane potential (BMP) of artichoke waste: the inoculum effect.
Fabbri, Andrea; Serranti, Silvia; Bonifazi, Giuseppe
2014-03-01
The aim of this work was to investigate anaerobic digestibility of artichoke waste resulting from industrial transformation. A series of batch anaerobic digestion tests was performed in order to evaluate the biochemical methane potential of the matrix in respect of the process. A comparison of the different performances of the laboratory-scale reactors operating in mesophilic conditions and utilizing three different values of the inoculum/substrate ratio was carried out. The best performance was achieved with an inoculum/substrate ratio of 2. Artichoke-processing byproducts showed a classical organic waste decomposition behaviour: a fast start-up phase, an acclimation stage, and a final stabilization phase. Following this approach, artichoke waste reached chemical oxygen demand removal of about 90% in 40 days. The high methane yield (average 408.62 mL CH4 gvs (-1) voltatile solids), makes artichoke waste a good product to be utilized in anaerobic digestion plants for biogas production.
Balancing size exclusion and adsorption of polymers in nanopores
NASA Astrophysics Data System (ADS)
Kim, Won; Ryu, Chang Y.
2006-03-01
The liquid chromatography at critical condition (LCCC) presents the condition, at which the size exclusion and adsorption of polymer chains are balanced upon interactions with nanoporous substrates. In this study, we investigate how the polymer interactions with nanopores are affected by the solvent quality and nanopore size. Specifically, we measure the retention times of monodisperse polystyrenes in C18-bonded nanoporous silica column as a function of molecular weight, when a mixed solvent of methylene chloride and acetonitrile are used as elutent. C18-bonded silica particles with 70, 100, and 250 A pore size are used as a stationary phase to study how the transition from SEC-like to IC-like retention behavior depends on the condition of temperature and solvent composition. To locate the LCCC at various nanopore sizes, the temperature and solvent composition have been varied from 0 to 60 C and from 51 to 62 v/v% of methylene chloride, respectively.
Piella, Jordi; Bastús, Neus G; Puntes, Víctor
2017-01-18
Surface modifications of highly monodisperse citrate-stabilized gold nanoparticles (AuNPs) with sizes ranging from 3.5 to 150 nm after their exposure to cell culture media supplemented with fetal bovine serum were studied and characterized by the combined use of UV-vis spectroscopy, dynamic light scattering, and zeta potential measurements. In all the tested AuNPs, a dynamic process of protein adsorption was observed, evolving toward the formation of an irreversible hard protein coating known as Protein Corona. Interestingly, the thickness and density of this protein coating were strongly dependent on the particle size, making it possible to identify different transition regimes as the size of the particles increased: (i) NP-protein complexes (or incomplete corona), (ii) the formation of a near-single dense protein corona layer, and (iii) the formation of a multilayer corona. In addition, the different temporal patterns in the evolution of the protein coating came about more quickly for small particles than for the larger ones, further revealing the significant role that size plays in the kinetics of this process. Since the biological identity of the NPs is ultimately determined by the protein corona and different NP-biological interactions take place at different time scales, these results are relevant to biological and toxicological studies.
Potential of Biological Processes to Eliminate Antibiotics in Livestock Manure: An Overview
Massé, Daniel I.; Cata Saady, Noori M.; Gilbert, Yan
2014-01-01
Simple Summary Beside their use to treat infections, antibiotics are used excessively as growth promoting factors in livestock industry. Animals discharge in their feces and urine between 70%–90% of the antibiotic administrated unchanged or in active metabolites. Because livestock manure is re-applied to land as a fertilizer, concerns are growing over spread of antibiotics in water and soil. Development of antibiotic resistant bacteria is a major risk. This paper reviewed the potential of anaerobic digestion to degrade antibiotics in livestock manure. Anaerobic digestion can degrade manure-laden antibiotic to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Abstract Degrading antibiotics discharged in the livestock manure in a well-controlled bioprocess contributes to a more sustainable and environment-friendly livestock breeding. Although most antibiotics remain stable during manure storage, anaerobic digestion can degrade and remove them to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Generally, antibiotics are degraded during composting > anaerobic digestion > manure storage > soil. Manure matrix variation influences extraction, quantification, and degradation of antibiotics, but it has not been well investigated. Fractioning of manure-laden antibiotics into liquid and solid phases and its effects on their anaerobic degradation and the contribution of abiotic (physical and chemical) versus biotic degradation mechanisms need to be quantified for various manures, antibiotics types, reactor designs and temperature of operations. More research is required to determine the kinetics of antibiotics’ metabolites degradation during anaerobic digestion. Further investigations are required to assess the degradation of antibiotics during psychrophilic anaerobic digestion. PMID:26480034
Banerjee, Victor; Das, K P
2013-11-01
Silver nanoparticles are finding increasing applications in biological systems, for example as antimicrobial agents and potential candidates for control drug release systems. In all such applications, silver nanoparticles interact with proteins and other biomolecules. Hence, the study of such interactions is of considerable importance. While BSA has been extensively used as a model protein for the study of interaction with the silver nanoparticles, studies using other proteins are rather limited. The interaction of silver nanoparticles with light leads to collective oscillation of the conducting electrons giving rise to surface plasmon resonance (SPR). Here, we have studied the protein concentration dependence of the SPR band profiles for a number of proteins. We found that for all the proteins, with increase in concentration, the SPR band intensity initially decreased, reaching minima and then increased again leading to a characteristic "dip and rise" pattern. Minimum point of the pattern appeared to be related to the isoelectric point of the proteins. Detailed dynamic light scattering and transmission electron microscopy studies revealed that the consistency of SPR profile was dependent on the average particle size and state of association of the silver nanoparticles with the change in the protein concentration. Fluorescence spectroscopic studies showed the binding constants of the proteins with the silver nanoparticles were in the nano molar range with more than one nanoparticle binding to protein molecule. Structural studies demonstrate that protein retains its native-like structure on the nanoparticle surface unless the molar ratio of silver nanoparticles to protein exceeds 10. Our study reveals that nature of the protein concentration dependent profile of SPR signal is a general phenomena and mostly independent of the size and structure of the proteins. Copyright © 2013 Elsevier B.V. All rights reserved.
Size effects under homogeneous deformation of single crystals: A discrete dislocation analysis
NASA Astrophysics Data System (ADS)
Guruprasad, P. J.; Benzerga, A. A.
Mechanism-based discrete dislocation plasticity is used to investigate the effect of size on micron scale crystal plasticity under conditions of macroscopically homogeneous deformation. Long-range interactions among dislocations are naturally incorporated through elasticity. Constitutive rules are used which account for key short-range dislocation interactions. These include junction formation and dynamic source and obstacle creation. Two-dimensional calculations are carried out which can handle high dislocation densities and large strains up to 0.1. The focus is laid on the effect of dimensional constraints on plastic flow and hardening processes. Specimen dimensions ranging from hundreds of nanometers to tens of microns are considered. Our findings show a strong size-dependence of flow strength and work-hardening rate at the micron scale. Taylor-like hardening is shown to be insufficient as a rationale for the flow stress scaling with specimen dimensions. The predicted size effect is associated with the emergence, at sufficient resolution, of a signed dislocation density. Heuristic correlations between macroscopic flow stress and macroscopic measures of dislocation density are sought. Most accurate among those is a correlation based on two state variables: the total dislocation density and an effective, scale-dependent measure of signed density.
Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications.
Woźniak, Anna; Malankowska, Anna; Nowaczyk, Grzegorz; Grześkowiak, Bartosz F; Tuśnio, Karol; Słomski, Ryszard; Zaleska-Medynska, Adriana; Jurga, Stefan
2017-06-01
Metallic nanoparticles, in particular gold nanoparticles (AuNPs), offer a wide spectrum of applications in biomedicine. A crucial issue is their cytotoxicity, which depends greatly on various factors, including morphology of nanoparticles. Because metallic nanoparticles have an effect on cell membrane integrity, their shape and size may affect the viability of cells, due to their different geometries as well as physical and chemical interactions with cell membranes. Variations in the size and shape of gold nanoparticles may indicate particular nanoparticle morphologies that provide strong cytotoxicity effects. Synthesis of different sized and shaped bare AuNPs was performed with spherical (~ 10 nm), nanoflowers (~ 370 nm), nanorods (~ 41 nm), nanoprisms (~ 160 nm) and nanostars (~ 240 nm) morphologies. These nanostructures were characterized and interacting with cancer (HeLa) and normal (HEK293T) cell lines and cell viability tests were performed by WST-1 tests and fluorescent live/dead cell imaging experiments. It was shown that various shapes and sizes of gold nanostructures may affect the viability of the cells. Gold nanospheres and nanorods proved to be more toxic than star, flower and prism gold nanostructures. This may be attributed to their small size and aggregation process. This is the first report concerning a comparison of cytotoxic profile in vitro with a wide spectrum of bare AuNPs morphology. The findings show their possible use in biomedical applications.
