Science.gov

Sample records for inorganic compounds

  1. Lead and compounds (inorganic)

    Integrated Risk Information System (IRIS)

    Lead and compounds ( inorganic ) ; CASRN 7439 - 92 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  2. The Resolution of a Completely Inorganic Coordination Compound.

    ERIC Educational Resources Information Center

    Yasui, Takaji; And Others

    1989-01-01

    Discussed is a technique used by Alfred Werner to resolve inorganic coordination compounds. The materials, procedures and analysis necessary for undergraduates to repeat this procedure are described. (CW)

  3. New reactions of paraformaldehyde and formaldehyde with inorganic compounds

    NASA Technical Reports Server (NTRS)

    Becker, R. S.; Bercovici, T.; Hong, K.

    1974-01-01

    Both paraformaldehyde and formaldehyde undergo reactions in the presence of several inorganic compounds to generate a variety of interesting organic products that can be important in chemical evolutionary processes. Some examples are acrolein, acetaldehyde, methyl formate, methanol, glycolaldehyde and formic acid. The organic compounds are produced at temperatures as low as 56 C and in high yield (up to 75%). The quantity produced depends principally on the nature of the inorganic compound, the ratio of the inorganic compound to paraformaldehyde, temperature and reaction time. The percent distribution of product depends on some of the foregoing factors.

  4. Method for producing heat-resistant semi-inorganic compounds

    NASA Technical Reports Server (NTRS)

    Yajima, S.; Okamura, K.; Shishido, T.; Hasegawa, Y.

    1983-01-01

    The method for producing a heat resistant, semi-inorganic compound is discussed. Five examples in which various alcohols, phenols, and aromatic carbonic acids are used to test heat resistance and solubility are provided.

  5. Charting the complete elastic properties of inorganic crystalline compounds

    PubMed Central

    de Jong, Maarten; Chen, Wei; Angsten, Thomas; Jain, Anubhav; Notestine, Randy; Gamst, Anthony; Sluiter, Marcel; Krishna Ande, Chaitanya; van der Zwaag, Sybrand; Plata, Jose J; Toher, Cormac; Curtarolo, Stefano; Ceder, Gerbrand; Persson, Kristin A.; Asta, Mark

    2015-01-01

    The elastic constant tensor of an inorganic compound provides a complete description of the response of the material to external stresses in the elastic limit. It thus provides fundamental insight into the nature of the bonding in the material, and it is known to correlate with many mechanical properties. Despite the importance of the elastic constant tensor, it has been measured for a very small fraction of all known inorganic compounds, a situation that limits the ability of materials scientists to develop new materials with targeted mechanical responses. To address this deficiency, we present here the largest database of calculated elastic properties for inorganic compounds to date. The database currently contains full elastic information for 1,181 inorganic compounds, and this number is growing steadily. The methods used to develop the database are described, as are results of tests that establish the accuracy of the data. In addition, we document the database format and describe the different ways it can be accessed and analyzed in efforts related to materials discovery and design. PMID:25984348

  6. Survey of electrochemical production of inorganic compounds. Final report

    SciTech Connect

    Not Available

    1980-10-01

    The electrochemical generation of inorganic compounds, excluding chlorine/caustic, has been critically reviewed. About 60 x 10/sup 12/ Btu/y fossil fuel equivalent will be used in the year 2000 for the electrosynthesis of inorganic compounds. Significant energy savings in chlorate production can result from the development of suitable electrocatalysts for lowering the cathodic overpotential. Perchlorates, electrolytic hypochlorite, electrolytic manganese dioxide, fluorine and other miscellaneous compounds use relatively small amounts of electrical energy. Implementation of caustic scrubber technology for stack gas cleanup would result in appreciable amounts of sodium sulfate which could be electrolyzed to regenerate caustic. Hydrogen peroxide, now produced by the alkyl anthraquinone process, could be made electrolytically by a new process coupling anodic oxidation of sulfate with cathodic reduction of oxygen in alkaline solution. Ozone is currently manufactured using energy-inefficient silent discharge equipment. A novel energy-efficient approach which uses an oxygen-enhanced anodic reaction is examined.

  7. Estimation of environmental properties for inorganic compounds using LSER

    USGS Publications Warehouse

    Hickey, James P.

    1999-01-01

    The Great Lakes Science Center has devised values for inorganic species for use in the environmental property- predictive quantitative structure-activity relationships (QSAR) Linear Solvation Energy Relationship (LSER). Property estimation has been difficult for inorganic species. In this presentation aqueous solubility, bioconcentration and acute aquatic toxicity are estimated for inorganic compounds using existing LSER equations. The best estimations arise from the most accurate description of predominant solution species, many within an order of magnitude. The toxicities also depend on an estimation of the bioactive amount and configuration. A number of anion/cation combinations (salts) still resist accurate property estimation, and the reasons currently are not understood. These new variable values will greatly extend the application and utility of LSER for the estimation of environmental properties.

  8. [Health effects of exposure of humans to inorganic arsenic compounds].

    PubMed

    Szymańska, J A; Chmielnicka, J

    1991-01-01

    This paper is a review of references concerning health effects of environmental and occupational exposure to inorganic arsenic compounds. Special attention is paid to epidemiological studies indicating a relationship between time and amount of arsenic absorbed via the gastrointestinal tract (drinking water, contaminated food, drugs) and an increase in skin cancer rate. Occupational and environmental exposure of humans to arsenic dust induces a higher risk of lung cancer.

  9. Degradation of alkyllead compounds to inorganic lead in contaminated soil.

    PubMed

    Gallert, C; Winter, J

    2004-11-01

    In glass columns with sandy soil from a former antiknocking agents factory hydrophobic tetraalkyllead was transformed in oxygen-saturated water to inorganic lead. Up to 324 mg l(-1) trialkyllead, but only very little dialkyllead accumulated. After 740 days 49.1+/-6.7% of the organic lead was converted to inorganic lead. Conversion of hydrocarbons was 39.6+/-5.1%. To reduce toxicity of high trialkyllead concentrations the water of soil columns was replaced by tap water after 450d. Trialkyllead in the new water increased again to more than 150 mg l(-1). If the alkyllead-containing water from these columns was diluted to concentrations of alkyllead compounds that were found in the groundwater after air injection (total alkyllead<10 mg l(-1)) and used as a source of alkyllead compounds in columns with non-contaminated sandy soil, elimination of tetra-, tri- and dialkyllead compounds followed first-order kinetics. In the soil 85.8-93.6% of the alkyllead dissappeared in only 170 days with 51% being converted to inorganic lead. This makes in situ remediation reasonable.

  10. The synthesis of organic and inorganic compounds in evolved stars.

    PubMed

    Kwok, Sun

    2004-08-26

    Recent isotopic analysis of meteorites and interplanetary dust has identified solid-state materials of pre-solar origin. We can now trace the origin of these inorganic grains to the circumstellar envelopes of evolved stars. Moreover, organic (aromatic and aliphatic) compounds have been detected in proto-planetary nebulae and planetary nebulae, which are the descendants of carbon stars. This implies that molecular synthesis is actively happening in the circumstellar environment on timescales as short as several hundred years. The detection of stellar grains in the Solar System suggests that they can survive their journey through the interstellar medium and that they are a major contributor of interstellar grains. PMID:15329712

  11. METHYLATED ASIII COMPOUNDS AS POTENTIAL PROXIMATE/ULTIMATE GENOTOXIC METABOLITES OF INORGANIC ARSENIC

    EPA Science Inventory

    METHYLATED Asm COMPOUNDS AS POTENTIAL PROXIMATE/ULTIMATE GENOTOXIC METABOLITES OF INORGANIC ARSENIC.

    The methylation of inorganic arsenic has typically been viewed as a detoxification process. Genotoxicity tests have generally shown that arsenite has greater mutagenic p...

  12. Epidemiological survey of workers exposed to inorganic germanium compounds

    PubMed Central

    Swennen, B; Mallants, A; Roels, H; Buchet, J; Bernard, A; Lauwerys, R; Lison, D

    2000-01-01

    OBJECTIVES—To assess occupational exposure to inorganic germanium (Ge) in workers from a producing plant, and to assess the health of these workers, with a special focus on respiratory, kidney, and liver functions.
METHODS—Cross sectional study of 75 workers exposed to Ge and 79 matched referents. Exposure was characterised by measuring air and urine concentrations of the element during a typical working week, and health was assessed by a questionnaire, clinical examination, lung function testing, chest radiography, and clinical chemistry in serum and urine, including high and low molecular weight urinary proteins.
RESULTS—Airborne concentrations of Ge (inhalable fraction) ranged from 0.03 to 300 µg/m, which was reflected by increased urinary excretion of Ge (0.12-200 µg/g creatinine, after the shift at the end of the working week). Lung, liver, and haematological variables were not significantly different between referents and workers exposed to Ge. A slightly higher urinary concentration of high molecular weight proteins (albumin and transferrin) was found in workers exposed to Ge, possibly reflecting subclinical glomerular changes. No relation was found between the intensity or duration of exposure and the urinary concentration of albumin. No difference between referents and workers exposed to Ge was found for other renal variables.
CONCLUSIONS—Measurement of urinary Ge can detect occupational exposure to inorganic Ge and its compounds. It is prudent to recommend the monitoring of renal variables in workers exposed to Ge.


Keywords: inorganic germanium; occupational exposure; biological monitoring PMID:10810110

  13. MANOVA statistical analysis of inorganic compounds in groundwater Indonesia

    NASA Astrophysics Data System (ADS)

    Tanty, Heruna; Bekti, Rokhana Dwi; Herlina, Tati; Nurlelasari

    2014-10-01

    The present study was carried out to determine levels of inorganic compounds contained in the ground water and Reverse Osmosis (RO) water filtration result. The data in groundwater samples was collected from Bekasi, Tangerang and Jakarta in Indonesia. A total of 30 samples were collected and analyzed for the determine Cadmium (Cd), Chromium (Cr), Manganese (Mn), Cyanide (CN) and Lead (Pb). The results of the study revealed that in groundwater, the average of Cd 0.0058 mg / l, Mn 1.5233 mg / l, Cr 0.0127 mg/l, Pb 0.0060 mg / l, and CN 0.0040 mg / l. The level of RO result were: Cd 0.0027 mg / l, Mn 0.1767 mg / l, Cr 0.0024 mg / l, Pb 0.0021 mg / l, and CN 0.0023 mg / l . This means that Cd and Mn in ground water were higher than the values recommended by PAK-EPA and WHO or the standard of Indonesian Ministry of Health. But after filtration Reverse Osmosis (RO) Mn and Cd levels decreased to levels below the standardized value. By comparing of mean in MANOVA and nonparametric MANOVA in α=5%, there are differences in average levels of inorganic substances Mn, Cr, Cd, Pb, and CN between before and after RO filtration.

  14. MANOVA statistical analysis of inorganic compounds in groundwater Indonesia

    SciTech Connect

    Tanty, Heruna; Bekti, Rokhana Dwi; Herlina, Tati E-mail: nurlelasari@unpad.ac.id; Nurlelasari E-mail: nurlelasari@unpad.ac.id

    2014-10-24

    The present study was carried out to determine levels of inorganic compounds contained in the ground water and Reverse Osmosis (RO) water filtration result. The data in groundwater samples was collected from Bekasi, Tangerang and Jakarta in Indonesia. A total of 30 samples were collected and analyzed for the determine Cadmium (Cd), Chromium (Cr), Manganese (Mn), Cyanide (CN) and Lead (Pb). The results of the study revealed that in groundwater, the average of Cd 0.0058 mg / l, Mn 1.5233 mg / l, Cr 0.0127 mg/l, Pb 0.0060 mg / l, and CN 0.0040 mg / l. The level of RO result were: Cd 0.0027 mg / l, Mn 0.1767 mg / l, Cr 0.0024 mg / l, Pb 0.0021 mg / l, and CN 0.0023 mg / l . This means that Cd and Mn in ground water were higher than the values recommended by PAK-EPA and WHO or the standard of Indonesian Ministry of Health. But after filtration Reverse Osmosis (RO) Mn and Cd levels decreased to levels below the standardized value. By comparing of mean in MANOVA and nonparametric MANOVA in α=5%, there are differences in average levels of inorganic substances Mn, Cr, Cd, Pb, and CN between before and after RO filtration.

  15. Multifunctional slow-release organic-inorganic compound fertilizer.

    PubMed

    Ni, Boli; Liu, Mingzhu; Lü, Shaoyu; Xie, Lihua; Wang, Yanfang

    2010-12-01

    Multifunctional slow-release organic-inorganic compound fertilizer (MSOF) has been investigated to improve fertilizer use efficiency and reduce environmental pollution derived from fertilizer overdosage. The special fertilizer is based on natural attapulgite (APT) clay used as a matrix, sodium alginate used as an inner coating and sodium alginate-g-poly(acrylic acid-co-acrylamide)/humic acid (SA-g-P(AA-co-AM)/HA) superabsorbent polymer used as an outer coating. The coated multielement compound fertilizer granules were produced in a pan granulator, and the diameter of the prills was in the range of 2.5-3.5 mm. The structural and chemical characteristics of the product, as well as its efficiency in slowing the nutrients release, were examined. In addition, a mathematical model for nutrient release from the fertilizer was applied to calculate the diffusion coefficient D of nutrients in MSOF. The degradation of the SA-g-P(AA-co-AM)/HA coating was assessed by examining the weight loss with incubation time in soil. It is demonstrated that the product prepared by a simple route with good slow-release property may be expected to have wide potential applications in modern agriculture and horticulture. PMID:21058723

  16. Multifunctional slow-release organic-inorganic compound fertilizer.

    PubMed

    Ni, Boli; Liu, Mingzhu; Lü, Shaoyu; Xie, Lihua; Wang, Yanfang

    2010-12-01

    Multifunctional slow-release organic-inorganic compound fertilizer (MSOF) has been investigated to improve fertilizer use efficiency and reduce environmental pollution derived from fertilizer overdosage. The special fertilizer is based on natural attapulgite (APT) clay used as a matrix, sodium alginate used as an inner coating and sodium alginate-g-poly(acrylic acid-co-acrylamide)/humic acid (SA-g-P(AA-co-AM)/HA) superabsorbent polymer used as an outer coating. The coated multielement compound fertilizer granules were produced in a pan granulator, and the diameter of the prills was in the range of 2.5-3.5 mm. The structural and chemical characteristics of the product, as well as its efficiency in slowing the nutrients release, were examined. In addition, a mathematical model for nutrient release from the fertilizer was applied to calculate the diffusion coefficient D of nutrients in MSOF. The degradation of the SA-g-P(AA-co-AM)/HA coating was assessed by examining the weight loss with incubation time in soil. It is demonstrated that the product prepared by a simple route with good slow-release property may be expected to have wide potential applications in modern agriculture and horticulture.

  17. Transformation of organic and inorganic compounds in trifluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Vishnetskaya, M. V.; Mel'nikov, M. Ya.

    2016-09-01

    It is established that the effectiveness of fluorine-containing acids in the transformation of organic and inorganic substrates is due to the ability of the acid to perform several functions: to accumulate relatively high concentrations of molecular oxygen, to activate it, and to serve as a hydrogen-containing medium.

  18. Expanding the analyte set of the JPL Electronic Nose to include inorganic compounds

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Homer, M. L.; Zhou, H.; Mannat, K.; Manfreda, A.; Kisor, A.; Shevade, A.; Yen, S. P. S.

    2005-01-01

    An array-based sensing system based on 32 polymer/carbon composite conductometric sensors is under development at JPL. Until the present phase of development, the analyte set has focuses on organic compounds and a few selected inorganic compounds, notably ammonia and hydrazine.

  19. Stand-off Raman instrument for detection of bulk organic and inorganic compounds

    NASA Astrophysics Data System (ADS)

    Sharma, Shiv K.; Misra, Anupam K.; Lucey, Paul G.; Lentz, Rachel C. F.; Chio, Chi Hong

    2007-04-01

    We have designed and tested a portable stand-off gated-Raman system that is capable of detecting organic and inorganic bulk chemicals at stand-off distances to 100 m during day and night time. Utilizing a single 532 nm laser pulse (~25 mJ/pulse), Raman spectra of several organic and inorganic compounds have been measured with the portable Raman instrument at a distance of 10 m in a well-illuminated laboratory. Raman spectra, obtained during a very short period of time (2 micro second), from organic compounds such as acetone, benzene, cyclohexane, 2-propanol, naphthalene, and inorganic nitrates, showed all major bands required for unambiguous chemical identification. We have also measured the Raman spectra of acetone, sulfuric acid, hydrogen peroxide (50%) aqueous solution, nitro-methane containing fuel, and nitrobenzene in glass containers with a 532 nm, 20 Hz pulsed laser excitation and accumulated the spectra with 200 to 600 laser shots (10 to 30 sec integration time) at 100 m with good signal-to-background ratio. The results of these investigations show that the stand-off Raman spectra to 100 m distance can be used to identify Raman fingerprints of both inorganic and organic compounds and could be useful for Homeland security and environmental monitoring.

  20. [Responses of rice-wheat rotation system in south Jiangsu to organic-inorganic compound fertilizers].

    PubMed

    Tian, Heng-Da; Zhang, Li; Zhang, Jian-Chao; Wang, Qiu-Jun; Xu, Da-Bing; Yibati, Halihashi; Xu, Jia-Le; Huang, Qi-Wei

    2011-11-01

    In 2006-2007, a field trial was conducted to study the effects of applying three kinds of organic-inorganic compound fertilizers [rapeseed cake compost plus inorganic fertilizers (RCC), pig manure compost plus inorganic fertilizers (PMC), and Chinese medicine residues plus inorganic fertilizers (CMC)] on the crop growth and nitrogen (N) use efficiency of rice-wheat rotation system in South Jiangsu. Grain yield of wheat and rice in the different fertilization treatments was significantly higher than the control (no fertilization). In treatments RCC, PMC and CMC, the wheat yield was 13.1%, 32.2% and 39.3% lower than that of the NPK compound fertilizer (CF, 6760 kg x hm(-2)), respectively, but the rice yield (8504-9449 kg x hm(-2)) was significantly higher than that (7919 kg x hm(-2)) of CF, with an increment of 7.4%-19.3%. In wheat season, the aboveground dry mass, N accumulation, and N use efficiency in treatments RCC, PMC, and CMC were lower than those of CF, but in rice season, these parameters were significantly higher than or as the same as CF. In sum, all the test three compound fertilizers had positive effects on the rice yield and its nitrogen use efficiency in the rice-wheat rotation system, being most significant for RCC.

  1. IUPAC-NIST Solubility Data Series. 84. Solubility of Inorganic Actinide Compounds

    NASA Astrophysics Data System (ADS)

    Hála, Jiri

    2007-12-01

    This volume presents the solubility of inorganic compounds of actinides except for carbonates, which are included in Volume 74 of this series, and nitrates, which are covered in Volume 55. Also included are solubility data of compounds such as organosulfates, phosphates, and arsenates, which are not covered in Volume 74. The predominant part of this volume covers solubility data of thorium, uranium, neptunium, and plutonium compounds. Fewer data have been published for americium compounds and very few for compounds of actinium, protactinium, and transamericium elements. The literature has been covered up to the end of 2004. Documents which remained unavailable to the editor, and could not be included in the volume are listed in the Appendix. For some compounds it was not possible to show the Chemical Abstracts registry numbers since these have not been assigned.

  2. REDUCTION OF INORGANIC COMPOUNDS WITH MOLECULAR HYDROGEN BY MICROCOCCUS LACTILYTICUS II.

    PubMed Central

    Woolfolk, C. A.

    1962-01-01

    Woolfolk, C. A. (University of Washington, Seattle). Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. II. Stoichiometry with inorganic sulfur compounds. J. Bacteriol. 84:659–668. 1962.—Extracts of Micrococcus lactilyticus (Veillonella alcalescens) are capable of utilizing molecular hydrogen for the reduction of metabisulfite (pyrosulfite) to thiosulfate via dithionite as an intermediate. The first step of metabisulfite reduction (i.e., to dithionite) is reversible, and, when dithionite is added as a substrate, there is an evolution of molecular hydrogen accompanied by the formation of equilibrium concentrations of metabisulfite. Kinetic studies indicate that dithionite may be directly reduced to thiosulfate without the formation of sulfoxylate as an intermediate. Although tetrathionate is reduced to thiosulfate with an uptake of hydrogen, polythionates probably are not formed as intermediates in the reduction of metabisulfite to thiosulfate. PMID:14001843

  3. Molten gallium flux synthesis of known thermoelectric and novel magnetic inorganic clathrate compounds: Improving thermoelectric performance

    NASA Astrophysics Data System (ADS)

    Bryan, John Daniel

    Molten gallium metal has been used as a solvent to grow large single crystals of known inorganic thermoelectric clathrates Sr8Ga 16Ge30, Ba8Ga16Ge30, and Ba8Ga16Si30. X-ray diffraction, thermal analysis, electron microprobe, Glow Discharge Mass Spectrometry, temperature dependent electrical conductivity and Seebeck coefficient measurements characterized the single crystals. The Thermoelectric performance was shown to be heavily dependent on the synthetic conditions including container choice, thermal history and impurity concentration. Inorganic Clathrates have attracted intense interest in last several years as potential new materials for thermoelectric devices. If a small to moderate increase in thermoelectric performance over the currently used materials is realized, substantial environmental and technological gains could be achieved. Since thermoelectric refrigeration modules require no moving parts or heat exchange gas (freon) they offer significant advantages over conventional refrigeration technology that tends to fail due to the finite lifetime of the pumping equipment. High temperature devices are also extremely useful for power generation in harsh unforgiving environments where excess heat is available. The thermoelectric performance, primarily at room temperature, of these compounds was found to be heavily dependent on the synthetic procedures used to obtain them. A flux growth procedure was developed to overcome the problems of the traditional melt-quench-anneal solid-state chemical approach. This procedure yielded large single crystals of the Sr8Ga16Ge 30, Ba8Ga16Ge30 and Ba8Ga 16Si30 compounds which ready facilitated their chemical and electronic study. Finally, an outlook on the application of these compounds as thermoelectric devices is given. Application of the flux method to other systems was also successful in the discovery of two new inorganic clathrate compounds: type IV Eu4Ga 8Ge16 and type V Yb8Ga16Ge14. The Eu4Ga8Ge16 compound was found to

  4. Information profiles on potential occupational hazards: Inorganic chromium compounds. Draft report (Second)

    SciTech Connect

    Not Available

    1982-02-01

    Information profiles are presented for the following inorganic chromium compounds: chromic(VI) acid, chromic(III) hydroxide, chromic(III) oxide, chromic(III) sulfate, chromic(III) sulfate (basic), chromium dioxide, potassium dichromate(VI), lead chromate, sodium-chromate(VI), sodium-dichromate(VI), and zinc-yellow-chromate(VI). Biological effects of hexavalent chromium in humans included skin ulceration, dermatitis, nasal membrane irritation and ulceration, nasal septal perforation, rhinitis, nosebleed, nephritis, liver damage, epigastric pain, pulmonary congestion and edema, and erosion and discoloration of teeth. Chromium(VI) compounds caused mutations in a variety of systems. Exposure to trivalent chromium in the work place has caused contact dermatitis and chrome ulcers. Epidemiological studies indicated respiratory carcinogenicity among workers occupationally exposed during chromate production.

  5. The search for organic substances and inorganic volatile compounds in the surface of Mars

    NASA Technical Reports Server (NTRS)

    Biemann, K.; Oro, J.; Toulmin, P., III; Orgel, L. E.; Nier, A. O.; Anderson, D. M.; Flory, D.; Diaz, A. V.; Rushneck, D. R.; Simmonds, P. G.

    1977-01-01

    A total of four Martian samples, one surface and one subsurface sample at each of the two Viking landing sites, Chryse Planitia and Utopia Planitia, have been analyzed for organic compounds by a gas chromatograph-mass spectrometer. In none of these experiments could organic material of Martian origin be detected at detection limits generally of the order of parts per billion and for a few substances closer to parts per million. The evolution of water and carbon dioxide, but not of other inorganic gases, was observed upon heating the sample to temperatures of up to 500 C. The absence of organic compounds seems to preclude their production on the planet at rates that exceed the rate of their destruction. It also makes it unlikely that living systems that behave in a manner similar to terrestrial biota exist, at least at the two Viking landing sites.

  6. COMPLEX ORGANIC AND INORGANIC COMPOUNDS IN SHELLS OF LITHIUM-RICH K GIANT STARS

    SciTech Connect

    Reza, Ramiro de la; Drake, Natalia A.; Oliveira, Isa

    2015-06-10

    Hydrocarbon organic material, as found in the interstellar medium, exists in complex mixtures of aromatic and aliphatic forms. It is considered to originate from carbon-enriched giant stars during their final stages of evolution, when very strong mass loss occurs in a few thousand years on their way to becoming planetary nebulae. We show here that the same organic compounds appear to be formed in previous stages of the evolution of giant stars, more specifically, during the first-ascending giant branch K-type stars. According to our model, this happens only when these stars are being abruptly enriched with lithium, together with the formation of a circumstellar shell with a strong mass loss during just a few thousand years. This sudden mass loss is, on average, a thousand times larger than that of normal Li-poor K giant stars. This shell would later be detached, especially when the star stops its Li enrichment and a rapid photospheric Li depletion occurs. In order to gain extra carbon-based material to form the organic hydrocarbons, as well as to explain the presence of complex inorganic compounds in these stars, we propose an interaction of these strong winds with the remaining asteroidal/cometary disks that already existed around these stars since they were dwarf A-type stars. The mechanism of interaction presented here is successful in explaining the presence of inorganic compounds; however, it is unable to produce new carbon-free atoms to form the organic hydrocarbon compounds. Finally, we discuss some suggestions and speculations that can eventually help solve the long-standing puzzle of Li-rich giants.

  7. Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms.

    PubMed

    Ni, Gaofeng; Christel, Stephan; Roman, Pawel; Wong, Zhen Lim; Bijmans, Martijn F M; Dopson, Mark

    2016-09-01

    Sulfide mineral processing often produces large quantities of wastewaters containing acid-generating inorganic sulfur compounds. If released untreated, these wastewaters can cause catastrophic environmental damage. In this study, microbial fuel cells were inoculated with acidophilic microorganisms to investigate whether inorganic sulfur compound oxidation can generate an electrical current. Cyclic voltammetry suggested that acidophilic microorganisms mediated electron transfer to the anode, and that electricity generation was catalyzed by microorganisms. A cation exchange membrane microbial fuel cell, fed with artificial wastewater containing tetrathionate as electron donor, reached a maximum whole cell voltage of 72 ± 9 mV. Stepwise replacement of the artificial anolyte with real mining process wastewater had no adverse effect on bioelectrochemical performance and generated a maximum voltage of 105 ± 42 mV. 16S rRNA gene sequencing of the microbial consortia resulted in sequences that aligned within the genera Thermoplasma, Ferroplasma, Leptospirillum, Sulfobacillus and Acidithiobacillus. This study opens up possibilities to bioremediate mining wastewater using microbial fuel cell technology.

  8. Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms.

    PubMed

    Ni, Gaofeng; Christel, Stephan; Roman, Pawel; Wong, Zhen Lim; Bijmans, Martijn F M; Dopson, Mark

    2016-09-01

    Sulfide mineral processing often produces large quantities of wastewaters containing acid-generating inorganic sulfur compounds. If released untreated, these wastewaters can cause catastrophic environmental damage. In this study, microbial fuel cells were inoculated with acidophilic microorganisms to investigate whether inorganic sulfur compound oxidation can generate an electrical current. Cyclic voltammetry suggested that acidophilic microorganisms mediated electron transfer to the anode, and that electricity generation was catalyzed by microorganisms. A cation exchange membrane microbial fuel cell, fed with artificial wastewater containing tetrathionate as electron donor, reached a maximum whole cell voltage of 72 ± 9 mV. Stepwise replacement of the artificial anolyte with real mining process wastewater had no adverse effect on bioelectrochemical performance and generated a maximum voltage of 105 ± 42 mV. 16S rRNA gene sequencing of the microbial consortia resulted in sequences that aligned within the genera Thermoplasma, Ferroplasma, Leptospirillum, Sulfobacillus and Acidithiobacillus. This study opens up possibilities to bioremediate mining wastewater using microbial fuel cell technology. PMID:27155452

  9. Immunomodulatory effect of selenosemicarbazides and selenium inorganic compounds, distribution in organs after selenium supplementation.

    PubMed

    Musik, I; Koziol-Montewka, M; Toś-Luty, S; Pasternak, K; Latuszyńska, J; Tokarska, M; Kielczykowska, M

    1999-12-01

    Antioxidant properties of selenium producing a protective barrier against free radicals play an important role in numerous metabolic and immunologic processes associated with oxidation-reduction reactions which take place during intracellular digestion of phagocyted bacteria. The aim of our study was to examine the properties of an organic compound of selenium, 4-(o-tolilo)-selenosemicarbazide of p-chlorobenzoic acid in terms of its retention in organs, effect on erythropoesis and phagocytic abilities of neutrophiles as well as antioxidant properties in neutrophiles tested with NBT test. This compound as well as inorganic sodium selenate was given to Swiss mice at the dose of 10(-3) g Se/kg for the period of 10 days. The concentrations of selenium in livers of mice treated with sodium selenate and selenosemicarbazide were found to be higher than in controls (18.7 micrograms lg-1 and 23.2 micrograms lg-1 vs. 12 micrograms lg-1, respectively). Analysis of blood cells count has shown a significant decrease in neutrophile levels in both groups treated with selenium. The influence of selenium compounds on phagocytosis and especially NBT test has been determined (3.8% of positive cells in the controls vs. 2.2% and 0.9% in the groups treated with sodium selenate and selenosemicarbazide, respectively). Our preliminary investigations suggest that selenosemicarbazides are biologically active compounds and can modify neutrophile functions.

  10. Apparent Disequilibrium of Inorganic and Organic Carbon Compounds in Serpentinizing Fluids

    NASA Astrophysics Data System (ADS)

    Robinson, K.; Shock, E.

    2014-12-01

    During serpentinization of ultramafic rocks, ferrous iron in silicates is oxidized to ferric minerals and H2O is reduced to H2. This process is accompanied by the reduction of inorganic carbon, as observed in experiments and natural systems. To test the extent to which stable and metastable equilibria are reached among aqueous organic compounds during serpentinization, we sampled water and dissolved gases from circumneutral surface pools and hyperalkaline seeps in the Samail ophiolite in the Sultanate of Oman and analyzed for various carbon constituents, including dissolved inorganic carbon, dissolved organic carbon, methane, carbon monoxide, formate, acetate, and other small organic acid anions. Measurements of temperature, pH, dissolved H2, O2, major cations, major anions, and major and trace elements were also made. The aqueous composition of the analyzed samples was speciated based on ionic equilibrium interactions in order to obtain activities for inorganic carbon species, reduced carbon species, H2, and O2. The redox disequilibria among carbon species was then assessed using data and parameters for the revised HKF equations of state. This analysis demonstrates that the carbon species in this system are out of equilibrium with respect to one another in ways that cannot be compensated by altering the abundance of the other constituents within analytical uncertainties. Specifically, there is too much formate and too little methane relative to stable and metastable equilibria. This result implies the following: 1) Methane and formate equilibrated in separate parts of the system, given that no reasonable temperature, pressure, or composition changes satisfy equilibrium with their measured abundances. 2) Methane production is kinetically inhibited, as seen in experiments. 3) Microbial methane oxidation altered the abundance of methane and formate; methane oxidation to formate or carbonate is calculated to be extremely thermodynamically favorable in these fluids.

  11. REDUCTION OF INORGANIC COMPOUNDS WITH MOLECULAR HYDROGEN BY MICROCOCCUS LACTILYTICUS I.

    PubMed Central

    Woolfolk, C. A.; Whiteley, H. R.

    1962-01-01

    Woolfolk, C. A. (University of Washington, Seattle) and H. R. Whiteley. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J. Bacteriol. 84:647–658. 1962.—Extracts of Micrococcus lactilyticus (Veillonella alcalescens) oxidize molecular hydrogen at the expense of certain compounds of arsenic, bismuth, selenium, tellurium, lead, thallium, vanadium, manganese, iron, copper, molybdenum, tungsten, osmium, ruthenium, gold, silver, and uranium, as well as molecular oxygen. Chemical and manometric data indicate that the following reductions are essentially quantitative: arsenate to arsenite, pentavalent and trivalent bismuth to the free element, selenite via elemental selenium to selenide, tellurate and tellurite to tellurium, lead dioxide and manganese dioxide to the divalent state, ferric to ferrous iron, osmium tetroxide to osmate ion, osmium dioxide and trivalent osmium to the metal, uranyl uranium to the tetravalent state, vanadate to the level of vanadyl, and polymolybdate ions to molybdenum blues with an average valence for molybdenum of +5. The results of a study of certain other hydrogenase-containing bacteria with respect to their ability to carry out some of the same reactions are also presented. PMID:14001842

  12. Trivalent metal ions based on inorganic compounds with in vitro inhibitory activity of matrix metalloproteinase 13.

    PubMed

    Wen, Hanyu; Qin, Yuan; Zhong, Weilong; Li, Cong; Liu, Xiang; Shen, Yehua

    2016-10-01

    Collagenase-3 (MMP-13) inhibitors have attracted considerable attention in recent years and have been developed as a therapeutic target for a variety of diseases, including cancer. Matrix metalloproteinases (MMPs) can be inhibited by a multitude of compounds, including hydroxamic acids. Studies have shown that materials and compounds containing trivalent metal ions, particularly potassium hexacyanoferrate (III) (K3[Fe(CN)6]), exhibit cdMMP-13 inhibitory potential with a half maximal inhibitory concentration (IC50) of 1.3μM. The target protein was obtained by refolding the recombinant histidine-tagged cdMMP-13 using size exclusion chromatography (SEC). The secondary structures of the refolded cdMMP-13 with or without metal ions were further analyzed via circular dichroism and the results indicate that upon binding with metal ions, an altered structure with increased domain stability was obtained. Furthermore, isothermal titration calorimetry (ITC) experiments demonstrated that K3[Fe(CN)6]is able to bind to MMP-13 and endothelial cell tube formation tests provide further evidence for this interaction to exhibit anti-angiogenesis potential. To the best of our knowledge, no previous report of an inorganic compound featuring a MMP-13 inhibitory activity has ever been reported in the literature. Our results demonstrate that K3[Fe(CN)6] is useful as a new effective and specific inhibitor for cdMMP-13 which may be of great potential for future drug screening applications. PMID:27542739

  13. Inorganic sulfur-nitrogen compounds: from gunpowder chemistry to the forefront of biological signaling.

    PubMed

    Cortese-Krott, Miriam M; Butler, Anthony R; Woollins, J Derek; Feelisch, Martin

    2016-04-14

    The reactions between inorganic sulfur and nitrogen-bearing compounds to form S-N containing species have a long history and, besides assuming importance in industrial synthetic processes, are of relevance to microbial metabolism; waste water treatment; aquatic, soil and atmospheric chemistry; and combustion processes. The recent discovery that hydrogen sulfide and nitric oxide exert often similar, sometimes mutually dependent effects in a variety of biological systems, and that the chemical interaction of these two species leads to formation of S-N compounds brought this chemistry to the attention of physiologists, biochemists and physicians. We here provide a perspective about the potential role of S-N compounds in biological signaling and briefly review their chemical properties and bioactivities in the context of the chronology of their discovery. Studies of the biological role of NO revealed why its chemistry is ideally suited for the tasks Nature has chosen for it; realising how the distinctive properties of sulfur can enrich this bioactivity does much to revive 'die Freude am experimentellen Spiel' of the pioneers in this field.

  14. Controlling the release of active compounds from the inorganic carrier halloysite

    NASA Astrophysics Data System (ADS)

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M.

    2014-05-01

    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles.

  15. Controlling the release of active compounds from the inorganic carrier halloysite

    SciTech Connect

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M.

    2014-05-15

    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles.

  16. [Nervous system disorders induced by occupational exposure to arsenic and its inorganic compounds: a literature review].

    PubMed

    Sińczuk-Walczak, Halina

    2009-01-01

    This paper presents a review of the effect of arsenic (As) and its inorganic compounds on the nervous system. In humans, inhalation exposure mostly occurs in occupational conditions. In the occupational environment, the most extensive exposure to this element is observed in the copper industry. Chronic As poisoning is manifested by skin and mucous membrane lesions, impairment of the nervous system in the form of disorders of psychic functions and polyneuropathies, retrobulbar neuritis, disorders of peripheral circulation and the risk for Raynaud's syndrome. Arsenic-induced polyneuropathy is usually a very serious and chronic disease. A complete recovery is observed in only 15-20% of patients. As-induced encephalopathy is an irreversible process. PMID:20187500

  17. [Nervous system disorders induced by occupational exposure to arsenic and its inorganic compounds: a literature review].

    PubMed

    Sińczuk-Walczak, Halina

    2009-01-01

    This paper presents a review of the effect of arsenic (As) and its inorganic compounds on the nervous system. In humans, inhalation exposure mostly occurs in occupational conditions. In the occupational environment, the most extensive exposure to this element is observed in the copper industry. Chronic As poisoning is manifested by skin and mucous membrane lesions, impairment of the nervous system in the form of disorders of psychic functions and polyneuropathies, retrobulbar neuritis, disorders of peripheral circulation and the risk for Raynaud's syndrome. Arsenic-induced polyneuropathy is usually a very serious and chronic disease. A complete recovery is observed in only 15-20% of patients. As-induced encephalopathy is an irreversible process.

  18. Modeling skills of pre-service chemistry teachers in predicting the structure and properties of inorganic chemistry compounds

    NASA Astrophysics Data System (ADS)

    Nursa'adah, Euis; Liliasari, Mudzakir, Ahmad

    2016-02-01

    The focus of chemistry is learning about the composition, properties, and transformations of matters. Modeling skills are required to comprehend structure and chemical composition in submicroscopic size. Modeling skills are abilities to produce chemical structure and to explain it into the macroscopic phenomenon and submicroscopic representations. Inorganic chemistry is a study of whole elements in the periodic table and their compounds, except carbon compounds and their derivatives. Knowledge about the structure and properties of chemical substances is a basic model for students in studying inorganic chemistry. Furthermore, students can design and produce to utilize materials needed in their life. This research aimed to describes modeling skills of pre-service chemistry teachers. In order, they are able to determine and synthesize useful materials. The results show that students' modeling skills were in a low level and unable connecting skill categories, even the models of inorganic compounds common. These phenomena indicated that students only describe each element when they learn inorganic chemistry. So that it will make modeling skills of students low. Later, another researches are necessary to develop learning design of inorganic chemistry based on good modeling skills of students.

  19. Condensational uptake of semivolatile organic compounds in gasoline engine exhaust onto pre-existing inorganic particles

    NASA Astrophysics Data System (ADS)

    Li, S.-M.; Liggio, J.; Graham, L.; Lu, G.; Brook, J.; Stroud, C.; Zhang, J.; Makar, P.; Moran, M. D.

    2011-01-01

    This paper presents the results of laboratory studies on the condensational uptake of gaseous organic compounds in the exhaust of a light-duty gasoline engine onto preexisting sulfate and nitrate seed particles. Significant condensation of the gaseous organic compounds in the exhaust occurs onto pre-existing inorganic particles on a time scale of 2-5 min. The amount of condensed organic mass (COM) is proportional to the seed particle mass, suggesting that the uptake is due to dissolution, not adsorption. The solubility decreases as a power function with increased dilution of the exhaust, ranging from 0.23 g/g at a dilution ratio of 81, to 0.025 g/g at a dilution ratio of 2230. The solubility increases nonlinearly with increasing concentration of the total hydrocarbons in the gas phase (THC), rising from 0.12 g/g to 0.26 g/g for a CTHC increase of 1 to 18 μg m-3, suggesting that more organics are partitioned into the particles at higher gas phase concentrations. In terms of gas-particle partitioning, the condensational uptake of THC gases in gasoline engine exhaust can account for up to 30% of the total gas+particle THC. By incorporating the present findings, regional air quality modelling results suggest that the condensational uptake of THC onto sulfate particles alone can be comparable to the primary particle mass under moderately polluted ambient conditions. These findings are important for modelling and regulating the air quality impacts of gasoline vehicular emissions.

  20. Stoichiometric modeling of oxidation of reduced inorganic sulfur compounds (Riscs) in Acidithiobacillus thiooxidans.

    PubMed

    Bobadilla Fazzini, Roberto A; Cortés, Maria Paz; Padilla, Leandro; Maturana, Daniel; Budinich, Marko; Maass, Alejandro; Parada, Pilar

    2013-08-01

    The prokaryotic oxidation of reduced inorganic sulfur compounds (RISCs) is a topic of utmost importance from a biogeochemical and industrial perspective. Despite sulfur oxidizing bacterial activity is largely known, no quantitative approaches to biological RISCs oxidation have been made, gathering all the complex abiotic and enzymatic stoichiometry involved. Even though in the case of neutrophilic bacteria such as Paracoccus and Beggiatoa species the RISCs oxidation systems are well described, there is a lack of knowledge for acidophilic microorganisms. Here, we present the first experimentally validated stoichiometric model able to assess RISCs oxidation quantitatively in Acidithiobacillus thiooxidans (strain DSM 17318), the archetype of the sulfur oxidizing acidophilic chemolithoautotrophs. This model was built based on literature and genomic analysis, considering a widespread mix of formerly proposed RISCs oxidation models combined and evaluated experimentally. Thiosulfate partial oxidation by the Sox system (SoxABXYZ) was placed as central step of sulfur oxidation model, along with abiotic reactions. This model was coupled with a detailed stoichiometry of biomass production, providing accurate bacterial growth predictions. In silico deletion/inactivation highlights the role of sulfur dioxygenase as the main catalyzer and a moderate function of tetrathionate hydrolase in elemental sulfur catabolism, demonstrating that this model constitutes an advanced instrument for the optimization of At. thiooxidans biomass production with potential use in biohydrometallurgical and environmental applications.

  1. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans.

    PubMed

    Christel, Stephan; Fridlund, Jimmy; Buetti-Dinh, Antoine; Buck, Moritz; Watkin, Elizabeth L; Dopson, Mark

    2016-04-01

    Acidithiobacillus ferrivorans is an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals. Acidithiobacillus ferrivorans obtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing of At. ferrivorans RNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by the tetH1 gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites in soxX suggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving the sat gene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknown At. ferrivorans tetrathionate metabolic pathway that is important in biomining.

  2. Genomic Analysis Unravels Reduced Inorganic Sulfur Compound Oxidation of Heterotrophic Acidophilic Acidicaldus sp. Strain DX-1

    PubMed Central

    Liu, Yuanyuan; Yang, Hongying; Zhang, Xian; Xiao, Yunhua; Guo, Xue; Liu, Xueduan

    2016-01-01

    Although reduced inorganic sulfur compound (RISC) oxidation in many chemolithoautotrophic sulfur oxidizers has been investigated in recent years, there is little information about RISC oxidation in heterotrophic acidophiles. In this study, Acidicaldus sp. strain DX-1, a heterotrophic sulfur-oxidizing acidophile, was isolated. Its genome was sequenced and then used for comparative genomics. Furthermore, real-time quantitative PCR was performed to identify the expression of genes involved in the RISC oxidation. Gene encoding thiosulfate: quinone oxidoreductase was present in Acidicaldus sp. strain DX-1, while no candidate genes with significant similarity to tetrathionate hydrolase were found. Additionally, there were genes encoding heterodisulfide reductase complex, which was proposed to play a crucial role in oxidizing cytoplasmic sulfur. Like many heterotrophic sulfur oxidizers, Acidicaldus sp. strain DX-1 had no genes encoding enzymes essential for the direct oxidation of sulfite. An indirect oxidation of sulfite via adenosine-5′-phosphosulfate was proposed in Acidicaldus strain DX-1. However, compared to other closely related bacteria Acidiphilium cryptum and Acidiphilium multivorum, which harbored the genes encoding Sox system, almost all of these genes were not detected in Acidicaldus sp. strain DX-1. This study might provide some references for the future study of RISC oxidation in heterotrophic sulfur-oxidizing acidophiles. PMID:27239474

  3. Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water.

    PubMed

    Baglieri, Andrea; Sidella, Sarah; Barone, Valeria; Fragalà, Ferdinando; Silkina, Alla; Nègre, Michèle; Gennari, Mara

    2016-09-01

    This work evaluates the possibility of cultivating Scenedesmus quadricauda and Chlorella vulgaris microalgae in wastewater from the hydroponic cultivation of tomatoes with the aim of purifying the water. S. quadricauda and C. vulgaris were also used in purification tests carried out on water contaminated by the following active ingredients: metalaxyl, pyrimethanil, fenhexamid, iprodione, and triclopyr. Fifty-six days after the inoculum was placed, a reduction was found in the concentration of nitric nitrogen, ammonia nitrogen, and soluble and total phosphorus. The decrease was 99, 83, 94, and 94 %, respectively, for C. vulgaris and 99, 5, 88, and 89 %, respectively, for S. quadricauda. When the microalgae were present, all the agrochemicals tested were removed more quickly from the water than from the sterile control (BG11). The increase in the rate of degradation was in the order metalaxyl > fenhexamid > iprodione > triclopyr > pyrimethanil. It was demonstrated that there was a real degradation of fenhexamid, metalaxyl, triclopyr, and iprodione, while in the case of pyrimethanil, the active ingredient removed from the substrate was absorbed onto the cells of the microalgae. It was also found that the agrochemicals used in the tests had no significant effect on the growth of the two microalgae. The experiment highlighted the possibility of using cultivations of C. vulgaris and S. quadricauda as purification systems for agricultural wastewater which contains eutrophic inorganic compounds such as nitrates and phosphates and also different types of pesticides. PMID:27259964

  4. Characterization of arsenic compounds formed by Daphnia magna and Tetraselmis chuii from inorganic arsenate.

    PubMed Central

    Irgolic, K J; Woolson, E A; Stockton, R A; Newman, R D; Bottino, N R; Zingaro, R A; Kearney, P C; Pyles, R A; Maeda, S; McShane, W J; Cox, E R

    1977-01-01

    Experiments to grow Tetraselmis chuii (a marine alga) and Daphnia magna in the presence of inorganic arsenate are described. The algae incorporate arsenic rather efficiently and form a lipid-soluble organic arsenic compound. T. chuii has been successfully mass cultured in a medium containing 10 ppm arsenic as arsenate. Daphnia magna was cultured in a medium containing 74As-labeled H3AsO4 and 1 ppm Na2HAsO4 expressed as arsenic. The arsenic metabolites were extracted with a chloroform-methanol solution and isolated by using column and thin-layer chromatography. TLC analysis of the metabolites revealed the presence of a 74As-containing product which migrated with phosphatidylethanolamine. This product was hydrolyzed with the phospholipases A, C, and D. The experimental results are not inconsistent with the presence of an arsenocholine moiety in the lipids. Arsenocholine, arsenobetaine, and acetylarsenocholine have been synthesized and will serve as reference substances in the chromatography experiments. The preparation of arsenocholine-containing lipids is in progress. PMID:908314

  5. Genomic Analysis Unravels Reduced Inorganic Sulfur Compound Oxidation of Heterotrophic Acidophilic Acidicaldus sp. Strain DX-1.

    PubMed

    Liu, Yuanyuan; Yang, Hongying; Zhang, Xian; Xiao, Yunhua; Guo, Xue; Liu, Xueduan

    2016-01-01

    Although reduced inorganic sulfur compound (RISC) oxidation in many chemolithoautotrophic sulfur oxidizers has been investigated in recent years, there is little information about RISC oxidation in heterotrophic acidophiles. In this study, Acidicaldus sp. strain DX-1, a heterotrophic sulfur-oxidizing acidophile, was isolated. Its genome was sequenced and then used for comparative genomics. Furthermore, real-time quantitative PCR was performed to identify the expression of genes involved in the RISC oxidation. Gene encoding thiosulfate: quinone oxidoreductase was present in Acidicaldus sp. strain DX-1, while no candidate genes with significant similarity to tetrathionate hydrolase were found. Additionally, there were genes encoding heterodisulfide reductase complex, which was proposed to play a crucial role in oxidizing cytoplasmic sulfur. Like many heterotrophic sulfur oxidizers, Acidicaldus sp. strain DX-1 had no genes encoding enzymes essential for the direct oxidation of sulfite. An indirect oxidation of sulfite via adenosine-5'-phosphosulfate was proposed in Acidicaldus strain DX-1. However, compared to other closely related bacteria Acidiphilium cryptum and Acidiphilium multivorum, which harbored the genes encoding Sox system, almost all of these genes were not detected in Acidicaldus sp. strain DX-1. This study might provide some references for the future study of RISC oxidation in heterotrophic sulfur-oxidizing acidophiles. PMID:27239474

  6. Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans.

    PubMed

    Masau, R J; Oh, J K; Suzuki, I

    2001-04-01

    Thiobacillus thiooxidans was grown at pH 5 on thiosulfate as an energy source, and the mechanism of oxidation of inorganic sulfur compounds was studied by the effect of inhibitors, stoichiometries of oxygen consumption and sulfur, sulfite, or tetrathionate accumulation, and cytochrome reduction by substrates. Both intact cells and cell-free extracts were used in the study. The results are consistent with the pathway with sulfur and sulfite as the key intermediates. Thiosulfate was oxidized after cleavage to sulfur and sulfite as intermediates at pH 5, the optimal growth pH on thiosulfate, but after initial condensation to tetrathionate at pH 2.3 where the organism failed to grow. N-Ethylmaleimide (NEM) inhibited sulfur oxidation directly and the oxidation of thiosulfate or tetrathionate indirectly. It did not inhibit the sulfite oxidation by cells, but inhibited any reduction of cell cytochromes by sulfur, thiosulfate, tetrathionate, and sulfite. NEM probably binds sulfhydryl groups, which are possibly essential in supplying electrons to initiate sulfur oxidation. 2-Heptyl-4-hydroxy-quinoline N-oxide (HQNO) inhibited the oxidation of sulfite directly and that of sulfur, thiosulfate, and tetrathionate indirectly. Uncouplers, carbonyl cyanide-m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP), inhibited sulfite oxidation by cells, but not the oxidation by extracts, while HQNO inhibited both. It is proposed that HQNO inhibits the oxidation of sulfite at the cytochrome b site both in cells and extracts, but uncouplers inhibit the oxidation in cells only by collapsing the energized state of cells, delta muH+, required either for electron transfer from cytochrome c to b or for sulfite binding.

  7. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds.

    PubMed

    Bandosz, Teresa J; Petit, Camille

    2009-10-15

    Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH(3) adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Brønsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air. PMID:19615690

  8. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds

    SciTech Connect

    Bandosz, T.J.; Petit, C.

    2009-10-15

    Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH{sub 3} adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Bronsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air.

  9. Condensational uptake of semivolatile organic compounds in gasoline engine exhaust onto pre-existing inorganic particles

    NASA Astrophysics Data System (ADS)

    Li, S.-M.; Liggio, J.; Graham, L.; Lu, G.; Brook, J.; Stroud, C.; Zhang, J.; Makar, P.; Moran, M. D.

    2011-10-01

    This paper presents the results of laboratory studies on the condensational uptake of gaseous organic compounds in the exhaust of a light-duty gasoline engine onto preexisting sulfate and nitrate seed particles. Significant condensation of the gaseous organic compounds in the exhaust occurs onto these inorganic particles on a time scale of 2-5 min. The amount of condensed organic mass (COM) is proportional to the seed particle mass, suggesting that the uptake is due to dissolution determined by the equilibrium partitioning between gas phase and particles, not adsorption. The amount of dissolution in unit seed mass, S, decreases as a power function with increased dilution of the exhaust, ranging from 0.23 g g-1 at a dilution ratio of 81, to 0.025 g g-1 at a dilution ratio of 2230. It increases nonlinearly with increasing concentration of the total hydrocarbons in the gas phase (THC), rising from 0.12 g g-1 to 0.26 g g-1 for a CTHC increase of 1 to 18 μg m-3, suggesting that more organics are partitioned into the particles at higher gas phase concentrations. In terms of gas-particle partitioning, the condensational uptake of THC gases in gasoline engine exhaust can account for up to 30% of the total gas + particle THC. The organic mass spectrum of COM has the largest fragment at m/z 44, with mass ratios of mass fragments 43/44 and 57/44 at 0.59 and 2.91, much lower than those reported for gasoline engine primary organic aerosols. The mass fragment 44/total organic mass ratio of 0.097 indicates that COM contains large oxygenated components. By incorporating the present findings, regional air quality modelling results suggest that the condensational uptake of THC onto sulfate particles alone can be comparable to the primary particle mass under moderately polluted ambient conditions. These findings are important for modelling and regulating the air quality impacts of gasoline vehicular emissions.

  10. Speciation of methyl- and butyltin compounds and inorganic tin in oysters by hydride generation atomic absorption spectrometry

    SciTech Connect

    Han, J.S.; Weber, J.H.

    1988-02-15

    Because of the toxicity of tributyltin originating from many antifouling marine paints, there is much concern about its effect on aquatic life and, particularly, on shellfish. This paper describes speciation of inorganic tin, methyltin compounds, and butyltin compounds from oyster samples. The authors validated the hydride generation atomic absorption spectrophotometric technique by demonstrating ca. 100% recovery from spiked samples and by the absence of any organotin decomposition products. Absolute detection limits (3sigma) are 1.1-2.5 ng for 0.1-g oyster samples (wet weight). This method is superior to published techniques because of careful validation, low limits of detection, and minimal sample manipulation.

  11. Comparison of selenium distribution in mice organs after the supplementation with inorganic and organic selenium compound selenosemicarbazide.

    PubMed

    Musik, Irena; Kozioł-Montewka, Maria; Toś-Luty, Sabina; Donica, Helena; Pasternak, Kazimierz; Wawrzycki, Sławomir

    2002-01-01

    Studies on selenium organ content and its function in living organisms just like studies on other elements provide interesting results although their interpretation is not always clear. The aim of our study was to determine the concentration and distribution of selenium in several organs and tissues in mice after supplementation with our newly synthesized organic compound of selenium selenosemicarbazide (4-o-tolyl-selenosemicarbazide of o-chlorobenzoic acid) as compared to the effects of the supplementation with inorganic compounds. SWISS mice were fed with both types of compounds at the dose of 10(-3) g Se per kg for the period of 10 days. The concentrations of selenium in brains of mice treated with selenocarbazide and sodium selenite were higher than in controls (38.04 micrograms g-1 and 32.00 micrograms g-1 vs. 26.18 micrograms g-1). There was a statistically significant increase in the selenium contents in lungs after supplementation with selenosemicarbazide and sodium selenite (11.81 micrograms g-1 and 6.79 micrograms g-1 vs. 1.75 micrograms g-1 in controls). We found a statistically insignificant increase in selenium contents in intercostal muscles after supplementation with inorganic selenium compounds and a statistically significant increase after the supplementation with selenosemicarbazide (10.13 micrograms g-1; 14.21 micrograms g-1 and 28.84 micrograms g-1, respectively). Our investigations lead to a conclusion that 4-o-tolyl-seleno-semicarbazide of o-chlorobenzoic acid, an organic selenium compound may be more easily absorbed than inorganic sodium IV selenite.

  12. High performance organic-inorganic perovskite-optocoupler based on low-voltage and fast response perovskite compound photodetector

    NASA Astrophysics Data System (ADS)

    Li, Dong; Dong, Guifang; Li, Wenzhe; Wang, Liduo

    2015-01-01

    Organic-inorganic hybrid photodetectors attract considerable attention because they can combine the advantages of both organic and inorganic systems. Here, a perovskite compound with a broad absorption spectrum and high power conversion efficiency is used as a photosensitive layer in an organic/inorganic hybrid heterojunction photodetector with a high and fast response. The high sensitivity exceeding 104 is obtained at bias of 0-4 V. Using a tandem organic light-emitting diode (OLED) as the light source, we fabricated an optocoupler device. The optocoupler achieved a maximum photoresponsivity of 1.0 A W-1 at 341.3 μWcm-2 at an input voltage of 6 V. The device also exhibits rapid response times of τrise ~ 20 μs and τfall ~ 17 μs as well as a high current transfer ratio (CTR) of 28.2%. After applying an amplification circuit, the CTR of the optocoupler increases to 263.3%, which is comparable with that of commercial inorganic optocouplers. The developed hybrid optocoupler thus shows great promise for use in photonics.

  13. Speciation of inorganic lead and trialkyllead compounds by flame atomic absorption spectrometry following continuous selective preconcentration from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Baena, Josefa R.; Gallego, Mercedes; Valcárcel, Miguel

    1999-12-01

    A new method for the speciation of inorganic lead and trialkyllead compounds involving the selective separation of the analytes in a continuous system and their subsequent introduction into a flame atomic absorption spectrometer was developed. The proposed flow system consists of two units. In the first unit, total inorganic lead at concentrations from 8 to 200 ng ml -1 is continuously precipitated as lead chromate and the filtrate, containing trialkyllead cations, is collected in a vessel, the precipitate then being dissolved in diluted acid and driven to the instrument. In the second unit, trimethyllead (TML +) and triethyllead (TEL +) cations at ng ml -1 levels are complexed with sodium diethyldithiocarbamate and retained on a C 60 pre-conditioned fullerene column; the mixture of both species was resolved by conditioning the sorbent column with n-hexane or isobutyl methyl ketone solvents. Detection limits of 1-2 ng ml -1 can be achieved by using a sample volume of 50 ml. Special attention was given to the reliability and robustness of the global flow injection method in assessing its applicability to both types of organolead compounds and inorganic lead present in different proportions. Trimethyllead provides the poorest results as consequence of its low adsorption constant on C 60; however, the three different types of species (Pb 2+/TML +/TEL +) can be effectively determined in proportions from 1:1:1 to 30:12:1 with relative errors less than 10%.

  14. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress.

