Inorganic Polymer Matrix Composite Strength Related to Interface Condition
Radford, Donald W.; Grabher, Andrew; Bridge, John
2009-01-01
Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon-coated fibers are compared using room temperature 3-point bend testing. Carbon-coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.
Synthesis of porous inorganic hollow fibers without harmful solvents.
Shukla, Sushumna; de Wit, Patrick; Luiten-Olieman, Mieke W J; Kappert, Emiel J; Nijmeijer, Arian; Benes, Nieck E
2015-01-01
A route for the fabrication of porous inorganic hollow fibers with high surface-area-to-volume ratio that avoids harmful solvents is presented. The approach is based on bio-ionic gelation of an aqueous mixture of inorganic particles and sodium alginate during wet spinning. In a subsequent thermal treatment, the bio-organic material is removed and the inorganic particles are sintered. The method is applicable to the fabrication of various inorganic fibers, including metals and ceramics. The route completely avoids the use of organic solvents, such as N-methyl-2-pyrrolidone, and additives associated with the currently used fiber fabrication methods. In addition, it inherently avoids the manifestation of so-called macro voids and allows the facile incorporation of additional metal oxides in the inorganic hollow fibers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Akyildiz, Halil I; Stano, Kelly L; Roberts, Adam T; Everitt, Henry O; Jur, Jesse S
2016-05-03
Organic-inorganic hybrid materials formed by sequential vapor infiltration (SVI) of trimethylaluminum into polyester fibers are demonstrated, and the photoluminescence of the fibers is evaluated using a combined UV-vis and photoluminescence excitation (PLE) spectroscopy approach. The optical activity of the modified fibers depends on infiltration thermal processing conditions and is attributed to the reaction mechanisms taking place at different temperatures. At low temperatures a single excitation band and dual emission bands are observed, while, at high temperatures, two distinct absorption bands and one emission band are observed, suggesting that the physical and chemical structure of the resulting hybrid material depends on the SVI temperature. Along with enhancing the photoluminescence intensity of the PET fibers, the internal quantum efficiency also increased to 5-fold from ∼4-5% to ∼24%. SVI processing also improved the photocatalytic activity of the fibers, as demonstrated by photodeposition of Ag and Au metal particles out of an aqueous metal salt solution onto fiber surfaces via UVA light exposure. Toward applications in flexible electronics, well-defined patterning of the metallic materials is achieved by using light masking and focused laser rastering approaches.
Code of Federal Regulations, 2010 CFR
2010-01-01
... organic and inorganic fibers (kevlar) described in ECCN 1C210. (i) [Reserved] (ii) Syria. Applications for...) Contract sanctity date for high strength organic and inorganic fibers (kevlar) described in ECCN 1C210 that... Supplement. (B) Contract sanctity date for all other high strength organic and inorganic fibers (kevlar...
Qiu, Penghe; Mao, Chuanbin
2010-01-01
Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering. PMID:20158250
Water-equivalent fiber radiation dosimeter with two scintillating materials
Qin, Zhuang; Hu, Yaosheng; Ma, Yu; Lin, Wei; Luo, Xianping; Zhao, Wenhui; Sun, Weimin; Zhang, Daxin; Chen, Ziyin; Wang, Boran; Lewis, Elfed
2016-01-01
An inorganic scintillating material plastic optical fiber (POF) dosimeter for measuring ionizing radiation during radiotherapy applications is reported. It is necessary that an ideal dosimeter exhibits many desirable qualities, including water equivalence, energy independence, reproducibility, dose linearity. There has been much recent research concerning inorganic dosimeters. However, little reference has been made to date of the depth-dose characteristics of dosimeter materials. In the case of inorganic scintillating materials, they are predominantly non water-equivalent, with their effective atomic weight (Zeff) being typically much greater than that of water. This has been a barrier in preventing inorganic scintillating material dosimeter from being used in actual clinical applications. In this paper, we propose a parallel-paired fiber light guide structure to solve this problem. Two different inorganic scintillating materials are embedded separately in the parallel-paired fiber. It is shown that the information of water depth and absorbed dose at the point of measurement can be extracted by utilizing their different depth-dose properties. PMID:28018715
Flexible aerogel composite for mechanical stability and process of fabrication
Coronado, Paul R.; Poco, John F.
2000-01-01
A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.
Flexible aerogel composite for mechanical stability and process of fabrication
Coronado, Paul R.; Poco, John F.
1999-01-01
A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.
Molten salt battery having inorganic paper separator
Walker, Jr., Robert D.
1977-01-01
A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.
Novel, inorganic composites using porous, alkali-activated, aluminosilicate binders
NASA Astrophysics Data System (ADS)
Musil, Sean
Geopolymers are an inorganic polymeric material composed of alumina, silica, and alkali metal oxides. Geopolymers are chemical and fire resistant, can be used as refractory adhesives, and are processed at or near ambient temperature. These properties make geopolymer an attractive choice as a matrix material for elevated temperature composites. This body of research investigated numerous different reinforcement possibilities and variants of geopolymer matrix material and characterized their mechanical performance in tension, flexure and flexural creep. Reinforcements can then be chosen based on the resulting properties to tailor the geopolymer matrix composites to a specific application condition. Geopolymer matrix composites combine the ease of processing of polymer matrix composites with the high temperature capability of ceramic matrix composites. This study incorporated particulate, unidirectional fiber and woven fiber reinforcements. Sodium, potassium, and cesium based geopolymer matrices were evaluated with cesium based geopolymer showing great promise as a high temperature matrix material. It showed the best strength retention at elevated temperature, as well as a very low coefficient of thermal expansion when crystallized into pollucite. These qualities made cesium geopolymer the best choice for creep resistant applications. Cesium geopolymer binders were combined with unidirectional continuous polycrystalline mullite fibers (Nextel(TM) 720) and single crystal mullite fibers, then the matrix was crystallized to form cubic pollucite. Single crystal mullite fibers were obtained by the internal crystallization method and show excellent creep resistance up to 1400°C. High temperature flexural strength and flexural creep resistance of pollucite and polycrystalline/single-crystal fibers was evaluated at 1000-1400°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanadi, A.R.; Caulfield, D.F.; Jacobson, R.E.
Kenaf (Hibiscus Cannabinus) is a fast growing annual growth plant that is harvested for its bast fibers. These fibers have excellent specific properties and have potential to be outstanding reinforcing fillers in plastics. In our experiments, the fibers and polypropylene (PP) were blended in a thermokinetic mixer and then injection molded, with the fiber weight fractions varying to 60%. A maleated polypropylene was used to improve the interaction and adhesion between the non-polar matrix and the polar lignocellulosic fibers. The specific tensile and flexural moduli of a 50 % by volume (39 % by volume) of kenaf-PP composites compares favorablymore » with a 40 % by weight of glass fiber-PP injection molded composites, These results suggest that kenaf fibers are a viable alternative to inorganic/mineral based reinforcing fibers as long as the right processing conditions are used and for applications where the higher water absorption is not critical.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanadi, A.R.; Caulfield, D.F.; Jacobson, R.E.
Kenaf (Hibiscus cannabinus) is a fast growing annual growth plant that is harvested for its bast fibers. These fibers have excellent specific properties and have potential to be outstanding reinforcing fillers in plastics. In these experiments, the fibers and polypropylene (PP) were blended in a thermokinetic mixer and then injection molded, with the fiber weight fractions varying to 60%. A maleated polypropylene was used to improve the interaction and adhesion between the nonpolar matrix and the polar lignocellulosic fibers. The specific tensile and flexural moduli of a 50% by weight (39% by volume) of kenaf-PP composite compare favorably with amore » 40% by weight of glass fiber-PP injection-molded composite. These results suggest that kenaf fibers are a viable alternative to inorganic/mineral-based reinforcing fibers as long as the right processing conditions are used and they are used in applications where the higher water absorption is not critical.« less
Ceramic fibers for matrix composites in high-temperature engine applications
Baldus; Jansen; Sporn
1999-07-30
High-temperature engine applications have been limited by the performance of metal alloys and carbide fiber composites at elevated temperatures. Random inorganic networks composed of silicon, boron, nitrogen, and carbon represent a novel class of ceramics with outstanding durability at elevated temperatures. SiBN(3)C was synthesized by pyrolysis of a preceramic N-methylpolyborosilazane made from the single-source precursor Cl(3)Si-NH-BCl(2). The polymer can be processed to a green fiber by melt-spinning, which then undergoes an intermediate curing step and successive pyrolysis. The ceramic fibers, which are presently produced on a semitechnical scale, combine several desired properties relevant for an application in fiber-reinforced ceramic composites: thermal stability, mechanical strength, high-temperature creep resistivity, low density, and stability against oxidation or molten silicon.
Friction and wear of TPS fibers: A study of the adhesion and friction of high modulus fibers
NASA Technical Reports Server (NTRS)
Bascom, Willard D.; Lee, Ilzoo
1990-01-01
The adhesional and frictional forces between filaments in a woven fabric or felt, strongly influenced the processability of the fiber and the mechanical durability of the final product. Even though the contact loads between fibers are low, the area of contact is extremely small giving rise to very high stresses; principally shear stresses. One consequence of these strong adhesional and frictional forces is the resistance of fibers to slide past each other during weaving or when processed into nonwoven mats or felts. Furthermore, the interfiber frictional forces may cause surface damage and thereby reduce the fiber strength. Once formed into fabrics, flexural handling and manipulation of the material again causes individual filaments to rub against each other resulting in modulus, brittle fibers such as those used in thermal protection systems (TPS). The adhesion and friction of organic fibers, notably polyethylene terephthalate (PET) fibers, have been extensively studied, but there has been very little work reported on high modulus inorganic fibers. An extensive study was made of the adhesion and friction of flame drawn silica fibers in order to develop experimental techniques and a scientific basis for data interpretation. Subsequently, these methods were applied to fibers of interest in TPS materials.
FTIR Monitoring Of Curing Of Composites
NASA Technical Reports Server (NTRS)
Druy, Mark A.; Stevenson, William A.; Young, Philip R.
1990-01-01
Infrared-sensing optical fiber system developed to monitor principal infrared absorption bands resulting from vibrations of atoms and molecules as chemical bonds form when resin cured. System monitors resin chemistry more directly. Used to obtain Fourier transform infrared (FTIR) spectrum from graphite fiber/polyimide matrix resin prepreg. Embedded fiber optic FTIR sensor used to indicate state of cure of thermosetting composite material. Developed primarily to improve quality of advanced composites, many additional potential applications exist because principal of operation applicable to all organic materials and most inorganic gases. Includes monitoring integrities of composite materials in service, remote sensing of hazardous materials, and examination of processes in industrial reactors and furnaces.
Kenaf Bast Fibers—Part II: Inorganic Nanoparticle Impregnation for Polymer Composites
Shi, Jinshu; Shi, Sheldon Q.; Barnes, H. Michael; ...
2011-01-01
The objective of this study was to investigate an inorganic nanoparticle impregnation (INI) technique to improve the compatibility between kenaf bast fibers and polyolefin matrices. The Scanning Electron Microscopy (SEM) was used to examine the surface morphology of the INI-treated fibers showing that the CaCO 3 nanoparticle crystals grew onto the fiber surface. Energy-dispersive X-ray spectroscopy (EDS) was used to verify the CaCO 3 nanoparticle deposits on the fiber surface. The tension tests of the individual fiber were conducted, and the results showed that the tensile strength of the fibers increased significantly (more than 20%) after the INI treatments. Polymermore » composites were fabricated using the INI-treated fiber as reinforcement and polypropylene (PP) as the matrix. The results showed that the INI treatments improved the compatibility between kenaf fibers and PP matrix. The tensile modulus and tensile strength of the composites reinforced with INI-treated fibers increased by 25.9% and 10.4%, respectively, compared to those reinforced with untreated kenaf fibers.« less
Organic/Inorganic Polymeric Composites for Heat-Transfer Reduction
NASA Technical Reports Server (NTRS)
Smith, Trent; Williams, Martha
2008-01-01
Organic/inorganic polymeric composite materials have been invented with significant reduction in heat-transfer properties. Measured decreases of 20-50 percent in thermal conductivity versus that of the unmodified polymer matrix have been attained. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. The present embodiments are applicable, but not limited to: racing applications, aerospace applications, textile industry, electronic applications, military hardware improvements, and even food service industries. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid process systems where heat flow through materials is problematic and not desired. With respect to thermal conductivity and physical properties, these materials are superior alternatives to prior composite materials. These materials may prove useful as substitutes for metals in some cryogenic applications. A material of this type can be made from a blend of thermoplastics, elastomers, and appropriate additives and processed on normal polymer processing equipment. The resulting processed organic/inorganic composite can be made into fibers, molded, or otherwise processed into useable articles.
Deb-Choudhury, Santanu; Prabakar, Sujay; Krsinic, Gail; Dyer, Jolon M; Tilley, Richard D
2013-07-31
Low-molecular-weight organic molecules, such as coumarins and stilbenes, are used commercially as fluorescent whitening agents (FWAs) to mask photoyellowing and to brighten colors in fabrics. FWAs achieve this by radiating extra blue light, thus changing the hue and also adding to the brightness. However, organic FWAs can rapidly photodegrade in the presence of ultraviolet (UV) radiation, exacerbating the yellowing process through a reaction involving singlet oxygen species. Inorganic nanoparticles, on the other hand, can provide a similar brightening effect with the added advantage of photostability. We report a targeted approach in designing new inorganic silicon- and germanium-based nanoparticles, functionalized with hydrophilic (amine) surface terminations as novel inorganic FWAs. When applied on wool, by incorporation in a sol-gel Si matrix, the inorganic FWAs improved brightness properties, demonstrated enhanced photostability toward UV radiation, especially the germanium nanoparticles, and also generated considerably lower levels of reactive oxygen species compared to a commercial stilbene-based organic FWA, Uvitex NFW.
Kumar, Ashwini; Gaurav; Malik, Ashok Kumar; Tewary, Dhananjay Kumar; Singh, Baldev
2008-03-03
Solid phase microextraction (SPME) is an innovative, solvent free technology that is fast, economical and versatile. SPME is a fiber coated with a liquid (polymer), a solid (sorbent) or a combination of both. The fiber coating takes up the compounds from the sample by absorption in the case of liquid coatings or adsorption in the case of solid coatings. The SPME fiber is then transferred with the help of a syringe like device into the analytical instrument for desorption and analysis of the target analytes. The sol-gel process provides a versatile method to prepare size, shape and charge selective materials of high purity and homogeneity by means of preparation techniques different from the traditional ones, for the chemical analysis. This review is on the current state of the art and future trends in the developments of solid phase microextraction (SPME) fibers using sol-gel method. To achieve more selective determination of different compound classes, the variety of different coating material for SPME fibers has increased. Further developments in SPME as a highly efficient extraction technique, will greatly depend on new breakthroughs in the area of new coating material developments for the SPME fibers. In sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. This approach is efficient in integrating the advantageous properties of organic and inorganic material systems and thereby increasing and improving the extraction selectivity of the produced amalgam organic-inorganic stationary phases. This review is mainly focused on recent advanced developments in the design, synthesis, characterisation, properties and application of sol-gel in preparation of coatings for the SPME fibers.
Fiber reinforced cementitious matrix (FRCM) composites for reinforced concrete strengthening.
DOT National Transportation Integrated Search
2013-07-01
Fiber-reinforced composite systems are widely used for strengthening, repairing, and rehabilitation of reinforced concrete structural : members. A promising newly-developed type of composite, comprised of fibers and an inorganic cement-based matrix, ...
Vigliaturo, Ruggero; Capella, Silvana; Rinaudo, Caterina; Belluso, Elena
2016-07-01
The purpose of this work is to define a sample preparation protocol that allows inorganic fibers and particulate matter extracted from different biological samples to be characterized morphologically, crystallographically and chemically by transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The method does not damage or create artifacts through chemical attacks of the target material. A fairly rapid specimen preparation is applied with the aim of performing as few steps as possible to transfer the withdrawn inorganic matter onto the TEM grid. The biological sample is previously digested chemically by NaClO. The salt is then removed through a series of centrifugation and rinse cycles in deionized water, thus drastically reducing the digestive power of the NaClO and concentrating the fibers for TEM analysis. The concept of equivalent hydrodynamic diameter is introduced to calculate the settling velocity during the centrifugation cycles. This technique is applicable to lung tissues and can be extended to a wide range of organic materials. The procedure does not appear to cause morphological damage to the fibers or modify their chemistry or degree of crystallinity. The extrapolated data can be used in interdisciplinary studies to understand the pathological effects caused by inorganic materials.
Characterization of exposure and dose of man made vitreous fiber in experimental studies.
Hamilton, R D; Miiller, W C; Christensen, D R; Anderson, R; Hesterberg, T W
1994-01-01
The use of fibrous test materials in in vivo experiments introduces a number of significant problems not associated with nonfibrous particulates. The key to all aspects of the experiment is the accurate characterization of the test material in terms of fiber length, diameter, particulate content, and chemistry. All data related to fiber properties must be collected in a statistically sound manner to eliminate potential bias. Procedures similar to those outlined by the National Institute of Occupational Safety and Health (NIOSH) or the World Health Organization (WHO) must be the basis of any fiber characterization. The test material to which the animal is exposed must be processed to maximize the amount of respirable fiber and to minimize particulate content. The complex relationship among the characteristics of the test material, the properties of the delivery system, and the actual dose that reaches the target tissue in the lung makes verification of dose essential. In the case of man-made vitreous fibers (MMVF), dose verification through recovery of fiber from exposed animals is a complex task. The potential for high fiber solubility makes many of the conventional techniques for tissue preservation and digestion inappropriate. Processes based on the minimum use of aggressive chemicals, such as cold storage and low temperature ashing, are potentially useful for a wide range of inorganic fibers. Any processes used to assess fiber exposure and dose must be carefully validated to establish that the chemical and physical characteristics of the fibers have not been changed and that the dose to the target tissue is completely and accurately described. PMID:7882912
Salazar-Flores, Margarita; Rivera-Rodríguez, Rosa María; Vázquez-Manriquez, María Eugenia; Arenas-Huertero, Francisco
2009-08-01
In order to evaluate the synergistic effect of habitual smoking and air pollution in Mexico City on the retention of inorganic fibers, ferruginous bodies (FB) were quantified as markers of exposure to inorganic fibers in lung digests from 426 autopsy cases. FB were isolated from 426 lung digests from cases with several lung diseases. The results revealed more retention of FB in the smokers group than in non-smokers: 38 FB per gram (FB/g) versus 11.2 FB/g, respectively (p < 0.05). Male smokers living in Mexico City increased their median to 54 FB/g. This contrasts with the median of outside residents: 11.2 FB/g (p < 0.002). Housewives and manual laborers increased their medians when the smoking habit was positive: from 11 to 14 FB/g, and from 16 to 21.5 FB/g, respectively. There is an effect of tobacco smoke on the retention of more fibers identified as FB when the individuals are males and Mexico City residents.
Fabrication of pullulan and pectin submicron fibers by electrospinning
USDA-ARS?s Scientific Manuscript database
Pullulan (PUL), a food grade polysaccharide, was fabricated into fibrous mats from fibers of submicron size by electrospinning. The effects of inorganic salts and polyanions present in the electrospinning solution on the properties of the resultant fibers was investigated. The inclusion of exogenous...
The effects of low-temperature plasma treatment on the capillary properties of inorganic fibers
NASA Astrophysics Data System (ADS)
Garifullin, A. R.; Abdullin, I. Sh; Skidchenko, E. A.; Krasina, I. V.; Shaekhov, M. F.
2016-01-01
Solving the problem of achieving high adhesion between the components in the polymeric composite material (PCM) based on carbon fibers (CF) and basalt fibers (BF) is proposed to use the radio-frequency (RF) plasma under lower pressure by virtue of efficiency, environmental friendliness and rationality of the method. The paper gives the results of studies of the properties of CF and BF after RF capacitive discharge plasma treatment. The plasma modification modes of carbon and basalt fiber were investigated. The efficiency of treatment tool in surface properties modification of carbon and basalt fibers was found, namely capillary properties of CF and BF were researched. The optimal treatment modes were selected. It was found that the method of plasma modification in the radio-frequency capacitive discharge under the lower pressure contributes enhancing the capillary properties of inorganic fibers, in particular carbon and basalt ones. It shows the tendency to increase of the adhesive properties in PCM, and, consequently, the increase of the physical and mechanical properties of the products.
Porous block nanofiber composite filters
Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold
2016-08-09
Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).
Method for preparing hydrous zirconium oxide gels and spherules
Collins, Jack L.
2003-08-05
Methods for preparing hydrous zirconium oxide spherules, hydrous zirconium oxide gels such as gel slabs, films, capillary and electrophoresis gels, zirconium monohydrogen phosphate spherules, hydrous zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite sorbent, zirconium monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite, hydrous zirconium oxide fiber materials, zirconium oxide fiber materials, hydrous zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite and spherules of barium zirconate. The hydrous zirconium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process are useful as inorganic ion exchangers, catalysts, getters and ceramics.
Silica/Polymer and Silica/Polymer/Fiber Composite Aerogels
NASA Technical Reports Server (NTRS)
Ou, Danny; Stepanian, Christopher J.; Hu, Xiangjun
2010-01-01
Aerogels that consist, variously, of neat silica/polymer alloys and silica/polymer alloy matrices reinforced with fibers have been developed as materials for flexible thermal-insulation blankets. In comparison with prior aerogel blankets, these aerogel blankets are more durable and less dusty. These blankets are also better able to resist and recover from compression . an important advantage in that maintenance of thickness is essential to maintenance of high thermal-insulation performance. These blankets are especially suitable as core materials for vacuum- insulated panels and vacuum-insulated boxes of advanced, nearly seamless design. (Inasmuch as heat leakage at seams is much greater than heat leakage elsewhere through such structures, advanced designs for high insulation performance should provide for minimization of the sizes and numbers of seams.) A silica/polymer aerogel of the present type could be characterized, somewhat more precisely, as consisting of multiply bonded, linear polymer reinforcements within a silica aerogel matrix. Thus far, several different polymethacrylates (PMAs) have been incorporated into aerogel networks to increase resistance to crushing and to improve other mechanical properties while minimally affecting thermal conductivity and density. The polymethacrylate phases are strongly linked into the silica aerogel networks in these materials. Unlike in other organic/inorganic blended aerogels, the inorganic and organic phases are chemically bonded to each other, by both covalent and hydrogen bonds. In the process for making a silica/polymer alloy aerogel, the covalent bonds are introduced by prepolymerization of the methacrylate monomer with trimethoxysilylpropylmethacrylate, which serves as a phase cross-linker in that it contains both organic and inorganic monomer functional groups and hence acts as a connector between the organic and inorganic phases. Hydrogen bonds are formed between the silanol groups of the inorganic phase and the carboxyl groups of the organic phase. The polymerization process has been adapted to create interpenetrating PMA and silica-gel networks from monomers and prevent any phase separations that could otherwise be caused by an overgrowth of either phase. Typically, the resulting PMA/silica aerogel, without or with fiber reinforcement, has a density and a thermal conductivity similar to those of pure silica aerogels. However, the PMA enhances mechanical properties. Specifically, flexural strength at rupture is increased to 102 psi (=0.7 MPa), about 50 times the flexural strength of typical pure silica aerogels. Resistance to compression is also increased: Applied pressure of 17.5 psi (=0.12 MPa) was found to reduce the thicknesses of several composite PMA/silica aerogels by only about 10 percent.