NASA Astrophysics Data System (ADS)
Wu, Shudong; Cheng, Liwen; Wang, Qiang
2017-08-01
The size- and dimensionality-dependence of excitonic effects and related properties in semiconductor nanostructures are theoretically studied in detail within the effective-mass approximation. When nanostructure sizes become smaller than the bulk exciton Bohr radius, excitonic effects are significantly enhanced with reducing size or dimensionality. This is as a result of quantum confinement in more directions leading to larger exciton binding energies and normalized exciton oscillator strengths. These excitonic effects originate from electron-hole Coulombic interactions, which strongly enhance the oscillator strength between the electron and hole. It is also established that the universal scaling of exciton binding energy versus the inverse of the exciton Bohr radius follows a linear scaling law. Herein, we propose a stretched exponential law for the size scaling of optical gap, which is in good agreement with the calculated data. Due to differences in the confinement dimensionality, the radiative lifetime of low-dimensional excitons becomes shorter than that of bulk excitons. The size dependence of the exciton radiative lifetimes is in good agreement with available experimental data. This strongly enhanced electron-hole exchange interaction is expected in low-dimensional structures due to enriched excitonic effects. The main difference in nanostructures compared to the bulk can be interpreted in terms of the enhanced excitonic effects induced by exciton localization. The enhanced excitonic effects are expected to be of importance in developing stable and high-efficiency nanoscale excitonic optoelectronic devices.
Kabir, Alamgir; Merrill, Rebecca D; Shamim, Abu Ahmed; Klemn, Rolf D W; Labrique, Alain B; Christian, Parul; West, Keith P; Nasser, Mohammed
2014-01-01
This analysis was conducted to explore the association between 5 birth size measurements (weight, length and head, chest and mid-upper arm [MUAC] circumferences) as dependent variables and 10 maternal factors as independent variables using canonical correlation analysis (CCA). CCA considers simultaneously sets of dependent and independent variables and, thus, generates a substantially reduced type 1 error. Data were from women delivering a singleton live birth (n = 14,506) while participating in a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural Bangladesh. The first canonical correlation was 0.42 (P<0.001), demonstrating a moderate positive correlation mainly between the 5 birth size measurements and 5 maternal factors (preterm delivery, early pregnancy MUAC, infant sex, age and parity). A significant interaction between infant sex and preterm delivery on birth size was also revealed from the score plot. Thirteen percent of birth size variability was explained by the composite score of the maternal factors (Redundancy, RY/X = 0.131). Given an ability to accommodate numerous relationships and reduce complexities of multiple comparisons, CCA identified the 5 maternal variables able to predict birth size in this rural Bangladesh setting. CCA may offer an efficient, practical and inclusive approach to assessing the association between two sets of variables, addressing the innate complexity of interactions.
Robustness of the far-field response of nonlocal plasmonic ensembles.
Tserkezis, Christos; Maack, Johan R; Liu, Zhaowei; Wubs, Martijn; Mortensen, N Asger
2016-06-22
Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size distribution. For a normal distribution of free-electron nanoparticles, and within the simple nonlocal hydrodynamic Drude model, both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging. Size-variance effects tend however to conceal nonlocality to a lesser extent when the homogeneous size-dependent broadening of individual nanoparticles is taken into account, either through a local size-dependent damping model or through the Generalized Nonlocal Optical Response theory. The role of ensemble averaging is further explored in realistic distributions of isolated or weakly-interacting noble-metal nanoparticles, as encountered in experiments, while an analytical expression to evaluate the importance of inhomogeneous broadening through measurable quantities is developed. Our findings are independent of the specific nonclassical theory used, thus providing important insight into a large range of experiments on nanoscale and quantum plasmonics.
Application of time-lapse ERT to characterize soil-water-disease interactions of young citrus trees
NASA Astrophysics Data System (ADS)
Peddinti, S. R.; Kbvn, D. P.; Ranjan, S.; R M, P. G.
2016-12-01
Vidarbha region in Maharashtra, India is witnessing a continuous decrease in orange crop due to the propagation of `Phytopthora root rot', a water mold disease. Under favorable conditions, the disease causing bacteria can attack the plant root system and propagates to the surface (where first visual impression is made), making difficult to regain the plant health. This research aims at co-relating eco-hydrological fluxes with disease sensing parameters of orange trees. Two experimental plots around a healthy-young and declined-young orange trees were selected for our analysis. A 3-dimentional electrical resistivity tomography (ERT) (Figure) was carried at each plot to quantify the soil moisture distribution at a vadose zone. Pedo-electric relations were obtained considering modified Archie's law parameters. ERT derived moisture data was validated with time domain reflectometry (TDR) point observations. Soil moisture profiles derived from ERT were observed to be differ marginally between the two plots. Disease quantification was done by estimating the density of Phytopthora spp. inoculum in soils sampled along the root zone. Identification of Phytopthora spp. was done in the laboratory using taxonomic and morphologic criteria of the colonies. Spatio-temporal profiles of soil moisture and inoculum density were then co-related to comment on the eco-hydrological fluxes contributing to the health propagation of root rot in orange tree for implementing effective water management practices.
Pain, Rachel E; Shaw, Ruth G; Sheth, Seema N
2018-05-16
Mutualistic relationships with microbes may aid plants in overcoming environmental stressors and increase the range of abiotic environments where plants can persist. Rhizobia, nitrogen-fixing bacteria associated with legumes, often confer fitness benefits to their host plants by increasing access to nitrogen in nitrogen-limited soils, but effects of rhizobia on host fitness under other stresses, such as drought, remain unclear. In this greenhouse study, we varied the application of rhizobia (Bradyrhizobium sp.) inoculum and drought to examine whether the fitness benefits of rhizobia to their host, partridge pea (Chamaecrista fasciculata), would differ between drought and well-watered conditions. Plants were harvested 9 weeks after seeds were sown. Young C. fasciculata plants that had been inoculated had lower biomass, leaf relative growth rate, and stem relative growth rate compared to young uninoculated plants in both drought and well-watered environments. Under the conditions of this study, the rhizobial interaction imposed a net cost to their hosts early in development. Potential reasons for this cost include allocating more carbon to nodule and root development than to aboveground growth and a geographic mismatch between the source populations of host plants and rhizobia. If developing plants incur such costs from rhizobia in nature, they may suffer an early disadvantage relative to other plants, whether conspecifics lacking rhizobia or heterospecifics. © 2018 Botanical Society of America.
Smith, G S; Roncadori, R W; Hussey, R S
1986-04-01
Microplot and field experiments were conducted to determine the effects of two vesicular-arbuscular mycorrhizal (VAM) fungi, Glomus intraradices (Gi) and Gigaspora margarita (Gm), and dicalcium phosphate (P) on Meloidogyne incognita (Mi) reproduction and seed cotton yield of the Mi-susceptible cotton cultivar, Stoneville 213. In 1983 population densities of Mi juveniles were significantly lower 60 and 90 days after planting in microplots receiving Gi. Mycorrhizal fungi reduced the severity of yield losses to Mi, whereas P fertilization increased yield losses to Mi. In 1984 microplot yields were reduced linearly as nematode inoculum densities increased in treatments of Mi alone, Gm, or P, but the response was curvilinear with Gi. Yield suppressions in the 1984 field experiment occurred only in plots infested with Mi alone. In the 1984 microplots, numbers of Mi juveniles penetrating seedling roots increased Iinearly with increasing nematode inoculum densities and was favored when mycorrhizal fungi or superphosphate were added. Juvenile penetration of roots was negatively correlated with yields in all treatments (r = -0.54 to -0.81) except Gm and with number of bolls in Mi alone (r = -0.85) and P (r = -0.81) treatments. Mycorrhizal fungi can increase host tolerance to M. incognita in field conditions and may function as important biological control agents in soils infested with high population densities of efficient VAM species.
Petriccione, Milena; Mastrobuoni, Francesco; Zampella, Luigi; Scortichini, Marco
2015-01-01
Normalization of data, by choosing the appropriate reference genes (RGs), is fundamental for obtaining reliable results in reverse transcription-quantitative PCR (RT-qPCR). In this study, we assessed Actinidia deliciosa leaves inoculated with two doses of Pseudomonas syringae pv. actinidiae during a period of 13 days for the expression profile of nine candidate RGs. Their expression stability was calculated using four algorithms: geNorm, NormFinder, BestKeeper and the deltaCt method. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and protein phosphatase 2A (PP2A) were the most stable genes, while β-tubulin and 7s-globulin were the less stable. Expression analysis of three target genes, chosen for RGs validation, encoding the reactive oxygen species scavenging enzymes ascorbate peroxidase (APX), superoxide dismutase (SOD) and catalase (CAT) indicated that a combination of stable RGs, such as GAPDH and PP2A, can lead to an accurate quantification of the expression levels of such target genes. The APX level varied during the experiment time course and according to the inoculum doses, whereas both SOD and CAT resulted down-regulated during the first four days, and up-regulated afterwards, irrespective of inoculum dose. These results can be useful for better elucidating the molecular interaction in the A. deliciosa/P. s. pv. actinidiae pathosystem and for RGs selection in bacteria-plant pathosystems. PMID:26581656
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuman, G.E.; Stahl, P.D.; Williams, S.E.