    PubMed

    Zeng, Youling; Li, Ling; Yang, Ruirui; Yi, Xiaoya; Zhang, Baohong

    2015-01-01

    The mechanism by which plants cope with salt stress remains poorly understood. The goal of this study is to systematically investigate the contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment (OA) in the halophyte species Halostachys caspica. The results indicate that 100-200 mM NaCl is optimal for plant growth; the water content and degree of succulence of the assimilating branches are higher in this treatment range than that in other treatments; parenchyma cells are more numerous with 100 mM NaCl treatment than they are in control. Inorganic ions (mainly Na+ and Cl-) may play a more important role than organic compounds in NaCl-induced OA and are the primary contributors in OA in H. caspica. The inorganic ions and organic solutes display a tissue-dependent distribution. Na+ and Cl- are accumulated in the reproductive organs and within assimilating branches, which may represent a mechanism for protecting plant growth by way of salt ion dilution and organ abscission. Additionally, OA via increased accumulation of organic substances also protected plant growth and development. This finding provides additional evidence for plant tolerance to salinity stress which can be used for breeding new cultivars for stress tolerance. PMID:26350977

  15. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress

    PubMed Central

    Zeng, Youling; Li, Ling; Yang, Ruirui; Yi, Xiaoya; Zhang, Baohong

    2015-01-01

    The mechanism by which plants cope with salt stress remains poorly understood. The goal of this study is to systematically investigate the contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment (OA) in the halophyte species Halostachys caspica. The results indicate that 100–200 mM NaCl is optimal for plant growth; the water content and degree of succulence of the assimilating branches are higher in this treatment range than that in other treatments; parenchyma cells are more numerous with 100 mM NaCl treatment than they are in control. Inorganic ions (mainly Na+ and Cl-) may play a more important role than organic compounds in NaCl-induced OA and are the primary contributors in OA in H. caspica. The inorganic ions and organic solutes display a tissue-dependent distribution. Na+ and Cl− are accumulated in the reproductive organs and within assimilating branches, which may represent a mechanism for protecting plant growth by way of salt ion dilution and organ abscission. Additionally, OA via increased accumulation of organic substances also protected plant growth and development. This finding provides additional evidence for plant tolerance to salinity stress which can be used for breeding new cultivars for stress tolerance. PMID:26350977

  16. A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds

    NASA Astrophysics Data System (ADS)

    de Jong, Maarten; Chen, Wei; Notestine, Randy; Persson, Kristin; Ceder, Gerbrand; Jain, Anubhav; Asta, Mark; Gamst, Anthony

    2016-10-01

    Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. The approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials.

  17. A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds

    PubMed Central

    de Jong, Maarten; Chen, Wei; Notestine, Randy; Persson, Kristin; Ceder, Gerbrand; Jain, Anubhav; Asta, Mark; Gamst, Anthony

    2016-01-01

    Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. This work presents a SL framework that addresses challenges in materials science applications, where datasets are diverse but of modest size, and extreme values are often of interest. Our advances include the application of power or Hölder means to construct descriptors that generalize over chemistry and crystal structure, and the incorporation of multivariate local regression within a gradient boosting framework. The approach is demonstrated by developing SL models to predict bulk and shear moduli (K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the models is illustrated by screening for superhard materials. PMID:27694824

  18. AEROSOL INORGANICS AND ORGANICS MODEL (AIOM) WITH USER DEFINED PROPERTIES FOR ORGANIC COMPOUNDS

    EPA Science Inventory

    The Aerosol Inorganics Model (AIM) is widely used to calculate gas/liquid/solid phase equilibrium in aerosol systems containing the species H+-NH4+-SO42--NO3--H2O over a range of tropospheric ...

  19. Effects of an inorganic and two new organic compounds of selenium on morphologic blood elements and antioxidant status in mice.

    PubMed

    Musik, Irena; Kozioł-Montewka, Maria; Pasternak, Kazimierz; Toś-Luty, Sabina; Tokarska, Małgorzata

    2003-01-01

    Two organic compounds, 4-(o-tolilo-)-selenosemicarbazide of p-chlorobenzoic acid and 3-(p-chlorobenzoylamino-)-2-(o-tolylimino-)-4-phenyl-4-selenazoline were compared to the effects of the supplementation with inorganic Na2SeO3. Studies were carried out in four groups consisting of 10 female mice each of SWISS strain. Three of them were supplemented with different selenium formula at the dose of 10(-3) mg Se per g over the period of 10 day. The blood samples were collected to heparinized test tubes; the red blood and white blood count, hematocrit and haemoglobin concentration were studied. The influence of selenium compounds on phagocytosis and NBT test was determined.

  20. A Simple and Easy-To-Learn Chart of The Main Classes of Inorganic Compounds and Their Acid-Base Reactions

    ERIC Educational Resources Information Center

    Sereda, Grigoriy

    2005-01-01

    The main classes of inorganic compounds is presented to students as a two-dimensional chart and one coordinate of the chart corresponds to the acidic equivalent while the other corresponds to the number of bound water molecules. The chart is intended for those students who can assign a compound to a particular class and can be used at different…

  1. [Pollution characteristics and source of the atmospheric fine particles and secondary inorganic compounds at Mount Dinghu in autumn season].

    PubMed

    Liu, Zi-Rui; Wang, Yue-Si; Liu, Quan; Liu, Lu-Ning; Zhang, De-Qiang

    2011-11-01

    Real-time measurements of PM2.5, secondary inorganic compounds in PM2.5 (SO4(2-), NH4(+), and NO3(-)) and related gaseous pollutants were conducted at Mount Dinghu, a regional background station of the Pearl River Delta (PRD), in October and November 2008 by using a conventional R&P TEOM and a system of rapid collection of fine particles and ion chromatography (RCFP-IC). Sources and transportation of atmospheric particles during the experiment were discussed with principal component analysis and backward trajectories calculated using HYSPLIT model. The average daily mass concentrations of PM2.5 were 76.9 microg x m(-3) during sampling period, and average daily mass concentrations of SO4(2-), NH4(+), and NO3(-) were 20.0 microg x m(-3), 6.8 microg x m(-3) and 2.6 microg x m(-3), respectively. The sum of these three secondary inorganic compounds accounted for more than one third of the PM2.5 mass concentration, which had become the major source of atmospheric fine particles at Mount Dinghu. The diurnal variation of PM2.5, SO4(2-), and NH4(+) all showed a "bimodal" distribution with two peaks appeared at 10:00 am and at 16:00 pm, respectively, whereas NO3(-s) howed "single peak" distribution peaked at 10:00 am. The mass concentrations of SO4(2-) in PM2.5 had the similar diurnal variation with that of SO2, SO4(2-) in PM2.5 was mainly transformed from SO2, whereas NO3(-) showed difference diurnal variation with that of NO2, and the second conversion rate of NO2 was far lower than that of SO2. NH4(+) in PM2.5 existed mainly in the form of sulfate, nitrate and chloride. Both of principal component analysis and back trajectory analysis showed that the variations of PM2.5 and secondary inorganic compounds at Mount Dinghu were mainly affected by the long-range transport air mass passed over Guangzhou, Huizhou and other highly industrialized areas which carried air pollutants to the observation site, at the same time local sulfate originated from secondary formation also

  2. Critical review of the chemistry and thermodynamics of technetium and some of its inorganic compounds and aqueous species

    SciTech Connect

    Rard, J.A.

    1983-09-15

    Chemical and thermodynamic data for Technetium (Tc) and some of its inorganic compounds and aqueous species are reviewed here. Major emphasis is given to systems with potential geochemical applications, especially the geochemistry of radioactive waste disposal. Compounds considered include oxides, hydroxides, hydrates oxides, halides, oxyhalides, double halides, and sulfides. The aqueous species considered include those in both noncomplexing media (pertechnetates, technetates, aquo-ions, and hydrolyzed cations) and complexing media (halides, sulfates, and phosphates). Thermodynamic values are recommended for specific compounds and aqueous ions when reliable experimental data are available. Where thermodynamic data are inadequate or unavailable, the chemistry is still discussed to provide information about what needs to be measured, and which chemistry needs to be clarified. A major application of these thermodynamic data will be for chemical equilibrium modeling and for construction of potential-pH diagrams for aqueous solutions. Unfortunately, the present lack of data precludes such calculations for complexing aqueous media. The situation is much better for noncomplexing aqueous media, but the chemistry and thermodynamics of cationic Tc(V) species and hydrolyzed Tc(III) species are poorly understood. 240 references, 6 tables.

  3. Bioavailability of magnesium from inorganic and organic compounds is similar in rats fed a high phytic acid diet.

    PubMed

    Bertinato, Jesse; Plouffe, Louise J; Lavergne, Christopher; Ly, Catherine

    2014-01-01

    A large section of the North American population is not meeting recommended intakes for magnesium (Mg). Supplementation and consumption of Mg-fortified foods are ways to increase intake. Currently, information on Mg bioavailability from different compounds and their efficacy in improving Mg status is scant. This study compared the relative ability of inorganic and organic Mg compounds to preserve the Mg status of rats when fed at amounts insufficient to retain optimal Mg status. Male Sprague-Dawley rats (n=12/diet group) were fed one of eight test diets supplemented with phytic acid (5 g/kg diet) and low levels of Mg (155 mg elemental Mg/kg diet) from Mg oxide, Mg sulphate, Mg chloride, Mg citrate, Mg gluconate, Mg orotate, Mg malate or ethylenediaminetetraacetic acid disodium Mg salt for five weeks. Rats were also fed three control diets that did not contain added phytic acid but were supplemented with 500 (NMgO, normal), 155 (LMgO, low) or 80 (DMgO, deficient) mg of Mg per kg diet as Mg oxide. Mg concentrations in femur, serum and urine showed a graded decrease in rats fed the control diets with lower Mg. Mg concentrations did not differ (P≥0.05) between rats fed the different test diets. Addition of phytic acid to the diet did not affect the Mg status of the rats. The results indicate that any differences in the Mg bioavailability of the compounds were small and physiologically irrelevant.

  4. Crystal structure of an organic–inorganic hybrid compound based on morpholinium cations and a β-type Anderson polyanion

    PubMed Central

    Lukianova, Tamara J.; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-01-01

    A new organic–inorganic hybrid compound, penta­morpholinium hexa­hydrogen hexa­molybdoferrate(III) sulfate 3.5-hydrate, (C4H10NO)5[FeIII(OH)6Mo6O18](SO4)·3.5H2O, was obtained from an aqueous solution. The polyoxidomolybdate (POM) anion is of the Anderson β-type with a central FeIII ion. Three of five crystallographically independent morpholinium cations are disordered over two sets of sites. An intricate network of inter­molecular N—H⋯O and O—H⋯O inter­actions between cations, POMs, sulfate anions and non-coordinating water mol­ecules creates a three-dimensional network structure. PMID:26594507

  5. Crystal structure of an organic-inorganic hybrid compound based on morpholinium cations and a β-type Anderson polyanion.

    PubMed

    Lukianova, Tamara J; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-11-01

    A new organic-inorganic hybrid compound, penta-morpholinium hexa-hydrogen hexa-molybdoferrate(III) sulfate 3.5-hydrate, (C4H10NO)5[Fe(III)(OH)6Mo6O18](SO4)·3.5H2O, was obtained from an aqueous solution. The polyoxidomolybdate (POM) anion is of the Anderson β-type with a central Fe(III) ion. Three of five crystallographically independent morpholinium cations are disordered over two sets of sites. An intricate network of inter-molecular N-H⋯O and O-H⋯O inter-actions between cations, POMs, sulfate anions and non-coordinating water mol-ecules creates a three-dimensional network structure.

  6. Remote Monitoring, Inorganic Monitoring

    EPA Science Inventory

    This chapter provides an overview of applicability, amenability, and operating parameter ranges for various inorganic parameters:this chapter will also provide a compilation of existing and new online technologies for determining inorganic compounds in water samples. A wide vari...

  7. Composition and leaching of construction and demolition waste: inorganic elements and organic compounds.

    PubMed

    Butera, Stefania; Christensen, Thomas H; Astrup, Thomas F

    2014-07-15

    Thirty-three samples of construction and demolition waste collected at 11 recycling facilities in Denmark were characterised in terms of total content and leaching of inorganic elements and presence of the persistent organic pollutants PCBs and PAHs. Samples included (i) "clean" (i.e. unmixed) concrete waste, (ii) mixed masonry and concrete, (iii) asphalt and (iv) freshly cast concrete cores; both old and newly generated construction and demolition waste was included. PCBs and PAHs were detected in all samples, generally in non-critical concentrations. Overall, PAHs were comparable to background levels in urban environments. "Old" and "new" concrete samples indicated different PCB congener profiles and the presence of PCB even in new concrete suggested that background levels in raw materials may be an issue. Significant variability in total content of trace elements, even more pronounced for leaching, was observed indicating that the number of analysed samples may be critical in relation to decisions regarding management and utilisation of the materials. Higher leaching of chromium, sulphate and chloride were observed for masonry-containing and partly carbonated samples, indicating that source segregation and management practices may be important. Generally, leaching was in compliance with available leaching limits, except for selenium, and in some cases chromium, sulphate and antimony. PMID:24910908

  8. [Effects of Organic and Inorganic Slow-Release Compound Fertilizer on Different Soils Microbial Community Structure].

    PubMed

    Wang, Fei; Yuan, Ting; Gu, Shou-kuan; Wang, Zheng-yin

    2015-04-01

    As a new style fertilizer, slow-control release fertilizer had been an important subject in recent years, but few researches were about soil microbial community structure diversity. Phospholipid fatty acid method was used to determined the microbial community structure diversity of acid soil and slight alkaline soil applied with slow-release compound fertilizer (SRF), chemical fertilizer (CF) and common compound fertilizer (CCF) at the 10th, 30th, 60th and 90th day under the constant temperature incubation condition. Results indicated that various bacteria (i. e 13:0, i14:0,14:0, i15:0, a15:0, i16:0, 16:12OH, 16:1w5c,16:0, i17:0, a17:0, cy17:0, 17:02OH, i18:0, 18:0 and cy19:0w8c), two actinomycetes (10Me17:0 and 10Me18:0) and only one fungus (18:1 w9c) were detected in two soils after applying slow-release compound fertilizer and other fertilizers during the whole incubation period. SRF could significantly increase the fungi PLFA content by 8.3% and 6.8% at the early stage (the 10th day and 30th day) compared with CF, as well as significantly increase by 22.7% and 17.1% at the late stage (the 60th day and 90th day) compared with CCF in acid soil. SRF significantly increased bacteria, fungi and gram positive bacteria compared with CF and CCF in incubation period (except at the 30th day) in slight alkaline soil. SRF could significantly improve the ratio of normal saturated fatty acid and monounsaturated fatty acid at the 30th day and 90th days in acid soil compared with no fertilizer (CK), CF and CCF, while as to slight alkaline soil, SRF was significantly greater than that of CK, CF and CCF only at the 60th day. SRF could significantly decrease the ratio of iso PLFA and anteiso PLFA in acid soil (in 30-90 days) and slight alkaline soil (in 10-60 days). For two soils PLFA varieties, contents and ratios of microbial community, slow-release compound fertilizer increased soil microbial PLFA varieties and contents, and decreased the influence to microbial survival

  9. Cancer and occupational exposure to inorganic lead compounds: a meta-analysis of published data.

    PubMed Central

    Fu, H; Boffetta, P

    1995-01-01

    OBJECTIVES--To review and summarise the epidemiological evidence on the carcinogenicity of occupational exposure to inorganic lead. METHODS--Case-control and cohort studies were reviewed and combined for meta-analysis. Fixed and random effect methods were used to estimate the summary effects. RESULTS--The combined results show a significant excess risk of overall cancer, stomach cancer, lung cancer, and bladder cancer, with relative risk ratios (RRs) and 95% confidence intervals (95% CIs) in the meta-analysis of 1.11 (1.05-1.17), 1.33 (1.18-1.49), 1.29 (1.10-1.50), and 1.41 (1.16-1.71) respectively. The RR (95% CI) for kidney cancer was also high, but did not reach significance (1.19 (0.96-1.48)). A separate analysis of studies of heavily exposed workers provided slightly increased RRs for cancers of the stomach (1.50) and lung (1.42). CONCLUSIONS--The findings from the workers with heavy exposure to lead provided some evidence to support the hypothesis of an association between stomach and lung cancer and exposure to lead. The main limitation of the present analysis is that the excess risks do not take account of potential confounders, because little information was available for other occupational exposures, smoking, and dietary habits. To some extent, the risk of lung cancer might be explained by confounders such as tobacco smoking and exposure to other occupational carcinogens. The excess risk of stomach cancer may also be explained, at least in part, by non-occupational factors. For bladder and kidney cancers, the excess risks are only suggestive of a true effect because of possible publication bias. PMID:7757170

  10. Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Seko, Atsuto; Shitara, Kazuki; Nakayama, Keita; Tanaka, Isao

    2016-03-01

    Machine learning techniques are applied to make prediction models of the G0W0 band gaps for 270 inorganic compounds using Kohn-Sham (KS) band gaps, cohesive energy, crystalline volume per atom, and other fundamental information of constituent elements as predictors. Ordinary least squares regression (OLSR), least absolute shrinkage and selection operator, and nonlinear support vector regression (SVR) methods are applied with two levels of predictor sets. When the KS band gap by generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) or modified Becke-Johnson (mBJ) is used as a single predictor, the OLSR model predicts the G0W0 band gap of randomly selected test data with the root-mean-square error (RMSE) of 0.59 eV. When KS band gap by PBE and mBJ methods are used together with a set of predictors representing constituent elements and compounds, the RMSE decreases significantly. The best model by SVR yields the RMSE of 0.24 eV. Band gaps estimated in this way should be useful as predictors for virtual screening of a large set of materials.

  11. Inorganic-organic hybrid compounds: Synthesis and characterization of three new metal phosphonates with similar characteristic structural features

    SciTech Connect

    Bauer, Sebastian; Stock, Norbert . E-mail: stock@ac.uni-kiel.de

    2006-01-15

    The phosphonocarboxylic acid H(HO{sub 3}PCH{sub 2}){sub 2}NH-CH{sub 2}C{sub 6}H{sub 4}-COOH (H{sub 5} L ) was synthesized and characterized by NMR- and IR-spectroscopy, thermogravimetric (TG) analysis and single-crystal X-ray diffraction. Reactions of H{sub 5} L with samarium(III) chloride and calcium(II) chloride resulted in three new compounds, Sm[(O{sub 3}PCH{sub 2}){sub 2}NH-CH{sub 2}C{sub 6}H{sub 4}-COOH].H{sub 2}O (1), Ca[H(O{sub 3}PCH{sub 2}){sub 2}NH-CH{sub 2}C{sub 6}H{sub 4}-COOH].H{sub 2}O (2), and Ca[(HO{sub 3}PCH{sub 2}){sub 2}NH-CH{sub 2}C{sub 6}H{sub 4}-COOH]{sub 2}.4H{sub 2}O (3). The single-crystal structure determination of the title compounds reveals that in H{sub 5} L as well as in compounds 1, 2, and 3 zwitterions are present. Within the M-O building units of the metal phosphonates we observed a different degree of dimensionality, depending on the oxidation state of the metal ion and the synthesis conditions. In 1, one-dimensional chains of edge-sharing SmO{sub 8} polyhedra are observed while in 2, isolated units of edge-sharing CaO{sub 6} octahedra and in 3 isolated CaO{sub 6} octahedra are observed. However, looking at the organic part, the rigid phenyl carboxylic acid moieties arrange in a 'zipper-like' fashion and hydrogen bonding plays an important role in the stabilization of the crystal structure. The title compounds were further characterized by IR spectroscopy and TG analysis. Additionally, the thermal stability of 1 was investigated by temperature-dependent X-ray diffraction. -- Graphical abstract: Hydrothermal reactions of the phosphonocarboxylic acid H(HO{sub 3}PCH{sub 2}){sub 2}NH-CH{sub 2}C{sub 6}H{sub 4}-COOH with Sm{sup 3+} and Ca{sup 2+} salts has led to three new inorganic-organic hybrid compounds. All crystal structures contain phosphonate zwitterions and have a layer-like arrangement. The rigid organic groups arrange in a 'zipper-like' fashion and hydrogen bonding plays an important role in the stabilization of the crystal

  12. Health and safety guide for inorganic compounds and metals used in the fabrication of superconductive alloys

    SciTech Connect

    Arnold, S.D.; Talley, G.M.

    1990-04-25

    This health and safety guide was written to satisfy two objectives: to summarize the toxicity of metals and alloys used in superconductivity for the benefit of those who work with these materials, and to summarize and describes the basic principles of a highly technical field from a health and safety point-of-view for the benefit of health professionals. The guide begins with a profile of the superconductivity industry, including a list of current and potential applications, a literature review of the market potential, and summary of the current industry status. The body of the paper provides a toxicity and hazard summary for 50 metals, alloys and metal oxides used in superconductivity. The toxicity and hazard summary for all 50 compounds includes: occupational exposure limits, explosiveness and flammability potential, LD{sub 50}'s, chemical and physical properties, incompatibilities and reactivities, recommended personal protective equipment, symptoms of acute and chronic exposure, target organs and toxic effects, and steps for emergency first aid. Finally, a discussion of general occupational hygiene principles is provided, with emphasis on how these principles apply to the unique field of superconductivity. 41 refs.

  13. Effects of inorganic sulfur addition on fluxes of volatile sulfur compounds in Sphagnum peatlands

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Short and long-term impacts of increased S deposition on fluxes of volatile S compounds (VSC's) from Sphagnum peatlands were investigated in an artificially acidified (sulfuric and nitric acids) poor fen (Mire 239) at the Experimental Lakes Area (ELA), Ontario, Canada. Additional experiments were conducted in a poor fen (Sallie's Fen) in Barrington, NH, USA. At Mire 239, emissions of VSC's were monitored, before and after acidification, at control (unacidified) and experimental sections within two major physiographic zones of the mire (oligotrophic and minerotrophic). The experimental segments of the mire received S amendments since 1983, in amounts equivalent to the annual S deposition in the highest polluted areas of Canada and U.S. Dimethyl sulfide (DMS) was the predominant VSC released from the mire and varied largely with time and space (i.e., from 2.5 to 127 nmol/m(sup -2)h(sup -1)). Sulfur addition did not affect DMS emissions in a period of hours to a few days, although it stimulated production of DMS and MSH in the anoxic surficial regions of the peat. DMS emissions in the experimental oligotrophic segment of the mire was approximately 3-fold greater than in the control oligotrophic segment, and approximately 10-fold greater than in the minerotrophic zones. These differences could be due to a combination of differences in types of vegetation, nutritional status, and S input. At Sallie's Fen, DMS fluxes were approximately 8 times higher from a Sphagnum site than from a bare peat site. Fluxes of VSC's were not significantly affected by sulfate amendments at both sites, while DMS and MSH concentrations increases greatly with time in the top 10 cm of the peat column. Our data indicated that although Sphagnum is not the direct source of DMS released from Sphagnum peatlands, it might play a role in regulating DMS emissions to the atmosphere.

  14. Experimental and theoretical study of AC electrical conduction mechanisms of Organic-inorganic hybrid compound Bis (4-acetylanilinium) tetrachlorocadmiate (II)

    NASA Astrophysics Data System (ADS)

    Jellibi, A.; Chaabane, I.; Guidara, K.

    2016-06-01

    A new organic-inorganic bis (4-acetylaniline) tetrachlorocadmate [C8H10NO]2[CdCl4] can be obtained by slow evaporation at room temperature and characterized by X-ray powder diffraction. It crystallized in an orthorhombic system (Cmca space group). The material electrical properties were characterized by impedance spectroscopy technique in the frequency range from 209 Hz-5 MHz and temperature 413 to 460 K. Besides, the impedance plots show semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to interpret the impedance results. The circuits consist of the parallel combination of a resistance (R), capacitance (C) and fractal capacitance (CPE). The variation of the exponent s as a function of temperature suggested that the conduction mechanism in Bis (4-acetylanilinium) tetrachlorocadmiate compound is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model below 443 K and the small polaron tunneling (SPT) model above 443 K.

  15. Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism.

    PubMed

    Treiman, Allan H

    2003-01-01

    Purported biogenic features of the ALH84001 Martian meteorite (the carbonate globules, their submicron magnetite grains, and organic matter) have reasonable inorganic origins, and a comprehensive hypothesis is offered here. The carbonate globules were deposited from hydrothermal water, without biological mediation. Thereafter, ALH84001 was affected by an impact shock event, which raised its temperature nearly instantaneously to 500-700K, and induced iron-rich carbonate in the globules to decompose to magnetite and other minerals. The rapidity of the temperature increase caused magnetite grains to nucleate in abundance; hence individual crystals were very small. Nucleation and growth of magnetite crystals were fastest along edges and faces of the precursor carbonate grains, forcing the magnetite grains to be platy or elongated, including the "truncated hexa-octahedra" shape. ALH84001 had formed at some depth within Mars where the lithostatic pressure was significantly above that of Mars' surface. Also, because the rock was at depth, the impact heat dissipated slowly. During this interval, magnetite crystals approached chemical equilibria with surrounding minerals and gas. Their composition, nearly pure Fe(3)O(4), reflects those of equilibria; elements that substitute into magnetite are either absent from iron-rich carbonate (e.g., Ti, Al, Cr), or partitioned into other minerals during magnetite formation (Mg, Mn). Many microstructural imperfections in the magnetite grains would have annealed out as the rock cooled. In this post-shock thermal regime, carbon-bearing gas from the decomposition of iron carbonates reacted with water in the rock (or from its surroundings) to produce organic matter via Fischer-Tropschlike reactions. Formation of such organic compounds like polycyclic aromatic hydrocarbons would have been catalyzed by the magnetite (formation of graphite, the thermochemically stable phase, would be kinetically hindered). PMID:14577885

  16. Submicron Magnetite Grains and Carbon Compounds in Martian Meteorite ALH84001: Inorganic, Abiotic Formation by Shock and Thermal Metamorphism

    NASA Astrophysics Data System (ADS)

    Treiman, Allan H.

    2003-06-01

    Purported biogenic features of the ALH84001 Martian meteorite (the carbonate globules, their submicron magnetite grains, and organic matter) have reasonable inorganic origins, and a comprehensive hypothesis is offered here. The carbonate globules were deposited from hydrothermal water, without biological mediation. Thereafter, ALH84001 was affected by an impact shock event, which raised its temperature nearly instantaneously to 500-700K, and induced iron-rich carbonate in the globules to decompose to magnetite and other minerals. The rapidity of the temperature increase caused magnetite grains to nucleate in abundance; hence individual crystals were very small. Nucleation and growth of magnetite crystals were fastest along edges and faces of the precursor carbonate grains, forcing the magnetite grains to be platy or elongated, including the "truncated hexa-octahedra" shape. ALH84001 had formed at some depth within Mars where the lithostatic pressure was significantly above that of Mars' surface. Also, because the rock was at depth, the impact heat dissipated slowly. During this interval, magnetite crystals approached chemical equilibria with surrounding minerals and gas. Their composition, nearly pure Fe3O4, reflects those of equilibria; elements that substitute into magnetite are either absent from iron-rich carbonate (e.g., Ti, Al, Cr), or partitioned into other minerals during magnetite formation (Mg, Mn). Many microstructural imperfections in the magnetite grains would have annealed out as the rock cooled. In this post-shock thermal regime, carbon-bearing gas from the decomposition of iron carbonates reacted with water in the rock (or from its surroundings) to produce organic matter via Fischer-Tropschlike reactions. Formation of such organic compounds like polycyclic aromatic hydrocarbons would have been catalyzed by the magnetite (formation of graphite, the thermochemically stable phase, would be kinetically hindered).

  17. Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism.

    PubMed

    Treiman, Allan H

    2003-01-01

    Purported biogenic features of the ALH84001 Martian meteorite (the carbonate globules, their submicron magnetite grains, and organic matter) have reasonable inorganic origins, and a comprehensive hypothesis is offered here. The carbonate globules were deposited from hydrothermal water, without biological mediation. Thereafter, ALH84001 was affected by an impact shock event, which raised its temperature nearly instantaneously to 500-700K, and induced iron-rich carbonate in the globules to decompose to magnetite and other minerals. The rapidity of the temperature increase caused magnetite grains to nucleate in abundance; hence individual crystals were very small. Nucleation and growth of magnetite crystals were fastest along edges and faces of the precursor carbonate grains, forcing the magnetite grains to be platy or elongated, including the "truncated hexa-octahedra" shape. ALH84001 had formed at some depth within Mars where the lithostatic pressure was significantly above that of Mars' surface. Also, because the rock was at depth, the impact heat dissipated slowly. During this interval, magnetite crystals approached chemical equilibria with surrounding minerals and gas. Their composition, nearly pure Fe(3)O(4), reflects those of equilibria; elements that substitute into magnetite are either absent from iron-rich carbonate (e.g., Ti, Al, Cr), or partitioned into other minerals during magnetite formation (Mg, Mn). Many microstructural imperfections in the magnetite grains would have annealed out as the rock cooled. In this post-shock thermal regime, carbon-bearing gas from the decomposition of iron carbonates reacted with water in the rock (or from its surroundings) to produce organic matter via Fischer-Tropschlike reactions. Formation of such organic compounds like polycyclic aromatic hydrocarbons would have been catalyzed by the magnetite (formation of graphite, the thermochemically stable phase, would be kinetically hindered).

  18. Crystal structure, vibrational studies and optical properties of a new organic-inorganic hybrid compound (C₁₀H₂₈N₄)CuCl₅Cl⋅4H₂O.

    PubMed

    Kessentini, A; Belhouchet, M; Suñol, J J; Abid, Y; Mhiri, T

    2015-01-01

    A new organic-inorganic hybrid material, 1,4-bis(3-ammoniumpropyl) piperazinium pentachloridocuprate(II) chloride tetrahydrate [(C₁₀H₂₈N₄)CuCl₅Cl⋅4H₂O], has been synthesized and characterized by X-ray diffraction, UV-visible absorption, Infrared and Raman spectroscopy. The compound crystallizes in the orthorhombic system and Pnma space group with a=8.18 (3)Å, b=10.96 (5)Å, c=21.26 (9)Å, V=2254.3 (15)Å(3). In this structure, the Cu(2+) ion, surrounded by five chlorides, adopts the square pyramidal coordination geometry. The structure of this compound consists of tetraprotonated 1,4-bis(3-ammoniumpropyl) piperazinium cations and the anionic sublattice is built up of isolated, square pyramid [CuCl₅](3)(-) units, chloride ion Cl(-) and water molecules connected with each other by hydrogen bonds. Organic and inorganic entities are interconnected by means of hydrogen bonding contacts [NH⋯O(Cl), O(W)H⋯Cl and O(W)H⋯O]. Furthermore, the room temperature IR and Raman spectra of the title compound were recorded and analyzed on the basis of literature data. The optical study was also investigated by UV-Vis absorption. In fact, the organic-inorganic hybrid crystal thin film can be easily prepared by spin-coating method from the ethanol solution of the (C₁₀H₂₈N₄)CuCl₅Cl⋅4H₂O hybrid compound and it showed absorptions characteristics of CuCl based layered compounds centered at 275 and 374 nm.

  19. Development of an online method for quantification of maritime molecular iodine and other gaseous iodine containing inorganic compounds

    NASA Astrophysics Data System (ADS)

    Götz, Sven; Hoffmann, Thorsten

    2014-05-01

    The atmospheric chemistry of iodine is important in multiple ways. The focus lies on the ability to influence the oxidizing capacity of the atmosphere, i.e. by destruction of ozone, and the formation of iodine oxide particles (IOP), i.e. the influence on condensation nuclei (CCN). Using a variation of techniques, like differential optical absorption spectroscopy (DOAS), laser-induced fluorescence (LIF), inductively coupled plasma mass spectrometry (ICP-MS) and atmospheric pressure chemical ionization with tandem mass spectrometry (APCI-MS/MS), the reactive iodine species of atomic iodine (I), molecular iodine (I2), iodine monoxide (IO) and iodine dioxide (OIO) have all been detected in the atmosphere from Antarctica to the equatorial marine boundary layer (MBL). In the past few years there have been active research on IO, especially after revealing significant levels in open ocean measurements, OIO and higher iodine oxides. In addition to atmospheric measurements, significant developments in laboratory kinetics, photochemistry and heterogeneous chemistry of iodine species have been accomplished. [1] Here we introduce an online-method for detecting gaseous molecular iodine and other gaseous iodine-containing inorganic compounds such as HOI, which is a further development of the technique used by Carpenter et al. [2]. The method is based on selective photolytic dissociation of the analytes, followed by oxidization and particle formation of the iodine compounds. The particles are than size-segregated and detected by a scanning mobility particle sizer (SMPS) system. Initial IOP forming is performed in a reaction chamber providing specific wavelengths according to corresponding bond dissociation thresholds. Atmospheric samples can also be pre concentrated by diffusion denuder (with α Cyclodextrin modified and immobilised silica coating) [3-5] and afterwards released by thermodesorption. First attempts of quantification are carried out by external calibration using an

  20. Controllable Assembly of Vanadium-Containing Polyoxoniobate-Based Three-Dimensional Organic-Inorganic Hybrid Compounds and Their Photocatalytic Properties.

    PubMed

    Hu, Jufang; Wang, Yin; Zhang, Xinning; Chi, Yingnan; Yang, Song; Li, Jikun; Hu, Changwen

    2016-08-01

    The controllable synthesis of two vanadium-containing polyoxoniobate-based three-dimensional organic-inorganic hybrid compounds, [Co(pn)2]4[HPNb10V(IV)2O40(V(IV)O)4]·17H2O (1) and [Co(pn)2]5[PNb12O40(V(IV)O)6](OH)7·15H2O (2), where pn = 1,2-diaminopropane, is realized by changing the hydrothermal temperature or adding N-(aminoethyl)piperazine as an additive. Both compounds 1 and 2 are structurally characterized by single-crystal/powder X-ray diffraction and IR and X-ray photoelectron spectroscopy. Compound 1 features a new divanadium-substituted Keggin polyoxoniobate capped by four vanadyl groups, and the polyanion in 2 exhibits the highest coordination number (10-connected) in polyoxoniobate chemistry. Moreover, the photocatalytic activities of 1 and 2 for hydrogen evolution are preliminarily assessed. PMID:27442602

  1. Inorganic Materials

    NASA Astrophysics Data System (ADS)

    Černý, Radovan

    The separation of compounds by inorganic/organic boundary is of less importance for the structure determination by diffraction methods. More important for the diffraction is how the atoms build up larger building units and the crystal itself. A molecular/non-molecular boundary is therefore relevant for the choice of a structure determination method. Non-molecular compounds - also called extended solids - are constructed by bonds that extend "infinitely" in three dimensions through a crystal. These non-molecular crystals usually crystallize with higher symmetries, and atoms often occupy special Wyckoff positions. A review of actual methodology is given first, and then highlights and pitfalls of structure determination from powder diffraction, its problems and their solutions are shown and discussed using selected examples.

  2. Concentrations of selected trace inorganic constituents and synthetic organic compounds in the water-table aquifers in the Memphis area, Tennessee

    USGS Publications Warehouse

    McMaster, B.W.; Parks, William Scott

    1988-01-01

    Water quality samples for analysis of selected trace inorganic constituents and synthetic organic compounds were collected from 29 private or observation wells in alluvium and fluvial deposits of Quaternary and Tertiary Age. The alluvium and fluvial deposits are the water table aquifers in the Memphis area. In addition, nine wells were installed in Memphis Light, Gas and Water Division well fields so that samples could be collected and analyzed to characterize the quality of water in the fluvial deposits at these well fields. Samples from seven of these wells (two were dry) were analyzed for major constituents and properties of water as well as for selected trace inorganic constituents and synthetic organic compounds. Analyses of the water from most of the 36 wells sampled indicated ranges in concentration values for the trace inorganic constituents that agreed with those previously known, although some new maximum values were established. The analysis of water from four wells indicated that the water is or may be contaminated. Concentrations of barium (1,400 micrograms/L -- ug/L), strontium (1,100 ug/L), and arsenic (15 ug/L), along with specific conductance (1,420 microsiemens/centimeter--us/cm) were in water from one well in the alluvium. Low concentrations (0.02 to 0.04 ug/L) of the pesticides aldrin, DDT, endosulfan, and perthane were present in water from two wells in the fluvial deposits. Water from one of these wells also contained 1,1,1 trichloroethane (4.4 ug/L). Analysis of water from another well in the fluvial deposits indicated values for specific conductance (1,100 uS/cm), alkalinity (508 milligrams per liter -- mg/L -- as CaCO3), hardness (550 mg/L as CaCO3), chloride (65 mg/L), and barium (240 ug/L) that are high for water from the fluvial deposits. (USGS)

  3. EDTA disodium zinc has superior bioavailability compared to common inorganic or chelated zinc compounds in rats fed a high phytic acid diet.

    PubMed

    Bertinato, Jesse; Sherrard, Lindsey; Plouffe, Louise J

    2012-10-01

    Different zinc (Zn) compounds have unique properties that may influence the amount of Zn absorbed particularly in the presence of phytic acid (PA), a common food component that binds Zn and decreases its bioavailability. In this study, 30-day-old male rats (n=12/diet group) were fed diets supplemented with PA (0.8%) and low levels (8mg Zn/kg diet) of inorganic (Zn oxide, Zn sulphate) or chelated (Zn gluconate, Zn acetate, Zn citrate, EDTA disodium Zn, Zn orotate) Zn compounds for 5 weeks. Two control groups were fed diets supplemented with low or normal (30mg Zn/kg diet) Zn (as Zn oxide) without added PA. Control rats fed the low Zn oxide diet showed depressed Zn status. Addition of PA to this diet exacerbated the Zn deficiency in rats. Growth (body weight gain and femur length) and Zn concentrations in plasma and tissues were similar in rats fed Zn oxide, Zn sulphate, Zn gluconate, Zn acetate, Zn citrate or Zn orotate. Rats fed EDTA disodium Zn showed enhanced growth compared to rats fed Zn oxide or Zn gluconate and had higher Zn concentrations in plasma and femur compared to rats fed all other Zn compounds. Only the haematological profile of rats fed EDTA disodium Zn did not differ from control rats fed normal Zn. These data indicate that in rats fed a high PA diet, bioavailability of commonly used inorganic or chelated Zn compounds does not differ appreciably, but Zn supplied as an EDTA disodium salt has superior bioavailability.

  4. Ambient cure polyimide foams prepared from aromatic polyisocyanates, aromatic polycarboxylic compounds, furfuryl alcohol, and a strong inorganic acid

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor); Riccitiello, Salvatore R. (Inventor); Hamermesh, Charles L. (Inventor)

    1980-01-01

    Flame and temperature resistant polyimide foams are prepared by the reaction of an aromatic dianhydride, e.g., pyromellitic dianhydride, with an aromatic polyisocyanate, e.g., polymethylene polyphenylisocyanate (PAPI) in the presence of an inorganic acid and a lower molecular weight alcohol, e.g., dilute sulfuric acid or phosphoric acid and furfuryl alcohol. The exothermic reaction between the acid and the alcohol provides the heat necessary for the other reactants to polymerize without the application of any external heat. Such mixtures, therefore, are ideally suited for in situ foam formation, especially where the application of heat is not practical or possible.

  5. First-Principles Analysis of Defect Thermodynamics and Ion Transport in Inorganic SEI Compounds: LiF and NaF.

    PubMed

    Yildirim, Handan; Kinaci, Alper; Chan, Maria K Y; Greeley, Jeffrey P

    2015-09-01

    The formation mechanism and composition of the solid electrolyte interphase (SEI) in lithium ion batteries has been widely explored. However, relatively little is known about the function of the SEI as a transport medium. Such critical information is directly relevant to battery rate performance, power loss, and capacity fading. To partially bridge this gap in the case of inorganic SEI compounds, we report herein the results of first-principles calculations on the defect thermodynamics, the dominant diffusion carriers, and the diffusion pathways associated with crystalline LiF and NaF, which are stable components of the SEI in Li-ion and Na-ion batteries, respectively. The thermodynamics of common point defects are computed, and the dominant diffusion carriers are determined over a voltage range of 0-4 V, corresponding to conditions relevant to both anode and cathode SEI's. Our analyses reveal that for both compounds, vacancy defects are energetically more favorable, therefore form more readily than interstitials, due to the close-packed nature of the crystal structures. However, the vacancy concentrations are very small for the diffusion processes facilitated by defects. Ionic conductivities are calculated as a function of voltage, considering the diffusion carrier concentration and the diffusion barriers as determined by nudged elastic band calculations. These conductivities are more than ten orders of magnitude smaller in NaF than in LiF. As compared to the diffusivity of Li in other common inorganic SEI compounds, such as Li2CO3 and Li2O, the cation diffusivity in LiF and NaF is quite low, with at least three orders of magnitude lower ionic conductivities. The results quantify the extent to which fluorides pose rate limitations in Li and Na batteries.

  6. Speciation of inorganic and organometallic compounds in solid biological samples by thermal vaporization and plasma emission spectrometry

    SciTech Connect

    Hanamura, S.; Smith, B.W.; Winefordner, J.D.

    1983-11-01

    By means of thermal vaporization, inorganic, organic, and metallorganic species are separated and elemental emission in a microwave plasma is detected as a function of vaporization temperature. Solid samples of 250 mg or more are used to avoid problems with sample heterogeneity. The precision of characteristic appearance temperatures is +/-2/sup 0/C. The single electrode atmosphere pressure microwave plasma system is extremely tolerant to the introduction of water, organic solvents, and air. The measurement system contained a repetition wavelength scan device to allow background correction. The plasma temperature was 5500 K. The system was used to measure C, H, N, O, and Hg in orchard leaves and in tuna fish. 9 figures, 5 tables.

  7. Effects of inhibitors and NaCl on the oxidation of reduced inorganic sulfur compounds by a marine acidophilic, sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH.

    PubMed

    Kamimura, Kazuo; Higashino, Emi; Kanao, Tadayoshi; Sugio, Tsuyoshi

    2005-02-01

    The effect of NaCl and the pathways of the oxidation of reduced inorganic sulfur compounds were studied using resting cells and cell-free extracts of Acidithiobacillus thiooxidans strain SH. This isolate specifically requires NaCl for growth. The oxidation of sulfur and sulfite by resting cells was strongly inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide. Carbonylcyanide m-chlorophenyl-hydrazone and monensin were also relatively strong inhibitors. Thiosulfate-oxidizing activity was not inhibited by these uncouplers. Valinomycin did not inhibit the oxidation of sulfur compounds. NaCl stimulated the sulfur- and sulfite-oxidizing activities in resting cells but not in cell-free extracts. The tetrathionate-oxidizing activity in resting cells was slightly stimulated by NaCl, whereas it did not influence the thiosulfate-oxidizing activity. Sulfide oxidation was biphasic, suggesting the formation of intermediate sulfur. The initial phase of sulfide oxidation was not affected by NaCl, whereas the subsequent oxidation of sulfur in the second phase was Na+-dependent. A model is proposed for the role of NaCl in the metabolism of reduced sulfur compounds in A. thiooxidans strain SH.

  8. Phase transitions and dielectric properties of a hexagonal ABX3 perovskite-type organic-inorganic hybrid compound: [C3H4NS][CdBr3].

    PubMed

    Liao, Wei-Qiang; Ye, Heng-Yun; Zhang, Yi; Xiong, Ren-Gen

    2015-06-21

    A new organic-inorganic hexagonal perovskite-type compound with the formula ABX3, thiazolium tribromocadmate(ii) (1), in which thiazolium cations are situated in the space between the one-dimensional chains of face-sharing CdBr(6) octahedra, has been successfully synthesized. Systematic characterizations including differential scanning calorimetry measurements, variable-temperature structural analyses, and dielectric measurements reveal that it undergoes two structural phase transitions, at 180 and 146 K. These phase transitions are accompanied by remarkable dielectric relaxation and anisotropy. The thiazolium cations remain orientationally disordered during the two phase transition processes. The origins of the phase transitions at 180 and 146 K are ascribed to the slowing down and reorientation of the molecular motions of the cations, respectively. Moreover, the dielectric relaxation process well described by the Cole-Cole equation and the prominent dielectric anisotropy are also connected with the dynamics of the dipolar thiazolium cations.

  9. Water-quality assessment of the Albemarle-Pamlico Basin, North Carolina and Virginia; chemical analyses of organic compounds and inorganic constituents in streambed sediment, 1992-93

    USGS Publications Warehouse

    Woodside, M.D.; Simerl, B.R.

    1996-01-01

    In 1991, the U.S. Geological Survey began full-scale implementation of the National Water-Quality Assessment (NAWQA) program. Long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface-water and ground-water resources and to describe the primary natural and human factors that affect these resources. One of the first assessment phases of the NAWQA program is to examine the occurrence and distribution of organic and inorganic constituents in streambed sediment. Streambed sediment was collected at 22 stations in the Albemarle-Pamlico drainage basin that drains into the Albemarle and Pamlico Sounds, the second largest estuarine system in the United States. Streambed-sediment samples were analyzed for 35 organochlorine and 63 semivolatile compounds; 44 major, minor, and trace elements; and forms of organic carbon.

  10. Search for organic and volatile inorganic compounds in two surface samples from the Chryse Planitia region of Mars

    NASA Technical Reports Server (NTRS)

    Biemann, K.; Oro, J.; Toulmin, P., III; Orgel, L. E.; Nier, A. O.; Anderson, D. M.; Flory, D.; Diaz, A. V.; Rushneck, D. R.; Simmonds, P. G.

    1976-01-01

    Two surface samples collected from the Chryse Planitia region of Mars were heated to temperatures up to 500 C, and the volatiles that they evolved were analyzed with a gas chromatograph-mass spectrometer. Only water and carbon dioxide were detected. This implies that organic compounds have not accumulated to the extent that individual components could be detected at levels of a few parts per billion by weight in the samples. Proposed mechanisms for the accumulation and destruction of organic compounds are discussed in the light of this limit.

  11. Search for organic and volatile inorganic compounds in two surface samples from the chryse planitia region of Mars

    USGS Publications Warehouse

    Biemann, K.; Oro, J.; Toulmin, P., III; Orgel, L.E.; Nier, A.O.; Anderson, D.M.; Simmonds, P.G.; Flory, D.; Diaz, A.V.; Rushneck, D.R.; Biller, J.A.

    1976-01-01

    Two surface samples collected from the Chryse Planitia region of Mars were heated to temperatures up to 500??C, and the volatiles that they evolved were analyzed with a gas chromatograph-mass spectrometer. Only water and carbon dioxide were detected. This implies that organic compounds have not accumulated to the extent that individual components could be detected at levels of a few parts in 109 by weight in our samples. Proposed mechanisms for the accumulation and destruction of organic compounds are discussed in the light of this limit.

  12. Bipolar Mass Spectrometry of Labile Coordination Complexes, Redox Active Inorganic Compounds, and Proteins Using a Glass Nebulizer for Sonic-Spray Ionization

    NASA Astrophysics Data System (ADS)

    Antonakis, Manolis M.; Tsirigotaki, Alexandra; Kanaki, Katerina; Milios, Constantinos J.; Pergantis, Spiros A.

    2013-08-01

    In this study, we report on the development of a novel nebulizer configuration for sonic-spray ionization (SSI) mass spectrometry (MS), more specifically for a version of SSI that is referred to as Venturi easy ambient sonic-spray ionization (V-EASI) MS. The developed nebulizer configuration is based on a commercially available pneumatic glass nebulizer that has been used extensively for aerosol formation in atomic spectrometry. In the present study, the nebulizer was modified in order to achieve efficient V-EASI-MS operation. Upon evaluating this system, it has been demonstrated that V-EASI-MS offers some distinct advantages for the analysis of coordination compounds and redox active inorganic compounds over the predominantly used electrospray ionization (ESI) technique. Such advantages, for this type of compounds, are demonstrated here for the first time. More specifically, a series of labile heptanuclear heterometallic [CuII 6LnIII] clusters held together with artificial amino acid ligands, in addition to easily oxidized inorganic oxyanions of selenium and arsenic, were analyzed. The observed advantages pertain to V-EASI appearing to be a "milder" ionization source than ESI, not requiring electrical potentials for gas phase ion formation, thus eliminating the possibility of unwanted redox transformations, allowing for the "simultaneous" detection of negative and positive ions (bipolar analysis) without the need to change source ionization conditions, and also not requiring the use of syringes and delivery pumps. Because of such features, especially because of the absence of ionization potentials, EASI can be operated with minimal requirements for source parameter optimization. We observed that source temperature and accelerating voltage do not seem to affect labile compounds to the extent they do in ESI-MS. In addition, bipolar analysis of proteins was demonstrated here by acquiring both positive and negative ion mass spectra from the same protein solutions

  13. Bipolar mass spectrometry of labile coordination complexes, redox active inorganic compounds, and proteins using a glass nebulizer for sonic-spray ionization.

    PubMed

    Antonakis, Manolis M; Tsirigotaki, Alexandra; Kanaki, Katerina; Milios, Constantinos J; Pergantis, Spiros A

    2013-08-01

    In this study, we report on the development of a novel nebulizer configuration for sonic-spray ionization (SSI) mass spectrometry (MS), more specifically for a version of SSI that is referred to as Venturi easy ambient sonic-spray ionization (V-EASI) MS. The developed nebulizer configuration is based on a commercially available pneumatic glass nebulizer that has been used extensively for aerosol formation in atomic spectrometry. In the present study, the nebulizer was modified in order to achieve efficient V-EASI-MS operation. Upon evaluating this system, it has been demonstrated that V-EASI-MS offers some distinct advantages for the analysis of coordination compounds and redox active inorganic compounds over the predominantly used electrospray ionization (ESI) technique. Such advantages, for this type of compounds, are demonstrated here for the first time. More specifically, a series of labile heptanuclear heterometallic [Cu(II) 6Ln(III)] clusters held together with artificial amino acid ligands, in addition to easily oxidized inorganic oxyanions of selenium and arsenic, were analyzed. The observed advantages pertain to V-EASI appearing to be a "milder" ionization source than ESI, not requiring electrical potentials for gas phase ion formation, thus eliminating the possibility of unwanted redox transformations, allowing for the "simultaneous" detection of negative and positive ions (bipolar analysis) without the need to change source ionization conditions, and also not requiring the use of syringes and delivery pumps. Because of such features, especially because of the absence of ionization potentials, EASI can be operated with minimal requirements for source parameter optimization. We observed that source temperature and accelerating voltage do not seem to affect labile compounds to the extent they do in ESI-MS. In addition, bipolar analysis of proteins was demonstrated here by acquiring both positive and negative ion mass spectra from the same protein solutions

  14. Indoor and outdoor characterisation of organic and inorganic compounds in city centre and suburban elementary schools of Aveiro, Portugal

    NASA Astrophysics Data System (ADS)

    Pegas, P. N.; Nunes, T.; Alves, C. A.; Silva, J. R.; Vieira, S. L. A.; Caseiro, A.; Pio, C. A.

    2012-08-01

    Pollutants inside school buildings may affect children's health and influence learning performance and attendance. This study investigated pollutant concentrations inside and outside school buildings at different locations (city centre and suburban) in Aveiro, Portugal, between April and June 2010. The aim was to evaluate simultaneously comfort parameters (temperature, relative humidity, CO2 and CO) and indoor and outdoor concentrations of VOCs, NO2, PM10 and bioaerosols. PM10 samples were analysed and characterised, for the first time, for the water soluble inorganic ions (WSII), organic carbon (OC), elemental carbon (EC), carbonates, and detailed organic speciation. The CO2 and bioaerosol levels were higher than the acceptable maximum values to the occupants' comfort. Concentrations of the traffic tracer NO2 were higher outdoors. The daily indoor PM10 levels were always higher than those outdoors, except on weekends, suggesting that the physical activity of pupils and class works highly contributed to the emission and resuspension of particles. Almost all identified VOCs showed I/O ratios higher than one, which denotes an important contribution from indoor sources at both schools. The suburban school was more exposed to industrial emissions than the institution located in the city centre. Especially at the city centre, infiltration of outdoor particulates leads to contamination of school indoor environment with vehicle emissions and biomass burning smoke likely coming from biofuel use in nearby restaurants and bakeries.

  15. Inorganic compounds for passive solar energy storage: Solid-state dehydration materials and high specific heat materials

    NASA Astrophysics Data System (ADS)

    Struble, L. J.; Brown, P. W.

    1986-04-01

    Two classes of hydrated inorganic salts have been studied to assess their potential as materials for passive solar energy storage. The materials are part of the quaternary system CaO-Al2O3-SO3-H2O and related chemical systems, and the two classes are typified by ettringite, a trisubstituted salt, and Friedel's salt, a monosubstituted salt. The trisubstituted salts were studied for their possible application in latent heat storage, utilizing a low-temperature dehydration reaction, and both classes were studies for their application in sensible heat storage. In order to assess their potential for energy storage, the salts have been synthesized, characterized by several analytical techniques, and thermal properties measured. The dehydration data of that the trisubstituted salts vary somewhat with chemical composition, with the temperature of the onset of dehydration ranging from 6(0)C to 33(0)C, and enthalpy changes on dehydration ranging from 60 to 200 cal/g. Heat capacity is less variable with composition; values for the trisubstituted phases are 30 cal/g/(0)C and for the monosubstituted phases between 0.23 and 0.28 cal/g/(0)C. Preliminary experiments indicate that the dehydration is reversible, and suggest that the materials might have additional potential as solar desiccant materials. These thermal data demonstrate the trisubstituted salts have potential as latent heat storage materials, and that both classes of salts have potential as sensible heat storage materials.

  16. Effects of seven antifouling compounds on photosynthesis and inorganic carbon use in sugar kelp Saccharina latissima (Linnaeus).

    PubMed

    Johansson, Per; Eriksson, Karl Martin; Axelsson, Lennart; Blanck, Hans

    2012-10-01

    Macroalgae depend on carbon-concentrating mechanisms (CCMs) to maintain a high photosynthetic activity under conditions of low carbon dioxide (CO(2)) availability. Because such conditions are prevalent in marine environments, CCMs are important for upholding the macroalgal primary productivity in coastal zones. This study evaluated the effects of seven antifouling compounds-chlorothalonil, DCOIT, dichlofluanid, diuron, irgarol, tolylfluanid, and zinc pyrithione (ZnTP)-on the photosynthesis and CCM of sugar kelp (Saccharina latissima (L.)). Concentration-response curves of these toxicants were established using inhibition of carbon incorporation, whereas their effects over time and their inhibition of the CCM were studied using inhibition of O(2) evolution. We demonstrate that exposure to all compounds except ZnTP (< 1000 nM) resulted in toxicity to photosynthesis of S. latissima. However, carbon incorporation and O(2) evolution differed in their ability to detect toxicity from some of the compounds. Diuron, irgarol, DCOIT, tolylfluanid, and, to some extent, dichlofluanid inhibited carbon incorporation. Chlorothalonil did not inhibit carbon incorporation but clearly inhibited oxygen (O(2)) evolution. Photosynthesis showed only little recovery during the 2-h postexposure period. Inhibition of photosynthesis even increased after the end of exposure to chlorothalonil and tolylfluanid. Through changes in pH of the medium, toxic effects on the CCM could be studied isolated from photosynthesis effects. The CCM of S. latissima was inhibited by chlorothalonil, DCOIT, dichlofluanid, and tolylfluanid. Such inhibition of the CCM, or the absence thereof, deepens the understanding the mechanism of action of the studied compounds. PMID:22743627

  17. Vibrational spectroscopic and DFT calculation studies of a new organic-inorganic compound of bis (4-acetylanilinium) tetrachlorocadmiate (II)

    NASA Astrophysics Data System (ADS)

    Jellibi, A.; Chaabane, I.; Guidara, K.

    2016-10-01

    The FT-IR and Raman vibrational spectra of bis (4-acetylanilinium) tetrachlorocadmiate (II) compound have been measured at room temperature by FT-infrared spectroscopy (4000-400 cm-1) on polycrystalline samples, and by Raman spectroscopy (3600-30 cm-1) on monocrystals. The structure of the [C8H10NO] 2CdCl4 formed by two cations [C8H10NO]+ of same type and one type of anion [CdCl4]2- was optimized by density functional theory (DFT) using the B3LYP method. The theoretical wavenumbers spectra were scaled by multiple scaling factors, yielding a good agreement between the experimentally recorded and the theoretically calculated values. Root mean square (rms) value was calculated and the small difference between experimental and calculated modes has been interpreted by intermolecular interactions in the crystal. The comparison between the [C8H9NO] ligand and the [C8H10NO]2[CdCl4] compound of the Raman spectra showed a decrease in the wavenumber of the bands assigned to the stretching vibration of (NH3) group in the compound due to the effect of the protonation of the nitrogen.

  18. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1994

    SciTech Connect

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1995-10-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, samples 18 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, seven domestic wells, two springs, one stock well, and one observation well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituent, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that exceeded their minimum reporting levels.

  19. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1995

    SciTech Connect

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1996-09-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituents, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations were greater than their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that were greater than the minimum reporting level.

  20. Enriched inorganic compounds in diesel exhaust particles induce mitogen-activated protein kinase activation, cytoskeleton instability, and cytotoxicity in human bronchial epithelial cells.

    PubMed

    Seriani, Robson; Junqueira, Mara S; Carvalho-Sousa, Claudia E; Arruda, Alessandra C T; Martinez, Diana; Alencar, Adriano M; Garippo, Ana L; Brito, Jôse Mara; Martins, Milton A; Saldiva, Paulo H N; Negri, Elnara M; Mauad, Thais; Macchione, Mariangela

    2015-04-01

    This study assessed the effects of the diesel exhaust particles on ERK and JNK MAPKs activation, cell rheology (viscoelasticity), and cytotoxicity in bronchial epithelial airway cells (BEAS-2B). Crude DEP and DEP after extraction with hexane (DEP/HEX) were utilized. The partial reduction of some DEP/HEX organics increased the biodisponibility of many metallic elements. JNK and ERK were activated simultaneously by crude DEP with no alterations in viscoelasticity of the cells. Mitochondrial activity, however, revealed a decrease through the MTT assay. DEP/HEX treatment increased viscoelasticity and cytotoxicity (membrane damage), and also activated JNK. Our data suggest that the greater bioavailability of metals could be involved in JNK activation and, consequently, in the reduction of fiber coherence and increase in the viscoelasticity and cytotoxicity of BEAS cells. The adverse findings detected after exposure to crude DEP and to DEP/HEX reflect the toxic potential of diesel compounds. Considering the fact that the cells of the respiratory epithelium are the first line of defense between the body and the environment, our data contribute to a better understanding of the pathways leading to respiratory cell injury and provide evidence for the onset of or worsening of respiratory diseases caused by inorganic compounds present in DEP.

  1. Simultaneous separation of 17 inorganic and organic arsenic compounds in marine biota by means of high-performance liquid chromatography/inductively coupled plasma mass spectrometry.

    PubMed

    Kohlmeyer, Ute; Kuballa, Jürgen; Jantzen, Eckard

    2002-01-01

    A method using high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS) has been developed to determine inorganic arsenic (arsenite, arsenate) along with organic arsenic compounds (monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine, trimethylarsine oxide, tetramethylarsonium ion and several arsenosugars) in fish, mussel, oyster and marine algae samples. The species were extracted by means of a methanol/water mixture and a dispersion unit in 2 min, with extraction efficiencies ranging from 83 to 107% in the different organisms. Up to 17 different species were determined within 15 min on an anion-exchange column, using a nitric acid gradient and an ion-pairing reagent. As all species are shown in one chromatogram, a clear overview of arsenic distribution patterns in different marine organisms is given. Arsenobetaine is the major compound in marine animals whereas arsenosugars and arsenate are dominant in marine algae. The method was validated with CRM DORM-2 (dogfish muscle). Concentrations were within the certified limits and low detection limits of 8 ng g(-1) (arsenite) to 50 ng g(-1) (arsenate) were obtained. PMID:11968129

  2. Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compounds--a critical review.