Urinary asbestos fibers and inorganic particles in past asbestos workers.
Zaina, Sara; Mastrangelo, Giuseppe; Ballarin, Maria Nicoletta; Scoizzato, Luca; Carradori, Giorgio; Fedeli, Ugo; Capella, Silvana; Belluso, Elena
2016-05-03
To assess the validity of the procedure as a test of asbestos exposure, we compared urinary asbestos fibers with occupational and environmental exposure data in a random sample of 48 subjects with high past asbestos exposure. Occupational and environmental exposure was estimated on questionnaire, pleural plaques were diagnosed with computed tomography, and inorganic fibers and particles were identified by scanning electron microscope with an energy-dispersive spectrometry. Few urinary asbestos fibers (in 15% of workers and 17% of cases with pleural plaques) and high amount of urinary silicate (particularly nonfibrous particles) were detected. Asbestos undergoes dissolution in lung tissues, but the secondary minerals are largely unknown. These materials, possibly nonfibrous silicates or metals, could be excreted with urine. Therefore, another study including a control group is warranted to discriminate the occupational origin of minerals in the urine.
Ultem((R))/ZIF-8 mixed matrix hollow fiber membranes for CO2/N-2 separations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Y; Johnson, JR; Karvan, O
2012-05-15
Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem((R)) 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13 wt% (17more » vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO2/N-2 gas pairs was observed for both pure gas and mixed gas feeds. (C) 2012 Elsevier B.V. All rights reserved.« less
Highly Flexible Superhydrophobic and Fire-Resistant Layered Inorganic Paper.
Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Sun, Tuan-Wei; Shen, Yue-Qin
2016-12-21
Traditional paper made from plant cellulose fibers is easily destroyed by either liquid or fire. In addition, the paper making industry consumes a large amount of natural trees and thus causes serious environmental problems including excessive deforestation and pollution. In consideration of the intrinsic flammability of organics and minimizing the effects on the environment and creatures, biocompatible ultralong hydroxyapatite nanowires are an ideal building material for inorganic fire-resistant paper. Herein, a new kind of free-standing, highly flexible, superhydrophobic, and fire-resistant layered inorganic paper has been successfully prepared using ultralong hydroxyapatite nanowires as building blocks after the surface modification with sodium oleate. During the vacuum filtration, ultralong hydroxyapatite nanowires assemble into self-roughened setalike microfibers, avoiding the tedious fabrication process to construct the hierarchical structure; the self-roughened microfibers further form the inorganic paper with a nacrelike layered structure. We have demonstrated that the layered structure can significantly improve the resistance to mechanical destruction of the as-prepared superhydrophobic paper. The as-prepared superhydrophobic and fire-resistant inorganic paper shows excellent nonflammability, liquid repellency to various commercial drinks, high thermal stability, and self-cleaning property. Moreover, we have explored the potential applications of the superhydrophobic and fire-resistant inorganic paper as a highly effective adsorbent for oil/water separation, fire-shielding protector, and writing paper.
Bhave, Ramesh; Kuritz, Tanya; Powell, Lawrence; Adcock, Dale
2012-05-15
The objective of this paper is to describe the use of membranes for energy efficient biomass harvesting and dewatering. The dewatering of Nannochloropsis sp. was evaluated with polymeric hollow fiber and tubular inorganic membranes to demonstrate the capabilities of a membrane-based system to achieve microalgal biomass of >150 g/L (dry wt.) and ∼99% volume reduction through dewatering. The particle free filtrate containing the growth media is suitable for recycle and reuse. For cost-effective processing, hollow fiber membranes can be utilized to recover 90-95% media for recycle. Tubular membranes can provide additional media and water recovery to achieve target final concentrations. Based on the operating conditions used in this study and taking into scale-up considerations, an integrated hollow fiber-tubular membrane system can process microalgal biomass with at least 80% lower energy requirement compared to traditional processes. Backpulsing was found to be an effective flux maintenance strategy to minimize flux decline at high biomass concentration. An effective chemical cleaning protocol was developed for regeneration of fouled membranes.
Mahfuz, Hassan; Powell, Felicia; Granata, Richard; Hosur, Mahesh; Khan, Mujib
2011-01-01
Our continuing quest to improve the performance of polymer composites under moist and saltwater environments has gained momentum in recent years with the reinforcement of inorganic nanoparticles into the polymer. The key to mitigate degradation of composites under such environments is to maintain the integrity of the fiber/matrix (F/M) interface. In this study, the F/M interface of carbon/vinyl ester composites has been modified by coating the carbon fiber with polyhedral oligomeric silsesquioxane (POSS). POSS is a nanostructured inorganic-organic hybrid particle with a cubic structure having silicon atoms at the core and linked to oxygen atoms. The advantage of using POSS is that the silicon atoms can be linked to a substituent that can be almost any chemical group known in organic chemistry. Cubic silica cores are ‘hard particles’ and are about 0.53 nm in diameter. The peripheral organic unit is a sphere of about 1–3 nm in diameter. Further, cubic structure of POSS remains intact during the polymerization process and therefore with appropriate functional groups, if installed on the fiber surface, would provide a stable and strong F/M interface. Two POSS systems with two different functional groups; namely, octaisobutyl and trisilanolphenyl have been investigated. A set of chemical and mechanical procedures has been developed to coat carbon fibers with POSS, and to fabricate layered composites with vinyl ester resin. Interlaminar shear and low velocity impact tests have indicated around 17–38% improvement in mechanical properties with respect to control samples made without the POSS coating. Saltwater and hygrothermal tests at various environmental conditions have revealed that coating with POSS reduces water absorption by 20–30% and retains the composite properties. PMID:28824160
Use of reinforced inorganic cement materials for spark wire and drift chamber wire frames
NASA Technical Reports Server (NTRS)
1987-01-01
The results of a survey, materials test, and analysis study directed toward the development of an inorganic glass-fiber reinforced cement material for use in the construction of space qualified spark wire frames and drift chamber frames are presented. The purpose for this research was to evaluate the feasibility of using glass fiber reinforced cement (GFRC) for large dimensioned structural frames for supporting a number of precisely located spark wires in multiple planes. A survey of the current state of the art in fiber reinforced cement materials was made; material sample mixes were made and tested to determine their laboratory performances. Tests conducted on sample materials showed that compressive and flexural strengths of this material could approach values which would enable fabrication of structural spark wire frames.
de Cassan, Dominik; Sydow, Steffen; Schmidt, Nadeschda; Behrens, Peter; Roger, Yvonne; Hoffmann, Andrea; Hoheisel, Anna Lena; Glasmacher, Birgit; Hänsch, Robert; Menzel, Henning
2018-03-01
Electrospun poly(ε-caprolactone) (PCL) fiber mats are modified using a chitosan grafted with PCL (CS-g-PCL), to improve the biological performance and to enable further modifications. The graft copolymer is immobilized by the crystallization of the PCL grafts on the PCL fiber surface as binding mechanism. In this way, the surface of the fibers is covered with chitosan bearing cationic amino groups, which allow adsorption of oppositely charged nanoparticulate drug-delivery systems. The modification of the fiber mats and the attachment of the drug delivery systems are easy and scalable dip processes. The process is also versatile; it is possible to attach different polymeric and inorganic nanoparticulate drug-release systems of cationic or anionic nature. The modifications are verified using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). As proof of principle, the release of ciprofloxacin from silica nanoparticles attached to the modified fiber mats is shown; however, the method is also suited for other biologically active substances including growth factors. The initial cellular attachment and proliferation as well as vitality of the cells is improved by the modification with CS-g-PCL and is further influenced by the type of the drug delivery system attached. Hence, this method can be used to transfer PCL fiber mats into bioactive implants for in-situ tissue engineering applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Díez-Pascual, Ana M; Naffakh, Mohammed
2013-07-26
Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS₂) lubricant nanoparticles were used to manufacture PPS/IF-WS₂/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS₂ loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS₂ improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (T g ). IF-WS₂ contents higher than 0.5 wt % increased T g and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS₂ are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.
Díez-Pascual, Ana M.; Naffakh, Mohammed
2013-01-01
Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg). IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites. PMID:28811429
Method for preparing hydrous titanium oxide spherules and other gel forms thereof
Collins, J.L.
1998-10-13
The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics. 6 figs.
Method for preparing hydrous titanium oxide spherules and other gel forms thereof
Collins, Jack L.
1998-01-01
The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics.
Kai, Dan; Prabhakaran, Molamma P; Chan, Benjamin Qi Yu; Liow, Sing Shy; Ramakrishna, Seeram; Xu, Fujian; Loh, Xian Jun
2016-02-02
A porous shape memory scaffold with biomimetic architecture is highly promising for bone tissue engineering applications. In this study, a series of new shape memory polyurethanes consisting of organic poly(ε-caprolactone) (PCL) segments and inorganic polydimethylsiloxane (PDMS) segments in different ratios (9 : 1, 8 : 2 and 7 : 3) was synthesised. These PCL-PDMS copolymers were further engineered into porous fibrous scaffolds by electrospinning. With different ratios of PCL: PDMS, the fibers showed various fiber diameters, thermal behaviour and mechanical properties. Even after being processed into fibrous structures, these PCL-PDMS copolymers maintained their shape memory properties, and all the fibers exhibited excellent shape recovery ratios of >90% and shape fixity ratios of >92% after 7 thermo-mechanical cycles. Biological assay results corroborated that the fibrous PCL-PDMS scaffolds were biocompatible by promoting osteoblast proliferation, functionally enhanced biomineralization-relevant alkaline phosphatase expression and mineral deposition. Our study demonstrated that the PCL-PDMS fibers with excellent shape memory properties are promising substrates as bioengineered grafts for bone regeneration.
Removal of phosphorus using chemically modified lignocellulosic materials
James S. Han; N. Hur; B. Choi; Soo-Hong Min
2003-01-01
Heavy metals from an acid mine drainage (AMD) site were precipitated on the surface of juniper fiber. The modified fiber was tested in lab-scaled batch and column tests and in the field. Elemental analysis showed that soluble iron species deposited on the fiber act as an inorganic adsorbent for anions. Sorption capacity, determined by fitting results to a Langmuir...
Carraro, Mauro; Gross, Silvia
2014-01-01
The covalent incorporation of inorganic building blocks into a polymer matrix to obtain stable and robust materials is a widely used concept in the field of organic-inorganic hybrid materials, and encompasses the use of different inorganic systems including (but not limited to) nanoparticles, mono- and polynuclear metal complexes and clusters, polyhedral oligomeric silsesquioxanes (POSS), polyoxometalates (POM), layered inorganic systems, inorganic fibers, and whiskers. In this paper, we will review the use of two particular kinds of structurally well-defined inorganic building blocks, namely transition metals oxoclusters (TMO) and polyoxometalates (POM), to obtain hybrid materials with enhanced functional (e.g., optical, dielectric, magnetic, catalytic) properties. PMID:28788659
NASA Astrophysics Data System (ADS)
Zhu, Yao; Rong, Jian; Zhang, Tao; Xu, Jicheng; Dai, Yuting; Qiu, Fengxian
2018-04-01
The development of green sustainable chemistry opens the door to the application of biocatalytic in numerous fields for the research in industry and academia. As a common biological catalyst, enzyme catalysis is ideally suited and widely applicable for various desired reaction. In this work, a hierarchical structure laccase-Cu3(PO4)2·3H2O nanoflower-coated silica fiber (La-CNSF) was successfully fabricated with hundreds of Cu3(PO4)2 nanosheets formed on the processed silica fibers as the petal and laccase as the enzyme catalyst. It included two processes: first, Cu nanoparticles were directly grown on silica fiber cloth as a precursor and three-dimensional (3D) Cu3(PO4)2·3H2O nanoflower was self-assembled on Cu-coated fibers by post-processing. Then, La-CNSF was successfully immobilized via a simple one-step immersion reaction in a laccase-phosphate buffer solution (PBS) solution. The product was characterized by FTIR, XRD, SEM and UV-visible spectroscopy. Congo red was realized using La-CNSF as a biocatalyst. Compared with pure laccase, La-CNSF sample exhibits an enhanced catalytic activity. The flower-like structure assembled on the fiber provided La-CNSF high storage stability and reusability in contrast with free laccase. The superior catalytic performance of La-CNSF supports a potential strategy for purification of water pollutants, and it favors the realization of the engineering of large scale applications of enzyme catalysis.
Development and application of nonflammable, high-temperature beta fibers
NASA Technical Reports Server (NTRS)
Dawn, Frederic S.
1989-01-01
Recent advances in fiber technology have contributed to the success of the U.S. space program. The inorganic fiber Beta, developed as a result of efforts begun in the early 1960's and heightened following the January 27, 1967 Apollo fire is unique among inorganic and organic fibers. It has been developed into woven, nonwoven, knitted, braided, coated and printed structures. All of these were used extensively for the Apollo, Skylab, Apollo-Soyuz test project, space shuttle, Spacelab, and satellite programs. In addition to being used successfully in the space program, Beta fibers are being used commercially as firesafe fabrics in homes, hospitals, institutions, public buildings, aircraft, and public transportation, wherever total nonflammability is required. One of the most unique applications of the Beta composite structure is the roofing material for the 80,000-seat Detroit Lion's Silverdome and 5 square miles of the Jeddah International Airport in Saudi Arabia. This fiber has been successfully incorporated into 165 major public construction projects around the globe. The United States alone has used more than 12 million square yards of the material. Beta fiber has been used successfully to date and has a promising future with unlimited potential for both space and commercial application. Efforts are currently underway to improve Beta fiber to meet the requirements of extended service life for the Space Station Freedom, lunar outpost, and Mars exploration missions.
Lan, Huachun; Li, Jianfei; Sun, Meng; An, Xiaoqiang; Hu, Chengzhi; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui
2016-09-01
In this study, a FeCx/N-doped carbon fiber composite (FeCx/NCNFs) was developed via an electrospinning method. According to the characterization results of XRD, TEM and XPS, FeCx (a mixture of Fe7C3 and Fe3C) was either embedded in or attached to the NCNFs. It was used for the first time as a catalyst for dimethylarsinate (DMA) degradation and as an absorbent for inorganic arsenic (As (V)), with degradation and adsorption occurring simultaneously, in an electro-Fenton process. The effects of catalyst dosage, initial DMA concentration, solution pH, and applied current on the treatment efficiency and the corresponding H2O2 generation were systematically investigated. The results showed that DMA could be efficiently oxidized into As(V). 96% of DMA was degraded after reaction time of 360 min and the residual As(V) concentration in solution was below the allowable limit of 0.01 mg/L under the optimum treatment conditions. Based on an ESR and radical scavenger experiment, OH was proven to be the sole reactive oxygen species involved in the degradation process of DMA. DMA was oxidized to MMA as the primary oxidation product, which was subsequently oxidized to inorganic arsenic, As (V). TOC was also efficiently removed at the same time. The DMA removal mechanism for simultaneous degradation of dimethylarsinate and adsorption of arsenic over FeCx/NCNFs in the electro-Fenton process was also proposed based on the experimental results. Copyright © 2016. Published by Elsevier Ltd.
Biopersistence of inhaled organic and inorganic fibers in the lungs of rats.
Warheit, D B; Hartsky, M A; McHugh, T A; Kellar, K A
1994-01-01
Fiber dimension and durability are recognized as important features in influencing the development of pulmonary carcinogenic and fibrogenic effects. Using a short-term inhalation bioassay, we have studied pulmonary deposition and clearance patterns and evaluated and compared the pulmonary toxicity of two previously tested reference materials, an inhaled organic fiber, Kevlar para-aramid fibrils, and an inorganic fiber, wollastonite. Rats were exposed for 5 days to aerosols of Kevlar fibrils (900-1344 f/cc; 9-11 mg/m3) or wollastonite fibers (800 f/cc; 115 mg/m3). The lungs of exposed rats were digested to quantify dose, fiber dimensional changes over time, and clearance kinetics. The results showed that inhaled wollastonite fibers were cleared rapidly with a retention half-time of < 1 week. Mean fiber lengths decreased from 11 microns to 6 microns over a 1-month period, and fiber diameters increased from 0.5 micron to 1.0 micron in the same time. Fiber clearance studies with Kevlar showed a transient increase in the numbers of retained fibrils at 1 week postexposure, with rapid clearance of fibers thereafter, and retention half-time of 30 days. A progressive decrease in the mean lengths from 12.5 microns to 7.5 microns and mean diameters from 0.33 micron to 0.23 micron was recorded 6 months after exposure to inhaled Kevlar fibrils. The percentages of fibers > 15 microns in length decreased from 30% immediately after exposure to 5% after 6 months; the percentages of fibers in the 4 to 7 microns range increased from 25 to 55% in the same period.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4. A Figure 4. B Figure 6. A Figure 6. B PMID:7882921
Characterization and morphology of prepared titanium dioxide nanofibers by electrospinning.
Park, Ju-Young; Lee, In-Hwa
2010-05-01
Dispersed titanium dioxide in polymer nanofibers were prepared by sol-gel processing and electrospinning techniques using titanium isopropoxide (TiP)/polyvinylpyrrolidone (PVP) solution. The prepared titanium dioxide nanofibers were characterized by FE-SEM, TEM, XRD, and FT-IR. Pure titanium dioxide nanofibers were obtained from calcination of inorganic-organic composite fiber. The diameter of titanium oxide nanofibers were in the range of 70 nm to 150 nm. Prepared titanium dioxide nanofibers show rough surface and rather small diameter compare with TiP/PVP composite nanofibers. After calcined at 500 degrees C, TiO2 nanofibers convert into anatase and rutile mixed phased from amorphous structure. Calcination of these composite fibers above 600 degrees C resulted in pure rutile TiO2 nanofibers.
Biomimetic Structural Materials: Inspiration from Design and Assembly.
Yaraghi, Nicholas A; Kisailus, David
2018-04-20
Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.
Biomimetic Structural Materials: Inspiration from Design and Assembly
NASA Astrophysics Data System (ADS)
Yaraghi, Nicholas A.; Kisailus, David
2018-04-01
Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.
Inorganic particles in human tissues and their association with neoplastic disease
Langer, Arthur M.
1974-01-01
An increased gastrointestinal cancer risk is associated with occupational exposure to asbestos fiber. Examination of tissues obtained from extrapulmonary organs of exposed workmen demonstrates the presence of asbestos fibers and bodies. The amount of fiber present in these tissues is many magnitudes less than encountered in the lung tissues from the same individuals. Ingestion of asbestos fiber in some environmental instances may approach in magnitude the amount resulting from occupational exposure. Disease factors are discussed. PMID:4470940
Inorganic composites for space applications
NASA Technical Reports Server (NTRS)
Malmendier, J. W.
1984-01-01
The development of inorganic composite materials for space applications is reviewed. The composites do not contain any organic materials, and therefore, are not subject to degradation by ultraviolet radiation, volatilization of constituents, or embrittlement at low temperatures. The composites consist of glass, glass/ceramics or ceramic matrices, reinforced by refractory whiskers or fibers. Such composites have the low thermal expansion, refractories, chemical stability and other desirable properties usually associated with the matrix materials. The composites also have a degree of toughness which is extraordinary for refractory inorganic materials.
Two new advanced forms of spectrometry for space and commercial applications
NASA Technical Reports Server (NTRS)
Schlager, Kenneth J.
1991-01-01
Reagentless ultraviolet absorption spectrometry (UVAS) and Liquid Atomic Emission Spectrometry (LAES) represent new forms of spectrometry with extensive potential in both space and commercial applications. Originally developed under KSC sponsorship for monitoring nutrient solutions for the Controlled Ecological Life Support System (CELSS), both UVAS and LAES have extensive analytical capabilities for both organic and inorganic chemical compounds. Both forms of instrumentation involve the use of remote fiber optic probes and real-time measurements for on-line process monitoring. Commercial applications exist primarily in environmental analysis and for process control in the chemical, pulp and paper, food processing, metal plating, and water/wastewater treatment industries.
Luo, Nan; Xu, Rongle; Yang, Min; Yuan, Xing; Zhong, Hui; Fan, Yaobo
2015-12-01
A novel inorganic-organic composite membrane, namely poly(vinylidene fluoride) PVDF-glass fiber (PGF) composite membrane, was prepared and reinforced by interfacial ultraviolet (UV)-grafting copolymerization to improve the interfacial bonding strength between the membrane layer and the glass fiber. The interfacial polymerization between inorganic-organic interfaces is a chemical cross-linking reaction that depends on the functionalized glass fiber with silane coupling (KH570) as the initiator and the polymer solution with acrylamide monomer (AM) as the grafting block. The Fourier transform infrared spectrometer-attenuated total reflectance (FTIR-ATR) spectra and the energy dispersive X-ray (EDX) pictures of the interface between the glass fiber and polymer matrix confirmed that the AM was grafted to the surface of the glass fiber fabric and that the grafting polymer was successfully embedded in the membrane matrix. The formation mechanisms, permeation, and anti-fouling performance of the PGF composite membrane were measured with different amounts of AM in the doping solutions. The results showed that the grafting composite membrane improved the interfacial bonding strength and permeability, and the peeling strength was improved by 32.6% for PGF composite membranes with an AM concentration at 2wt.%. Copyright © 2015. Published by Elsevier B.V.
Novel benzo-15-crown-5 sol-gel coating for solid-phase microextraction.