Reestablishment of Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) on mined lands has been difficult in the past even though it is widespread in the western US. Its reestablishment on mined lands has recently become law where wildlife is one of the post-mining land uses and it represented the primary premining shrub species. One hypothesis thought to contribute to its difficult reestablishment is the reduce lack of mycorrhizae inoculum present in the disturbed topsoil and the resulting effect on the seedling`s ability to extract water from the soil under the arid/semiarid climate of this region. A greenhouse study was conductedmore » to evaluate the effect of mycorrhizae on sagebrush seedling water stress tolerance. Seedling ages evaluated ranged from 30 to 150 days. Seedling survival was greater for mycorrhizal seedlings compared to non-mycorrhizal seedlings when soil moisture tension was {minus}2.5 to {minus}3.8 MPa. At all ages, the degree of soil dryness necessary to cause sagebrush seedling mortality was significantly greater for mycorrhizal than non-mycorrhizal seedlings. Seedling age and mycorrhizal infection exhibited a significant statistical interaction; suggesting that as the sagebrush seedling aged, the benefits of arbuscular mycorrhizae (AM) increased the plants water stress tolerance. These findings lead the authors to conclude that topsoil management that prevents/reduces the loss of AM inoculum in the topsoil will significantly enhance the success of sagebrush establishment on mined lands.« less
Vijayendra, S V N; Rastogi, N K; Shamala, T R; Anil Kumar, P K; Kshama, L; Joshi, G J
2007-06-01
Polyhydroxyalkanotes (PHAs), the eco-friendly biopolymers produced by many bacteria, are gaining importance in curtailing the environmental pollution by replacing the non-biodegradable plastics derived from petroleum. The present study was carried out to economize the polyhydroxybutyrate (PHB) production by optimizing the fermentation medium using corn steep liquor (CSL), a by-product of starch processing industry, as a cheap nitrogen source, by Bacillus sp. CFR 256. Response surface methodology (RSM) was used to optimize the fermentation medium using the variables such as corn steep liquor (5-25 g l(-1)), Na(2)HPO(4) 2H(2)O (2.2-6.2 g l(-1)), KH(2)PO(4) (0.5-2.5 g l(-1)), sucrose (5-55 g l(-1)) and inoculum concentration (1-25 ml l(-1)). Central composite rotatable design (CCRD) experiments were carried out to study the complex interactions of the variables.The optimum conditions for maximum PHB production were (g l(-1)): CSL-25, Na(2)HPO(4) 2H(2)O-2.2, KH(2)PO(4) - 0.5, sucrose - 55 and inoculum - 10 (ml l(-1)). After 72 h of fermentation, the amount of PHA produced was 8.20 g l(-1) (51.20% of dry cell biomass). It is the first report on optimization of fermentation medium using CSL as a nitrogen source, for PHB production by Bacillus sp.
Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Qi, Gao-Xiang; Xiong, Lian; Lin, Xiao-Qing; Wang, Can; Li, Hai-Long; Chen, Xin-De
2017-01-01
Microbial oil is one important bio-product for its important function in energy, chemical, and food industry. Finding suitable substrates is one key issue for its industrial application. Both hydrophilic and hydrophobic substrates can be utilized by oleaginous microorganisms with two different bio-pathways (" de novo " lipid fermentation and " ex novo " lipid fermentation). To date, most of the research on lipid fermentation has focused mainly on only one fermentation pathway and little work was carried out on both " de novo " and " ex novo " lipid fermentation simultaneously; thus, the advantages of both lipid fermentation cannot be fulfilled comprehensively. In this study, corncob acid hydrolysate with soybean oil was used as a mix-medium for combined " de novo " and " ex novo " lipid fermentation by oleaginous yeast Trichosporon dermatis . Both hydrophilic and hydrophobic substrates (sugars and soybean oil) in the medium can be utilized simultaneously and efficiently by T. dermatis . Different fermentation modes were compared and the batch mode was the most suitable for the combined fermentation. The influence of soybean oil concentration, inoculum size, and initial pH on the lipid fermentation was evaluated and 20 g/L soybean oil, 5% inoculum size, and initial pH 6.0 were suitable for this bioprocess. By this technology, the lipid composition of extracellular hydrophobic substrate (soybean oil) can be modified. Although adding emulsifier showed little beneficial effect on lipid production, it can modify the intracellular lipid composition of T. dermatis . The present study proves the potential and possibility of combined " de novo " and " ex novo " lipid fermentation. This technology can use hydrophilic and hydrophobic sustainable bio-resources to generate lipid feedstock for the production of biodiesel or other lipid-based chemical compounds and to treat some special wastes such as oil-containing wastewater.
Keiser, Carl N; Pinter-Wollman, Noa; Ziemba, Michael J; Kothamasu, Krishna S; Pruitt, Jonathan N
2018-03-01
The traits of the primary case of an infectious disease outbreak, and the circumstances for their aetiology, potentially influence the trajectory of transmission dynamics. However, these dynamics likely also depend on the traits of the individuals with whom the primary case interacts. We used the social spider Stegodyphus dumicola to test how the traits of the primary case, group phenotypic composition and group size interact to facilitate the transmission of a GFP-labelled cuticular bacterium. We also compared bacterial transmission across experimentally generated "daisy-chain" vs. "star" networks of social interactions. Finally, we compared social network structure across groups of different sizes. Groups of 10 spiders experienced more bacterial transmission events compared to groups of 30 spiders, regardless of groups' behavioural composition. Groups containing only one bold spider experienced the lowest levels of bacterial transmission regardless of group size. We found no evidence for the traits of the primary case influencing any transmission dynamics. In a second experiment, bacteria were transmitted to more individuals in experimentally induced star networks than in daisy-chains, on which transmission never exceeded three steps. In both experimental network types, transmission success depended jointly on the behavioural traits of the interacting individuals; however, the behavioural traits of the primary case were only important for transmission on star networks. Larger social groups exhibited lower interaction density (i.e. had a low ratio of observed to possible connections) and were more modular, i.e. they had more connections between nodes within a subgroup and fewer connections across subgroups. Thus, larger groups may restrict transmission by forming fewer interactions and by isolating subgroups that interacted with the primary case. These findings suggest that accounting for the traits of single exposed hosts has less power in predicting transmission dynamics compared to the larger scale factors of the social groups in which they reside. Factors like group size and phenotypic composition appear to alter social interaction patterns, which leads to differential transmission of microbes. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
The effects of arbuscular mycorrhizal fungal inoculation at a roadside prairie restoration site.
White, Jennifer A; Tallaksen, J; Charvat, I
2008-01-01
Arbuscular mycorrhizal fungi (AMF) may play an important role in ecological succession, but few studies have documented the effectiveness of mycorrhizal inoculation at restoration/reclamation sites. At a roadside prairie restoration in Shakopee, Minnesota, we compared AMF root colonization and resulting vegetative cover among four inoculation treatments. After 15 mo of growth, we found that AMF colonization was high in all treatments but was significantly higher in treatments that received AMF inoculum propagated from a local prairie site or commercially available inoculum than the uninoculated control. For the prairie inoculum, this increase in colonization occurred whether the inoculum was applied with seeds in furrows or broadcast with seeds on the soil surface. However, increased colonization did not discernibly affect the restored vegetation; neither total vegetative cover nor the proportion "desired" prairie vegetation differed among inoculation treatments. By the end of the third growing season (27 mo after planting) there were no longer differences in AMF colonization among the inoculation treatments nor were there differences in vegetative cover. It is likely that natural recolonization of the plots by remnant AMF populations at the site limited the duration of the inoculation effect. This natural recolonization, in combination with relatively high soil phosphorus levels, likely rendered inoculation unnecessary. In contrast to previous published studies of AMF inoculation in landscape restorations, this study shows that AMF inoculation may not be warranted under some circumstances.
Sun, Qi-Xing; Chen, Xu-Sheng; Ren, Xi-Dong; Mao, Zhong-Gui
2015-01-01
Nissin, natamycin, and ε-poly-L-lysine (ε-PL) are three safe, microbial-produced food preservatives used today in the food industry. However, current industrial production of ε-PL is only performed in several countries. In order to realize large-scale ε-PL production by fermentation, the effects of seed stage on cell growth and ε-PL production were investigated by monitoring of pH in situ in a 5-L laboratory-scale fermenter. A significant increase in ε-PL production in fed-batch fermentation by Streptomyces sp. M-Z18 was achieved, at 48.9 g/L, through the optimization of several factors associated with seed stage, including spore pretreatment, inoculum age, and inoculum level. Compared with conventional fermentation approaches using 24-h-old shake-flask seed broth as inoculum, the maximum ε-PL concentration and productivity were enhanced by 32.3 and 36.6 %, respectively. The effect of optimized inoculum conditions on ε-PL production on a large scale was evaluated using a 50-L pilot-scale fermenter, attaining a maximum ε-PL production of 36.22 g/L in fed-batch fermentation, constituting the first report of ε-PL production at pilot scale. These results will be helpful for efficient ε-PL production by Streptomyces at pilot and plant scales.