    PubMed

    Heeb, Michèle B; Criquet, Justine; Zimmermann-Steffens, Saskia G; von Gunten, Urs

    2014-01-01

    Bromide (Br(-)) is present in all water sources at concentrations ranging from ≈ 10 to >1000 μg L(-1) in fresh waters and about 67 mg L(-1) in seawater. During oxidative water treatment bromide is oxidized to hypobromous acid/hypobromite (HOBr/OBr(-)) and other bromine species. A systematic and critical literature review has been conducted on the reactivity of HOBr/OBr(-) and other bromine species with inorganic and organic compounds, including micropollutants. The speciation of bromine in the absence and presence of chloride and chlorine has been calculated and it could be shown that HOBr/OBr(-) are the dominant species in fresh waters. In ocean waters, other bromine species such as Br2, BrCl, and Br2O gain importance and may have to be considered under certain conditions. HOBr reacts fast with many inorganic compounds such as ammonia, iodide, sulfite, nitrite, cyanide and thiocyanide with apparent second-order rate constants in the order of 10(4)-10(9)M(-1)s(-1) at pH 7. No rate constants for the reactions with Fe(II) and As(III) are available. Mn(II) oxidation by bromine is controlled by a Mn(III,IV) oxide-catalyzed process involving Br2O and BrCl. Bromine shows a very high reactivity toward phenolic groups (apparent second-order rate constants kapp ≈ 10(3)-10(5)M(-1)s(-1) at pH 7), amines and sulfamides (kapp ≈ 10(5)-10(6)M(-1)s(-1) at pH 7) and S-containing compounds (kapp ≈ 10(5)-10(7)M(-1)s(-1) at pH 7). For phenolic moieties, it is possible to derive second-order rate constants with a Hammett-σ-based QSAR approach with [Formula in text]. A negative slope is typical for electrophilic substitution reactions. In general, kapp of bromine reactions at pH 7 are up to three orders of magnitude greater than for chlorine. In the case of amines, these rate constants are even higher than for ozone. Model calculations show that depending on the bromide concentration and the pH, the high reactivity of bromine may outweigh the reactions of chlorine during

  3. Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compounds--a critical review.

    PubMed

    Heeb, Michèle B; Criquet, Justine; Zimmermann-Steffens, Saskia G; von Gunten, Urs

    2014-01-01

    Bromide (Br(-)) is present in all water sources at concentrations ranging from ≈ 10 to >1000 μg L(-1) in fresh waters and about 67 mg L(-1) in seawater. During oxidative water treatment bromide is oxidized to hypobromous acid/hypobromite (HOBr/OBr(-)) and other bromine species. A systematic and critical literature review has been conducted on the reactivity of HOBr/OBr(-) and other bromine species with inorganic and organic compounds, including micropollutants. The speciation of bromine in the absence and presence of chloride and chlorine has been calculated and it could be shown that HOBr/OBr(-) are the dominant species in fresh waters. In ocean waters, other bromine species such as Br2, BrCl, and Br2O gain importance and may have to be considered under certain conditions. HOBr reacts fast with many inorganic compounds such as ammonia, iodide, sulfite, nitrite, cyanide and thiocyanide with apparent second-order rate constants in the order of 10(4)-10(9)M(-1)s(-1) at pH 7. No rate constants for the reactions with Fe(II) and As(III) are available. Mn(II) oxidation by bromine is controlled by a Mn(III,IV) oxide-catalyzed process involving Br2O and BrCl. Bromine shows a very high reactivity toward phenolic groups (apparent second-order rate constants kapp ≈ 10(3)-10(5)M(-1)s(-1) at pH 7), amines and sulfamides (kapp ≈ 10(5)-10(6)M(-1)s(-1) at pH 7) and S-containing compounds (kapp ≈ 10(5)-10(7)M(-1)s(-1) at pH 7). For phenolic moieties, it is possible to derive second-order rate constants with a Hammett-σ-based QSAR approach with [Formula in text]. A negative slope is typical for electrophilic substitution reactions. In general, kapp of bromine reactions at pH 7 are up to three orders of magnitude greater than for chlorine. In the case of amines, these rate constants are even higher than for ozone. Model calculations show that depending on the bromide concentration and the pH, the high reactivity of bromine may outweigh the reactions of chlorine during

  4. Estimation of transport parameters of phenolic compounds and inorganic contaminants through composite landfill liners using one-dimensional mass transport model

    SciTech Connect

    Varank, Gamze; Demir, Ahmet; Yetilmezsoy, Kaan; Bilgili, M. Sinan; Top, Selin; Sekman, Elif

    2011-11-15

    Highlights: > We conduct 1D advection-dispersion modeling to estimate transport parameters. > We examine fourteen phenolic compounds and three inorganic contaminants. > 2-MP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,3,4,6-TeCP have the highest coefficients. > Dispersion coefficients of Cu are determined to be higher than Zn and Fe. > Transport of phenolics can be prevented by zeolite and bentonite in landfill liners. - Abstract: One-dimensional (1D) advection-dispersion transport modeling was conducted as a conceptual approach for the estimation of the transport parameters of fourteen different phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and three different inorganic contaminants (Cu, Zn, Fe) migrating downward through the several liner systems. Four identical pilot-scale landfill reactors (0.25 m{sup 3}) with different composite liners (R1: 0.10 + 0.10 m of compacted clay liner (CCL), L{sub e} = 0.20 m, k{sub e} = 1 x 10{sup -8} m/s, R2: 0.002-m-thick damaged high-density polyethylene (HDPE) geomembrane overlying 0.10 + 0.10 m of CCL, L{sub e} = 0.20 m, k{sub e} = 1 x 10{sup -8} m/s, R3: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick bentonite layer encapsulated between 0.10 + 0.10 m CCL, L{sub e} = 0.22 m, k{sub e} = 1 x 10{sup -8} m/s, R4: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick zeolite layer encapsulated between 0.10 + 0.10 m CCL, L{sub e} = 0.22 m, k{sub e} = 4.24 x 10{sup -7} m/s) were simultaneously run for a period of about 540 days to investigate the nature of diffusive and advective transport of the selected organic and inorganic contaminants. The results of 1D transport model showed that the highest molecular diffusion coefficients, ranging from 4.77 x 10{sup -10} to 10.67 x 10{sup -10} m{sup 2}/s, were estimated for phenol (R4), 2-MP (R1), 2,4-DNP (R2), 2,4-DCP (R1), 2,6-DCP (R2), 2,4,5-TCP (R2) and 2,3,4,6-TeCP (R1). For all reactors

  5. Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives.

    PubMed

    Zachhuber, Bernhard; Ramer, Georg; Hobro, Alison; Chrysostom, Engelene T H; Lendl, Bernhard

    2011-06-01

    A pulsed stand-off Raman system has been built and optimised for the qualitative and quantitative analysis of inorganic and organic samples including explosives. The system consists of a frequency doubled Q-switched Nd:YAG laser (532 nm, 10 Hz, 4.4 ns pulse length), aligned coaxially with a 6″ Schmidt-Cassegrain telescope for the collection of Raman scattered light. The telescope was coupled via a fibre optic bundle to an Acton standard series SP-2750 spectrograph with a PI-MAX 1024RB intensified CCD camera equipped with a 500-ps gating option for detection. Gating proved to be essential for achieving high signal-to-noise ratios in the recorded stand-off Raman spectra. In some cases, gating also allowed suppression of disturbing fluorescence signals. For the first time, quantitative analysis of stand-off Raman spectra was performed using both univariate and multivariate methods of data analysis. To correct for possible variation in instrumental parameters, the nitrogen band of ambient air was used as an internal standard. For the univariate method, stand-off Raman spectra obtained at a distance of 9 m on sodium chloride pellets containing varying amounts of ammonium nitrate (0-100%) were used. For the multivariate quantification of ternary xylene mixtures (0-100%), stand-off spectra at a distance of 5 m were used. The univariate calibration of ammonium nitrate yielded R (2) values of 0.992, and the multivariate quantitative analysis yielded root mean square errors of prediction of 2.26%, 1.97% and 1.07% for o-, m- and p-xylene, respectively. Stand-off Raman spectra obtained at a distance of 10 m yielded a detection limit of 174 μg for NaClO(3). Furthermore, to assess the applicability of stand-off Raman spectroscopy for explosives detection in "real-world" scenarios, their detection on different background materials (nylon, polyethylene and part of a car body) and in the presence of interferents (motor oil, fuel oil and soap) at a distance of 20 m was also

  6. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 1.

    PubMed

    Cembella, A D; Antia, N J; Harrison, P J

    1984-01-01

    This comprehensive literature review of the phosphorus nutrition and metabolism of eukaryotic microalgae deals sequentially with (1) extracellular P-compounds available for algal utilization and growth; (2) orthophosphate uptake mechanisms, kinetics, and influence from environmental variables; (3) phosphatase-mediated utilization of organic phosphates involving multiple enzymes, induction and cellular location of repressible and irrepressible phosphatases, and their role in growth physiological processes; (4) intracellular phosphate metabolism covering diversity of phosphometabolites. ATP-linked energy regulation, polyphosphate pools and storage roles, phospholipids and phospholipases; (5) steady-state and transient-state models relating phosphate utilization to growth; (6) ecological aspects covering manifestations of phosphorus limitation, interspecific competition for phosphonutrients among microorganisms, and current views on phosphorus cycling and turnover in aquatic ecosystems. Although concentrating on the microalgae, the review often points out sounder conclusions drawn from bacteria and fungi, and includes specific macroalgae in considering certain subtopics where such algae were better investigated and provided a good basis for comparison with the microalgae. PMID:6321101

  7. An automated analyzer to measure surface-atmosphere exchange fluxes of water soluble inorganic aerosol compounds and reactive trace gases.

    PubMed

    Thomas, Rick M; Trebs, Ivonne; Otjes, René; Jongejan, Piet A C; Ten Brink, Harry; Phillips, Gavin; Kortner, Michael; Meixner, Franz X; Nemitz, Eiko

    2009-03-01

    Here, we present a new automated instrument for semicontinuous gradient measurements of water-soluble reactive trace gas species (NH3, HNO3, HONO, HCl, and SO2) and their related aerosol compounds (NH4+, NO3-, Cl-, SO4(2-)). Gas and aerosol samples are collected simultaneously at two heights using rotating wet-annular denuders and steam-jet aerosol collectors, respectively. Online (real-time) analysis using ion chromatography (IC) for anions and flow injection analysis (FIA) for NH4+ and NH3 provide a half-hourly averaged gas and aerosol gradients within each hour. Through the use of syringe pumps, IC preconcentration columns, and high-quality purified water, the system achieves detection limits (3sigma-definition) under field conditions of typically: 136/207,135/114, 29/ 22,119/92, and 189/159 ng m(-3) for NH3/NH4+, HNO3/NO3-, HONO/ NO2-, HCl/Cl- and SO2/SO4(2-), respectively. The instrument demonstrates very good linearity and accuracy for liquid and selected gas phase calibrations over typical ambient concentration ranges. As shown by examples from field experiments, the instrument provides sufficient precision (3-9%), even at low ambient concentrations, to resolve vertical gradients and calculate surface-atmosphere exchange fluxes undertypical meteorological conditions of the atmospheric surface layer using the aerodynamic gradient technique. PMID:19350912

  8. Compound-specific 15N analysis of amino acids in 15N tracer experiments provide an estimate of newly synthesised soil protein from inorganic and organic substrates

    NASA Astrophysics Data System (ADS)

    Charteris, Alice; Michaelides, Katerina; Evershed, Richard

    2015-04-01

    Organic N concentrations far exceed those of inorganic N in most soils and despite much investigation, the composition and cycling of this complex pool of SOM remains poorly understood. A particular problem has been separating more recalcitrant soil organic N from that actively cycling through the soil system; an important consideration in N cycling studies and for the soil's nutrient supplying capacity. The use of 15N-labelled substrates as stable isotope tracers has contributed much to our understanding of the soil system, but the complexity and heterogeneity of soil organic N prevents thorough compound-specific 15N analyses of organic N compounds and makes it difficult to examine any 15N-labelled organic products in any detail. As a result, a significant proportion of previous work has either simply assumed that since the majority of soil N is organic, all of the 15N retained in the soil is organic N (e.g. Sebilo et al., 2013) or subtracted 15N-labelled inorganic compounds from bulk values (e.g. Pilbeam et al., 1997). While the latter approach is more accurate, these methods only provide an estimate of the bulk 15N value of an extremely complex and non-uniformly labelled organic pool. A more detailed approach has been to use microbial biomass extraction (Brookes et al., 1985) and subsequent N isotopic analysis to determine the 15N value of biomass-N, representing the fraction of 15N assimilated by microbes or the 15N cycling through the 'living' or 'active' portion of soil organic N. However, this extraction method can only generate estimates and some lack of confidence in its validity and reliability remains. Here, we present an alternative technique to obtain a measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein, which is representative of the magnitude of the active soil microbial biomass. The technique uses a stable isotope tracer and compound-specific 15N analysis, but

  9. Inorganic Crystal Structure Database (ICSD)

    National Institute of Standards and Technology Data Gateway

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  10. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    SciTech Connect

    Li, J.

    1999-04-01

    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.

  11. An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: application to atmospheric inorganic and organic compounds.

    PubMed

    Lee, Ben H; Lopez-Hilfiker, Felipe D; Mohr, Claudia; Kurtén, Theo; Worsnop, Douglas R; Thornton, Joel A

    2014-06-01

    A high-resolution time-of-flight chemical-ionization mass spectrometer (HR-ToF-CIMS) using Iodide-adducts has been characterized and deployed in several laboratory and field studies to measure a suite of organic and inorganic atmospheric species. The large negative mass defect of Iodide, combined with soft ionization and the high mass-accuracy (<20 ppm) and mass-resolving power (R>5500) of the time-of-flight mass spectrometer, provides an additional degree of separation and allows for the determination of elemental compositions for the vast majority of detected ions. Laboratory characterization reveals Iodide-adduct ionization generally exhibits increasing sensitivity toward more polar or acidic volatile organic compounds. Simultaneous retrieval of a wide range of mass-to-charge ratios (m/Q from 25 to 625 Th) at a high frequency (>1 Hz) provides a comprehensive view of atmospheric oxidative chemistry, particularly when sampling rapidly evolving plumes from fast moving platforms like an aircraft. We present the sampling protocol, detection limits and observations from the first aircraft deployment for an instrument of this type, which took place aboard the NOAA WP-3D aircraft during the Southeast Nexus (SENEX) 2013 field campaign.

  12. Hybrid organic PVDF-inorganic M-rGO-TiO2 (M = Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation-H2 production.

    PubMed

    Ong, W L; Gao, M; Ho, G W

    2013-11-21

    This work focused on the development of a hybrid organic-inorganic TiO2 nanocomposite, which demonstrates the first ever report on harmful volatile organic compound (VOC) sensing and photocatalytic degradation-H2 production. The sensing and photocatalytic properties are enhanced by the synergetic effects of well-structured TiO2 nanotubes, metal nanoparticles and reduced graphene oxide loading for enhanced light absorption and charge-transfer kinetics. Hybridization of a functionalized TiO2 nanocomposite with a polyvinylidene fluoride (PVDF) matrix induced strong cross-linking networks between the inorganic-organic components, which promote mechanical reinforcement-flexibility and highly porous asymmetric structures. The developed solution processable nanocomposite has immense potential to remedy the global environmental and energy issues by producing clean water/air and energy from organic compound waste. PMID:24091468

  13. Hybrid organic PVDF-inorganic M-rGO-TiO2 (M = Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation-H2 production

    NASA Astrophysics Data System (ADS)

    Ong, W. L.; Gao, M.; Ho, G. W.

    2013-10-01

    This work focused on the development of a hybrid organic-inorganic TiO2 nanocomposite, which demonstrates the first ever report on harmful volatile organic compound (VOC) sensing and photocatalytic degradation-H2 production. The sensing and photocatalytic properties are enhanced by the synergetic effects of well-structured TiO2 nanotubes, metal nanoparticles and reduced graphene oxide loading for enhanced light absorption and charge-transfer kinetics. Hybridization of a functionalized TiO2 nanocomposite with a polyvinylidene fluoride (PVDF) matrix induced strong cross-linking networks between the inorganic-organic components, which promote mechanical reinforcement-flexibility and highly porous asymmetric structures. The developed solution processable nanocomposite has immense potential to remedy the global environmental and energy issues by producing clean water/air and energy from organic compound waste.This work focused on the development of a hybrid organic-inorganic TiO2 nanocomposite, which demonstrates the first ever report on harmful volatile organic compound (VOC) sensing and photocatalytic degradation-H2 production. The sensing and photocatalytic properties are enhanced by the synergetic effects of well-structured TiO2 nanotubes, metal nanoparticles and reduced graphene oxide loading for enhanced light absorption and charge-transfer kinetics. Hybridization of a functionalized TiO2 nanocomposite with a polyvinylidene fluoride (PVDF) matrix induced strong cross-linking networks between the inorganic-organic components, which promote mechanical reinforcement-flexibility and highly porous asymmetric structures. The developed solution processable nanocomposite has immense potential to remedy the global environmental and energy issues by producing clean water/air and energy from organic compound waste. Electronic supplementary information (ESI) available: Digital photographs illustrating color change during photoreduction of GO (Fig. S1). See DOI: 10.1039/c3nr

  14. Investigation of the influence of liquid water films on O3 and PAN deposition on plant leaf surfaces treated with organic / inorganic compounds

    NASA Astrophysics Data System (ADS)

    Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Kesselmeier, Jürgen; Sörgel, Matthias

    2016-04-01

    Liquid water films on environmental surfaces play an important role in various fields of interest (Burkhardt and Eiden, 1994). For example, the deposition of water soluble trace gases could be increased by surface moisture. Chameides and Stelson (1992) found out that the dissolution of trace gases in airborne particulate matter increases with rising water/solid ratio of the particles. Further, Flechard et al. (1999) concluded that deliquescent salt particles represent a potential sink for trace gases, depending on their chemical property. The formation of surface water films and its influence on the gas deposition was proposed by many previous studies (Fuentes and Gillespie, 1992, Burkhardt and Eiden, 1994, van Hove et al., 1989, Burkhardt et al., 1999, Flechard et al., 1999). In this study we investigate the influence of leaf surface water films on the deposition of O3 and PAN under controlled laboratory conditions. A twin cuvette system described in Sun et al. (2015) was used to control the environmental parameters such as light, temperature, trace gas mixing ratio and humidity. Furthermore, the leaf surface was treated with various organic and inorganic solutions to investigate the influence of deposited compounds on the electrical surface conductance of the leaves and the surface deposition of O3 and PAN at various relative humidities. The result shows that RHcrit, where the electrical surface conductance (G) increases exponentially, was 40 % during the light period and 50 % during the dark period. Furthermore, we observed that the formation of the leaf surface liquid film was depended on the deposited compounds on the leaf cuticles. For the O3 deposition on plants (Quercus ilex) a clear enhancement at rising environmental air humidity under light and dark condition was found. The increase during light conditions can be related partly to increasing stomatal conductance with higher RH. From the non-stomatal deposition measured in dark experiments, we could

  15. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1993

    USGS Publications Warehouse

    Bartholomay, Roy C.; Edwards, Daniel D.; Campbell, Linford J.

    1994-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in response to a request from the U.S. Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, four domestic wells, two springs, one stock well, three dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concen- trations exceeded their respective laboratory reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Ethylbenzene concentrations exceeded the reporting level in one water sample.

  16. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1993

    SciTech Connect

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1994-10-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, four domestic wells, two springs, one stock well, three dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituent, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that equaled or exceeded their reporting levels. The ethylbenzene concentration in one water sample exceeded the reporting level.

  17. Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1990

    SciTech Connect

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1992-03-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for manmade pollutants and naturally occurring constituents. The samples were collected from seven irrigation wells, five domestic wells, two springs, one stock well, two dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. The water samples were analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Toluene concentrations exceeded the reporting level in one water sample. Two samples contained fecal coliform bacteria counts that exceeded established maximum contaminant levels for drinking water.

  18. Evaluation of Toxicological Effects of an Aqueous Extract of Shells from the Pecan Nut Carya illinoinensis (Wangenh.) K. Koch and the Possible Association with Its Inorganic Constituents and Major Phenolic Compounds.

    PubMed

    Porto, Luiz Carlos S; da Silva, Juliana; Sousa, Karen; Ambrozio, Mariana L; de Almeida, Aline; Dos Santos, Carla Eliete I; Dias, Johnny F; Allgayer, Mariangela C; Dos Santos, Marcela S; Pereira, Patrícia; Ferraz, Alexandre B F; Picada, Jaqueline N

    2016-01-01

    Background. Industrial processing of the pecan nut Carya illinoinensis K. Koch generated a large amount of shells, which have been used to prepare nutritional supplements and medicinal products; however, the safe use of shells requires assessment. This study evaluated the toxic, genotoxic, and mutagenic effects of pecan shell aqueous extract (PSAE) and the possible contribution of phenolic compounds, ellagic and gallic acids, and inorganic elements present in PSAE to induce toxicity. Results. Levels of inorganic elements like K, P, Cl, and Rb quantified using the Particle-Induced X-Ray Emission method were higher in PSAE than in pecan shells, while Mg and Mn levels were higher in shells. Mice showed neurobehavioral toxicity when given high PSAE doses (200-2,000 mg kg(-1)). The LD50 was 1,166.3 mg kg(-1). However, PSAE (50-200 mg·kg(-1)) and the phenolic compounds (10-100 mg·kg(-1)) did not induce DNA damage or mutagenicity evaluated using the comet assay and micronucleus test. Treatment with ellagic acid (10-100 mg·kg(-1)) decreased triglyceride and glucose levels, while treatments with PSAE and gallic acid had no effect. Conclusion. Pecan shell toxicity might be associated with high concentrations of inorganic elements such as Mn, Al, Cu, and Fe acting on the central nervous system, besides phytochemical components, suggesting that the definition of the safe dose should take into account the consumption of micronutrients. PMID:27525021

  19. Evaluation of Toxicological Effects of an Aqueous Extract of Shells from the Pecan Nut Carya illinoinensis (Wangenh.) K. Koch and the Possible Association with Its Inorganic Constituents and Major Phenolic Compounds.

    PubMed

    Porto, Luiz Carlos S; da Silva, Juliana; Sousa, Karen; Ambrozio, Mariana L; de Almeida, Aline; Dos Santos, Carla Eliete I; Dias, Johnny F; Allgayer, Mariangela C; Dos Santos, Marcela S; Pereira, Patrícia; Ferraz, Alexandre B F; Picada, Jaqueline N

    2016-01-01

    Background. Industrial processing of the pecan nut Carya illinoinensis K. Koch generated a large amount of shells, which have been used to prepare nutritional supplements and medicinal products; however, the safe use of shells requires assessment. This study evaluated the toxic, genotoxic, and mutagenic effects of pecan shell aqueous extract (PSAE) and the possible contribution of phenolic compounds, ellagic and gallic acids, and inorganic elements present in PSAE to induce toxicity. Results. Levels of inorganic elements like K, P, Cl, and Rb quantified using the Particle-Induced X-Ray Emission method were higher in PSAE than in pecan shells, while Mg and Mn levels were higher in shells. Mice showed neurobehavioral toxicity when given high PSAE doses (200-2,000 mg kg(-1)). The LD50 was 1,166.3 mg kg(-1). However, PSAE (50-200 mg·kg(-1)) and the phenolic compounds (10-100 mg·kg(-1)) did not induce DNA damage or mutagenicity evaluated using the comet assay and micronucleus test. Treatment with ellagic acid (10-100 mg·kg(-1)) decreased triglyceride and glucose levels, while treatments with PSAE and gallic acid had no effect. Conclusion. Pecan shell toxicity might be associated with high concentrations of inorganic elements such as Mn, Al, Cu, and Fe acting on the central nervous system, besides phytochemical components, suggesting that the definition of the safe dose should take into account the consumption of micronutrients.

  20. Evaluation of Toxicological Effects of an Aqueous Extract of Shells from the Pecan Nut Carya illinoinensis (Wangenh.) K. Koch and the Possible Association with Its Inorganic Constituents and Major Phenolic Compounds

    PubMed Central

    Porto, Luiz Carlos S.; Sousa, Karen; Ambrozio, Mariana L.; de Almeida, Aline; dos Santos, Carla Eliete I.; Dias, Johnny F.; Allgayer, Mariangela C.; dos Santos, Marcela S.; Pereira, Patrícia; Picada, Jaqueline N.

    2016-01-01

    Background. Industrial processing of the pecan nut Carya illinoinensis K. Koch generated a large amount of shells, which have been used to prepare nutritional supplements and medicinal products; however, the safe use of shells requires assessment. This study evaluated the toxic, genotoxic, and mutagenic effects of pecan shell aqueous extract (PSAE) and the possible contribution of phenolic compounds, ellagic and gallic acids, and inorganic elements present in PSAE to induce toxicity. Results. Levels of inorganic elements like K, P, Cl, and Rb quantified using the Particle-Induced X-Ray Emission method were higher in PSAE than in pecan shells, while Mg and Mn levels were higher in shells. Mice showed neurobehavioral toxicity when given high PSAE doses (200–2,000 mg kg−1). The LD50 was 1,166.3 mg kg−1. However, PSAE (50–200 mg·kg−1) and the phenolic compounds (10–100 mg·kg−1) did not induce DNA damage or mutagenicity evaluated using the comet assay and micronucleus test. Treatment with ellagic acid (10–100 mg·kg−1) decreased triglyceride and glucose levels, while treatments with PSAE and gallic acid had no effect. Conclusion. Pecan shell toxicity might be associated with high concentrations of inorganic elements such as Mn, Al, Cu, and Fe acting on the central nervous system, besides phytochemical components, suggesting that the definition of the safe dose should take into account the consumption of micronutrients. PMID:27525021

  1. Arsenic, inorganic

    Integrated Risk Information System (IRIS)

    Arsenic , inorganic ; CASRN 7440 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  2. A new paratungstate-A-based organic-inorganic hybrid compound: Synthesis, structure and photocatalytic property of [Co(en)3]2[H2W7O24]·8H2O

    NASA Astrophysics Data System (ADS)

    Yan, Gang; Wang, Xin; Ma, Yuanyuan; Cheng, Xin; Wang, Yonghui; Li, Yangguang

    2013-03-01

    A new paratungstate-A-based organic-inorganic hybrid compound with the chemical formula of [Co(en)3]2[H2W7O24]·8H2O (en = ethylenediamine) (1) has been hydrothermally synthesized and structurally characterized by the elemental analysis, IR, TG, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic space group P21/c with a = 17.216(3) Å, b = 14.986(3) Å, c = 23.088(8) Å, β = 128.151(2)°, V = 4684.2 Å3, Z = 1, R1 = 0.0484, and wR2 = 0.1087. The structure of 1 consists of the [H2W7O24]4- building blocks and [Co(en)3]2+ metal-organic cationic moieties, which are packed together via the electrostatic forces and extensive hydrogen-bonding interactions to form a three-dimensional supramolecular framework. Interestingly, compound 1 represents the first structurally-defined hybrid compound based on the metastable paratungstate-A polyoxoanions and metal-organic units. The degradation of Rhodamine-B (RhB) under UV irradiation with 1 as the heterogeneous photocatalyst has been investigated, showing a good photocatalytic property of 1 for RhB degradation.

  3. Crystal structure, thermal studies, Hirshfeld surface analysis, vibrational and DFT investigation of organic-inorganic hybrid compound [C9H6NOBr2]2CuBr4·2H2O

    NASA Astrophysics Data System (ADS)

    Mesbeh, Radhia; Hamdi, Besma; Zouari, Ridha

    2016-12-01

    Single crystals of a hybrid organic/inorganic material with the formula [C9H6NOBr2]2CuBr4·2H2O were studied by X-ray diffraction. The compound crystallizes in the monoclinic system, space group C2/c with the following unit cell parameters: a = 7.8201 (12) Ǻ, b = 18.203 (3) Ǻ, c = 19.486 (3) Ǻ, β = 98.330 (5)°, Z = 4, V = 2744.6 (7) Ǻ3. Crystal structure was solved with a final R = 5.66% for 3483 independent reflections. The atomic arrangement shows an alternation of organic and inorganic layers. Between layers, the cohesion is performed via Osbnd H⋯Br, Csbnd H⋯Br, Nsbnd H⋯Br, Nsbnd H⋯O and Osbnd H⋯O hydrogen bending. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements have been carried out on [C9H6NOBr2]2CuBr4·2H2O crystal in the temperature range between 50 and 500 °C. The assignment of the observed bands in the solid state FTIR and Raman spectra of the compound was assisted by the theoretically predicted frequencies and compared with data previously reported for similar compounds. The theoretical geometrical parameters in the ground state have been investigated by density functional theory (DFT) with the B3LYP/LanL2DZ level of theory. The optical properties were investigated by optical absorption and show two bands at 279, 300 nm. The percentages of hydrogen bonding interactions are analyzed by Fingerprint plots of Hirshfeld surface.

  4. Atmospheric dry plus wet deposition and wet-only deposition of dicarboxylic acids and inorganic compounds in a coastal suburban environment

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Kuo, Su-Ching; Young, Li-Hao; Hsieh, Li-Ying; Chen, Pei-Ti

    2014-06-01

    This study investigated the chemical properties and composition sources of dicarboxylic organic acids and inorganic salts in dry plus wet deposition (DWD) and wet-only deposition at a coastal suburban area in southern Taiwan in 2008. DWD is the accumulation of dry deposition and wet deposition from the beginning of each new rain event, while wet-only deposition is the wet deposition from the beginning of each new rain event only. A total of 60 samples were collected during the period of study. The wet-only deposition samples were slightly more acidic (pH 5.01-5.50) than the DWD samples (pH 5.51-6.00). The total volume-weighted mean (VWM) equivalent ionic concentration of 784.3 ± 431.1 μeq L-1 in DWD was higher than that of 682.2 ± 392.4 μeq L-1 in wet-only deposition. In both types of deposition the major cation species were Ca2+, Na+ and NH4+, and the major anion species were HCO3-, Cl- and non-sea salt (nss) nss-SO42-. Total dicarboxylic acids contributed only 0.60% and 0.45% of the total ionic equivalent concentration in DWD and wet-only deposition, respectively, and oxalic and malonic acids were the major dicarboxylic acid species. DWD to wet-only deposition species concentration ratios (DWD/W ratios) were always higher than 1.0. DWD contained more water-soluble inorganic salts and dicarboxylic acids than wet-only deposition, with DWD/W ratios of the dust-bound species K+, Mg2+ and Ca2+ as large as 1.6-1.8 and those from photochemical species nss-SO42- and NH4+ of 1.36 and 1.29, respectively. These ratios show that the dry deposition flux of dust is greater than that of photochemical particles. In addition, the 1.81 ratio for oxalic acid shows that oxalic acid is easier to remove from the atmosphere via dry deposition than malonic and succinic acids. Probable deposition composition sources for both DWD and wet-only deposition, investigated using principal component analysis, were marine spray, photochemical inorganic products, and terrestrial origin and

  5. Comparison of abundances, compositions and sources of elements, inorganic ions and organic compounds in atmospheric aerosols from Xi'an and New Delhi, two megacities in China and India.

    PubMed

    Li, Jianjun; Wang, Gehui; Aggarwal, Shankar G; Huang, Yao; Ren, Yanqin; Zhou, Bianhong; Singh, Khem; Gupta, Prabhat K; Cao, Junji; Zhang, Rong

    2014-04-01

    Wintertime TSP samples collected in the two megacities of Xi'an, China and New Delhi, India were analyzed for elements, inorganic ions, carbonaceous species and organic compounds to investigate the differences in chemical compositions and sources of organic aerosols. The current work is the first time comparing the composition of urban organic aerosols from China and India and discussing their sources in a single study. Our results showed that the concentrations of Ca, Fe, Ti, inorganic ions, EC, PAHs and hopanes in Xi'an are 1.3-2.9 times of those in New Delhi, which is ascribed to the higher emissions of dust and coal burning in Xi'an. In contrast, Cl(-), levoglucosan, n-alkanes, fatty alcohols, fatty acids, phthalates and bisphenol A are 0.4-3.0 times higher in New Delhi than in Xi'an, which is attributed to strong emissions from biomass burning and solid waste incineration. PAHs are carcinogenic while phthalates and bisphenol A are endocrine disrupting. Thus, the significant difference in chemical compositions of the above TSP samples may suggest that residents in Xi'an and New Delhi are exposed to environmental hazards that pose different health risks. Lower mass ratios of octadecenoic acid/octadecanoic acid (C18:1/C18:0) and benzo(a)pyrene/benzo(e)pyrene (BaP/BeP) demonstrate that aerosol particles in New Delhi are photochemically more aged. Mass closure reconstructions of the wintertime TSP indicate that crustal material is the most abundant component of ambient particles in Xi'an and New Delhi, accounting for 52% and 48% of the particle masses, respectively, followed by organic matter (24% and 23% in Xi'an and New Delhi, respectively) and secondary inorganic ions (sulfate, nitrate plus ammonium, 16% and 12% in Xi'an and New Delhi, respectively). PMID:24496022

  6. Syntheses, structures and photocatalytic properties of five new praseodymium-antimony oxochlorides: from discrete clusters to 3D inorganic-organic hybrid racemic compounds.

    PubMed

    Zou, Guo-Dong; Wang, Ze-Ping; Song, Ying; Hu, Bing; Huang, Xiao-Ying

    2014-07-14

    Five novel praseodymium-antimony oxochloride (Pr-Sb-O-Cl) cluster-based compounds, namely (2-MepyH)2[Fe(1,10-phen)3]2[Pr4Sb12O18Cl14.6(OH)2.4(Hsal)]·H2O (1), (2-MepyH)2[Fe(1,10-phen)3]4{[Pr4Sb12O18Cl13.5(OH)0.5](bcpb)2[Pr4Sb12O18Cl13.5(OH)0.5]}·42H2O (2), (3-MepyH)2[Fe(1,10-phen)3]{[Pr4Sb12O18Cl13(H2O)2](bcpb)}·2(3-Mepy)·3H2O (3), [Fe(1,10-phen)3]2{[Pr4Sb12O18Cl10(H2O)2](bcpb)2}·3(3-Mepy)·13H2O (4), and (2-MepyH)6[Fe(1,10-phen)3]10{[Pr4Sb12O18Cl13(OH)2]2[Pr4Sb12O18Cl9][Pr4Sb12O18Cl9(OH)2]2(Hpdc)10(pdc)2}·110H2O (5) (2-Mepy = 2-methylpyridine, 3-Mepy = 3-methylpyridine, 1,10-phen = 1,10-phenanthroline, H2sal = salicylic acid, H3bcpb = 3,5-bis(4-carboxyphenoxy)benzoic acid, H3pdc = 3,5-pyrazoledicarboxylic acid) have been solvothermally synthesized and structurally characterized. Compound 1 is the first zero-dimensional (0D) Pr-Sb-O-Cl cluster decorated by an organic ligand. Compounds 2-4 are constructed from the same H3bcpb ligands but adopt different structures: 2 represents a rare example of a one-dimensional (1D) nanotubular structure based on high-nuclearity clusters; 3 exhibits a two-dimensional (2D) mono-layered structure, in which left-handed and right-handed helical chains are alternately arranged, while 4 features a double-layered structure with an unprecedented (3,3,6)-connected 3-nodal topological net. Compound 5 is a unique three-dimensional (3D) 2-fold interpenetrating racemic compound, simultaneously containing three kinds of Pr-Sb-O-Cl-pdc clusters. UV-light photocatalytic H2 evolution activity was observed for compound 3 with Pt as a co-catalyst and MeOH as a sacrificial electron donor. In addition, the magnetic properties of compounds 1 and 5 are also studied.

  7. Syntheses, structures and photocatalytic properties of five new praseodymium-antimony oxochlorides: from discrete clusters to 3D inorganic-organic hybrid racemic compounds.

    PubMed

    Zou, Guo-Dong; Wang, Ze-Ping; Song, Ying; Hu, Bing; Huang, Xiao-Ying

    2014-07-14

    Five novel praseodymium-antimony oxochloride (Pr-Sb-O-Cl) cluster-based compounds, namely (2-MepyH)2[Fe(1,10-phen)3]2[Pr4Sb12O18Cl14.6(OH)2.4(Hsal)]·H2O (1), (2-MepyH)2[Fe(1,10-phen)3]4{[Pr4Sb12O18Cl13.5(OH)0.5](bcpb)2[Pr4Sb12O18Cl13.5(OH)0.5]}·42H2O (2), (3-MepyH)2[Fe(1,10-phen)3]{[Pr4Sb12O18Cl13(H2O)2](bcpb)}·2(3-Mepy)·3H2O (3), [Fe(1,10-phen)3]2{[Pr4Sb12O18Cl10(H2O)2](bcpb)2}·3(3-Mepy)·13H2O (4), and (2-MepyH)6[Fe(1,10-phen)3]10{[Pr4Sb12O18Cl13(OH)2]2[Pr4Sb12O18Cl9][Pr4Sb12O18Cl9(OH)2]2(Hpdc)10(pdc)2}·110H2O (5) (2-Mepy = 2-methylpyridine, 3-Mepy = 3-methylpyridine, 1,10-phen = 1,10-phenanthroline, H2sal = salicylic acid, H3bcpb = 3,5-bis(4-carboxyphenoxy)benzoic acid, H3pdc = 3,5-pyrazoledicarboxylic acid) have been solvothermally synthesized and structurally characterized. Compound 1 is the first zero-dimensional (0D) Pr-Sb-O-Cl cluster decorated by an organic ligand. Compounds 2-4 are constructed from the same H3bcpb ligands but adopt different structures: 2 represents a rare example of a one-dimensional (1D) nanotubular structure based on high-nuclearity clusters; 3 exhibits a two-dimensional (2D) mono-layered structure, in which left-handed and right-handed helical chains are alternately arranged, while 4 features a double-layered structure with an unprecedented (3,3,6)-connected 3-nodal topological net. Compound 5 is a unique three-dimensional (3D) 2-fold interpenetrating racemic compound, simultaneously containing three kinds of Pr-Sb-O-Cl-pdc clusters. UV-light photocatalytic H2 evolution activity was observed for compound 3 with Pt as a co-catalyst and MeOH as a sacrificial electron donor. In addition, the magnetic properties of compounds 1 and 5 are also studied. PMID:24869770

  8. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  9. Two novel POM-based inorganic-organic hybrid compounds: synthesis, structures, magnetic properties, photodegradation and selective absorption of organic dyes.

    PubMed

    Dui, Xue-Jing; Yang, Wen-Bin; Wu, Xiao-Yuan; Kuang, Xiaofei; Liao, Jian-Zhen; Yu, Rongmin; Lu, Can-Zhong

    2015-05-28

    The hydrothermal reactions of a mixture of (NH4)6Mo7O24·4H2O, Cu(Ac)2·H2O and 3-bpo ligands at different temperatures result in the isolation of two novel inorganic-organic hybrid materials containing different but related isopolymolybdate units, [Cu(3-bpo)(H2O)(Mo4O13)]·3H2O () and [Cu2(3-bpo)2(Mo6O20)] (). The {Mo4O13}n chains in and unprecedented [Mo6O20](4-) isopolyhexamolybdate anions in are linked by octahedral Cu(2+) ions into two-dimensional hybrid layers. Interestingly, 3-bpo ligands in both and are located on either side of these hybrid layers and serve as arched footbridges to link Cu(ii) ions in the layer via pyridyl N-donors, and at the same time connect these hybrid layers into 3D supramolecular frameworks via weak MoNoxadiazole bonds. Another important point for is that water clusters are filled in the 1D channels surrounded by isopolytetramolybdate units. In addition, dye adsorption and photocatalytic properties of and magnetic properties of have been investigated. The results indicated that complex is not only a good heterogeneous photocatalyst in the degradation of methyl orange (MO) and methylene blue (MB), but also has high absorption capacity of MB at room temperature and can selectively capture MB molecules from binary mixtures of MB/MO or MB/RhB. All MB molecules absorbed on can be completely released and photodegraded in the presence of adequate peroxide. The temperature dependence of magnetic susceptibility revealed that complex exhibits antiferromagnetic ordering at about 5 K, and a spin-flop transition was observed at about 5.8 T at 2 K, indicating metamagnetic-like behaviour from antiferromagnetic to ferromagnetic phases.

  10. Polybenzimidazole compounds

    DOEpatents

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2010-08-10

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  11. DFT (B3LYP/LanL2DZ and B3LYP/6311G+(d,p)) comparative vibrational spectroscopic analysis of organic-inorganic compound bis(4-acetylanilinium) tetrachlorocuprate(II)

    NASA Astrophysics Data System (ADS)

    Abkari, A.; Chaabane, I.; Guidara, K.

    2016-07-01

    The organic-inorganic salt, bis(4-acetylanilinium) tetrachlorocuprate(II), was synthesized and characterized by means of FT-IR (4000-400 cm-1) and Raman (3500-50 cm-1) in solid phase. The structure of [C8H10NO]2CuCl4 compound which was optimized by density functional theory (DFT) using B3LYP method showed that the calculated values obtained by B3LYP with LanL2DZ and 6311G+(d,p) basis sets are in better agreement with the experimental data. The computed vibrational frequencies were scaled by different scale factors to yield a good agreement with the experimental vibrational frequencies. The latter have been discussed on the basis of quantum chemical DFT calculations using the B3LYP/6311G+(d,p) and B3LYP/LanL2DZ method approach in gas phase. Besides, the effects due to the substitutions and the intermolecular interactions were investigated. The comparative analysis of the Raman spectra of the title compound with that of the free ligand was also discussed. The geometries and normal modes of the vibrations obtained from B3LYP/6311G+(d,p) calculation are found to be in good agreement with the experimentally observed data. The complete vibrational assignments and analysis of the observed fundamental bands of molecule were carried out.

  12. Systematic Inorganic Reaction Chemistry: Inorganic Reaction Types, General Methods of Synthesis, and the Periodic Table.

    ERIC Educational Resources Information Center

    Basolo, Fred

    1980-01-01

    Describes two approaches for teaching inorganic reactions and syntheses without having students memorize specific reactions. Briefly indicates topics which should be covered in a junior-senior level course but not at the expense of eliminating teaching students how to make basic inorganic compounds. (Author/JN)

  13. Electrical transport properties and modulus behavior of the organic-inorganic [N(C3H7)4]2SnCl6 compound

    NASA Astrophysics Data System (ADS)

    Hajlaoui, Sondes; Chaabane, Iskandar; Oueslati, Abderrazak; Guidara, Kamel

    2015-10-01

    In this paper we report the study of electric properties of bis-tetrapropylammoniumhexchlorostannte compound. The plots of -Zʺ versus Z‧ obtained in a range of temperature (343-393 K) and frequency (209 Hz to 5 MHz) were well fitted to an equivalent circuit formed by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). The frequency dependence of A.C. conductivity has been fitted using Jonscher relation at different temperatures σ (ω) =σdc + Aωs . The variation of the exponent s with temperature indicates that the CBH model is the probable mechanism for the A.C. conduction behavior. The theoretical study of A.C. electrical conduction using single polaron model has been reported. The study of the activation energy obtained from the electric modulus matches well with that obtained from conduction.

  14. A Multiweek Upper-Division Inorganic Laboratory Based on Metallacrowns

    ERIC Educational Resources Information Center

    Sirovetz, Brian J.; Walters, Nicole E.; Bender, Collin N.; Lenivy, Christopher M.; Troup, Anna S.; Predecki, Daniel P.; Richardson, John N.; Zaleski, Curtis M.

    2013-01-01

    Metallacrowns are a versatile class of inorganic compounds with uses in several areas of chemistry. Students engage in a multiweek, upper-division inorganic laboratory that explores four different metallacrown compounds: Fe[superscript III](O[subscript 2]CCH[subscript 3])[subscript 3][9-MC[subscript Fe][superscript III][subscript…

  15. Alternative current conduction mechanisms of organic-inorganic compound [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4}

    SciTech Connect

    Ben Bechir, M. Karoui, K.; Guidara, K.; Ben Rhaiem, A.; Tabellout, M.

    2014-05-28

    The [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} single crystal has been analyzed by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and electrical impedance spectroscopy. [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} crystallizes at room temperature in the monoclinic system with P2{sub 1}/{sub C} space group. Three phase transitions at T{sub 1} = 226 K, T{sub 2} = 264 K, and T{sub 3} = 297 K have been evidenced by DSC measurements. The electrical technique was measured in the 10{sup −1}–10{sup 7} Hz frequency range and 203–313 K temperature intervals. The frequency dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law (developed). The AC electrical conduction in [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} compound is studied by two processes which can be attributed to a hopping transport mechanism: the correlated barrier hopping model in phases I, II, and III, the non-overlapping small polaron tunneling model in phase IV. The conduction mechanism is interpreted with the help of Elliot's theory, and the Elliot's parameters are found.

  16. Alternative current conduction mechanisms of organic-inorganic compound [N(CH3)3H]2CuCl4

    NASA Astrophysics Data System (ADS)

    Ben Bechir, M.; Karoui, K.; Tabellout, M.; Guidara, K.; Ben Rhaiem, A.

    2014-05-01

    The [N(CH3)3H]2CuCl4 single crystal has been analyzed by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and electrical impedance spectroscopy. [N(CH3)3H]2CuCl4 crystallizes at room temperature in the monoclinic system with P21/C space group. Three phase transitions at T1 = 226 K, T2 = 264 K, and T3 = 297 K have been evidenced by DSC measurements. The electrical technique was measured in the 10-1-107 Hz frequency range and 203-313 K temperature intervals. The frequency dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law (developed). The AC electrical conduction in [N(CH3)3H]2CuCl4 compound is studied by two processes which can be attributed to a hopping transport mechanism: the correlated barrier hopping model in phases I, II, and III, the non-overlapping small polaron tunneling model in phase IV. The conduction mechanism is interpreted with the help of Elliot's theory, and the Elliot's parameters are found.

  17. Toxicological review of inorganic phosphates.

    PubMed

    Weiner, M L; Salminen, W F; Larson, P R; Barter, R A; Kranetz, J L; Simon, G S

    2001-08-01

    Inorganic phosphate salts are widely used as food ingredients and in a variety of commercial applications. The United States Food and Drug Administration (FDA) considers inorganic phosphates "Generally Recognized As Safe" (GRAS) (FDA, 1973a, 1979) [FDA: Food and Drug Administration 1973a. GRAS (Generally Recognized as Safe) food ingredients-phosphates. NTIS PB-221-224, FDA, Food and Drug Administration, 1979. Phosphates; Proposed Affirmation of and Deletion From GRAS Status as Direct and Human Food Ingredients. Federal Register 44 (244). 74845-74857, 18 December (1979)] and the European Union (EU) allows inorganic phosphates to be added directly to food (EU Directive 95/2/EC as amended by 98/72/EC). In this review, data on the acute, subchronic and chronic toxicity, genotoxicity, teratogenicity and reproductive toxicity from the published literature and from unpublished studies by the manufacturers are reviewed. Based on the toxicity data and similar chemistry, the inorganic phosphates can be separated into four major classes, consisting of monovalent salts, divalent salts, ammonium salts and aluminum salts. The proposed classification scheme supports the use of toxicity data from one compound to assess the toxicity of another compound in the same class. However, in the case of eye and skin irritation, the proposed classification scheme cannot be used because a wide range of responses exists within each class. Therefore, the eye and skin hazards associated with an individual inorganic phosphate should be assessed on a chemical-by-chemical basis. A large amount of toxicity data exists for all four classes of inorganic phosphates. The large and comprehensive database allows an accurate assessment of the toxicity of each class of inorganic phosphate. Overall, all four classes of inorganic phosphates exhibit low oral, inhalation and dermal toxicities. Based on these data, humans are unlikely to experience adverse effects when the daily phosphorus consumption remains

  18. Alternative current conduction mechanisms of organic-inorganic compound [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4}

    SciTech Connect

    Ben Bechir, M. Karoui, K.; Guidara, K.; Ben Rhaiem, A.; Tabellout, M.

    2014-04-21

    [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} has been studied by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and impedance spectroscopy. The [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} hybrid compound is crystallized at room temperature (T ≈ 300 K) in the orthorhombic system with Pnma space group. Five phase transitions (T{sub 1} = 255 K, T{sub 2} = 282 K, T{sub 3} = 302 K, T{sub 4} = 320 K, and T{sub 5} = 346 K) have been proved by DSC measurements. The electrical technique was measured in the 10{sup −1}-10{sup 7} Hz frequency range and 233–363 K temperature interval. The frequency dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law. The AC electrical conduction in [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} is analyzed by different processes, which can be attributed to several models: the correlated barrier hopping model in phase I, the overlapping large polaron tunneling model in phase II, the quantum mechanical tunneling model in phase IV, and the non-overlapping small polaron tunneling model in phases III, V, and VI. The conduction mechanism is studied with the help of Elliot's theory, and the Elliot's parameters are determined.

  19. Inorganic-organic composite polymers and methods of making

    DOEpatents

    Josowicz, Mira A.; Exarhos, Gregory J.

    1996-01-01

    The invention is a composition of an inorganic-organic polymer composite and a method of making it. The inorganic portion of the fundamental polymer composite polymer repeat is a speciated inorganic heterocyclic compound, and the organic portion of the polymer repeat is a cyclic organic radical anion compound having at least two charged sites. The composition of the present invention is made by combining a cyclic organic radical anion compound with a speciated inorganic heterocyclic compound by a nucleophilic substitution thereby forming a polymer of an inorganic-organic composite. The cyclic organic radical anion compound is preferably generated electrochemically. The nucleophilic substitution is alternately carried out chemically or electrochemically. A preferred embodiment of the present invention includes performing the nucleophilic substitution at the cathode of an electrochemical cell.

  20. Inorganic-organic composite polymers and methods of making

    DOEpatents

    Josowicz, M.A.; Exarhos, G.J.

    1996-10-29

    The invention is a composition of an inorganic-organic polymer composite and a method of making it. The inorganic portion of the fundamental polymer composite polymer repeat is a speciated inorganic heterocyclic compound, and the organic portion of the polymer repeat is a cyclic organic radical anion compound having at least two charged sites. The composition of the present invention is made by combining a cyclic organic radical anion compound with a speciated inorganic heterocyclic compound by a nucleophilic substitution thereby forming a polymer of an inorganic-organic composite. The cyclic organic radical anion compound is preferably generated electrochemically. The nucleophilic substitution is alternately carried out chemically or electrochemically. A preferred embodiment of the present invention includes performing the nucleophilic substitution at the cathode of an electrochemical cell. 2 figs.

  1. Assessment of ethylene dibromide, dibromochloropropane, other volatile organic compounds, radium isotopes, radon, and inorganic compounds in groundwater and spring water from the Crouch Branch and McQueen Branch aquifers near McBee, South Carolina, 2010-2012

    USGS Publications Warehouse

    Landmeyer, James E.; Campbell, Bruce G.

    2014-01-01

    The water-quality data collected between 2010 and 2012, in conjunction with groundwater flow pathways and historical aerial photographs of land uses near McBee, indicate an area where EDB-, DBCP-, 1,2-dichloropropane-, 1,3-dichloropropane-, and carbon disulfide-contaminated groundwater exists in the Crouch Branch aquifer in the Cedar Creek Basin and north of McBee and is most likely related to the past use of these compounds between the early 1900s and the 1980s as soil fumigants in predominately agricultural areas north of McBee. The highest EDB concentration detected (18.6 micrograms per liter) during the 3-year study was in a groundwater sample from an agricultural-supply well located north of McBee. Other VOCs, such as dichloromethane and 1,1,2-trichloroethane, also were detected in groundwater samples from this EDB-contaminated agricultural-supply well but are from unknown source(s). The fact that the agricultural area north of McBee is located in a recharge area for the Crouch Branch aquifer most likely facilitated the groundwater contamination in this area. DBCP-contaminated groundwater detected in three public-supply wells south of McBee in the deeper McQueen Branch aquifer appears to be related to past soil fumigation practices that used DBCP in agricultural areas located south of McBee. One of the three DBCP-contaminated public-supply wells also contained EDB, most likely present in groundwater due to the release of leaded gasolines that contained EDB as a fuel additive between the 1940s and 1970s. A gasoline-source of EDB, rather than a soil-fumigation source, is supported by the co-detection in groundwater from the well of 1,2-dichloroethane, a lead scavenger compound also added to leaded gasoline. Groundwater pumped from two public-supply wells located within and to the east of the McBee town limits and one domestic-supply well east of McBee was characterized by the detection of 1,1-dichloroethane, trichloroethylene, 1,1-dichloroethylene, and

  2. DEMONSTRATION BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANIC/INORGANIC CONTAMINANTS - SILICATE TECHNOLOGY CORPORATION

    EPA Science Inventory

    Silicate Technology Corporation's (STC's) technology for treating hazardous waste utilizes silicate compounds to stabilize organic and inorganic constituents in contaminated soils and sludges. STC has developed two groups of reagents: SOILSORB HM for treating wastes with inorgan...

  3. Assessment of ethylene dibromide, dibromochloropropane, other volatile organic compounds, radium isotopes, radon, and inorganic compounds in groundwater and spring water from the Crouch Branch and McQueen Branch aquifers near McBee, South Carolina, 2010-2012

    USGS Publications Warehouse

    Landmeyer, James E.; Campbell, Bruce G.

    2014-01-01

    The water-quality data collected between 2010 and 2012, in conjunction with groundwater flow pathways and historical aerial photographs of land uses near McBee, indicate an area where EDB-, DBCP-, 1,2-dichloropropane-, 1,3-dichloropropane-, and carbon disulfide-contaminated groundwater exists in the Crouch Branch aquifer in the Cedar Creek Basin and north of McBee and is most likely related to the past use of these compounds between the early 1900s and the 1980s as soil fumigants in predominately agricultural areas north of McBee. The highest EDB concentration detected (18.6 micrograms per liter) during the 3-year study was in a groundwater sample from an agricultural-supply well located north of McBee. Other VOCs, such as dichloromethane and 1,1,2-trichloroethane, also were detected in groundwater samples from this EDB-contaminated agricultural-supply well but are from unknown source(s). The fact that the agricultural area north of McBee is located in a recharge area for the Crouch Branch aquifer most likely facilitated the groundwater contamination in this area. DBCP-contaminated groundwater detected in three public-supply wells south of McBee in the deeper McQueen Branch aquifer appears to be related to past soil fumigation practices that used DBCP in agricultural areas located south of McBee. One of the three DBCP-contaminated public-supply wells also contained EDB, most likely present in groundwater due to the release of leaded gasolines that contained EDB as a fuel additive between the 19

  4. Inorganic contents of peats

    SciTech Connect

    Raymond, R. Jr.; Bish, D.L.; Cohen, A.D.

    1988-02-01

    Peat, the precursor of coal, is composed primarily of plant components and secondarily of inorganic matter derived from a variety of sources. The elemental, mineralogic, and petrographic composition of a peat is controlled by a combination of both its botanical and depositional environment. Inorganic contents of peats can vary greatly between geographically separated peat bogs as well as vertially and horizontally within an individual bog. Predicting the form and distribution of inorganic matter in a coal deposit requires understanding the distribution and preservation of inorganic matter in peat-forming environments and diagenetic alterations affecting such material during late-stage peatification and coalification processes. 43 refs., 4 figs., 3 tabs.

  5. Rotor-Shaped Cyclopentadienyltetraphenyl-Cyclobutadienecobalt: An Advanced Inorganic Experiment

    ERIC Educational Resources Information Center

    MacFarland, Darren K.; Gorodetzer, Rebecca

    2005-01-01

    Organometallic complex synthesis in advanced inorganic or organic courses usually begin with the synthesis of ferrocene. A synthetic experiment of an alternative compound that has a more interesting structure and the same air stability that makes ferrocene desirable is presented.

  6. Synthesis, characterization, single crystal X-ray structure, EPR and theoretical studies of a new hybrid inorganic-organic compound [Cu(Hdien)2(H2O)2](pnb)4·4H2O and its structural comparison with related [Cu(en)2(H2O)2](pnb)2

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Sharma, Raj Pal; Venugopalan, Paloth; Witwicki, Maciej; Ferretti, Valeria

    2016-11-01

    A new hybrid inorganic-organic compound [Cu(Hdien)2(H2O)2](pnb)4·4H2O (1) (where pnb = p-nitrobenzoate), in which the tridentate ligand diethylenetriamine (dien) shows an unusual coordination behavior acting as a bidentate ligand when present in its monoprotonated form (Hdien+) has been synthesized by the reaction of copper(II) p-nitrobenzoate and slight excess of dien in methanol-water mixture (4:1v/v). Re-crystallization of the violet precipitated product from hot water gave single crystals suitable for X-ray diffraction studies. The newly synthesized compound 1 has been characterized by spectroscopic techniques (UV-Vis, FT-IR, EPR), and theoretical methods (DFT and MRCI/SORCI). Single crystal X-ray structure determination revealed the existence of the cationic species [Cu(Hdien)2(H2O)2]4+, four p-nitrobenzoate as counter anions and four water molecules are present as solvent of crystallization. Packing analyses of title compound as well as of the structurally similar [Cu(en)2(H2O)2](pnb)2,2 has shown similarities in the crystalline architecture that both hybrid inorganic-organic compounds is stabilized by various non-covalent interactions such as N-H⋯O, C-H⋯O, O-H⋯O etc.

  7. Polyoxometalate (POM)-based, multi-functional, inorganic-organic, hybrid compounds: syntheses and molecular structures of silanol- and/or siloxane bond-containing species grafted on mono- and tri-lacunary Keggin POMs.

    PubMed

    Aoki, Shotaro; Kurashina, Takayuki; Kasahara, Yuhki; Nishijima, Tadashi; Nomiya, Kenji

    2011-02-14

    Using 3-mercaptopropyltrimethoxysilane (HS(CH₂)₃Si(OMe)₃) as a silane-coupling agent (SCA), mono- and tri-lacunary Keggin polyoxometalate (POM)-based, multi-functional, inorganic-organic, hybrid compounds, (Et₄N)₃[α-PW₁₁O₃₉{(HS(CH₂)₃Si)₂O}] EtN-1 (the 1 : 2 complex of a POM unit and organosilyl groups), (Bu₄N)₃[A-PW₉O₃₄(HS(CH₂)₃SiOH)₃] BuN-2 (the 1 : 3 complex) and (Bu₄N)₃[A-α-PW₉O₃₄(HS(CH₂)₃SiO)₃(Si(CH₂)₃SH)] BuN-3 (the 1 : 4 complex) were synthesized and unequivocally characterized by elemental analysis, thermogravimetric and differential thermal analyses (TG/DTA), FTIR, solid-state (²⁹Si and ³¹P) CPMAS NMR, solution (²⁹Si, ³¹P, ¹H and ¹³C) NMR, and X-ray crystallography. [Note: The moieties of their polyoxoanions are abbreviated simply as 1-3, respectively.] The X-ray molecular structures of EtN-1 and BuN-3 were determined. In EtN-1, two organic groups connected through a siloxane bond (-Si-O-Si- bond) were grafted on a mono-lacunary site of a Keggin POM, whereas in BuN-3 four organic groups connected through siloxane bonds were grafted on a tri-lacunary site of a Keggin POM. In BuN-2, three organic groups were grafted in the form of silanol (-SiOH) on a tri-lacunary site, i.e., in BuN-2 there was no siloxane bond. BuN-3 was synthesized as BuN-3a and BuN-3b by two methods, respectively; (1) BuN-3a was obtained by a 1 : 1 molar-ratio reaction of BuN-2 and an SCA in CH₃CN, and (2) BuN-3b was prepared by a direct 1 : 4 molar-ratio reaction of a tri-lacunary Keggin POM and SCA in water-CH₃CN. X-Ray crystallography revealed that BuN-3a is the same as BuN-3b. It is probable that BuN-2 is an intermediate in the formation of BuN-3. Terminal -SH groups in 1-3, as well as -OH groups in 2, can be utilized for immobilization of POMs and, also, as building blocks for the formation of novel hybrid compounds.