Wang, Danhua; Xing, Jun; Peng, Jiagang; Wu, Caiying
2003-07-11
A novel dihydroxy-terminated benzo-15-crown-5 was synthesized and applied to prepare a solid-phase microextraction (SPME) fiber coating with sol-gel technology. The optimization of the sol-gel process was studied. The coating method with sol-gel was improved and completed in one run, which economized materials and allowed easier control of the fiber thickness. The repeatability of coating fiber to fiber was better than 4.94% (RSD). The surface of the fiber coating was well-distributed and an electron microscopy experiment suggested a porous structure for crown ether coating, providing high surface areas and allowing for high extraction efficiency. The coating has a high thermal stability (350 degrees C), long lifetime and can stand solvent (organic and inorganic) rinsing due to the chemical binding between the coating and the fiber surface. Non-polar benzene, toluene, ethylbenzene, xylenes, chlorobenzenes, polar phenolic compounds and arylamines were used to evaluate the character of the fiber coating by headspace SPME-gas chromatography technology. For phenols, the linear concentrations ranged from 5 to 1000 microg/l, the detection limits were between 0.05 and 1 microg/l, and the RSD was less than 5%. The addition of benzo-crown ether not only increases the thermal stability of the fiber coating, but also enhances the selectivity of the fiber coating. Compared with commercially available SPME fibers poly(dimethylsiloxane) and polyacrylate, the few phases showed better selectivity and sensitivity towards non-polar and polar aromatic compounds.
Characterization of air contaminants formed by the interaction of lava and sea water.
Kullman, G J; Jones, W G; Cornwell, R J; Parker, J E
1994-05-01
We made environmental measurements to characterize contaminants generated when basaltic lava from Hawaii's Kilauea volcano enters sea water. This interaction of lava with sea water produces large clouds of mist (LAZE). Island winds occasionally directed the LAZE toward the adjacent village of Kalapana and the Hawaii Volcanos National Park, creating health concerns. Environmental samples were taken to measure airborne concentrations of respirable dust, crystalline silica and other mineral compounds, fibers, trace metals, inorganic acids, and organic and inorganic gases. The LAZE contained quantifiable concentrations of hydrochloric acid (HCl) and hydrofluoric acid (HF); HCl was predominant. HCl and HF concentrations were highest in dense plumes of LAZE near the sea. The HCl concentration at this sampling location averaged 7.1 ppm; this exceeds the current occupational exposure ceiling of 5 ppm. HF was detected in nearly half the samples, but all concentrations were <1 ppm Sulfur dioxide was detected in one of four short-term indicator tube samples at approximately 1.5 ppm. Airborne particulates were composed largely of chloride salts (predominantly sodium chloride). Crystalline silica concentrations were below detectable limits, less than approximately 0.03 mg/m3 of air. Settled dust samples showed a predominance of glass flakes and glass fibers. Airborne fibers were detected at quantifiable levels in 1 of 11 samples. These fibers were composed largely of hydrated calcium sulfate. These findings suggest that individuals should avoid concentrated plumes of LAZE near its origin to prevent over exposure to inorganic acids, specifically HCl.
Method for preparing hydrous iron oxide gels and spherules
Collins, Jack L.; Lauf, Robert J.; Anderson, Kimberly K.
2003-07-29
The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or strontium ferrite embedded with oxides of Mg, Zn, Pb, Ce and mixtures thereof. These variations of hydrous iron oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters, dielectrics, and ceramics.
Orthophosphate sorption onto lanthanum-treated lignocellulosic sorbents
Eun Woo Shin; K. G. Karthikeyan; Mandla A. Tshabalala
2005-01-01
Inorganic/organic hybrid adsorbents for removing orthophosphate from water were prepared by lanthanum (La) treatment of bark fiber, a lignocellulosic material obtained from juniper (Juniperusmonosperma). The La was anchored to the juniper bark (JB) fiber by ion exchange with Ca in the bark and was responsible for removing orthophosphate. Two La concentrations (0.01 and...
Optical fiber sensors for breathing diagnostics
NASA Astrophysics Data System (ADS)
Chen, Q.; Claus, Richard O.; Mecham, Jeffrey B.; Vercellino, M.; Arregui, Francisco J.; Matias, Ignacio R.
2002-03-01
We report the application of an optical fiber-based humidity sensor to the problem of breathing diagnostics. The sensor is fabricated by molecularly self-assembling selected polymers and functionalized inorganic nanoclusters into multilayered optical thin films on the cleaved and polished flat end of a singlemode optical fiber. Prior work has studied the synthesis process and the fundamental mechanisms responsible for the change in optical reflection from the film that occurs as a function of humidity. We will briefly review that prior work as a way to introduce more recent developments. This paper will then discuss the application of these sensors to the analysis of air flow. We have designed the sensor thin film materials for the detection of relative humidity over a wide range, from approximately 10 to 95%, and for response times as short as several tens of milliseconds. This very fast response time allows the near real-time analysis of air flow and humidity during a single breath, with the advantage of very small size.
Roger M. Rowell; Henry Spelter; Rodger A. Arola; Phil Davis; Tom Friberg; Richard W. Hemingway; Tim Rials; David Luneke; Ramani Narayan; John Simonsen; Don White
1993-01-01
There are many opportunities to produce composites from recycled biobased fiber. The fiber can be used alone to make low-cost and high-performance composites, combined with inorganic materials, or combined with other recycled materials, such as plastics, to produce mixtures, compatibilized blends, and alloys. This report describes the resources available: problems...
Research and education on fiber-based materials for nanofluidics at Clemson University
NASA Astrophysics Data System (ADS)
Kornev, Konstantin G.
2007-11-01
Advanced materials and the science and engineering related to their design, process, test and manufacture represents one of the fast growing sectors of the Materials Science and Engineering field. Awareness of existing process, performance, manufacturing or recycle-ability issues and limitations, often dictates the next generation of advances needed to improve existing or create new materials. To compete in this growing science and technology area, trained experts must possess strong academic skills in their discipline as well as advanced communication, networking and cultural teamwork experience. Clemson's School of Materials Science and Engineering (MSE), is continuing to expand our program to focus on unique capabilities which support local, regional and national needs in advanced materials. Specifically, MSE at Clemson is evolving to highlight intrinsic strengths in research and education areas related to optical materials, advanced fibers and composites (based on inorganic, organic and natural fibers), biomaterials and devices, and architectural and restoration material science (including the conservation and preservation of maritime structures). Additionally, we continue to invest in our expertise in materials design and fabrication, which has historically supported our well known programs in ceramics and textiles. In addition to a brief review of the School's forward-looking challenges to remain competitive among strong southeast regional materials science programs, this presentation will also highlight recent technical advances in fiber-based materials for nanofluidic applications. Specifically we will present recent results on design of fiber-based nanofluidics for sensor applications and we will discuss some physical phenomena associated with liquid transport at nanoscale.
Electrospinning for nano- to mesoscale photonic structures
NASA Astrophysics Data System (ADS)
Skinner, Jack L.; Andriolo, Jessica M.; Murphy, John P.; Ross, Brandon M.
2017-08-01
The fabrication of photonic and electronic structures and devices has directed the manufacturing industry for the last 50 years. Currently, the majority of small-scale photonic devices are created by traditional microfabrication techniques that create features by processes such as lithography and electron or ion beam direct writing. Microfabrication techniques are often expensive and slow. In contrast, the use of electrospinning (ES) in the fabrication of micro- and nano-scale devices for the manipulation of photons and electrons provides a relatively simple and economic viable alternative. ES involves the delivery of a polymer solution to a capillary held at a high voltage relative to the fiber deposition surface. Electrostatic force developed between the collection plate and the polymer promotes fiber deposition onto the collection plate. Issues with ES fabrication exist primarily due to an instability region that exists between the capillary and collection plate and is characterized by chaotic motion of the depositing polymer fiber. Material limitations to ES also exist; not all polymers of interest are amenable to the ES process due to process dependencies on molecular weight and chain entanglement or incompatibility with other polymers and overall process compatibility. Passive and active electronic and photonic fibers fabricated through the ES have great potential for use in light generation and collection in optical and electronic structures/devices. ES produces fiber devices that can be combined with inorganic, metallic, biological, or organic materials for novel device design. Synergistic material selection and post-processing techniques are also utilized for broad-ranging applications of organic nanofibers that span from biological to electronic, photovoltaic, or photonic. As the ability to electrospin optically and/or electronically active materials in a controlled manner continues to improve, the complexity and diversity of devices fabricated from this process can be expected to grow rapidly and provide an alternative to traditional resource-intensive fabrication techniques.
In vitro dynamic solubility test: influence of various parameters.
Thélohan, S; de Meringo, A
1994-01-01
This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882964
In vitro dynamic solubility test: influence of various parameters.
Thélohan, S; de Meringo, A
1994-10-01
This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Technical Reports Server (NTRS)
Galasso, F. S.; Veltri, R. D.; Scola, D. A.
1979-01-01
Coatings made of boron, silicon carbide, silica, and silica-like materials were studied to determine their ability to increase resistance of graphite fibers. The most promising results were attained by chemical vapor depositing silicon carbide on graphite fiber followed by oxidation, and drawing graphite fiber through ethyl silicate followed by appropriate heat treatments. In the silicon carbide coating studies, no degradation of the graphite fibers was observed and resistance values as high as three orders of magnitude higher than that of the uncoated fiber was attained. The strength of a composite fabricated from the coated fiber had a strength which compared favorably with those of composites prepared from uncoated fiber. For the silica-like coated fiber prepared by drawing the graphite fiber through an ethyl silicate solution followed by heating, coated fiber resistances about an order of magnitude greater than that of the uncoated fiber were attained. Composites prepared using these fibers had flexural strengths comparable with those prepared using uncoated fibers, but the shear strengths were lower.
Šlampová, Andrea; Šindelář, Vladimír; Kubáň, Pavel
2017-01-15
A tailor-made liquid membrane consisting of a resistive organic solvent (nitrobenzene, NB) and a highly selective non-ionic macrocyclic compound (bambus[6]uril, BU6) was employed for electromembrane extraction (EME) of inorganic anions. BU6 facilitates strong host-guest interactions of its internal cavity with selected inorganic anions only and its presence in the liquid membrane ensured excellent selectivity of the EME process. EME transfers were directly related to association constants between BU6 and inorganic anions and nearly absolute selectivity was achieved for EMEs of iodide, bromide and perchlorate. Major inorganic anions (chloride, nitrate, sulphate and carbonate), which exhibit low interactions with BU6 cavity, were efficiently eliminated from the EME transfer. No interferences were observed for EMEs of target analytes from samples containing up to 100.000-fold higher concentrations of the major anions. Addition of species-specific macrocyclic modifiers to free and supported liquid membranes might thus open new directions in fine-tuning of EME selectivity. At optimized EME conditions (polypropylene hollow fiber impregnated with NB + 3% (w/w) BU6, extraction voltage 25 V, extraction time 15 min, deionized water as acceptor solution) perchlorate was selectively extracted from tap water at concentrations below the guideline value recommended by United States Environmental Protection Agency. Excellent selectivity of the tailor-made liquid membrane was further demonstrated by EME of bromide from sea water. Copyright © 2016 Elsevier B.V. All rights reserved.
Hisano, Setsuji; Sawada, Kazuhiko; Kawano, Michihiro; Kanemoto, Mizuki; Xiong, Guoxiang; Mogi, Koichi; Sakata-Haga, Hiromi; Takeda, Jun; Fukui, Yoshihiro; Nogami, Haruo
2002-10-30
Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) was studied in the cerebellum and precerebellar nuclei of rats using immunohistochemistry and in situ hybridization. DNPI/VGLUT2-stained mossy fibers were principally seen in the vermis (lobules I and VIII-X) and flocculus, whereas BNPI/VGLUT1-stained mossy fibers were localized throughout the cortex. Some vermal and floccular mossy fibers were stained for both transporters. High levels of DNPI/VGLUT2 mRNA hybridization signals were demonstrated in many neurons throughout the vestibular nuclear complex as well as the lateral reticular, external cuneate, inferior olivary and deep cerebellar nuclei. Significant BNPI/VGLUT1 mRNA signals were demonstrated in the lateral reticular nucleus and vestibular nuclear complex but not in the inferior olivary nucleus, indicating that climbing fibers have DNPI/VGLUT2 only. These results show that DNPI/VGLUT2 is expressed preferentially to vestibulo-, reticulo- and cuneocerebellar neurons, some of which also possess BNPI/VGLUT1, suggesting some differential and co-operative functions between DNPI/VGLUT2 and BNPI/VGLUT1 in the cerebellum.
Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles.
Tenne, Reshef
2003-11-03
In analogy to graphite, nanoparticles of inorganic compounds with lamellar two-dimensional structure, such as MoS(2), are not stable against folding, and can adopt nanotubular and fullerene-like structures, nicknamed inorganic fullerenes or IF. Various applications for such nanomaterials were proposed. For instance, IF-WS(2) nanoparticles were shown to have beneficial effects as solid lubricants and as part of tribological surfaces. Further applications of IF for high-tensile-strength fibers, hydrogen storage, rechargeable batteries, catalysis, and in nanotechnology are being contemplated. This Minireview highlights some of the latest developments in the synthesis of inorganic nanotubes and fullerene-like structures. Some structural aspects and properties of IF, which are distinct from the bulk materials, are briefly discussed.
Polarized emission from CsPbBr3 nanowire embedded-electrospun PU fibers
NASA Astrophysics Data System (ADS)
Güner, Tuğrul; Topçu, Gökhan; Savacı, Umut; Genç, Aziz; Turan, Servet; Sari, Emre; Demir, Mustafa M.
2018-04-01
Interest in all-inorganic halide perovskites has been increasing dramatically due to their high quantum yield, band gap tunability, and ease of fabrication in compositional and geometric diversity. In this study, we synthesized several hundreds of nanometer long and ˜4 nm thick CsPbBr 3 nanowires (NWs). They were then integrated into electrospun polyurethane (PU) fibers to examine the polarization behavior of the composite fiber assembly. Aligned electrospun fibers containing CsPbBr 3 NWs showed a remarkable increase in the degree of polarization from 0.17-0.30. This combination of NWs and PU fibers provides a promising composite material for various applications such as optoelectronic devices and solar cells.
Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers
NASA Astrophysics Data System (ADS)
Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang
2008-11-01
The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.
Characterization of air contaminants formed by the interaction of lava and sea water.
Kullman, G J; Jones, W G; Cornwell, R J; Parker, J E
1994-01-01
We made environmental measurements to characterize contaminants generated when basaltic lava from Hawaii's Kilauea volcano enters sea water. This interaction of lava with sea water produces large clouds of mist (LAZE). Island winds occasionally directed the LAZE toward the adjacent village of Kalapana and the Hawaii Volcanos National Park, creating health concerns. Environmental samples were taken to measure airborne concentrations of respirable dust, crystalline silica and other mineral compounds, fibers, trace metals, inorganic acids, and organic and inorganic gases. The LAZE contained quantifiable concentrations of hydrochloric acid (HCl) and hydrofluoric acid (HF); HCl was predominant. HCl and HF concentrations were highest in dense plumes of LAZE near the sea. The HCl concentration at this sampling location averaged 7.1 ppm; this exceeds the current occupational exposure ceiling of 5 ppm. HF was detected in nearly half the samples, but all concentrations were <1 ppm Sulfur dioxide was detected in one of four short-term indicator tube samples at approximately 1.5 ppm. Airborne particulates were composed largely of chloride salts (predominantly sodium chloride). Crystalline silica concentrations were below detectable limits, less than approximately 0.03 mg/m3 of air. Settled dust samples showed a predominance of glass flakes and glass fibers. Airborne fibers were detected at quantifiable levels in 1 of 11 samples. These fibers were composed largely of hydrated calcium sulfate. These findings suggest that individuals should avoid concentrated plumes of LAZE near its origin to prevent over exposure to inorganic acids, specifically HCl. Images Figure 1. Figure 2. Figure 3. Figure 4. A Figure 4. B Figure 4. C Figure 4. D PMID:8593853
Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-Adergani, Behrouz; Abdel-Rehim, Mohamed
2015-07-15
In the present study, the modification of a polysulfone hollow fiber membrane with in situ molecularly imprinted sol-gel process (as a novel and one-step method) was prepared and investigated. 3-(propylmethacrylate)trimethoxysilane (3PMTMOS) as an inorganic precursor was used for preparation of molecularly imprinted sol-gel. The modified molecularly imprinted sol-gel hollow fiber membrane (MSHM) was used for the liquid-phase microextraction (LPME) of hippuric acid (HA) in human plasma and urine samples. MSHM as a selective, robust, and durable tool was used for at least 50 extractions without significant decrease in the extraction efficiency. The non-molecularly imprinted sol-gel hollow fiber membrane (NSHM) as blank hollow fiber membrane was prepared by the same process, only without HA. To achieve the best condition, influential parameters on the extraction efficiency were thoroughly investigated. The capability of this robust, green, and simple method for extraction of HA was successfully accomplished with LC/MS/MS. The limits of detection (LOD) and quantification (LOQ) in human plasma and urine samples were 0.3 and 1.0nmolL(-1), respectively. The standard calibration curves were obtained within the concentration range 1-2000nmolL(-1) for HA in human plasma and urine. The coefficients of determination (r(2)) were ≥0.998. The obtained data exhibited recoveries were higher than 89% for the extraction of HA in human plasma and urine samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Microwave-driven asbestos treatment and its scale-up for use after natural disasters.
Horikoshi, Satoshi; Sumi, Takuya; Ito, Shigeyuki; Dillert, Ralf; Kashimura, Keiichiro; Yoshikawa, Noboru; Sato, Motoyasu; Shinohara, Naoki
2014-06-17
Asbestos-containing debris generated by the tsunami after the Great East Japan Earthquake of March 11, 2011, was processed by microwave heating. The analysis of the treated samples employing thermo gravimetry, differential thermal analysis, X-ray diffractometry, scanning electron microscopy, and phase-contrast microscopy revealed the rapid detoxification of the waste by conversion of the asbestos fibers to a nonfibrous glassy material. The detoxification by the microwave method occurred at a significantly lower processing temperature than the thermal methods actually established for the treatment of asbestos-containing waste. The lower treatment temperature is considered to be a consequence of the microwave penetration depth into the waste material and the increased intensity of the microwave electric field in the gaps between the asbestos fibers resulting in a rapid heating of the fibers inside the debris. A continuous treatment plant having a capacity of 2000 kg day(-1) of asbestos-containing waste was built in the area affected by the earthquake disaster. This treatment plant consists of a rotary kiln to burn the combustible waste (wood) and a microwave rotary kiln to treat asbestos-containing inorganic materials. The hot flue gas produced by the combustion of wood is introduced into the connected microwave rotary kiln to increase the energy efficiency of the combined process. Successful operation of this combined device with regard to asbestos decomposition is demonstrated.
Díez-Pascual, Ana M; Naffakh, Mohammed
2013-10-09
Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport.
Hesterberg, T W; Hart, G A
2000-01-01
Here we review the past decade of research on inorganic fiber toxicology, which demonstrates that fiber biopersistence and in vitro dissolution rate correlate well with fiber pathogenicity. Test fibers for these studies included eight synthetic vitreous fibers (SVFs)-refractory ceramic fiber (RCF1), four fiber glasses (FCs), rock wool, slag wool, HT stone wool-and two asbestos types (crocidolite and amosite). Fiber toxicology and biopersistence were investigated using rodents exposed by inhalation. To evaluate chronic inhalation toxicity, rodents were exposed nose-only to ∼ 100 fibers >20 µm in length (F > 20 µm)/cm(3), 6 h/day, 5 days/wk, for 2 yr (rats) or 1½ yr (hamsters). To evaluate lung biopersistence, rats were exposed nose-only for 5 days to fiber aerosol; lung burdens were then analyzed during 1 yr postexposure. In vitro dissolution rate was evaluated in a flow-through system using physiological solutions that mimic the inorganic components of extra- and intracellular lung fluids. The 10 test fibers encompassed a range of respiratory toxicities, from transient inflammation only to carcinogenesis. Lung clearance weighted half-times (WT½) for F > 20 µm were 6-15 days for stonewool, building insulation FCs, and slag wool; 50-80 days for rock wool, 2 special-application FCs, and RCFI; and >400 days for asbestos. WT½ correlated with pathogenicity: The rapidly clearing fibers were innocuous (insulation FCs, slag wool, and stonewool), but the more biopersistent fibers were fibrogenic (rock wool) or fibrogenic and carcinogenic (special-application FCs, RCFI, amosite and crocidolite asbestos). In vitro dissolution rates (k dis= ng/cm(2)/h) of the 10 fibers at pH 7.4 or 4.5 ranged from < 1 to >600. Fibers that dissolved rapidly in vitro also cleared quickly from the lung and induced only transient inflammation in the chronic studies. In contrast, fibers that dissolved slowly in vitro were biopersistent in the lung and tended to induce permanent pathogenicity. Other in vitro studies of fiber degradation suggest that, in addition to fiber dissolution, fiber leaching and subsequent transverse breakage may also be important mechanisms in lung biopersistence and hence pathogenicity. The validity of using lung biopersistence for predicting the potential pathogenicity of SVFs is confirmed by this research. The research also supports the use of in vitro fiber degradation at pH 7.4 and/or pH 4.5 as an indicator of SVF potential pathogenicity.
Composite Solid Electrolyte Containing Li+- Conducting Fibers
NASA Technical Reports Server (NTRS)
Appleby, A. John; Wang, Chunsheng; Zhang, Xiangwu
2006-01-01
Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are high-molecular-weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li(+)-conductive, inorganic fibers. PEO-based polymers alone would be suitable for use as solid electrolytes, were it not for the fact that their room-temperature Li(+)-ion conductivities lie in the range between 10(exp -6) and 10(exp -8) S/cm, too low for practical applications. In a prior approach to formulating a CSPE, one utilizes nonconductive nanoscale inorganic filler particles to increase the interfacial stability of the conductive phase. The filler particles also trap some electrolyte impurities. The achievable increase in conductivity is limited by the nonconductive nature of the filler particles.
Inorganic arsenic removal in rice bran by percolating cooking water.
Signes-Pastor, Antonio J; Carey, Manus; Meharg, Andrew A
2017-11-01
Rice bran, a by-product of milling rice, is highly nutritious but contains very high levels of the non-threshold carcinogen inorganic arsenic (i-As), at concentrations around 1mg/kg. This i-As content needs to be reduced to make rice bran a useful food ingredient. Evaluated here is a novel approach to minimizing rice bran i-As content which is also suitable for its stabilization namely, cooking bran in percolating arsenic-free boiling water. Up to 96% of i-As removal was observed for a range of rice bran products, with i-As removal related to the volume of cooking water used. This process reduced the copper, potassium, and phosphorus content, but had little effect on other trace- and macro-nutrient elements in the rice bran. There was little change in organic composition, as assayed by NIR, except for a decrease in the soluble sugar and an increase, due to biomass loss, in dietary fiber. Copyright © 2017 Elsevier Ltd. All rights reserved.
Combustibility Determination for Cotton Gin Dust and Almond Huller Dust.