Biogas production from oil palm empty fruit bunches of post mushroom cultivation media
NASA Astrophysics Data System (ADS)
Purnomo, Agus; Suprihatin; Romli, M.; Hasanudin, Udin
2018-03-01
The Empty fruit bunches are one of the palm oil industry wastes, which can be used for mushroom cultivation. Post-cultivation of mushroom from former EFB-mushroom media (EFBMM) has the potential to be processed into biogas. The purpose of this research was to examine optimum co-digestion conditions for biogas production of EFBMM.The research was carried out in an anaerobic digester with three different conditions - dry fermentation (Water content (WC)/Total Solid (TS) ratio 1.5 - 3.5), semi-wet fermentation (WC/TS ratio = 4.0 - 5.7) and wet fermentation (WC/TS ratio> 9.0) conditions. Digester of capacity 50L was used. Fermentation was done using 20% cow feces as inoculum which then added with circulation system for 70 days. The results showed that optimum biogas production were produced in semi-wet fermentation conditions (WC/TS ratio = 4). It was produced 37.462 liters (2.420 liters CH4/Kg Volatile Solid (VS)) of biogas with methane contain about 26.231%. Total volume of inoculum during process was 19.6 liters (1: 4 w/v) with absorbed TS inoculum ratio, TS/I = 0.4 (1:2.5 w/v). The result of research also showed that biogas which was produced from control about 2.865 liters (0.041 liters CH4/KgVS), with TS absorbed inoculum ratio, TS/I = 0.5 (1: 5w/v).
Berlanas, Carmen; Andrés-Sodupe, Marcos; López-Manzanares, Beatriz; Maldonado-González, María Mercedes; Gramaje, David
2018-05-20
Black-foot disease is one of the main soilborne fungal diseases affecting grapevine production worldwide. Two field experiments were established to evaluate the effect of white mustard cover crop residue amendment and chemical fumigation with propamocarb + fosetyl-Al combined with Trichoderma spp. root treatment on the viability of black-foot inoculum in soil and fungal infection in grafted plants and grapevine seedlings used as bait plants. A total of 876 black-foot pathogens isolates were collected from grafted plants and grapevine seedlings used as bait plants in both fields. White mustard biofumigation reduced inoculum of Dactylonectria torresensis and the incidence and severity of black-foot of grapevine, but no added benefit was obtained when biofumigation was used with Trichoderma spp. root treatments. The effect of white mustard residues and chemical fumigation on populations of D. torresensis propagules in soil was inconsistent, possibly due to varying pretreatment inoculum levels. Biofumigation with white mustard plants had potential for improving control of black-foot disease in grapevines. This control strategy can reduce soil inoculum levels and protect young plants from infection, providing grape growers and nursery propagators with more tools for developing integrated and sustainable control systems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Cunniffe, Nik J; Gilligan, Christopher A
2011-06-07
We develop and analyse a flexible compartmental model of the interaction between a plant host, a soil-borne pathogen and a microbial antagonist, for use in optimising biological control. By extracting invasion and persistence thresholds of host, pathogen and biological control agent, performing an equilibrium analysis, and numerical investigation of sensitivity to parameters and initial conditions, we determine criteria for successful biological control. We identify conditions for biological control (i) to prevent a pathogen entering a system, (ii) to eradicate a pathogen that is already present and, if that is not possible, (iii) to reduce the density of the pathogen. Control depends upon the epidemiology of the pathogen and how efficiently the antagonist can colonise particular habitats (i.e. healthy tissue, infected tissue and/or soil-borne inoculum). A sharp transition between totally effective control (i.e. eradication of the pathogen) and totally ineffective control can follow slight changes in biologically interpretable parameters or to the initial amounts of pathogen and biological control agent present. Effective biological control requires careful matching of antagonists to pathosystems. For preventative/eradicative control, antagonists must colonise susceptible hosts. However, for reduction in disease prevalence, the range of habitat is less important than the antagonist's bulking-up efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.
Front-Presented Looming Sound Selectively Alters the Perceived Size of a Visual Looming Object.
Yamasaki, Daiki; Miyoshi, Kiyofumi; Altmann, Christian F; Ashida, Hiroshi
2018-07-01
In spite of accumulating evidence for the spatial rule governing cross-modal interaction according to the spatial consistency of stimuli, it is still unclear whether 3D spatial consistency (i.e., front/rear of the body) of stimuli also regulates audiovisual interaction. We investigated how sounds with increasing/decreasing intensity (looming/receding sound) presented from the front and rear space of the body impact the size perception of a dynamic visual object. Participants performed a size-matching task (Experiments 1 and 2) and a size adjustment task (Experiment 3) of visual stimuli with increasing/decreasing diameter, while being exposed to a front- or rear-presented sound with increasing/decreasing intensity. Throughout these experiments, we demonstrated that only the front-presented looming sound caused overestimation of the spatially consistent looming visual stimulus in size, but not of the spatially inconsistent and the receding visual stimulus. The receding sound had no significant effect on vision. Our results revealed that looming sound alters dynamic visual size perception depending on the consistency in the approaching quality and the front-rear spatial location of audiovisual stimuli, suggesting that the human brain differently processes audiovisual inputs based on their 3D spatial consistency. This selective interaction between looming signals should contribute to faster detection of approaching threats. Our findings extend the spatial rule governing audiovisual interaction into 3D space.
Time-dependent gas-liquid interaction in molecular-sized nanopores.
Sun, Yueting; Li, Penghui; Qiao, Yu; Li, Yibing
2014-10-08
Different from a bulk phase, a gas nanophase can have a significant effect on liquid motion. Herein we report a series of experimental results on molecular behaviors of water in a zeolite β of molecular-sized nanopores. If sufficient time is provided, the confined water molecules can be "locked" inside a nanopore; otherwise, gas nanophase provides a driving force for water "outflow". This is due to the difficult molecular site exchanges and the relatively slow gas-liquid diffusion in the nanoenvironment. Depending on the loading rate, the zeolite β/water system may exhibit either liquid-spring or energy-absorber characteristics.
Simulation of alnico coercivity
Ke, Liqin; Skomski, Ralph; Hoffmann, Todd D.; ...
2017-07-10
Micromagnetic simulations of alnico show substantial deviations from Stoner-Wohlfarth behavior due to the unique size and spatial distribution of the rod-like Fe-Co phase formed during spinodal decomposition in an external magnetic field. Furthemore, the maximum coercivity is limited by single-rod effects, especially deviations from ellipsoidal shape, and by interactions between the rods. In both the exchange interaction between connected rods and magnetostatic we consider the interaction between rods, and the results of our calculations show good agreement with recent experiments. Unlike systems dominated by magnetocrystalline anisotropy, coercivity in alnico is highly dependent on size, shape, and geometric distribution of themore » Fe-Co phase, all factors that can be tuned with appropriate chemistry and thermal-magnetic annealing.« less
News from the NA61/SHINE experiment
NASA Astrophysics Data System (ADS)
Šuša, Tatjana
2018-02-01
The main goals of the NA61/SHINE experiment at the CERN SPS are the search for the critical point of strongly interacting matter and the study of the properties of the onset of deconfinement. These aims are pursued by performing a two-dimensional scan of the phase diagram of strongly interacting matter by varying the momentum and size of the colliding nuclei. This contribution summarises the latest results from the NA61/SHINE experiment, in particular, new results on spectra and yields of ϕ meson in p+p interactions at 40, 80 and 158 GeV/c and K+ and K- production in central Be+Be collisions at mid-rapidity. In addition, results on system size dependence of particle yield ratios and fluctuations are presented.
Durand, Casey P
2013-01-01
Statistical interactions are a common component of data analysis across a broad range of scientific disciplines. However, the statistical power to detect interactions is often undesirably low. One solution is to elevate the Type 1 error rate so that important interactions are not missed in a low power situation. To date, no study has quantified the effects of this practice on power in a linear regression model. A Monte Carlo simulation study was performed. A continuous dependent variable was specified, along with three types of interactions: continuous variable by continuous variable; continuous by dichotomous; and dichotomous by dichotomous. For each of the three scenarios, the interaction effect sizes, sample sizes, and Type 1 error rate were varied, resulting in a total of 240 unique simulations. In general, power to detect the interaction effect was either so low or so high at α = 0.05 that raising the Type 1 error rate only served to increase the probability of including a spurious interaction in the model. A small number of scenarios were identified in which an elevated Type 1 error rate may be justified. Routinely elevating Type 1 error rate when testing interaction effects is not an advisable practice. Researchers are best served by positing interaction effects a priori and accounting for them when conducting sample size calculations.
Soto, L P; Astesana, D M; Zbrun, M V; Blajman, J E; Salvetti, N R; Berisvil, A P; Rosmini, M R; Signorini, M L; Frizzo, L S
2016-02-01
The aim of this study was to evaluate the effect of a probiotic/lactose inoculum on haematological and immunological parameters and renal and hepatic biochemical profiles before and during a Salmonella Dublin DSPV 595T challenge in young calves. Twenty eight calves, divided into a control and probiotic group were used. The probiotic group was supplemented with 100 g lactose/calf/d and 10 10 cfu/calf/d of each strain of a probiotic inoculum composed of Lactobacillus casei DSPV318T, Lactobacillus salivarius DSPV315T and Pediococcus acidilactici DSPV006T throughout the experiment. The pathogen was administered on day 11 of the experiment, at an oral dose of 10 9 cfu/animal (LD 50 ). Aspartate aminotransferase (AST), gamma glutamyl transpeptidase (GGT), urea, red blood cells, haemoglobin, haematocrit, mean cell haemoglobin (MCH), mean corpuscular volume, mean corpuscular haemoglobin concentration (MCHC), white blood cells, lymphocytes, neutrophils, band neutrophils, monocytes, eosinophils, basophils and the neutrophils/lymphocytes ratio were measured on days 1, 10, 20 and 27 of the experiment. In addition, animals were necropsied to evaluate immunoglobulin A (IgA) production in the jejunal mucosa. The most significant differences caused by the administration of the inoculum/lactose were found during the acute phase of Salmonella challenge (9 days after challenge), when a difference between groups in neutrophils/lymphocytes ratio were detected. These results suggest that the probiotic/lactose inoculum administration increases the calf's ability to respond to the disease increasing the systemic immune response specific. No differences were found in haemoglobin, haematocrit, MCH, MCHC, AST, urea, GGT, band neutrophils, eosinophils, monocytes and IgA in the jejunum between the two groups of calves under the experimental conditions of this study. Further studies must be conducted to evaluate different probiotic/pathogens doses and different sampling times, to achieve a greater understanding of the effects of this inoculum on intestinal infections in young calves and of its mechanism of action.