  8. Organic-Inorganic Composites Toward Biomaterial Application.

    PubMed

    Miyazaki, Toshiki; Sugawara-Narutaki, Ayae; Ohtsuki, Chikara

    2015-01-01

    Bioactive ceramics are known to exhibit specific biological affinities and are able to show direct integration with surrounding bone when implanted in bony defects. However, their inadequate mechanical properties, such as low fracture toughness and high Young's modulus in comparison to natural bone, limit their clinical application. Bone is a kind of organic-inorganic composite where apatite nanocrystals are precipitated onto collagen fibre networks. Thus, one way to address these problems is to mimic the natural composition of bone by using bioactive ceramics via material designs based on organic-inorganic composites. In this chapter, the current research on the development of the various organic-inorganic composites designed for biomaterial applications has been reviewed. Various compounds such as calcium phosphate, calcium sulphate and calcium carbonate can be used for the inorganic phases to design composites with the desired mechanical and biological properties of bone. Not only classical mechanical mixing but also coating of the inorganic phase in aqueous conditions is available for the fabrication of such composites. Organic modifications using various polymers enable the control of the crystalline structure of the calcium carbonate in the composites. These approaches on the fabrication of organic-inorganic composites provide important options for biomedical materials with novel functions.

  9. Inorganic nanolayers: structure, preparation, and biomedical applications.

    PubMed

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  10. Inorganic nanolayers: structure, preparation, and biomedical applications

    PubMed Central

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  11. Organic-Inorganic Composites Toward Biomaterial Application.

    PubMed

    Miyazaki, Toshiki; Sugawara-Narutaki, Ayae; Ohtsuki, Chikara

    2015-01-01

    Bioactive ceramics are known to exhibit specific biological affinities and are able to show direct integration with surrounding bone when implanted in bony defects. However, their inadequate mechanical properties, such as low fracture toughness and high Young's modulus in comparison to natural bone, limit their clinical application. Bone is a kind of organic-inorganic composite where apatite nanocrystals are precipitated onto collagen fibre networks. Thus, one way to address these problems is to mimic the natural composition of bone by using bioactive ceramics via material designs based on organic-inorganic composites. In this chapter, the current research on the development of the various organic-inorganic composites designed for biomaterial applications has been reviewed. Various compounds such as calcium phosphate, calcium sulphate and calcium carbonate can be used for the inorganic phases to design composites with the desired mechanical and biological properties of bone. Not only classical mechanical mixing but also coating of the inorganic phase in aqueous conditions is available for the fabrication of such composites. Organic modifications using various polymers enable the control of the crystalline structure of the calcium carbonate in the composites. These approaches on the fabrication of organic-inorganic composites provide important options for biomedical materials with novel functions. PMID:26201274

  12. PEGylated Inorganic Nanoparticles

    SciTech Connect

    Karakoti, Ajay S.; Das, Soumya; Thevuthasan, Suntharampillai; Seal, Sudipta

    2011-02-25

    Application of inorganic nanoparticles in diagnosis and therapy has become a critical component in targeted treatment of diseases. The surface modification of inorganic oxides is important for providing diversity in size, shape, solubility, long term stability and attachment of selective functional groups. PEGylation of surfaces is a key strategic approach for providing stealth characteristics to nanomaterials otherwise identified as foreign materials by human body. The current review describes the role of surface modification of oxides by polyethylene glycol (PEG) in providing versatile characteristics to inorganic oxide nanoparticles with a focus on their biomedical applications. The role of PEG as structure directing agent in synthesis of oxides is also captured in this short review.

  13. Science Update: Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  14. Inorganic Janus particles for biomedical applications

    PubMed Central

    Schick, Isabel; Lorenz, Steffen; Gehrig, Dominik; Tenzer, Stefan; Storck, Wiebke; Fischer, Karl; Strand, Dennis; Laquai, Frédéric

    2014-01-01

    Summary Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic–inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial properties emerge in inorganic Janus particles from their dimensions and unique morphology at the nanoscale. As a result, inorganic Janus nanoparticles are highly versatile nanomaterials with great potential in different scientific and technological fields. In this paper, we highlight some advances in the synthesis of inorganic Janus nanoparticles, focusing on the heterogeneous nucleation technique and characteristics of the resulting high quality nanoparticles. The properties emphasized in this review range from the monodispersity and size-tunability and, therefore, precise control over size-dependent features, to the biomedical application as theranostic agents. Hence, we show their optical properties based on plasmonic resonance, the two-photon activity, the magnetic properties, as well as their biocompatibility and interaction with human blood serum. PMID:25551063

  15. Inorganic separator technology program

    NASA Technical Reports Server (NTRS)

    Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.

    1973-01-01

    Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.

  16. Geological and Inorganic Materials.

    ERIC Educational Resources Information Center

    Jackson, L. L.; And Others

    1989-01-01

    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…

  17. Analysis of inorganic species in environmental samples by capillary electrophoresis.

    PubMed

    Valsecchi, S M; Polesello, S

    1999-02-26

    The use of capillary electrophoresis for the determination of inorganic species in environmental samples is reviewed. Topics covered include the separation of inorganic anions, inorganic cations, transition metal cations and organometals in different environmental matrices, such as atmospheric deposition, atmospheric aerosols, gases, natural waters, waste waters, soil, sediment and marine biological samples. Cited literature is gathered according to the type of matrix, so that the focus is on the discussion of matrix effects rather than on the method development for a single class of compounds. For each matrix, surveyed methods are tabulated in order to assist the method selection. Innovative applications of capillary electrophoresis to advanced environmental research are also emphasised.

  18. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  19. Inorganic Graphene Analogs

    NASA Astrophysics Data System (ADS)

    Rao, C. N. R.; Maitra, Urmimala

    2015-07-01

    In the last four to five years, there has been a great resurgence of research on two-dimensional inorganic materials, partly because of the impetus received from graphene research. Unlike graphene, which is a gap-less material, most inorganic layered materials are semiconductors or insulators. Some of them, as exemplified by MoS2, exhibit unexpected properties, not unlike graphene, with possible applications. Thus, layered metal chalcogenides are being explored intensely, and MoS2 is emerging as a wonder material. In this article, we present the synthesis and properties of nanosheets composing single or few layers of these fascinating materials. Besides metal chalcogenides, boron nitride, borocarbonitrides (BxCyNz), metal oxides, and metal-organic frameworks are also discussed.

  20. Supported inorganic membranes

    DOEpatents

    Sehgal, Rakesh; Brinker, Charles Jeffrey

    1998-01-01

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  1. Dermal absorption of inorganic germanium in rats.

    PubMed

    Yokoi, Katsuhiko; Kawaai, Takae; Konomi, Aki; Uchida, Yuka

    2008-11-01

    So-called germanium 'health' products including dietary supplements, cosmetics, accessories, and warm bath service containing germanium compounds and metalloid are popular in Japan. Subchronic and chronic oral exposure of germanium dioxide (GeO(2)), popular chemical form of inorganic germanium causes severe germanium toxicosis including death and kidney dysfunction in humans and experimental animals. Intestinal absorption of neutralized GeO(2) or germanate is almost complete in humans and animals. However, it is not known whether germanium is cutaneously absorbed. We tested dermal absorption of neutralized GeO(2) or germanate using male F344/N rats. Three groups of rats were treated with a 3-h topical application of hydrophilic ointment containing graded level of neutralized GeO(2) (pH 7.4): 0, 0.21 and 0.42 mg GeO(2)/g. Germanium concentration in blood and tissues sampled from rats after topical application of inorganic germanium was measured by inductively coupled plasma-mass spectrometry. Animals topically applied 0.42 mg GeO(2)/g ointment had significantly higher germanium concentrations in plasma, liver, and kidney than those of rats that received no topical germanium. The results indicate that skin is permeable to inorganic germanium ion or germanate and recurrent exposure of germanium compounds may pose a potential health hazard.

  2. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    PubMed Central

    Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety. PMID:23230464

  3. Block Coloplyer Nanoreactors for Inorganic Cluster Synthesis

    NASA Astrophysics Data System (ADS)

    Cohen, Robert E.

    1997-03-01

    We have generalized our work on the spatial confinement of inorganic clusters in block copolymers to a nanoreactor scheme for cluster synthesis. Using this new methodology, a wide range of inorganic clusters can be synthesized from a single block copolymer starting material. Metals are selectively sequestered into domains of the heterogeneous block copolymer morphology, either from aqueous solutions of suitably chosen salts or via vapor permeation of organometallic compounds. Once "loaded", these metal-containing domains serve as localized reaction sites for cluster synthesis. The metal-sequestering sites are rejuvenated, rendering the nanoreactors capable of being reloaded with more of the same metal, or another, for further cluster synthesis. Magnetic and optical properties of free-standing block copolymer films containing various types of nanoclusters will be discussed.

  4. Inorganic: the other mercury.

    PubMed

    Risher, John F; De Rosa, Christopher T

    2007-11-01

    There is a broad array of mercury species to which humans may be exposed. While exposure to methylmercury through fish consumption is widely recognized, the public is less aware of the sources and potential toxicity of inorganic forms of mercury. Some oral and laboratory thermometers, barometers, small batteries, thermostats, gas pressure regulators, light switches, dental amalgam fillings, cosmetic products, medications, cultural/religious practices, and gold mining all represent potential sources of exposure to inorganic forms of mercury. The route of exposure, the extent of absorption, the pharmacokinetics, and the effects all vary with the specific form of mercury and the magnitude and duration of exposure. If exposure is suspected, a number of tissue analyses can be conducted to confirm exposure or to determine whether an exposure might reasonably be expected to be biologically significant. By contrast with determination of exposure to methylmercury, for which hair and blood are credible indicators, urine is the preferred biological medium for the determination of exposure to inorganic mercury, including elemental mercury, with blood normally being of value only if exposure is ongoing. Although treatments are available to help rid the body of mercury in cases of extreme exposure, prevention of exposure will make such treatments unnecessary. Knowing the sources of mercury and avoiding unnecessary exposure are the prudent ways of preventing mercury intoxication. When exposure occurs, it should be kept in mind that not all unwanted exposures will result in adverse health consequences. In all cases, elimination of the source of exposure should be the first priority of public health officials.

  5. Inorganic: the other mercury.

    PubMed

    Risher, John F; De Rosa, Christopher T

    2007-11-01

    There is a broad array of mercury species to which humans may be exposed. While exposure to methylmercury through fish consumption is widely recognized, the public is less aware of the sources and potential toxicity of inorganic forms of mercury. Some oral and laboratory thermometers, barometers, small batteries, thermostats, gas pressure regulators, light switches, dental amalgam fillings, cosmetic products, medications, cultural/religious practices, and gold mining all represent potential sources of exposure to inorganic forms of mercury. The route of exposure, the extent of absorption, the pharmacokinetics, and the effects all vary with the specific form of mercury and the magnitude and duration of exposure. If exposure is suspected, a number of tissue analyses can be conducted to confirm exposure or to determine whether an exposure might reasonably be expected to be biologically significant. By contrast with determination of exposure to methylmercury, for which hair and blood are credible indicators, urine is the preferred biological medium for the determination of exposure to inorganic mercury, including elemental mercury, with blood normally being of value only if exposure is ongoing. Although treatments are available to help rid the body of mercury in cases of extreme exposure, prevention of exposure will make such treatments unnecessary. Knowing the sources of mercury and avoiding unnecessary exposure are the prudent ways of preventing mercury intoxication. When exposure occurs, it should be kept in mind that not all unwanted exposures will result in adverse health consequences. In all cases, elimination of the source of exposure should be the first priority of public health officials. PMID:18044248

  6. XAFS Model Compound Library

    DOE Data Explorer

    Newville, Matthew

    The XAFS Model Compound Library contains XAFS data on model compounds. The term "model" compounds refers to compounds of homogeneous and well-known crystallographic or molecular structure. Each data file in this library has an associated atoms.inp file that can be converted to a feff.inp file using the program ATOMS. (See the related Searchable Atoms.inp Archive at http://cars9.uchicago.edu/~newville/adb/) This Library exists because XAFS data on model compounds is useful for several reasons, including comparing to unknown data for "fingerprinting" and testing calculations and analysis methods. The collection here is currently limited, but is growing. The focus to date has been on inorganic compounds and minerals of interest to the geochemical community. [Copied, with editing, from http://cars9.uchicago.edu/~newville/ModelLib/

  7. Report of the Polymer Core Course Committee: Inclusion of Polymer Topics into Undergraduate Inorganic Chemistry Courses.

    ERIC Educational Resources Information Center

    Miller, Norman E.; And Others

    1984-01-01

    Suggests polymer topics for study in inorganic chemistry courses. Commercial materials (including list of inorganic compounds utilized in polymer industry), anchored metal catalysis, polymers modified or formed by coordination, polysiloxanes, phosphazene or phosphonitrilic halide polymers, and hetergeneous polymerization catalysts are considered.…

  8. (EDT-TTF-CONH2)6[Re6Se8(CN)6], a metallic Kagome-type organic-inorganic hybrid compound: electronic instability, molecular motion, and charge localization.

    PubMed

    Baudron, Stéphane A; Batail, Patrick; Coulon, Claude; Clérac, Rodolphe; Canadell, Enric; Laukhin, Vladimir; Melzi, Roberto; Wzietek, Pawel; Jérome, Denis; Auban-Senzier, Pascale; Ravy, Sylvain

    2005-08-24

    (EDT-TTF-CONH2)6[Re6Se8(CN)6], space group R, was prepared by electrocrystallization from the primary amide-functionalized ethylenedithiotetrathiafulvalene, EDT-TTF-CONH2 (E(1/2)1 = 0.49 V vs SCE in CH3CN), and the molecular cluster tetraanion, [Re6Se8(CN)6]4- (E(1/2) = 0.33 V vs SCE in CH3CN), equipped with hydrogen bond donor and hydrogen bond acceptor functionalities, respectively. Its Kagome topology is unprecedented for any TTF-based materials. The metallic state observed at room temperature has a strong two-dimensional character, in coherence with the Kagome lattice symmetry, and the presence of minute amounts of [Re6Se8(CN)6](3-)* identified by electron spin spectroscopy. A structural instability toward a distorted form of the Kagome topology of lesser symmetry is observed at ca. 180 K. The low-temperature structure is associated with a localized, electrically insulating electronic ground state and its magnetic susceptibility accounted for by a model of uniform chains of localized S = 1/2 spins in agreement with the 100 K triclinic crystal structure and band structure calculations. A sliding motion, within one out of the three (EDT-TTF-CONH2)2 dimers coupled to the [Re6Se8(CN6)(3-)*]/[Re6Se8(CN6)4-] proportion at any temperature, and the electronic ground state of the organic-inorganic hybrid material are analyzed on the basis of ESR, dc conductivity, 1H spin-lattice relaxation, and static susceptibility data which qualify a Mott localization in [EDT-TTF-CONH2]6[Re6Se8(CN)6]. The coupling between the metal-insulator transition and a structural transition allows for the lifting of a degeneracy due to the ternary axis in the high temperature, strongly correlated metallic phase which, in turn, leads to Heisenberg chains at low temperature.

  9. Monitoring dehydration of the organic-inorganic [(C3H7)4N][SnCl5(H2O)]·2H2O compound using simultaneous thermal and Raman studies

    NASA Astrophysics Data System (ADS)

    Hajlaoui, S.; Chaabane, I.; Guidara, K.; Bulou, A.

    2016-07-01

    In this work we report the experimental studies of the structural phase transition in the [(C3H7)4N]SnCl5(H2O)]·2H2O compound by differential scanning calorimetric (DSC) and Raman spectroscopic. The X-ray powder diffraction study of the [(C3H7)4N][SnCl5(H2O)]·2H2O sample at room temperature showed that this compound is monoclinic and has P121/c1 space group. Differential scanning calorimetric disclosed two types of phase transitions in the temperature range 356-376 (T1) K and at 393 K (T2) characterized, by a loss of water molecules and probably a reconstruction of new anionic parts after T2 transition. The Raman scattering spectra recorded at various temperatures in the wavenumber range from 100 to 3800 cm- 1 covering the domains of existence of changes in the vicinity of the two phase transitions detected by DSC measurement. A detailed study of the spectral parameters (wave number, reduced intensity and the full width at half maximum) as a function of temperature of a chosen band, associated with (νs(Snsbnd O) + νs(Snsbnd Cl)), based on an order-disorder model allowed us to obtain information relative to the activation energy and correlation length.

  10. Inorganic polymer engineering materials

    SciTech Connect

    Stone, M.L.

    1993-06-01

    Phosphazene-based, inorganic-polymer composites have been produced and evaluated as potential engineering materials. The thermal, chemical, and mechanical properties of several different composites made from one polymer formulation have been measured. Measured properties are very good, and the composites show excellent promise for structural applications in harsh environments. Chopped fiberglass, mineral, cellulose, and woodflour filled composites were tested. Chopped fiberglass filled composites showed the best overall properties. The phosphazene composites are very hard and rigid. They have low dielectric constants and typical linear thermal expansion coefficients for polymers. In most cases, the phosphazene materials performed as well or better than analogous, commercially available, filled phenolic composites. After 3 to 5 weeks of exposure, both the phosphazene and phenolics were degraded to aqueous bases and acids. The glass filled phosphazene samples were least affected.

  11. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T.

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  12. PATHWAY OF INORGANIC ARSENIC METABOLISM

    EPA Science Inventory

    A remarkable aspect of the metabolism of inorganic arsenic in humans is its conversion to methylated metabolites. These metabolites account for most of the arsenic found in urine after exposure to inorganic arsenic. At least some of the adverse health effects attributed to inor...

  13. How can Databases assist with the Prediction of Chemical Compounds?

    PubMed Central

    Schön, J Christian

    2014-01-01

    An overview is given on the ways databases can be employed to aid in the prediction of chemical compounds, in particular inorganic crystalline compounds. Methods currently employed and possible future approaches are discussed. PMID:26213422

  14. ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE AND THE INORGANIC ARSENIC METHYLATION PHENOTYPE

    EPA Science Inventory

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidence suggest that some of the adverse health effects associated with chronic exposure to in...

  15. Reduction of ethylenediaminetetraacetic acid iron(III) by Klebsiella sp. FD-3 immobilized on iron(II, III) oxide poly (styrene-glycidyl methacrylate) magnetic porous microspheres: effects of inorganic compounds and kinetic study of effective diffusion in porous media.

    PubMed

    Zhou, Zuo-Ming; Wang, Xiao-Yan; Lin, Tian-Ming; Jing, Guo-Hua

    2014-11-01

    Fe3O4 poly (styrene-glycidyl methacrylate) magnetic porous microspheres (MPPMs) were introduced to immobilize Klebsiella sp. FD-3, an iron-reducing bacterium applied to reduce Fe(III)EDTA. The effects of potential inhibitors (S(2-), SO3(2-), NO3(-), NO2(-) and Fe(II)EDTA-NO) on Fe(III)EDTA reduction were investigated. S(2-) reacted with Fe(III)EDTA as an electron-shuttling compound and enhanced the reduction. But Fe(III)EDTA reduction was inhibited by SO3(2-) and Fe(II)EDTA-NO due to their toxic to microorganisms. Low concentrations of NO3(-) and NO2(-) accelerated Fe(III)EDTA reduction, but high concentrations inhibited the reduction, whether by free or immobilized FD-3. The immobilized FD-3 performed better than freely-suspended style. The substrate mass transfer and diffusion kinetics in the porous microspheres were calculated. The value of Thiele modulus and effectiveness factors showed that the intraparticle diffusion was fairly small and neglected in this carrier. Fe(III)EDTA reduction fitted first-order model at low Fe(III)EDTA concentration, and changed to zero-order model at high concentrations.

  16. Inorganic ion sorbent method

    DOEpatents

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.

    2007-07-17

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  17. Inorganic ion sorbents

    DOEpatents

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.

    2006-10-17

    A process and medium for decontamination of water containing anionic species including arsenic and chromium, wherein compounds comprising divalent and trivalent metal oxides and sulfides are used to form surface complexes with contaminants under pH conditions within the range of potable water. In one embodiment natural and synthetic spinels and spinel-like materials are used as the sorbent substance.

  18. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J.

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  19. Cancer risk from inorganics

    SciTech Connect

    Swierenga, S.H.; Gilman, J.P.; McLean, J.R.

    1987-01-01

    Inorganic metals and minerals for which there is evidence of carcinogenicity are identified. The risk of cancer from contact with them in the work place, the general environment, and under conditions of clinical (medical) exposure is discussed. The evidence indicates that minerals and metals most often influence cancer development through their action as cocarcinogens. The relationship between the physical form of mineral fibers, smoking and carcinogenic risk is emphasized. Metals are categorized as established (As, Be, Cr, Ni), suspected (Cd, Pb) and possible carcinogens, based on the existing in vitro, animal experimental and human epidemiological data. Cancer risk and possible modes of action of elements in each class are discussed. Views on mechanisms that may be responsible for the carcinogenicity of metals are updated and analysed. Some specific examples of cancer risks associated with the clinical use of potentially carcinogenic metals and from radioactive pharmaceuticals used in therapy and diagnosis are presented. Questions are raised as to the effectiveness of conventional dosimetry in accurately measuring risk from radiopharmaceuticals. 302 references.

  20. The preparation of <100 particles per trial having the same mole fraction of 12 inorganic compounds at diameters of 6.8, 3.8, or 2.6 [mu]m followed by their deposition onto human lung cells (A549) with measurement of the relative downstream differential expression of ICAM-1

    NASA Astrophysics Data System (ADS)

    Eleghasim, Ndukauba M.; Haddrell, Allen E.; van Eeden, Stephen; Agnes, George R.

    2006-12-01

    The characterization of particulate matter suspended in the troposphere (PM10) based on size is an important basis for assessing the extent of their adverse effects on human health. The relevance of such assessments is anticipated to be significantly improved through the continued development of tools that can identify the chemical components within individual ambient particles, and the injury that they cause. We use recently reported methodology to create mimics of ambient particle types of known size and chemical composition that are levitated within an ac trap. The ac trap uses electric fields to levitate the particles that have a given mass and net elementary charge, and as such the ac trap is a mass-to-charge filter. The ac trap was used to levitate populations of particles where the size of particles in any given population could be altered. The levitated particles are delivered direct from the ac trap to human lung cells (A549), in vitro, with downstream measurement of differential expression of intercellular adhesion molecule (ICAM)-1 and counting of the number of particles actually delivered to the culture using an optical microscope. In this study, the chemical composition of the ambient particle mimics was restricted to inorganic compounds whose relative abundance was purposely designed to mimic the average abundance in Environmental Health Center-93 (EHC-93) particles. The sizes of the multilelement particle types prepared were 6.8 +/- 0.5, 3.8 +/- 0.3, 2.6 +/- 0.2 (mean +/- S.D.). Particles of either elemental carbon, or elemental carbon containing glycerol were used as control particle types. In any given experiment, a known number of particles, but always <100, of a given size, were deposited onto a small region of an A549 cell culture. Following an 18-h incubation period and anti-body labeling of ICAM-1, the fluorescence emission from a 1.07 mm2 area of the cell culture centered at the site of particle deposition was acquired. The relative

  1. Protein-inorganic hybrid nanoflowers

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Lei, Jiandu; Zare, Richard N.

    2012-07-01

    Flower-shaped inorganic nanocrystals have been used for applications in catalysis and analytical science, but so far there have been no reports of `nanoflowers' made of organic components. Here, we report a method for creating hybrid organic-inorganic nanoflowers using copper (II) ions as the inorganic component and various proteins as the organic component. The protein molecules form complexes with the copper ions, and these complexes become nucleation sites for primary crystals of copper phosphate. Interaction between the protein and copper ions then leads to the growth of micrometre-sized particles that have nanoscale features and that are shaped like flower petals. When an enzyme is used as the protein component of the hybrid nanoflower, it exhibits enhanced enzymatic activity and stability compared with the free enzyme. This is attributed to the high surface area and confinement of the enzymes in the nanoflowers.

  2. Chlorobenzene outputs from combustion of chlorinated organic and inorganic compounds

    SciTech Connect

    Green, A.E.S.; Vitali, J.A.; Miller, T.L.

    1994-12-31

    The authors consider the gas phase formation of chlorinated benzenes and phenols as precursors of chlorinated dioxins and furans from the combustion of solid fuels containing organically bound chlorine. The model investigated is intended to apply to the combustion of medical waste, municipal waste and coals containing chlorine. Assuming a temperature-time profile drawn from incinerator experiments, the authors use kinetic modeling with known reaction rates to further investigate four models of chlorinated benzene formation. Since reaction rates for most chlorination processes are now known, the authors choose simple systems of reaction rates that yield outputs that can be made approximately compatible with results of the Pittsfield-Vicon incinerator and Clean Combustion Technology Laboratory experiments. The authors also consider recent measurements of HCI emissions from crematoria and the implication of this work with respect to the benefits of material substitution in medical and municipal waste incineration. These benefits should also accompany the dechlorination of coals. The authors note the disparity between the prevailing USA position and the emerging position of Germany on the issue of halogenated plastics. The authors also note that Europe and Asia are beginning to address solid fuel issues as a consolidated discipline. This pattern should be helpful in broadening the understanding of solid fuels combustion processes and in ferreting out erroneous data and conclusions. This is important in view of the recent concern about the role of low dioxin exposure levels on fetal development and the immune system.

  3. A Laboratory Exercise to Introduce Inorganic Biomimetic Compounds.

    ERIC Educational Resources Information Center

    Baird, Donald M.

    1985-01-01

    Biomimetic chemistry is concerned with the synthesis of small, molecular weight molecules which mimic the properties of metal-containing sites within certain biologically significant species. A series of experiments for an advanced undergraduate laboratory is described as a way to introduce this area into the chemistry curriculum. (JN)

  4. Chemical Speciation of Inorganic Compounds under Hydrothermal Conditions

    SciTech Connect

    Edward A Stern; John Fulton

    2002-02-21

    Measurements of oxidation. These spectra are to the best of our knowledge the first reported in situ spectroscopic observation of homogeneous aqueous redox chemistry at temperatures beyond the critical temperature of waste. We also observed a time-dependence for the growth of the Cr(VI) XANES peak and have therefore obtained both kinetic information as well as structural information on the reactants and products at the reaction temperature. We feel that these new techniques, when employed on actual waste components will elucidate the underlying chemistry.

  5. Principles of Inorganic Materials Design

    NASA Astrophysics Data System (ADS)

    Lalena, John N.; Cleary, David

    2005-04-01

    A unique interdisciplinary approach to inorganic materials design Textbooks intended for the training of chemists in the inorganic materials field often omit many relevant topics. With its interdisciplinary approach, this book fills that gap by presenting concepts from chemistry, physics, materials science, metallurgy, and ceramics in a unified treatment targeted towards the chemistry audience. Semiconductors, metal alloys and intermetallics, as well as ceramic substances are covered. Accordingly, the book should also be useful to students and working professionals in a variety of other disciplines. This book discusses a number of topics that are pertinent to the design of new inorganic materials but are typically not covered in standard solid-state chemistry books. The authors start with an introduction to structure at the mesoscopic level and progress to smaller-length scales. Next, detailed consideration is given to both phenomenological and atomistic-level descriptions of transport properties, the metal-nonmetal transition, magnetic and dielectric properties, optical properties, and mechanical properties. Finally, the authors present introductions to phase equilibria, synthesis, and nanomaterials. Other features include: Worked examples demonstrating concepts unfamiliar to the chemist Extensive references to related literature, leading readers to more in-depth coverage of particular topics Biographies introducing the reader to great contributors to the field of inorganic materials science in the twentieth century With their interdisciplinary approach, the authors have set the groundwork for communication and understanding among professionals in varied disciplines who are involved with inorganic materials engineering. Armed with this publication, students and researchers in inorganic and physical chemistry, physics, materials science, and engineering will be better equipped to face today's complex design challenges. This textbook is appropriate for senior

  6. Organic compounds in meteorites

    NASA Technical Reports Server (NTRS)

    Anders, E.; Hayatsu, R.; Studier, M. H.

    1973-01-01

    The problem of whether organic compounds originated in meteorites as a primary condensate from a solar gas or whether they were introduced as a secondary product into the meteorite during its residence in a parent body is examined by initially attempting to reconstruct the physical conditions during condensation (temperature, pressure, time) from clues in the inorganic matrix of the meteorite. The condensation behavior of carbon under these conditions is then analyzed on the basis of thermodynamic calculations, and compounds synthesized in model experiments on the condensation of carbon are compared with those actually found in meteorites. Organic compounds in meteorites seem to have formed by catalytic reactions of carbon monoxide, hydrogen, and ammonia in the solar nebula at 360 to 400 K temperature and about 3 to 7.6 microtorr pressure. The onset of these reactions was triggered by the formation of suitable catalysts (magnetite, hydrated silicates) at these temperatures.

  7. Inorganic Fullerenes, Onions, and Tubes

    ERIC Educational Resources Information Center

    York, Andrew P. E.

    2004-01-01

    Buckminsterfullerene, which is in the shape of a soccer-ball was first discovered in 1985, has many applications as a good lubricant, or as a new superconductor. The synthesis of these inorganic fullerenes involves a great deal of interdisciplinary research between physicists, material scientists, engineers and chemists from various fields.

  8. Inorganic Reaction Mechanisms. Part I

    ERIC Educational Resources Information Center

    Cooke, D. O.

    1976-01-01

    Provides a collection of data on the mechanistic aspects of inorganic chemical reactions. Wherever possible includes procedures for classroom demonstration or student project work. The material covered includes gas phase reactions, reactions in solution, mechanisms of electron transfer, the reaction between iron III and iodine, and hydrolysis. (GS)

  9. Infrared Spectrometry of Inorganic Salts

    ERIC Educational Resources Information Center

    Ackermann, Martin N.

    1970-01-01

    Describes a general chemistry experiment which uses infrared spectroscopy to analyze inorganic ions and thereby serves to introduce an important instrumental method of analysis. Presents a table of eight anions and the ammonium ion with the frequencies of their normal modes, as well as the spectra of three sulfate salts. (RR)

  10. Inorganic Nanotubes and Fullerene-Like Nanoparticles:. from the Lab to the Market Place

    NASA Astrophysics Data System (ADS)

    Tenne, R.

    2013-05-01

    Layered compounds, like MoS2 were shown by the author to be unstable in the nano-regime. Using new chemical strategies, closed-cage hollow nanostructures in the form of inorganic fullerene-like nanoparticles and inorganic nanotubes were synthesized. These nanostructures exhibit numerous interesting physico-chemical properties and are employed as superior solid lubricants, with numerous other applications currently being developed.

  11. Inorganic ion exchangers for nuclear waste remediation

    SciTech Connect

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E.

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  12. INORGANIC PYROPHOSPHATASE OF DESULFOVIBRIO DESULFURICANS.

    PubMed

    AKAGI, J M; CAMPBELL, L L

    1963-09-01

    Akagi, J. M. (University of Illinois, Urbana) and L. Leon Campbell. Inorganic pyrophosphatase of Desulfovibrio desulfuricans. J. Bacteriol. 86:563-568. 1963.-The inorganic pyrophosphatase of Desulfovibrio desulfuricans was purified 136-fold by (NH(4))(2)SO(4) and ethanol fractionation and diethylaminoethyl cellulose chromatography. Mg(++) or Mn(++) was required for optimal activity; Co(++) was only 65% as effective as Mg(++). The optimal ratio of Mg(++) to pyrophosphate was 1.0 at pH 8.0. The K(s) for the pyrophosphatase was found to be in the region of 1.9 x 10(-3)m. Sulfhydryl inhibitors and sodium fluoride had no effect on enzyme activity at a concentration of 10(-3)m. The purified enzyme did not hydrolyze adenosine triphosphate, glycerol phosphate, diphenyl phosphate, or p-nitrophenyl phosphate. Thermal stability studies showed that the enzyme is rapidly inactivated at temperatures above 40 C. PMID:14066437

  13. Gas separations using inorganic membranes

    SciTech Connect

    Egan, B.Z.; Singh, S.P.N. ); Fain, D.E.; Roettger, G.E.; White, D.E. )

    1992-04-01

    This report summarizes the results from a research and development program to develop, fabricate, and evaluate inorganic membranes for separating gases at high temperatures and pressures in hostile process environments encountered in fossil energy conversion processes such as coal gasification. The primary emphasis of the research was on the separation and recovery of hydrogen from synthesis gas. Major aspects of the program included assessment of the worldwide research and development activity related to gas separations using inorganic membranes, identification and selection of candidate membrane materials, fabrication and characterization of membranes using porous membrane technology developed at the Oak Ridge K-25 Site, and evaluation of the separations capability of the fabricated membranes in terms of permeabilities and fluxes of gases.

  14. Hybrid polymer-inorganic nanocomposites

    NASA Astrophysics Data System (ADS)

    Pomogailo, Anatolii D.

    2000-01-01

    Approaches to the preparation of organic-inorganic nanocomposites are considered from a unified viewpoint for the first time. The major problems in the development of this new line of research in materials technology, which has arisen on the border of the science of polymers, colloid chemistry and physical chemistry of the ultradisperse state, are discussed. The main methods for the formation of composite materials and polymer-inorganic cross-linked hybrids with interpenetrating networks are analysed. Primary attention is given to sol-gel procedures for their preparation, including template processes, which occur under conditions of strict stereochemical orientation of reactants, intercalation of monomers and polymers into porous and layered matrices and their intracrystalline and post-intercalation transformations. Methods for the synthesis and properties of metallopolymeric polymolecular Langmuir-Blodgett films, which are peculiar supramolecular ensembles incorporating nanosized metal-containing particles, are discussed. The generality of the processes of formation of organic-inorganic nanocomposites in living and nonliving natural objects is demonstrated and the major fields of application of nanocomposites are considered. The bibliography includes 566 references.

  15. General synthesis of inorganic single-walled nanotubes

    PubMed Central

    Ni, Bing; Liu, Huiling; Wang, Peng-peng; He, Jie; Wang, Xun

    2015-01-01

    The single-walled nanotube (SWNT) is an interesting nanostructure for fundamental research and potential applications. However, very few inorganic SWNTs are available to date due to the lack of efficient fabrication methods. Here we synthesize four types of SWNT: sulfide; hydroxide; phosphate; and polyoxometalate. Each type of SWNT possesses essentially uniform diameters. Detailed studies illustrate that the formation of SWNTs is initiated by the self-coiling of the corresponding ultrathin nanostructure embryo/building blocks on the base of weak interactions between them, which is not limited to specific compounds or crystal structures. The interactions between building blocks can be modulated by varying the solvents used, thus multi-walled tubes can also be obtained. Our results reveal that the generalized synthesis of inorganic SWNTs can be achieved by the self-coiling of ultrathin building blocks under the proper weak interactions. PMID:26510862

  16. Inorganic-organic materials incorporating alumoxane nanoparticles

    NASA Astrophysics Data System (ADS)

    Vogelson, Cullen Taylor

    Chemically functionalized alumina nanoparticles (carboxylate-alumoxanes) are used as the inorganic component of a new class of inorganic-organic material. Lysine- or para-hydroxybenzoic acid-derivatized alumoxanes are prepared from the reaction of boehmite, [Al(O)(OH)]n, with the appropriate carboxylic acid. The peripheral hydroxides and amines of these alumoxanes react directly with DER 332 epoxide to form a hybrid material, or in the presence of a resin and hardener system, to form a composite material. Solid state NMR spectroscopy demonstrates that the alumoxanes are chemically bound to the resin matrix. The properties and cure times of the alumoxane materials are distinct from both the pure resins and from a physical blend of the resins with traditional fillers. A significant increase in thermal stability and tensile strength is observed for the resin systems. In order to produce molecular coupling layers, epoxides cross-linked with self-assembled monolayers (SAMs) grown on the native oxide of aluminum thin films on silicon substrates have been investigated. Specifically, SAMs have been formed by the attachment of different carboxylic acids. In order to investigate the cross-linking reaction between carboxylate monolayers and an epoxide, grown monolayers were reacted with a mono-epoxy resin. In addition to these surface materials, aluminum oxide surfaces supporting carboxylate monolayers were reacted in pairs with DER 332 to form a structural adhesive. These materials have been characterized variously by SEM, AFM, XPS, EDX, and contact angle measurements. The particle size dependence on pH of a series of alumoxanes was investigated. For each of the alumoxanes, PCS particle size measurements were obtained as a function of pH. In all cases, particle size control was afforded by variations in pH. Finally, crystal structures of several model compounds were determined by X-ray crystallography, and shown to form either sheets of dimers or tetrameric units. Through a

  17. Inorganics

    SciTech Connect

    Qureshi, M.

    1986-01-01

    This comprehensive handbook is valuable when doing routine analysis or developing new methods of chromatography of organic materials. Section I presents the principles, techniques, quantitative determinations and detection methods used in chromatographic analysis. In the major part of the book, Section II summarizes data in voluminous tabular/graphic form on paper, thin layer, liquid and gas chromatography. Section III lists important books on electrophoresis, gel permeation chromatography, and ion exchange, in addition to the other forms of chromatography mentioned above.

  18. Inorganic Components of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Wexler, Anthony Stein

    The inorganic components comprise 15% to 50% of the mass of atmospheric aerosols. For about the past 10 years the mass of these components was predicted assuming thermodynamic equilibrium between the volatile aerosol -phase inorganic species NH_4NO _3 and NH_4Cl and their gas-phase counterparts NH_3, HNO_3, and HCl. In this thesis I examine this assumption and prove that (1) the time scales for equilibration between the gas and aerosol phases are often too long for equilibrium to hold, and (2) even when equilibrium holds, transport considerations often govern the size distribution of these aerosol components. Water can comprise a significant portion of atmospheric aerosols under conditions of high relative humidity, whereas under conditions of sufficiently low relative humidity atmospheric aerosols tend to be dry. The deliquescence point is the relative humidity where the aerosol goes from a solid dry phase to an aqueous or mixed solid-aqueous phase. In this thesis I derive the temperature dependence of the deliquescence point and prove that in multicomponent solutions the deliquescence point is lower than for corresponding single component solutions. These theories of the transport, thermodynamic, and deliquescent properties of atmospheric aerosols are integrated into an aerosol inorganics model, AIM. The predictions of AIM compare well to fundamental thermodynamic measurements. Comparison of the prediction of AIM to those of other aerosol equilibrium models shows substantial disagreement in the predicted water content at lower relative humidities. The disagreement is due the improved treatment in AIM of the deliquescence properties of multicomponent solutions. In the summer and fall of 1987 the California Air Resources Board conducted the Southern California Air Quality Study, SCAQS, during which atmospheric aerosols were measured in Los Angeles. The size and composition of the aerosol and the concentrations of their gas phase counterparts were measured. When the

  19. Plasma chemistry for inorganic materials

    NASA Technical Reports Server (NTRS)

    Matsumoto, O.

    1980-01-01

    Practical application of plasma chemistry to the development of inorganic materials using both low temperature and warm plasmas are summarized. Topics cover: the surface nitrification and oxidation of metals; chemical vapor deposition; formation of minute oxide particles; the composition of oxides from chloride vapor; the composition of carbides and nitrides; freezing high temperature phases by plasma arc welding and plasma jet; use of plasma in the development of a substitute for petroleum; the production of silicon for use in solar cell batteries; and insulating the inner surface of nuclear fusion reactor walls.

  20. Inorganic Nanoparticles in Cancer Therapy

    PubMed Central

    Bhattacharyya, Sanjib; Kudgus, Rachel A.; Bhattacharya, Resham; Mukherjee, Priyabrata

    2011-01-01

    Nanotechnology is an evolving field with enormous potential for biomedical applications. The growing interest to use inorganic nanoparticles in medicine is due to the unique size and shape-dependent optoelectronic properties. Herein, we will focus on gold, silver and platinum nanoparticles, discussing recent developments for therapeutic applications with regard to cancer in terms of nanoparticles being used as a delivery vehicle as well as therapeutic agents. We will also discuss some of the key challenges to be addressed in future studies. PMID:21104301

  1. The inorganic constituents of echinoderms

    USGS Publications Warehouse

    Clarke, F.W.; Wheeler, W.C.

    1915-01-01

    In a recent paper on the composition of crinoid skeletons we showed that crinoids contain large quantities of magnesia, and that its proportion varies with the temperature of the water in which the creatures live. This result was so novel and surprising that it seemed desirable to examine other echinoderms and to ascertain whether they showed the same characteristics and regularity. A number of sea urchins and starfishes were therefore studied, their inorganic constituents being analyzed in the same manner as those of the crinoids

  2. Inorganic nanotubes: One contribution of 12 to a Theme 'Nanotechnology of carbon and related materials'

    NASA Astrophysics Data System (ADS)

    Tenne, Reshef; Rao, C. N. R.

    2004-10-01

    Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS2, will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous other inorganic nanotubes has been reported in recent years. Various techniques for the synthesis of inorganic nanotubes, including high-temperature reactions and strategies based on 'chemie douce' (soft chemistry, i.e. low-temperature) processes, are described. First-principle, density functional theory based calculations are able to provide substantial information on the structure and properties of such nanotubes. Various properties of inorganic nanotubes, including mechanical, electronic and optical properties, are described in brief. Some potential applications of the nanotubes in tribology, protection against impact, (photo)catalysis, batteries, etc., are discussed.

  3. Global inorganic source of atmospheric bromine.

    PubMed

    Enami, S; Vecitis, C D; Cheng, J; Hoffmann, M R; Colussi, A J

    2007-09-13

    A few bromine molecules per trillion (ppt) causes the complete destruction of ozone in the lower troposphere during polar spring and about half of the losses associated with the "ozone hole" in the stratosphere. Recent field and aerial measurements of the proxy BrO in the free troposphere suggest an even more pervasive global role for bromine. Models, which quantify ozone trends by assuming atmospheric inorganic bromine (Bry) stems exclusively from long-lived bromoalkane gases, significantly underpredict BrO measurements. This discrepancy effectively implies a ubiquitous tropospheric background level of approximately 4 ppt Bry of unknown origin. Here, we report that I- efficiently catalyzes the oxidation of Br- and Cl- in aqueous nanodroplets exposed to ozone, the everpresent atmospheric oxidizer, under conditions resembling those encountered in marine aerosols. Br- and Cl-, which are rather unreactive toward O3 and were previously deemed unlikely direct precursors of atmospheric halogens, are readily converted into IBr2- and ICl2- en route to Br2(g) and Cl2(g) in the presence of I-. Fine sea salt aerosol particles, which are predictably and demonstrably enriched in I- and Br-, are thus expected to globally release photoactive halogen compounds into the atmosphere, even in the absence of sunlight. PMID:17713895

  4. Inorganic Phosphor Materials for Lighting.

    PubMed

    Lin, Yuan-Chih; Karlsson, Maths; Bettinelli, Marco

    2016-04-01

    This chapter addresses the development of inorganic phosphor materials capable of converting the near UV or blue radiation emitted by a light emitting diode to visible radiation that can be suitably combined to yield white light. These materials are at the core of the new generation of solid-state lighting devices that are emerging as a crucial clean and energy saving technology. The chapter introduces the problem of white light generation using inorganic phosphors and the structure-property relationships in the broad class of phosphor materials, normally containing lanthanide or transition metal ions as dopants. Radiative and non-radiative relaxation mechanisms are briefly described. Phosphors emitting light of different colors (yellow, blue, green, and red) are described and reviewed, classifying them in different chemical families of the host (silicates, phosphates, aluminates, borates, and non-oxide hosts). This research field has grown rapidly and is still growing, but the discovery of new phosphor materials with optimized properties (in terms of emission efficiency, chemical and thermal stability, color, purity, and cost of fabrication) would still be of the utmost importance. PMID:27573146

  5. Biodegradable and Renal Clearable Inorganic Nanoparticles

    PubMed Central

    Ehlerding, Emily B.; Chen, Feng; Cai, Weibo

    2016-01-01

    Personalized treatment plans for cancer therapy have been at the forefront of oncology research for many years. With the advent of many novel nanoplatforms, this goal is closer to realization today than ever before. Inorganic nanoparticles hold immense potential in the field of nano-oncology, but have considerable toxicity concerns that have limited their translation to date. In this review, an overview of emerging biologically safe inorganic nanoplatforms is provided, along with considerations of the challenges that need to be overcome for cancer theranostics with inorganic nanoparticles to become a reality. The clinical and preclinical studies of both biodegradable and renal clearable inorganic nanoparticles are discussed, along with their implications. PMID:27429897

  6. Biodegradable and Renal Clearable Inorganic Nanoparticles

    PubMed Central

    Ehlerding, Emily B.

    2015-01-01

    Personalized treatment plans for cancer therapy have been at the forefront of oncology research for many years. With the advent of many novel nanoplatforms, this goal is closer to realization today than ever before. Inorganic nanoparticles hold immense potential in the field of nano‐oncology, but have considerable toxicity concerns that have limited their translation to date. In this review, an overview of emerging biologically safe inorganic nanoplatforms is provided, along with considerations of the challenges that need to be overcome for cancer theranostics with inorganic nanoparticles to become a reality. The clinical and preclinical studies of both biodegradable and renal clearable inorganic nanoparticles are discussed, along with their implications. PMID:27429897

  7. Infrared Spectra of Simple Inorganic Ion Pairs in Solid Solution: A Physical Inorganic Chemistry Experiment.

    ERIC Educational Resources Information Center

    Miller, Philip J.; Tong, William G.

    1980-01-01

    Presents a physical inorganic experiment in which large single crystals of the alkali halides doped with divalent ion impurities are prepared easily. Demonstrates the ion pairing of inorganic ions in solid solution. (CS)

  8. In vivo degeneration and the fate of inorganic nanoparticles.

    PubMed

    Feliu, Neus; Docter, Dominic; Heine, Markus; Del Pino, Pablo; Ashraf, Sumaira; Kolosnjaj-Tabi, Jelena; Macchiarini, Paolo; Nielsen, Peter; Alloyeau, Damien; Gazeau, Florence; Stauber, Roland H; Parak, Wolfgang J

    2016-05-01

    What happens to inorganic nanoparticles (NPs), such as plasmonic gold or silver, superparamagnetic iron oxide, or fluorescent quantum dot NPs after they have been administrated to a living being? This review discusses the integrity, biodistribution, and fate of NPs after in vivo administration. The hybrid nature of the NPs is described, conceptually divided into the inorganic core, the engineered surface coating comprising of the ligand shell and optionally also bio-conjugates, and the corona of adsorbed biological molecules. Empirical evidence shows that all of these three compounds may degrade individually in vivo and can drastically modify the life cycle and biodistribution of the whole heterostructure. Thus, the NPs may be decomposed into different parts, whose biodistribution and fate would need to be analyzed individually. Multiple labeling and quantification strategies for such a purpose will be discussed. All reviewed data indicate that NPs in vivo should no longer be considered as homogeneous entities, but should be seen as inorganic/organic/biological nano-hybrids with complex and intricately linked distribution and degradation pathways. PMID:26862602

  9. Thermal and chemical degradation of inorganic membrane materials. Topical report

    SciTech Connect

    Krishnan, G.N.; Sanjurjo, A.; Wood, B.J.; Lau, K.H.

    1994-04-01

    This report describes the results of a literature review to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate gaseous products produced by the gasification or combustion of coal in fixed-, fluidized-, and entrained-bed gasifiers, direct coal-fired turbines, and pressurized-fluidized-bed combustors. Several impurities, such as H{sub 2}S, NH{sub 3}, SO{sub 2}, NO{sub x}, and trace metal compounds are generated during coal conversion, and they must be removed from the coal gas or the combustor flue gas to meet environmental standards. The use of membranes to separate these noxious gases is an attractive alternative to their removal by sorbents such as zinc titanate or calcium oxide. Inorganic membranes that have a high separation efficiency and exhibit both thermal and chemical stability would improve the economics of power generation from coal. The U.S. Department of Energy is supporting investigations to develop inorganic membranes for separating hydrogen from coal gas streams and noxious impurities from hot coal- and flue-gas streams. Membrane materials that have been investigated in the past include glass (silica), alumina, zirconia, carbon, and metals (Pd and Pt).

  10. Spontaneous Aerosol Ejection: Origin of Inorganic Particles in Biomass Pyrolysis.

    PubMed

    Teixeira, Andrew R; Gantt, Rachel; Joseph, Kristeen E; Maduskar, Saurabh; Paulsen, Alex D; Krumm, Christoph; Zhu, Cheng; Dauenhauer, Paul J

    2016-06-01

    At high thermal flux and temperatures of approximately 500 °C, lignocellulosic biomass transforms to a reactive liquid intermediate before evaporating to condensable bio-oil for downstream upgrading to renewable fuels and chemicals. However, the existence of a fraction of nonvolatile compounds in condensed bio-oil diminishes the product quality and, in the case of inorganic materials, catalyzes undesirable aging reactions within bio-oil. In this study, ablative pyrolysis of crystalline cellulose was evaluated, with and without doped calcium, for the generation of inorganic-transporting aerosols by reactive boiling ejection from liquid intermediate cellulose. Aerosols were characterized by laser diffraction light scattering, inductively coupled plasma spectroscopy, and high-speed photography. Pyrolysis product fractionation revealed that approximately 3 % of the initial feed (both organic and inorganic) was transported to the gas phase as aerosols. Large bubble-to-aerosol size ratios and visualization of significant late-time ejections in the pyrolyzing cellulose suggest the formation of film bubbles in addition to the previously discovered jet formation mechanism.

  11. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries

    SciTech Connect

    Doe, RE; Han, R; Hwang, J; Gmitter, AJ; Shterenberg, I; Yoo, HD; Pour, N; Aurbach, D

    2014-01-01

    Herein the first inorganic magnesium salt solution capable of highly reversible magnesium electrodeposition is presented. Synthesized by acid-base reaction of MgCl2 and Lewis acidic compounds such as AlCl3, this salt class demonstrates upwards of 99% Coulombic efficiency, deposition overpotential of <200 mV, and anodic stability of 3.1 V.

  12. Metal nanoparticle deposited inorganic nanostructure hybrids, uses thereof and processes for their preparation

    DOEpatents

    Tenne, Reshef; Tsverin, Yulia; Burghaus, Uwe; Komarneni, Mallikharjuna Rao

    2016-01-26

    This invention relates to a hybrid component comprising at least one nanoparticle of inorganic layered compound (in the form of fullerene-like structure or nanotube), and at least one metal nanoparticle, uses thereof as a catalyst, (e.g. photocatalysis) and processes for its preparation.

  13. Inorganic dual-layer microporous supported membranes

    DOEpatents

    Brinker, C. Jeffrey; Tsai, Chung-Yi; Lu, Yungfeng

    2003-03-25

    The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

  14. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  15. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  16. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  17. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  18. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  19. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  20. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  1. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  2. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  3. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  4. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo...

  5. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo...

  6. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo...

  7. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo...

  8. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo...

  9. Novel organic-inorganic hybrid mesoporous materials and nanocomposites

    NASA Astrophysics Data System (ADS)

    Feng, Qiuwei

    Organic-inorganic hybrid mesoporous materials have been prepared successfully via the nonsurfactant templated sol-gel pathway using dibenzoyl-L-tartaric acid (DBTA) as the templating compound. Styrene and methyl methacrylate polymers have been incorporated into the mesoporous silica matrix on the molecular level. The synthetic conditions have been systematically studied and optimized. Titania based mesoporous materials have also been made using nonionic polyethylene glycol surfactant as the pore forming or structure-directing agent. In all of the above mesoporous materials, pore structures have been studied in detail by Transmission Electron Microscopy (TEM), X-ray diffraction and Brunauer-Emmett-Teller (BET) characterizations. The relationship between the template concentration and the pore parameters has been established. This nonsurfactant templated pathway possesses many advantages over the known surfactant approaches such as low cost, environment friendly and biocompatability. To overcome the drawback of nonsurfactant templated mesoporous materials that lack a well ordered pore structure, a flow induced synthesis has been attempted to orientate the sol-gel solution in order to obtain aligned pore structures. The versatility of this nonsurfactant templated pathway can even be extended to the making of organic-inorganic hybrid nanocomposite materials. On the basis of this approach, polymer-silica nanocomposite materials have been prepared using a polymerizable template. It is shown that the organic monomer such as hydroxyethyl methacrylate can act as a template in making nanoporous silica materials and then be further polymerized through a post synthesis technique. The properties and morphology of this new material have been studied by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Infrared Absorption Spectroscopy (FTIR). Electroactive organic-inorganic hybrid materials have also been synthesized via the sol-gel process. A

  10. Synthesis, structural characterization, and solid-state NMR spectroscopy of [Ga(phen)(H{sub 1.5}PO{sub 4}){sub 2}].H{sub 2}O and [Ga(phen)(HPO{sub 4})(H{sub 2}PO{sub 4})].1.5H{sub 2}O (phen=1, 10-phenanthroline), two organic-inorganic hybrid compounds with 1-D chain structures

    SciTech Connect

    Chang, W.-J.; Chang, P.-C.; Kao, H.-M.; Lii, K.-H. . E-mail: liikh@cc.ncu.edu.tw

    2005-12-15

    Two new organic-inorganic hybrid compounds, [Ga(phen)(H{sub 1.5}PO{sub 4}){sub 2}].H{sub 2}O (1) and [Ga(phen)(HPO{sub 4})(H{sub 2}PO{sub 4})].1.5H{sub 2}O (2) (phen=1,10-phenanthroline), have been synthesized by hydrothermal methods and structurally characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and solid-state NMR spectroscopy. Their structures consist of 1-D chains of strictly alternating GaO{sub 4}N{sub 2} octahedra and phosphate tetrahedra. The phen ligands in both compounds bind in a bidentate fashion to the gallium atoms and the 1-D structures extend into 3-D supramolecular arrays via {pi}-{pi} stacking interactions of phen ligands and hydrogen bonds. {sup 2}H MAS NMR spectroscopy was applied to study the deuterated sample of 1 which contains very short hydrogen bonds with an O-O distance of 2.406(2) A. Crystal data for 1: monoclinic, space group C2/c (No. 15), a=11.077(1) A, b=21.496(2) A, c=7.9989(7) A, {beta}=127.211(2){sup o}, and Z=4. The crystal symmetry is the same for 2 as for 1 except a=27.555(2) A, b=6.3501(5) A, c=21.327(2) A, {beta}=122.498(1){sup o}, and Z=8.

  11. Comparison of Bioavailability and Biotransformation of Inorganic and Organic Arsenic to Two Marine Fish.

    PubMed

    Zhang, Wei; Wang, Wen-Xiong; Zhang, Li

    2016-03-01

    Dietary uptake could be the primary route of arsenic (As) bioaccumulation in marine fish, but the bioavailability of inorganic and organic As remains elusive. In this study, we investigated the trophic transfer and bioavailability of As in herbivorous rabbitfish Siganus fuscescens and carnivorous seabass Lateolabrax japonicus. Rabbitfish were fed with one artificial diet or three macroalgae, whereas seabass were fed with one artificial diet, one polychaete, or two bivalves for 28 days. The six spiked fresh prey diets contained different proportions of inorganic As [As(III) and As(V)] and organic As compounds [methylarsenate (MMA), dimethylarsenate (DMA), and arsenobetaine (AsB)], and the spiked artificial diet mainly contained As(III) or As(V). We demonstrated that the trophic transfer factors (TTF) of As in both fish were negatively correlated with the concentrations of inorganic As in the diets, while there was no relationship between TTF and the AsB concentrations in the diets. Positive correlation was observed between the accumulated As concentrations and the AsB concentrations in both fish, suggesting that organic As compounds (AsB) were more trophically available than inorganic As. Furthermore, the biotransformation ability of seabass was higher than that in rabbitfish, which resulted in higher As accumulation in seabass than in rabbitfish. Our study demonstrated that different prey with different inorganic/organic As proportions resulted in diverse bioaccumulation of total As in different marine fish.

  12. Shape control of inorganic nanoparticles from solution

    NASA Astrophysics Data System (ADS)

    Wu, Zhaohui; Yang, Shuanglei; Wu, Wei

    2016-01-01

    Inorganic materials with controllable shapes have been an intensely studied subject in nanoscience over the past decades. Control over novel and anisotropic shapes of inorganic nanomaterials differing from those of bulk materials leads to unique and tunable properties for widespread applications such as biomedicine, catalysis, fuels or solar cells and magnetic data storage. This review presents a comprehensive overview of shape-controlled inorganic nanomaterials via nucleation and growth theory and the control of experimental conditions (including supersaturation, temperature, surfactants and secondary nucleation), providing a brief account of the shape control of inorganic nanoparticles during wet-chemistry synthetic processes. Subsequently, typical mechanisms for shape-controlled inorganic nanoparticles and the general shape of the nanoparticles formed by each mechanism are also expounded. Furthermore, the differences between similar mechanisms for the shape control of inorganic nanoparticles are also clearly described. The authors envision that this review will provide valuable guidance on experimental conditions and process control for the synthesis of inorganic nanoparticles with tunable shapes in the solution state.

  13. Inorganic constituents in American lignites

    SciTech Connect

    Morgan, M. E.; Jenkins, R. G.; Walker, P. L.

    1980-04-01

    Both the discrete mineral phases and the ion-exchangeable inorganic components of lignites from Texas, North Dakota, and Montana have been studied. The ion-exchangeable cations and the carboxyl groups with which they are associated were characterized by ion exchange methods utilizing ammonium acetate and barium acetate, respectively. Na, K, Mg, Ca, Sr, and Ba were found to be present in all three coals. It was found that Ca and Mg were the most abundant cations and that 40 to 60% of the carboxyl groups in the raw coals were exchanged with cations. Also, significant variations in the relative and absolute concentrations of all the cations were observed. The discrete mineral phases in these lignites were studied by semiquantitative x-ray diffraction and infrared spectroscopy. The importance of the cations in this analysis was shown when the mineralogical analyses of the low temperature ash of the coals with the cations removed and the raw coals were compared. Results show that up to 50% of the low temperature ash of these raw coals can be attributed to the existence of metal cations and that fixation of sulfur, carbon, and oxygen to form sulfates and carbonates is the major reason for this contribution.