Hughs, Sidney E; Wakelyn, Phillip J
2017-04-26
It has been documented that some dusts generated while processing agricultural products, such as grain and sugar, can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, the Occupational Safety and Health Administration (OSHA) initiated action to develop a mandatory standard to comprehensively address the fire and explosion hazards of combustible dusts. Cotton fiber and related materials from cotton ginning, in loose form, can support smoldering combustion if ignited by an outside source. However, dust fires and other more hazardous events, such as dust explosions, are unknown in the cotton ginning industry. Dust material that accumulates inside cotton gins and almond huller plants during normal processing was collected for testing to determine combustibility. Cotton gin dust is composed of greater than 50% inert inorganic mineral dust (ash content), while almond huller dust is composed of at least 7% inert inorganic material. Inorganic mineral dust is not a combustible dust. The collected samples of cotton gin dust and almond huller dust were sieved to a known particle size range for testing to determine combustibility potential. Combustibility testing was conducted on the cotton gin dust and almond huller dust samples using the UN test for combustibility suggested in NFPA 652.. This testing indicated that neither the cotton gin dust nor the almond huller dust should be considered combustible dusts (i.e., not a Division 4.1 flammable hazard per 49 CFR 173.124). Copyright© by the American Society of Agricultural Engineers.
NASA Astrophysics Data System (ADS)
Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua
2013-07-01
A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an ``in situ growth for conductive wrapping'' and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm-3 at a discharge current density of 0.1 A cm-3 and an energy density of 6.16 × 10-3 Wh cm-3 at a power density of 0.04 W cm-3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the ``in situ growth for conductive wrapping'' method might be generalized to open up new strategies for designing next-generation energy storage devices.
Li, WanYun; Lu, ShiYu; Bao, ShuJuan; Shi, ZhuanZhuan; Lu, Zhisong; Li, ChangMing; Yu, Ling
2018-01-15
A visual colorimetric microfluidic paper-based analytical device (μPAD) was constructed following the direct synthesis of enzyme-inorganic hybrid nanomaterials on the paper matrix. An inorganic solution of MnSO 4 and KH 2 PO 4 containing a diluted enzyme (glucose oxidase, GOx) was subsequently pipetted onto cellulose paper for the in situ growth of GOx@Mn 3 (PO 4 ) 2 hybrid functional materials. The characterization of the morphology and chemical composition validated the presence of hybrid materials roots in the paper fiber, while the Mn 3 (PO 4 ) 2 of the hybrid provided both a surface for enzyme anchoring and a higher peroxidase-like catalytic activity as compared to the Mn 3 (PO 4 ) 2 crystal that was synthesized without enzyme modulation. This new approach for the in situ growth of an enzyme-inorganic hybrid on a paper matrix eliminates centrifugation and the dry process by casting the solution on paper. The sensing material loading was highly reproducible because of the accuracy and stability of pipetting, which eventually contributed to the reliability of the μPAD. The self-assembled natural and artificial enzyme hybrid on the μPADs specifically detected glucose from a group of interferences, which shows great specificity using this method. Moreover, the colorimetric signal exhibited detection limitation for glucose is 0.01mM, which lies in the physiological range of glucose in biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Leszczak, Victoria; Place, Laura W; Franz, Natalee; Popat, Ketul C; Kipper, Matt J
2014-06-25
In the design of scaffolds for tissue engineering biochemical function and nanoscale features are of particular interest. Natural polymers provide a wealth of biochemical function, but do not have the processability of synthetic polymers, limiting their ability to mimic the hierarchy of structures in the natural extracellular matrix. Thus, they are often combined with synthetic carrier polymers to enable processing. Demineralized bone matrix (DBM), a natural polymer, is allograft bone with inorganic material removed. DBM contains the protein components of bone, which includes adhesion ligands and osteoinductive signals, such as important growth factors. Herein we describe a novel method for tuning the nanostructure of DBM through electrospinning without the use of a carrier polymer. This work surveys solvents and solvent blends for electrospinning DBM. Blends of hexafluoroisopropanol and trifluoroacetic acid are studied in detail. The effects of DBM concentration and dissolution time on solution viscosity are also reported and correlated to observed differences in electrospun fiber morphology. We also present a survey of techniques to stabilize the resultant fibers with respect to aqueous environments. Glutaraldehyde vapor treatment is successful at maintaining both macroscopic and microscopic structure of the electrospun DBM fibers. Finally, we report results from tensile testing of stabilized DBM nanofiber mats, and preliminary evaluation of their cytocompatibility. The DBM nanofiber mats exhibit good cytocompatibility toward human dermal fibroblasts (HDF) in a 4-day culture; neither the electrospun solvents nor the cross-linking results in any measurable residual cytotoxicity toward HDF.
Calcium Silicate/Chitosan-Coated Electrospun Poly (Lactic Acid) Fibers for Bone Tissue Engineering.
Su, Chu-Jung; Tu, Ming-Gene; Wei, Li-Ju; Hsu, Tuan-Ti; Kao, Chia-Tze; Chen, Tsui-Han; Huang, Tsui-Hsien
2017-05-05
Electrospinning technology allows fabrication of nano- or microfibrous fibers with inorganic and organic matrix and it is widely applied in bone tissue engineering as it allows precise control over the shapes and structures of the fibers. Natural bone has an ordered composition of organic fibers with dispersion of inorganic apatite among them. In this study, poly (lactic acid) (PLA) mats were fabricated with electrospinning and coated with chitosan (CH)/calcium silicate (CS) mixer. The microstructure, chemical component, and contact angle of CS/CH-PLA composites were analyzed by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. In vitro, various CS/CH-coated PLA mats increased the formation of hydroxyapatite on the specimens' surface when soaked in cell cultured medium. During culture, several biological characteristics of the human mesenchymal stem cells (hMSCs) cultured on CS/CH-PLA groups were promoted as compared to those on pure PLA mat. Increased secretion levels of Collagen I and fibronectin were observed in calcium silicate-powder content. Furthermore, with comparison to PLA mats without CS/CH, CS10 and CS15 mats markedly enhanced the proliferation of hMSCs and their osteogenesis properties, which was characterized by osteogenic-related gene expression. These results clearly demonstrated that the biodegradable and electroactive CS/CH-PLA composite mats are an ideal and suitable candidate for bone tissue engineering.
Roberts, Lee D; Ashmore, Tom; McNally, Ben D; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Lindsay, Ross; Siervo, Mario; Williams, Elizabeth A; Murray, Andrew J; Griffin, Julian L
2017-03-01
Exercise is an effective intervention for the prevention and treatment of type 2 diabetes. Skeletal muscle combines multiple signals that contribute to the beneficial effects of exercise on cardiometabolic health. Inorganic nitrate increases exercise efficiency, tolerance, and performance. The transcriptional regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) coordinates the exercise-stimulated skeletal muscle fiber-type switch from glycolytic fast-twitch (type IIb) to oxidative slow-twitch (type I) and intermediate (type IIa) fibers, an effect reversed in insulin resistance and diabetes. We found that nitrate induces PGC1α expression and a switch toward type I and IIa fibers in rat muscle and myotubes in vitro. Nitrate induces the release of exercise/PGC1α-dependent myokine FNDC5/irisin and β-aminoisobutyric acid from myotubes and muscle in rats and humans. Both exercise and nitrate stimulated PGC1α-mediated γ-aminobutyric acid (GABA) secretion from muscle. Circulating GABA concentrations were increased in exercising mice and nitrate-treated rats and humans; thus, GABA may function as an exercise/PGC1α-mediated myokine-like small molecule. Moreover, nitrate increased circulating growth hormone levels in humans and rodents. Nitrate induces physiological responses that mimic exercise training and may underlie the beneficial effects of this metabolite on exercise and cardiometabolic health. © 2017 by the American Diabetes Association.
The interaction with gold suppresses fiber-like conformations of the amyloid β (16-22) peptide
NASA Astrophysics Data System (ADS)
Bellucci, Luca; Ardèvol, Albert; Parrinello, Michele; Lutz, Helmut; Lu, Hao; Weidner, Tobias; Corni, Stefano
2016-04-01
Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution.Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution. Electronic supplementary information (ESI) available: Representative structures for the most populated conformational structures of Aβ16-22 on bulk and on the metal surface. Normalized distribution of the variable s defined as the sum of internal dihedral angles of the peptide in solution and at the gold/water interface. See DOI: 10.1039/C6NR01539E
Li, Xiong; Yu, Xufeng; Cheng, Cheng; Deng, Li; Wang, Min; Wang, Xuefen
2015-10-07
Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes exhibiting excellent direct contact membrane distillation (DCMD) performance were fabricated by a facile route combining the hydrophobization of silica nanoparticles (SiO2 NPs) and colloid electrospinning of the hydrophobic silica/poly(vinylidene fluoride) (PVDF) matrix. Benefiting from the utilization of SiO2 NPs with three different particle sizes, the electrospun nanofibrous membranes (ENMs) were endowed with three different delicate nanofiber morphologies and fiber diameter distribution, high porosity, and superhydrophobic property, which resulted in excellent waterproofing and breathability. Significantly, structural attributes analyses have indicated the major contributing role of fiber diameter distribution on determining the augment of permeate vapor flux through regulating mean flow pore size (MFP). Meanwhile, the extremely high liquid entry pressure of water (LEPw, 2.40 ± 0.10 bar), robust nanofiber morphology of PVDF immobilized SiO2 NPs, remarkable mechanical properties, thermal stability, and corrosion resistance endowed the as-prepared membranes with prominent desalination capability and stability for long-term MD process. The resultant choreographed PVDF/silica ENMs with optimized MFP presented an outstanding permeate vapor flux of 41.1 kg/(m(2)·h) and stable low permeate conductivity (∼2.45 μs/cm) (3.5 wt % NaCl salt feed; ΔT = 40 °C) over a DCMD test period of 24 h without membrane pores wetting detected. This result was better than those of typical commercial PVDF membranes and PVDF and modified PVDF ENMs reported so far, suggesting them as promising alternatives for MD applications.
Nam, Sunghyun; Condon, Brian D.; Delhom, Christopher D.; Fontenot, Krystal R.
2016-01-01
The interactions of nanoparticles with polymer hosts have important implications for directing the macroscopic properties of composite fibers, yet little is known about such interactions with hierarchically ordered natural polymers due to the difficulty of achieving uniform dispersion of nanoparticles within semi-crystalline natural fiber. In this study we have homogeneously dispersed silver nanoparticles throughout an entire volume of cotton fiber. The resulting electrostatic interaction and distinct supramolecular structure of the cotton fiber provided a favorable environment for the controlled formation of nanoparticles (12 ± 3 nm in diameter). With a high surface-to-volume ratio, the extensive interfacial contacts of the nanoparticles efficiently “glued” the structural elements of microfibrils together, producing a unique inorganic-organic hybrid substructure that reinforced the multilayered architecture of the cotton fiber. PMID:27849038
Harder, H; Khol-Parisini, A; Metzler-Zebeli, B U; Klevenhusen, F; Zebeli, Q
2015-11-01
Recent data indicate positive effects of treating grain with citric (CAc) or lactic acid (LAc) on the hydrolysis of phytate phosphorus (P) and fermentation products of the grain. This study used a semicontinuous rumen simulation technique to evaluate the effects of processing of barley with 50.25 g/L (wt/vol) CAc or 76.25 g/L LAc on microbial composition, metabolic fermentation profile, and nutrient degradation at low or high dietary P supply. The low P diet [3.1g of P per kg of dry matter (DM) of dietary P sources only] was not supplemented with inorganic P, whereas the high P diet was supplemented with 0.5 g of inorganic P per kg of DM through mineral premix and 870 mg of inorganic P/d per incubation fermenter via artificial saliva. Target microbes were determined using quantitative PCR. Data showed depression of total bacteria but not of total protozoa or short-chain fatty acid (SCFA) concentration with the low P diet. In addition, the low P diet lowered the relative abundance of Ruminococcus albus and decreased neutral detergent fiber (NDF) degradation and acetate proportion, but increased the abundance of several predominantly noncellulolytic bacterial species and anaerobic fungi. Treatment of grain with LAc increased the abundance of total bacteria in the low P diet only, and this effect was associated with a greater concentration of SCFA in the ruminal fluid. Interestingly, in the low P diet, CAc treatment of barley increased the most prevalent bacterial group, the genus Prevotella, in ruminal fluid and increased NDF degradation to the same extent as did inorganic P supplementation in the high P diet. Treatment with either CAc or LAc lowered the abundance of Megasphaera elsdenii but only in the low P diet. On the other hand, CAc treatment increased the proportion of acetate in the low P diet, whereas LAc treatment decreased this variable at both dietary P levels. The propionate proportion was significantly increased by LAc at both P levels, whereas butyrate increased only with the low P diet. Treatments with CAc or LAc reduced the degradation of CP and ammonia concentration compared with the control diet at both P levels. In conclusion, the beneficial effects of CAc and LAc treatment on specific ruminal microbes, fermentation profile, and fiber degradation in the low P diet suggest the potential for the treatment to compensate for the lack of inorganic P supplementation in vitro. Further research is warranted to determine the extent to which the treatment can alleviate the shortage of inorganic P supplementation under in vivo conditions. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Optical fiber sensor for breathing diagnostics
NASA Astrophysics Data System (ADS)
Claus, Richard O.; Distler, T.; Mecham, J. B.; Davis, B.; Arregui, F. J.; Matias, I. R.
2004-06-01
We report improvements of an optical fiber-based humidity sensor to the problem of breathing diagnostics. The sensor is fabricated by molecularly self-assembling selected polymers and functionalized inorganic nanoclusters into multilayered optical thin films on the cleaved and polished flat end of a singlemode optical fiber. Recent work has studied the synthesis process and the fundamental mechanisms responsible for the change in optical reflection from such a multicomponent film that occurs as a function of humidity and various chemicals. We briefly review that prior work as a way to introduce more recent developments. The paper then discusses the application of these humidity sensors to the analysis of air flow associated with breathing [1]. We have designed the sensor thin film materials to enable the detection of relative humidity over a wide range, from approximately 5 to 95%, and for response times as short as several microseconds. This fast response time allows the near real-time analysis of air flow and water vapor transport during a single breath, with the advantage of very small size. The use of multiple sensors spaced a known distance apart allows the measurement of flow velocity, and recent work indicates a variation in sensor response versus coating thickness.
40 CFR 141.51 - Maximum contaminant level goals for inorganic contaminants.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: Contaminant MCLG (mg/l) Antimony 0.006 Arsenic zero 1 Asbestos 7 Million fibers/liter (longer than 10 µm... Nitrogen). Selenium 0.05 Thallium .0005 1 This value for arsenic is effective January 23, 2006. Until then...
Exposure Assessment Tools by Chemical Classes - Inorganics and Fibers
EPA ExpoBox is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases
Organic-inorganic composites designed for biomedical applications.
Miyazaki, Toshiki; Ishikawa, Kunio; Shirosaki, Yuki; Ohtsuki, Chikara
2013-01-01
Several varieties of ceramics, such as Bioglass-type glasses, sintered hydroxyapatite and glass-ceramic A-W, exhibit specific biological affinity, i.e., direct bonding to surrounding bone, when implanted in bony defects. These bone-bonding ceramics are called bioactive ceramics and are utilized as important bone substitutes in the medical field. However, there is a limitation to their clinical applications because of their inappropriate mechanical properties. Natural bone takes a kind of organic-inorganic composite, where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems with the bioactive ceramics can be solved by material design based on the composites. In this paper, current research topics on the development of bioactive organic-inorganic composites inspired by actual bone microstructure have been reviewed in correlation with preparation methods and various properties. Several kinds of inorganic components have been found to exhibit bioactivity in the body environment. Combination of the inorganic components with various organic polymers enables the development of bioactive organic-inorganic composites. In addition, novel biomedical applications of the composites to drug delivery systems, scaffolds for tissue regeneration and injectable biomaterials are available by combining drugs or biological molecules with appropriate control of its microstructure.
Chemical sensors for space applications
NASA Technical Reports Server (NTRS)
Bonting, Sjoerd L.
1992-01-01
The payload of the Space Station Freedom will include sensors for frequent monitoring of the water recycling process and for measuring the many biochemical parameters related to onboard experiments. This paper describes the sensor technologies and the types of transducers and selectors considered for these sensors. Particular attention is given to such aspects of monitoring of the water recycling process as the types of water use, the sources of water and their hazards, the sensor systems for monitoring, microbial monitoring, and monitoring toxic metals and organics. An approach for monitoring water recycling is suggested, which includes microbial testing with a potentiometric device (which should be in first line of tests), the use of an ion-selective electrode for inorganic ion determinations, and the use of optic fiber techniques for the determination of total organic carbon.
Synthetic vitreous fibers: a review of toxicology research and its impact on hazard classification.
Hesterberg, T W; Hart, G A
2001-01-01
Because the inhalation of asbestos, a naturally occurring, inorganic fibrous material, is associated with lung fibrosis and thoracic cancers, concerns have been raised about the possible health effects of synthetic vitreous fibers (SVFs). SVFs include a very broad variety of inorganic fibrous materials with an amorphous molecular structure. Traditionally, SVFs have been divided into three subcategories based on composition: fiberglass, mineral wool (rock, stone, and slag wools), and refractory ceramic fiber. For more than 50 years, the toxicologic potential of SVFs has been researched extensively using human epidemiology and a variety of laboratory studies. Here we review the research and its impact on hazard classification and regulation of SVFs. Large, ongoing epidemiology studies of SVF manufacturing workers have provided very little evidence of harmful effects in humans. Several decades of research using rodents exposed by inhalation have confirmed that SVF pulmonary effects are determined by the "Three D's", fiber dose (lung), dimension, and durability. Lung dose over time is determined by fiber deposition and biopersistence in the lung. Deposition is inversely related to fiber diameter. Biopersistence is directly related to fiber length and inversely related to fiber dissolution and fragmentation rates. Inhaled short fibers are cleared from the lung relatively quickly by mobile phagocytic cells, but long fibers persist until they dissolve or fragment. In contrast to asbestos, most of the SVFs tested in rodent inhalation studies cleared rapidly from the lung (were nonbiopersistent) and were innocuous. However, several relativley biopersistent SVFs induced chronic inflammation, lung scarring (fibrosis), and thoracic neoplasms. Thus, biopersistence of fibers is now generally recognized as a key determinant of the toxicologic potential of SVFs. In vitro dissolution of fibers in simulated extracellular fluid correlates fairly well with fiber biopersistence in the lung and pulmonary toxicity, but several exceptions suggest that biopersistence involves more than dissolution rate. Research demonstrating the relationship between biopersistence and SVF toxicity has provided a scientific basis for hazard classification and regulation of SVFs. For a nonhazardous classification, legislation recently passed by the European Union requires a respirable insulation wool to have a low lung-biopersistence or be noncarcinogenic in laboratory rats. U.S. fiberglass and mineral wool industries and the Occupational Health and Safety Administration (OSHA) have formed a voluntary Health and Safety Partnership Program (HSPP) that include: a voluntary permissible exposure level (PEL) in the workplace of 1 fiber/cc, a respiratory protection program for specified tasks, continued workplace air monitoring, and, where possible, the development of fiber formulations that do not persist in the lung. RCF manufacturers have implemented a Product Stewardship Program that includes: a recommended exposure guideline of 0.5 fibers/cc; a 5-year workplace air monitoring program; and research into the development of high-temperature-resistant, biosoluble fibers.
Caremani, Marco; Dantzig, Jody; Goldman, Yale E; Lombardi, Vincenzo; Linari, Marco
2008-12-15
The relation between the chemical and mechanical steps of the myosin-actin ATPase reaction that leads to generation of isometric force in fast skeletal muscle was investigated in demembranated fibers of rabbit psoas muscle by determining the effect of the concentration of inorganic phosphate (Pi) on the stiffness of the half-sarcomere (hs) during transient and steady-state conditions of the isometric contraction (temperature 12 degrees C, sarcomere length 2.5 mum). Changes in the hs strain were measured by imposing length steps or small 4 kHz oscillations on the fibers in control solution (without added Pi) and in solution with 3-20 mM added Pi. At the plateau of the isometric contraction in control solution, the hs stiffness is 22.8 +/- 1.1 kPa nm(-1). Taking the filament compliance into account, the total stiffness of the array of myosin cross-bridges in the hs (e) is 40.7 +/- 3.7 kPa nm(-1). An increase in [Pi] decreases the stiffness of the cross-bridge array in proportion to the isometric force, indicating that the force of the cross-bridge remains constant independently of [Pi]. The rate constant of isometric force development after a period of unloaded shortening (r(F)) is 23.5 +/- 1.0 s(-1) in control solution and increases monotonically with [Pi], attaining a maximum value of 48.6 +/- 0.9 s(-1) at 20 mM [Pi], in agreement with the idea that Pi release is a relatively fast step after force generation by the myosin cross-bridge. During isometric force development at any [Pi], e and thus the number of attached cross-bridges increase in proportion to the force, indicating that, independently of the speed of the process that leads to myosin attachment to actin, there is no significant (>1 ms) delay between generation of stiffness and generation of force by the cross-bridges.
Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua
2013-01-01
A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an “in situ growth for conductive wrapping” and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm−3 at a discharge current density of 0.1 A cm−3 and an energy density of 6.16 × 10−3 Wh cm−3 at a power density of 0.04 W cm−3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the “in situ growth for conductive wrapping” method might be generalized to open up new strategies for designing next-generation energy storage devices. PMID:23884478
NASA Astrophysics Data System (ADS)
Prado-Prone, G.; Silva-Bermúdez, P.; García-Macedo, J. A.; Almaguer-Flores, A.; Ibarra, C.; Velasquillo-Martínez, C.
2017-02-01
Antibacterial studies of inorganic nanoparticles (nps) have become important due to the increased bacterial resistance against antibiotics. We used Zinc oxide nanoparticles (ZnO nps), which possess excellent photocatalytic properties with a wide band gap (Eg), are listed as "generally recognized as safe" by the Food and Drug Administration (FDA) and have shown antibacterial activity (AA) against many bacterial strains. The AA of ZnO nps is partly attributed to the production of Reactive Oxygen Species (ROS) by photocatalysis. When ZnO nps in aqueous media are illuminated with an energy
NASA Astrophysics Data System (ADS)
Arregui, Francisco J.; Matías, Ignacio R.; Claus, Richard O.
2007-07-01
The Layer-by-Layer Electrostatic Self-Assembly (ESA) method has been successfully used for the design and fabrication of nanostructured materials. More specifically, this technique has been applied for the deposition of thin films on optical fibers with the purpose of fabricating different types of optical fiber sensors. In fact, optical fiber sensors for measuring humidity, temperature, pH, hydrogen peroxide, glucose, volatile organic compounds or even gluten have been already experimentally demonstrated. The versatility of this technique allows the deposition of these sensing coatings on flat substrates and complex geometries as well. For instance, nanoFabry-Perots and microgratings have been formed on cleaved ends of optical fibers (flat surfaces) and also sensing coatings have been built onto long period gratings (cylindrical shape), tapered fiber ends (conical shape), biconically tapered fibers or even the internal side of hollow core fibers. Among the different materials used for the construction of these sensing nanostructured coatings, diverse types such as polymers, inorganic semiconductors, colorimetric indicators, fluorescent dyes, quantum dots or even biological elements as enzymes can be found. This technique opens the door to the fabrication of new types of optical fiber sensors.