Sim, Hui Li; Hong, Yoon-Ki; Yoon, Won Byong; Yuk, Hyun-Gyun
2013-01-01
The aim of this study was to determine survival or growth of unadapted, acid-adapted and cold-stressed Salmonella spp., and natural microbiota on fresh-cut dragon fruits at different storage temperatures. Dragon fruits were sliced and spot inoculated with five-strain cocktail of Salmonella spp. at two inoculum levels (2.5 or 5.5 log CFU/g). Inoculated fruits were stored at 28°C for 48h and at 4°C and 12°C for 96 h. Salmonella population significantly increased by 2.4 to 3.0 log CFU/g at low inoculum level, whereas the numbers increased by 0.4 to 0.7 log CFU/g at the high inoculum level on fruits held at 28°C for 48h. Only unadapted and acid-adapted cells grew with 0.7 to 0.9log increase at the low inoculum level at 12°C for 96h. No significant growth was observed at both inoculum levels during storage at 4°C. Overall, acid, starved and cold adaptation of Salmonella spp. did not show significant difference in survival or growth on fresh-cut dragon fruits during storage compared to unadapted control cells. For natural microbiota on the fruit, mesophilic bacterial counts reached to 5-log CFU/g at 28 and 12°C by 9.9 and 52.9h. Similar with Salmonella spp. there was no growth of natural microbiota at 4°C. These results showed that Salmonella spp. could grow on fresh-cut dragon fruits under inappropriate storage conditions, indicating that fresh-cut dragon fruits could be a potential vehicle for salmonellosis. Thus, this study suggests that fresh-cut dragon fruits should be stored at 4°C to ensure the safety as well as to extend the shelf life of fresh-cut dragon fruits. Copyright © 2012 Elsevier B.V. All rights reserved.
Ceballos, Isabel; Ruiz, Michael; Fernández, Cristhian; Peña, Ricardo
2013-01-01
The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future. PMID:23950975
Wastewater: A Potential Bioenergy Resource.
Prakash, Jyotsana; Sharma, Rakesh; Ray, Subhasree; Koul, Shikha; Kalia, Vipin Chandra
2018-06-01
Wastewaters are a rich source of nutrients for microorganisms. However, if left unattended the biodegradation may lead to severe environmental hazards. The wastewaters can thus be utilized for the production of various value added products including bioenergy (H 2 and CH 4 ). A number of studies have reported utilization of various wastewaters for energy production. Depending on the nature of the wastewater, different reactor configurations, wastewater and inoculum pretreatments, co-substrate utilizations along with other process parameters have been studied for efficient product formation. Only a few studies have reported sequential utilization of wastewaters for H 2 and CH 4 production despite its huge potential for complete waste degradation.
Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr(VI) and lindane.
Aparicio, JuanDaniel; Solá, María Zoleica Simón; Benimeli, Claudia Susana; Amoroso, María Julia; Polti, Marta Alejandra
2015-06-01
The aim of this work was to study the impact of environmental factors on the bioremediation of Cr(VI) and lindane contaminated soil, by an actinobacterium, Streptomyces sp. M7, in order to optimize the process. Soil samples were contaminated with 25 µg kg(-1) of lindane and 50 mg kg(-1) of Cr(VI) and inoculated with Streptomyces sp. M7. The lowest inoculum concentration which simultaneously produced highest removal of Cr(VI) and lindane was 1 g kg(-1). The influence of physical and chemical parameters was assessed using a full factorial design. The factors and levels tested were: Temperature: 25, 30, 35°C; Humidity: 10%, 20%, 30%; Initial Cr(VI) concentration: 20, 50, 80 mg kg(-1); Initial lindane concentration: 10, 25, 40 µg kg(-1). Streptomyces sp. M7 exhibited strong versatility, showing the ability to bioremediate co-contaminated soil samples at several physicochemical conditions. Streptomyces sp. M7 inoculum size was optimized. Also, it was fitted a model to study this process, and it was possible to predict the system performance, knowing the initial conditions. Moreover, optimum temperature and humidity conditions for the bioremediation of soil with different concentrations of Cr(VI) and lindane were determined. Lettuce seedlings were a suitable biomarker to evaluate the contaminants mixture toxicity. Streptomyces sp. M7 carried out a successful bioremediation, which was demonstrated through ecotoxicity test with Lactuca sativa. Copyright © 2015 Elsevier Inc. All rights reserved.
Process development for the mass production of Ehrlichia ruminantium.
Marcelino, Isabel; Sousa, Marcos F Q; Veríssimo, Célia; Cunha, António E; Carrondo, Manuel J T; Alves, Paula M
2006-03-06
This work describes the optimization of a cost-effective process for the production of an inactivated bacterial vaccine against heartwater and the first attempt to produce the causative agent of this disease, the rickettsia Ehrlichia ruminantium (ER), using stirred tanks. In vitro, it is possible to produce ER using cultures of ruminant endothelial cells. Herein, mass production of these cells was optimized for stirring conditions. The effect of inoculum size, microcarrier type, concentration of serum at inoculation time and agitation rate upon maximum cell concentration were evaluated. Several strategies for the scale-up of cell inoculum were also tested. Afterwards, using the optimized parameters for cell growth, ER production in stirred tanks was validated for two ER strains (Gardel and Welgevonden). Critical parameters related with the infection strategy such as serum concentration at infection time, multiplicity and time of infection, and medium refeed strategy were analyzed. The results indicate that it is possible to produce ER in stirred tank bioreactors, under serum-free culture conditions, reaching a 6.5-fold increase in ER production yields. The suitability of this process was validated up to a 2-l scale and a preliminary cost estimation has shown that the stirred tanks are the least expensive culture method. Overall, these results are crucial to define a scaleable and fully controlled process for the production of a heartwater vaccine and open "new avenues" for the production of vaccines against other ehrlichial species, with emerging impact in human and animal health.
Wang, Yuwan; Zhang, Mingyue; Zhang, Zhengzhu; Lu, Hengqian; Gao, Xueling; Yue, Pengxiang
2017-12-01
Theabrownins (TB) are bioactive components that are usually extracted from Chinese dark tea, in which they are present at low concentrations. The present study aimed to produce an instant dark tea high in theabrownins via submerged fermentation by the fungus Aspergillus niger. Three fermentation parameters that affect theabrownins content (i.e. inoculum size, liquid-solid ratio and rotation speed) were optimized using response surface methodology. Optimum fermentation conditions were modeled to be an inoculum of 5.40% (v/v), a liquid-solid ratio of 27.45 mL g -1 and a rotation speed of 184 rpm and were predicted to yield 292.99 g kg -1 TB. Under these experimentally conditions, the TB content of the instant dark tea was 291.93 g kg -1 . The antioxidant capacity and α-glucosidase and pancreatic lipase inhibitory activities of the high-TB instant black tea were higher than four other typical instant dark tea products. The results of the present study show that careful management of culture conditions can produce a dark tea high in theabrownins. Furthermore, high-theabrownins instant dark tea could serve as a source of bioactive products and be used in functional foods as an ingredient imparting antioxidant properties and the ability to inhibit pancreatic lipase and α-glucosidase. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Novel host plant leads to the loss of sexual dimorphism in a sexually selected male weapon.
Allen, Pablo E; Miller, Christine W
2017-08-16
In this time of massive global change, species are now frequently interacting with novel players. Greater insight into the impact of these novel interactions on traits linked to fitness is essential, because effects on these traits can hinder population existence or promote rapid adaptation. Sexually selected weapons and ornaments frequently influence fitness and often have heightened condition-dependence in response to nutrition. Condition-dependence in response to different ecological conditions, a form of developmental plasticity, may be responsible for much of the intraspecific variation in sexually selected ornaments and weapons in wild populations. Here we examined the consequences of developing on a novel plant for the expression of size and shape in the leaf-footed cactus bug Narnia femorata (Hemiptera: Coreidae). The males of this species possess enlarged, sexually dimorphic femurs on their hind legs. These legs are used as weapons in male-male contests. Females are typically larger in overall body size. Our study revealed that developing upon a novel host can lead to pronounced phenotypically plastic change in sexually dimorphic traits. Male hind femurs were greatly impacted by the novel diet to the extent that the sexual dimorphism in hind femurs was lost. Further, dimorphism in body size increased, as males became tiny adults while females better maintained their body size. These patterns underscore the complex effects that novel species interactions may have on sexual phenotypes. © 2017 The Author(s).