  14. The quest for inorganic fullerenes

    DOE PAGES

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Park, Eun Ji; Ganteför, Gerd; Seo, Hyun Ook; Kim, Young Dok; Idrobo, Juan-Carlos; Pennycook, Stephen J.

    2015-10-02

    Experimental results of the search for inorganic fullerenes are presented. Mo nSm - and WnSm - clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. Moreover, the species in the first maximum at low mass are known to be platelets. The structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy.more » All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Likewise, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.« less

  15. The quest for inorganic fullerenes

    SciTech Connect

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Park, Eun Ji; Ganteför, Gerd; Seo, Hyun Ook; Kim, Young Dok; Idrobo, Juan-Carlos; Pennycook, Stephen J.

    2015-10-02

    Experimental results of the search for inorganic fullerenes are presented. Mo nSm - and WnSm - clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. Moreover, the species in the first maximum at low mass are known to be platelets. The structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Likewise, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  16. The quest for inorganic fullerenes

    NASA Astrophysics Data System (ADS)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Park, Eun Ji; Ganteför, Gerd; Seo, Hyun Ook; Kim, Young Dok; Idrobo, Juan-Carlos; Pennycook, Stephen J.

    2015-10-01

    Experimental results of the search for inorganic fullerenes are presented. MonSm- and WnSm- clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  17. The quest for inorganic fullerenes

    SciTech Connect

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd E-mail: ydkim91@skku.edu; Park, Eun Ji; Kim, Young Dok E-mail: ydkim91@skku.edu; Seo, Hyun Ook; Pennycook, Stephen J.

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  18. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  19. Thermochemical chlorination of carbon indirectly driven by an unexpected sulfide of copper with inorganic chloride.

    PubMed

    Fujimori, Takashi; Takaoka, Masaki

    2011-12-15

    Unintentional anthropogenic thermal chlorination of carbon is known to be a contributor to global environmental pollution of organochlorine compounds. We found unexpected, serious chlorination of carbon promoted by a "sulfide" of copper, which has been generally thought of and studied as an inactive metal catalyst. Our quantitative and X-ray spectroscopic results show that a fraction of cupric sulfide indirectly promoted thermochemical solid-phase formation of a large quantity of organochlorine compounds such as polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, and benzenes that used inactive inorganic chloride as chlorine storage, which partly caused environmental pollution by organochlorine compounds. PMID:22004834

  20. Thermochemical chlorination of carbon indirectly driven by an unexpected sulfide of copper with inorganic chloride.

    PubMed

    Fujimori, Takashi; Takaoka, Masaki

    2011-12-15

    Unintentional anthropogenic thermal chlorination of carbon is known to be a contributor to global environmental pollution of organochlorine compounds. We found unexpected, serious chlorination of carbon promoted by a "sulfide" of copper, which has been generally thought of and studied as an inactive metal catalyst. Our quantitative and X-ray spectroscopic results show that a fraction of cupric sulfide indirectly promoted thermochemical solid-phase formation of a large quantity of organochlorine compounds such as polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, and benzenes that used inactive inorganic chloride as chlorine storage, which partly caused environmental pollution by organochlorine compounds.

  1. How Much Inorganic Spectroscopy and Photochemistry?

    ERIC Educational Resources Information Center

    Gray, Harry B.

    1980-01-01

    Describes three levels of courses to treat adequately the ground state electronic structures, the spectroscopy, and the photochemistry of inorganic molecules. Suggests sequences for the courses without repeating material taught in previous courses. (Author/JN)

  2. Inorganic Nanomaterials as Carriers for Drug Delivery.

    PubMed

    Chen, Shizhu; Hao, Xiaohong; Liang, Xingjie; Zhang, Qun; Zhang, Cuimiao; Zhou, Guoqiang; Shen, Shigang; Jia, Guang; Zhang, Jinchao

    2016-01-01

    For safe and effective therapy, drugs must be delivered efficiently and with minimal systemic side effects. Nanostructured drug carriers enable the delivery of small-molecule drugs as well as nucleic acids and proteins. Inorganic nanomaterials are ideal for drug delivery platforms due to their unique physicochemical properties, such as facile preparation, good storage stability and biocompatibility. Many inorganic nanostructure-based drug delivery platforms have been prepared. Although there are still many obstacles to overcome, significant advances have been made in recent years. This review focuses on the status and development of inorganic nanostructures, including silica, quantum dots, gold, carbon-based and magnetic iron oxide-based nanostructures, as carriers for chemical and biological drugs. We specifically highlight the extensive use of these inorganic drug carriers for cancer therapy. Finally, we discuss the most important areas in the field that urgently require further study. PMID:27301169

  3. Gene delivery by functional inorganic nanocarriers.

    PubMed

    Loh, Xian Jun; Lee, Tung-Chun

    2012-08-01

    Gene delivery into cells to elicit cellular response has received a great attention recently. Viruses, lipids, peptides, cationic polymers and certain inorganic nanomaterials have been reported as gene delivery vectors. In this review, we focus on the recent literature on gene delivery using inorganic nanoparticles. This emerging field of study is concisely summarized and illustrated by selected examples and recent patents. New approaches and directions towards the practical use of multifunctional nanocarriers are highlighted.

  4. (Inorganic carbon surveys of oceanic basins)

    SciTech Connect

    Wilke, R.J.

    1991-04-25

    Measurements were made aboard the F. S. Meteor, along the 19 degree South cruise track of the following chemical parameters: total dissolved inorganic carbon, pH, pCO2, CFC-12, CFC-11, CFC-113, CC14. This was the first cruise of OASD's newly formed CO2 group. The purpose was to survey World Ocean Circulation Experiment (WOCE) line A9 for inorganic carbon for the Department of Energy's Office of CO2 Research. 1 fig.

  5. Polybenzimidazole compounds

    DOEpatents

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.; Jones, Michael G.; Wertsching, Alan K.; Luther, Thomas A.; Trowbridge, Tammy L.

    2011-11-22

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO--, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.

  6. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  7. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  8. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  9. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  10. Highly Efficient Red-Light Emission in An Organic-Inorganic Hybrid Ferroelectric: (Pyrrolidinium)MnCl₃.

    PubMed

    Zhang, Yi; Liao, Wei-Qiang; Fu, Da-Wei; Ye, Heng-Yun; Chen, Zhong-Ning; Xiong, Ren-Gen

    2015-04-22

    Luminescence of ferroelectric materials is one important property for technological applications, such as low-energy electron excitation. However, the vast majority of doped inorganic ferroelectric materials have low luminescent efficiency. The past decade has envisaged much progress in the design of both ferroelectric and luminescent organic-inorganic hybrid complexes for optoelectronic applications. The combination of ferroelectricity and luminescence within organic-inorganic hybrids would lead to a new type of luminescent ferroelectric multifunctional materials. We herein report a hybrid molecular ferroelectric, (pyrrolidinium)MnCl3, which exhibits excellent ferroelectricity with a saturation polarization of 5.5 μC/cm(2) as well as intense red luminescence with high quantum yield of 56% under a UV excitation. This finding may extend the application of organic-inorganic hybrid compounds to the field of ferroelectric luminescence and/or multifunctional devices.

  11. Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.

    2015-01-01

    A national survey of inorganic chemists explored the self-reported topics covered in foundation-level courses in inorganic chemistry at the postsecondary level; the American Chemical Society's Committee on Professional Training defines a foundation course as one at the conclusion of which, "a student should have mastered the vocabulary,…

  12. The ACS Inorganic Exam and Its Influence (?) on the Inorganic Curriculum.

    ERIC Educational Resources Information Center

    Sienko, M. J.

    1980-01-01

    Summarizes results of a questionnaire asking if the ASC standarized test influences what is taught in inorganic chemistry courses. Chief controlling factors are indicated to be: (1) instructor's preference and (2) textbook content. Suggestions are given to enhance amount of inorganic chemistry in undergraduate curricula. (Author/JN)

  13. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    SciTech Connect

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

    2014-11-01

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

  14. Multipurpose Compound

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  15. Elucidation of the inorganic chemistry of hydrotreating catalysts

    SciTech Connect

    DeCanio, E.C.; Edwards, J.C.; Storm, D.A.; Bruno, J.W.

    1993-12-31

    New environmental regulations are making it necessary to developed improved hydrotreating catalysts for the removal of sulfur, nitrogen and aromatics from refinery streams. In order to develop better catalysts, the authors must gain a more detailed understanding of the inorganic chemistry of these catalysts. Commercial catalysts typically contain ca. 15 wt% molybdenum or tungsten oxides and ca. 4 wt% nickel or cobalt. Additives, such as phosphate and fluoride, are often added to improve the catalytic activity. However, the role of these additives is not fully understood. The authors have, therefore, carried out studies on alumina supported phosphate and flouride materials using FT-IR, powder x-ray diffraction, and solid-state NMR ({sup 31}P, {sup 27}Al, and {sup 1}H). The results of this work have enabled the authors to determine the structures of the various compounds formed on the alumina system when fluoride or phosphate is present.

  16. Organic and inorganic transporters of the testis: A review

    PubMed Central

    Klein, David M; Cherrington, Nathan J

    2014-01-01

    Transporters have a huge impact on the toxicology and pharmacological effects of xenobiotics in addition to being implicated in several diseases. While these important proteins have been well studied in organs such as the kidney or liver, characterization of transporters in the testis is still in the early stages. Knowledge of transporter function may greatly advance the field's understanding of the physiological and toxicological processes that occur in the testis. Several foundational studies involving both organic and inorganic transporters have been critical in furthering our understanding of how the testis interacts with endogenous and xenobiotic compounds. This review provides an overview of how transporters function, their clinical significance, and highlights what is known for many of the important transporters in the testis. PMID:26413398

  17. Data mining approaches to high-throughput crystal structure and compound prediction.

    PubMed

    Hautier, Geoffroy

    2014-01-01

    Predicting unknown inorganic compounds and their crystal structure is a critical step of high-throughput computational materials design and discovery. One way to achieve efficient compound prediction is to use data mining or machine learning methods. In this chapter we present a few algorithms for data mining compound prediction and their applications to different materials discovery problems. In particular, the patterns or correlations governing phase stability for experimental or computational inorganic compound databases are statistically learned and used to build probabilistic or regression models to identify novel compounds and their crystal structures. The stability of those compound candidates is then assessed using ab initio techniques. Finally, we report a few cases where data mining driven computational predictions were experimentally confirmed through inorganic synthesis.

  18. Morphology-preserving chemical conversion of bioorganic and inorganic templates

    NASA Astrophysics Data System (ADS)

    Vernon, Jonathan Paul

    The generation of nanostructured assemblies with complex (three-dimensional, 3D) self-assembled morphologies and with complex (multicomponent) tailorable inorganic compositions is of considerable technological and scientific interest. This dissertation demonstrates self-assembled 3D organic templates of biogenic origin can be converted into replicas comprised of numerous other functional nanocrystalline inorganic materials. Nature provides a spectacular variety of biologically-assembled 3D organic structures with intricate, hierarchical (macro-to-micro-to-nanoscale) morphologies. Such processing on readily-available structurally complex templates provides a framework for chemical conversion of synthetic organic templates and, potentially, production of organic/inorganic composites. Four specific research thrusts are detailed in this document. First, chemical conversion of a nanostructured bioorganic template into a multicomponent oxide compound (tetragonal BaTiO3) via SSG coating and subsequent morphology-preserving microwave hydrothermal processing is demonstrated. Second, morphology-preserving chemical conversion of bioorganic templates into hierarchical photoluminescent microparticles is demonstrated to reveal both the dramatic change in properties such processing can provide, and the potential utility of chemically transformed templates in anti-counterfeiting / authentication applications. Third, determination of the reaction mechanism(s) for morphology-preserving microwave hydrothermal conversion of TiO2 to BaTiO3, through Au inert markers on single crystal rutile titania, is detailed. Finally, utilization of constructive coating techniques (SSG) and moderate temperature (< 500°C) heat treatments to modify and replicate structural color is coupled with deconstructive focused ion beam microsurgery to prepare samples for microscale structure interrogation. Specifically, the effects of coating thickness and composition on reflection spectra of structurally

  19. The Surface Morphology and Optical Properties of Refined Glasses with Inorganic Nano-molecules

    NASA Astrophysics Data System (ADS)

    Drajewicz, Marcin; Pytel, Maciej; Rokicki, Paweł; Góral, Marek

    2015-05-01

    New refining technology of soda-calcium-silicon glass surfaces with inorganic compounds nano-molecules has been presented in the study. In order to determine modification of the glass surface SEM observation and EDX analysis have been carried out. The UV-VIS, photo-elasticity and ellipsometry examinations were carried out on glass samples. The results of investigations that have been conducted show that refining process of the glass surface by use of nanopowder inorganic compounds deposited electrostatically on glass surface provides forming of very thin (about 50 nm) surface layers [1]. This method of surface modification improves physical and chemical glass properties. In this paper results of microhardness test of refined glass were also presented.

  20. Inorganic Nanoparticles for Multimodal Molecular Imaging

    PubMed Central

    Swierczewska, Magdalena; Lee, Seulki; Chen, Xiaoyuan

    2013-01-01

    Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle–based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles. PMID:21303611

  1. Inorganic polymers for environmental protection applications

    NASA Astrophysics Data System (ADS)

    MacKenzie, K. J. D.

    2011-10-01

    Aluminosilicate inorganic polymers have been proposed as low-energy cements since, unlike Portland cement, their production does not require high temperatures or generate large quantities of greenhouse gases. Other environmental protection applications for inorganic polymers are to encapsulate hazardous mining or radioactive wastes for safe long-term storage and as fireproof components for buildings and vehicles. However, newly developed methods for synthesising these materials have opened up the possibility of other novel environmental protection applications. These include porous cladding material for passive cooling of buildings, cost-effective exchange materials for removing heavy metals from wastewater, bacteriocidal materials for purifying polluted drinking water and materials for photodegrading hazardous organic environmental pollutants. The nature and synthesis of inorganic polymers for these environmental applications will be discussed here.

  2. Perfluorinated Compounds

    EPA Science Inventory

    Perfluorinated compounds such as the perfluoroalkyl acids (PFAAs) and their derivatives are important man-made chemicals that have wide consumer and industrial applications. They are relatively contemporary chemicals, being in use only since the 1950s, and until recently, have be...

  3. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2001-01-01

    Seawater and natural brines accounted for about 63% of US magnesium compounds production during 2000. Premier Services in Florida, Dow Chemical in Michigan, Martin Marietta Magnesia Specialties, and Rohm & Haas recovered dead-burned and caustic-calcined magnesias from seawater. And Premier Services' recoveries, in Nevada, were from magnasite.

  4. Photocatalytic oxidation of organic compounds on Mars

    NASA Technical Reports Server (NTRS)

    Chun, S. F. S.; Pang, K. D.; Cutts, J. A.; Ajello, J. M.

    1978-01-01

    Ultraviolet-stimulated catalytic oxidation is proposed as a mechanism for the destruction of organic compounds on Mars. The process involves the presence of gaseous oxygen, UV radiation, and a catalyst (titanium dioxide), and all three of these have been found to be present in the Martian environment. Therefore it seems plausible that UV-stimulated oxidation of organics is responsible for degrading organic molecules into inorganic end products.

  5. SAXS in inorganic and bioinspired research.

    PubMed

    Stawski, Tomasz M; Benning, Liane G

    2013-01-01

    In situ and time-resolved structural information about emergent microstructures that progressively develop during the formation of inorganic or biologically mediated solid phases from solution is fundamental for understanding of the mechanisms driving complex precipitation reactions, for example, during biomineralization. In this brief chapter, we present the use of small- and wide-angle X-ray scattering (SAXS and WAXS) techniques and show how SAXS can be used to gather structural information on the nanoscale properties of the de novo-forming entities. We base the discussion on several worked examples of inorganic materials such as calcium carbonate, silica, and perovskite-type titanates.

  6. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  7. Use of cysteine-modified TiO{sub 2} photocatalyst for treatment of combined organic/inorganic wastewaters

    SciTech Connect

    Peters, R.W.; Wu, J.M.; Meshkov, N.; Thurnauer, M.C.; Ostafin, A.G.

    1995-03-01

    The utilization of semiconductor-based photocatalysts, such as titanium dioxide (TiO{sub 2}), for carrying out photochemical reactions to treat water contaminated with organic and inorganic compounds has received considerable attention in recent years. The authors strategy for optimizing the process of photocatalytic reduction of heavy metals on TiO{sub 2} colloids involves modifying the colloid surface. Specific project objectives included: (1) identification and development of potential biomimetic photocatalysts for simultaneous heavy metal recovery and organic destruction; (2) identification of treatment conditions that minimize the residual metal concentration(s) contained in the effluent, even in the presence of complexants and interferences, and development of appropriate scale-up criteria; and (3) determination of system performance, including an economic analysis for comparison with conventional technologies (such as pump-and-treat using metal hydroxide precipitation of ion exchange). The experimental results indicate that simultaneous removal of organic compounds (such as naphthalene) and inorganic compounds (such as lead ions) in aqueous solution can be achieved using a TiO{sub 2} photocatalyst system with UV light. The removal rates of organic and inorganic compounds can be enhanced through surface modification of the TiO{sub 2} photocatalyst using an organic substance such as cysteine. The cysteine-modified TiO{sub 2} photocatalyst enhanced the oxidation rates of organics as well as the reduction rates of heavy metals in the irradiated solution, resulting in improved treatment efficiencies for combined organic/inorganic wastestreams.

  8. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, seawater and natural brines accounted for 51% of US magnesium compounds production. World magnesia production was estimated to be 14.5 Mt. Most of the production came from China, North Korea, Russia and Turkey. Although no specific production figures are available, Japan and the United States are estimated to account for almost one-half of the world's capacity from seawater and brines.

  9. Organic Compounds

    NASA Astrophysics Data System (ADS)

    Shankland, Kenneth

    For many years, powder X-ray diffraction was used primarily as a fingerprinting method for phase identification in the context of molecular organic materials. In the early 1990s, with only a few notable exceptions, structures of even moderate complexity were not solvable from PXRD data alone. Global optimisation methods and highly-modified direct methods have transformed this situation by specifically exploiting some well-known properties of molecular compounds. This chapter will consider some of these properties.

  10. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2003-01-01

    Seawater and natural brines accounted for about 60 percent of U.S. magnesium compounds production during 2002. Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida. They were also recovered from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And they were recovered from magnesite in Nevada by Premier Chemicals.

  11. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  12. Inorganic particles in cigars and cigar smoke.

    PubMed

    Langer, A M; Mackler, A D; Rubin, I; Hammond, E C; Selikoff, I J

    1971-11-01

    A number of crystalline and optically isotopic inorganic materials are used in the manufacture of reconstituted tobacco sheets. These sheets, used primarily in inexpensive cigars, often contain diatomaceous earth, which exists in part in the silica mineral form cristobalite, a known fibrogen. Diatom fragments with this crystalline form have been observed in the main smoke stream of cigars made with these tobacco sheets.

  13. INORGANIC ELEMENTS AND DISTRIBUTION OF EASTERN OYSTERS.

    EPA Science Inventory

    Fisher, William S. In press. Inorganic Elements and Distribution of Eastern Oysters (Abstract). To be presented at the 96th Annual Meeting (Aquaculture 2004) of the National Shellfisheries Association, 1-5 March 2004, Honolulu, HI. 1 p. (ERL,GB R962).

    For over a century w...

  14. Removing dissolved inorganic contaminants from water

    SciTech Connect

    Clifford, D.; Subramonian, S.; Sorg, T.J.

    1986-11-01

    This article describes the physicochemical treatment processes typically used to remove the more common inorganic contaminants from water and wastewater. These are precipitation, coprecipitation, adsorption, ion exchange, membrane separations by reverse osmosis and electrodialysis, and combinations of these processes. The general criteria for process selection are discussed, and the processes and their typical applications are described.

  15. Temperature- and frequency-dependent dielectric properties of organic–inorganic hybrid compound: (C{sub 6}H{sub 9}N{sub 2}){sub 2}(Hg{sub 0.75}Cd{sub 0.25})Cl{sub 4}

    SciTech Connect

    Elwej, R. Hamdi, M.; Hannachi, N.; Hlel, F.

    2015-02-15

    Highlights: • We have synthesized a new hybrid compound of composition (C6H9N2)2(Hg0.75Cd0.25)Cl4. • The Ac conductivity of the title material was studied as a function of frequency and temperature. • The dielectric data have been analyzed in modulus formalism using KWW. - Abstract: The bis-2-amino-4-picolinium tetrachloromercurate-cadmate compound (C{sub 6}H{sub 9}N{sub 2}){sub 2}(Hg{sub 0.75}Cd{sub 0.25})Cl{sub 4} was prepared by hydrothermal method and characterized by X-ray diffraction (XRD) technique. The electrical properties of the compound were studied using impedance spectroscopy in the frequency and temperature range of 200 Hz–5 MHz and 308–403 K, respectively. The equivalent circuit is modeled by a combination of a parallel Rp//CPE circuit to explain the impedance results. The dielectric data were analyzed using complex electrical modulus M* at various temperatures. The activation energy responsible for the relaxation calculated from the modulus spectra is found to be almost the same as the value obtained from the temperature variation of dc conductivity. The electrical modulus and its scaling behavior are also investigated.

  16. Measured and Modeled Humidification Factors of Fresh Smoke Particles From Biomass Burning: Role of Inorganic Constituents

    SciTech Connect

    Hand, Jenny L.; Day, Derek E.; McMeeking, Gavin M.; Levin, Ezra; Carrico, Christian M.; Kreidenweis, Sonia M.; Malm, William C.; Laskin, Alexander; Desyaterik, Yury

    2010-07-09

    During the 2006 FLAME study (Fire Laboratory at Missoula Experiment), laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry) and bsp(RH), respectively) in order to explore the role of relative humidity (RH) on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels showed large variability in the humidification factor (f(RH) = bsp(RH)/bsp(dry)). Values of f(RH) at RH=85-90% ranged from 1.02 to 2.15 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic and organic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 85-90% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts.

  17. Measured and modeled humidification factors of fresh smoke particles from biomass burning: role of inorganic constituents

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; Day, D. E.; McMeeking, G. M.; Levin, E. J. T.; Carrico, C. M.; Kreidenweis, S. M.; Malm, W. C.; Laskin, A.; Desyaterik, Y.

    2010-02-01

    During the 2006 FLAME study (Fire Laboratory at Missoula Experiment), laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry) and bsp(RH), respectively) in order to explore the role of relative humidity (RH) on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels showed large variability in the humidification factor (f(RH)=bsp(RH)/bsp(dry)). Values of f(RH) at RH=85-90% ranged from 1.02 to 2.15 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic and organic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 85-90% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts.

  18. Measured and modeled humidification factors of fresh smoke particles from biomass burning: role of inorganic constituents

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; Day, D. E.; McMeeking, G. M.; Levin, E. J. T.; Carrico, C. M.; Kreidenweis, S. M.; Malm, W. C.; Laskin, A.; Desyaterik, Y.

    2010-07-01

    During the 2006 FLAME study (Fire Laboratory at Missoula Experiment), laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry) and bsp(RH), respectively) in order to explore the role of relative humidity (RH) on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels from the west and southeast United States showed large variability in the humidification factor (f(RH)=bsp(RH)/bsp(dry)). Values of f(RH) at RH=80-85% ranged from 0.99 to 1.81 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 80-85% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts.

  19. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2002-01-01

    Seawater and natural brines accounted for about 60% of US magnesium compounds production in 2001. Dead-burned and caustic-calcined magnesias were recovered from seawater in Florida by Premier Chemicals. They were also recovered from Michigan well brines by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And Premier Chemicals recovered dead-burned and caustic-calcined magnesias from magnesite in Nevada. Reilly Industries and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah.

  20. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2010-01-01

    Seawater and natural brines accounted for about 40 percent of U.S. magnesium compounds production in 2009. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Chemicals in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover, and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta from its operation mentioned above.

  1. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2011-01-01

    Seawater and natural brines accounted for about 54 percent of U.S. magnesium compounds production in 2010. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash-Wendover and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its operation mentioned above.

  2. Oceanic protection of prebiotic organic compounds from UV radiation

    NASA Technical Reports Server (NTRS)

    Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

  3. Oceanic protection of prebiotic organic compounds from UV radiation.

    PubMed

    Cleaves, H J; Miller, S L

    1998-06-23

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

  4. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  5. Reproductive effects of inorganic borates on male employees: birth rate assessment.

    PubMed Central

    Whorton, D; Haas, J; Trent, L

    1994-01-01

    The purpose of this study was to investigate the potential for reproductive effects of inorganic borate compounds on male employees. The standardized birth ratio (SBR) methodology was used to assess fertility among male employees, using live births as the measured end point. The ratio of female to male births was also assessed. Data were collected via questionnaires and telephone follow-up interviews. Medical insurance records were assessed for nonresponders. Exposures were assessed using three semiquantitative categories. We found a statistically significant increase in fertility as measured by live births among the employees of the inorganic borate facility. There does not appear to be any decrease in fertility due to exposures either as analyzed by the borate exposure categories or over time, which is an indirect measure of exposures. We found a nonstatistically significant increase in the percentage of female offspring. This increase was due, not to a deficiency of male offspring, but rather to a marked increase in the numbers of female offspring. This increase in percentage female offspring does not appear to be related to exposures to inorganic borates. Based on the data, exposures to inorganic borates do not appear to adversely affect fertility in this population. PMID:7889872

  6. Assessment of occupational exposure to inorganic arsenic based on urinary concentrations and speciation of arsenic.

    PubMed Central

    Farmer, J G; Johnson, L R

    1990-01-01

    An analytical speciation method, capable of separating inorganic arsenic (As (V), As (III] and its methylated metabolites (MMAA, DMAA) from common, inert, dietary organoarsenicals, was applied to the determination of arsenic in urine from a variety of workers occupationally exposed to inorganic arsenic compounds. Mean urinary arsenic (As (V) + As (III) + MMAA + DMAA) concentrations ranged from 4.4 micrograms/g creatinine for controls to less than 10 micrograms/g for those in the electronics industry, 47.9 micrograms/g for timber treatment workers applying arsenical wood preservatives, 79.4 micrograms/g for a group of glassworkers using arsenic trioxide, and 245 micrograms/g for chemical workers engaged in manufacturing and handling inorganic arsenicals. The maximum recorded concentration was 956 micrograms/g. For the most exposed groups, the ranges in the average urinary arsenic speciation pattern were 1-6% As (V), 11-14% As (III), 14-18% MMAA, and 63-70% DMAA. The highly raised urinary arsenic concentrations for the chemical workers, in particular, and some glassworkers are shown to correspond to possible atmospheric concentrations in the workplace and intakes in excess of, or close to, recommended and statutory limits and those associated with inorganic arsenic related diseases. PMID:2357455

  7. Probing the tropical tropopause layer for organic and inorganic bromine

    NASA Astrophysics Data System (ADS)

    Werner, Bodo; Pfeilsticker, Klaus; Atlas, Elliot; Cheung, Ross; Chipperfield, Martyn; Colosimo, Fedele; Deutschmann, Tim; Elkins, Jim; Fahey, David; Feng, Wu; Festa, James; Gao, Ru-Shan; Hossaini, Ryan; Navarro, Maria; Raecke, Rasmus; Scalone, Lisa; Spolaor, Max; Thornberry, Troy; Tsai, Catalina; Stutz, Jochen

    2016-04-01

    Bromine chemistry impacts the levels of ozone in the upper troposphere and the stratosphere. An accurate quantitative understanding of the sources, sinks, and chemical transformation of bromine species is thus important to understand the photochemistry and budget of bromine in the tropical upper troposphere, tropopause layer and lowermost stratosphere (UT/TTL/LS). These regions are also known to serve as a gateway for delivery of ozone depleting gases to the stratosphere. CH3Br, halons, short-lived organic bromine precursors (VSLS), such as CHBr3, CH2Br2, and possibly inorganic product gases have been identified as the main bromine gases delivered to the stratosphere. However, many important details of the transport and delivery of VSLS and inorganic bromine compounds through the TTL are still uncertain. Moreover, a number of chemical processes, including the transformation of the source gases and cycling of inorganic bromine species at low ambient temperature and on ice particles are also poorly understood. The presentation reports measurements of CH4, O3, NO2, and BrO performed by different instruments and techniques during the 2013 NASA-ATTREX flights in the TTL and LS. The interpretation of our measurements is supported by chemical transport model (SLIMCAT) simulations. SLIMCAT results, in conjunction with extensive radiative transfer calculations using the Monte Carlo model McArtim, also are used to improve retrieval of O3, NO2, and BrO concentrations from limb scattered sunlight measurements made with the Differential Optical Absorption Spectroscopy (DOAS) technique during ATTREX. The chemical transport model also allows us to attribute observed concentration variations to transport and to photochemical processes. When properly accounting for the transport-related concentration variations in methane and ozone, we find that measured BrO mostly agrees with model simulations. An exception are regions where the contribution of the short-lived CH2Br2 or the

  8. Organic and inorganic inputs and losses in an irrigated corn field after inorganic fertilizer or manure application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about inorganic fertilizer or manure effects on organic carbon (OC) and inorganic C (IC) losses from a furrow irrigated field, particularly in the context of other system C gains or losses. In 2003 and 2004, we measured dissolved organic and inorganic C (DOC, DIC), particulate OC an...

  9. Casting inorganic structures with DNA molds

    PubMed Central

    Sun, Wei; Boulais, Etienne; Hakobyan, Yera; Wang, Wei Li; Guan, Amy; Bathe, Mark; Yin, Peng

    2014-01-01

    We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff “nano-mold” that contains a user-specified three-dimensional cavity and encloses a nucleating gold “seed”. Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with three nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo-/heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics. PMID:25301973

  10. Electrostatically gated membrane permeability in inorganic protocells.

    PubMed

    Li, Mei; Harbron, Rachel L; Weaver, Jonathan V M; Binks, Bernard P; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization. PMID:23695636

  11. Electrostatically gated membrane permeability in inorganic protocells

    NASA Astrophysics Data System (ADS)

    Li, Mei; Harbron, Rachel L.; Weaver, Jonathan V. M.; Binks, Bernard P.; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization.

  12. The Inorganic Illustrator: A 3-D Graphical Supplement for Inorganic and Bioinorganic Chemistry Courses Distributed on CD-ROM

    NASA Astrophysics Data System (ADS)

    Childs, Scott L.; Hagen, Karl S.

    1996-10-01

    The visualization of molecular and solid state chemical structures in three dimensions is a particularly difficult problem for students to overcome when the primary means of communication is the two-dimensional world of textbooks, blackboards, and overhead projector screens. Recent editions of popular textbooks in organic, inorganic, and biochemistry have included stereoviews of molecules to aid the student, and stereoviews of crystal structures have been used in inorganic chemistry publications for many years. These are powerful aids for visualizing complex molecules, but with the exception of the biochemistry text mentioned above, they are limited to single, static images generally in black and white. Molecular model kits are routinely used very effectively in organic chemistry but their utility in inorganic chemistry is limited to all but the most simple molecules encountered. Now that personal computers are generally accessible and multimedia tools are starting to make an appearance in chemistry lecture halls (1), we can make our inorganic and bioinorganic chemistry and crystallography lectures come alive with the aid of the computer-based resources, which are the essence of this project. As part of this project we are accumulating a database of representative crystal structures of main group molecules, coordination complexes, organometallic compounds, small metalloproteins, bioinorganic model complexes, clusters, and solid state materials in Chem3D Plus format to be viewed with Chem3D Viewer, which is free software from Cambridge Scientific Computing. We are also generating a library of high-quality graphic images of these same molecules and structures using Cerius2 package from Molecular Simulations. These include polyhedral representations of clusters and solid state structures (see Fig. 1). Figure 1. Representation of the user interface: the title page and an example of polyhedral and ball-and-stick representation of an octanuclear iron-oxo cluster. The

  13. Bismaleimide compounds

    DOEpatents

    Adams, J.E.; Jamieson, D.R.

    1986-01-14

    Bismaleimides of the formula shown in the diagram wherein R[sub 1] and R[sub 2] each independently is H, C[sub 1-4]-alkyl, C[sub 1-4]-alkoxy, Cl or Br, or R[sub 1] and R[sub 2] together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R[sub 1] and R[sub 2] are not t-butyl or t-butoxy; X is O, S or Se; n is 1--3; and the alkylene bridging group, optionally, is substituted by 1--3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  14. Bismaleimide compounds

    DOEpatents

    Adams, Johnnie E.; Jamieson, Donald R.

    1986-01-14

    Bismaleimides of the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, C1 or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the alkylene bridging group, optionally, is substituted by 1-3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  15. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  16. Molten salt battery having inorganic paper separator

    DOEpatents

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  17. Inorganic rechargeable non-aqueous cell

    SciTech Connect

    Bowden, William L.; Dey, Arabinda N.

    1985-05-07

    A totally inorganic non-aqueous rechargeable cell having an alkali or alkaline earth metal anode such as of lithium, a sulfur dioxide containing electrolyte and a discharging metal halide cathode, such as of CuCl.sub.2, CuBr.sub.2 and the like with said metal halide being substantially totally insoluble in SO.sub.2 and admixed with a conductive carbon material.

  18. Ion-Conducting Organic/Inorganic Polymers

    NASA Technical Reports Server (NTRS)

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  19. Inorganic particle analysis of dental impression elastomers.

    PubMed

    Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties.

  20. Flexible Hybrid Organic-Inorganic Perovskite Memory.

    PubMed

    Gu, Chungwan; Lee, Jang-Sik

    2016-05-24

    Active research has been done on hybrid organic-inorganic perovskite materials for application to solar cells with high power conversion efficiency. However, this material often shows hysteresis, which is undesirable, shift in the current-voltage curve. The hysteresis may come from formation of defects and their movement in perovskite materials. Here, we utilize the defects in perovskite materials to be used in memory operations. We demonstrate flexible nonvolatile memory devices based on hybrid organic-inorganic perovskite as the resistive switching layer on a plastic substrate. A uniform perovskite layer is formed on a transparent electrode-coated plastic substrate by solvent engineering. Flexible nonvolatile memory based on the perovskite layer shows reproducible and reliable memory characteristics in terms of program/erase operations, data retention, and endurance properties. The memory devices also show good mechanical flexibility. It is suggested that resistive switching is done by migration of vacancy defects and formation of conducting filaments under the electric field in the perovskite layer. It is believed that organic-inorganic perovskite materials have great potential to be used in high-performance, flexible memory devices. PMID:27093096

  1. Inorganic membranes: The new industrial revolution

    SciTech Connect

    Fain, D.E.

    1994-12-31

    Separation systems are a vital part of most industrial processes. These systems account for a large fraction of the capital equipment used and the operating costs of industrial processes. Inorganic membranes have the potential for providing separation systems that can significantly reduce both the capital equipment and operating costs. These separation processes include waste management and recycle as well as the primary production of raw materials and products. The authors are rapidly learning to understand the effect of physical and chemical properties on the different transport mechanisms that occur in inorganic membranes. Such understanding can be expected to provide the information needed to design, engineer and manufacture inorganic membranes to produce very high separation factors for almost any separation function. To implement such a revolution, the authors need to organize a unique partnership between the national laboratories, and industry. The university can provide research to understand the materials and transport mechanisms that produce various separations, the national laboratories the development of an economical fabrication and manufacturing capability, and industry the practical understanding of the operational problems required to achieve inplementation.

  2. Inorganic particle analysis of dental impression elastomers.

    PubMed

    Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties. PMID:21271042

  3. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOEpatents

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  4. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

    1995-08-29

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

  5. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.

    1995-01-01

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

  6. A novel nanomolecular organic-inorganic hybrid compound: Na{sub 2}[NH(CH{sub 2}CH{sub 2}OH){sub 3}]{sub 4}{l_brace}Mo{sub 36}O{sub 112}(OH{sub 2}){sub 14}[OHCH{sub 2}CH{sub 2}NH(CH{sub 2}CH{sub 2}OH){sub 2}]{sub 2}{r_brace}.nH{sub 2}O (n{approx}72) exhibiting a supramolecular one-dimensional chainlike structure

    SciTech Connect

    Liang Dadong; Liu Shuxia Wang Chunling; Ren Yuanhang

    2007-02-15

    A novel nanomolecular organic-inorganic hybrid compound, Na{sub 2}[NH(CH{sub 2}CH{sub 2}OH){sub 3}]{sub 4}{l_brace}Mo{sub 36}O{sub 112}(OH{sub 2}){sub 14} [OHCH{sub 2}CH{sub 2}NH(CH{sub 2}CH{sub 2}OH){sub 2}]{sub 2}{r_brace}.nH{sub 2}O (n{approx}72) (1), was synthesized in aqueous acidic medium with a high yield (85%) and characterized by single crystal X-ray crystallography, IR spectroscopy, {sup 1}H NMR, XRD and TG analysis. Compound 1 exhibits a supramolecular one-dimensional chainlike structure which consists of nanosized {l_brace}[Mo{sub 36}O{sub 112}(H{sub 2}O){sub 14}(HOC{sub 2}H{sub 4}){sub 2}NHC{sub 2}H{sub 4}OH]{sub 2}{r_brace}{sup 6-} anions ({l_brace}Mo{sub 36}(TEAH{sup +}){sub 2}{r_brace} for short) and cage-like dimers of TEAH{sup +} cations (TEAH{sup +}=protonated triethanolamine). In the {l_brace}Mo{sub 36}(TEAH{sup +}){sub 2}{r_brace} anion, two TEAH{sup +} cations connect to one ring-like {l_brace}[Mo{sub 36}O{sub 112}(H{sub 2}O){sub 16}]{sup 8-} ({l_brace}Mo{sub 36}{r_brace} for short) anion by covalent bonds via replacing two water ligands by the alkoxy ligands. The {l_brace}Mo{sub 36}(TEAH{sup +}){sub 2}{r_brace} unit could be considered as nanosized chelating ligand with [2N, 4O] donor sets. Crystal Data: triclinic, P-1, a=16.019(9) A, b=17.372(4) A, c=18.287(2) A, {alpha}=101.410(0){sup o}, {beta}=95.904(0){sup o}, {gamma}=116.332(0){sup o}, Z=1. - Graphical abstract: A novel organic-inorganic hybrid material based on macroisopolyanion {l_brace}Mo{sub 36}{r_brace} has been synthesized and characterized by X-ray single-crystal crystallography, XRD, IR spectroscopy, and TG analysis. The material exhibits a supramolecular one-dimensional chainlike structure. The {l_brace}Mo{sub 36}(TEAH{sup +}){sub 2}{r_brace} unit could be considered as nanosized chelating ligand with [2N, 4O] donor sets.

  7. Pitfalls of assays devoted to evaluation of oxidative stress induced by inorganic nanoparticles.

    PubMed

    Tournebize, Juliana; Sapin-Minet, Anne; Bartosz, Grzegorz; Leroy, Pierre; Boudier, Ariane

    2013-11-15

    During the last years, there has been a remarkable increase in the use of inorganic nanoparticles (NP) in different applications, including consumer and medical products. Despite these promising applications, the extremely small size of NP allows them to penetrate cells, in which they can interact with intracellular structures causing serious side effects. A number of studies showed that NP cause adverse effects predominantly via induction of an oxidative stress - an imbalance between damaging oxidants and protective antioxidants - resulting in inflammation, immune response, cell damages, genotoxicity, etc … Most of the in vitro methods used for measurement of oxidative stress biomarkers were designed and standardized for conventional organic, inorganic and biochemical compounds. More recently, these methods have been adapted to studies related to various nanomaterials. Thus, this review is an attempt to highlight some current methods employed in and to provide a critical analysis of the major challenges and issues faced in this emerging field. PMID:24148470

  8. Synthesis and characterization of an isocyanate functionalized polyhedral oligosilsesquioxane and the subsequent formation of an organic-inorganic hybrid polyurethane.

    PubMed

    Neumann, Daniel; Fisher, Mark; Tran, Linh; Matisons, Janis G

    2002-11-27

    Organic-inorganic hybrids are an important class of new materials that offer improved thermal and mechanical properties over normal polymers. They may be produced by either the sol-gel route or through the use of inorganic compounds possessing reactive functional groups. Polyhedral oligosilsesquioxanes (POSS) are completely defined molecules of nanoscale dimensions that may be functionalized with reactive groups suitable for the synthesis of new organic-inorganic hybrids. Here we report the synthesis and characterization of a novel POSS possessing eight isocyanate groups via the hydrosilylation of octakis(hydridodimethylsiloxy)octasilsesquioxane (Q8M8H) and m-isopropenyl-alpha,alpha'-dimethylbenzyl isocyanate (m-TMI). The suitability of this new macromer to the synthesis of a organic-hybrids has been explored by forming a new type of highly cross-linked polyurethane elastomer via reaction of the macromer with poly(ethylene glycol) using dibutyltin dilaurate catalyst. PMID:12440890

  9. Essential Trends in Inorganic Chemistry (by D. M. P. Mingos)

    NASA Astrophysics Data System (ADS)

    Phillips, Reviewed By David A.

    2000-05-01

    The author has chosen to present his material in a distinctly different fashion from that of most inorganic chemistry textbook writers. Most texts are a mix of theory chapters and descriptive chapters, with the latter focusing on specific groups of elements. However, after a chapter laying out the quantum mechanical basis of the periodic table, Mingos has elected to organize the remaining chapters around vertical, horizontal, and diagonal relationships, or on isoelectronic and isostoichiometric relationships. I think this approach has worked remarkably well. Chapters 2-5 contain a wealth of information accompanied by clear, coherent discussions of the underlying principles that account for the observed trends and anomalies. Every serious inorganic chemist should have a copy of this text on his or her bookshelf. Chapter 1 is the least effective part of the book. Some of the quantum number notation is incorrect (m rather than ml , s rather than ms), some of the language is imprecise, and there are a few clear-cut errors. There is a nice discussion comparing the rmax of 2s and 2p vs 3s and 3p orbitals. However, most readers would be better served by the treatments in advanced inorganic texts such as those by Shriver or Huheey. Chapter 2 addresses vertical trends in the main-group elements. After discussing the influence of atomic size on atomic properties, Mingos describes and explains the second-row anomalies and the reversals in trends resulting from the addition of 3d and 4f subshells. He goes on to account for a variety of trends in the physical and chemical properties of main-group elements and their compounds. The chapter ends with tables summarizing a wide variety of properties, providing a wealth of information I have not seen presented in such a compact format anywhere else. Chapter 3 addresses the horizontal trends and diagonal relationships of the main-group elements. Among the highlights are discussions of the role of exchange energies in determining

  10. Toxicity of organic and inorganic mercury species in differentiated human neurons and human astrocytes.

    PubMed

    Lohren, Hanna; Blagojevic, Lara; Fitkau, Romy; Ebert, Franziska; Schildknecht, Stefan; Leist, Marcel; Schwerdtle, Tanja

    2015-10-01

    Organic mercury (Hg) species exert their toxicity primarily in the central nervous system. The food relevant Hg species methylmercury (MeHg) has been frequently studied regarding its neurotoxic effects in vitro and in vivo. Neurotoxicity of thiomersal, which is used as a preservative in medical preparations, is to date less characterised. Due to dealkylation of organic Hg or oxidation of elemental Hg, inorganic Hg is present in the brain albeit these species are not able to readily cross the blood brain barrier. This study compared for the first time toxic effects of organic MeHg chloride (MeHgCl) and thiomersal as well as inorganic mercury chloride (HgCl2) in differentiated human neurons (LUHMES) and human astrocytes (CCF-STTG1). The three Hg species differ in their degree and mechanism of toxicity in those two types of brain cells. Generally, neurons are more susceptible to Hg species induced cytotoxicity as compared to astrocytes. This might be due to the massive cellular mercury uptake in the differentiated neurons. The organic compounds exerted stronger cytotoxic effects as compared to inorganic HgCl2. In contrast to HgCl2 exposure, organic Hg compounds seem to induce the apoptotic cascade in neurons following low-level exposure. No indicators for apoptosis were identified for both inorganic and organic mercury species in astrocytes. Our studies clearly demonstrate species-specific toxic mechanisms. A mixed exposure towards all Hg species in the brain can be assumed. Thus, prospectively coexposure studies as well as cocultures of neurons and astrocytes could provide additional information in the investigation of Hg induced neurotoxicity.

  11. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends

    NASA Astrophysics Data System (ADS)

    Miikkulainen, Ville; Leskelä, Markku; Ritala, Mikko; Puurunen, Riikka L.

    2013-01-01

    Atomic layer deposition (ALD) is gaining attention as a thin film deposition method, uniquely suitable for depositing uniform and conformal films on complex three-dimensional topographies. The deposition of a film of a given material by ALD relies on the successive, separated, and self-terminating gas-solid reactions of typically two gaseous reactants. Hundreds of ALD chemistries have been found for depositing a variety of materials during the past decades, mostly for inorganic materials but lately also for organic and inorganic-organic hybrid compounds. One factor that often dictates the properties of ALD films in actual applications is the crystallinity of the grown film: Is the material amorphous or, if it is crystalline, which phase(s) is (are) present. In this thematic review, we first describe the basics of ALD, summarize the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD [R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005)], and give an overview of the status of processing ternary compounds by ALD. We then proceed to analyze the published experimental data for information on the crystallinity and phase of inorganic materials deposited by ALD from different reactants at different temperatures. The data are collected for films in their as-deposited state and tabulated for easy reference. Case studies are presented to illustrate the effect of different process parameters on crystallinity for representative materials: aluminium oxide, zirconium oxide, zinc oxide, titanium nitride, zinc zulfide, and ruthenium. Finally, we discuss the general trends in the development of film crystallinity as function of ALD process parameters. The authors hope that this review will help newcomers to ALD to familiarize themselves with the complex world of crystalline ALD films and, at the same time, serve for the expert as a handbook-type reference source on ALD processes and film crystallinity.

  12. [The vanadium compounds: chemistry, synthesis, insulinomimetic properties].

    PubMed

    Fedorova, E V; Buriakina, A V; Vorob'eva, N M; Baranova, N I

    2014-01-01

    The review considers the biological role of vanadium, its participation in various processes in humans and other mammals, and the anti-diabetic effect of its compounds. Vanadium salts have persistent hypoglycemic and antihyperlipidemic effects and reduce the probability of secondary complications in animals with experimental diabetes. The review contains a detailed description of all major synthesized vanadium complexes having antidiabetic activity. Currently, vanadium complexes with organic ligands are more effective and safer than the inorganic salts. Despite the proven efficacy of these compounds as the anti-diabetic agents in animal models, only one organic complex of vanadium is currently under the second phase of clinical trials. All of the considered data suggest that vanadium compound are a new promising class of drugs in modern pharmacotherapy of diabetes.

  13. Organic materials as templates for the formation of mesoporous inorganic materials and ordered inorganic nanocomposites

    NASA Astrophysics Data System (ADS)

    Ziegler, Christopher R.

    Hierarchically structured inorganic materials are everywhere in nature. From unicellular aquatic algae such as diatoms to the bones and/or cartilage that comprise the skeletal systems of vertebrates. Complex mechanisms involving site-specific chemistries and precision kinetics are responsible for the formation of such structures. In the synthetic realm, reproduction of even the most basic hierarchical structure effortlessly produced in nature is difficult. However, through the utilization of self-assembling structures or "templates", such as polymers or amphiphilic surfactants, combined with some favorable interaction between a chosen inorganic, the potential exists to imprint an inorganic material with a morphology dictated via synthetic molecular self-assembly. In doing so, a very basic hierarchical structure is formed on the angstrom and nanometer scales. The work presented herein utilizes the self-assembly of either surfactants or block copolymers with the desired inorganic or inorganic precursor to form templated inorganic structures. Specifically, mesoporous silica spheres and copolymer directed calcium phosphate-polymer composites were formed through the co-assembly of an organic template and a precursor to form the desired mesostructured inorganic. For the case of the mesoporous silica spheres, a silica precursor was mixed with cetyltrimethylammonium bromide and cysteamine, a highly effective biomimetic catalyst for the conversion of alkoxysilanes to silica. Through charge-based interactions between anionic silica species and the micelle-forming cationic surfactant, ordered silica structures resulted. The incorporation of a novel, effective catalyst was found to form highly condensed silica spheres for potential application as catalyst supports or an encapsulation media. Ordered calcium phosphate-polymer composites were formed using two routes. Both routes take advantage of hydrogen bonding and ionic interactions between the calcium and phosphate precursors

  14. Comparison of histological and ultrastructural changes in mice organs after supplementation with inorganic and organic selenium.

    PubMed

    Tos-Luty, Sabina; Obuchowska-Przebirowska, Daniela; Latuszynska, Jadwiga; Musik, Irena; Tokarska-Rodak, Malgorzata

    2003-01-01

    Two organic compounds of selenium, 4-o-totyl-selenosemicarbazide p-chlorobenzoic acid (chain compound) produced at the Chemistry Department of the University Medical School in Lublin, and one inorganic compound of sodium IV selenite (Na(2)SeO(3)) were used. The preparations were used per os in doses of 1 mg/kg body weight and 0.5 mg/kg body weight. The studies were conducted on female Swiss mice, covering seven groups of animals, i.e. 6 experimental and 1 control. Histopathologic changes were observed in liver, kidney, lung and heart. Ultrastructural changes were observed in liver and kidney. Our studies indicate a dose-dependent effect of selenium on histopathologic and ultrastructural changes. It is possible therefore, that the extent of excess of selenium exerts a greater influence on a cell than the form of supplemented selenium.

  15. In situ studies of a platform for metastable inorganic crystal growth and materials discovery

    PubMed Central

    Shoemaker, Daniel P.; Hu, Yung-Jin; Chung, Duck Young; Halder, Gregory J.; Chupas, Peter J.; Soderholm, L.; Mitchell, J. F.; Kanatzidis, Mercouri G.

    2014-01-01

    Rapid shifts in the energy, technological, and environmental demands of materials science call for focused and efficient expansion of the library of functional inorganic compounds. To achieve the requisite efficiency, we need a materials discovery and optimization paradigm that can rapidly reveal all possible compounds for a given reaction and composition space. Here we provide such a paradigm via in situ X-ray diffraction measurements spanning solid, liquid flux, and recrystallization processes. We identify four new ternary sulfides from reactive salt fluxes in a matter of hours, simultaneously revealing routes for ex situ synthesis and crystal growth. Changing the flux chemistry, here accomplished by increasing sulfur content, permits comparison of the allowable crystalline building blocks in each reaction space. The speed and structural information inherent to this method of in situ synthesis provide an experimental complement to computational efforts to predict new compounds and uncover routes to targeted materials by design. PMID:25024201

  16. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOEpatents

    Alivisatos, A. Paul; Colvin, Vicki L.

    1998-01-01

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.

  17. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOEpatents

    Alivisatos, A.P.; Colvin, V.L.

    1998-05-12

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.

  18. Tracking inorganic foulants irreversibly accumulated on low-pressure membranes for treating surface water.

    PubMed

    Yamamura, Hiroshi; Kimura, Katsuki; Higuchi, Kumiko; Watanabe, Yoshimasa; Ding, Qing; Hafuka, Akira

    2015-12-15

    particles approximately the same size as the narrowed pores. Calcium and silica are assumed to accumulate on the membrane due to their cross-linking action and/or complex formation with organic substances such as humic compounds. The present research is the first to clearly show that the inorganic components that contribute to membrane fouling differ according to the stage of membrane fouling progression; the information obtained by this research should enable chemical cleaning or operational control in accordance with the stage of membrane fouling progression.

  19. Inorganic-organic composite solid polymer electrolytes

    SciTech Connect

    Abraham, K.M.; Koch, V.R.; Blakley, T.J.

    2000-04-01

    Inorganic-organic composite solid polymer electrolytes (CSPEs) have been prepared from the poly(ethylene oxide) (PEO)-like electrolytes of the general formula polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-PEO{sub n}-LiX and Li{sup +}-conducting ceramic powders. In the PEO-like electrolytes, PVdF-HFP is the copolymer of PVdF and HFP, PEO{sub n} is a nonvolatile oligomeric polyethylene oxide of {approximately}400 g/mol molecular weight, and LiX is lithium bis(trifluoroethylsulfonyl)imide. Two types of inorganic oxide ceramic powders were used: a highly Li{sup +}-conducting material of the composition 14 mol % Li{sub 2}O-9Al{sub 2}O{sub 3}-38TiO{sub 2}-39P{sub 2}O{sub 5}, and the poorly Li{sup +}-conducting Li-silicates Li{sub 4{minus}x}M{sub x}SiO{sub 4} where M is Ca or Mg and x is 0 or 0.05. The composite electrolytes can be prepared as thin membranes in which the Li{sup +} conductivity and good mechanical strength of the Li{sup +}-conducting inorganic ceramics are complemented by the structural flexibility and high conductivity of organic polymer electrolytes. Excellent electrochemical and thermal stabilities have been demonstrated for the electrolyte films. Li//composite electrolyte//LiCoO{sub 2} rechargeable cells have been fabricated and cycled at room temperature and 50 C.

  20. Stretchable, curvilinear electronics based on inorganic materials.

    PubMed

    Kim, Dae-Hyeong; Xiao, Jianliang; Song, Jizhou; Huang, Yonggang; Rogers, John A

    2010-05-18

    All commercial forms of electronic/optoelectronic technologies use planar, rigid substrates. Device possibilities that exploit bio-inspired designs or require intimate integration with the human body demand curvilinear shapes and/or elastic responses to large strain deformations. This article reviews progress in research designed to accomplish these outcomes with established, high-performance inorganic electronic materials and modest modifications to conventional, planar processing techniques. We outline the most well developed strategies and illustrate their use in demonstrator devices that exploit unique combinations of shape, mechanical properties and electronic performance. We conclude with an outlook on the challenges and opportunities for this emerging area of materials science and engineering.

  1. Inorganic delivery vector for intravenous injection.

    PubMed

    Kwak, Seo-Young; Kriven, Waltraud M; Wallig, Matthew A; Choy, Jin-Ho

    2004-12-01

    Uniform, small-sized (100-200 nm), layered double hydroxides (LDH) were prepared by a conventional, wet chemistry method using different aging times of 1 and 3 days as an inorganic drug or gene delivery carrier. The samples prepared had a hexagonal thin, plate-like shape and TEM/SAD electron microscopy of LDH particles indicated that they were single crystals. In vivo testing of empty LDH administered to adult male Sprague Dawley rats was done to evaluate the possibility of using LDH as an injectable drug delivery vehicle.

  2. Organic/inorganic hybrid coatings for anticorrosion

    NASA Astrophysics Data System (ADS)

    He, Zhouying

    Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The

  3. Estimation of inorganic species aquatic toxicity

    USGS Publications Warehouse

    Hickey, James P.; Ostrander, Gary K.

    2005-01-01

    The acute aquatic toxicities (narcoses) for a range of organism types may be estimated with LSER for a large number of inorganic and organometal species, many with an accuracy at or within an order of magnitude. Optimum estimations make use of a bioavailable metal fraction and a more accurate structure(s) for the toxic solution species. The estimated toxicities for a number of salts were quite different from the observed values, likely due to a dominant specific toxicity mechanism other than baseline narcosis. The tool still requires fine-tuning.

  4. Nanoscale investigation of organic - inorganic halide perovskites

    NASA Astrophysics Data System (ADS)

    Cacovich, S.; Divitini, G.; Vrućinić, M.; Sadhanala, A.; Friend, R. H.; Sirringhaus, H.; Deschler, F.; Ducati, C.

    2015-10-01

    Over the last few years organic - inorganic halide perovskite-based solar cells have exhibited a rapid evolution, reaching certified power conversion efficiencies now surpassing 20%. Nevertheless the understanding of the optical and electronic properties of such systems on the nanoscale is still an open problem. In this work we investigate two model perovskite systems (based on iodine - CH3NH3PbI3 and bromine - CH3NH3PbBr3), analysing the local elemental composition and crystallinity and identifying chemical inhomogeneities.

  5. Magnetic field processing of inorganic polymers

    SciTech Connect

    Kunerth, D.C.; Peterson, E.S.

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  6. Inorganic pyrophosphatases: structural diversity serving the function

    NASA Astrophysics Data System (ADS)

    Samygina, V. R.

    2016-05-01

    The review is devoted to ubiquitous enzymes, inorganic pyrophosphatases, which are essential in all living organisms. Despite the long history of investigations, these enzymes continue to attract interest. The review focuses on the three-dimensional structures of various representatives of this class of proteins. The structural diversity, the relationship between the structure and some properties of pyrophosphatases and various mechanisms of enzyme action related to the structural diversity of these enzymes are discussed. Interactions of pyrophosphatase with other proteins and possible practical applications are considered. The bibliography includes 56 references.

  7. Single inorganic-organic hybrid photovoltaic nanorod

    NASA Astrophysics Data System (ADS)

    Yoo, Sang-Hoon; Liu, Lichun; Ku, Tea-Woong; Hong, Soonchang; Whang, Dongmok; Park, Sungho

    2013-09-01

    We demonstrate that single photovoltaic (PV) nanorods can be readily fabricated by electrochemical processing in solution-phase under ambient conditions. A porous Au nanorod electrode in the core of the PV nanorod was central to both its structural formation and superior performance. We examined an intrinsically conducting polymer (polypyrrole) and an inorganic semiconductor (cadmium selenide) as precursor materials. Through an extremely simple and cost-effective fashioning process (solution-phase, room temperature), unadorned PV nanorods with up to 1.1% power conversion efficiency were obtained.

  8. Chiral selection on inorganic crystalline surfaces

    NASA Technical Reports Server (NTRS)

    Hazen, Robert M.; Sholl, David S.

    2003-01-01

    From synthetic drugs to biodegradable plastics to the origin of life, the chiral selection of molecules presents both daunting challenges and significant opportunities in materials science. Among the most promising, yet little explored, avenues for chiral molecular discrimination is adsorption on chiral crystalline surfaces - periodic environments that can select, concentrate and possibly even organize molecules into polymers and other macromolecular structures. Here we review experimental and theoretical approaches to chiral selection on inorganic crystalline surfaces - research that is poised to open this new frontier in understanding and exploiting surface-molecule interactions.

  9. Joint effect of organic acids and inorganic salts on cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Frosch, M.; Prisle, N. L.; Bilde, M.; Varga, Z.; Kiss, G.