Ding, Zhu; Li, Yu-Yu; Lu, Can; Liu, Jian
2018-05-21
In this study, chemically bonded phosphate ceramic (CBPC) fiber reinforced composites were made at indoor temperatures. The mechanical properties and microstructure of the CBPC composites were studied. The CBPC matrix of aluminum phosphate binder, metakaolin, and magnesia with different Si/P ratios was prepared. The results show that when the Si/P ratio was 1.2, and magnesia content in the CBPC was 15%, CBPC reached its maximum flexural strength. The fiber reinforced CBPC composites were prepared by mixing short polyvinyl alcohol (PVA) fibers or unidirectional continuous carbon fiber sheets. Flexural strength and dynamic mechanical properties of the composites were determined, and the microstructures of specimens were analyzed by scanning electron micrography, X-ray diffraction, and micro X-ray computed tomography. The flexural performance of continuous carbon fiber reinforced CBPC composites was better than that of PVA fiber composites. The elastic modulus, loss modulus, and loss factor of the fiber composites were measured through dynamic mechanical analysis. The results showed that fiber reinforced CBPC composites are an inorganic polymer viscoelastic material with excellent damping properties. The reaction of magnesia and phosphate in the matrix of CBPC formed a different mineral, newberyite, which was beneficial to the development of the CBPC.
A science-based paradigm for the classification of synthetic vitreous fibers.
McConnell, E E
2000-08-01
Synthetic vitreous fibers (SVFs) are a broad class of inorganic vitreous silicates used in a large number of applications including thermal and acoustical insulation and filtration. Historically, they have been grouped into somewhat artificial broad categories, e.g., glass, rock (stone), slag, or ceramic fibers based on the origin of the raw materials or the manufacturing process used to produce them. In turn, these broad categories have been used to classify SVFs according to their potential health effects, e.g., the International Agency for Research on Cancer and International Programme for Chemical Safety in 1988, based on the available health information at that time. During the past 10-15 years extensive new information has been developed on the health aspects of these fibers in humans, in experimental animals, and with in vitro test systems. Various chronic inhalation studies and intraperitoneal injection studies in rodents have clearly shown that within a given category of SVFs there can be a vast diversity of biological responses due to the different fiber compositions within that category. This information has been further buttressed by an in-depth knowledge of differences in the biopersistence of the various types of fibers in the lung after short-term exposure and their in vitro dissolution rates in fluids that mimic those found in the lung. This evolving body of information, which compliments and explains the results of chronic animal studies clearly show that these "broad" categories are somewhat archaic, oversimplistic, and do not represent current science. This new understanding of the relation between fiber composition, solubility, and biological activity requires a new classification system to more accurately reflect the potential health consequences of exposure to these materials. It is proposed that a new classification system be developed based on the results of short-term in vivo in combination with in vitro solubility studies. Indeed, the European Union has incorporated some of this knowledge, e.g., persistence in the lung into its recent Directive on fiber classification. Copyright 2000 Academic Press.
Kinetics of Nucleation and Crystal Growth in Glass Forming Melts in Microgravity
NASA Technical Reports Server (NTRS)
Day, Delbert E.; Ray, Chandra S.
2001-01-01
This flight definition project has the specific objective of investigating the kinetics of nucleation and crystal growth in high temperature inorganic oxide, glass forming melts in microgravity. It is related to one of our previous NASA projects that was concerned with glass formation for high temperature containerless melts in microgravity. The previous work culminated in two experiments which were conducted aboard the space shuttle in 1983 and 1985 and which consisted of melting (at 1500 C) and cooling levitated 6 to 8 mm diameter spherical samples in a Single Axis Acoustic Levitator (SAAL) furnace. Compared to other types of materials, there have been relatively few experiments, 6 to 8, conducted on inorganic glasses in space. These experiments have been concerned with mass transport (alkali diffusion), containerless melting, critical cooling rate for glass formation, chemical homogeneity, fiber pulling, and crystallization of glass forming melts. One of the most important and consistent findings in all of these experiments has been that the glasses prepared in microgravity are more resistant to crystallization (better glass former) and more chemically homogeneous than equivalent glasses made on Earth (1 g). The chemical composition of the melt appears relatively unimportant since the same general results have been reported for oxide, fluoride and chalcogenide melts. These results for space-processed glasses have important implications, since glasses with a higher resistance to crystallization or higher chemical homogeneity than those attainable on Earth can significantly advance applications in areas such as fiber optics communications, high power laser glasses, and other photonic devices where glasses are the key functional materials.
Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rottstegge, J.; Arnold, M.; Herschke, L.
Construction mortars contain a broad variety of both inorganic and organic additives beside the cement powder. Here we present a study of tile mortar systems based on portland cement, quartz, methyl cellulose and different latex additives. As known, the methyl cellulose stabilizes the freshly prepared cement paste, the latex additive enhances final hydrophobicity, flexibility and adhesion. Measurements were performed by solid state nuclear magnetic resonance (NMR) and low voltage scanning electron microscopy (LVSEM) to probe the influence of the latex additives on the hydration, hardening and the final tile mortar properties. While solid state NMR enables monitoring of the bulkmore » composition, scanning electron microscopy affords visualization of particles and textures with respect to their shape and the distribution of the different phases. Within the alkaline cement paste, the poly(vinyl acetate) (VAc)-based latex dispersions stabilized by poly(vinyl alcohol) (PVA) were found to be relatively stable against hydrolysis. The influence of the combined organic additives methyl cellulose, poly(vinyl alcohol) and latexes stabilized by poly(vinyl alcohol) on the final silicate structure of the cement hydration products is small. But even small amounts of additives result in an increased ratio of ettringite to monosulfate within the final hydrated tile mortar as monitored by {sup 27}Al NMR. The latex was found to be adsorbed to the inorganic surfaces, acting as glue to the inorganic components. For similar latex water interfaces built up by poly(vinyl alcohol), a variation in the latex polymer composition results in modified organic textures. In addition to the networks of the inorganic cement and of the latex, there is a weak network build up by thin polymer fibers, most probably originating from poly(vinyl alcohol). Besides the weak network, polymer fibers form well-ordered textures covering inorganic crystals such as portlandite.« less
Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL
2009-10-13
Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.
Nanosize electropositive fibrous adsorbent
Tepper, Frederick; Kaledin, Leonid
2005-01-04
Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2 /g have been fount to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of mirobes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolicules such as proteins may be separated from each other based on their electronegative charges.
Ruby-based inorganic scintillation detectors for 192Ir brachytherapy
NASA Astrophysics Data System (ADS)
Kertzscher, Gustavo; Beddar, Sam
2016-11-01
We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from >5% to <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was <3% as long as the source distance from the scintillator was <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.
Ruby-based inorganic scintillation detectors for 192Ir brachytherapy
Kertzscher, Gustavo; Beddar, Sam
2016-01-01
We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from > 5% to < 1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was < 3% as long as the source distance from the scintillator was < 7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by > 5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence. PMID:27740947
Ruby-based inorganic scintillation detectors for 192Ir brachytherapy.
Kertzscher, Gustavo; Beddar, Sam
2016-11-07
We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from >5% to <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was <3% as long as the source distance from the scintillator was <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.
Inorganic scintillation detectors based on Eu-activated phosphors for 192Ir brachytherapy
Kertzscher, Gustavo; Beddar, Sam
2017-01-01
The availability of real-time treatment verification during high-dose-rate (HDR) brachytherapy is currently limited. Therefore, we studied the luminescence properties of the widely commercially available scintillators using the inorganic materials Eu-activated phosphors Y2O3:Eu, YVO4:Eu, Y2O2S:Eu, and Gd2O2S:Eu to determine whether they could be used to accurately and precisely verify HDR brachytherapy doses in real time. The suitability for HDR brachytherapy of inorganic scintillation detectors (ISDs) based on the 4 Eu-activated phosphors in powder form was determined based on experiments with a 192Ir HDR brachytherapy source. The scintillation intensities of the phosphors were 16 to 134 times greater than that of the commonly used organic plastic scintillator BCF-12. High signal intensities were achieved with an optimized packing density of the phosphor mixture and with a shortened fiber-optic cable. The influence of contaminating Cerenkov and fluorescence light induced in the fiber-optic cable (stem signal) was adequately suppressed by inserting between the fiber-optic cable and the photodetector a 25-nm band-pass filter centered at the emission peak. The spurious photoluminescence signal induced by the stem signal was suppressed by placing a long-pass filter between the scintillation detector volume and the fiber-optic cable. The time-dependent luminescence properties of the phosphors were quantified by measuring the non-constant scintillation during irradiation and the afterglow after the brachytherapy source had retracted. We demonstrated that a mixture of Y2O3:Eu and YVO4:Eu suppressed the time-dependence of the ISDs and that the time-dependence of Y2O2S:Eu and Gd2O2S:Eu introduced large measurement inaccuracies. We conclude that ISDs based on a mixture of Y2O3:Eu and YVO4:Eu are promising candidates for accurate and precise real-time verification technology for HDR BT that is cost effective and straightforward to manufacture. Widespread dissemination of this technology could lead to an improved understanding of error types and frequencies during BT and to improved patient safety during treatment. PMID:28475494
Inorganic scintillation detectors based on Eu-activated phosphors for 192Ir brachytherapy
NASA Astrophysics Data System (ADS)
Kertzscher, Gustavo; Beddar, Sam
2017-06-01
The availability of real-time treatment verification during high-dose-rate (HDR) brachytherapy is currently limited. Therefore, we studied the luminescence properties of the widely commercially available scintillators using the inorganic materials Eu-activated phosphors Y2O3:Eu, YVO4:Eu, Y2O2S:Eu, and Gd2O2S:Eu to determine whether they could be used to accurately and precisely verify HDR brachytherapy doses in real time. The suitability for HDR brachytherapy of inorganic scintillation detectors (ISDs) based on the 4 Eu-activated phosphors in powder form was determined based on experiments with a 192Ir HDR brachytherapy source. The scintillation intensities of the phosphors were 16-134 times greater than that of the commonly used organic plastic scintillator BCF-12. High signal intensities were achieved with an optimized packing density of the phosphor mixture and with a shortened fiber-optic cable. The influence of contaminating Cerenkov and fluorescence light induced in the fiber-optic cable (stem signal) was adequately suppressed by inserting between the fiber-optic cable and the photodetector a 25 nm band-pass filter centered at the emission peak. The spurious photoluminescence signal induced by the stem signal was suppressed by placing a long-pass filter between the scintillation detector volume and the fiber-optic cable. The time-dependent luminescence properties of the phosphors were quantified by measuring the non-constant scintillation during irradiation and the afterglow after the brachytherapy source had retracted. We demonstrated that a mixture of Y2O3:Eu and YVO4:Eu suppressed the time-dependence of the ISDs and that the time-dependence of Y2O2S:Eu and Gd2O2S:Eu introduced large measurement inaccuracies. We conclude that ISDs based on a mixture of Y2O3:Eu and YVO4:Eu are promising candidates for accurate and precise real-time verification technology for HDR BT that is cost effective and straightforward to manufacture. Widespread dissemination of this technology could lead to an improved understanding of error types and frequencies during BT and to improved patient safety during treatment.
Gong, Yuexiang; Li, Jiuyi; Zhang, Yanyu; Zhang, Meng; Tian, Xiujun; Wang, Aimin
2016-03-05
Solutions of 500 mL 200 mg L(-1) fluoroquinolone antibiotic levofloxacin (LEVO) have been degraded by anodic oxidation (AO), AO with electrogenerated H2O2 (AO-H2O2) and electro-Fenton (EF) processes using an activated carbon fiber (ACF) felt cathode from the point view of not only LEVO disappearance and mineralization, but also biodegradability enhancement. The LEVO decay by EF process followed a pseudo-first-order reaction with an apparent rate constant of 2.37×10(-2)min(-1), which is much higher than that of AO or AO-H2O2 processes. The LEVO mineralization also evidences the order EF>AO-H2O2>AO. The biodegradability (BOD5/COD) increased from 0 initially to 0.24, 0.09, and 0.03 for EF, AO-H2O2 and AO processes after 360 min treatment, respectively. Effects of several parameters such as current density, initial pH and Fe(2+) concentration on the EF degradation have also been examined. Three carboxylic acids including oxalic, formic and acetic acid were detected, as well as the released inorganic ions NH4(+), NO3(-) and F(-). At last, an ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry was used to identify about eight aromatic intermediates formed in 60 min of EF treatment, and a plausible mineralization pathway for LEVO by EF treatment was proposed. Copyright © 2015 Elsevier B.V. All rights reserved.
Potential pulmonary effects of man-made organic fiber (MMOF) dusts.
Warheit, D B; Hart, G A; Hesterberg, T W; Collins, J J; Dyer, W M; Swaen, G M; Castranova, V; Soiefer, A I; Kennedy, G L
2001-11-01
In the first half of the twentieth century epidemiologic evidence linked elevated incidences of pulmonary fibrosis and cancer with inhalation of chrysotile and crocidolite asbestos, a family of naturally occurring inorganic fibrous materials. As the serpentine and amphibole forms of asbestos were phased out, synthetic vitreous fibers (SVFs; fiber glass, mineral wool, and refractory fiber) became increasingly utilized, and concerns were raised that they too might cause adverse health effects. Extensive toxicological research on SVFs has demonstrated that their pulmonary effects are directly related to fiber dose in the lung over time. This is the result of deposition (thin fibers deposit in the lower lung more efficiently than thick fibers) and lung-persistence ("biopersistence" is directly related to fiber length and inversely related to dissolution and fragmentation rates). In rat inhalation studies, asbestos was determined to be 7- to 10-fold more biopersistent in the lung than SVFs. Other than its effect on biopersistence, fiber composition did not appear to play a direct role in the biological activity of SVFs. Recently, the utilization of man-made organic fibers (MMOFs) (also referred to by some as synthetic organic fibers) has increased rapidly for a variety of applications. In contrast to SVFs, research on the potential pulmonary effects of MMOFs is relatively limited, because traditionally MMOFs were manufactured in diameters too thick to be respirable (inhalable into the lower lung). However, new developments in the MMOF industry have resulted in the production of increasingly fine-diameter fibers for special applications, and certain post-manufacturing processes (e.g., chopping) generate respirable-sized MMOF dust. Until the mid-1990s, there was no consistent evidence of human health affects attributed to occupational exposure to MMOFs. Very recently, however, a unique form of interstitial lung disease has been reported in nylon flock workers in three different plants, and respirable-sized nylon shreds (including fibers) were identified in workplace air samples. Whether nylon dust or other occupational exposures are responsible for the development of lung disease in these workers remains to be determined. It is also unknown whether the biological mechanisms that determine the respirability and toxicity of SVFs apply to MMOFs. Thus, it is appropriate and timely to review the current data regarding MMOF workplace exposure and pulmonary health effects, including the database on epidemiological, exposure assessment, and toxicology studies.
NASA Astrophysics Data System (ADS)
Giancaspro, James William
Lightweight composites and structural sandwich panels are commonly used in marine and aerospace applications. Using carbon, glass, and a host of other high strength fiber types, a broad range of laminate composites and sandwich panels can be developed. Hybrid composites can be constructed by laminating multiple layers of varying fiber types while sandwich panels are manufactured by laminating rigid fiber facings onto a lightweight core. However, the lack of fire resistance of the polymers used for the fabrication remains a very important problem. The research presented in this dissertation deals with an inorganic matrix (Geopolymer) that can be used to manufacture laminate composites and sandwich panels that are resistant up to 1000°C. This dissertation deals with the influence of fiber type on the mechanical behavior and the fire response of hybrid composites and sandwich structures manufactured using this resin. The results are categorized into the following distinct studies. (i) High strength carbon fibers were combined with low cost E-glass fibers to obtain hybrid laminate composites that are both economical and strong. The E-glass fabrics were used as a core while the carbon fibers were placed on the tension face and on both tension and compression faces. (ii) Structural sandwich beams were developed by laminating various types of reinforcement onto the tension and compression faces of balsa wood cores. The flexural behavior of the beams was then analyzed and compared to beams reinforced with organic composite. The effect of core density was evaluated using oak beams reinforced with inorganic composite. (iii) To measure the fire response, balsa wood sandwich panels were manufactured using a thin layer of a fire-resistant paste to serve for fire protection. Seventeen sandwich panels were fabricated and tested to measure the heat release rates and smoke-generating characteristics. The results indicate that Geopolymer can be effectively used to fabricate both high strength composite plates and sandwich panels. A 2 mm thick coating of fireproofing on balsa wood is sufficient to satisfy FAA fire requirements.
Proppant-flowback control in high-temperature wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-06-01
Proppant flowback following fracturing treatments can be controlled by use of resin-coated proppant, inorganic fibers, or polymer strips. Each of these technologies has limitations. Resin-coated proppants cannot be used above 374 F and require an activator below 158 F. Thermoplastic strips cannot be used at temperatures above their melting point. Glass fibers have been used successfully for proppant-flowback control, but they cannot be used at reservoir temperatures below 302 F, they provide only short-term control in carbonate reservoirs, and they cannot be used in an environment where they would be exposed to HF. A new high-performance fiber for proppant-flow-back controlmore » has been developed to overcome these limitations. In laboratory testing, these fibers were resistant to steam, diesel, xylene, HCl, and mud acid at temperatures up to 482 F for periods up to 7 months. Field testing in deep, hot, carbonate reservoirs confirmed the performance of the new fiber. Case histories of gas wells are given.« less
Liu, Mingming; Zeng, Zhaorui; Fang, Huaifang
2005-05-27
Three types of novel acrylate/silicone co-polymer coatings, including co-poly(methyl acrylate/hydroxy-terminated silicone oil) (MA/OH-TSO), co-poly(methyl methacrylate/OH-TSO) (MMA/OH-TSO) and co-poly(butyl methacrylate/OH-TSO) (BMA/OH-TSO), were prepared for the first time by sol-gel method and cross-linking technology and subsequently applied to headspace solid-phase microextraction (HS-SPME) of 2-chloroethyl ethyl sulfide (CEES), a surrogate of mustard, in soil. The underlying mechanisms of the coating process were discussed and confirmed by IR spectra. The selectivity of the three types of sol-gel-derived acrylate/silicone coated fibers was studied, and the BMA/OH-TSO coated fibers exhibited the highest extraction ability to CEES. The concentration of BMA and OH-TSO in sol solution was optimized, and the BMA/OH-TSO (3:1)-coated fibers possessed the highest extraction efficiency. Compared with commercially available polyacrylate (PA) fiber, the sol-gel-derived BMA/OH-TSO (3:1) fibers showed much higher extraction efficiency to CEES. Therefore, the BMA/OH-TSO (3:1)-coated fibers were chosen for the analysis of CEES in soil matrix. The reproducibility of coating preparation was satisfactory, with the RSD 2.39% within batch and 3.52% between batches, respectively. The coatings proved to be quite stable at high temperature (to 350 degrees C) and in different solvents (organic or inorganic), thus their lifetimes (to 150 times) are longer than conventional fibers. Extraction parameters, such as the volume of water added to the soil, extraction temperature and time, and the ionic strength were optimized. The linearity was from 0.1 to 10 microg/g, the limit of detection (LOD) was 2.7 ng/g, and the RSD was 2.19%. The recovery of CEES was 88.06% in agriculture soil, 92.61% in red clay, and 101.95% in sandy soil, respectively.
Daghino, Stefania; Martino, Elena; Fenoglio, Ivana; Tomatis, Maura; Perotto, Silvia; Fubini, Bice
2005-09-19
In a previous study several strains of soil fungi were reported to remove iron in vitro from crocidolite asbestos, a process that was envisaged as a possible bioremediation route for asbestos-polluted soils. Here, we get some new insight into the chemical basis of the fiber/fungi interaction by comparing the action of the most active fungal strain Fusarium oxysporum on three kind of asbestos fibers--chrysotile, amosite, and crocidolite--and on a surface-modified crocidolite. None of the fibers examined significantly inhibited biomass production. Even the smallest fibrils were visibly removed from the supernatant following adhesion to fungal hyphae. F. oxysporum, through release of chelators, extracted iron from all fibers; the higher the amount of iron at the exposed surface, the larger the amount removed, that is, crocidolite > amosite > chrysotile. When considering the fraction of total iron extracted, however, the ranking was chrysotile > crocidolite > amosite > heated crocidolite, because of the different accessibility of the chelators to the metal ions in the crystal structure. Chrysotile was the easiest to deplete of its metal content. Iron removal fully blunted HO* radical release from crocidolite and chrysotile but only partially from amosite. The removal, in a long-term experiment, of more iron than is expected to be at the surface suggests a diffusion of ions from the bulk solid towards the surface depleted of iron by fungal activity. Thus, if the fibers could be treated with a continuous source of chelators, iron extraction would proceed up to a full inactivation of free radical release. The fungal metabolic response of F. oxysporum grown in the presence of chrysotile, amosite and crocidolite revealed that new extracellular proteins are induced--including manganese-superoxide dismutase, the typical antioxidant defense--and others are repressed, upon direct contact with the fibers. The protein profile induced by heated crocidolite was different, a result suggesting a key role for the state of the fiber/hyphae interface in protein induction.
NASA Astrophysics Data System (ADS)
de Andrés, A. I.; Esteban, Ó.; Embid, M.
2017-08-01
Gamma radiation detection in the range of 662 keV, the reference for environmental protection, is done through extrinsic optical fiber sensors. The fluorescence rendered by an inorganic scintillator when irradiated with such gamma rays is gathered by a modified polymer optical fiber tip. This modification increases the recorded signal when compared with plain unaltered fiber. Two fiber tip modification are then compared in terms of light gathering capability. A chemically etched fiber, in which the cladding and part of the core are removed, and a tapered fiber in which the core-cladding structure is kept. Both structures are comparable in length and final diameter, and show linear response in the tested range up to 2 Gy/h air Kerma rate. The etched fiber shows a higher slope than the tapered one, although both improve the signal gathered by a plain fiber tip. The easy fabrication and handling of the reported transducers, together with the improved signal gathering, allow to reduce the overall system budget with the use of low-cost optoelectronics in the detection stage. This offers a significant improvement for surveillance systems in radioprotection applications, in which presence of gamma radiation coming out accidental leakage or spurious sources activity is the main target.
Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite
Malenab, Roy Alvin J.; Ngo, Janne Pauline S.; Promentilla, Michael Angelo B.
2017-01-01
The use of natural fibers in reinforced composites to produce eco-friendly materials is gaining more attention due to their attractive features such as low cost, low density and good mechanical properties, among others. This work thus investigates the potential of waste abaca (Manila hemp) fiber as reinforcing agent in an inorganic aluminosilicate material known as geopolymer. In this study, the waste fibers were subjected to different chemical treatments to modify the surface characteristics and to improve the adhesion with the fly ash-based geopolymer matrix. Definitive screening design of experiment was used to investigate the effect of successive chemical treatment of the fiber on its tensile strength considering the following factors: (1) NaOH pretreatment; (2) soaking time in aluminum salt solution; and (3) final pH of the slurry. The results show that the abaca fiber without alkali pretreatment, soaked for 12 h in Al2(SO4)3 solution and adjusted to pH 6 exhibited the highest tensile strength among the treated fibers. Test results confirmed that the chemical treatment removes the lignin, pectin and hemicellulose, as well as makes the surface rougher with the deposition of aluminum compounds. This improves the interfacial bonding between geopolymer matrix and the abaca fiber, while the geopolymer protects the treated fiber from thermal degradation. PMID:28772936
Optical and mechanical behaviors of glassy silicone networks derived from linear siloxane precursors
NASA Astrophysics Data System (ADS)
Jang, Heejun; Seo, Wooram; Kim, Hyungsun; Lee, Yoonjoo; Kim, Younghee
2016-01-01
Silicon-based inorganic polymers are promising materials as matrix materials for glass fiber composites because of their good process ability, transparency, and thermal property. In this study, for utilization as a matrix precursor for a glass-fiber-reinforced composite, glassy silicone networks were prepared via hydrosilylation of linear/pendant Si-H polysiloxanes and the C=C bonds of viny-lterminated linear/cyclic polysiloxanes. 13C nuclear magnetic resonance spectroscopy was used to determine the structure of the cross-linked states, and a thermal analysis was performed. To assess the mechanical properties of the glassy silicone networks, we performed nanoindentation and 4-point bending tests. Cross-linked networks derived from siloxane polymers are thermally and optically more stable at high temperatures. Different cross-linking agents led to final networks with different properties due to differences in the molecular weights and structures. After stepped postcuring, the Young's modulus and the hardness of the glassy silicone networks increased; however, the brittleness also increased. The characteristics of the cross-linking agent played an important role in the functional glassy silicone networks.
40 CFR 141.51 - Maximum contaminant level goals for inorganic contaminants.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level...: Contaminant MCLG (mg/l) Antimony 0.006 Arsenic zero 1 Asbestos 7 Million fibers/liter (longer than 10 µm... Lead zero Mercury 0.002 Nitrate 10 (as Nitrogen). Nitrite 1 (as Nitrogen). Total Nitrate+Nitrite 10 (as...
40 CFR 141.51 - Maximum contaminant level goals for inorganic contaminants.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level...: Contaminant MCLG (mg/l) Antimony 0.006 Arsenic zero 1 Asbestos 7 Million fibers/liter (longer than 10 µm... Lead zero Mercury 0.002 Nitrate 10 (as Nitrogen). Nitrite 1 (as Nitrogen). Total Nitrate+Nitrite 10 (as...
40 CFR 141.51 - Maximum contaminant level goals for inorganic contaminants.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level...: Contaminant MCLG (mg/l) Antimony 0.006 Arsenic zero 1 Asbestos 7 Million fibers/liter (longer than 10 µm... Lead zero Mercury 0.002 Nitrate 10 (as Nitrogen). Nitrite 1 (as Nitrogen). Total Nitrate+Nitrite 10 (as...
7 CFR 319.37-8 - Growing media.
Code of Federal Regulations, 2013 CFR
2013-01-01
... shall be free of sand, soil, earth, and other growing media, except as provided in paragraph (b), (c..., coir, cork, glass wool, organic and inorganic fibers, peat, perlite, phenol formaldehyde, plastic... greenhouse must be free from sand and soil and must have screening with openings of not more than 0.6 mm (0.2...
7 CFR 319.37-8 - Growing media.
Code of Federal Regulations, 2014 CFR
2014-01-01
... shall be free of sand, soil, earth, and other growing media, except as provided in paragraph (b), (c..., coir, cork, glass wool, organic and inorganic fibers, peat, perlite, phenol formaldehyde, plastic... greenhouse must be free from sand and soil and must have screening with openings of not more than 0.6 mm (0.2...
7 CFR 319.37-8 - Growing media.
Code of Federal Regulations, 2012 CFR
2012-01-01
... shall be free of sand, soil, earth, and other growing media, except as provided in paragraph (b), (c..., coir, cork, glass wool, organic and inorganic fibers, peat, perlite, phenol formaldehyde, plastic... greenhouse must be free from sand and soil and must have screening with openings of not more than 0.6 mm (0.2...
Basic forensic identification of artificial leather for hit-and-run cases.
Sano, Tetsuya; Suzuki, Shinichi
2009-11-20
Single fibers retrieved from a victim's garments and adhered to the suspect's automobile have frequently been used to prove the relationship between victim and suspect's automobile. Identification method for single fiber discrimination has already been conducted. But, a case was encountered requiring discrimination of artificial leather fragments retrieved from the victim's bag and fused fibers from the bumper of the suspect's automobile. In this report, basic studies were conducted on identification of artificial leathers and single fibers from leather materials. Fiber morphology was observed using scanning electron microscopy (SEM), color of these leather sheets was evaluated by microspectrophotometry (MSP), the leather components were measured by infrared micro spectrometry (micro-FT-IR) and the inorganic contents were ascertained by micro-X-ray fluorescence spectrometry (micro-XRF). These two methods contribute to other analytical methods too, in the case of utilized single fiber analytical methods. The combination of these techniques showed high potential of discrimination ability in forensic examinations of these artificial leather samples. In regard with smooth surface artificial leather sheet samples, a total of 182 sheets were obtained, including 177 colored sheets directly from 10 of 24 manufacturers in Japan, and five of them were purchased at retail circulation products. Nine samples of suede-like artificial leather were obtained, 6 of them were supplied from 2 manufacturers and 3 sheets were purchased as retailing product. Single fibers from the smooth surface artificial leather sheets showed characteristic for surface markings, and XRF could effectively discriminate between these sheets. The combination of results of micro-FT-IR, color evaluation by MSP and the contained inorganic elements by XRF enabled to discriminate about 92% of 15,576 pairs comparison. Five smooth surface samples form retailing products were discriminated by their chemical composition into four categories, and in addition color information to this result, they were clearly distinguished. Suede-like artificial leather sheets showed characteristic extra-fine fibers on their surface by the observation of SEM imaging, providing high discriminating ability, in regard with suede-like artificial leather sheets were divided into three categories by micro-FT-IR, and the combination of these results and color evaluation information, it was possible to discriminate all the nine suede-like artificial leather sheets examined.
Three dimensional imaging detector employing wavelength-shifting optical fibers
Worstell, William A.
1997-01-01
A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions.
Three dimensional imaging detector employing wavelength-shifting optical fibers
Worstell, W.A.
1997-02-04
A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions. 11 figs.
NASA Astrophysics Data System (ADS)
Lin, Yuqing; Xu, Yilin; Loh, Chun Heng; Wang, Rong
2018-04-01
Gas-liquid membrane contactor (GLMC) is a promising method to attain high efficiency for CO2 capture from flue gas, biogas and natural gas. However, membranes used in GLMC are prone to pore wetting due to insufficient hydrophobicity and low chemical resistance, resulting in significant increase in mass transfer resistance. To mitigate this issue, inorganic-organic fluorinated titania/polyvinylidene fluoride (fTiO2/PVDF) composite hollow fiber (HF) membranes was prepared via facile in-situ vapor induced hydrolyzation method, followed by hydrophobic modification. The proposed composite membranes were expected to couple the superb chemical stability of inorganic and high permeability/low cost of organic materials. The continuous fTiO2 layer deposited on top of PVDF substrate was found to possess a tighter microstructure and better hydrophobicity, which effectively prevented the membrane from wetting and lead to a high CO2 absorption flux (12.7 × 10-3 mol m-2 s-1). In a stability test with 21-day operation of GLMC using 1M monoethanolamine (MEA) as the absorbent, the fTiO2/PVDF membrane remained to be intact with a CO2 absorption flux decline of ∼16%, while the pristine PVDF membrane suffered from a flux decline of ∼80% due to membrane damage. Overall, this work provides an insight into the preparation of high-quality inorganic/organic composite HF membranes for CO2 capture in GLMC application.
Li, Pingjing; He, Man; Chen, Beibei; Hu, Bin
2015-10-09
A simple home-made automatic dynamic hollow fiber based liquid-liquid-liquid microextraction (AD-HF-LLLME) device was designed and constructed for the simultaneous extraction of organomercury and inorganic mercury species with the assistant of a programmable flow injection analyzer. With 18-crown-6 as the complexing reagent, mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were extracted into the organic phase (chlorobenzene), and then back-extracted into the acceptor phase of 0.1% (m/v) 3-mercapto-1-propanesulfonic acid (MPS) aqueous solution. Compared with automatic static (AS)-HF-LLLME system, the extraction equilibrium of target mercury species was obtained in shorter time with higher extraction efficiency in AD-HF-LLLME system. Based on it, a new method of AD-HF-LLLME coupled with large volume sample stacking (LVSS)-capillary electrophoresis (CE)/UV detection was developed for the simultaneous analysis of methyl-, phenyl- and inorganic mercury species in biological samples and environmental water. Under the optimized conditions, AD-HF-LLLME provided high enrichment factors (EFs) of 149-253-fold within relatively short extraction equilibrium time (25min) and good precision with RSD between 3.8 and 8.1%. By combining AD-HF-LLLME with LVSS-CE/UV, EFs were magnified up to 2195-fold and the limits of detection (at S/N=3) for target mercury species were improved to be sub ppb level. Copyright © 2015 Elsevier B.V. All rights reserved.
Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films
Ball, Vincent
2012-01-01
Polyelectrolyte multilayer films are a versatile functionalization method of surfaces and rely on the alternated adsorption of oppositely charged species. Among such species, charged dyes can also be alternated with oppositely charged polymers, which is challenging from a fundamental point of view, because polyelectrolytes require a minimal number of charges, whereas even monovalent dyes can be incorporated during the alternated adsorption process. We will not only focus on organic dyes but also on their inorganic counterparts and on metal complexes. Such films offer plenty of possible applications in dye sensitized solar cells. In addition, dyes are massively used in the textile industry and in histology to stain textile fibers or tissues. However, the excess of non bound dyes poses serious environmental problems. It is hence of the highest interest to design materials able to adsorb such dyes in an almost irreversible manner. Polyelectrolyte multilayer films, owing to their ion exchange behavior can be useful for such a task allowing for impressive overconcentration of dyes with respect to the dye in solution. The actual state of knowledge of the interactions between charged dyes and adsorbed polyelectrolytes is the focus of this review article.
Yi, Mi; Sun, Hongyang; Zhang, Hongcheng; Deng, Xuliang; Cai, Qing; Yang, Xiaoping
2016-01-01
To obtain a kind of light-curable fiber-reinforced composite for dental restoration, an excellent interfacial adhesion between the fiber and the acrylate resin matrix is quite essential. Herein, surface modification on glass fibers were carried out by coating them with poly(methyl methacrylate) (PMMA), polydopamine (PDA), or both. The PMMA or PDA coating was performed by soaking fibers in PMMA/acetone solution or dopamine aqueous solution. PDA/PMMA co-coated glass fibers were obtained by further soaking PDA-coated fibers in PMMA/acetone solution. These modified fibers were impregnated with bisphenol A glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (5:5, w/w) dental resin at a volume fraction of 75%, using unmodified fibers as reference. Light-cured specimens were submitted to evaluations including flexural properties, morphological observation, dynamic mechanical thermal analysis (DMTA) and pull-out test. In comparison with unmodified glass fibers, all the modified glass fibers showed enhancements in flexural strength and modulus of Bis-GMA/TEGDMA resin composites. Results of DMTA and pull-out tests confirmed that surface modification had significantly improved the interfacial adhesion between the glass fiber and the resin matrix. Particularly, the PDA/PMMA co-coated glass fibers displayed the most efficient reinforcement and the strongest interfacial adhesion due to the synergetic effects of PDA and PMMA. It indicated that co-coating method was a promising approach in modifying the interfacial compatibility between inorganic glass fiber and organic resin matrix. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Tao; Han, Enlin; Wang, Xiaodong; Wu, Dezhen
2017-09-01
A new methodology to decorate the surface of polyimide (PI) fiber with carbon nanotubes (CNTs) has been developed in this study. This surface decoration was carried out through a surface alkali treatment, a carboxylation modification, surface functionalization with acyl chloride groups and then with amino groups, and a surface graft of CNTs onto PI fiber. Fourier-transform infrared and X-ray photoelectron spectroscopic characterizations confirmed that CNTs were chemically grafted onto the surface of PI fiber, and scanning electron microscopic observation demonstrated the fiber surface was uniformly and densely covered with CNTs. The surface energy and wettability of PI fiber were improved in the presence of CNTs on the fiber surface, which made a contribution to enhance the interfacial adhesion of PI fiber with other inorganic matrices when used as a reinforcing fiber. The application of CNTs-decorated PI fiber for the reinforcement of phosphoric acid-based geopolymers was investigated, and the results indicated that the geopolymeric composites gained a noticeable reinforcement. Compared to unreinforced geopolymer, the geopolymeric composites achieved a remarkable increase in compressive strength by 120% and in flexural strength by 283%. Fractography investigation demonstrated that the interaction adhesion between the fibers and matrix was enhanced due to the surface decoration of PI fiber with CNTs, which contributed to an improvement in fracture-energy dissipation by fiber pullout and fiber debonding from the matrix. As a result, a significant reinforcement effect on geopolymeric composites was achieved through a fiber-bridging mechanism. This study provided an effective methodology to improve the interracial bonding force for PI fiber and also proves a highly efficient application of CNTs-decorated PI fiber for the mechanical enhancement of geopolymeric composites.
Organic-inorganic hybrid mesoporous silicas: functionalization, pore size, and morphology control.
Park, Sung Soo; Ha, Chang-Sik
2006-01-01
Topological design of mesoporous silica materials, pore architecture, pore size, and morphology are currently major issues in areas such as catalytic conversion of bulky molecules, adsorption, host-guest chemistry, etc. In this sense, we discuss the pore size-controlled mesostructure, framework functionalization, and morphology control of organic-inorganic hybrid mesoporous silicas by which we can improve the applicability of mesoporous materials. First, we explain that the sizes of hexagonal- and cubic-type pores in organic-inorganic hybrid mesoporous silicas are well controlled from 24.3 to 98.0 A by the direct micelle-control method using an organosilica precursor and surfactants with different alkyl chain lengths or triblock copolymers as templates and swelling agents incorporated in the formed micelles. Second, we describe that organic-inorganic hybrid mesoporous materials with various functional groups form various external morphologies such as rod, cauliflower, film, rope, spheroid, monolith, and fiber shapes. Third, we discuss that transition metals (Ti and Ru) and rare-earth ions (Eu(3+) and Tb(3+)) are used to modify organic-inorganic hybrid mesoporous silica materials. Such hybrid mesoporous silica materials are expected to be applied as excellent catalysts for organic reactions, photocatalysis, optical devices, etc. c) 2006 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
The U.S. Chemical Industry, the Products It Makes
ERIC Educational Resources Information Center
Chemical and Engineering News, 1972
1972-01-01
This section of the annual report on the chemical industry presents data on these areas of chemical production: growth rates, man-made fibers; the 50 largest volume chemicals, major inorganics and organics, plastics, drugs, magnesium, and paint. Includes production figures for 1961, 1969, 1970, 1971 and percent change for 1970-71 and for 1961-71.…
Eckstein, Meredith; Rea, Matthew; Fondufe-Mittendorf, Yvonne N.
2017-01-01
Chronic low dose inorganic arsenic exposure causes cells to take on an epithelial-to-mesenchymal phenotype, which is a crucial process in carcinogenesis. Inorganic arsenic is not a mutagen and thus epigenetic alterations have been implicated in this process. Indeed, during the epithelial-to-mesenchymal transition, morphologic changes to cells correlate with changes in chromatin structure and gene expression, ultimately driving this process. However, studies on the effects of inorganic arsenic exposure/withdrawal on the epithelial-to-mesenchymal transition and the impact of epigenetic alterations in this process are limited. In this study we used high-resolution microarray analysis to measure the changes in DNA methylation in cells undergoing inorganic arsenic-induced epithelial-to-mesenchymal transition, and on the reversal of this process, after removal of the inorganic arsenic exposure. We found that cells exposed to chronic, low-dose inorganic arsenic exposure showed 30,530 sites were differentially methylated, and with inorganic arsenic withdrawal several differential methylated sites were reversed, albeit not completely. Furthermore, these changes in DNA methylation mainly correlated with changes in gene expression at most sites tested but not at all. This study suggests that DNA methylation changes on gene expression are not clear-cut and provide a platform to begin to uncover the relationship between DNA methylation and gene expression, specifically within the context of inorganic arsenic treatment. PMID:28336213
DNA origami nanorobot fiber optic genosensor to TMV.
Torelli, Emanuela; Manzano, Marisa; Srivastava, Sachin K; Marks, Robert S
2018-01-15
In the quest of greater sensitivity and specificity of diagnostic systems, one continually searches for alternative DNA hybridization methods, enabling greater versatility and where possible field-enabled detection of target analytes. We present, herein, a hybrid molecular self-assembled scaffolded DNA origami entity, intimately immobilized via capture probes linked to aminopropyltriethoxysilane, onto a glass optical fiber end-face transducer, thus producing a novel biosensor. Immobilized DNA nanorobots with a switchable flap can then be actuated by a specific target DNA present in a sample, by exposing a hemin/G-quadruplex DNAzyme, which then catalyzes the generation of chemiluminescence, once the specific fiber probes are immersed in a luminol-based solution. Integrating organic nanorobots to inorganic fiber optics creates a hybrid system that we demonstrate as a proof-of-principle can be utilized in specific DNA sequence detection. This system has potential applications in a wide range of fields, including point-of-care diagnostics or cellular in vivo biosensing when using ultrathin fiber optic probes for research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.
"Brick-and-Mortar" Nanostructured Interphase for Glass-Fiber-Reinforced Polymer Composites.
De Luca, Francois; Sernicola, Giorgio; Shaffer, Milo S P; Bismarck, Alexander
2018-02-28
The fiber-matrix interface plays a critical role in determining composite mechanical properties. While a strong interface tends to provide high strength, a weak interface enables extensive debonding, leading to a high degree of energy absorption. Balancing these conflicting requirements by engineering composite interfaces to improve strength and toughness simultaneously still remains a great challenge. Here, a nanostructured fiber coating was realized to manifest the critical characteristics of natural nacre, at a reduced length scale, consistent with the surface curvature of fibers. The new interphase contains a high proportion (∼90 wt %) of well-aligned inorganic platelets embedded in a polymer; the window of suitable platelet dimensions is very narrow, with an optimized platelet width and thickness of about 130 and 13 nm, respectively. An anisotropic, nanostructured coating was uniformly and conformally deposited onto a large number of 9 μm diameter glass fibers, simultaneously, using self-limiting layer-by-layer assembly (LbL); this parallel approach demonstrates a promising strategy to exploit LbL methods at scale. The resulting nanocomposite interphase, primarily loaded in shear, provides new mechanisms for stress dissipation and plastic deformation. The energy released by fiber breakage in tension appear to spread and dissipate within the nanostructured interphase, accompanied by stable fiber slippage, while the interfacial strength was improved up to 30%.
Optically resilient 3D micro-optics on the tips of optical fibers
NASA Astrophysics Data System (ADS)
Jonušauskas, Linas
2017-05-01
In this paper we present a study aimed at investigating an optical resiliency of polymers that could be applied in 3D femtosecond laser lithography. These include popular in lithography SU8 and OrmoClear as well as hybrid organic-inorganic zirconium containing SZ2080. We show that latter material in its pure (non-photosensitized) form has the best optical resiliency out of all tested materials. Furthermore, its 3D structurability is investigated. Despite threshold-like quality degradation outside fabrication window, we show that this material is suitable for creating complex 3D structures on the tips of optical fibers. Overall it is demonstrated, that unique capability of 3DLL to structure pure materials can lead to very compact functional fiber-based devices that could withstand high (GW/cm2) light intensities.
NASA Astrophysics Data System (ADS)
Lepedat, Karin; Wagner, Robert; Lang, Jürgen
The use of phenolic resin for the impregnation of a carrier material such as paper or fabric based on either organic or inorganic fibers was and still is one of the most important application areas for liquid phenolic resins. Substrates like paper, cotton, or glass fabric impregnated with phenolic resins are used as core layers for decorative and technical laminates and for many other different industrial applications. Nowadays, phenolic resins for decorative laminates used for furniture, flooring, or in the construction and transportation industry have gained significant market share. The Laminates chapter mainly describes the manufacture of decorative laminates especially the impregnation and pressing process with special emphasis to new technological developments and recent trends. Moreover, the different types of laminates are introduced, combined with some brief comments as they relate to the market for decorative surfaces.
Single clay sheets inside electrospun polymer nanofibers
NASA Astrophysics Data System (ADS)
Sun, Zhaohui
2005-03-01
Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.
Eckstein, Meredith; Rea, Matthew; Fondufe-Mittendorf, Yvonne N
2017-09-15
Chronic low dose inorganic arsenic exposure causes cells to take on an epithelial-to-mesenchymal phenotype, which is a crucial process in carcinogenesis. Inorganic arsenic is not a mutagen and thus epigenetic alterations have been implicated in this process. Indeed, during the epithelial-to-mesenchymal transition, morphologic changes to cells correlate with changes in chromatin structure and gene expression, ultimately driving this process. However, studies on the effects of inorganic arsenic exposure/withdrawal on the epithelial-to-mesenchymal transition and the impact of epigenetic alterations in this process are limited. In this study we used high-resolution microarray analysis to measure the changes in DNA methylation in cells undergoing inorganic arsenic-induced epithelial-to-mesenchymal transition, and on the reversal of this process, after removal of the inorganic arsenic exposure. We found that cells exposed to chronic, low-dose inorganic arsenic exposure showed 30,530 sites were differentially methylated, and with inorganic arsenic withdrawal several differential methylated sites were reversed, albeit not completely. Furthermore, these changes in DNA methylation mainly correlated with changes in gene expression at most sites tested but not at all. This study suggests that DNA methylation changes on gene expression are not clear-cut and provide a platform to begin to uncover the relationship between DNA methylation and gene expression, specifically within the context of inorganic arsenic treatment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards.