Is the impact of eutrophication on phytoplankton diversity dependent on lake volume/ecosystem size?
Baho, Didier L.; Drakare, Stina; Johnson, Richard K.; Allen, Craig R.; Angeler, David G.
2017-01-01
Research focusing on biodiversity responses to the interactions of ecosystem size and anthropogenic stressors are based mainly on correlative gradient studies, and may therefore confound size-stress relationships due to spatial context and differences in local habitat features across ecosystems. We investigated how local factors related to anthropogenic stressors (e.g.,eutrophication) interact with ecosystem size to influence species diversity. In this study, constructed lake mesocosms (with two contrasting volumes: 1020 (shallow mesocosms) and 2150 (deep mesocosms) litres) were used to simulate ecosystems of different size and manipulated nutrient levels to simulate mesotrophic and hypertrophic conditions. Using a factorial design, we assessed how the interaction between ecosystem size and nutrients influences phytoplankton diversity. We assessed community metrics (richness, diversity, evenness and total biovolumes) and multivariate community structure over a growing season (May to early November 2011). Different community structures were found between deep and shallow mescosoms with nutrient enrichment: Cyanobacteria dominated in the deep and Charophyta in the shallow mesocosms. In contrast, phytoplankton communities were more similar to each other in the low nutrient treatments; only Chlorophyta had generally a higher biovolume in the shallow compared to the deep mesocosms. These results suggest that ecosystem size is not only a determinant of species diversity, but that it can mediate the influence of anthropogenic effects on biodiversity. Such interactions increase the uncertainty of global change outcomes, and should therefore not be ignored in risk/impact assessment and management.
Acharya, Bhavik K; Mohana, Sarayu; Jog, Rahul; Divecha, Jyoti; Madamwar, Datta
2010-10-01
Pollution caused by distillery spent wash on one hand has stimulated the need to develop new technologies to treat the waste and on the other, forced us to reevaluate the efficient utilization of its nutritive potential for production of various high value compounds. In this study, anaerobically treated distillery spent wash was used for the production of cellulases by Aspergillus ellipticus under solid-state fermentation using wheat straw as a substrate. The interactions between distillery effluent concentration, initial pH, moisture content and inoculum size were investigated and modeled using response surface methodology (RSM) involving Box-Behnken design (BBD). Under optimized conditions, filter paper activity, beta-glucosidase and endo-beta-1,4-glucanase activities were found to be 13.38, 26.68 and 130.92 U/g of substrate respectively. Characterization of endo-beta-1,4-glucanase and beta-glucosidase was done after partial purification by ammonium sulfate fractionation followed by desalting. The partially purified endo-beta-1,4-glucanase and beta-glucosidase showed maximum activity at 60 degrees C. Saccharification studies performed with different lignocellulosic substrates showed that wheat bran was most susceptible to enzymatic hydrolysis. The study suggests that anaerobically treated distillery spent wash can be used as a viable nutrient source for cellulase production under solid-state fermentation by A. ellipticus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Vivek; Yu, Yixuan; Sun, Qi-C.; Korgel, Brian; Nagpal, Prashant
2014-11-01
While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon.While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04688a
In Vitro Pharmacodynamics of AZD5206 against Staphylococcus aureus
Chang, Kai-Tai; Yang, Zhen; Newman, Joseph; Hu, Ming
2013-01-01
AZD5206 is a novel antimicrobial agent with potent in vitro activity against Staphylococcus aureus. We evaluated the in vitro pharmacodynamics of AZD5206 against a standard wild-type methicillin-susceptible strain (ATCC 29213) and a clinical strain of methicillin-resistant S. aureus (SA62). Overall, bacterial killing against a low baseline inoculum was more remarkable. Low dosing exposures and/or high baseline inoculum resulted in early reduction in bacterial burden, followed by regrowth and selective amplification of the resistant population. PMID:23229481
Ellis, Lisa L.; Huang, Wen; Quinn, Andrew M.; Ahuja, Astha; Alfrejd, Ben; Gomez, Francisco E.; Hjelmen, Carl E.; Moore, Kristi L.; Mackay, Trudy F. C.; Johnston, J. Spencer; Tarone, Aaron M.
2014-01-01
We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions. PMID:25057905
Domizio, Paola; Romani, Cristina; Lencioni, Livio; Comitini, Francesca; Gobbi, Mirko; Mannazzu, Ilaria; Ciani, Maurizio
2011-06-30
The use of non-Saccharomyces yeasts that are generally considered as spoilage yeasts, in association with Saccharomyces cerevisiae for grape must fermentation was here evaluated. Analysis of the main oenological characteristics of pure cultures of 55 yeasts belonging to the genera Hanseniaspora, Pichia, Saccharomycodes and Zygosaccharomyces revealed wide biodiversity within each genus. Moreover, many of these non-Saccharomyces strains had interesting oenological properties in terms of fermentation purity, and ethanol and secondary metabolite production. The use of four non-Saccharomyces yeasts (one per genus) in mixed cultures with a commercial S. cerevisiae strain at different S. cerevisiae/non-Saccharomyces inoculum ratios was investigated. This revealed that most of the compounds normally produced at high concentrations by pure cultures of non-Saccharomyces, and which are considered detrimental to wine quality, do not reach threshold taste levels in these mixed fermentations. On the other hand, the analytical profiles of the wines produced by these mixed cultures indicated that depending on the yeast species and the S. cerevisiae/non-Saccharomyces inoculum ratio, these non-Saccharomyces yeasts can be used to increase production of polysaccharides and to modulate the final concentrations of acetic acid and volatile compounds, such as ethyl acetate, phenyl-ethyl acetate, 2-phenyl ethanol, and 2-methyl 1-butanol. Copyright © 2011 Elsevier B.V. All rights reserved.
In vitro methane and gas production with inocula from cows and goats fed an identical diet.
Mengistu, Genet; Hendriks, Wouter H; Pellikaan, Wilbert F
2018-03-01
Fermentative capacity among ruminants can differ depending on the type of ruminant species and the substrate fermented. The aim was to compare in vitro cow and goat rumen inocula in terms of methane (CH 4 ) and gas production (GP), fermentation kinetics and 72 h volatile fatty acids (VFA) production using the browse species Acacia etbaica, Capparis tomentosa, Dichrostachys cinerea, Rhus natalensis, freeze-dried maize silage and grass silage, and a concentrate as substrates. Total GP, CH 4 and VFA were higher (P ≤ 0.008) in goat inoculum than cows across substrates. The half-time for asymptotic GP was lower (P < 0.0001) in phase 1 and higher (P < 0.012) in phase 2, and the maximum rate of GP was higher (P < 0.0001) in phase 1 and phase 3 (P < 0.0001) in goats compared to cows. Methane production and as a percentage of total GP was higher (P < 0.0001) and the half-time tended (P = 0.059) to be at a later time for goats compared to cows. Goat inoculum showed higher fermentative activity with a concomitant higher CH 4 production compared to cows. This difference highlights the ability of goats to better utilise browse species and other roughage types. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Silva-Angulo, Angela B.; Zanini, Surama F.; Rosenthal, Amauri; Rodrigo, Dolores; Klein, Günter; Martínez, Antonio
2015-01-01
This study investigates the effect of citral on growth and on the occurrence of sublethal damage in Listeria innocua Serovar 6a (CECT 910) and Listeria monocytogenes Serovar 4b (CECT 4032) cells that were exposed to citral as a natural antimicrobial agent. Two initial inoculum concentrations were considered in this investigation: 102 and 106 cfu/mL. Citral exhibited antilisterial activity against L. innocua and L. monocytogenes, and the observed effects were dependent on the concentration of citral present in the culture medium (0, 0.150 and 0.250 μL/mL) (p ≤ 0.05). L. innocua had a shorter lag phase than L. monocytogenes, and the two species had nearly identical maximum specific growth rates. These results indicate that L. innocua could be used as surrogate for L. monocytogenes when testing the effects of this antimicrobial. Significant differences in the lag phase and growth rate were observed between the small and large inoculum concentration (p ≤ 0.05). Citral-treated L. innocua and L. monocytogenes that were recovered on selective medium (i.e., TSA-YE-SC) had a shorter lag phase and a higher maximum specific growth rate than cells that were recovered on non-selective medium (i.e., TSA-YE) (p ≤ 0.05). This result suggests that damage occurs at sublethal concentrations of citral. PMID:25643164
Silva-Angulo, Angela B; Zanini, Surama F; Rosenthal, Amauri; Rodrigo, Dolores; Klein, Günter; Martínez, Antonio
2015-01-01
This study investigates the effect of citral on growth and on the occurrence of sublethal damage in Listeria innocua Serovar 6a (CECT 910) and Listeria monocytogenes Serovar 4b (CECT 4032) cells that were exposed to citral as a natural antimicrobial agent. Two initial inoculum concentrations were considered in this investigation: 10(2) and 10(6) cfu/mL. Citral exhibited antilisterial activity against L. innocua and L. monocytogenes, and the observed effects were dependent on the concentration of citral present in the culture medium (0, 0.150 and 0.250 μL/mL) (p ≤ 0.05). L. innocua had a shorter lag phase than L. monocytogenes, and the two species had nearly identical maximum specific growth rates. These results indicate that L. innocua could be used as surrogate for L. monocytogenes when testing the effects of this antimicrobial. Significant differences in the lag phase and growth rate were observed between the small and large inoculum concentration (p ≤ 0.05). Citral-treated L. innocua and L. monocytogenes that were recovered on selective medium (i.e., TSA-YE-SC) had a shorter lag phase and a higher maximum specific growth rate than cells that were recovered on non-selective medium (i.e., TSA-YE) (p ≤ 0.05). This result suggests that damage occurs at sublethal concentrations of citral.