    2010-07-01

    We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid, succinic acid, adipic acid, citric acid, cis-pinonic acid, or nordic reference fulvic acid) and one inorganic salt (sodium chloride or ammonium sulphate). Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the mixtures containing cis-pinonic acid or fulvic acid, a depression of surface tension was observed, but for the remaining mixtures the effect on surface tension was negligle at concentrations relevant for cloud droplet activation, and water activity was the more significant term in the Köhler equation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic compounds had a higher effect on water activity than the studied organic acids, and increasing the mass ratio of the inorganic compound led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors to evaluate the performance of these approaches. The correspondence between measuments and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on

  10. Biochemical and medical importance of vanadium compounds.

    PubMed

    Korbecki, Jan; Baranowska-Bosiacka, Irena; Gutowska, Izabela; Chlubek, Dariusz

    2012-01-01

    Vanadium belongs to the group of transition metals and is present in the air and soil contaminants in large urban agglomerations due to combustion of fossil fuels. It forms numerous inorganic compounds (vanadyl sulfate, sodium metavanadate, sodium orthovanadate, vanadium pentoxide) as well as complexes with organic compounds (BMOV, BEOV, METVAN). Depending on the research model, vanadium compounds exhibit antitumor or carcinogenic properties. Vanadium compounds generate ROS as a result of Fenton's reaction or of the reaction with atmospheric oxygen. They inactivate the Cdc25B(2) phosphatase and lead to degradation of Cdc25C, which induces G(2)/M phase arrest. In cells, vanadium compounds activate numerous signaling pathways and transcription factors, including PI3K-PKB/Akt-mTOR, NF-κB, MEK1/2-ERK, that cause cell survival or increased expression and release of VEGF. Vanadium compounds inhibit p53-dependent apoptosis and promote entry into the S phase of cells containing functional p53 protein. In addition, vanadium compounds, in particular organic derivatives, have insulin-mimetic and antidiabetic properties. Vanadium compounds lower blood glucose levels in animals and in clinical trials. They also inhibit the activity of protein tyrosine phosphatase 1B. By activating the PI3K-PKB/Akt pathway, vanadium compaunds increase the cellular uptake of glucose by the GLUT4 transporter. The PKB/Akt pathway is also used to inactivate glycogen synthase kinase-3. The impact of vanadium compounds on inflammatory reactions has not been fully studied. Vanadium pentoxide causes expression of COX-2 and the release of proinflammatory cytokines in a human lung fibroblast model. Other vanadium compounds activate NF-κB in macrophages by activating IKKβ.

  11. Occurrence of organic and inorganic biocides in the museum environment

    NASA Astrophysics Data System (ADS)

    Schieweck, A.; Delius, W.; Siwinski, N.; Vogtenrath, W.; Genning, C.; Salthammer, T.

    In the museum environment organic and inorganic chemicals can be found, which originate from both outside and inside the building. Many of the contaminants may cause adverse effects on works of art and human health, but in the past, pollution research in museums has focused on the protection of artifacts, while the risk assessment for humans has been neglected. Especially, the application of biocides leads to a conflict of interest: on the one hand cultural assets have to be protected against microorganisms, insects and rodents while on the other hand it is essential to provide healthy conditions for museum staff and visitors. It has recently been shown that the release of organic indoor pollutants from building products is one of the main reasons for deterioration of artifacts. In this work, we present the results of screening measurements on biocides in different locations of German museums. The major components that could be identified were DDT, PCP, lindane, methoxychlor, naphthalene, chlorinated naphthalenes, 1,4-dichlorobenzene, PCBs and arsenic. It is demonstrated that the application of chlorinated organic compounds and arsenic for preventive conservation is one of the prime reasons for indoor pollution in museums and provides a potential for exposure. However, the concentrations in air, dust and material are widely different and a health risk for humans has to be evaluated case by case.

  12. Fractionation of inorganic arsenic by adjusting hydrogen ion concentration.

    PubMed

    Oliveira, Andrea; Gonzalez, Mario Henrique; Queiroz, Helena Müller; Cadore, Solange

    2016-12-15

    The inorganic fraction of arsenic species, iAs=∑[As(III)+As(V)] present in fish samples can be quantified in the presence of other arsenic species also found in fishes, such as: monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine (AsB). The toxic arsenic fraction was selected taking into account the dissociation constants of these arsenic species in different hydrogen ions concentration leading to the arsine formation from iAs compounds detected as As(III) by HG AAS. For thus, a microwave assisted extraction was carried out using HCl 1molL(-1) in order to maintain the integrity of the arsenic species in this mild extraction media. Recovery experiments were done for iAs fraction, in the presence of other arsenic species. The recovery values obtained for iAs fraction added were quantitative about 87-107% (for N=3, RSD⩽3%). The limit of detection (LOD), and the limit of quantification (LOQ), were 5μgkg(-1) and 16μgkg(-1) respectively. PMID:27451157

  13. Structural diversity in hybrid organic-inorganic lead iodide materials.

    PubMed

    Weber, Oliver J; Marshall, Kayleigh L; Dyson, Lewis M; Weller, Mark T

    2015-12-01

    The structural chemistry of hybrid organic-inorganic lead iodide materials has become of increasing significance for energy applications since the discovery and development of perovskite solar cells based on methylammonium lead iodide. Seven new hybrid lead iodide compounds have been synthesized and structurally characterized using single-crystal X-ray diffraction. The lead iodide units in materials templated with bipyridyl, 1,2-bis(4-pyridyl)ethane, 1,2-di(4-pyridyl)ethylene and imidazole adopt one-dimensional chain structures, while crystallization from solutions containing piperazinium cations generates a salt containing isolated [PbI6](4-) octahedral anions. Templating with 4-chlorobenzylammonium lead iodide adopts the well known two-dimensional layered perovskite structure with vertex shared sheets of composition [PbI4](2-) separated by double layers of organic cations. The relationships between the various structures determined, their compositions, stability and hydrogen bonding between the protonated amine and the iodide ions of the PbI6 octahedra are described. PMID:26634723

  14. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Zardini, A. A.; Sjogren, S.; Marcolli, C.; Krieger, U. K.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Peter, T.

    2008-03-01

    Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/citric acid and in the ammonium sulfate/glutaric acid cases. However, we observe significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  15. Electron-Rotor Interaction in Organic-Inorganic Lead Iodide Perovskites Discovered by Isotope Effects.

    PubMed

    Gong, Jue; Yang, Mengjin; Ma, Xiangchao; Schaller, Richard D; Liu, Gang; Kong, Lingping; Yang, Ye; Beard, Matthew C; Lesslie, Michael; Dai, Ying; Huang, Baibiao; Zhu, Kai; Xu, Tao

    2016-08-01

    We report on the carrier-rotor coupling effect in perovskite organic-inorganic hybrid lead iodide (CH3NH3PbI3) compounds discovered by isotope effects. Deuterated organic-inorganic perovskite compounds including CH3ND3PbI3, CD3NH3PbI3, and CD3ND3PbI3 were synthesized. Devices made from regular CH3NH3PbI3 and deuterated CH3ND3PbI3 exhibit comparable performance in band gap, current-voltage, carrier mobility, and power conversion efficiency. However, a time-resolved photoluminescence (TRPL) study reveals that CH3NH3PbI3 exhibits notably longer carrier lifetime than that of CH3ND3PbI3, in both thin-film and single-crystal formats. Furthermore, the comparison in carrier lifetime between CD3NH3PbI3 and CH3ND3PbI3 single crystals suggests that vibrational modes in methylammonium (MA(+)) have little impact on carrier lifetime. In contrast, the fully deuterated compound CD3ND3PbI3 reconfirmed the trend of decreasing carrier lifetime upon the increasing moment of inertia of cationic MA(+). Polaron model elucidates the electron-rotor interaction. PMID:27396858

  16. Mutagenicity of dimethylated metabolites of inorganic arsenics.

    PubMed

    Yamanaka, K; Ohba, H; Hasegawa, A; Sawamura, R; Okada, S

    1989-10-01

    The genotoxic effects of dimethylarsinic acid (DMAA), one of the main metabolites of inorganic arsenics in mammals, and its further metabolites were investigated using Escherichia coli B tester strains. When H/r30R (wild-type; Exc+Rec+) and Hs30R (uvrA-; Exc-Rec+) cells were incubated with DMAA for 3 h in liquid NB medium, many more revertants appeared in sealed tubes than in the control, but this was not the case in unsealed tubes, suggesting that volatile metabolites of DMAA caused the mutagenesis. By gas chromatography-mass spectrometry (GC-MS), dimethylarsine and trimethylarsine, known to be volatile metabolites in microorganisms, were detected in the gas phase of DMAA-added tester strain cell suspensions in sealed tubes. Among these arsines, dimethylarsine was mutagenic in WP2 (wild-type; Exc+Rec+) and WP2uvrA (uvrA-; Exc-Rec+), while trimethylarsine was not. The mutagenesis induced by dimethylarsine required oxygen gas in the assay system; the number of revertants markedly increased in an oxygen-replaced system and diminished in a nitrogen-replaced one. These results suggest that the reaction product(s) between dimethylarsine and molecular oxygen is responsible for the mutagenesis. The significance of this mutagenesis in the genetoxic action of inorganic arsenics is discussed.

  17. Preparation and screening of crystalline inorganic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy; Brice{hacek over }o, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

    2008-10-28

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  18. Combinatorial synthesis of inorganic or composite materials

    DOEpatents

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  19. Combinatorial screening of inorganic and organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  20. Engineered inorganic nanoparticles for drug delivery applications.

    PubMed

    Ojea-Jiménez, Isaac; Comenge, Joan; García-Fernández, Lorena; Megson, Zoë A; Casals, Eudald; Puntes, Victor F

    2013-06-01

    Inorganic nanoparticles (NPs) currently have immense potential as drug delivery vectors due to their unique physicochemical properties such as high surface area per unit volume, their optical and magnetic uniqueness and the ability to be functionalized with a large number of ligands to enhance their affinity towards target molecules. These features, together with the therapeutic activity of some drugs, render the combination of these two entities (NP-drug) as an attractive alternative in the area of drug delivery. One of the major advantages of these conjugates is the possibility to have a local delivery of the drug, thus reducing systemic side effects and enabling a higher efficiency of the therapeutic molecule. This review highlights the direct implications of nanoscale particles in the development of drug delivery systems. In more detail, it is also remarked the extensive use of inorganic NPs for targeted cancer therapies. As the range of nanoparticles and their applications continues to increase, human safety concerns are gaining importance, which makes it necessary to better understand the potential toxicity hazards of these materials.

  1. Engineered inorganic nanoparticles for drug delivery applications.

    PubMed

    Ojea-Jiménez, Isaac; Comenge, Joan; García-Fernández, Lorena; Megson, Zoë A; Casals, Eudald; Puntes, Victor F

    2013-06-01

    Inorganic nanoparticles (NPs) currently have immense potential as drug delivery vectors due to their unique physicochemical properties such as high surface area per unit volume, their optical and magnetic uniqueness and the ability to be functionalized with a large number of ligands to enhance their affinity towards target molecules. These features, together with the therapeutic activity of some drugs, render the combination of these two entities (NP-drug) as an attractive alternative in the area of drug delivery. One of the major advantages of these conjugates is the possibility to have a local delivery of the drug, thus reducing systemic side effects and enabling a higher efficiency of the therapeutic molecule. This review highlights the direct implications of nanoscale particles in the development of drug delivery systems. In more detail, it is also remarked the extensive use of inorganic NPs for targeted cancer therapies. As the range of nanoparticles and their applications continues to increase, human safety concerns are gaining importance, which makes it necessary to better understand the potential toxicity hazards of these materials. PMID:23116108

  2. Mesostructure Control of Polymer-Inorganic Nanocomposites

    NASA Astrophysics Data System (ADS)

    Vaia, R.

    2002-03-01

    Critical to forwarding polymer nanocomposite technology is the development of a detailed understanding of the spatial distribution of the various constituents (inorganic, polymeric and additives), the associated influence on thermodynamic and kinetic (rheological) aspects of the system and techniques to control nano (1-100nm) and meso (100-1000nm) scale morphology. With regard to these issues, in-situ small angle x-ray scattering, associated scattering models, coarse grain simulations, and rheology have been used to examine the phase behavior of organically modified layered silicates (OLS) suspended in pure and binary solvent mixtures. These serve as model systems for examining aspects of morphology development and phase behavior in thermoset and thermoplastic nanocomposites. The phase structure of solvent - OLS system is qualitatively described by Onsager arguments modified to include a crystal-solvate (intercalated phase) and a gelation point. Ternary behavior (binary solvent mixtures) provides evidence for preferential segregation of the polar component to the inorganic surface. The chemical structure of the organic surfactant modifier has a negligible influence on the structure of the intercalated phase, but has a marked effect on the extent and concentration of the dispersed phase. These studies provide insight into the use of polar activators for organosilicate rheolgical control agents and additives to enhance nanocomposite formation (e.g. H20 addition for optimal exfoliated PDMS nanocomposites and incorporation of malic anhydride to produce polypropylene nanocomposites).

  3. The effects of methanol on the biofiltration of dimethyl sulfide in inorganic biofilters.

    PubMed

    Zhang, Yuefeng; Liss, Steven N; Allen, D Grant

    2006-11-01

    Air emissions from the pulp and paper industry frequently contain reduced sulfur compounds (RSC), such as dimethyl sulfide (DMS) mixed with volatile organic compounds (VOC) (e.g., methanol, MeOH) and it is desirable to treat either one or both of these groups of compounds. The objective of this study was to assess the effects of VOC (MeOH) on the biofiltration of DMS. Results obtained from continuous experiments using three bench-scale biofilters packed with inorganic material clearly show that MeOH has a positive effect (11-fold increase) on the biofiltration of DMS. Further experiments indicate that MeOH addition enhances biomass concentration and viability (threefold) in the biofilters. However, a suspension of MeOH addition causes a rapid significant increase (twofold) in the removal rate of DMS, suggesting that the presence of MeOH also has a competitive effect on DMS biodegradation. This negative effect was also confirmed in batch experiments. The decrease of biofilter performance with time for a long-term suspension of MeOH addition indicates that MeOH addition is necessary to sustain a high removal rate of DMS in inorganic biofilters. Results on metabolic products of DMS biodegradation demonstrate that DMS is almost completely converted to sulfate in the absence of MeOH, while it is partially oxidized to elemental sulfur in the presence of MeOH. This study suggests that there exists an optimum mix of DMS and MeOH for the treatment of DMS emissions in inorganic biofilters.

  4. Understanding ligand-centred photoluminescence through flexibility and bonding of anthraquinone inorganic-organic frameworks

    SciTech Connect

    Furman, Joshua D; Burwood, Ryan P; Tang, Min; Mikhailovsky, Alexander A; Cheetham, Anthony K

    2011-11-17

    Five novel inorganic-organic framework compounds containing the organic chromophore ligand anthraquinone-2,3-dicarboxylic acid (abbreviated H2AQDC) and calcium (CaAQDC), zinc (ZnAQDC), cadmium (CdAQDC), manganese (MnAQDC), and nickel (NiAQDC), respectively, have been synthesized. The photoluminescence of these materials is only visible at low temperatures and this behaviour has been evaluated in terms of ligand rigidity. It is proposed that the 2,3 position bonding sites result in luminescence-quenching ligand motion, as supported by X-ray diffraction and temperature-dependent luminescence studies.

  5. Six new inorganic-organic hybrids based on rigid triangular ligands: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Li, Na; Huang, Rudan

    2016-01-01

    Six new inorganic-organic hybrids based on rigid triangular N-containing ligands, NaCuI2(tib)4(H2O)4[H2PWVWVI11O40][H2PWVI12O40]·6H2O (1), CuII3(tib)4Cl4[H2PWVI12O40]2·4H2O (2), Co(tib)2[PWV3WVI9O38]·5H2O (3), CuII3(tib)2[P2MoVI5O22(O2)]·4H2O (4), Mn(pytpy)2MoVI4O13 (5) and Co(pytpy)2MoVI4O13 (6) (tib=1,3,5-tris(1-imidazolyl)benzene, pytpy=4'-(4"-pyridyl)2,4':6',4"-terpyridine), have been hydrothermally synthesized. Single crystal X-ray diffraction studies revealed that compounds 1-4 display two-dimensional (2D) layered structures, and in compounds 1-3, the adjacent Keggin anions link with each other by W-O-W covalent interactions to form 1D inorganic chains. Compounds 5-6 are 3D "pillar-layer" frameworks based on bimetal-oxide layers pillared by the pytpy ligands. The compounds have been characterized by elemental analysis, powder X-ray diffraction, X-ray photoelectron spectroscopy and thermo gravimetric analyses. Moreover, the electrochemical and catalytic properties of compound 1 have been investigated as well.

  6. Inorganic Nanoparticle Nucleation on Polymer Matrices

    NASA Astrophysics Data System (ADS)

    Kosteleski, Adrian John

    The introduction of inorganic nanoparticles into organic materials enhances both the mechanical and chemical properties of the material. Metallic nanoparticles, like silver and gold, have been introduced into polymers for use as antimicrobial coatings or dielectric materials, respectively. The challenge in creating these materials currently is the difficulty to homogeneously disperse the particles throughout the polymer matrix. The uneven dispersion of nanoparticles can lead to less than optimal quality and undesired properties. By creating a polymer nanocomposite material with well-controlled size inorganic materials that are evenly dispersed throughout the polymer matrix; we can improve the materials performance and properties. The objective for this research is to use polymer networks for the in situ mineralization of silver and other metallic materials to create intricate inorganic structures. The work performed here studied the ability to nucleate silver nanoparticles using poly (acrylic acid) (PAA) as the templating agent. Ionic silver was chemically reduced by sodium borohydride (NaBH4) in the presence of PAA. The effect of varying reactant concentrations of silver, NaBH 4, and PAA on particle size was studied. Reaction conditions in terms of varying temperature and pH levels of the reaction solution were monitored to observe the effect of silver nanoparticle size, shape, and concentration. By monitoring the UV spectra over time the reaction mechanism of the silver reduction process was determined to be an autocatalytic process: a period of slow, continuous nucleation followed by rapid, autocatalytic growth. The reaction kinetics for this autocatalytic process is also reported. PAA was crosslinked both chemically and physically to 3 biopolymers; ELP, an elastin like peptide, cotton fabrics, and calcium alginate hydrogels. Various compositions of PAA were physically crosslinked with calcium alginate gels to design an antimicrobial hydrogel for use in wound

  7. Nanostructured inorganic/polymer solar cells

    NASA Astrophysics Data System (ADS)

    Gowrishankar, Vignesh

    The use of polymers in solar cells shows great promise for achieving high power-conversion efficiencies at low cost. Polymers have the distinct advantage of being easily solution-processable, while possibly having larger absorption coefficients than conventional inorganic semiconductors. Thus, small amounts of cheaply-processed polymer can be used to make inexpensive solar cells. However, polymers suffer from poor exciton (electron-hole pair) diffusion lengths which are significantly smaller than the typical thicknesses needed by polymers to absorb a large number of solar photons. While other solutions to this problem exist, one promising solution is the use of an ordered nanostructure comprising an inorganic-semiconductor scaffold with infiltrated polymer, which essentially facilitates strong absorption and efficient exciton harvesting concomitantly. Other advantages of such a nanostructure include improved charge extraction and greater control over charge transfer and other processes occurring at the semiconductor interface. In this thesis, I first present an analysis supporting the need for cheaper solar cells, after which I provide the reader with relevant background on nanostructured inorganic/polymer solar cells. Next, I describe the fabrication process for making suitable nanostructures in silicon and hydrogenated amorphous-silicon (a-Si:H). Nanopillared a-Si:H can be directly used as a scaffold for making polymer-based, nanostructured solar cells. The complete device physics of the a-Si:H/polymer system is then studied. It is found that energy transfer can occur from the polymers to a-Si:H. The nanostructured devices are found to exhibit improved efficiency compared to planar (bilayer) devices. However, even higher efficiencies are expected on switching the scaffold material from a-Si:H to a non-absorber such as titania. The fabrication process for creating a nanostructured scaffold in titania, using soft-lithography, is then described. Solar cells made

  8. Bioaccumulation of organic and inorganic selenium in a laboratory food chain

    SciTech Connect

    Besser, J.M.; Canfield, T.J.; La Point, T.W. )

    1993-01-01

    Aquatic organisms accumulated selenium (Se) from inorganic and organic Se species via aqueous and food-chain exposure routes. The authors measured aqueous and food-chain Se bioaccumulation from selenate, selenite, and seleno-L-methionine in a laboratory food chain of algae (Chlamydomonas reinhardtii), daphnids (Daphnia magna), and fish (bluegill, Lepomis macrochirus). Selenium concentrations were monitored radiometrically with [sup 75]Se-labeled compounds. All three organisms concentrated Se more strongly from aqueous selenomethionine than from either inorganic Se species. Bioconcentration factors estimated from 1 [mu]g Se/L Se-methionine exposures were approximately 16,000 for algae, 200,000 for daphnids, and 5,000 for bluegills. Algae and daphnids concentrated Se more strongly from selenite than selenate whereas bluegills concentrated Se about equally from both inorganic species. Bioaccumulation of foodborne Se by daphnids and bluegills was similar in food chains dosed with different Se species. Daphnids and bluegills did not accumulate Se concentrations greater than those in their diet, except at very low dietary Se concentrations. Food-chain concentration factors (CFs) for daphnids decreased from near 1.0 to 0.5 with increases in algal Se concentrations, whereas CFs estimated from bluegill exposures averaged 0.5 over a range of foodborne Se concentrations. In exposures based on selenite, bluegills accumulated greater Se concentrations from food than from water.

  9. Electron Microscopic Analysis of Surface Inorganic Substances on Oral and Combustible Tobacco Products

    PubMed Central

    Halstead, Mary M.; Watson, Clifford H.; Pappas, R. Steven

    2015-01-01

    Though quantitative trace toxic metals analyses have been performed on tobacco products, little has been published on inorganic particulate constituents on and inside the products. We analyzed these constituents using scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS). The nature of SEM-EDS instrumentation makes it an ideal choice for inorganic particulate analyses and yields relevant information to potential exposures during consumption of oral tobacco products, and possibly as a consequence of smoking. Aluminum silicates, silica, and calcium compounds were common inorganic particulate constituents of tobacco products. Aluminum silicates and silica from soil were found on external leaf surfaces. Phytolithic silica, found in the lumen of the plant leaf, is of biogenic origin. Calcium oxalate was also apparently of biogenic origin. Small mineral deposits on tobacco could have health implications. Minerals found on the surfaces of smokeless tobacco products could possibly abrade the oral mucosa and contribute to the oral inflammatory responses observed with smokeless tobacco product use. If micron and sub-micron size calcium particles on cigarette filler were transported in mainstream smoke, they could potentially induce a pulmonary irritant inflammation when inhaled. The transport of aluminum silicate and silica in smoke could potentially also contribute to chronic inflammatory disease. PMID:26286581

  10. An Examination of the Inorganic Chlorine Budget in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Bonne, G. P.; Stimpfle, R. M.; Cohen, R. C.; Voss, P. B.; Perkins, K. K.; Anderson, J. G.; Salawitch, R. J.; Elkins, J. W.; Dutton, G. S.; Jucks, K. W.

    2000-01-01

    We use the first simultaneous in situ measurements of ClONO2, ClO, and HCl acquired using the NASA ER-2 aircraft during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) mission to test whether these three compounds quantitatively account for total inorganic chlorine (Cly) in the lower stratosphere in 1997. We find (ClO + ClONO2 + HCl)/Cly = 0.92 +/- 0.10, where Cly is inferred from in situ measurements of organic chlorine source gases. These observations are consistent with our current understanding of the budget and partitioning of Cly in the lower stratosphere. We find no evidence in support of missing inorganic chlorine species that compose a significant fraction of Cly. We apply the analysis to earlier ER-2 observations dating from 1991 to investigate possible causes of previously observed discrepancies in the inorganic chlorine budget. Using space shuttle, satellite, balloon, and aircraft measurements in combination with ER-2 data, we find that the discrepancy is unlikely to have been caused by missing chlorine species or an error in the photolysis rate of chlorine nitrate. We also find that HCl/Cly is not significantly controlled by aerosol surface area density in the lower stratosphere.

  11. Electron Microscopic Analysis of Surface Inorganic Substances on Oral and Combustible Tobacco Products.

    PubMed

    Halstead, Mary M; Watson, Clifford H; Pappas, R Steven

    2015-01-01

    Although quantitative trace toxic metal analyses have been performed on tobacco products, little has been published on inorganic particulate constituents on and inside the products. We analyzed these constituents using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The nature of SEM-EDS instrumentation makes it an ideal choice for inorganic particulate analyses and yields relevant information to potential exposures during consumption of oral tobacco products, and possibly as a consequence of smoking. Aluminum silicates, silica and calcium compounds were common inorganic particulate constituents of tobacco products. Aluminum silicates and silica from soil were found on external leaf surfaces. Phytolithic silica, found in the lumen of the plant leaf, is of biogenic origin. Calcium oxalate was also apparently of biogenic origin. Small mineral deposits on tobacco could have health implications. Minerals found on the surfaces of smokeless tobacco products could possibly abrade the oral mucosa and contribute to the oral inflammatory responses observed with smokeless tobacco product use. If micron and sub-micron size calcium particles on cigarette filler were transported in mainstream smoke, they could potentially induce a pulmonary irritant inflammation when inhaled. The transport of aluminum silicate and silica in smoke could potentially also contribute to chronic inflammatory disease.

  12. Intrarenal distribution of inorganic mercury and albumin after coadministration

    SciTech Connect

    Zalups, R.K. ); Barfuss, D.W. )

    1993-01-01

    The renal disposition and the intrarenal distribution of albumin and mercury were studied simultaneously in rats co-injected with a 0.5-[mu]mol/kg dose of albumin and a 0.25-[mu]mol/kg dose of inorganic mercury at 2, 5, 30, and 180 min after injection. These studies were carried out to test the hypothesis that one of the mechanisms involved in the renal tubular uptake of inorganic mercury is cotransport with albumin. By the end of the first 2 min after injection, the ratio of inorganic mercury to albumin in the renal cortex and outer strip of the outer medulla was approximately 2.6 and 1.6, respectively. Both the cortex and outer stripe contain segments of the proximal tubule, and it is these segments that have been shown to be principally involved in the renal tubular uptake of both albumin and inorganic mercury. The ration increased slightly in these two zones after 5 and 20 min after injection. These data demonstrate that there is a relatively close relationship in the renal content of inorganic mercury and albumin. However, the ratios are significantly greater than the ratio of inorganic mercury of albumin in the injection solution, which was 0.5. After 180 min following co-injection, the ratio increased to about 38 in the cortex and 15 in the outer stripe. This increase in the ratio is probably related to the metabolism of albumin. Based on the ratios of inorganic mercury to albumin in the renal cortex and outer stripe of the outer medulla, it appears that some proximal tubular uptake of inorganic mercury occurs by mechanisms other than endocytotic cotransport of inorganic mercury with albumin. However, since the ratios were small during the early times after injection, cotransport of inorganic mercury with albumin cannot be excluded as one of the mechanisms involved in the proximal tubular uptake of inorganic mercury. 32 refs., 12 figs., 4 tabs.

  13. Semiconducting organic-inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods.

    PubMed

    Jung, Jaehan; Yoon, Young Jun; Lin, Zhiqun

    2016-04-28

    Semiconducting organic-inorganic nanocomposites were judiciously crafted by placing conjugated polymers in intimate contact with inorganic tetrapods via click reaction. CdSe tetrapods were first synthesized by inducing elongated arms from CdSe zincblende seeds through seed-mediated growth. The subsequent effective inorganic ligand treatment, followed by reacting with short bifunctional ligands, yielded azide-functionalized CdSe tetrapods (i.e., CdSe-N3). Finally, the ethynyl-terminated conjugated polymer poly(3-hexylthiophene) (i.e., P3HT-[triple bond, length as m-dash]) was tethered to CdSe-N3 tetrapods via a catalyst-free alkyne-azide cycloaddition, forming intimate semiconducting P3HT-CdSe tetrapod nanocomposites. Intriguingly, the intimate contact between P3HT and CdSe tetrapod was found to not only render the effective dispersion of CdSe tetrapods in the P3HT matrix, but also facilitate the efficient electronic interaction between these two semiconducting constituents. The successful anchoring of P3HT chains onto CdSe tetrapods was substantiated through Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Moreover, the absorption and photoluminescence studies further corroborated the intimate tethering between P3HT and CdSe tetrapods. The effect of the type of bifunctional ligands (i.e., aryl vs. aliphatic ligands) and the size of tetrapods on the device performance of hybrid organic-inorganic solar cells was also scrutinized. Interestingly, P3HT-CdSe tetrapod nanocomposites produced via the use of an aryl bifunctional ligand (i.e., 4-azidobenzoic acid) exhibited an improved photovoltaic performance compared to that synthesized with their aliphatic ligand counterpart (i.e., 5-bromovaleric acid). Clearly, the optimal size of CdSe tetrapods ensuring the effective charge transport in conjunction with the good dispersion of CdSe tetrapods rendered an improved device performance. We envision that the click

  14. Determining the Quantum Efficiency for Activation of an Organometallic Photoinitiator for Cationic Polymerization: An Experiment for the Physical or Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir

    2007-01-01

    We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…

  15. Is ingested inorganic arsenic a "threshold" carcinogen?

    PubMed

    Abernathy, C O; Chappell, W R; Meek, M E; Gibb, H; Guo, H R

    1996-02-01

    Ingested inorganic arsenic (As) is known to be a human carcinogen. An intriguing question is whether there is a threshold for the carcinogenic effects of As, i.e., is there a level below which it does not induce the development of cancer(s)? This Roundtable will discuss the United States Environmental Protection Agency's As risk assessment using the Taiwan data from different viewpoints. It will also consider the hypothesis that there is a threshold for As and data for or against this hypothesis. For example, some scientists believe that epidemiological data cannot answer this question, while others feel that different study designs and larger sampling will provide adequate data. Reasons for each position are given. This Roundtable discussion demonstrates the controversy surrounding the use of the Taiwan data for risk assessment.

  16. Carbon dioxide removal with inorganic membranes

    SciTech Connect

    Judkins, R.R.; Fain, D.E.

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  17. Inorganic nanoparticles in porous coordination polymers.

    PubMed

    Kim, Cho Rong; Uemura, Takashi; Kitagawa, Susumu

    2016-07-21

    Porous coordination polymers (PCPs) have been recently highlighted because of their high synthetic designability in structure and functions. Because of their ordered nanoporous structures with a large surface area and tunable pore surface functionality, PCPs have emerged as a significant class of nanoporous materials with potential applications in gas storage, separation, catalysis, and chemical sensing. Recent research has shown the utility of PCPs as host materials for the confinement of nanoparticles of inorganic polymers (IPs), such as metals, metal oxides, and metal chalcogenides. The fabrication of IP nanoparticles in PCPs (PCP⊃IP) has been studied for manifesting specific nanosized-dependent properties and host-guest synergistic functions. In this review, we describe the recent progress in the accommodation of IPs in the nanochannels of PCPs and the remarkable functions of the composite materials. PMID:27051891

  18. Engineering properties of inorganic polymer concretes (IPCs)

    SciTech Connect

    Sofi, M.; Deventer, J.S.J. van . E-mail: jannie@unimelb.edu.au; Mendis, P.A. . E-mail: pamendis@unimelb.edu.au; Lukey, G.C.

    2007-02-15

    This paper presents the engineering properties of inorganic polymer concretes (IPCs) with a compressive strength of 50 MPa. The study includes a determination of the modulus of elasticity, Poisson's ratio, compressive strength, and the splitting tensile strength and flexural strength of IPCs, formulated using three different sources of Class-F fly ash. Six IPC mix designs were adopted to evaluate the effects of the inclusion of coarse aggregates and granulated blast furnace slag into the mixes. A total of 90 cylindrical and 24 small beam specimens were investigated, and all tests were carried out pursuant to the relevant Australian Standards. Although some variability between the mixes was observed, the results show that, in most cases, the engineering properties of IPCs compare favorably to those predicted by the relevant Australian Standards for concrete mixtures.

  19. Ion conducting organic/inorganic hybrid polymers

    NASA Technical Reports Server (NTRS)

    Meador, Maryann B. (Inventor); Kinder, James D. (Inventor)

    2010-01-01

    This invention relates to a series of organic/inorganic hybrid polymers that are easy to fabricate into dimensionally stable films with good ion-conductivity over a wide range of temperatures for use in a variety of applications. The polymers are prepared by the reaction of amines, preferably diamines and mixtures thereof with monoamines with epoxy-functionalized alkoxysilanes. The products of the reaction are polymerized by hydrolysis of the alkoxysilane groups to produce an organic-containing silica network. Suitable functionality introduced into the amine and alkoxysilane groups produce solid polymeric membranes which conduct ions for use in fuel cells, high-performance solid state batteries, chemical sensors, electrochemical capacitors, electro-chromic windows or displays, analog memory devices and the like.

  20. Recent trends in inorganic mass spectrometry

    SciTech Connect

    Smith, D.H.; Barshick, C.M.; Duckworth, D.C.; Riciputi, L.R.

    1996-10-01

    The field of inorganic mass spectrometry has seen substantial change in the author`s professional lifetime (over 30 years). Techniques in their infancy 30 years ago have matured; some have almost disappeared. New and previously unthought of techniques have come into being; some of these, such as ICP-MS, are reasonably mature now, while others have some distance to go before they can be so considered. Most of these new areas provide fertile fields for researchers, both in the development of new analytical techniques and by allowing fundamental studies to be undertaken that were previously difficult, impossible, or completely unforeseen. As full coverage of the field is manifestly impossible within the framework of this paper, only those areas with which the author has personal contact will be discussed. Most of the work originated in his own laboratory, but that of other laboratories is covered where it seemed appropriate.

  1. Applications of inorganic nanoparticles as therapeutic agents

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hyeon, Taeghwan

    2014-01-01

    During the last decade, various functional nanostructured materials with interesting optical, magnetic, mechanical and chemical properties have been extensively applied to biomedical areas including imaging, diagnosis and therapy. In therapeutics, most research has focused on the application of nanoparticles as potential delivery vehicles for drugs and genes, because nanoparticles in the size range of 2-100 nm can interact with biological systems at the molecular level, and allow targeted delivery and passage through biological barriers. Recent investigations have even revealed that several kinds of nanomaterials are intrinsically therapeutic. Not only can they passively interact with cells, but they can also actively mediate molecular processes to regulate cell functions. This can be seen in the treatment of cancer via anti-angiogenic mechanisms as well as the treatment of neurodegenerative diseases by effectively controlling oxidative stress. This review will present recent applications of inorganic nanoparticles as therapeutic agents in the treatment of disease.

  2. Detonation Properties Measurements for Inorganic Explosives

    NASA Astrophysics Data System (ADS)

    Morgan, Brent A.; Lopez, Angel

    2005-03-01

    Many commonly available explosive materials have never been quantitatively or theoretically characterized in a manner suitable for use in analytical models. This includes inorganic explosive materials used in spacecraft ordnance, such as zirconium potassium perchlorate (ZPP). Lack of empirical information about these materials impedes the development of computational techniques. We have applied high fidelity measurement techniques to experimentally determine the pressure and velocity characteristics of ZPP, a previously uncharacterized explosive material. Advances in measurement technology now permit the use of very small quantities of material, thus yielding a significant reduction in the cost of conducting these experiments. An empirical determination of the explosive behavior of ZPP derived a Hugoniot for ZPP with an approximate particle velocity (uo) of 1.0 km/s. This result compares favorably with the numerical calculations from the CHEETAH thermochemical code, which predicts uo of approximately 1.2 km/s under ideal conditions.

  3. Blue laser inorganic write-once media

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Mau; Yeh, Ru-Lin

    2004-09-01

    With the advantages of low cost, portability and compliance with ROM disc, write once disk has become the most popular storage media for computer and audio/video application. In addition, write once media, like CD-R and DVD-/+ R, are used to store permanent or nonalterable information, such as financial data transitions, legal documentation, and medical data. Several write once recording materials, such as TeO[1], TeOPd[2] and Si/Cu [3] have been proposed to realize inorganic write once media. Moreover, we propose AlSi alloy [4] to be used for recording layer of write once media. It had good recording properties in DVD system although the reflectivity is too low to be used for DVD-R disk. In this paper, we report the further results in blue laser system, such as the static and dynamic characteristics of write once media.

  4. Inorganic nanoparticles engineered to attack bacteria.

    PubMed

    Miller, Kristen P; Wang, Lei; Benicewicz, Brian C; Decho, Alan W

    2015-11-01

    Antibiotics were once the golden bullet to constrain infectious bacteria. However, the rapid and continuing emergence of antibiotic resistance (AR) among infectious microbial pathogens has questioned the future utility of antibiotics. This dilemma has recently fueled the marriage of the disparate fields of nanochemistry and antibiotics. Nanoparticles and other types of nanomaterials have been extensively developed for drug delivery to eukaryotic cells. However, bacteria have very different cellular architectures than eukaryotic cells. This review addresses the chemistry of nanoparticle-based antibiotic carriers, and how their technical capabilities are now being re-engineered to attack, kill, but also non-lethally manipulate the physiologies of bacteria. This review also discusses the surface functionalization of inorganic nanoparticles with small ligand molecules, polymers, and charged moieties to achieve drug loading and controllable release.

  5. Soil Inorganic Nitrogen Cycling during Successional Change in a Northern Temperate Forest

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Sparks, J. P.; Le Moine, J.; Hardiman, B. S.; Nadelhoffer, K. J.; Strahm, B. D.; Curtis, P.

    2012-12-01

    Transformations and fluxes of inorganic nitrogen (N) compounds in forest soils are the basis for major biogeochemical functions. Inorganic N fluxes contribute significantly to plant and microbial N nutrition, mediate the exchange of reactive, gas-phase N between the biosphere and atmosphere, and are coupled via hydrologic linkages to N cycling in surface and groundwater. However, soil inorganic N cycling may change during forest succession due to shifts in tree species composition, ecosystem N capital and distribution, or other drivers. Within the framework of a paired-ecosystem, experimentally accelerated successional advancement, we synthesized comprehensive measurements of soil and soil surface inorganic N fluxes to: a) quantify changes in, and interactions between, the component processes of the N cycle that mediate forest biogeochemical functions, and b) understand how these processes and associated biogeochemical functions change during forest succession. We hypothesized that a sudden decline in plant N uptake during the mortality event that accelerated ongoing succession would significantly increase NH4+ availability, prompting fundamental changes to the N cycle including the initiation of significant nitrification and increased exports of NO3- derived compounds in gas phase and soil solution. We found that in surface soils (top 20 cm), levels of seasonally integrated, ion-exchange NH4+ and NO3- availability increased with decreasing fine root biomass (regression, P<0.01), and the availability of these two inorganic N forms was positively and nonlinearly related (regression, P<0.0001). Correlations between NH4+ and NO3- availability, nitrification rates, and NH4+ and NO3- transport in soil solution indicated distinct but dependent cycling pathways and controls on the vertical redistribution of these ions. Increasing hydrologic NO3- fluxes downwards out of the surface soil significantly increased rates of denitrification (N2O efflux), which also varied with

  6. Inorganic nitrite supplementation for healthy arterial aging

    PubMed Central

    DeVan, Allison E.; Fleenor, Bradley S.; Seals, Douglas R.

    2014-01-01

    Aging is the major risk factor for cardiovascular diseases (CVD). This is attributable primarily to adverse changes in arteries, notably, increases in large elastic artery stiffness and endothelial dysfunction mediated by inadequate concentrations of the vascular-protective molecule, nitric oxide (NO), and higher levels of oxidative stress and inflammation. Inorganic nitrite is a promising precursor molecule for augmenting circulating and tissue NO bioavailability because it requires only a one-step reduction to NO. Nitrite also acts as an independent signaling molecule, exerting many of the effects previously attributed to NO. Results of recent studies indicate that nitrite may be effective in the treatment of vascular aging. In old mice, short-term oral sodium nitrite supplementation reduces aortic pulse wave velocity, the gold-standard measure of large elastic artery stiffness, and ameliorates endothelial dysfunction, as indicated by normalization of NO-mediated endothelium-dependent dilation. These improvements in age-related vascular dysfunction with nitrite are mediated by reductions in oxidative stress and inflammation, and may be linked to increases in mitochondrial biogenesis and health. Increasing nitrite levels via dietary intake of nitrate appears to have similarly beneficial effects in many of the same physiological and clinical settings. Several clinical trials are being performed to determine the broad therapeutic potential of increasing nitrite bioavailability on human health and disease, including studies related to vascular aging. In summary, inorganic nitrite, as well as dietary nitrate supplementation, represents a promising therapy for treatment of arterial aging and prevention of age-associated CVD in humans. PMID:24408999

  7. Rumen microorganisms decrease bioavailability of inorganic selenium supplements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the availaility of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study w...

  8. Organometallic-inorganic hybrid electrodes for lithium-ion batteries

    DOEpatents

    Huang, Qian; Lemmon, John P.; Choi, Daiwon; Cosimbescu, Lelia

    2016-09-13

    Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.

  9. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Phosphorus (inorganic) test system. 862.1580 Section 862.1580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... phosphorus (inorganic) are used in the diagnosis and treatment of various disorders, including...

  10. 46 CFR 151.50-20 - Inorganic acids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inorganic acids. 151.50-20 Section 151.50-20 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-20 Inorganic acids. (a)(1) Gravity..., but in no case shall the design pressure be less than that indicated as follows: Fluorosilicic...

  11. 46 CFR 151.50-20 - Inorganic acids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Inorganic acids. 151.50-20 Section 151.50-20 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-20 Inorganic acids. (a)(1) Gravity..., but in no case shall the design pressure be less than that indicated as follows: Fluorosilicic...

  12. A Summary of the Manufacture of Important Inorganic Chemicals.

    ERIC Educational Resources Information Center

    Chenier, Philip J.

    1983-01-01

    Manufacture, properties, uses, and economic aspects of inorganic chemicals are discussed in an industrial chemistry course. Provided and discussed is a flowchart used in the course. The flowchart is a logical method of presenting the important features of inorganic chemicals and a summarizing their method of manufacture. (JN)

  13. Inorganic Analyses in Water Quality Control Programs. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This document is a lecture/laboratory manual dealing with the analysis of selected inorganic pollutants. The manual is an instructional aid for classroom presentations to those with little or no experience in the field, but having one year (or equivalent) of college level inorganic chemistry and having basic laboratory skills. Topics include:…

  14. Inorganic Analyses in Water Quality Control Programs. Training Manual.

    ERIC Educational Resources Information Center

    Kroner, Audrey; And Others

    This lecture/laboratory manual for a five-day course deals with the analysis of selected inorganic pollutants. The manual is an instructional aid for classroom presentations to those with little or no experience in the field, but having one year (or equivalent) of college level inorganic chemistry, one semester of college level quantitative…

  15. Inorganic profile of some Brazilian medicinal plants obtained from ethanolic extract and ''in natura'' samples

    SciTech Connect

    Ferreira, M.O.M.; de Sousa, P.T.; Salvador, V.L.R.; Sato, I.M.

    2004-10-03

    The Anadenathera macrocarpa, Schinus molle, Hymenaea courbaril, Cariniana legalis, Solidago microglossa and Stryphnodendron barbatiman, were collected ''in natura'' samples (leaves, flowers, barks and seeds) from different commercial suppliers. The pharmaco-active compounds in ethanolic extracts had been made by the Mato Grosso Federal University (UFMT). The energy-dispersive x-ray fluorescence (ED-XRF) spectrometry was used for the elemental analysis in different parts of the plants and respective ethanolic extracts. The Ca, Cl, Cu, Fe, K, Mg, Mn, Na, Ni, P, Rb, S, Sr and Zn concentrations were determined by the fundamental parameters method. Some specimens showed a similar inorganic profile for ''in natura'' and ethanolic extract samples and some ones showed a distinct inorganic profile. For example, the Anadenathera macrocarpa showed a similar concentration in Mg, P, Cu, Zn and Rb elements in ''in natura'' and ethanolic extract samples; however very different concentration in Na, S, Cl, K , Ca, Mn, Fe and Sr was observed in distinctive samples. The Solidago microglossa showed the K, Ca, Cl, S, Mg, P and Fe elements as major constituents in both samples, suggesting that the extraction process did not affect in a considerable way the ''in natura'' inorganic composition. The elemental composition of the different parts of the plants (leaves, flowers, barks and seeds) has been also determined. For example, the Schinus molle specimen showed P, K, Cl and Ca elements as major constituents in the seeds, Mg, K and Sr in the barks and Mg, S, Cl and Mn in the leaves, demonstrating a differentiated elementary distribution. These inorganic profiles will contribute to evaluate the quality control of the Brazilian herbaceous trade and also will assist to identify which parts of the medicinal plants has greater therapeutic effect.

  16. Relative movement and soil fixation of soluble organic and inorganic phosphorus.

    PubMed

    Anderson, Brandon H; Magdoff, Frederick R

    2005-01-01

    There is considerable concern about pollution of surface waters with P. Although most of the research has focused on inorganic P in surface runoff, it has recently become possible to easily follow the fate of soluble organic P forms in soils and waters. Two experiments were performed to compare the relative mobility and soil fixation affinity of orthophosphate monoesters, orthophosphate diesters, and soluble inorganic P. We used three P substrates, 4-methylumbelliferyl phosphate (MUP), deoxyribonucleic acid (DNA), and KH(2)PO(4) in (i) a soil column experiment and (ii) a soil P adsorption test tube experiment. Shortly after columns were prepared, approximately two pore volumes of 0.005 M CaCl(2) were passed through 25 cm length columns containing 10 cm of loamy sand amended with approximately 10 mg P as MUP, DNA, or KH(2)PO(4) above 15 cm of nonamended loamy sand. The total net quantity of 757.8 microg P 2L(-1) of orthophosphate diesters in the leachate from the DNA columns exceeded the net quantity of orthophosphate monoesters in leachate from the MUP columns (4.6 microg P 2L(-1)) and soluble inorganic P from the KH(2)PO(4) columns (34.0 microg P 2L(-1)). Adsorption of soluble organic and inorganic P in the test tube experiment yielded similar results: DNA, containing orthophosphate diesters, had a relatively low affinity for soils. In both experiments, high concentrations of other P compounds were identified in samples treated with organic P substrates, suggesting enzymatic hydrolysis by native soil phosphatase enzymes. These findings indicate that repeated application of organic forms of P could lead to significant leaching of P to ground water.

  17. The development and comparison of collection techniques for inorganic and organic gunshot residues.

    PubMed

    Taudte, Regina Verena; Roux, Claude; Blanes, Lucas; Horder, Mark; Kirkbride, K Paul; Beavis, Alison

    2016-04-01

    The detection and interpretation of gunshot residues (GSR) plays an important role in the investigation of firearm-related events. Commonly, the analysis focuses on inorganic particles incorporating elements derived from the primer. However, recent changes in ammunition formulations and possibility that particles from non-firearm sources can be indistinguishable from certain primer particles challenge the standard operational protocol and call for adjustments, namely the combination of inorganic and organic GSR analysis. Two protocols for the combined collection and subsequent analysis of inorganic and organic GSR were developed and optimised for 15 compounds potentially present in organic GSR (OGSR). These protocols were conceptualised to enable OGSR analysis by ultrahigh-performance liquid chromatography (UHPLC) coupled with UV detection and triple quadrupole tandem mass spectrometry (confirmation) and IGSR analysis by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). Using liquid extraction, the extraction recoveries from spiked swabs and stubs were ~80 % (50-98 % for swabs, 64-98 % for stubs). When the mixed OGSR standard was applied to the hands and recovered in the way that is usual for IGSR collection, GSR stubs performed significantly better than swabs (~30 %) for the collection of OGSR. The optimised protocols were tested and compared for combined OGSR and inorganic GSR analysis using samples taken at a shooting range. The most suitable protocol for combined collection and analysis of IGSR and OGSR involved collection using GSR stubs followed by SEM-EDX analysis and liquid extraction using acetone followed by analysis with UHPLC. PMID:26873197

  18. Semiconducting organic-inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods

    NASA Astrophysics Data System (ADS)

    Jung, Jaehan; Yoon, Young Jun; Lin, Zhiqun

    2016-04-01

    Semiconducting organic-inorganic nanocomposites were judiciously crafted by placing conjugated polymers in intimate contact with inorganic tetrapods via click reaction. CdSe tetrapods were first synthesized by inducing elongated arms from CdSe zincblende seeds through seed-mediated growth. The subsequent effective inorganic ligand treatment, followed by reacting with short bifunctional ligands, yielded azide-functionalized CdSe tetrapods (i.e., CdSe-N3). Finally, the ethynyl-terminated conjugated polymer poly(3-hexylthiophene) (i.e., P3HT-&z.tbd;) was tethered to CdSe-N3 tetrapods via a catalyst-free alkyne-azide cycloaddition, forming intimate semiconducting P3HT-CdSe tetrapod nanocomposites. Intriguingly, the intimate contact between P3HT and CdSe tetrapod was found to not only render the effective dispersion of CdSe tetrapods in the P3HT matrix, but also facilitate the efficient electronic interaction between these two semiconducting constituents. The successful anchoring of P3HT chains onto CdSe tetrapods was substantiated through Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Moreover, the absorption and photoluminescence studies further corroborated the intimate tethering between P3HT and CdSe tetrapods. The effect of the type of bifunctional ligands (i.e., aryl vs. aliphatic ligands) and the size of tetrapods on the device performance of hybrid organic-inorganic solar cells was also scrutinized. Interestingly, P3HT-CdSe tetrapod nanocomposites produced via the use of an aryl bifunctional ligand (i.e., 4-azidobenzoic acid) exhibited an improved photovoltaic performance compared to that synthesized with their aliphatic ligand counterpart (i.e., 5-bromovaleric acid). Clearly, the optimal size of CdSe tetrapods ensuring the effective charge transport in conjunction with the good dispersion of CdSe tetrapods rendered an improved device performance. We envision that the click-reaction strategy enabled by

  19. Chemotaxis of Bdellovibrio bacteriovorus toward pure compounds.

    PubMed Central

    Straley, S C; LaMarre, A G; Lawrence, L J; Conti, S F

    1979-01-01

    Positive chemotaxis by Bdellovibrio bacteriovorus strain UKi2 was measured for 139 compounds. Twenty-one compounds were attractants; sensitive attraction was elicited by acetate, propionate, thioacetate, malonate, cis-oxalacetate, D-glucose-6-phosphate, acetyl coenzyme A, ammonium ion, barium ion, manganous ion, and potassium ion. Several of the attractants for B. bacteriovorus strain UKi2 also were attractants to strains 6-5-S and 114; however, strains 109D and 109J were not attracted by the compounds tested. Of 33 compounds tested, 8 were repellents for B. bacteriovorus strain UKi2: n-caproate, alanine, isoleucine, leucine, phenylalanine, tyrosine, cobaltous chloride, and hydronium ion. None of the organic repellents for strain UKi2 elicited repulson from strains 114 or 109D. However, all three strains of Bdellovibrio show aerotaxis. Several compounds were tested for their effects on viability and predacious growth of B. bacteriovorus strain UKi2. No simple correlation was found between attraction or repulsion and benefit or harm to bdellovibrios. The data are consistent with the view that in nature, the greatest survival value of chemotaxis for bdellovibros may be in aerotaxis, attraction to certain inorganic ions and acetate, and repulsion by hydronium ion. PMID:500565

  20. Assessment of Hybrid Organic-Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications.

    PubMed

    Yang, Ruo Xi; Butler, Keith T; Walsh, Aron

    2015-12-17

    Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications. PMID:26624204

  1. Assessment of Hybrid Organic-Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications.

    PubMed

    Yang, Ruo Xi; Butler, Keith T; Walsh, Aron

    2015-12-17

    Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications.

  2. In-Depth Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.

    2015-01-01

    A national survey of inorganic chemists explored the self-reported topics covered in in-depth inorganic chemistry courses at the postsecondary level; an in-depth course is defined by the American Chemical Society's Committee on Professional Training as a course that integrates and covers topics that were introduced in introductory and foundation…

  3. Fabrication of a stable inorganic-organic hybrid multilayer film with uniform and dense inorganic nanoparticle deposition.

    PubMed

    Xu, Xurong; Han, Joong Tark; Cho, Kilwon

    2003-04-21

    A stable inorganic-organic hybrid multilayer film with homogeneous and dense inorganic nanoparticle deposition was constructed by coating ZrO2 nanoparticles with poly(4-sodium styrenesulfonate) (PSS) and irradiating multilayer film assembled from PSS-coated ZrO2 nanoparticles and a diazo-resin (DR). PMID:12744322

  4. Leaching Kinetics of Atrazine and Inorganic Chemicals in Tilled and Orchard Soils

    NASA Astrophysics Data System (ADS)

    Szajdak, Lech W.; Lipiec, Jerzy; Siczek, Anna; Nosalewicz, Artur; Majewska, Urszula

    2014-04-01

    The aim of this study was to verify first-order kinetic reaction rate model performance in predicting of leaching of atrazine and inorganic compounds (K+1, Fe+3, Mg+2, Mn+2, NH4 +, NO3 - and PO4 -3) from tilled and orchard silty loam soils. This model provided an excellent fit to the experimental concentration changes of the compounds vs. time data during leaching. Calculated values of the first-order reaction rate constants for the changes of all chemicals were from 3.8 to 19.0 times higher in orchard than in tilled soil. Higher first-order reaction constants for orchard than tilled soil correspond with both higher total porosity and contribution of biological pores in the former. The first order reaction constants for the leaching of chemical compounds enables prediction of the actual compound concentration and the interactions between compound and soil as affected by management system. The study demonstrates the effectiveness of simultaneous chemical and physical analyses as a tool for the understanding of leaching in variously managed soils.

  5. Polymeric media comprising polybenzimidazoles N-substituted with organic-inorganic hybrid moiety

    DOEpatents

    Klaehn, John R [Idaho Falls, ID; Peterson, Eric S [Idaho Falls, ID; Wertsching, Alan K [Idaho Falls, ID; Orme, Christopher J [Shelley, ID; Luther, Thomas A [Idaho Falls, ID; Jones, Michael G [Pocatello, ID

    2009-12-15

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with an organic-inorganic hybrid moiety may be included in a separator medium. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2-- where R is selected from among methyl, phenyl, vinyl, and allyl. The separatory medium may exhibit an H.sub.2, Ar, N.sub.2, O.sub.2, CH.sub.3, or CO.sub.2 gas permeability greater than the gas permeability of a comparable separatory medium comprising the PBI compound without substitution. The separatory medium may further include an electronically conductive medium and/or ionically conductive medium. The separatory medium may be used as a membrane (semi-permeable, permeable, and non-permeable), a barrier, an ion exhcange media, a filter, a gas chromatography coating (such as stationary phase coating in affinity chromatography), etc.

  6. Gaseous methyl- and inorganic mercury in landfill gas from landfills in Florida, Minnesota, Delaware, and California

    NASA Astrophysics Data System (ADS)

    Lindberg, S. E.; Southworth, G.; Prestbo, E. M.; Wallschläger, D.; Bogle, M. A.; Price, J.

    2005-01-01

    Municipal waste landfills contain numerous sources of mercury which could be emitted to the atmosphere. Their generation of methane by anaerobic bacteria suggests that landfills may act as bioreactors for methylated mercury compounds. Since our previous study at a single Florida landfill, gaseous inorganic and methylated mercury species have now been identified and quantified in landfill gas at nine additional municipal landfills in several regions of the US. Total gaseous mercury occurs at concentrations in the μg m-3 range, while methylated compounds occur at concentrations in the ng m-3 range at all but one of the landfill sites. Dimethylmercury is the predominant methylated species, at concentrations up to 100 ng m-3, while monomethyl mercury was generally lower. Limited measurements near sites where waste is exposed for processing (e.g. working face, transfer areas) suggest that dimethylmercury is released during these activities as well. Although increasing amounts of landfill gas generated in the US are flared (which should thermally decompose the organic mercury to inorganic mercury), unflared landfill gas is a potentially important anthropogenic source of methylated mercury emissions to the atmosphere.

  7. Recent Progress in the Study of Inorganic Nanotubes and Fullerene-Like Structures

    NASA Astrophysics Data System (ADS)

    Tenne, R.; Seifert, G.

    2009-08-01

    The synthesis of WS2 inorganic nanotubes (INT) and inorganic fullerene-like (IF) structures in 1992 signified the opening of a fertile and challenging field of scientific endeavor. These structures were the first of a long and ever-expanding series of INT and IF structures. Although initially much of the effort concentrated on the synthesis of INT and IF from compounds with layered structures, recently there has been a surge of efforts to synthesize crystalline and polycrystalline nanotubular structures from compounds with quasi-isotropic structures, like spinels, BaTiO3, SiO2, TiO2, and many others. The present review summarizes some of the progress in this field in recent years. Much of the progress in this field was achieved through strong interaction between theoretical and experimental work. This article has four themes: (a) new synthetic approaches leading to new kinds of IF and INT; (b) study of the molecular structure of such nanoparticles with new tools, such as aberration-corrected transmission electron microscopy (TEM) and high-angle annular dark field (HAADF); (c) recent progress in the investigation of the properties of such nanostructures; and (d) examples of applications for which clear progress has been accomplished, in particular in solid lubrication and high-strength nanocomposites.

  8. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  9. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. F.

    2013-01-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as cloud condensation nuclei (CCN) ability. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well-described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling fits and goodness of fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  10. Distribution and fate of inorganic and organic arsenic species in landfill leachates and biogases.

    PubMed

    Pinel-Raffaitin, P; Le Hecho, I; Amouroux, D; Potin-Gautier, M

    2007-07-01

    The arsenic release from landfills requires special attention both due to its potential toxicity and due to the increasing global municipal solid waste production. The determination of arsenic species in both leachates and biogases has been performed in this work to determine the fate of arsenic in landfills. Both inorganic and methylated arsenic species occur in leachates with concentrations varying from 0.1 to 80 microg As L(-1). These species are representative of the leachate arsenic composition, as the mean recovery obtained for the speciation analyses is 67% of the total arsenic determined in elementary analyses. In biogases, both methylated and ethylated volatile arsenic species have been identified and semiquantified (0-15 microg As m(-3)). The landfill monitoring has emphasized close relationships between the concentrations of mono-, di-, and tri-methylated arsenic compounds in leachates. A biomethylation pathway has thus been proposed as a source of these methylated compounds in the leachates from waste arsenic, which is supposed to be in major part under inorganic forms. In addition, peralkylation mechanisms of both biomethylation and bioethylation have been suggested to explain the occurrence of the identified volatile species. This combined speciation approach provides a qualitative and quantitative characterization of the potential emissions of arsenic from domestic waste disposal in landfills. This work highlights the possible formation of less harmful organoarsenic species in both leachates and biogases during the waste degradation process.

  11. Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste.

    PubMed

    Delay, Markus; Lager, Tanja; Schulz, Horst D; Frimmel, Fritz H

    2007-01-01

    The changes in waste management policy caused by the massive generation of waste materials (e.g. construction and demolition waste material, municipal waste incineration products) has led to an increase in the reuse and recycling of waste materials. For environmental risk assessment, test procedures are necessary to examine waste materials before they can be reused. In this article, results of column and lysimeter leaching tests having been applied to inorganic compounds in a reference demolition waste material are presented. The results show a good agreement between the leaching behaviour determined with the lysimeter unit and the column units used in the laboratory. In view of less time and system requirements compared to lysimeter systems, laboratory column units can be considered as a practicable instrument to assess the time-dependent release of inorganic compounds under conditions similar to those encountered in a natural environment. The high concentrations of elements in the seepage water at the initial stage of elution are reflected by the laboratory column leaching tests. In particular, authorities or laboratories might benefit and have an easy-to-use, but nevertheless reliable, method to serve as a basis for decision-making.