Long, Laishou; Sun, Shuiyu; Zhong, Sheng; Dai, Wencan; Liu, Jingyong; Song, Weifeng
2010-05-15
The constant growth in generation of waste printed circuit boards (WPCB) poses a huge disposal problem because they consist of a heterogeneous mixture of organic and metallic chemicals as well as glass fiber. Also the presence of heavy metals, such as Pb and Cd turns this scrap into hazardous waste. Therefore, recycling of WPCB is an important subject not only from the recovery of valuable materials but also from the treatment of waste. The aim of this study was to present a recycling process without negative impact to the environment as an alternative for recycling WPCB. In this work, a process technology containing vacuum pyrolysis and mechanical processing was employed to recycle WPCB. At the first stage of this work, the WPCB was pyrolyzed under vacuum in a self-made batch pilot-scale fixed bed reactor to recycle organic resins contained in the WPCB. By vacuum pyrolysis the organic matter was decomposed to gases and liquids which could be used as fuels or chemical material resources, however, the inorganic WPCB matter was left unaltered as solid residues. At the second stage, the residues obtained at the first stage were investigated to separate and recover the copper through mechanical processing such as crushing, screening, and gravity separation. The copper grade of 99.50% with recovery of 99.86% based on the whole WPCB was obtained. And the glass fiber could be obtained by calcinations in a muffle furnace at 600 degrees C for 10 min. This study had demonstrated the feasibility of vacuum pyrolysis and mechanical processing for recycling WPCB. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Tang, Guodong; Chen, Si; Ye, Feng; Xu, Xiaopeng; Fang, Jing; Wang, Xu
2014-07-11
We report a unique loofah-like gel network that is supported by the sectional type hexagonal columnar assembly of flexuous furcate fibers, which are constructed by plane-to-plane stacking of a novel 3D radially symmetrical gelator with POSS as the core and L-lysine as the arm.
Effect of inorganic species on torrefaction process and product properties of rice husk.
Zhang, Shuping; Su, Yinhai; Ding, Kuan; Zhu, Shuguang; Zhang, Houlei; Liu, Xinzhi; Xiong, Yuanquan
2018-06-20
The objective of this study was to evaluate the effect of inorganic species on torrefaction process and product properties. Torrefaction process of raw and leached rice husk was performed at different temperatures between 210 and 270 °C. Inorganic species have significant effect on the torrefaction process and properties of torrefaction products. The results indicated that solid yield increased, gas yield decreased and liquid yield remained unchanged for leached rice husk when compared to raw rice husk. Gas products from torrefaction process mainly contained CO 2 and CO, and leaching process slightly reduced the volume concentration of CO 2 . Removal of inorganic species slightly decreased water content and increased organic component content in liquid products. Acetic acid, furfural, 2,3-dihydrobenzofuran and levoglucosan were the dominant components in liquid product. Inorganic species enhanced the effect of deoxygenation and dehydrogenation during torrefaction process, resulting in the enrichment of C component in solid products. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ceramic Honeycomb Structures and Method Thereof
NASA Technical Reports Server (NTRS)
Cagliostro, Domenick E.; Riccitiello, Salvatore R.
1989-01-01
The present invention relates to a method for producing ceramic articles and the articles, the process comprising the chemical vapor deposition (CVD) and/or chemical vapor infiltration (CVI) of a honeycomb structure. Specifically the present invention relates to a method for the production of a ceramic honeycomb structure, including: (a) obtaining a loosely woven fabric/binder wherein the fabric consists essentially of metallic, ceramic or organic fiber and the binder consists essentially of an organic or inorganic material wherein the fabric/binder has and retains a honeycomb shape, with the proviso that when the fabric is metallic or ceramic the binder is organic only; (b) substantially evenly depositing at least one layer of a ceramic on the fabric/binder of step (a); and (c) recovering the ceramic coated fiber honeycomb structure. In another aspect, the present invention relates to a method for the manufacture of a lightweight ceramic-ceramic composite honeycomb structure, which process comprises: (d) pyrolyzing a loosely woven fabric a honeycomb shaped and having a high char yield and geometric integrity after pyrolysis at between about 700 degrees and 1,100 degrees Centigrade; (e) substantially evenly depositing at least one layer of ceramic material on the pyrolyzed fabric of step (a); and (f) recovering the coated ceramic honeycomb structure. The ceramic articles produced have enhanced physical properties and are useful in aircraft and aerospace uses.
Inpota, Prawpan; Strzelak, Kamil; Koncki, Robert; Sripumkhai, Wisaroot; Jeamsaksiri, Wutthinan; Ratanawimarnwong, Nuanlaor; Wilairat, Prapin; Choengchan, Nathawut; Chantiwas, Rattikan; Nacapricha, Duangjai
2018-01-01
A microfluidic method with front-face fluorometric detection was developed for the determination of total inorganic iodine in drinking water. A polydimethylsiloxane (PDMS) microfluidic device was employed in conjunction with the Sandell-Kolthoff reaction, in which iodide catalyzed the redox reaction between Ce(IV) and As(III). Direct alignment of an optical fiber attached to a spectrofluorometer was used as a convenient detector for remote front-face fluorometric detection. Trace inorganic iodine (IO 3 - and I - ) present naturally in drinking water was measured by on-line conversion of iodate to iodide for determination of total inorganic iodine. On-line conversion efficiency of iodate to iodide using the microfluidic device was investigated. Excellent conversion efficiency of 93 - 103% (%RSD = 1.6 - 11%) was obtained. Inorganic iodine concentrations in drinking water samples were measured, and the results obtained were in good agreement with those obtained by an ICP-MS method. Spiked sample recoveries were in the range of 86%(±5) - 128%(±8) (n = 12). Interference of various anions and cations were investigated with tolerance limit concentrations ranging from 10 -6 to 2.5 M depending on the type of ions. The developed method is simple and convenient, and it is a green method for iodine analysis, as it greatly reduces the amount of toxic reagent consumed with reagent volumes in the microfluidic scale.
Sol-gel processing with inorganic metal salt precursors
Hu, Zhong-Cheng
2004-10-19
Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.
Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A; Zheng, Xin-Jun; Li, Yan
2013-01-01
An 'anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems.
Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan
2013-01-01
An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238
Raza, Waseem; Mei, Xinlan; Wei, Zhong; Ling, Ning; Yuan, Jun; Wang, Jichen; Huang, Qiwei; Shen, Qirong
2017-12-31
The complexity of soil processes involved in the production, consumption and accumulation of volatile organic compounds (VOCs) makes hard to access the overall dynamics of VOCs in the soil. In this study, the field soil, applied with inorganic (CF), organic (OF) and inorganic-organic mixed (CFOF) fertilizers for ten years was evaluated for the emission of VOCs at different temperature and moisture levels. We identified 30-50 soil emitted VOCs representing the most common soil VOCs groups by using the solid-phase microextraction (SPME) fiber and gas chromatography-mass spectroscopy. The highest total emission of VOCs was found in OF treatment, but it was non-significantly different with CF treatment. The emission of VOCs was significantly increased with the decrease in moisture contents and increase in the temperature of the soil. Among different fertilizer treatments, the emission of VOCs was significantly higher in OF treatment at 5% moisture, and in CF and OF treatments at 35°C. Further, the VOCs emitted from soil treated with CFOF showed the highest increase in plant growth while CF and OF treatments showed similar results. The VOCs were also extracted from the soil using methanol to better understand the dynamics of VOCs. The abundance of VOCs extracted from the soil was 44-61%, while the richness was 65-70% higher than the VOCs emitted from the soil in different treatments. Taken together the results of emitted and extracted VOCs from the soil, we conclude that the fertilizers are able to discriminate among the VOC patterns of soil. In addition, most of the VOCs are retained in the soil and the emission of VOCs from soil depends on the type of VOCs, soil properties and environmental conditions; however, more research is required to find out better soil VOCs analysis methods. Copyright © 2017. Published by Elsevier B.V.
Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
See, Kevin C.; Urban, Jeffrey J.; Segalman, Rachel A.
The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.
Wang, Xiao-Yan; Zuo, Yi; Huang, Di; Hou, Xian-Deng; Li, Yu-Bao
2010-12-01
To comparatively investigate the inorganic composition and crystallographic properties of cortical and cancellous bone via thermal treatment under 700 °C. Thermogravimetric measurement, infrared spectrometer, X-ray diffraction, chemical analysis and X-ray photo-electron spectrometer were used to test the physical and chemical properties of cortical and cancellous bone at room temperature 250 °C, 450 °C, and 650 °C, respectively. The process of heat treatment induced an extension in the a-lattice parameter and changes of the c-lattice parameter, and an increase in the crystallinity reflecting lattice rearrangement after release of lattice carbonate and possible lattice water. The mineral content in cortical and cancellous bone was 73.2wt% and 71.5wt%, respectively. For cortical bone, the weight loss was 6.7% at the temperature from 60 °C to 250 °C, 17.4% from 250 °C to 450 °C, and 2.7% from 450 °C to 700 °C. While the weight loss for the cancellous bone was 5.8%, 19.9%, and 2.8 % at each temperature range, the Ca/P ratio of cortical bone was 1.69 which is higher than the 1.67 of stoichiometric HA due to the B-type CO₃²⁻ substitution in apatite lattice. The Ca/P ratio of cancellous bone was lower than 1.67, suggesting the presence of more calcium deficient apatite. The collagen fibers of cortical bone were arrayed more orderly than those of cancellous bone, while their mineralized fibers ollkded similar. The minerals in both cortical and cancellous bone are composed of poorly crystallized nano-size apatite crystals with lattice carbonate and possible lattice water. The process of heat treatment induces a change of the lattice parameter, resulting in lattice rearrangement after the release of lattice carbonate and lattice water and causing an increase in crystal size and crystallinity. This finding is helpful for future biomaterial design, preparation and application. Copyright © 2010 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.
Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor
NASA Astrophysics Data System (ADS)
Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun
2016-06-01
A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.
Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.
Zhang, Yang; Piccard, Sarah; Zhou, Wen
2015-11-01
The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Palumbo, Giovanna; Iadicicco, Agostino; Messina, Francesco; Ferone, Claudio; Campopiano, Stefania; Cioffi, Raffaele; Colangelo, Francesco
2017-12-22
This paper reports results related to early age temperature and shrinkage measurements by means fiber Bragg gratings (FBGs), which were embedded in geopolymer matrices. The sensors were properly packaged in order to discriminate between different shrinkage behavior and temperature development. Geopolymer systems based on metakaolin were investigated, which dealt with different commercial aluminosilicate precursors and siliceous filler contents. The proposed measuring system will allow us to control, in a very accurate way, the early age phases of the binding systems made by metakaolin geopolymer. A series of experiments were conducted on different compositions; moreover, rheological issues related to the proposed experimental method were also assessed.
Hansen, Nathaniel S; Ferguson, Thomas E; Panels, Jeanne E; Park, Ah-Hyung Alissa; Joo, Yong Lak
2011-08-12
Monoaxial silica nanofibers containing iron species as well as coaxial nanofibers with a pure silica core and a silica shell containing high concentrations of iron nanocrystals were fabricated via electrospinning precursor solutions, followed by thermal treatment. Tetraethyl-orthosilicate (TEOS) and iron nitrate (Fe(NO(3))(3)) were used as the precursors for the silica and iron phases, respectively. Thermal treatments of as-spun precursor fibers were applied to generate nanocrystals of iron with various oxidation states (pure iron and hematite). Scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to probe the fiber morphology and crystal structures. The results indicated that the size, phase, and placement of iron nanocrystals can be tuned by varying the precursor concentration, thermal treatment conditions, and processing scheme. The resulting nanofiber/metal systems obtained via both monoaxial and coaxial electrospinning were applied as catalysts to the alkaline hydrolysis of glucose for the production of fuel gas. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and bulk weight change in a furnace with residual gas analysis (RGA) were used to evaluate the performance of the catalysts for various ratios of both Fe to Si, and catalyst to glucose, and the oxidation state of the iron nanocrystals. The product gas is composed of mostly H(2) (>96 mol%) and CH(4) with very low concentrations of CO(2) and CO. Due to the clear separation of reaction temperature for H(2) and CH(4) production, pure hydrogen can be obtained at low reaction temperatures. Our coaxial approach demonstrates that placing the iron species selectively near the fiber surface can lead to two to three fold reduction in catalytic consumption compared to the monoaxial fibers with uniform distribution of catalysts.
Corn-like indium tin oxide nanostructures: fabrication, characterization and formation mechanism
NASA Astrophysics Data System (ADS)
Wu, Xu; Wang, Yihua; Yang, Bin
2015-11-01
Electrospinning is a simple but efficient procedure enabling the parallel fabrication of a multitude of inorganic fibers. But the precise control of the fiber's morphology, which seriously affects the electrical, optical and other important properties of such electrospun materials, is still less developed. The creation of nanoscale indium tin oxide fibers with corn-like geometry (corn-like ITO NFs) by our group has provided a good example to show how to modify the morphologies and properties of nanofibers by means of tailoring the fiber's compositions. Here we show that in the fabrication of corn-like ITO NFs, the usage of different solvents N, N-dimethylformamide (DMF) and deionized water, as well as the calcination temperature, can also lead to dramatic morphology changes, from ribbon-like to cylindrical and then to corn-like. The resultant nanoribbons and nanoscale corn-like fibers exhibit different photoluminescence properties. We find that the morphology of the as-spun fibers is closely related to the vapor pressure of the solvent we used, and the generation of ITO crystals sensitively depends on the calcination temperature, which both are critical for the morphology and properties of the final products. Thus, we demonstrate that the formation of this unprecedented nanostructure is determined by the combined effect of the precursor chemical composition, solvent and calcination temperature.
Polymeric and Inorganic Fibers
NASA Astrophysics Data System (ADS)
This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.
Yim, Chul Jin; Unithrattil, Sanjith; Chung, Woon Jin; Im, Won Bin
2013-12-01
Red emitting nanofibers, KGdTa2O7:Eu3+ were synthesized by electrospinning technique followed by heat treatment. As-prepared uniform fiber precursor with diameter ranging from about 700 nm to about 900 nm were calcined after removing organic species by calcination. The fiber surface become rough and diameter decreased to about 250-340 nm range due to decomposition of organic species and formation of inorganic phase. Morphology, structural and photoluminescent properties of fibers were analyzed using thermogravimetric and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL). TG-DTA analysis indicates that KGdTa2O7:Eu3+ began to crystalize at 520 degrees C. Fibers annealed at 900 degrees C formed well crystallized uniform fibers. Under ultraviolet excitation KGdTa2O7:Eu3+ exhibits red emission due to transitions in 4f states of Eu3+. The excitation band is dominated by the Eu(3+)--O2-charge transfer band peaked at 289 nm. The emission peak is in the region that is ideal for red light emission.
Zeidler-Erdely, Patti C; Calhoun, William J; Ameredes, Bill T; Clark, Melissa P; Deye, Gregory J; Baron, Paul; Jones, William; Blake, Terri; Castranova, Vincent
2006-01-01
Background Synthetic vitreous fibers (SVFs) are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral) wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm). It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number) of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Results Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. Conclusion The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was observed in fiber-exposed human macrophage cultures. In contrast, rat macrophages exhibited both incomplete phagocytosis of long fibers and length-dependent toxicity. The results of the human and rat cell studies suggest that incomplete engulfment may enhance cytotoxicity of fiber glass. However, the possibility should not be ruled out that differences between human versus rat macrophages other than cell diameter could account for differences in fiber effects. PMID:16569233
Use of ultrasonic energy in the enzymatic treatment of cotton fabric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yachmenev, V.G.; Blanchard, E.J.; Lambert, A.H.
Application of enzymes in the textile industry is becoming increasingly popular because of mild processing conditions and the capability for replacing harsh organic/inorganic chemicals. The combination of ultrasound with conventional enzymatic treatment of cotton offers significant advantages such as less consumption of expensive enzymes, shorter processing time, less fiber damage, and better uniformity of enzymatic treatment. Laboratory research has shown that introduction of ultrasonic energy during enzymatic treatment resulted in significant improvement in the performance of cellulase enzyme (CELLUSOFT L). It was established that ultrasound does not inactivate the complex structure of the enzyme molecules and weight loss of cottonmore » fabric sonicated and treated with cellulase enzyme increased up to 25--35%. The experimental data indicate that the maximum benefit provided by sonification occurs at relatively low enzyme concentrations. Ultrasonic energy significantly intensified the enzymatic treatment of the cotton fabrics but did not contribute to a decrease in tensile strength of the cotton textiles.« less
Molecular sieving silica membrane fabrication process
Raman, Narayan K.; Brinker, Charles Jeffrey
1998-01-01
A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.
Molecular sieving silica membrane fabrication process
Raman, Narayan K.; Brinker, Charles Jeffrey
1999-01-01
A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.
[Spectral characteristics of refractive index based on nanocoated optical fiber F-P sensor].
Jiang, Ming-Shun; Li, Qiu-Shun; Sui, Qing-Mei; Jia, Lei; Peng, Peng
2013-01-01
An optical fiber Fabry-Perot (F-P) interferometer end surface was modified using layer-by-layer assembly and chemical covalent cross linking method, and the refractive index (RI) response characteristics of coated optical fiber F-P sensor were experimentally studied. Poly diallyldimethylammonium chloride (PDDA) and sodium polystyrene sulfonate (PSS) were chosen as nano-film materials. With the numbers of layers increasing, the reflection spectral contrast of optical fiber F-P sensor presents from high to low, then to high regularity. And the reflection spectral contrast has good temperature stability. The reflection spectra of the optical F-P sensor coated with 20 bilayers for a series of concentration of sucrose and inorganic solution were measured. Experimental results show that the inflection point extends from 1.457 to 1.462 3, and the reflection spectral contrast sensitivity to low RI material and high RI material is 24.53 and 3.60 dB x RI(-1), respectively, with good linearity. The results demonstrate that the functional coated optical F-P sensor provides a new method for biology and chemical material test.
Development of electro-conductive silver phosphate-based glass optrodes for in vivo optogenetics
NASA Astrophysics Data System (ADS)
Desjardins, Mathieu; Roudjane, Mourad; Ledemi, Yannick; Gagnon-Turcotte, Gabriel; Maghsoudloo, Esmaeel; Filion, Guillaume; Gosselin, Benoit; Messaddeq, Younès.
2018-02-01
Multifunctional fibers are developed worldwide for enabling many new advanced applications. Among the multiple new functionalities that such fibers can offer according to their design, chemical composition and materials combination, the co-transmission of light and electrical signals is of first interest for sensing applications, in particular for optogenetics and electrophysiology. Multifunctional fibers offer an all-solid approach relying on new ionic conducting glasses for the design and manufacturing of next generation optrodes, which represents a tremendous upgrade compared to conventional techniques that requires the utilization of liquid electrolytes to carry the electrical signal generated by genetically encoded neuronal gated ion channels after optical excitation. After a systematic study conducted on different ion-conductive glass systems, silver phosphate-based glasses belonging to the AgI-AgPO3-WO3 and AgI-AgPO3-Ag2WO4 systems were found to be very promising materials for the target application. Several types of fibers, including single-core step-index fibers, multimaterial fibers made of inorganic and optical polymeric glasses have been then fabricated and characterized. Light transmission ranging from 400 to 1000 nm and electrical conductivity ranging from 10-3 and 10-1 S·cm-1 at room temperature (AC frequencies from 1 Hz to 1 MHz) were demonstrated with these fibers. Very sharp fiber tapers were then produced with high repeatability by using a CO2 laser optical setup, allowing a significant shrinking from the fiber (300 μm diameter) to the taper tip (25-30 μm diameter).
Grunnet, Louise G; Brøns, Charlotte; Jacobsen, Stine; Nilsson, Emma; Astrup, Arne; Hansen, Torben; Pedersen, Oluf; Poulsen, Pernille; Quistorff, Bjørn; Vaag, Allan
2009-02-01
Recent studies identified the rs9939609 A-allele of the FTO (fat mass and obesity associated) gene as being associated with obesity and type 2 diabetes. We studied the role of the A-allele in the regulation of peripheral organ functions involved in the pathogenesis of obesity and type 2 diabetes. Forty-six young men underwent a hyperinsulinemic euglycemic clamp with excision of skeletal muscle biopsies, an iv glucose tolerance test, 31phosphorous magnetic resonance spectroscopy, and 24-h whole body metabolism was measured in a respiratory chamber. The FTO rs9939609 A-allele was associated with elevated fasting blood glucose and plasma insulin, hepatic insulin resistance, and shorter recovery half-times of phosphocreatine and inorganic phosphate after exercise in a primarily type I muscle. These relationships--except for fasting insulin--remained significant after correction for body fat percentage. The risk allele was not associated with fat distribution, peripheral insulin sensitivity, insulin secretion, 24-h energy expenditure, or glucose and fat oxidation. The FTO genotype did not influence the mRNA expression of FTO or a set of key nuclear or mitochondrially encoded genes in skeletal muscle during rest. Increased energy efficiency--and potentially increased mitochondrial coupling--as suggested by faster recovery rates of phosphocreatine and inorganic phosphate in oxidative muscle fibers may contribute to the increased risk of obesity and type 2 diabetes in homozygous carriers of the FTO A-risk allele. Hepatic insulin resistance may represent the key metabolic defect responsible for mild elevations of fasting blood glucose associated with the FTO phenotype.
Molecular sieving silica membrane fabrication process
Raman, N.K.; Brinker, C.J.
1999-08-10
A process is described for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film. 11 figs.
Effect of High Temperature on the Tensile Behavior of CFRP and Cementitious Composites
NASA Technical Reports Server (NTRS)
Toutanji, Houssam A.
1999-01-01
Concrete and other composite manufacturing processes are continuing to evolve and become more and more suited for use in non-Earth settings such as the Moon and Mars. The fact that structures built in lunar environments would experience a range of effects from temperature extremes to bombardment by micrometeorites and that all the materials for concrete production exist on the Moon means that concrete appears to be the most feasible building material. it can provide adequate shelter from the harshness of the lunar environment and at the same time be a cost effective building material. With a return to the Moon planned by NASA to occur after the turn of the century, it will be necessary to include concrete manufacturing as one of the experiments to be conducted in one of the coming missions. Concrete's many possible uses and possibilities for manufacturing make it ideal for lunar construction. The objectives of this research are summarized as follows: i) study the possibility of concrete production on the Moon or other planets, ii) study the effect of high temperature on the tensile behavior of concrete, and iii) study the effect of high temperature on the tensile behavior of carbon fiber reinforced with inorganic polymer composites. Literature review indicates that production of concrete on the Moon or other planets is feasible using the indigenous materials. Results of this study has shown that both the tensile strength and static elastic modulus of concrete decreased with a rise in temperature from 200 to 500 C. The addition of silica fume to concrete showed higher resistance to high temperatures. Carbon fiber reinforced inorganic polymer (CFRIP) composites seemed to perform well up to 300 C. However, a significant reduction in strength was observed of about 40% at 400 C and up to 80% when the specimens were exposed to 700 C.