Winkowski, K; Crandall, A D; Montville, T J
1993-01-01
The ability of Lactobacillus bavaricus, a meat isolate, to inhibit the growth of three Listeria monocytogenes strains was examined in three beef systems: beef cubes, beef cubes in gravy, and beef cubes in gravy containing glucose. The beef was minimally heat treated, inoculated with L. bavaricus at 10(5) or 10(3) CFU/g and L. monocytogenes at 10(2) CFU/g, vacuum sealed, and stored at 4 or 10 degrees C. The meat samples were monitored for microbial growth, pH, and bacteriocin production. The pathogen was inhibited by L. bavaricus MN. At 4 degrees C, L. monocytogenes was inhibited or killed depending on the initial inoculum level of L. bavaricus. At 10 degrees C, at least a 10-fold reduction of the pathogen occurred, except in the beef without gravy. This system showed a transient inhibition of the pathogen during the first week of storage followed by growth to control levels by the end of the incubation period. Bacteriocin was detected in the samples, and inhibition could not be attributed to acidification. Low refrigeration temperatures significantly (P < or = 0.05) enhanced L. monocytogenes inhibition. Moreover, the addition of glucose-containing gravy and the higher inoculum level of L. bavaricus were significantly (P < or = 0.05) more effective in reducing L. monocytogenes populations in most of the systems studied. PMID:8368843
Liu, Shiyin; Lin, Nuoqiao; Chen, Yumei; Liang, Zhibin; Liao, Lisheng; Lv, Mingfa; Chen, Yufan; Tang, Yingxin; He, Fei; Chen, Shaohua; Zhou, Jianuan; Zhang, Lianhui
2017-01-01
Sugarcane smut is a fungal disease caused by Sporisorium scitamineum , which can cause severe economic losses in sugarcane industry. The infection depends on the mating of bipolar sporida to form a dikaryon and develops into hyphae to penetrate the meristematic tissue of sugarcane. In this study, we set to isolate bacterial strains capable of blocking the fungal mating and evaluate their potential in control of sugarcane smut disease. A bacterial isolate ST4 from rhizosphere displayed potent inhibitory activity against the mating of S. scitamineum bipolar sporida and was selected for further study. Phylogenetic analyses and biochemical characterization showed that the isolate was most similar to Pseudomonas guariconensis . Methanol extracts from minimum and potato dextrose agar (PDA) agar medium, on which strain ST4 has grown, showed strong inhibitory activity on the sexual mating of S. scitamineum sporida, without killing the haploid cells MAT-1 or MAT-2. Further analysis showed that only glucose, but not sucrose, maltose, and fructose, could support strain ST4 to produce antagonistic chemicals. Consistent with the above findings, greenhouse trials showed that addition of 2% glucose to the bacterial inoculum significantly increased the strain ST4 biocontrol efficiency against sugarcane smut disease by 77% than the inoculum without glucose. The results from this study depict a new strategy to screen for biocontrol agents for control and prevention of the sugarcane smut disease.
Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell.
Ding, Jing; Lu, Yong-Ze; Fu, Liang; Ding, Zhao-Wei; Mu, Yang; Cheng, Shuk H; Zeng, Raymond J
2017-03-01
Anaerobic oxidation of methane (AOM) contributes significantly to the global methane sink. Previously, studies of anaerobic methanotrophic (ANME) archaea have been limited as they have not been separable from their bacterial partners during the AOM process because of their dependence on the bacteria. A microbial fuel cell (MFC) is a device capable of directly transforming chemical energy to electrical energy via electrochemical reactions involving biochemical pathways. In this study, decoupling of denitrifying anaerobic methane oxidation (DAMO) archaea and DAMO bacteria was investigated in an microbial fuel cell (MFC) using methane as the fuel. The DAMO fuel cell worked successfully but demonstrated weak electrogenic capability with around 25 mV production. After 45 days' enrichment, the sequencing and fluorescence in situ hybridization results showed the DAMO archaea percentage had increased from 26.96% (inoculum) to 65.77% (electrode biofilm), while the DAMO bacteria percentage decreased from 24.39% to 2.07%. Moreover, the amount of ANME-2d had doubled in the electrode biofilm compared with the inoculum. The sequencing results also showed substantial enrichment of the Ignavibacterium and Geobacter genera. The roles of Ignavibacterium and Geobacter in the MFC system need to be further investigated. Nevertheless, these results illustrate that an MFC device may provide a possible approach to separate DAMO archaea from DAMO bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of urine culture screening by light-scatter photometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, D.C.; Thrupp, L.D.; Matsen, J.M.
1981-08-01
Urine screening for bacteriuria by light-scatter photometry (Autobac) was evaluated for accuracy and compared with a colony count by the calibrated loop method. Incubation time, inoculum size, precision, and interference of particulate matter were evaluated in an effort to standardize the screening procedure. Results showed that urines could be accurately screened for Enterobacteriaceae by inoculating a single Autobac cuvette chamber with 0.1 or 0.2 ml of urine and determining the voltage change after four hours. A change of greater than or equal to 0.2 units indicates significant bacteriuria. Decreased accuracy was noted for urines having greater than 10(5) cfu/ml ofmore » Pseudomonas species or gram-positive cocci, possibly because these organisms grow more slowly.« less
Synthesis of ectomycorrhizae on northern red oak seedlings in a Michigan nursery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, R.K.; Johnson, P.S.
1993-01-01
Vegetative inoculum of the ectomycorrhizal fungus Suillus luteus was thoroughly mixed into fumigated nursery soil, and northern red oak seedlings of four families were evaluated one and two years after sowing for ectomycorrhizal development, growth, and nutrition. At the end of year one, treated seedlings were successfully inoculated with S. luteus, but the percentage varied significantly with family. Suillus luteus persisted on lateral roots two years following sowing. Two of four seedling families inoculated with S. luteus were significantly larger in size than control plants. These results suggest that the fungal symbiont S. luteus can be successfully introduced into nurseriesmore » and that early ectomycorrhizal development improves the growth of northern red oak seedlings.« less
Production of staphylococcal enterotoxin A in cream-filled cake.
Anunciaçao, L L; Linardi, W R; do Carmo, L S; Bergdoll, M S
1995-07-01
Cakes were baked with normal ingredients and filled with cream, inoculated with different size enterotoxigenic-staphylococcal inocula. Samples of the cakes were incubated at room temperature and put in the refrigerator. Samples of cake and filling were taken at different times and analyzed for staphylococcal count and presence of enterotoxin. The smaller the inoculum, the longer the time required for sufficient growth (10(6)) to occur for production of detectable enterotoxin. Enterotoxin added to the cake dough before baking (210 degrees C, 45 min) did not survive the baking. The presence of enterotoxin in the contaminated cream filling indicated this as the cause of staphylococcal food poisoning from cream-filled cakes. Refrigeration of the cakes prevented the growth of the staphylococci.
Absence of thermalization in finite isolated interacting Floquet systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seetharam, Karthik; Titum, Paraj; Kolodrubetz, Michael
Conventional wisdom suggests that the long time behavior of isolated interacting periodically driven (Floquet) systems is a featureless maximal entropy state characterized by an infinite temperature. Efforts to thwart this uninteresting fixed point include adding sufficient disorder to realize a Floquet many-body localized phase or working in a narrow region of drive frequencies to achieve glassy non-thermal behavior at long time. Here we show that in clean systems the Floquet eigenstates can exhibit non-thermal behavior due to finite system size. We consider a one-dimensional system of spinless fermions with nearest-neighbor interactions where the interaction term is driven. Interestingly, even withmore » no static component of the interaction, the quasienergy spectrum contains gaps and a significant fraction of the Floquet eigenstates, at all quasienergies, have non-thermal average doublon densities. Finally, we show that this non-thermal behavior arises due to emergent integrability at large interaction strength and discuss how the integrability breaks down with power-law dependence on system size.« less
Absence of thermalization in finite isolated interacting Floquet systems
NASA Astrophysics Data System (ADS)
Seetharam, Karthik; Titum, Paraj; Kolodrubetz, Michael; Refael, Gil
2018-01-01
Conventional wisdom suggests that the long-time behavior of isolated interacting periodically driven (Floquet) systems is a featureless maximal-entropy state characterized by an infinite temperature. Efforts to thwart this uninteresting fixed point include adding sufficient disorder to realize a Floquet many-body localized phase or working in a narrow region of drive frequencies to achieve glassy nonthermal behavior at long time. Here we show that in clean systems the Floquet eigenstates can exhibit nonthermal behavior due to finite system size. We consider a one-dimensional system of spinless fermions with nearest-neighbor interactions where the interaction term is driven. Interestingly, even with no static component of the interaction, the quasienergy spectrum contains gaps and a significant fraction of the Floquet eigenstates, at all quasienergies, have nonthermal average doublon densities. We show that this nonthermal behavior arises due to emergent integrability at large interaction strength and discuss how the integrability breaks down with power-law dependence on system size.