  12. Removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay mineral: Bentonite.

    PubMed

    Karaca, Gizem; Baskaya, Hüseyin S; Tasdemir, Yücel

    2016-01-01

    There has been limited study of the removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay minerals. Determining the amount of PAH removal is important in predicting their environmental fate. This study was carried out to the degradation and evaporation of PAHs from bentonite, which is an inorganic clay mineral. UV apparatus was designed specifically for the experiments. The impacts of temperature, UV, titanium dioxide (TiO2), and diethylamine (DEA) on PAH removal were determined. After 24 h, 75 and 44 % of ∑12 PAH in the bentonite were removed with and without UV rays, respectively. DEA was more effective as a photocatalyst than TiO2 during UV application. The ∑12 PAH removal ratio reached 88 % with the addition of DEA to the bentonite. It was concluded that PAHs were photodegraded at high ratios when the bentonite samples were exposed to UV radiation in the presence of a photocatalyst. At the end of all the PAH removal applications, higher evaporation ratios were obtained for 3-ring compounds than for heavier ones. More than 60 % of the amount of ∑12 PAH evaporated consisted of 3-ring compounds.

  13. Na+,K+-ATPase as the Target Enzyme for Organic and Inorganic Compounds

    PubMed Central

    Vasić, Vesna; Momić, Tatjana; Petković, Marijana; Krstić, Danijela

    2008-01-01

    This paper gives an overview of the literature data concerning specific and non specific inhibitors of Na+,K+-ATPase receptor. The immobilization approaches developed to improve the rather low time and temperature stability of Na+,K+-ATPase, as well to preserve the enzyme properties were overviewed. The functional immobilization of Na+,K+-ATPase receptor as the target, with preservation of the full functional protein activity and access of various substances to an optimum number of binding sites under controlled conditions in the combination with high sensitive technology for the detection of enzyme activity is the basis for application of this enzyme in medical, pharmaceutical and environmental research.

  14. Organic-inorganic hybrid compounds containing polyhedral oligomeric silsesquioxane for conservation of stone heritage.

    PubMed

    Son, Seunghwan; Won, Jongok; Kim, Jeong-Jin; Jang, Yun Deuk; Kang, Yong Soo; Kim, Sa Dug

    2009-02-01

    Alkoxysilane solutions based on tetraethoxysilane (TEOS) have been widely used for the consolidation of decaying heritage stone surfaces. TEOS-based products polymerize within the porous structure of the decaying stone, significantly increasing the cohesion of the grains of stone components. However, they suffer from practical drawbacks, such as crack formation of the gel during the drying phase due to the developing capillary force and dense gel fractures left inside of the stone. In this study, a TEOS-based stone consolidant containing functional (3-glycidoxypropyl)trimethoxysilane (GPTMS) and polyhedral oligomeric silsesquioxane (POSS) has been prepared in order to reduce gel crack formation during the drying phase. The addition of nanometer-sized POSS and/or GPTMS having a flexible segment reduces the capillary force developed during solvent evaporation. The properties of the TEOS/GPTMS/POSS composite solutions were compared with those of commercial products (Wacker OH and Unil sandsteinfestiger OH 1:1). The gelation time was similar to that of commercial consolidants, and the TEOS/GPTMS/POSS solution was stable over a period of up to 6 months. The addition of POSS and GPTMS provided a crack-free gel, while the gel from the commercial consolidants exhibited cracks after drying. The surface hydrophobicity of the treated decayed granite increased with the addition of POSS and GPTMS, and it was higher than that of the commercial product, implying the possibility of POSS and GPTMS as barriers to the penetration of water. This result implies that the TEOS/GPTMS/POSS solution showed a high suitability for the consolidation of granite heritage.

  15. Removal of organic and inorganic sulfur compounds by ozone and granular activated carbon

    SciTech Connect

    Shepherd, B.; Ball, G.W.

    1996-11-01

    Most groundwater supplies in the western U.S. are relatively low in dissolved organic matter, are generally free of bacteria, and are platable to their consumers. In areas of western Nevada, certain groundwaters are near active geothermal areas, which can produce sulfurous types of tastes and odors (T&Os) in the water. Other water quality characteristics can consist of either relatively low or highly mineralized waters, variations in pH, and temperatures ranging from those slightly above normal groundwaters to pressurized steam. Watersource Consulting Engineers (WCE) and Shepherd Laboratories (SL) conducted an engineering study of a high-capacity well for a local northwestern Nevada utility. WCE`s original task had been to design pumping and storage facilities for the well, in addition to evaluating basic treatment. Originally, WCE anticipated designing facilities to remove hydrogen sulfide (H{sub 2}S) and reduce color, primarily with chlorination and aeration. SL was requested to evaluate existing water quality and eventually conduct bench-scale testing of several treatment processes. As the study proceeded, the original goals were modified when it became evident that water quality conditions required more extensive evaluation. The study was done in several stages, reflecting the information gained during each stage. The final recommended design criteria included treatment for improving water quality relative to T&O, color, total organic carbon (TOC), and, to a limited extent, fluoride. The water quality goals adopted by the utility encompassed primary maximum contaminant levels (MCLs) for regulatory compliance and secondary MCLs for aesthetically pleasing water. The treatment processes evaluated and recommended in this study were designed primarily to improve the aesthetic qualities of color, taste, and odor. Fluoride reduction was evaluated but was not included in the final design requirements, except for the overall reduction provided by the recommended process.

  16. Removal of aliphatic amino acids by hybrid organic inorganic layered compounds

    NASA Astrophysics Data System (ADS)

    Silverio, Fabiano; dos Reis, Márcio José; Tronto, Jairo; Valim, João Barros

    2007-04-01

    Amino acids have been extensively used in several processes of the pharmaceutical and food industries. Treatments for the recovery and reuse of the wastewaters generated from these processes are few and little known. This work aims at studying the influence of variables like temperature, pH and ionic strength on the adsorption of the amino acids Asp and Glu, contained in aqueous solutions, on layered double hydroxides of the Mg-Al-CO 3-LDH system. The adsorption experiments were performed at two different temperatures (298 and 310 K), two different pH values (7.0 and 10.0), and two ionic strength conditions (with or without the addition of NaCl). The adsorption isotherms exhibited similar profiles under the various conditions studied: an increase in temperature as well as an increase in the pH value decreased the amount of adsorbed amino acid while an increase in the ionic strength increased Asp and Glu adsorption. The PXRD analysis showed that the diffractograms obtained before and after the adsorption of amino acids have a similar pattern. The FT-IR spectra of the adsorbed material presented specific bands, which are related to the amino acids. The concentration range varied up to the anion solubility product and the extraction rate lay between 2.7 and 23.4% at higher equilibrium concentrations, showing that Mg-Al-CO 3-LDH is efficient at removing the amino acids from the aqueous medium.

  17. Accumulation and deposition of inorganic and organic compounds by microcolonial fungi

    NASA Astrophysics Data System (ADS)

    Perry, Randall S.; Gorbushina, Anna; Engel, Michael H.; Kolb, Vera M.; Krumbein, Wolfgang E.; Staley, James T.

    2004-03-01

    A seemingly unique feature of desert varnish is its worldwide association with microcolonial fungi (MCF). The surface environments on rock coatings are some of the most hostile on Earth. High temperatures, low humidity, high incidence of UV light and low nutrients require microorganisms that have evolved special survival skills. MCF contain melanin, microsporines, carotinoids and probably other as yet unidentified pigments that help protect them from UV light. During the hottest and driest months, few bacteria are observed on specimens we have examined from several desert regions of the world. The survivability in these extreme conditions sets MCF apart from bacteria. Sporulating bacteria have developed survival mechanisms but must expend energy to create spores. MCF, in contrast, survive and flourish where only few bacteria are present and lichens are unable to survive.

  18. Unusual reinforcement of silicone rubber compounds containing mesoporous silica particles as inorganic fillers.

    PubMed

    Suzuki, Norihiro; Kiba, Shosuke; Kamachi, Yuichiro; Miyamoto, Nobuyoshi; Yamauchi, Yusuke

    2012-03-14

    We fabricate mesoporous silica/silicone composites in a simple way and systematically examine their thermal stability, swelling characteristic, mechanical strength, and transparency. Simple calculations show that more than 90 vol% of mesopores are filled with silicone rubbers. Compared to non-porous silica/silicone composites, mesoporous silica/silicone composites showed a lower coefficient of linear thermal expansion (CTE). In addition, dramatic improvements of the tensile strength and Young's modulus are obtained with mesoporous silica/silicone composites. Furthermore, mesoporous silica/silicone composites show higher transparency than non-porous silica/silicone composites.

  19. Effect of organic/inorganic compounds on the enzymes in soil under acid rain stress.

    PubMed

    Liu, Guang-shen; Xu, Dong-mei; Wang, Li-ming; Li, Ke-bin; Liu, Wei-ping

    2004-01-01

    The main effects of pollutions including acid rain, Cu2+, atrazine and their combined products on the activities of urease, invertin, acid phosphatase and catalase were studied by means of orthogonal test. The results showed that H+ and Cu2+ had significant influence on the activities of four enzymes and the ability of their inhibiting followed the order: H+ > Cu2+. Al3+ and atrazine only had litter effects on the activity of urease and phosphatase, respectively. Furthermore, interaction analysis revealed that Cu2+ -H+ affected on the activity of acid phosphatase significantly and antagonism on invertin and urease, Cu2+ -atrazine only exhibited the synergism on the activity of acid phosphatase. But atrazine-H+ had non-interaction within the investigated concentration range. Among four enzymes, acid phosphatase was the most sensitive one to the contaminations.

  20. Anticorrosive organic/inorganic hybrid coatings

    NASA Astrophysics Data System (ADS)

    Gao, Tongzhai

    Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were

  1. Compounding in Ukraine.

    PubMed

    Zdoryk, Oleksandr A; Georgiyants, Victoriya A; Gryzodub, Oleksandr I; Schnatz, Rick

    2013-01-01

    Pharmaceutical compounding in modern Ukraine has a rich history and goes back to ancient times. Today in the Ukraine, there is a revival of compounding practice, the opening of private compounding pharmacies, updating of legislative framework and requirements of the State Pharmacopeia of Ukraine for compounding preparations, and the introduction of Good Pharmaceutical Practice. PMID:23696172

  2. Pharmacy compounding urban legends.

    PubMed

    Kastango, Eric S

    2006-01-01

    This article reviews and clarifies a small sampling of the myths, or urban legends, about compounding. Included are comments on United sTates Pharmacopeia Chapter 797, environmental issues related to sterile compounding, and suggested resources for clarification of some of these myths. This article recommends a knowledge-based partnership between compounding pharmacists and pharmaceutical manufacturers to improve compounding activities and quality assurance methods to ensure that compounded medications are safe.

  3. Phytodegradation of organic compounds.

    PubMed

    Newman, Lee A; Reynolds, Charles M

    2004-06-01

    The phytodegradation of organic compounds can take place inside the plant or within the rhizosphere of the plant. Many different compounds and classes of compounds can be removed from the environment by this method, including solvents in groundwater, petroleum and aromatic compounds in soils, and volatile compounds in the air. Although still a relatively new area of research, there are many laboratories studying the underlying science necessary for a wide range of applications for plant-based remediation of organic contaminants.

  4. Phytotoxicity of arsenic compounds on crop plant seedlings.

    PubMed

    Yoon, Youngdae; Lee, Woo-Mi; An, Youn-Joo

    2015-07-01

    The effects of inorganic and organic arsenic on the germination and seedling growth of 10 crop plants were investigated to elucidate the relationship between toxicity and the arsenic chemical states. Two types of soils, soil A and B, were also tested to determine how physicochemical properties of soils were related to toxicity of arsenic and the sensitivity of the plants. All tested plant species, except mung bean and cucumber, showed inhibition of germination by two types of inorganic arsenic, arsenite, and arsenate, while the organic arsenic compound, dimethylarsinic acid (DMA), had no inhibitory effects on plants in soil A. In contrast, the growth of seedlings of all 10 plant species was sensitive to the presence of arsenic. The sensitivity of the plants toward inorganic arsenic compounds showed similar trends but differed for DMA. Overall, seedling growth was a more sensitive endpoint to arsenic toxicity than germination, and the relative toxicity of arsenic compounds on plants was arsenite > DMA > arsenate. Interestingly, the sensitivity of wheat varied significantly when the soil was changed, and the DMA was most toxic rather than arsenite in soil B. Thus, the systematic study employed here provides insights into the mechanisms of arsenic toxicity in different plant species and the role of physicochemical properties of soils.

  5. Evaluating secondary inorganic aerosols in three dimensions

    NASA Astrophysics Data System (ADS)

    Mezuman, Keren; Bauer, Susanne E.; Tsigaridis, Kostas

    2016-08-01

    The spatial distribution of aerosols and their chemical composition dictates whether aerosols have a cooling or a warming effect on the climate system. Hence, properly modeling the three-dimensional distribution of aerosols is a crucial step for coherent climate simulations. Since surface measurement networks only give 2-D data, and most satellites supply integrated column information, it is thus important to integrate aircraft measurements in climate model evaluations. In this study, the vertical distribution of secondary inorganic aerosol (i.e., sulfate, ammonium, and nitrate) is evaluated against a collection of 14 AMS flight campaigns and surface measurements from 2000 to 2010 in the USA and Europe. GISS ModelE2 is used with multiple aerosol microphysics (MATRIX, OMA) and thermodynamic (ISORROPIA II, EQSAM) configurations. Our results show that the MATRIX microphysical scheme improves the model performance for sulfate, but that there is a systematic underestimation of ammonium and nitrate over the USA and Europe in all model configurations. In terms of gaseous precursors, nitric acid concentrations are largely underestimated at the surface while overestimated in the higher levels of the model. Heterogeneous reactions on dust surfaces are an important sink for nitric acid, even high in the troposphere. At high altitudes, nitrate formation is calculated to be ammonia limited. The underestimation of ammonium and nitrate in polluted regions is most likely caused by a too simplified treatment of the NH3 / NH4+ partitioning which affects the HNO3 / NO3- partitioning.

  6. Ultrathin inorganic molecular nanowire based on polyoxometalates

    PubMed Central

    Zhang, Zhenxin; Murayama, Toru; Sadakane, Masahiro; Ariga, Hiroko; Yasuda, Nobuhiro; Sakaguchi, Norihito; Asakura, Kiyotaka; Ueda, Wataru

    2015-01-01

    The development of metal oxide-based molecular wires is important for fundamental research and potential practical applications. However, examples of these materials are rare. Here we report an all-inorganic transition metal oxide molecular wire prepared by disassembly of larger crystals. The wires are comprised of molybdenum(VI) with either tellurium(IV) or selenium(IV): {(NH4)2[XMo6O21]}n (X=tellurium(IV) or selenium(IV)). The ultrathin molecular nanowires with widths of 1.2 nm grow to micrometre-scale crystals and are characterized by single-crystal X-ray analysis, Rietveld analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, thermal analysis and elemental analysis. The crystals can be disassembled into individual molecular wires through cation exchange and subsequent ultrasound treatment, as visualized by atomic force microscopy and transmission electron microscopy. The ultrathin molecular wire-based material exhibits high activity as an acid catalyst, and the band gap of the molecular wire-based crystal is tunable by heat treatment. PMID:26139011

  7. Nanostructured YSZ membranes derived from inorganic salts

    NASA Astrophysics Data System (ADS)

    Zhang, Cunlin; Liao, Yang; He, Shuli; Sun, Defeng; Chen, Wen

    2005-01-01

    The nanostuctured YSZ (Yttria Stabilized Zirconia) membranes on Si(110) substrates are successfully prepared by sol-gel technology derived from inorganic salts ZrOCl2"8H2O, H2C2O4"2H2O and Y(NO3)3"6H2O. By means of controlling the supersaturation and diffusion velocity in solution when the zirconyl oxalate xerogels are repeptized, spherical colloidal paricles with different distributions are obtained. we propose that the peptization of xerogels can be considered as a process of nucleation and growth of colloidal particles. The membranes are preparated by spinning the modified sols on Si(110) substrates. After calcining at 800°C for 1 hour, the membranes are crack-free and mirrorlike. The membranes consist of monodisperse fine spherical crystallines in the range of 20~220nm in diameter, which microstructures are controlled by changing the size and distribution of colloidal particles in sols.

  8. Inorganic Polyphosphate Modulates TRPM8 Channels

    PubMed Central

    Zakharian, Eleonora; Thyagarajan, Baskaran; French, Robert J.; Pavlov, Evgeny; Rohacs, Tibor

    2009-01-01

    Polyphosphate (polyP) is an inorganic polymer built of tens to hundreds of phosphates, linked by high-energy phosphoanhydride bonds. PolyP forms complexes and modulates activities of many proteins including ion channels. Here we investigated the role of polyP in the function of the transient receptor potential melastatin 8 (TRPM8) channel. Using whole-cell patch-clamp and fluorescent calcium measurements we demonstrate that enzymatic breakdown of polyP by exopolyphosphatase (scPPX1) inhibits channel activity in human embryonic kidney and F-11 neuronal cells expressing TRPM8. We demonstrate that the TRPM8 channel protein is associated with polyP. Furthermore, addition of scPPX1 altered the voltage-dependence and blocked the activity of the purified TRPM8 channels reconstituted into planar lipid bilayers, where the activity of the channel was initiated by cold and menthol in the presence of phosphatidylinositol 4,5-biphosphate (PtdIns(4,5)P2). The biochemical analysis of the TRPM8 protein also uncovered the presence of poly-(R)-3-hydroxybutyrate (PHB), which is frequently associated with polyP. We conclude that the TRPM8 protein forms a stable complex with polyP and its presence is essential for normal channel activity. PMID:19404398

  9. Tuberculosis: An Inorganic Medicinal Chemistry Perspective.

    PubMed

    Viganor, Livia; Skerry, Ciaran; McCann, Malachy; Devereux, Michael

    2015-01-01

    Tuberculosis (TB) which is caused by the resilient pathogen Mycobacterium tuberculosis (MTB) has re-emerged to become a leading public health problem in the world. The growing number of multi-drug resistant MTB strains and the more recently emerging problem with the extensively drug resistant strains of the pathogen are greatly undermining conventional anti-TB therapeutic strategies which are lengthy and expose patients to toxicity and other unwanted side effects. The search for new anti-TB drugs essentially involves either the repurposing of existing organic drugs which are now off patent and already FDA approved, the synthesis of modified analogues of existing organic drugs, with the aim of shortening and improving drug treatment for the disease, or the search for novel structures that offer the possibility of new mechanisms of action against the mycobacterium. Inorganic medicinal chemistry offers an alternative to organic drugs through opportunities for the design of therapeutics that target different biochemical pathways. The incorporation of metal ions into the molecular structure of a potential drug offers the medicinal chemist an opportunity to exploit structural diversity, have access to various oxidation states of the metal and also offer the possibility of enhancing the activity of an established organic drug through its coordination to the metal centre. In this review, we summarize what is currently known about the antitubercular capability of metal complexes, their mechanisms of action and speculate on their potential applications in the clinic.

  10. Natural hybrid organic-inorganic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    De Padova, Paola; Lucci, Massimiliano; Olivieri, Bruno; Quaresima, Claudio; Priori, Sandro; Francini, Roberto; Grilli, Antonio; Hricovini, Karol; Davoli, Ivan

    2009-06-01

    Natural hybrid organic-inorganic photovoltaic devices based on TiO 2 have been realized. Chlorophyll A (from anacystis nidulans algae), chlorophyll B (from spinach), carmic acid (from insect Coccus cacti L.), synthetic trans- β-carotene, natural fresh picked Morus nigra, and their mixtures have been used as an organic photo active layer to fabricate photovoltaic prototypes. In order to reduce the charge's interfacial recombination, different thicknesses (5-45 nm) of Si layers, subsequently oxidized in air, were inserted between the TiO 2 and chlorophyll B. Scanning electron microscopy of TiO 2 and Si/TiO 2 systems shows the coexistence at least of four classes of nanoparticles of 60, 100, 150 and 250 nm in size. Auger electron spectroscopy of the Si L 2,3V V transition demonstrates the presence of silica and SiO x suboxides. Photocurrent measurements versus radiation wavelength in the range 300-800 nm exhibit different peaks according to the absorption spectra of the organic molecules. All realized photovoltaic devices are suitable for solar light electric energy conversion. Those made of a blend of all organic molecules achieved higher current and voltage output. The Si/TiO 2-based devices containing chlorophyll B exhibited an enhanced photocurrent response with respect to those with TiO 2 only.

  11. Inorganic polymers and materials. Final report

    SciTech Connect

    Sneddon, Larry G.

    2001-01-01

    This DOE-sponsored project was focused on the design, synthesis, characterization, and applications of new types of boron and silicon polymers with a goal of attaining processable precursors to advanced ceramic materials of technological importance. This work demonstrated a viable design strategy for the systematic formation of polymeric precursors to ceramics based on the controlled functionalization of preformed polymers with pendant groups of suitable compositions and crosslinking properties. Both the new dipentylamine-polyborazylene and pinacolborane-hydridopolysilazane polymers, unlike the parent polyborazylene and other polyborosilazanes, are stable as melts and can be easily spun into polymer fibers. Subsequent pyrolyses of these polymer fibers then provide excellent routes to BN and SiNCB ceramic fibers. The ease of synthesis of both polymer systems suggests new hybrid polymers with a range of substituents appended to polyborazylene or polysilazane backbones, as well as other types of preceramic polymers, should now be readily achieved, thereby allowing even greater control over polymer and ceramic properties. This control should now enable the systematic tailoring of the polymers and derived ceramics for use in different technological applications. Other major recent achievements include the development of new types of metal-catalyzed methods needed for the polymerization and modification of inorganic monomers and polymers, and the modification studies of polyvinylsiloxane and related polymers with substituents that enable the formation of single source precursors to high-strength, sintered SiC ceramics.

  12. Surface science aspects on inorganic biomaterials

    SciTech Connect

    Kasemo, B.; Lausmaa, J.

    1986-01-01

    The chemical interaction between a foreign inorganic material, such as an implant, and living tissue takes place at an interface whose width initially is only about 1 nm. The processes at the interface, such as corrosion, ion diffusion, denaturing of proteins, etc., will eventually widen the interface until, at best, a dynamic quasiequilibrium is established. Since the chemical role of the implant in its interaction with the host tissue is almost exclusively determined by its outermost atomic layers, the characterization of implants on this length scale is necessary for understanding and controlling implant-tissue interactions. In this review, it is shown that modern surface science offers a variety of surface characterization spectroscopies, surface preparation methods, and theoretical concepts that can be directly applied in studies of biocompatible materials and biocompatibility, with particular reference to metallic materials. The general properties of metal surfaces, of oxides on metals, and bonding of molecules to such surfaces are reviewed, as well as the most important chemical and transport processes at solid-liquid interfaces. Several examples are given of how the experimental methods described in the article can be used for a thorough characterization and controlled preparation of titanium (Ti) surfaces. 92 references.

  13. Tuberculosis: An Inorganic Medicinal Chemistry Perspective.

    PubMed

    Viganor, Livia; Skerry, Ciaran; McCann, Malachy; Devereux, Michael

    2015-01-01

    Tuberculosis (TB) which is caused by the resilient pathogen Mycobacterium tuberculosis (MTB) has re-emerged to become a leading public health problem in the world. The growing number of multi-drug resistant MTB strains and the more recently emerging problem with the extensively drug resistant strains of the pathogen are greatly undermining conventional anti-TB therapeutic strategies which are lengthy and expose patients to toxicity and other unwanted side effects. The search for new anti-TB drugs essentially involves either the repurposing of existing organic drugs which are now off patent and already FDA approved, the synthesis of modified analogues of existing organic drugs, with the aim of shortening and improving drug treatment for the disease, or the search for novel structures that offer the possibility of new mechanisms of action against the mycobacterium. Inorganic medicinal chemistry offers an alternative to organic drugs through opportunities for the design of therapeutics that target different biochemical pathways. The incorporation of metal ions into the molecular structure of a potential drug offers the medicinal chemist an opportunity to exploit structural diversity, have access to various oxidation states of the metal and also offer the possibility of enhancing the activity of an established organic drug through its coordination to the metal centre. In this review, we summarize what is currently known about the antitubercular capability of metal complexes, their mechanisms of action and speculate on their potential applications in the clinic. PMID:25850770

  14. Hydrogen transport in composite inorganic membranes

    SciTech Connect

    Gabitto, Jorge; Tsouris, Costas

    2008-01-01

    A theoretical model simulating hydrogen transport through composite inorganic membranes is proposed. This model simulates operation of membranes made of three or more porous or metallic layers. Transport through Pd-alloy metallic layers is simulated using a comprehensive model proposed by Ward and Dao. The model accounts for external mass transfer, surface adsorption and desorption, transport to and from the bulk metal, and diffusion within the metal. Transport through porous ceramic layers is simulated following Burggraaf, who proposed an expression that combines viscous flow, Knudsen diffusion, and transition flow through porous media of complex geometrical structure. The model can also use experimentally determined permeance data when available. The theoretical model has been computationally implemented. Computations show very good agreement with experimental data available in the literature. The proposed model predicts hydrogen fluxes through composite membranes of several layers for standard operating conditions. The model can also predict which of the several layers used in manufacturing the membrane is controlling the total hydrogen flux. This information can be used to determine optimal thickness values for metallic and porous layers.

  15. Development of inorganic membranes for gas separation

    SciTech Connect

    Egan, B.Z.; Fain, D.E.

    1990-01-01

    Hydrogen for commercial coal liquefaction processes may be provided by a coal gasification plant operated to maximize hydrogen production. Hydrogen is a major chemical requirement for coal liquefaction, and the use of liquefaction by-products such as mineral ash residue as feed to the gasifier can improve the overall process efficiency and economics. Also, recovery of hydrogen from gaseous streams in the coal liquefaction plant can have a significant impact on coal liquefaction process economics. In these hydrogen production scenarios, there is a need to improve the quality of the hydrogen produced by separating the other impurity gases from it. The DOE-Fossil Energy AR TD Materials Program is presently developing inorganic membranes for gas separation, including the recovery of valuable resources such as hydrogen from hot-gas streams. A summary of efforts to produce alumina membranes with mean pore radii <5 {angstrom} is presented as well as a status report on declassification of this important technology. 2 refs., 7 figs.

  16. Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

    SciTech Connect

    Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.; Tavasoli, Elham; Vela, Javier

    2014-03-15

    The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describe our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).

  17. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment.

    PubMed

    Camargo, Julio A; Alonso, Alvaro

    2006-08-01

    We provide a global assessment, with detailed multi-scale data, of the ecological and toxicological effects generated by inorganic nitrogen pollution in aquatic ecosystems. Our synthesis of the published scientific literature shows three major environmental problems: (1) it can increase the concentration of hydrogen ions in freshwater ecosystems without much acid-neutralizing capacity, resulting in acidification of those systems; (2) it can stimulate or enhance the development, maintenance and proliferation of primary producers, resulting in eutrophication of aquatic ecosystems; (3) it can reach toxic levels that impair the ability of aquatic animals to survive, grow and reproduce. Inorganic nitrogen pollution of ground and surface waters can also induce adverse effects on human health and economy. Because reductions in SO2 emissions have reduced the atmospheric deposition of H2SO4 across large portions of North America and Europe, while emissions of NOx have gone unchecked, HNO3 is now playing an increasing role in the acidification of freshwater ecosystems. This acidification process has caused several adverse effects on primary and secondary producers, with significant biotic impoverishments, particularly concerning invertebrates and fishes, in many atmospherically acidified lakes and streams. The cultural eutrophication of freshwater, estuarine, and coastal marine ecosystems can cause ecological and toxicological effects that are either directly or indirectly related to the proliferation of primary producers. Extensive kills of both invertebrates and fishes are probably the most dramatic manifestation of hypoxia (or anoxia) in eutrophic and hypereutrophic aquatic ecosystems with low water turnover rates. The decline in dissolved oxygen concentrations can also promote the formation of reduced compounds, such as hydrogen sulphide, resulting in higher adverse (toxic) effects on aquatic animals. Additionally, the occurrence of toxic algae can significantly

  18. Sol-gel processing with inorganic metal salt precursors

    DOEpatents

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  19. Inorganic dendrimers: recent advances for catalysis, nanomaterials, and nanomedicine.

    PubMed

    Caminade, Anne-Marie

    2016-10-01

    Dendrimers are hyperbranched polymers having a perfectly defined structure because they are synthesized step-by-step in an iterative fashion, and not by polymerization reactions. Some dendrimers are considered as inorganic, as they possess inorganic atoms at each branching point. Among numerous examples, two families of inorganic dendrimers have emerged as particularly promising: silicon-containing dendrimers, particularly carbosilanes, and phosphorus-containing dendrimers, particularly phosphorhydrazones. This tutorial review will display the main properties of both families of dendrimers in the fields of catalysis, materials and biology/nanomedicine. Emphasis will be put on the most recent and promising examples.

  20. Mechanics and thermal management of stretchable inorganic electronics

    PubMed Central

    Song, Jizhou; Feng, Xue; Huang, Yonggang

    2016-01-01

    Stretchable electronics enables lots of novel applications ranging from wearable electronics, curvilinear electronics to bio-integrated therapeutic devices that are not possible through conventional electronics that is rigid and flat in nature. One effective strategy to realize stretchable electronics exploits the design of inorganic semiconductor material in a stretchable format on an elastomeric substrate. In this review, we summarize the advances in mechanics and thermal management of stretchable electronics based on inorganic semiconductor materials. The mechanics and thermal models are very helpful in understanding the underlying physics associated with these systems, and they also provide design guidelines for the development of stretchable inorganic electronics. PMID:27547485

  1. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment.

    PubMed

    Camargo, Julio A; Alonso, Alvaro

    2006-08-01

    We provide a global assessment, with detailed multi-scale data, of the ecological and toxicological effects generated by inorganic nitrogen pollution in aquatic ecosystems. Our synthesis of the published scientific literature shows three major environmental problems: (1) it can increase the concentration of hydrogen ions in freshwater ecosystems without much acid-neutralizing capacity, resulting in acidification of those systems; (2) it can stimulate or enhance the development, maintenance and proliferation of primary producers, resulting in eutrophication of aquatic ecosystems; (3) it can reach toxic levels that impair the ability of aquatic animals to survive, grow and reproduce. Inorganic nitrogen pollution of ground and surface waters can also induce adverse effects on human health and economy. Because reductions in SO2 emissions have reduced the atmospheric deposition of H2SO4 across large portions of North America and Europe, while emissions of NOx have gone unchecked, HNO3 is now playing an increasing role in the acidification of freshwater ecosystems. This acidification process has caused several adverse effects on primary and secondary producers, with significant biotic impoverishments, particularly concerning invertebrates and fishes, in many atmospherically acidified lakes and streams. The cultural eutrophication of freshwater, estuarine, and coastal marine ecosystems can cause ecological and toxicological effects that are either directly or indirectly related to the proliferation of primary producers. Extensive kills of both invertebrates and fishes are probably the most dramatic manifestation of hypoxia (or anoxia) in eutrophic and hypereutrophic aquatic ecosystems with low water turnover rates. The decline in dissolved oxygen concentrations can also promote the formation of reduced compounds, such as hydrogen sulphide, resulting in higher adverse (toxic) effects on aquatic animals. Additionally, the occurrence of toxic algae can significantly

  2. Concentrations of polycyclic aromatic hydrocarbons and inorganic constituents in ambient surface soils, Chicago, Illinois: 2001-2002

    USGS Publications Warehouse

    Kay, R.T.; Arnold, T.L.; Cannon, W.F.; Graham, D.

    2008-01-01

    Samples of ambient surface soils were collected from 56 locations in Chicago, Illinois, using stratified random sampling techniques and analyzed for polycyclic aromatic hydrocarbon (PAH) compounds and inorganic constituents. PAHs appear to be derived primarily from combustion of fossil fuels and may be affected by proximity to industrial operations, but do not appear to be substantially affected by the organic carbon content of the soil, proximity to nonindustrial land uses, or proximity to a roadway. Atmospheric settling of particulate matter appears to be an important mechanism for the placement of PAH compounds into soils. Concentrations of most inorganic constituents are affected primarily by soil-forming processes. Concentrations of lead, arsenic, mercury, calcium, magnesium, phosphorus, copper, molybdenum, zinc, and selenium are elevated in ambient surface soils in Chicago in comparison to the surrounding area, indicating anthropogenic sources for these elements in Chicago soils. Concentrations of calcium and magnesium in Chicago soils appear to reflect the influence of the carbonate bedrock parent material on the chemical composition of the soil, although the effects of concrete and road fill cannot be discounted. Concentrations of inorganic constituents appear to be largely unaffected by the type of nearby land use. Copyright ?? Taylor & Francis Group, LLC.

  3. Structure and distribution of inorganic components in the cake layer of a membrane bioreactor treating municipal wastewater.

    PubMed

    Zhou, Lijie; Xia, Siqing; Alvarez-Cohen, Lisa

    2015-11-01

    A laboratory-scale submerged anoxic-oxic membrane bioreactor treating municipal wastewater was operated to investigate the structure and distribution of the inorganic cake layer buildup on the membrane. BCR (European Community Bureau of Reference) sequential extraction, X-ray photoelectron spectroscopy (XPS), and both map and line scan of energy-dispersive X-ray analysis (EDX) were performed for cake layer characterization. BCR results showed that Si, Al, Ca, Mg, Fe, and Ba were the predominant inorganic elements in the cake layer, and they occurred mostly as crystal particles. Crystal SiO2 was the dominant inorganic compound while Ca in the form of CaSO4 (dominant) and CaCO3 were also present, but exerted little effect on the cake layer structure because most of these compounds were deposited as precipitates on the reactor bottom. EDX results indicated that Si and Al accumulated together along the cross-sectional cake layer in the form of Si-Al (SiO2-Al2O3) crystal particles. PMID:26298402

  4. Structure and distribution of inorganic components in the cake layer of a membrane bioreactor treating municipal wastewater.

    PubMed

    Zhou, Lijie; Xia, Siqing; Alvarez-Cohen, Lisa

    2015-11-01

    A laboratory-scale submerged anoxic-oxic membrane bioreactor treating municipal wastewater was operated to investigate the structure and distribution of the inorganic cake layer buildup on the membrane. BCR (European Community Bureau of Reference) sequential extraction, X-ray photoelectron spectroscopy (XPS), and both map and line scan of energy-dispersive X-ray analysis (EDX) were performed for cake layer characterization. BCR results showed that Si, Al, Ca, Mg, Fe, and Ba were the predominant inorganic elements in the cake layer, and they occurred mostly as crystal particles. Crystal SiO2 was the dominant inorganic compound while Ca in the form of CaSO4 (dominant) and CaCO3 were also present, but exerted little effect on the cake layer structure because most of these compounds were deposited as precipitates on the reactor bottom. EDX results indicated that Si and Al accumulated together along the cross-sectional cake layer in the form of Si-Al (SiO2-Al2O3) crystal particles.

  5. Joint effect of organic acids and inorganic salts on cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Frosch, M.; Prisle, N. L.; Bilde, M.; Varga, Z.; Kiss, G.

    2011-04-01

    We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid dihydrate, succinic acid, adipic acid, citric acid, cis-pinonic acid, or Nordic reference fulvic acid) and one inorganic salt (sodium chloride or ammonium sulphate). Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves and critical supersaturations, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the aqueous solutions containing cis-pinonic acid and fulvic acid, a depression of surface tension was observed, but for the remaining solutions the effect on surface tension was negligible at concentrations relevant for cloud droplet activation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic salts are predicted to have a smaller Raoult term than the studied organic acids. Increasing the mass ratio of the inorganic salt led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors. The correspondence between measurements and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on measured water activity and surface tension, but not accounting for surface

  6. Organic-inorganic hybrids constructed by Anderson-type polyoxoanions and copper coordination complexes

    SciTech Connect

    Cao Ruige; Liu Shuxia Liu Ying; Tang Qun; Wang Liang; Xie Linhua; Su Zhongmin

    2009-01-15

    Four organic-inorganic hybrid compounds based on Anderson-type polyoxoanions, namely, {l_brace}[Cu(2,2'-bpy)(H{sub 2}O){sub 3}]{sub 2}[Cr(OH){sub 6}Mo{sub 6}O{sub 18}]{r_brace}{l_brace}[Cu(2,2'-bpy)(H{sub 2}O)Cl][Cu(2,2'-bpy) (H{sub 2}O)(NO{sub 3})][Cr(OH){sub 6}Mo{sub 6}O{sub 18}]{r_brace}.18H{sub 2}O (1), [Cu(2,2'-bpy)(H{sub 2}O){sub 2}Cl]{l_brace}[Cu(2,2'-bpy)(H{sub 2}O){sub 2}][Cr(OH){sub 6}Mo{sub 6}O{sub 18}]{r_brace}.4H{sub 2}O (2), (H{sub 3}O){l_brace}[Cu(2,2'-bpy)(H{sub 2}O){sub 2}]{sub 2}[Cu(2,2'-bpy)(H{sub 2}O)]{sub 2}{r_brace}[Cr(OH){sub 6}Mo{sub 6}O{sub 18}]{sub 3}.36H{sub 2}O (3), and (H{sub 3}O){l_brace}[Cu(2,2'-bpy)(H{sub 2}O){sub 2}]{sub 2}[Cu(2,2'-bpy)(H{sub 2}O)]{sub 2}{r_brace}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]{sub 3}.33H{sub 2}O (4), were isolated by conventional solution method, and crystal structures have been determined by single-crystal X-ray diffraction. Among them, compound 1 displays a discrete supramolecular structure, compound 2 shows a chainlike structure with chloro-copper complexes as counteranions, and compounds 3 and 4 are isomorphic and exhibit unique 3D open frameworks with lattice water molecules residing in the channels. The compounds 3 and 4 represent the first example of 3D organic-inorganic hybrid compounds in the TMs/2,2'-bpy/POMs system. Investigation of the reaction conditions reveals that the geometry and size of the anions together with its coordinating abilities to the metal centers have a decisive influence on both the composition and the dimensionality of the final compounds. - Graphical Abstract: Four organic-inorganic hybrids based on Anderson-type polyoxoanions have been synthesized. Compound 1 displays a discrete structure, 2 shows a chainlike structure, 3 and 4 are isomorphic and exhibit unique 3D open frameworks with lattice waters residing in the channels. The different structures suggest that the overall structures of the compounds are influenced by the nature of the acidic anions.

  7. Computation of Phase Equilibria, State Diagrams and Gas/Particle Partitioning of Mixed Organic-Inorganic Aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.

    2009-04-01

    The chemical composition of organic-inorganic aerosols is linked to several processes and specific topics in the field of atmospheric aerosol science. Photochemical oxidation of organics in the gas phase lowers the volatility of semi-volatile compounds and contributes to the particulate matter by gas/particle partitioning. Heterogeneous chemistry and changes in the ambient relative humidity influence the aerosol composition as well. Molecular interactions between condensed phase species show typically non-ideal thermodynamic behavior. Liquid-liquid phase separations into a mainly polar, aqueous and a less polar, organic phase may considerably influence the gas/particle partitioning of semi-volatile organics and inorganics (Erdakos and Pankow, 2004; Chang and Pankow, 2006). Moreover, the phases present in the aerosol particles feed back on the heterogeneous, multi-phase chemistry, influence the scattering and absorption of radiation and affect the CCN ability of the particles. Non-ideal thermodynamic behavior in mixtures is usually described by an expression for the excess Gibbs energy, enabling the calculation of activity coefficients. We use the group-contribution model AIOMFAC (Zuend et al., 2008) to calculate activity coefficients, chemical potentials and the total Gibbs energy of mixed organic-inorganic systems. This thermodynamic model was combined with a robust global optimization module to compute potential liquid-liquid (LLE) and vapor-liquid-liquid equilibria (VLLE) as a function of particle composition at room temperature. And related to that, the gas/particle partitioning of semi-volatile components. Furthermore, we compute the thermodynamic stability (spinodal limits) of single-phase solutions, which provides information on the process type and kinetics of a phase separation. References Chang, E. I. and Pankow, J. F.: Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water - Part

  8. Inorganic UV absorbers for the photostabilisation of wood-clearcoating systems: Comparison with organic UV absorbers

    NASA Astrophysics Data System (ADS)

    Aloui, F.; Ahajji, A.; Irmouli, Y.; George, B.; Charrier, B.; Merlin, A.

    2007-02-01

    Inorganic UV absorbers which are widely used today were originally designed neither as a UV blocker in coatings applications, nor for wood protection. In recent years however, there has been extensive interest in these compounds, especially with regard to their properties as a UV blocker in coating applications. In this work, we carried out a comparative study to look into some inorganic and organic UV absorbers used in wood coating applications. The aim of this study is to determine the photostabilisation performances of each type of UV absorbers, to seek possible synergies and the influences of different wood species. We have also searched to find eventual correlation between these performances and the influence of UV absorbers on the film properties. Our study has compared the performances of the following UV absorbers: hombitec RM 300, hombitec RM 400 from the Sachtleben Company; transparent yellow and red iron oxides from Sayerlack as inorganic UV absorbers; organic UV absorbers Tinuvin 1130 and Tinuvin 5151 from Ciba Company. The study was carried out on three wood species: Abies grandis, tauari and European oak. The environmental constraints (in particular the limitation of the emission of volatile organic compounds VOCs) directed our choice towards aqueous formulations marketed by the Sayerlack Arch Coatings Company. The results obtained after 800 h of dry ageing showed that the Tinuvins and the hombitecs present better wood photostabilisations. On the other hand in wet ageing, with the hombitec, there are appearances of some cracks and an increase in the roughness of the surface. This phenomenon is absent when the Tinuvins are used. With regard to these results, the thermomechanical analyses relating to the follow-up of the change of the glass transition temperature ( Tg) of the various coating systems, show a different behaviour between the two types of absorbers. However, contrary to organic UV absorbers, inorganic ones tend to increase Tg during ageing

  9. Electrochemical determination of inorganic mercury and arsenic--A review.

    PubMed

    Zaib, Maria; Athar, Muhammad Makshoof; Saeed, Asma; Farooq, Umar

    2015-12-15

    Inorganic mercury and arsenic encompasses a term which includes As(III), As(V) and Hg(II) species. These metal ions have been extensively studied due to their toxicity related issues. Different analytical methods are used to monitor inorganic mercury and arsenic in a variety of samples at trace level. The present study reviews various analytical techniques available for detection of inorganic mercury and arsenic with particular emphasis on electrochemical methods especially stripping voltammetry. A detailed critical evaluation of methods, advantages of electrochemical methods over other analytical methods, and various electrode materials available for mercury and arsenic analysis is presented in this review study. Modified carbon paste electrode provides better determination due to better deposition with linear and improved response under studied set of conditions. Biological materials may be the potent and economical alternative as compared to macro-electrodes and chemically modified carbon paste electrodes in stripping analysis of inorganic mercury and arsenic.

  10. Inorganic Chemistry from the Perspective of an Industrial Chemist.

    ERIC Educational Resources Information Center

    Laudise, R. A.

    1980-01-01

    Presents a very brief description of solid state chemistry, its industrial applications, and rationale for its inclusion in the inorganic chemistry curriculum. The topic is intellectually challenging, economically useful and, in the view of the author, fun. (Author/JN)

  11. A Demonstration of Bacterial Reduction of Inorganic Sulfate.

    ERIC Educational Resources Information Center

    Kinard, W. Frank

    1979-01-01

    This experiment demonstrates the reduction of inorganic sulfate to sulfide in the pore water of estuarine muds. Procedures involve the incubation of mud samples for varying amounts of time followed by gravimetric determination. (Author/SA)

  12. Incorporation of inorganic carbon by Antarctic cryptoendolithic fungi

    NASA Technical Reports Server (NTRS)

    Palmer, R. J. Jr; Friedmann, E. I.

    1988-01-01

    Fungi isolated from the cryptoendolithic community of the Ross Desert are capable of fixing inorganic carbon. Results suggest that lichen mycobionts and parasymbionts are adapted to different water regimes in the cryptoendolithic environment.

  13. Methods for sampling and inorganic analysis of coal

    USGS Publications Warehouse

    Golightly, D. W.; Simon, Frederick Otto

    1989-01-01

    Methods used by the U.S. Geological Survey for the sampling, comminution, and inorganic analysis of coal are summarized in this bulletin. Details, capabilities, and limitations of the methods are presented.

  14. High temperature inorganic membranes for separating hydrogen

    SciTech Connect

    Fain, D.E.; Roettger, G.E.

    1995-08-01

    Effort has continued to accumulate data on the transport of gases over the temperature range from room temperature to 275{degrees}C with inorganic membranes having a range of pore radii from approximately 0.25 nm to 3 mn. An experimental alumina membrane having an estimated mean pore radius of 0.25 nm has been fabricated and tested. Extensive testing of this membrane indicated that the separation factor for helium and carbon tetrafluoride at 250{degrees}C was 59 and the extrapolated high temperature separation factor was 1,193. For safety reasons, earlier flow measurements concentrated on helium, carbon dioxide, and carbon tetrafluoride. New data have been acquired with hydrogen to verify the agreement with the other gases. During the measurements with hydrogen, it was noted that a considerable amount of moisture was present in the test gas. The source of this moisture and its effect on permeance was examined. Improvements were implemented to the flow test system to minimize the water content of the hydrogen test gas, and subsequent flow measurements have shown excellent results with hydrogen. The extrapolation of separation factors as a function of temperature continues to show promise as a means of using the hard sphere model to determine the pore size of membranes. The temperature dependence of helium transport through membranes appears to be considerably greater than other gases for the smallest pore sizes. The effort to extend temperature dependence to the hard sphere model continues to be delayed, primarily because of a lack of adequate adsorption data.

  15. Evaluation of the carcinogenicity of inorganic arsenic.

    PubMed

    Cohen, Samuel M; Arnold, Lora L; Beck, Barbara D; Lewis, Ari S; Eldan, Michal

    2013-10-01

    Inorganic arsenic (iAs) at high exposures is a human carcinogen, affecting mainly the urinary bladder, lung and skin. We present an assessment of the mode of action (MOA) of iAs's carcinogenicity based on the United States Environmental Protection Agency/International Programme on Chemical Safety (USEPA/IPCS) framework, focusing primarily on bladder cancer. Evidence is presented for a MOA involving formation of reactive trivalent metabolites interacting with critical cellular sulfhydryl groups, leading to cytotoxicity and regenerative cell proliferation. Metabolism, kinetics, cell transport, and reaction with specific proteins play a critical role in producing the effects at the cellular level, regardless of cell type, whether urothelium, lung epithelium or epidermis. The cytotoxicity induced by iAs results in non-cancer toxicities, and the regenerative cell proliferation enhances development of epithelial cancers. In other tissues, such as vascular endothelium, different toxicities develop, not cancer. Evidence supporting this MOA comes from in vitro investigations on animal and human cells, from animal models, and from epidemiological studies. This MOA implies a non-linear, threshold dose-response relationship for both non-cancer and cancer end points. The no effect levels in animal models (approximately 1 ppm of water or diet) and in vitro (>0.1 µM trivalent arsenicals) are strikingly consistent. Cancer effects of iAs in humans generally are not observed below exposures of 100-150 ppb in drinking water: below these exposures, human urine concentrations of trivalent metabolites are generally below 0.1 µM, a concentration not associated with bladder cell cytotoxicity in in vitro or animal models. Environmental exposures to iAs in most of the United States do not approach this threshold.

  16. Functionalised Inorganic Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Duguet, E.; Treguer-Delapierre, M.; Delville, M.-H.

    The recent development of effective and reproducible techniques has made it possible to synthesise stable aqueous dispersions of individual particles with sizes that can be accurately adjusted from a few nanometers to a few tens of nanometers. These objects are thus small enough to circulate within the human body without causing a risk of embolus, because the narrowest capillaries (those in the lungs) have a minimal diameter of 5 μm. Such particles can also escape from the blood compartment through windows of diameter around 100nm in certain epithelia with increased permeability, such as those located in tumours and centres of infection, thus favouring their accumulation in precisely these tissues. Finally, the smallest particles can enter cells and their different compartments. Research scientists and doctors thus have new tools at their disposal for understanding biological processes, improving medical diagnoses, and even developing new therapeutic strategies. Liposomes and particles made from polymers were discussed in some detail in volume II of this series [2], especially with regard to drug targeting. In the present chapter, we shall be concerned with inorganic nanoparticles, such as metal chalcogenides and oxides, and noble metals, whose intrinsic magnetic or optical properties are complementary to the properties of polymers. They are soon expected to play a key role in biological tagging, enhancing contrast in magnetic resonance imaging (MRI), and the hyperthermal treatment of many pathologies, such as cancers. While the properties of the particle core motivate the choice of a specific type of nanoparticle, surface properties turn out to be equally fundamental. Indeed, it is the surface along with whatever molecular adaptations can be created on it that provides control over the interactions between the particles (single or clustered objects) and the interactions with biological molecules, macromolecules, and cells. Surface functionalisation plays an

  17. Durability of an inorganic polymer concrete coating

    NASA Astrophysics Data System (ADS)

    Wasserman, Kenneth

    The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.

  18. Autonomous Sensing of Particulate Inorganic Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Weiss, G. A.; Bishop, J. K.; Strubhar, W. D.; Wood, T.

    2011-12-01

    Particulate inorganic carbon (PIC) is produced by coccolithophore phytoplankton and shelled foraminifera and pterpod microzooplankton. These calcite and aragonite particles contribute to excess density of aggregate particles enabling carbon export from surface waters; they are sensitive to the effects of ocean acidification. Concentrations in surface waters range from below 100 nM in oligotrophic waters to 40 uM in the North Atlantic. Very limited ship observations in the Oyashio and subarctic NE Pacific show short term PIC variability of more than one order of magitude over 10 days and 3 months, respectively. At depth concentrations can drop to near zero in waters deeper than the carbonate saturation horizon. Seasonal variations of a factor of two or more at 1000 m depth have been observed. Near surface variability is impossible to follow from ships. We are working on the development of a robust PIC sensor capable of deployment on platforms ranging from CTD's to floats and thus address the gap in observations. The sensor, which uses cross polarized optics, detects the photons that have interacted with birefringent minerals (of which calcite dominates) in the water column. The detection of this very weak signal - which can be 10-6 of the primary beam energy is a daunting task. Here we report results from incomparison deployments of a 'next gen' and prototype sensor during recent expeditions to California coastal and offshore waters (NE Pacific Gyre, Santa Barbara Basin (June 2009); Santa Catalina Basin (October 2010), Santa Cruz Basin (May 2011), California Current and Coastal Waters (July 2011; September 2011). In addition we report calibrations the sensors based on particulate samples filtered from 1L samples and analyzed by HR-ICP-MS.

  19. Fluorometric quantification of natural inorganic polyphosphate.

    PubMed

    Diaz, Julia M; Ingall, Ellery D

    2010-06-15

    Polyphosphate, a linear polymer of orthophosphate, is abundant in the environment and a key component in wastewater treatment and many bioremediation processes. Despite the broad relevance of polyphosphate, current methods to quantify it possess significant disadvantages. Here, we describe a new approach for the direct quantification of inorganic polyphosphate in complex natural samples. The protocol relies on the interaction between the fluorochrome 4',6-diamidino-2-phenylindole (DAPI) and dissolved polyphosphate. With the DAPI-based approach we describe, polyphosphate can be quantified at concentrations ranging from 0.5-3 microM P in a neutral-buffered freshwater matrix with an accuracy of +/-0.03 microM P. The patterns of polyphosphate concentration versus fluorescence yielded by standards exhibit no chain length dependence across polyphosphates ranging from 15-130 phosphorus units in size. Shorter length polyphosphate molecules (e.g., polyphosphate of three and five phosphorus units in length) contribute little to no signal in this approach, as these molecules react only slightly or not at all with DAPI in the concentration range tested. The presence of salt suppresses fluorescence from intermediate polyphosphate chain lengths (e.g., 15 phosphorus units) at polyphosphate concentrations ranging from 0.5-3 microM P. For longer chain lengths (e.g., 45-130 phosphorus units), this salt interference is not evident at conductivities up to approximately 10mS/cm. Our results indicate that standard polyphosphates should be stored frozen for no longer than 10-15 days to avoid inconsistent results associated with standard degradation. We have applied the fluorometric protocol to the analysis of five well-characterized natural samples to demonstrate the use of the method. PMID:20507063

  20. Special section guest editorial: Hybrid organic-inorganic solar cells

    DOE PAGES

    Nogueira, Ana Flavia; Rumbles, Garry

    2015-04-06

    In this special section of the Journal of Photonics for Energy, there is a focus on some of the science and technology of a range of different hybrid organic-inorganic solar cells. Prior to 1991 there were many significant scientific research reports of hybrid organic-inorganic solar cells; finally, however, it wasn’t until the dye-sensitized solar cell entered the league table of certified research cell efficiencies that this area experienced an explosion of research activity.

  1. Reverse osmosis treatment to remove inorganic contaminants from drinking water

    SciTech Connect

    Huxstep, M.R.; Sorg, T.J.

    1987-12-01

    The purpose of the research project was to determine the removal of inorganic contaminants from drinking water using several state-of-the-art reverse osmosis membrane elements. A small 5-KGPD reverse osmosis system was utilized and five different membrane elements were studied individually with the specific inorganic contaminants added to several natural Florida ground waters. Removal data were also collected on naturally occurring substances.

  2. Casting fine grained, fully dense, strong inorganic materials

    DOEpatents

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  3. Near-infrared sensitive organic-inorganic photorefractive device

    NASA Astrophysics Data System (ADS)

    Marinova, Vera; Liu, Ren-Chung; Lin, Shiuan-Huei; Chen, Ming-Syuan; Lin, Yi-Hsin; Hsu, Ken-Yuh

    2016-07-01

    Organic-inorganic hybrid structure, assembled by Rh-doped Bi12TiO20 crystal and liquid crystal (LC) layer, operating at near-infrared range is proposed and demonstrated. Due to the photorefractive properties of inorganic substrate, light illumination caused a space charge field which acts as a driving force for LC molecules re-alignment and subsequent refractive index modulation. All optically controlled phase retardation ability has been demonstrated supporting possibilities for further infrared applications.

  4. Inorganic Chemistry: A Prestigious History and a Bright Future.

    PubMed

    Yam, Vivian Wing-Wah

    2015-07-13

    "…︁Inorganic chemistry has evolved from fundamental studies to the forefronts of interdisciplinary research. What was considered to be impossible or elusive has now become feasible. While we still keep our identity as inorganic chemists, the sharp demarcation between the divisions of different subject disciplines or subdisciplines is no longer relevant …︁" Read more in the Editorial by Vivian W.-W. Yam.

  5. A comparison of organic and inorganic nitrates/nitrites.

    PubMed

    Omar, Sami A; Artime, Esther; Webb, Andrew J

    2012-05-15

    Although both organic and inorganic nitrates/nitrites mediate their principal effects via nitric oxide, there are many important differences. Inorganic nitrate and nitrite have simple ionic structures and are produced endogenously and are present in the diet, whereas their organic counterparts are far more complex, and, with the exception of ethyl nitrite, are all medicinally synthesised products. These chemical differences underlie the differences in pharmacokinetic properties allowing for different modalities of administration, particularly of organic nitrates, due to the differences in their bioavailability and metabolic profiles. Whilst the enterosalivary circulation is a key pathway for orally ingested inorganic nitrate, preventing an abrupt effect or toxic levels of nitrite and prolonging the effects, this is not used by organic nitrates. The pharmacodynamic differences are even greater; while organic nitrates have potent acute effects causing vasodilation, inorganic nitrite's effects are more subtle and dependent on certain conditions. However, in chronic use, organic nitrates are considerably limited by the development of tolerance and endothelial dysfunction, whereas inorganic nitrate/nitrite may compensate for diminished endothelial function, and tolerance has not been reported. Also, while inorganic nitrate/nitrite has important cytoprotective effects against ischaemia-reperfusion injury, continuous use of organic nitrates may increase injury. While there are concerns that inorganic nitrate/nitrite may induce carcinogenesis, direct evidence of this in humans is lacking. While organic nitrates may continue to dominate the therapeutic arena, this may well change with the increasing recognition of their limitations, and ongoing discovery of beneficial effects and specific advantages of inorganic nitrate/nitrite.

  6. Near-infrared sensitive organic-inorganic photorefractive device

    NASA Astrophysics Data System (ADS)

    Marinova, Vera; Liu, Ren-Chung; Lin, Shiuan-Huei; Chen, Ming-Syuan; Lin, Yi-Hsin; Hsu, Ken-Yuh

    2016-10-01

    Organic-inorganic hybrid structure, assembled by Rh-doped Bi12TiO20 crystal and liquid crystal (LC) layer, operating at near-infrared range is proposed and demonstrated. Due to the photorefractive properties of inorganic substrate, light illumination caused a space charge field which acts as a driving force for LC molecules re-alignment and subsequent refractive index modulation. All optically controlled phase retardation ability has been demonstrated supporting possibilities for further infrared applications.

  7. Inorganic Nanoparticles for Therapeutic Delivery: Trials, Tribulations and Promise

    PubMed Central

    Tonga, Gulen Yesilbag; Moyano, Daniel F.; Kim, Chang Soo; Rotello, Vincent M.

    2014-01-01

    Inorganic nanomaterials have a wide array of physical and structural properties that make them attractive candidates for imaging and therapeutic delivery. Nanoparticle platforms have been intensely studied for these applications, and examples are starting to enter the clinic. This review looks at why inorganic particles provide promising platforms for biomedicine, and what issues need to be addressed for them to reach their potential. PMID:24955019

  8. Synthesis of polymer/inorganic nanocomposite films using highly porous inorganic scaffolds.

    PubMed

    Zhang, Huanjun; Popp, Matthias; Hartwig, Andreas; Mädler, Lutz

    2012-04-01

    Polymeric/inorganic nanocomposite films have been fabricated through a combination of flame-spray-pyrolysis (FSP) made inorganic scaffold and surface initiated polymerization of cyanoacrylate. The highly porous structure of pristine SnO(2) films allows the uptake of cyanoacrylate and the polymerization is surface initiated by the water adsorbed onto the SnO(2) surface. Scanning electron microscopy study reveals a nonlinear increase in the composite particle size and the film thickness with polymerization time. The structural change is rather homogeneous throughout the whole layer. The composite is formed mainly by an increase of the particle size and not by just filling the existing pores. High-resolution transmission electron microscopy imaging shows SnO(2) nanoparticles embedded in the polymeric matrix, constituting the nanocomposite material. Thermogravimetric analysis indicates that the porosity of the nanocomposite films decreases from 98% to 75%, resulting in a significant enhancement of the hardness of the films. DC conductivity measurements conducted in situ on the nanocomposite layer suggest a gradual increase in the layer resistance, pointing to a loss of connectivity between the SnO(2) primary particles as the polymerization proceeds. PMID:22344392

  9. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Zardini, A. A.; Sjogren, S.; Marcolli, C.; Krieger, U. K.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Peter, T.