Absence of thermalization in finite isolated interacting Floquet systems
Seetharam, Karthik; Titum, Paraj; Kolodrubetz, Michael; ...
2018-01-29
Conventional wisdom suggests that the long time behavior of isolated interacting periodically driven (Floquet) systems is a featureless maximal entropy state characterized by an infinite temperature. Efforts to thwart this uninteresting fixed point include adding sufficient disorder to realize a Floquet many-body localized phase or working in a narrow region of drive frequencies to achieve glassy non-thermal behavior at long time. Here we show that in clean systems the Floquet eigenstates can exhibit non-thermal behavior due to finite system size. We consider a one-dimensional system of spinless fermions with nearest-neighbor interactions where the interaction term is driven. Interestingly, even withmore » no static component of the interaction, the quasienergy spectrum contains gaps and a significant fraction of the Floquet eigenstates, at all quasienergies, have non-thermal average doublon densities. Finally, we show that this non-thermal behavior arises due to emergent integrability at large interaction strength and discuss how the integrability breaks down with power-law dependence on system size.« less
Contact angle of a nanodrop on a nanorough solid surface.
Berim, Gersh O; Ruckenstein, Eli
2015-02-21
The contact angle of a cylindrical nanodrop on a nanorough solid surface is calculated, for both hydrophobic and hydrophilic surfaces, using the density functional theory. The emphasis of the paper is on the dependence of the contact angle on roughness. The roughness is modeled by rectangular pillars of infinite length located on the smooth surface of a substrate, with fluid-pillar interactions different in strength from the fluid-substrate ones. It is shown that for hydrophobic substrates the trend of the contact angle to increase with increasing roughness, which was noted in all previous studies, is not universally valid, but depends on the fluid-pillar interactions, pillar height, interpillar distance, as well as on the size of the drop. For hydrophilic substrate, an unusual kink-like dependence of the contact angle on the nanodrop size is found which is caused by the change in the location of the leading edges of the nanodrop on the surface. It is also shown that the Wenzel and Cassie-Baxter equations can not explain all the peculiarities of the contact angle of a nanodrop on a nanorough surface.
Uma, Divya B; Weiss, Martha R
2012-12-01
An animal's body size plays a predominant role in shaping its interspecific interactions, and, in encounters between two predators, often determines which shall be predator and which shall be prey. Spiders are top predators of insects, yet can fall prey to mud-dauber wasps that provision their larval nests with paralyzed spiders. Here we examined predator-prey interactions between Chalybion californicum (Saussure) (Sphecidae), a mud-dauber wasp, and Parasteatoda tepidariorum C. L. Koch (Theridiidae), a cobweb spider. We examined whether a spider's size influences its response to an attacking wasp, and report a size-dependent change in spider behavior: small-sized spiders fled, whereas medium- and large-sized spiders fought in response to wasp attacks. From the wasps' perspective, we examined whether spider size influences a wasp's hunting behavior and capture success. We found that wasps commonly approached small spiders, but were much less likely to approach medium and large spiders. However, wasp capture success did not vary with spider size. We also report a strategy used by Chalybion wasps toward cobweb spiders that is consistent with an interpretation of aggressive mimicry.
Rongsayamanont, Chaiwat; Limpiyakorn, Tawan; Khan, Eakalak
2014-07-01
An entrapment of nitrifiers into gel matrix is employed as a tool to fulfill partial nitrification under non-limiting dissolved oxygen (DO) concentrations in bulk solutions. This study aims to clarify which of these two attributes, inoculum type and DO concentration in bulk solutions, is the decisive factor for partial nitrification in an entrapped-cell based system. Four polyvinyl alcohol entrapped inocula were prepared to have different proportions of nitrite-oxidizing bacteria (NOB) and nitrite-oxidizing activity. At a DO concentration of 3 mg l(-1), the number of active NOB cells in an inoculum was the decisive factor for partial nitrification enhancement. However, when the DO concentration was reduced to 2 mg l(-1), all entrapped cell inocula showed similar degrees of partial nitrification. The results suggested that with the lower bulk DO concentration, the preparation of entrapped cell inocula is not useful as the DO level becomes the decisive factor for achieving partial nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Manu, M K; Kumar, Rakesh; Garg, Anurag
2017-06-01
Wet waste recycling at generation point will alleviate burden on the overflowing waste dumpsites in developing nations. Drum composting is a potential treatment option for such waste at individual or community level. The present study was aimed to produce compost from wet waste (primarily comprising food waste) in composting drums modified for improved natural air circulation. Effect of microbial inoculum and waste turning on composting process was also studied. The final results showed the production of matured and stable compost in the modified drums. Addition of the microbial inoculum resulted in thermophilic phase within a week time. The self-heating test and germination index (>80%) showed the production of non-phytotoxic and mature compost in the modified drums after 60days. The change in microbial population, humic substances and biological parameters (lignin, cellulose and hemicellulose) during the study is discussed. Moreover, the reduction in waste mass and volume is also reported. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flores, Jose-Axel; Gschaedler, Anne; Amaya-Delgado, Lorena; Herrera-López, Enrique J; Arellano, Melchor; Arrizon, Javier
2013-10-01
Agave tequilana fructans (ATF) constitute a substrate for bioethanol and tequila industries. As Kluyveromyces marxianus produces specific fructanases for ATF hydrolysis, as well as ethanol, it can perform simultaneous saccharification and fermentation. In this work, fifteen K. marxianus yeasts were evaluated to develop inoculums with fructanase activity on ATF. These inoculums were added to an ATF medium for simultaneous saccharification and fermentation. All the yeasts, showed exo-fructanhydrolase activity with different substrate specificities. The yeast with highest fructanase activity in the inoculums showed the lowest ethanol production level (20 g/l). Five K. marxianus strains were the most suitable for the simultaneous saccharification and fermentation of ATF. The volatile compounds composition was evaluated at the end of fermentation, and a high diversity was observed between yeasts, nevertheless all of them produced high levels of isobutyl alcohol. The simultaneous saccharification and fermentation of ATF with K. marxianus strains has potential for industrial application. Copyright © 2013 Elsevier Ltd. All rights reserved.
Recovery of failed solid-state anaerobic digesters.
Yang, Liangcheng; Ge, Xumeng; Li, Yebo
2016-08-01
This study examined the performance of three methods for recovering failed solid-state anaerobic digesters. The 9-L digesters, which were fed with corn stover, failed at a feedstock/inoculum (F/I) ratio of 10 with negligible methane yields. To recover the systems, inoculum was added to bring the F/I ratio to 4. Inoculum was either added to the top of a failed digester, injected into it, or well-mixed with the existing feedstock. Digesters using top-addition and injection methods quickly resumed and achieved peak yields in 10days, while digesters using well-mixed method recovered slowly but showed 50% higher peak yields. Overall, these methods recovered 30-40% methane from failed digesters. The well-mixed method showed the highest methane yield, followed by the injection and top-addition methods. Recovered digesters outperformed digesters had a constant F/I ratio of 4. Slow mass transfer and slow growth of microbes were believed to be the major limiting factors for recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Forest farming of shiitake mushrooms: an integrated evaluation of management practices.
Bruhn, J N; Mihail, J D; Pickens, J B
2009-12-01
Two outdoor shiitake (Lentinula edodes) cultivation experiments, established in Missouri USA in 1999 and 2000, produced mushrooms in 2000-2005. We examined shiitake production in response to substrate species, inoculum form, inoculum strain, and inoculation timing, using total mushroom weight per log as the primary response variable with log characteristics as covariates. The significantly greater mushroom weight produced by sugar maple logs compared with white or northern red oak was attributable to the higher proportion of undiscolored wood volume in the maple logs, rather than to bark thickness or log diameter. The "wide temperature range" shiitake strain produced significantly greater yield compared with the "warm" or "cold" weather strains. Both the wide-range and warm-weather strains were stimulated to fruit by significant rain events, while the cold-weather strain was responsive to temperature. Inoculation with sawdust spawn gave significantly greater yield than colonized wooden dowels or pre-packaged "thimble" plug inoculum. The second and third full years following inoculation were the most productive.
Favourable culture conditions for mycelial growth of Hydnum repandum, a medicinal mushroom.
Peksen, Aysun; Kibar, Beyhan; Yakupoglu, Gokcen
2013-01-01
In this study, factors such as pH, temperature, carbon and nitrogen sources that affect mycelial growth of Hydnum repandum, a medicinal mushroom, were investigated. Different inoculum media for vegetative inoculum production were also examined. The best suitable pH for mycelial growth was found to be 5.5. Among constant temperatures, the best mycelial growth was obtained at 20 and 25°C. The mycelial growth drastically decreased at 15°C, and no mycelia were obtained at 30°C. Glucose and mannitol were found to be the most suitable carbon sources. Ca(NO3)2 as a nitrogen source gave the best results for mycelial growth. The poorest mycelial growth was noted in sucrose and xylose as carbon sources and in NH4NO3 and (NH4)2HPO4 as nitrogen sources. Peat and peat: vermiculite mixtures (1:4, 1:6, 1:8 and 1:10, v:v) were the best media to use in producing the vegetative inoculum of H. repandum.