    2008-09-01

    Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/glutaric acid system; deviations up to 10% in mass growth factor (corresponding to deviations up to 3.5% in size growth factor) are observed for the ammonium sulfate/citric acid 1:1 mixture at 80% RH. We observe even more significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  10. Analytical electron microscopy of biogenic and inorganic carbonates

    NASA Technical Reports Server (NTRS)

    Blake, David F.

    1989-01-01

    In the terrestrial sedimentary environment, the mineralogically predominant carbonates are calcite-type minerals (rhombohedral carbonates) and aragonite-type minerals (orthorhombic carbonates). Most common minerals precipitating either inorganically or biogenically are high magnesium calcite and aragonite. High magnesium calcite (with magnesium carbonate substituting for more than 7 mole percent of the calcium carbonate) is stable only at temperatures greater than 700 C or thereabouts, and aragonite is stable only at pressures exceeding several kilobars of confining pressure. Therefore, these carbonates are expected to undergo chemical stabilization in the diagenetic environment to ultimately form stable calcite and dolomite. Because of the strong organic control of carbonate deposition in organisms during biomineralization, the microchemistry and microstructure of invertebrate skeletal material is much different than that present in inorganic carbonate cements. The style of preservation of microstructural features in skeletal material is therefore often quite distinctive when compared to that of inorganic carbonate even though wholesale recrystallization of the sediment has taken place. Microstructural and microchemical comparisons are made between high magnesium calcite echinoderm skeletal material and modern inorganic high magnesium calcite inorganic cements, using analytical electron microscopy and related techniques. Similar comparisons are made between analogous materials which have undergone stabilization in the diagenetic environment. Similar analysis schemes may prove useful in distinguishing between biogenic and inorganic carbonates in returned Martian carbonate samples.

  11. Synthesis and photoelectric properties of new Dawson-type polyoxometalate-based dimeric and oligomeric Pt(II)-acetylide inorganic-organic hybrids.

    PubMed

    Liu, Li; Hu, Lei; Liu, Qian; Du, Zu-Liang; Li, Fa-Bao; Li, Guang-Hua; Zhu, Xun-Jin; Wong, Wai-Yeung; Wang, Lei; Li, Hua

    2015-01-01

    A new synthesis route for preparing Dawson-type polyoxometalate (POM) based inorganic-organic hybrid materials is presented. Two new heteropolytungstate-based dimeric and oligomeric Pt(II) acetylide inorganic-organic hybrid compounds (2PtOD and PPtOD) were prepared by Hagihara's dehydrohalogenating coupling of a terminal diacetylene POM hybrid containing diphosphoryl functionality and an appropriate platinum(II) halide precursor. This method provides a rigid covalent linkage between the POM and the organometallic Pt(II) acetylide moiety. The redox potential of the polyanion can be tuned by grafting the organic and organometallic groups on it. The photoelectric properties of hybrid LB films derived from these inorganic-organic composites were studied.

  12. Dinitroso and polynitroso compounds

    PubMed Central

    Gowenlock, Brian G.; Richter-Addo, George B.

    2005-01-01

    The growing interest in the chemistry of C-nitroso compounds (RN=O; R = alkyl or aryl group) is due in part to the recognition of their participation in various metabolic processes of nitrogen-containing compounds. C-Nitroso compounds have a rich organic chemistry in their own right, displaying interesting intra- and intermolecular dimerization processes and addition reactions with unsaturated compounds. In addition, they have a fascinating coordination chemistry. While most of the attention has been directed towards C-nitroso compounds containing a single –NO moiety, there is an emerging area of research dealing with dinitroso and polynitroso compounds. In this critical review, we present and discuss the synthetic routes and properties of these relatively unexplored dinitroso and polynitroso compounds, and suggest areas of further development involving these compounds. (126 references.) PMID:16100619

  13. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  14. Polybenzimidazole compounds, polymeric media, and methods of post-polymerization modifications

    DOEpatents

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2007-08-21

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2-- where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least 5 equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about 15.

  15. SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS

    DOEpatents

    Katzin, L.I.; Sullivan, J.C.

    1958-06-24

    A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

  16. Regulating compounding pharmacies.

    PubMed

    Noble, Ashley

    2015-06-01

    (1) The Pew Charitable Trusts identified 27 compounding incidents that resulted in 89 deaths since 2001. (2) Unlike drug manufacturers, compounding pharmacies are generally not required to report adverse events associated with their products to the FDA. (3) Federal law on drug compounding was updated in 2013 to create a new group of compounders called "outsourcing facilities." Over 50 facilities in 23 states are now registered with the FDA.

  17. Inorganic trace analysis by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine; Dietze, Hans-Joachim

    1998-10-01

    Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of

  18. Hierarchical Inorganic Assemblies for Artificial Photosynthesis.

    PubMed

    Kim, Wooyul; Edri, Eran; Frei, Heinz

    2016-09-20

    Artificial photosynthesis is an attractive approach for renewable fuel generation because it offers the prospect of a technology suitable for deployment on highly abundant, non-arable land. Recent leaps forward in the development of efficient and durable light absorbers and catalysts for oxygen evolution and the growing attention to catalysts for carbon dioxide activation brings into focus the tasks of hierarchically integrating the components into assemblies for closing of the photosynthetic cycle. A particular challenge is the efficient coupling of the multi-electron processes of CO2 reduction and H2O oxidation. Among the most important requirements for a complete integrated system are catalytic rates that match the solar flux, efficient charge transport between the various components, and scalability of the photosynthetic assembly on the unprecedented scale of terawatts in order to have impact on fuel consumption. To address these challenges, we have developed a heterogeneous inorganic materials approach with molecularly precise control of light absorption and charge transport pathways. Oxo-bridged heterobinuclear units with metal-to-metal charge-transfer transitions absorbing deep in the visible act as single photon, single charge transfer pumps for driving multi-electron catalysts. A photodeposition method has been introduced for the spatially directed assembly of nanoparticle catalysts for selective coupling to the donor or acceptor metal of the light absorber. For CO2 reduction, a Cu oxide cluster is coupled to the Zr center of a ZrOCo light absorber, while coupling of an Ir nanoparticle catalyst for water oxidation to the Co donor affords closing of the photosynthetic cycle of CO2 conversion by H2O to CO and O2. Optical, vibrational, and X-ray spectroscopy provide detailed structural knowledge of the polynuclear assemblies. Time resolved visible and rapid-scan FT-IR studies reveal charge transfer mechanisms and transient surface intermediates under

  19. Hierarchical Inorganic Assemblies for Artificial Photosynthesis.

    PubMed

    Kim, Wooyul; Edri, Eran; Frei, Heinz

    2016-09-20

    Artificial photosynthesis is an attractive approach for renewable fuel generation because it offers the prospect of a technology suitable for deployment on highly abundant, non-arable land. Recent leaps forward in the development of efficient and durable light absorbers and catalysts for oxygen evolution and the growing attention to catalysts for carbon dioxide activation brings into focus the tasks of hierarchically integrating the components into assemblies for closing of the photosynthetic cycle. A particular challenge is the efficient coupling of the multi-electron processes of CO2 reduction and H2O oxidation. Among the most important requirements for a complete integrated system are catalytic rates that match the solar flux, efficient charge transport between the various components, and scalability of the photosynthetic assembly on the unprecedented scale of terawatts in order to have impact on fuel consumption. To address these challenges, we have developed a heterogeneous inorganic materials approach with molecularly precise control of light absorption and charge transport pathways. Oxo-bridged heterobinuclear units with metal-to-metal charge-transfer transitions absorbing deep in the visible act as single photon, single charge transfer pumps for driving multi-electron catalysts. A photodeposition method has been introduced for the spatially directed assembly of nanoparticle catalysts for selective coupling to the donor or acceptor metal of the light absorber. For CO2 reduction, a Cu oxide cluster is coupled to the Zr center of a ZrOCo light absorber, while coupling of an Ir nanoparticle catalyst for water oxidation to the Co donor affords closing of the photosynthetic cycle of CO2 conversion by H2O to CO and O2. Optical, vibrational, and X-ray spectroscopy provide detailed structural knowledge of the polynuclear assemblies. Time resolved visible and rapid-scan FT-IR studies reveal charge transfer mechanisms and transient surface intermediates under

  20. Synthesis and electron microscopy of inorganic and hybrid organic-inorganic mesoporous and macroporous materials

    NASA Astrophysics Data System (ADS)

    Blanford, Christopher Francis

    This work describes the creation and analysis of ordered porous inorganic and organic-inorganic hybrid materials with an emphasis on the qualitative and quantitative characterization by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Two major systems were studied: MCM-41-type mesoporous molecular sieves and three-dimensionally ordered macroporous (3DOM) materials. The microanalysis of mesoporous samples is discussed first. Samples of unmodified siliceous MCM-41, MCM-41 with grafted titanium dioxide species, and MCM-41 with incorporated 3-mercaptopropyl groups were examined in the TEM at three accelerating voltages. The beam stability of all the samples increased with increasing accelerating voltage. The particles were significantly more resistant to beam damage with the surfactant template in place, when the samples were synthesized above room temperature, and when the silicate precursor was hydrolyzed in acid. The samples with organic and inorganic groups were more stable than siliceous analogs. The discussion of 3DOM materials begins with their synthesis and characterization: 3DOM materials were created from colloidal crystals of uniform, sub-micrometer diameter polystyrene and poly(methyl methacrylate) spheres. Metal alkoxides, solutions of metal salts, and mixed salt-alkoxide precursors were employed to create 3DOM metal oxides, silicates with incorporated organic groups and polyoxometalate clusters, metals, and metal alloys. SEM and TEM were used extensively to characterize the morphology, crystallinity, grain size, and phase of the 3DOM products. The formation of 3DOM nickel oxide was studied by heating a nickel oxalate-colloidal crystal composite in an environmental SEM. The growth of the grains in 3DOM cobalt metal and 3DOM iron oxide were observed by high-temperature TEM. The arrangement of the pores in 3DOM materials was studied by analyzing diffractograms of TEM images of single particles tilted into different orientations

  1. Potassium Tris (Oxalato) Ferrate (III): A Versatile Compound to Illustrate the Principles of Chemical Equilibria

    ERIC Educational Resources Information Center

    Gonzalez, Gabriel; Seco, Miquel

    2004-01-01

    The potassium salt is an easy product to synthesize in an introductory course on inorganic chemistry and the students are required to prepare this product in order to improve their laboratory skills and as an introduction to the synthesis of coordination compounds. The complex potassium tris (oxalato) ferrate (III) is used to illustrate the…

  2. Evaluation of different sampling media for their potential use as a combined swab for the collection of both organic and inorganic explosive residues.

    PubMed

    Song-im, Nopporn; Benson, Sarah; Lennard, Chris

    2012-10-10

    Commercially available skin cleansing alcohol wipes and conventional swabs were investigated for their use as a universal sampling medium for the simultaneous collection of both organic and inorganic explosive residues. Six compounds with the potential to be encountered in casework [pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), triacetone triperoxide (TATP), ammonium nitrate, and sodium chlorate] were selected as representative target compounds. Quantities of these target compounds were deposited on four different substrates (glass, plastic, aluminium foil and laminate). Two chosen alcohol wipes demonstrated better overall performance in the recovery of both the organic and inorganic representative compounds from each of the test surfaces compared to the results obtained using conventional cotton and polyester swabs, pre-moistened with various solvents, and a direct methanol wash (used as a control). Results obtained using dry cotton swabs indicated that it was not an effective swabbing system for the collection of both organic and inorganic explosive residues on common substrates. PMID:22658743

  3. Evaluation of different sampling media for their potential use as a combined swab for the collection of both organic and inorganic explosive residues.

    PubMed

    Song-im, Nopporn; Benson, Sarah; Lennard, Chris

    2012-10-10

    Commercially available skin cleansing alcohol wipes and conventional swabs were investigated for their use as a universal sampling medium for the simultaneous collection of both organic and inorganic explosive residues. Six compounds with the potential to be encountered in casework [pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), triacetone triperoxide (TATP), ammonium nitrate, and sodium chlorate] were selected as representative target compounds. Quantities of these target compounds were deposited on four different substrates (glass, plastic, aluminium foil and laminate). Two chosen alcohol wipes demonstrated better overall performance in the recovery of both the organic and inorganic representative compounds from each of the test surfaces compared to the results obtained using conventional cotton and polyester swabs, pre-moistened with various solvents, and a direct methanol wash (used as a control). Results obtained using dry cotton swabs indicated that it was not an effective swabbing system for the collection of both organic and inorganic explosive residues on common substrates.

  4. Detection of Inorganic Arsenic in Rice Using a Field Test Kit: A Screening Method.

    PubMed

    Bralatei, Edi; Lacan, Severine; Krupp, Eva M; Feldmann, Jörg

    2015-11-17

    Rice is a staple food eaten by more than 50% of the world's population and is a daily dietary constituent in most South East Asian countries where 70% of the rice export comes from and where there is a high level of arsenic contamination in groundwater used for irrigation. Research shows that rice can take up and store inorganic arsenic during cultivation, and rice is considered to be one of the major routes of exposure to inorganic arsenic, a class I carcinogen for humans. Here, we report the use of a screening method based on the Gutzeit methodology to detect inorganic arsenic (iAs) in rice within 1 h. After optimization, 30 rice commodities from the United Kingdom market were tested with the field method and were compared to the reference method (high-performance liquid chromatography-inductively coupled plasma-mass spectrometry, HPLC-ICP-MS). In all but three rice samples, iAs compound can be determined. The results show no bias for iAs using the field method. Results obtained show quantification limits of about 50 μg kg(-1), a good reproducibility for a field method of ±12%, and only a few false positives and negatives (<10%) could only be recorded at the 2015 European Commission (EC) guideline for baby rice of 100 μg kg(-1), while none were recorded at the maximum level suggested by the World Health Organization (WHO) and implemented by the EC for polished and white rice of 200 μg kg(-1). The method is reliable, fast, and inexpensive; hence, it is suggested to be used as a screening method in the field for preselection of rice which violates legislative guidelines.

  5. The Characteristics of Long-range Transboundary Inorganic Secondary Aerosols in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Carmichael, G. R.; Woo, J. H.; Qiang, Z.

    2014-12-01

    Recurrent particle matter episodes greatly influence air quality in Northeast Asia. According to many studies, a major reason is long-range transport of air pollutant. Large amount of emission of chemical compounds aggravate air pollution in the region. Emitted air pollutants mainly come from industrialized regions along the East China coast. It can be transported over downwind region by the prevailing westerlies. The long-rang transported fine particle certainly attributes to air quality in downwind region, but there are many unknowns on the quantity, transport pattern, and secondary aerosol production mechanism despite the fact with many studies have been performed. Major contributors of PM2.5 are inorganic secondary aerosols, sulfate, nitrate and ammonium, in Korea. Especially high relative contributions of inorganic secondary aerosols appear for westerly wind cases. The main pathway of production of inorganic secondary aerosols is produced by converting from SO2 and NOx during the long-range transport but the contribution varies dramatically depending on season and wind pattern. Sulfate is consistently the primary contributor of PM2.5 still now but we should more concern nitrate because that NOx emissions of China is increasing steeply since 2000 by leading powerplant, industry, and transport, despite downward trend of SO2. In order to better understand regional air quality modeling of the long-range transport, international study, MICS-Asia phase III, has been initiated with many researchers. We will present chemical characteristics of PM2.5 long-range transport during westerly wind cases focused on secondary aerosol, tracking their transport pattern, and production pathway. Results using CMAQ with the modeling domain covering Northeast and Southeast China, Korea, and Japan with 15km resolution will be discussed.

  6. Responses to betaine and inorganic sulphur of sheep in growth performance and fibre growth.

    PubMed

    Nezamidoust, M; Alikhani, M; Ghorbani, G R; Edriss, M A

    2014-12-01

    Sulphur-containing amino acids (SAA) are essential and usually the first limiting amino acids for growth, milk and wool production. The keratin fibre that grows from epidermal tissue is rich in SAA. The rate of fibre growth and its S content are influenced by the availability of SAA. Betaine is a dietary source for a labile methyl group and actively participates in methionine metabolism by donating methyl groups for the remethylation of homocysteine to methionine. Ruminants are capable of synthesizing SAA from inorganic S sources, and most bacteria in the rumen can use inorganic S to meet their requirements for growth. The objective of this study was to examine whether betaine and an inorganic sulphur supplement could provide methyl groups and sulphur amino acids in a way that growth performance and wool production of ewes and lambs are improved. Treatments performed included betaine supplementation, sulphate supplementation and betaine plus sulphate supplementation with five replications for each treatment. The dry matter intake of the ewes was affected by betaine plus sulphate supplementation (p < 0.05). In the ewes, betaine plus sulphate supplementation increased (p < 0.05) the wool growth rate, wool yield, staple length and wool sulphur concentration, while decreasing wool wax and wool yellowness (p < 0.05). In the lambs, wool growth rate, wool yield, fibre diameter, staple length, staple strength, wool sulphur concentration, wool wax and fibre percentage did not differ (p > 0.05) between treatments. In the ewes, plasma methionine concentration increased (p < 0.05) with betaine plus sulphate treatment. No corresponding difference (p > 0.05) was observed in plasma methionine concentration in the lambs. It can be concluded that betaine plus sulphate supplementation has the potential to change wool characteristics in the ewes, while these compounds were without any effect on growth and wool production of the lambs. Combining the two supplements was advantageous.

  7. Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements.

    PubMed

    Galbraith, M L; Vorachek, W R; Estill, C T; Whanger, P D; Bobe, G; Davis, T Z; Hall, J A

    2016-06-01

    Despite the availability of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study was to determine whether rumen microorganisms (RMO) alter the bioavailability of Se sources commonly used in Se supplements. Rumen microorganisms were isolated from ewes (n = 4) and incubated ex vivo with no Se (control), with inorganic Na selenite or Na selenate, or with organic selenomethionine (SeMet). Total Se incorporated into RMO and the amount of elemental Se formed were determined under equivalent conditions. Incorporation of Se from Na selenite, Na selenate, or SeMet into RMO was measured as fold change compared with control (no added Se). Incorporation of Se into microbial mass was greater for SeMet (13.2-fold greater than no-Se control) compared with inorganic Se supplements (P = 0.02); no differences were observed between inorganic Na selenate (3.3-fold greater than no-Se control) and Na selenite (3.5-fold greater than no-Se control; P = 0.97). Formation of non-bioavailable, elemental Se was less for RMO incubated with SeMet compared with inorganic Se sources (P = 0.01); no differences were observed between Na selenate and Na selenite (P = 0.09). The clinical importance of these results is that the oral bioavailability of organic SeMet should be greater compared with inorganic Se sources because of greater RMO incorporation of Se and decreased formation of elemental Se by RMO.

  8. Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements.

    PubMed

    Galbraith, M L; Vorachek, W R; Estill, C T; Whanger, P D; Bobe, G; Davis, T Z; Hall, J A

    2016-06-01

    Despite the availability of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study was to determine whether rumen microorganisms (RMO) alter the bioavailability of Se sources commonly used in Se supplements. Rumen microorganisms were isolated from ewes (n = 4) and incubated ex vivo with no Se (control), with inorganic Na selenite or Na selenate, or with organic selenomethionine (SeMet). Total Se incorporated into RMO and the amount of elemental Se formed were determined under equivalent conditions. Incorporation of Se from Na selenite, Na selenate, or SeMet into RMO was measured as fold change compared with control (no added Se). Incorporation of Se into microbial mass was greater for SeMet (13.2-fold greater than no-Se control) compared with inorganic Se supplements (P = 0.02); no differences were observed between inorganic Na selenate (3.3-fold greater than no-Se control) and Na selenite (3.5-fold greater than no-Se control; P = 0.97). Formation of non-bioavailable, elemental Se was less for RMO incubated with SeMet compared with inorganic Se sources (P = 0.01); no differences were observed between Na selenate and Na selenite (P = 0.09). The clinical importance of these results is that the oral bioavailability of organic SeMet should be greater compared with inorganic Se sources because of greater RMO incorporation of Se and decreased formation of elemental Se by RMO. PMID:26537117

  9. Prevalence of organic and inorganic contaminants within a rapidly developing catchment

    NASA Astrophysics Data System (ADS)

    Njumbe, E. S.; Curtis, C. D.; Cooke, D. A.; Polya, D. A.; Wogelius, R. A.; Hughes, C.

    2003-04-01

    Industrialization rates in many developing countries typically outpace investment in water supply, sewage treatment and other waste water facilities. This is futher compounded by the absence of stringent land-use and waste disposal policies. The consequence of this has been contamination of land, surface water, and groundwater in such areas. Efforts to control and remediate these types of systems will rely on a thorough understanding of contaminant levels and mobility. Reliable data, however, is usually not available. Therefore this study was designed to acquire baseline data from a representative developing urban area in tropical west Africa. 43 water and 20 sediment/soil samples from streams, hand-dug wells, springs and deep boreholes within the city and surrounding areas of Douala in Cameroon were characterised. Analyses were aimed at obtaining information on the type and quantity of organic and inorganic contaminants present, and linking them to specific point and non-point sources. Results from gas chromatography (GC/FID) and gas chromatography/mass spectrometry analyses of total organic extracts (TOE) of water samples have revealed the presence of a wide range of organic compounds including phenols, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), phthalates, acids and aliphatic derivatives. Concentrations as high as 500 ng ml-1 were detected. These high levels of non-polar compounds measured in drinking water represent a clear health problem. Heavy metal concentrations in bulk alluvial sands and loamy soil have been determined by microwave assisted nitric acid digestion. Concentration ranges (in ppm of dry weight) for the important metals were: Cr, 3.2-84.2 ; Ni, 0.2-57.4 ; Zn, 2.1-92 ; Pb, 0.3-33 ; As, 0.081-9.4 ; Cu, 0.61-17.4 ; and Cd, 0-3.1. Point sources have been identified for several of the organic and inorganic compounds and this spatial information will be integrated with the chemical data to present an overview of

  10. Fermentative process for making inorganic nanoparticles

    DOEpatents

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji-Won; Roh, Yul

    2006-06-13

    A method for producing mixed metal oxide compounds includes the steps of: providing a supply of a metal reducing bacteria; providing a culture medium suitable for growth of the bacteria; providing a first mixed metal oxide phase comprising at least a first and a second metal, at least one of the first and second metal being reducible from a higher to a lower oxidation state by the bacteria; and, combining the bacteria, the culture medium, the first mixed metal oxide, and at least one electron donor in a reactor, wherein the bacteria reduces at least one of the first metal and the second metal from the higher to the lower oxidation state to form a second mixed metal oxide phase.

  11. Implications of inorganic/organic interconversion on fluxes of arsenic in marine food webs.

    PubMed Central

    Penrose, W R; Conacher, H B; Black, R; Méranger, J C; Miles, W; Cunningham, H M; Squires, W R

    1977-01-01

    An organic form of arsenic is commonly encountered in marine organisms; in greysole and shrimp, it accounted for all arsenic found in muscle tissue. It has been isolated from flounder tissue by two independent procedures; it was hydrophilic, cationic, and was not decomposed to inorganic arsenic by hot nitric and sulfuric acids. NMR spectroscopy indicated all nonexchangeable protons to be equivalent; they behaved more like N-methyl protons than As-methyl protons. High-resolution mass spectroscopy from a heated probe yielded a spectrum corresponding to tetramethylarsonium (AsMe4+); the authentic ion, however, had TLC and ion-exchange behavior different from that of the natural product. Infrared spectrometry likewise produced conflicting or uninterpretable data. Decomposition of the compound for analytical purposes was accomplished by dry ashing under oxidizing conditions. Sea urchins, like trout, converted arsenic to an organic form, but to a more limited degree. Arsenic found naturally in sea urchins and in a species of macroalga was also organic. In individual containers, sea urchins were fed on the alga for 7 weeks. During this time they consumed 0.203 +/- 0.075 mg total As and excreted only 0.036 +/- 0.015 mg as feces. Measurement of inorganic As in the seawater did not account for the discrepancy, but measurements of total As did (0.202 +/- 0.095 mg). Sea urchins, like humans, appear to be able to rapidly excrete these organic forms of arsenic. PMID:908313

  12. Laboratory appraisal of organic carbon changes in mixtures made with different inorganic wastes.

    PubMed

    Arbestain, M Camps; Ibargoitia, M L; Madinabeitia, Z; Gil, M V; Virgel, S; Morán, A; Pereira, R Calvelo; Macías, F

    2009-12-01

    Mixtures of organic and inorganic wastes were incubated to examine the changes in organic C (OC) contents. An anaerobic sludge and a CaO-treated aerobic sludge, with OC concentrations of 235 and 129 gkg(-1), were used. The inorganic wastes used - referred to as "conditioners" - were shot blasting scrap, fettling, Linz-Donawitz slag, foundry sand (FS), and fly ash from wood bark combustion (FA). The total OC (TOC) and KMnO(4)(-) oxidized OC were determined. DTA-TGA profiles and FTIR spectra were also obtained. Mixtures made with the FS contained significantly lower (P<0.05) amounts of TOC (45 gkg(-1)) than the rest of mixtures, which was attributed to the non-existence of reactive surfaces in the conditioner and the increased aeration induced by this material. Those made with FA contained significantly higher (P<0.05) amounts of TOC (170 gkg(-1)), which was attributed to: (i) the addition of an extra source of C - black carbon (BC) - in the FA, and (ii) the inhibition of mineralization from the compounds present in this conditioner (e.g., amorphous aluminosilicates, BC). The results highlight the importance of the characteristics of the conditioners on the fate of the OM originating from the sludges. PMID:19632821

  13. Enzymatic systems of inorganic pyrophosphate bioenergetics in photosynthetic and heterotrophic protists: remnants or metabolic cornerstones?

    PubMed

    Pérez-Castiñeira, J R; Gómez-García, R; López-Marqués, R L; Losada, M; Serrano, A

    2001-09-01

    An increasing body of biochemical and genetic evidence suggests that inorganic pyrophosphate (PPi) plays an important role in protist bioenergetics. In these organisms, two types of inorganic pyrophosphatases [EC 3.6.1.1, namely soluble PPases (sPPases) and proton-translocating PPases (H+-PPases)] that hydrolyse the PPi generated by cell anabolism, thereby replenishing the orthophosphate pool needed for phosphorylation reactions, are present in different cellular compartments. Photosynthetic and heterotrophic protists possess sPPases located in cellular organelles (plastids and mitochondria), where many anabolic and biosynthetic reactions take place, in addition to H+-PPases, which are integral membrane proteins of the vacuolysosomal membranes and use the chemical energy of PPi to generate an electrochemical proton gradient useful in cell bioenergetics. This last category of proton pumps was considered to be restricted to higher plants and some primitive photosynthetic bacteria, but it has been found recently in many protists (microalgae and protozoa) and bacteria, thus indicating that H+-PPases are much more widespread than previously thought. No cytosolic sPPase (in bacteria, fungi and animal cells) has been shown to occur in these lower eukaryotes. The widespread occurrence of these key enzymes of PPi metabolism among evolutionarily divergent protists strongly supports the ancestral character of the bioenergetics based on this simple energy-rich compound, which may play an important role in survival under different biotic and abiotic stress conditions.

  14. Water uptake of multicomponent organic mixtures and their influence on hygroscopicity of inorganic salts.

    PubMed

    Wang, Yuanyuan; Jing, Bo; Guo, Yucong; Li, Junling; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2016-07-01

    The hygroscopic behaviors of atmospherically relevant multicomponent water soluble organic compounds (WSOCs) and their effects on ammonium sulfate (AS) and sodium chloride were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA) in the relative humidity (RH) range of 5%-90%. The measured hygroscopic growth was compared with predictions from the Extended-Aerosol Inorganics Model (E-AIM) and Zdanovskii-Stokes-Robinson (ZSR) method. The equal mass multicomponent WSOCs mixture containing levoglucosan, succinic acid, phthalic acid and humic acid showed gradual water uptake without obvious phase change over the whole RH range. It was found that the organic content played an important role in the water uptake of mixed particles. When organic content was dominant in the mixture (75%), the measured hygroscopic growth was higher than predictions from the E-AIM or ZSR relation, especially under high RH conditions. For mass fractions of organics not larger than 50%, the hygroscopic growth of mixtures was in good agreement with model predictions. The influence of interactions between inorganic and organic components on the hygroscopicity of mixed particles was related to the salt type and organic content. These results could contribute to understanding of the hygroscopic behaviors of multicomponent aerosol particles. PMID:27372129

  15. Methylation of inorganic mercury in polar marine waters

    NASA Astrophysics Data System (ADS)

    Lehnherr, Igor; St. Louis, Vincent L.; Hintelmann, Holger; Kirk, Jane L.

    2011-05-01

    Monomethylmercury is a neurotoxin that accumulates in marine organisms, with serious implications for human health. The toxin is of particular concern to northern Inuit peoples, for example, whose traditional diets are composed primarily of marine mammals and fish. The ultimate source of monomethylmercury to marine organisms has remained uncertain, although various potential sources have been proposed, including export from coastal and deep-sea sediments and major river systems, atmospheric deposition and water-column production. Here, we report results from incubation experiments in which we added isotopically labelled inorganic mercury and monomethylmercury to seawater samples collected from a range of sites in the Canadian Arctic Archipelago. Monomethylmercury formed from the methylation of inorganic mercury in all samples. Demethylation of monomethylmercury was also observed in water from all sites. We determined steady-state concentrations of monomethylmercury in marine waters by incorporating the rate constants for monomethylmercury formation and degradation derived from these experiments into a numerical model. We estimate that the conversion of inorganic mercury to monomethylmercury in the water column accounts for around 47% (+/-62%, standard deviation) of the monomethylmercury present in polar marine waters, with site-to-site differences in inorganic mercury and monomethylmercury levels accounting for most of the variability. We suggest that water-column methylation of inorganic mercury is a significant source of monomethylmercury in pelagic marine food webs in the Arctic, and possibly in the world's oceans in general.

  16. Evaluation of inorganic sorbent treatment for LWR coolant process streams

    SciTech Connect

    Roddy, J.W.

    1984-03-01

    This report presents results of a survey of the literature and of experience at selected nuclear installations to provide information on the feasibility of replacing organic ion exchangers with inorganic sorbents at light-water-cooled nuclear power plants. Radioactive contents of the various streams in boiling water reactors and pressurized water reactors were examined. In addition, the methods and performances of current methods used for controlling water quality at these plants were evaluated. The study also includes a brief review of the physical and chemical properties of selected inorganic sorbents. Some attributes of inorganic sorbents would be useful in processing light water reactor (LWR) streams. The inorganic resins are highly resistant to damage from ionizing radiation, and their exchange capacities are generally equivalent to those of organic ion exchangers. However, they are more limited in application, and there are problems with physical integrity, especially in acidic solutions. Research is also needed in the areas of selectivity and anion removal before inorganic sorbents can be considered as replacements for the synthetic organic resins presently used in LWRs. 11 figures, 14 tables.

  17. Comparative observations on inorganic and organic lead neurotoxicity

    SciTech Connect

    Verity, M.A. )

    1990-11-01

    Environmental and occupational exposure to lead still generates concern, and recent studies have focused such concern on the role of body burden of lead during the fetal/neonatal period, especially in the genesis of disturbed central nervous system development. This discussion provides some comparative observations on the neurotoxicity of inorganic and organic lead species. The characteristic acute, predominantly cerebellar encephalopathy associated with neonatal high lead exposure contrasts to the subtle, axo-dendritic disorganization shown to be associated with low-level neonatal inorganic Pb{sup 2+} exposure. There is a preferential involvement of the hippocampus in both low-level inorganic Pb{sup 2+} and organolead exposure, and the clinical syndromes of irritability, hyperactivity, aggression, and seizures are common features of disturbed hippocampal function. Neurotransmitter system abnormalities have been described with inorganic Pb{sup 2+}, but recent attention has focused on the abnormalities in glutamate, dopamine, and/or {gamma}-aminobutyric acid (GABA) uptake, efflux, and metabolism. Abnormalities of GABA and glutamate metabolism are also found with the organolead species. Testable hypotheses are presented that may provide an understanding of the pathogenesis underlying dystrophic neuronal development under the influence of inorganic or organolead intoxication.

  18. Organic-inorganic composites designed for biomedical applications.

    PubMed

    Miyazaki, Toshiki; Ishikawa, Kunio; Shirosaki, Yuki; Ohtsuki, Chikara

    2013-01-01

    Several varieties of ceramics, such as Bioglass-type glasses, sintered hydroxyapatite and glass-ceramic A-W, exhibit specific biological affinity, i.e., direct bonding to surrounding bone, when implanted in bony defects. These bone-bonding ceramics are called bioactive ceramics and are utilized as important bone substitutes in the medical field. However, there is a limitation to their clinical applications because of their inappropriate mechanical properties. Natural bone takes a kind of organic-inorganic composite, where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems with the bioactive ceramics can be solved by material design based on the composites. In this paper, current research topics on the development of bioactive organic-inorganic composites inspired by actual bone microstructure have been reviewed in correlation with preparation methods and various properties. Several kinds of inorganic components have been found to exhibit bioactivity in the body environment. Combination of the inorganic components with various organic polymers enables the development of bioactive organic-inorganic composites. In addition, novel biomedical applications of the composites to drug delivery systems, scaffolds for tissue regeneration and injectable biomaterials are available by combining drugs or biological molecules with appropriate control of its microstructure.

  19. [Characterization of inorganic nano-alundum composite film of polyimide].

    PubMed

    Zhou, Hao-Ran; Zhao, De-Ming; Liu, Xin-Gang; Lin, Fei; Fan, Yong

    2008-03-01

    The key to the study on the regularity about the mechanical, thermology and electricities property of the inorganic nano-mingled organic composition thin film is to understand the incorporated quantity, the particle size and distribution of nano-inorganic matter in the membrane quickly and accurately. In the present paper, the chemical structure, surface morphology and the actual content of nano-Al2O3 of the nano Al2O3-composite film of polyimide were characterized by X-ray atomic fluorescent spectroscopy (XRF), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and atomic forced microscope (AFM). The results are that the organic phase of PI and the inorganic phase of Al2O3 formed a complex composite hybrid system of bond-to-bond pattern, the nano-Al2O3 particles in the film of PI are dispersed homogeneously, and the diameter of the particle is smaller than 50 nm; the weight content of Al2O3 is 7.9% by XRF. The approach we used is an effective way of analyzing the inorganic component of the organic composite film materials doped with the inorganic nano-phase materials with the merits of no pretreatment, no fed charge (for analysis of insulation materials), no-contagion, no destruction, high speed and high accuracy, etc. PMID:18536449

  20. Self-assembled hierarchically structured organic-inorganic composite systems.

    PubMed

    Tritschler, Ulrich; Cölfen, Helmut

    2016-06-01

    Designing bio-inspired, multifunctional organic-inorganic composite materials is one of the most popular current research objectives. Due to the high complexity of biocomposite structures found in nacre and bone, for example, a one-pot scalable and versatile synthesis approach addressing structural key features of biominerals and affording bio-inspired, multifunctional organic-inorganic composites with advanced physical properties is highly challenging. This article reviews recent progress in synthesizing organic-inorganic composite materials via various self-assembly techniques and in this context highlights a recently developed bio-inspired synthesis concept for the fabrication of hierarchically structured, organic-inorganic composite materials. This one-step self-organization concept based on simultaneous liquid crystal formation of anisotropic inorganic nanoparticles and a functional liquid crystalline polymer turned out to be simple, fast, scalable and versatile, leading to various (multi-)functional composite materials, which exhibit hierarchical structuring over several length scales. Consequently, this synthesis approach is relevant for further progress and scientific breakthrough in the research field of bio-inspired and biomimetic materials. PMID:27175790

  1. Exposure to inorganic arsenic in soil increases urinary inorganic arsenic concentrations of residents living in old mining areas.

    PubMed

    Hinwood, Andrea L; Sim, Malcolm R; Jolley, Damien; de Klerk, Nick; Bastone, Elisa B; Gerostamoulos, Jim; Drummer, Olaf H

    2004-03-01

    The short term human exposure studies conducted on populations exposed to high concentrations of inorganic arsenic in soil have been inconsistent in demonstrating a relationship between environmental concentrations and exposure measures. In Australia there are many areas with very high arsenic concentrations in residential soil most typically associated with gold mining activities in rural areas. This study aimed to investigate the relationship between environmental arsenic and urinary inorganic arsenic concentrations in a population living in a gold mining area (soil arsenic concentrations between 9 and 9900 mg kg(-1)), and a control population with low arsenic levels in soil (between 1 and 80 mg kg(-1)). Risk factors for increased urinary arsenic concentrations were also explored. There was a weak but significant relationship between soil arsenic concentrations and inorganic urinary arsenic concentration with a Spearman correlation coefficient of 0.39. When participants with greater than 100 mg kg(-1) arsenic in residential soil were selected, the coefficient increased to 0.64. The geometric mean urinary inorganic arsenic concentration for the exposed group was 1.64 microg L(-1) (inorganic arsenic concentration of 2.46 microg L(-1). In a random effects linear regression model, soil arsenic concentration was the significant predictor of increased urinary arsenic concentrations. Season was shown to have a significant influence on urinary inorganic arsenic concentrations. Other factors such as age, gender and hours of contact with soil may also be important risk factors. These results show that high concentrations of arsenic in soil can make a contribution to urinary inorganic arsenic concentrations.

  2. Internet access to data for scintillation compounds

    SciTech Connect

    Moses, W.W.; West, A.C.; Derenzo, S.E.

    1995-09-01

    The LBL Pulsed X-Ray Facility has scintillation data on a large variety of inorganic scintillators. We offer this information on all compounds that we have tested. The only restrictions/favors that we ask users of this data are: (1) The data is intended for research use and may not be sold; (2) If any portion of the data is used in a publication, that the following text appear somewhere in the publication: {open_quotes}This work was supported in part by the Director, Office of Energy Research, Office of Health and Environmental Research, Medical Applications and Biophysical Research Division of the U.S. Department of Energy under contract No. DE-AC03-76SF00098, and in part by Public Health Service Grant No. R01 CA48002 awarded by the National Cancer Institutes, Department of Health and Human Services.{close_quotes}.

  3. Organic-inorganic interactions in the system of pyrrole-hematite-water at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Ding, Kangle

    2015-11-01

    The distribution and abundance of pyrrolic compounds in sediments and crude oils are most likely influenced by inorganic sedimentary components. In this paper, thermal simulation experiments on the system pyrrole-hematite-water were carried out at elevated temperatures and pressures in order to investigate the effect of organic-inorganic interactions on the preservation of pyrrolic compounds. Compositions of the reaction products were analyzed with GC-MS and GC-FID methods. In the closed system pyrrole-hematite-water, the nitrogen-oxygen exchange obviously occurred at temperatures above 350ºC in accordance with the thermochemical calculation. Large amounts of furan and ammonia were generated after simulation experiments, indicating that the conversion of pyrrole into furan was the dominant reaction. Thermochemical exchange effect between organic nitrogen and inorganic oxygen was obviously facilitated by elevated temperatures and found to be catalyzed by hematite, but inhibited by the increasing volume of water. Thermodynamically water spontaneously reacts with pyrrole above 300ºC. The reaction of pyrrole-hematite-water is an exothermic process in which the reaction heat positively correlates with temperature. The heat released was estimated as 9.0 KJ/(mol) pyrrole - 15.0 KJ/(mol) pyrrole in typical oil reservoirs (100ºC-150ºC) and 15.0-23.0 KJ/(mol) pyrrole in typical gas reservoirs (150ºC-200ºC). The calculated activation energy of the nitrogen-oxygen atom exchange is about 129.59 kJ/mol. According to the experimental results, a small amount of water may effectively initiate the nitrogen-oxygen exchange. The study would improve our evaluating of the preservation and fate of pyrrolic compounds in deeply buried geologic settings and further understanding of thermochemical processes behind the degradation of petroleum.

  4. Analysis of Supercritical-Extracted Chelated Metal Ions From Mixed Organic-Inorganic Samples

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P. (Inventor)

    1996-01-01

    Organic and inorganic contaminants of an environmental sample are analyzed by the same GC-MS instrument by adding an oxidizing agent to the sample to oxidize metal or metal compounds to form metal ions. The metal ions are converted to chelate complexes and the chelate complexes are extracted into a supercritical fluid such as CO2. The metal chelate extract after flowing through a restrictor tube is directly injected into the ionization chamber of a mass spectrometer, preferably containing a refractory metal filament such as rhenium to fragment the complex to release metal ions which are detected. This provides a fast, economical method for the analysis of metal contaminants in a sample and can be automated. An organic extract of the sample in conventional or supercritical fluid solvents can be detected in the same mass spectrometer, preferably after separation in a supercritical fluid chromatograph.

  5. Response of anaerobic ammonium oxidation to inorganic nitrogen fluctuations in temperate estuarine sediments

    NASA Astrophysics Data System (ADS)

    Teixeira, Catarina; Magalhães, Catarina; Joye, Samantha B.; Bordalo, Adriano A.

    2016-07-01

    The discovery of anaerobic ammonium oxidation (anammox) highlighted the importance of alternative metabolic pathways to inorganic nitrogen removal in natural environments, particularly in those subjected to increased nitrate inputs, such as estuaries. Laboratory enrichment experiments were used to test the effect of increasing loads of nitrate (NO3-), nitrite (NO2-), and ammonium (NH4+) on the anammox process. Three Atlantic temperate estuaries (NW Portugal) were investigated along a salinity gradient, and anammox activity was measured under different NO3-, NO2-, and NH4+ treatments, using the isotope pairing technique. Obtained results showed that NO3- stimulated denitrification but not anammox, whereas NO2- additions had a positive effect on anammox activity, confirming its role as a key environmental control. On the other hand, increasing NH4+ concentrations seemed to inhibit anammox for low salinity sites. Our findings suggested an important role of the natural availability of nitrogen compounds in regulating anammox and the magnitude of anammox versus denitrification in estuarine environments.

  6. Studying quantum dot blinking through the addition of an engineered inorganic hole trap.

    PubMed

    Tenne, Ron; Teitelboim, Ayelet; Rukenstein, Pazit; Dyshel, Maria; Mokari, Taleb; Oron, Dan

    2013-06-25

    An all-inorganic compound colloidal quantum dot incorporating a highly emissive CdSe core, which is linked by a CdS tunneling barrier to an engineered charge carrier trap composed of PbS, is designed, and its optical properties are studied in detail at the single-particle level. Study of this structure enables a deeper understanding of the link between photoinduced charging and surface trapping of charge carriers and the phenomenon of quantum dot blinking. In the presence of the hole trap, a "gray" emissive state appears, associated with charging of the core. Rapid switching is observed between the "on" and the "gray" state, although the switching dynamics in and out of the dark "off" state remain unaffected. This result completes the links in the causality chain connecting charge carrier trapping, charging of QDs, and the appearance of a "gray" emission state.

  7. Amphiphilic Organic-Inorganic Hybrid Zeotype Aluminosilicate like a Nanoporous Crystallized Langmuir-Blodgett Film.

    PubMed

    Ikeda, Takuji; Hiyoshi, Norihito; Matsuura, Shun-ichi; Kodaira, Tetsuya; Nakaoka, Takuma; Irisa, Ami; Kawano, Miki; Yamamoto, Katsutoshi

    2015-06-26

    A new organic-inorganic hybrid zeotype compound with amphiphilic one-dimensional nanopore and aluminosilicate composition was developed. The framework structure is composed of double aluminosilicate layers and 12-ring nanopores; a hydrophilic layer pillared by Q(2) silicon atom species and a lipophilic layer pillared by phenylene groups are alternately stacked, and 12-ring nanopores perpendicularly penetrate the layers. The framework topology looks similar to that of an AFI-type zeolite but possesses a quasi-multidimensional pore structure consisting of a 12-ring channel and intersecting small pores equivalent to 8-rings. The hybrid material with alternately laminated lipophilic and hydrophilic nanospaces can be assumed as a crystallized Langmuir-Blodgett film. It demonstrates microporous adsorption for both hydrophilic and lipophilic adsorptives, and its outer surface tightly adsorbs lysozyme whose molecular size is much larger than its micropore opening. Our results suggest the possibility of designing porous adsorbent with high amphipathicity.

  8. Systematization of the mass spectra for speciation of inorganic salts with static secondary ion mass spectrometry.

    PubMed

    Van Ham, Rita; Van Vaeck, Luc; Adams, Freddy C; Adriaens, Annemie

    2004-05-01

    The analytical use of mass spectra from static secondary ion mass spectrometry for the molecular identification of inorganic analytes in real life surface layers and microobjects requires an empirical insight in the signals to be expected from a given compound. A comprehensive database comprising over 50 salts has been assembled to complement prior data on oxides. The present study allows the systematic trends in the relationship between the detected signals and molecular composition of the analyte to be delineated. The mass spectra provide diagnostic information by means of atomic ions, structural fragments, molecular ions, and adduct ions of the analyte neutrals. The prediction of mass spectra from a given analyte must account for the charge state of the ions in the salt, the formation of oxide-type neutrals from oxy salts, and the occurrence of oxidation-reduction processes.

  9. Synthesis and characterization of tunable coumarin- linked glasses as new class of organic/inorganic phosphors

    SciTech Connect

    Luridiana, Alberto; Pretta, Gianluca; Secci, Francesco; Frongia, Angelo; Chiriu, Daniele; Carbonaro, Carlo Maria; Corpino, Riccardo; Ricci, Pier Carlo

    2014-10-21

    It is well known that stilbene with a trans conformation is highly fluorescent. From the viewpoint of molecular structure, coumarins bear a carbon-carbon double bond which is fixed as trans conformation as in trans-stilbene through a lactone structure. This can help to avoid the trans-cis transformation of the double bond under ultraviolet (UV) irradiation as observed in stilbene compounds and results in strong fluorescence and high fluorescence quantum yield and photostability in most of coumarin derivatives. Herein we report some preliminary results about the synthesis and spectroscopic characterization of tunable coumarins and the development of a new linkage protocol for the obtainment of monolayer coumarin-covalently linked glasses. The resulting organic/inorganic coumarin/silica based Self-Assembled Monolayer (SMA) film is proposed as new phosphors for the substituting of critical raw materials, like rare earths, in photonics applications.

  10. Ecotoxicology of organofluorous compounds.

    PubMed

    Murphy, Margaret B; Loi, Eva I H; Kwok, Karen Y; Lam, Paul K S

    2012-01-01

    Organofluorous compounds have been developed for myriad purposes in a variety of fields, including manufacturing, industry, agriculture, and medicine. The widespread use and application of these compounds has led to increasing concern about their potential ecological toxicity, particularly because of the stability of the C-F bond, which can result in chemical persistence in the environment. This chapter reviews the chemical properties and ecotoxicology of four groups of organofluorous compounds: fluorinated refrigerants and propellants, per- and polyfluorinated compounds (PFCs), fluorinated pesticides, and fluoroquinolone antibiotics. These groups vary in their environmental fate and partitioning, but each raises concern in terms of ecological risk on both the regional and global scale, particularly those compounds with long environmental half-lives. Further research on the occurrence and toxicities of many of these compounds is needed for a more comprehensive understanding of their ecological effects.

  11. Effect of Ammonia on Glyoxal SOA in Inorganic Aqueous Seed Particles

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Volkamer, R. M.; Laskin, A.; Laskin, J.; Koenig, T. K.; Baltensperger, U.; Dommen, J.; Prevot, A. S.; Slowik, J.; Maxut, A.; Noziere, B.; Wang, S.; Yu, J.

    2014-12-01

    Glyoxal (C2H2O2) is a ubiquitous small molecule that is observed in the terrestrial biogenic, urban, marine and arctic atmosphere. It forms secondary organic aerosol (SOA) as a result of multiphase chemical reactions in water. The rate of these reactions is controlled by the effective Henry's law partitioning coefficient (Heff) which is enhanced in the presence of inorganic salts by up to 3 orders of magnitude (Kampf et al., 2013, ES&T). Aerosol particles are among the most concentrated salt solutions on Earth and the SOA formation rate in aerosol water is strongly modified by this 'salting-in' mechanism. We have studied the effect of gas-phase ammonia on the rate of SOA formation in real particles composed of different inorganic salts (sulfate, nitrate, chloride). A series of simulation chamber experiments were conducted at the Paul Scherrer Institut in Switzerland during Summer 2013. The SOA formation rate in experiments with added gas-phase ammonia (NH3) was found to be greatly accelerated compared to experiments without added NH3. Product analysis of particles included online HR-ToF-AMS and offline nano-DESI and LC-MS. We find that imidazole-like oligomer compounds dominate the observed products, rather than high-O/C oligomers containing solely C, H, and O. We further employed isotopically labelled di-substituted 13C glyoxal experiments in order to unambiguously link product formation to glyoxal (and separate it from chamber wall contamination). We present a molecular perspective on the reaction pathways and evaluate the effect of environmental parameters (RH, particle pH, seed chemical composition) on the formation of these imidazole-like oligomer compounds. The implications for SOA formation from photosensitized oxidation chemistry is discussed.

  12. Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells

    USGS Publications Warehouse

    Akob, Denise M.; Cozzarelli, Isabelle M.; Dunlap, Darren S.; Rowan, Elisabeth L.; Lorah, Michelle M.

    2015-01-01

    Hydraulically fractured shales are becoming an increasingly important source of natural gas production in the United States. This process has been known to create up to 420 gallons of produced water (PW) per day, but the volume varies depending on the formation, and the characteristics of individual hydraulic fracture. PW from hydraulic fracturing of shales are comprised of injected fracturing fluids and natural formation waters in proportions that change over time. Across the state of Pennsylvania, shale gas production is booming; therefore, it is important to assess the variability in PW chemistry and microbiology across this geographical span. We quantified the inorganic and organic chemical composition and microbial communities in PW samples from 13 shale gas wells in north central Pennsylvania. Microbial abundance was generally low (66–9400 cells/mL). Non-volatile dissolved organic carbon (NVDOC) was high (7–31 mg/L) relative to typical shallow groundwater, and the presence of organic acid anions (e.g., acetate, formate, and pyruvate) indicated microbial activity. Volatile organic compounds (VOCs) were detected in four samples (∼1 to 11.7 μg/L): benzene and toluene in the Burket sample, toluene in two Marcellus samples, and tetrachloroethylene (PCE) in one Marcellus sample. VOCs can be either naturally occurring or from industrial activity, making the source of VOCs unclear. Despite the addition of biocides during hydraulic fracturing, H2S-producing, fermenting, and methanogenic bacteria were cultured from PW samples. The presence of culturable bacteria was not associated with salinity or location; although organic compound concentrations and time in production were correlated with microbial activity. Interestingly, we found that unlike the inorganic chemistry, PW organic chemistry and microbial viability were highly variable across the 13 wells sampled, which can have important implications for the reuse and handling of these fluids

  13. The role of polar, lamdba (Λ)-shaped building units in noncentrosymmetric inorganic structures.

    PubMed

    Donakowski, Martin D; Gautier, Romain; Yeon, Jeongho; Moore, Donald T; Nino, Juan C; Halasyamani, P Shiv; Poeppelmeier, Kenneth R

    2012-05-01

    A methodology for the design of polar, inorganic structures is demonstrated here with the packing of lambda (Λ)-shaped basic building units (BBUs). Noncentrosymmetric (NCS) solids with interesting physical properties can be created with BBUs that lack an inversion center and are likely to pack into a polar configuration; previous methods to construct these solids have used NCS octahedra as BBUs. Using this methodology to synthesize NCS solids, one must increase the coordination of the NCS octahedra with maintenance of the noncentrosymmetry of the bulk. The first step in this progression from an NCS octahedron to an inorganic NCS solid is the formation of a bimetallic BBU. This step is exemplified with the compound CuVOF(4)(H(2)O)(7): this compound, presented here, crystallizes in an NCS structure with ordered, isolated [Cu(H(2)O)(5)](2+) cations and [VOF(4)(H(2)O)](2-) anions into Λ-shaped, bimetallic BBUs to form CuVOF(4)(H(2)O)(6)·H(2)O, owing to the Jahn-Teller distortion of Cu(2+). Conversely, the centrosymmetric heterotypes with the same formula MVOF(4)(H(2)O)(7) (M(II) = Co, Ni, and Zn) exhibit ordered, isolated [VOF(4)(H(2)O)](2-) and [M(H(2)O)(6)](2+) ionic species in a hydrogen bond network. CuVOF(4)(H(2)O)(7) exhibits a net polar moment while the heterotypes do not; this demonstrates that Λ-shaped BBUs give a greater probability for and, in this case, lead to NCS structures.

  14. Exogenously treated mammalian sex hormones affect inorganic constituents of plants.

    PubMed

    Erdal, Serkan; Dumlupinar, Rahmi

    2011-10-01

    The present study was undertaken to reveal the changes in inorganic constituents of plants exposed to mammalian sex hormones (MSH). Chickpea leaves were sprayed with 10(-4), 10(-6), 10(-9), 10(-12), and 10(-15) M concentrations of progesterone, β-estradiol, and androsterone at 7th day after sowing. The plants were harvested at the end of 18 days after treatment of MSH solutions and the inorganic components determined using a wavelength-dispersive X-ray fluorescence spectroscopy technique. At all of the concentrations tested, MSH significantly increased the contents of K, S, Na, Ca, Mg, Zn, Fe, P, Cu, and Ni. Interestingly, only Mn and Cl contents decreased. The maximum changes in the inorganic composition were recorded at 10(-6) M for plants treated with progesterone and 10(-9) M for plants treated with β-estradiol and androsterone.

  15. Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics

    PubMed Central

    Wang, Shuodao; Huang, Yonggang; Rogers, John A.

    2016-01-01

    Mechanical concepts and designs in inorganic circuits for different levels of stretchability are reviewed in this paper, through discussions of the underlying mechanics and material theories, fabrication procedures for the constituent microscale/nanoscale devices, and experimental characterization. All of the designs reported here adopt heterogeneous structures of rigid and brittle inorganic materials on soft and elastic elastomeric substrates, with mechanical design layouts that isolate large deformations to the elastomer, thereby avoiding potentially destructive plastic strains in the brittle materials. The overall stiffnesses of the electronics, their stretchability, and curvilinear shapes can be designed to match the mechanical properties of biological tissues. The result is a class of soft stretchable electronic systems that are compatible with traditional high-performance inorganic semiconductor technologies. These systems afford promising options for applications in portable biomedical and health-monitoring devices. Mechanics theories and modeling play a key role in understanding the underlining physics and optimization of these systems. PMID:27668126

  16. Transparent bulk-size nanocomposites with high inorganic loading

    SciTech Connect

    Chen, Shi; Gaume, Romain

    2015-12-14

    With relatively high nanoparticle loading in polymer matrices, hybrid nanocomposites made by colloidal dispersion routes suffer from severe inhomogeneous agglomeration, a phenomenon that deteriorates light transmission even when the refractive indices of the inorganic and organic phases are closely matched. The dispersion of particles in a matrix is of paramount importance to obtain composites of high optical quality. Here, we describe an innovative, yet straightforward method to fabricate monolithic transparent hybrid nanocomposites with very high particle loading and high refractive index mismatch tolerance between the inorganic and organic constituents. We demonstrate 77% transmission at 800 nm in a 2 mm-thick acrylate polymer nanocomposite containing 61 vol. % CaF{sub 2} nanoparticles. Modeling shows that similar performance could easily be obtained with various inorganic phases relevant to a number of photonic applications.

  17. Bulk synthesis of polymer-inorganic colloidal clusters.

    PubMed

    Perro, Adeline; Manoharan, Vinothan N

    2010-12-21

    We describe a procedure to synthesize colloidal clusters with polyhedral morphologies in high yield (liter quantities at up to 70% purity) using a combination of emulsion polymerization and inorganic surface chemistry. We show that the synthesis initially used for silica-polystyrene hybrid clusters can be generalized to create clusters from other inorganic and polymer particles. We also show that high yields of particular morphologies can be obtained by precise control of the inorganic seed particle size, a finding that can be explained using a hard-sphere packing model. These clusters can be further chemically modified for a variety of applications. Introducing a cross-linker leads to colloidal clusters that can be index matched in an appropriate solvent, allowing them to be used for particle tracking or optical studies of colloidal self-assembly. Also, depositing a thin silica layer on these colloids allows the surface properties to be controlled using silane chemistry.

  18. Optical properties of inorganic electroluminescent devices with nanostripe electrodes

    NASA Astrophysics Data System (ADS)

    Nonaka, Toshihiro; Yamamoto, Shin-ichi

    2016-03-01

    In this paper, we report on the luminescence (emission) characteristics of a laminated dispersion-type inorganic electroluminescent (EL) device with a nanostripe electrode made of thin Al film, instead of a conventional indium-tin oxide (ITO) transparent electrode, on the emission side of the device. The transmittance of the Al nanostripe electrode, with 60-nm line-and-space widths, was 45%. We compared an inorganic EL device positioned between two thin films of Al and the inorganic EL device with the Al nanostripe electrode using electric field simulations and actual experiments. We were able to apply the same electric field intensity to the phosphor layer in the conventional structure and to the new structure. Therefore, with an Al nanostripe electrode on one side of the EL device, it is possible to fabricate an ITO-free display.

  19. Heterostructures based on inorganic and organic van der Waals systems

    SciTech Connect

    Lee, Gwan-Hyoung; Lee, Chul-Ho; Zande, Arend M. van der; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Hone, James; Nuckolls, Colin; Heinz, Tony F.; Kim, Philip

    2014-09-01

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS{sub 2} heterostructures for memory devices; graphene/MoS{sub 2}/WSe{sub 2}/graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors.

  20. Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics

    PubMed Central

    Wang, Shuodao; Huang, Yonggang; Rogers, John A.

    2016-01-01

    Mechanical concepts and designs in inorganic circuits for different levels of stretchability are reviewed in this paper, through discussions of the underlying mechanics and material theories, fabrication procedures for the constituent microscale/nanoscale devices, and experimental characterization. All of the designs reported here adopt heterogeneous structures of rigid and brittle inorganic materials on soft and elastic elastomeric substrates, with mechanical design layouts that isolate large deformations to the elastomer, thereby avoiding potentially destructive plastic strains in the brittle materials. The overall stiffnesses of the electronics, their stretchability, and curvilinear shapes can be designed to match the mechanical properties of biological tissues. The result is a class of soft stretchable electronic systems that are compatible with traditional high-performance inorganic semiconductor technologies. These systems afford promising options for applications in portable biomedical and health-monitoring devices. Mechanics theories and modeling play a key role in understanding the underlining physics and optimization of these systems.