Inorganic Composite Materials in Japan: Status and Trends
1989-11-01
is planned with have already done some preliminary work) more sayby engineers and scientists and less on titanium and aluminide matrix compos- by...structural reliability of continued research in elevated tempera- the components. ture fiber and ceramic matrix composites. F=aMoving Blade (FRP...Forming Kawasaki 11eavy Ind with regard to these program target goals ONRFE M7 6 for carbon (CF), SiC, and boron filaments in isotropic titanium
2006-04-28
for this work included: (1) Polyhedral oligomeric silsesquioxane chemicals (POSS macromers) of three types: those with no polymerizable group, those...Polyhedral oligomeric silsesquioxane chemicals (POSS macromers) of three types: those with no polymerizable group, those with one reactive function and...atoms and ions. Polyhedral Oligomeric Silsesquioxane/Organic Matrix Nanocomposites Major reviews of POSS polymer and copolymer chemistry. The first
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azimi, H.R.
This study examines several mechanisms by which the fatigue crack propagation (FCP) resistance of shear-yielding thermoset polymers can be improved. Specifically, this research has four objectives as follows: first, to develop a mechanistic understanding of the FCP behavior of rubber-modified thermoset polymers; second, to understand the effect of strength and shape of the inorganic fillers on the FCP resistance and micromechanisms in filled epoxy polymers; third, to elucidate the nature of the interactions among the crack-tip shielding mechanisms in thermoset polymers subjected to cyclic loading and synergistically toughened with both rubber and inorganic particles (i.e., hybrid composites); fourth, to studymore » the role of interfaces on the synergistic interactions in FCP behavior of hybrid composites. The model - matrix material consists of a diglycidyl ether of bisphenol A (DGEBA) based type epoxy cured with piperidine. Parallel to the first objective, the epoxy matrix was modified with rubber while changing volume fraction, type, and size of the rubber particles. To accomplish the second goal, the epoxy polymers were modified by a total 10 volume percent of either one of the following three types of inorganic modifiers: hollow glass spheres (HGS); solid glass spheres (SGS); and short glass fibers (SGF). The third goal was met by processing three different systems of hybrid epoxy composites modified by (1) CTBN rubber and HGS, (2) CTBN rubber and SGS, and (3) CTBN rubber and SGF. The total volume fraction of the two modifiers in each hybrid system was kept constant at 10 percent while systematically changing their ratio. To meet the fourth objective, the surface properties of the SGS particles in the hybrid system were altered using adhesion promoter. A mechanistic understanding of the FCP behavior of rubber-modified epoxies was achieved by relating fractographs to observed FCP behavior.« less
Palumbo, Giovanna; Iadicicco, Agostino; Messina, Francesco; Campopiano, Stefania; Cioffi, Raffaele; Colangelo, Francesco
2017-01-01
This paper reports results related to early age temperature and shrinkage measurements by means fiber Bragg gratings (FBGs), which were embedded in geopolymer matrices. The sensors were properly packaged in order to discriminate between different shrinkage behavior and temperature development. Geopolymer systems based on metakaolin were investigated, which dealt with different commercial aluminosilicate precursors and siliceous filler contents. The proposed measuring system will allow us to control, in a very accurate way, the early age phases of the binding systems made by metakaolin geopolymer. A series of experiments were conducted on different compositions; moreover, rheological issues related to the proposed experimental method were also assessed. PMID:29271912
Gu, W.-Z.; Lu, J.-J.; Zhao, X.; Peters, N.E.
2007-01-01
Aimed at the rainfall-runoff tracing using inorganic ions, the experimental study is conducted in the Chuzhou Hydrology Laboratory with special designed experimental catchments, lysimeters, etc. The various runoff components including the surface runoff, interflow from the unsaturated zone and the groundwater flow from saturated zone were monitored hydrometrically. Hydrochemical inorganic ions including Na+, K+, Ca2+, Mg2+, Cl-, SO42-, HCO3- + CO32-, NO3-, F-, NH4-, PO42-, SiO2 and, pH, EC, 18O were measured within a one month period for all processes of rainfall, various runoff components and groundwater within the catchment from 17 boreholes distributed in the Hydrohill Catchment, few soil water samples were also included. The results show that: (a) all the runoff components are distinctly identifiable from both the relationships of Ca2+ versus Cl-/SO42-, EC versus Na+/(Na+ + Ca2+) and, from most inorganic ions individually; (b) the variation of inorganic ions in surface runoff is the biggest than that in other flow components; (c) most ions has its lowermost concentration in rainfall process but it increases as the generation depths of runoff components increased; (d) quantitatively, ion processes of rainfall and groundwater flow display as two end members of that of other runoff components; and (e) the 18O processes of rainfall and runoff components show some correlation with that of inorganic ions. The results also show that the rainfall input is not always the main source of inorganic ions of various runoff outputs due to the process of infiltration and dissolution resulted from the pre-event processes. The amount and sources of Cl- of runoff components with various generation mechanisms challenge the current method of groundwater recharge estimation using Cl-.
Ion Exchange and Adsorption of Inorganic Contaminants
In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akyildiz, Halil I.; Jur, Jesse S., E-mail: jsjur@ncsu.edu
2015-03-15
The effect of exposure conditions and surface area on hybrid material formation during sequential vapor infiltrations of trimethylaluminum (TMA) into polyamide 6 (PA6) and polyethylene terephthalate (PET) fibers is investigated. Mass gain of the fabric samples after infiltration was examined to elucidate the reaction extent with increasing number of sequential TMA single exposures, defined as the times for a TMA dose and a hold period. An interdependent relationship between dosing time and holding time on the hybrid material formation is observed for TMA exposure PET, exhibited as a linear trend between the mass gain and total exposure (dose time ×more » hold time × number of sequential exposures). Deviation from this linear relationship is only observed under very long dose or hold times. In comparison, amount of hybrid material formed during sequential exposures to PA6 fibers is found to be highly dependent on amount of TMA dosed. Increasing the surface area of the fiber by altering its cross-sectional dimension is shown to have little on the reaction behavior but does allow for improved diffusion of the TMA into the fiber. This work allows for the projection of exposure parameters necessary for future high-throughput hybrid modifications to polymer materials.« less
Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith
2009-01-01
The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full
NASA Astrophysics Data System (ADS)
Aghayan, H.; Khanchi, A. R.; Yousefi, T.; Ghasemi, H.
2017-12-01
In this research, three type of mesoporous silica with different morphologies, namely fibers, spheres and platelets were synthesized and used as a support for immobilization of [H3PMo6W6O40].nH2O. The samples were then applied as an inorganic composite ion-exchanger for sorption of thorium from aqueous solution. Various techniques including ICP, XRD, BET, SEM and FT-IR methods were used to characterize of the products. The experiment results showed that the [H3PMo6W6O40].nH2O supported on the platelet mesoporous silica exhibited both the highest sorption capacity and fastest kinetics when compared with the fibers and spheres adsorbents. Our results show that the morphology of the mesoporous support, which can produce different channel lengths, pore size and surface area, has a serious effect on the sorption properties and influences: (1) the amount of loading of heteropoly acid in the support (2) the kinetic of the sorption process and (3) the maximum of adsorption capacity. The platelet morphology showed the shortest equilibrium time, the highest loading amount and the highest adsorption capacity therefore delivering the best performance among the three morphologies.
NASA Astrophysics Data System (ADS)
Rosado, Alexander; Pinto, Nicholas
2013-03-01
A simple method to fabricate, under ambient conditions and within seconds, p - n diodes using an individual electrospun poly{[N, N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)}-(P(NDI2ODT2)) fiber and a commercially available p-doped Si/SiO2 substrate is presented. Band bending at the fiber/Si+ interface leads to asymmetric I-V characteristic curves resembling that of a diode. The diode turn-on voltage was in the range 1V and was unaffected via UV light irradiation. The rectification ratio however could be tuned reversibly thereby making this device multifunctional. In addition to being a rectifier, the advantage of our design is the complete exposure of the rectifying junction to the surrounding environment. This has the advantage of making them attractive candidates in the potential fabrication of low power, sensitive and rapid response photo-sensors. NSF
Evaluation of atomic oxygen resistant protective coatings for fiberglass-epoxy composites in LEO
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Paulsen, Phillip E.; Brady, Joyce A.
1989-01-01
Fiberglass-epoxy composite masts are the prime structural members for the Space Station Freedom solar array. At the altitude where Space Station Freedom will operate, atomic oxygen atoms are the most predominant species. Atomic oxygen is highly reactive and has been shown to oxidize organic and some metallic materials. Tests with random and directed atomic oxygen exposure have shown that the epoxy is removed from the composite exposing brittle glass fibers which could be easily removed from the surface where they could contaminate Space Station Freedom Systems. Protection or fiber containment systems; inorganic based paints, aluminum braid, and a metal coating; were evaluated for resistance to atomic oxygen, vacuum ultraviolet radiation, thermal cycling, and mechanical flexing. All appeared to protect well against atomic oxygen and provide fiber containment except for the single aluminum braid covering. UV radiation resistance was acceptable and in general, thermal cycling and flexure had little to no effect on the mass loss rate for most coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comar, C.L.; Wasserman, R.H.; Lengemann, F.W.
Results are summarized from a series of studies on metabolic processes governing the movement of fission products in laboratory and domestic animals. Emphasis was placed on the monitoring of food supplies and the development and evaluation of survey methods for the evaluation of radioactive contamination of the food chain. The relative availability of I/sup 131/ from milk as compared to availability from inorganic sources was measured. Data are included from studies on the renal excretion of Ca and Sr, the effects of lactose and vitamin D on calcification in normal and rachitic chicks, the effects of dietary Na and Kmore » on Cs/sup 137/ retention in the rat, and the effects of ultraviolet light on single nerve fibers. (C.H.)« less
Cellulase production from spent sulfite liquor and paper-mill waste fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu Yinbo; Zhao Xin; Gao Peiji
1991-12-31
Since a high proportion of the overall cost of the conversion of cellulosics to useful products is the expense of cellulose production (1), it is desirable to develop new processes for producing large amounts of cellulase inexpensively. So far, most of the research work on cellulose production has been carried out using milled cellulose powder and inorganic salts as substrates, which significantly increases the cost of enzyme production. In order to reduce the cost of raw materials, we tried to develop from industrial wastes a new medium for the production of cellulose. In this report, we describe a simple methodmore » by which an all-waste medium, which was composed of spent ammonium sulfite liquor and cellulosic waste of a paper mill, and a catabolite derepression mutant of Penicillium decumbens were used to produce the enzyme efficiently.« less
Li, Deke; Gou, Xuelian; Wu, Daheng; Guo, Zhiguang
2018-04-05
The wide application of superhydrophobic membranes has been limited due to their complicated preparation technology and weak durability. Inspired by the mechanical flexibility of nanofibrous biomaterials, nanofibrils have been successfully generated from Kevlar, which is one of the strongest synthetic fibers, by appropriate hydrothermal treatment. In this study, a robust superhydrophobic PDMS/PVDF@KNFs membrane is prepared via a simple one-step process and subsequent curing without combination with inorganic fillers. The as-prepared PDMS/PVDF@KNFs membrane not only shows efficient oil/water separation ability and oil absorption capacity but also has excellent superhydrophobicity stability after deformation. The resultant membrane shows stretchability, flexibility and flame retardance because of the reinforcing effect and the excellent flame retardancy of Kevlar. We believe that this simple fabrication of PDMS/PVDF@KNFs has promising applications in filtering membranes and wearable devices.
Materials characterization of dusts generated by the collapse of the World Trade Center
Meeker, Gregory P.; Sutley, Stephen J.; Brownfield, Isabelle; Lowers, Heather; Bern, Amy M.; Swayze, Gregg A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Clark, Roger N.; Gent, Carol A.
2009-01-01
The major inorganic components of the dusts generated from the collapse of the World Trade Center buildings on September 11, 2001 were concrete materials, gypsum, and man-made vitreous fibers. These components were likely derived from lightweight Portland cement concrete floors, gypsum wallboard, and spray-on fireproofing and ceiling tiles, respectively. All of the 36 samples collected by the USGS team had these materials as the three major inorganic components of the dust. Components found at minor and trace levels include chrysotile asbestos, lead, crystalline silica, and particles of iron and zinc oxides. Other heavy metals, such as lead, bismuth, copper, molybdenum, chromium, and nickel, were present at much lower levels occurring in a variety of chemical forms. Several of these materials have health implications based on their chemical composition, morphology, and bioaccessibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Sean W.; Matthews, David J.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu
2014-07-01
Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al{sub 2}O{sub 3} using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al{sub 2}O{sub 3} penetrated more than 1500 μm into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radius versus depth from the aerogel surface agrees well with simulations of precursor penetration depth in modeled aerogel structures. Thermogravimetric analysis shows that Al{sub 2}O{sub 3} coated CNC aerogel nanocomposites do not show significant thermal degradation below 295 °C as compared with 175 °C for uncoatedmore » CNC aerogels, an improvement of over 100 °C.« less
Fermentation process for the production of organic acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, Theron; Reinhardt, James; Yu, Xiaohui
This invention relates to improvements in the fermentation process used in the production of organic acids from biological feedstock using bacterial catalysts. The improvements in the fermentation process involve providing a fermentation medium comprising an appropriate form of inorganic carbon, an appropriate amount of aeration and a biocatalyst with an enhanced ability to uptake and assimilate the inorganic carbon into the organic acids. This invention also provides, as a part of an integrated fermentation facility, a novel process for producing a solid source of inorganic carbon by sequestering carbon released from the fermentation in an alkali solution.
Review of progress in soil inorganic carbon research
NASA Astrophysics Data System (ADS)
Bai, S. G.; Jiao, Y.; Yang, W. Z.; Gu, P.; Yang, J.; Liu, L. J.
2017-12-01
Soil inorganic carbon is one of the main carbon banks in the near-surface environment, and is the main form of soil carbon library in arid and semi-arid regions, which plays an important role in the global carbon cycle. This paper mainly focuses on the inorganic dynamic process of soil inorganic carbon in soil environment in arid and semi-arid regions, and summarized the composition and source of soil inorganic carbon, influence factors and soil carbon sequestration.
Nanocrystal solar cells processed from solution
Alivisatos, A. Paul; Gur, Ilan; Milliron, Delia
2013-05-14
A photovoltaic device having a first electrode layer, a high resistivity transparent film disposed on the first electrode, a second electrode layer, and an inorganic photoactive layer disposed between the first and second electrode layers, wherein the inorganic photoactive layer is disposed in at least partial electrical contact with the high resistivity transparent film, and in at least partial electrical contact with the second electrode. The photoactive layer has a first inorganic material and a second inorganic material different from the first inorganic material, wherein the first and second inorganic materials exhibit a type II band offset energy profile, and wherein the photoactive layer has a first population of nanostructures of a first inorganic material and a second population of nanostructures of a second inorganic material.
Biochar Produced from Anaerobically Digested Fiber Reduces Phosphorus in Dairy Lagoons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streubel, Jason D.; Collins, Harold P.; Tarara, Julie M.
2012-01-01
This study evaluated the use of biochar produced from anaerobic digester dairy fiber (ADF) to sequester phosphorus (P) from dairy lagoons. The ADF was collected from a plugged flow digester, air-dried to <8% water content, and pelletized. Biochar was produced by slow pyrolysis in a barrel retort. The potential of biochar to reduce P in the anaerobic digester effluent (ADE) was assessed in small-scale filter systems through which the effluent was circulated. Biochar sequestered an average of 381 mg L -1 P from the ADE, and 4 g L -1 ADF was captured as a coating on the biochar. Theremore » was an increase of total (1.9 g kg -1), Olsen (763 mg kg -1), and water-extractable P (914 mg kg -1) bound to the biochar after 15 d of filtration. This accounted for a recovery of 32% of the P in the ADE. The recovered P on the biochar was analyzed using 31P nuclear magnetic resonance for P speciation, which confirmed the recovery of inorganic orthophosphate after liquid extraction of the biochar and the presence of inextractable Ca-P in the solid state. The inorganic phosphate was sequestered on the biochar through physical and weak chemical bonding. Finally, results indicate that biochar could be a beneficial component to P reduction in the dairy system.« less
Study of Natural Fiber Breakage during Composite Processing
NASA Astrophysics Data System (ADS)
Quijano-Solis, Carlos Jafet
Biofiber-thermoplastic composites have gained considerable importance in the last century. To provide mechanical reinforcement to the polymer, fibers must be larger than a critical aspect ratio (length-to-width ratio). However, biofibers undergo breakage in length or width during processing, affecting their final aspect ratio in the composites. In this study, influence on biofiber breakage by factors related to processing conditions, fiber morphology and the flow type was investigated through: a) experiments using an internal mixer, a twin-screw extruder (TSE) or a capillary rheometer; and b) a Monte Carlo computer simulation. Composites of thermomechanical fibers of aspen or wheat straw mixed with polypropylene were studied. Internal mixer experiments analyzed wheat straw and two batches of aspen fibers, named AL and AS. AL fibers had longer average length. Processing variables included the temperature, rotors speed and fiber concentration. TSE experiments studied AL and AS fiber composites under various screws speeds, temperatures and feeding rates of the polymer and fibers. Capillary rheometers experiments determined AL fiber breakage in shear and elongational flows for composites processed at different concentrations, temperatures, and strain rates. Finally, the internal mixer experimental results where compared to Monte Carlo simulation predictions. The simulation focused on fiber length breakage due to fiber-polymer interactions. Internal mixer results showed that final fiber average length depended almost solely on processing conditions while final fiber average width depended on both processing conditions and initial fiber morphology. In the TSE, processing conditions as well as initial fiber length influenced final average length. TSE results showed that the fiber concentration regime seems to influence the effect of processing variables on fiber breakage. Capillary rheometer experiments demonstrated that biofiber breakage happens in both elongational and shear flows. In some cases, percentage of biofiber breakage in elongational flow is higher. In general, simulation predictions of final average lengths were in good agreement with experiments, indicating the importance of fiber-polymer interactions on fiber breakage. The largest discrepancies were obtained at higher fiber concentration composites; these differences might be resolved, in future simulations, by including the effect of fiber-fiber interactions.
Prebiotic organic microstructures.
Bassez, Marie-Paule; Takano, Yoshinori; Kobayashi, Kensei
2012-08-01
Micro- and sub-micrometer spheres, tubules and fiber-filament soft structures have been synthesized in our experiments conducted with 3 MeV proton irradiations of a mixture of simple inorganic constituents, CO, N(2) and H(2)O. We analysed the irradiation products, with scanning electron microscopy (SEM) and atomic force microscopy (AFM). These laboratory organic structures produced a wide variety of proteinaceous and non-proteinaceous amino acids after HCl hydrolysis. The enantiomer analysis for D,L-alanine confirmed that the amino acids were abiotically synthesized during the laboratory experiment. We discuss the presence of CO(2) and the production of H(2) during exothermic processes of serpentinization and consequently we discuss the production of hydrothermal CO in a ferromagnesian silicate mineral environment. We also discuss the low intensity of the Earth's magnetic field during the Paleoarchaean Era and consequently we conclude that excitation sources arising from cosmic radiation were much more abundant during this Era. We then show that our laboratory prebiotic microstructures might be synthesized during the Archaean Eon, as a product of the serpentinization process of the rocks and of their mineral contents.
METHYLATED Asm COMPOUNDS AS POTENTIAL PROXIMATE/ULTIMATE GENOTOXIC METABOLITES OF INORGANIC ARSENIC.
The methylation of inorganic arsenic has typically been viewed as a detoxification process. Genotoxicity tests have generally shown that arsenite has greater mutagenic p...
Structural and compositional characterization of the adhesive produced by reef building oysters.
Alberts, Erik M; Taylor, Stephen D; Edwards, Stephanie L; Sherman, Debra M; Huang, Chia-Ping; Kenny, Paul; Wilker, Jonathan J
2015-04-29
Oysters have an impressive ability to overcome difficulties of life within the stressful intertidal zone. These shellfish produce an adhesive for attaching to each other and building protective reef communities. With their reefs often exceeding kilometers in length, oysters play a major role in balancing the health of coastal marine ecosystems. Few details are available to describe oyster adhesive composition or structure. Here several characterization methods were applied to describe the nature of this material. Microscopy studies indicated that the glue is comprised of organic fiber-like and sheet-like structures surrounded by an inorganic matrix. Phospholipids, cross-linking chemistry, and conjugated organics were found to differentiate this adhesive from the shell. Symbiosis in material synthesis could also be present, with oysters incorporating bacterial polysaccharides into their adhesive. Oyster glue shows that an organic-inorganic composite material can provide adhesion, a property especially important when constructing a marine ecosystem.
Ferreira, Angela S.; Moreira, Valéria B.; Castro, Marcos César S.; Soares, Porfírio J.; Algranti, Eduardo; Andrade, Leonardo R.
2010-01-01
Context Man-made vitreous fibers (MMVFs) are noncrystalline inorganic fibrous material used for thermal and acoustical insulation (e.g., rock wool, glass wool, glass microfibers, and refractory ceramic fibers). Neither epidemiologic studies of human exposure nor animal studies have shown a noticeable hazardous effect of glass wools on health. However, MMVFs have been anecdotally associated with granulomatous lung disease in several case reports. Case presentation Here, we describe the case of a patient with multiple bilateral nodular opacities who was exposed to glass wool fibers and coating materials for 7 years. Bronchoalveolar lavage fluid revealed an increased total cell count (predominantly macrophages) with numerous cytoplasmic particles. Lung biopsy showed peribronchiolar infiltration of lymphoid cells and many foreign-body–type granulomas. Alveolar macrophages had numerous round and elongated platelike particles inside the cytoplasm. X-ray microanalysis of these particles detected mainly oxygen/aluminum/silicon and oxygen/magnesium/silicon, compatible with kaolinite and talc, respectively. No elemental evidence for glass fibers was found in lung biopsy. Discussion The contribution of analytical electron microscopy applied in the lung biopsy was imperative to confirm the diagnosis of pneumoconiosis associated with a complex occupational exposure that included both MMVFs and coating materials. Relevance to clinical or professional practice This case study points out the possible participation of other components (coating materials), beyond MMVFs, in the etiology of pneumoconiosis. PMID:20123612
Delivery of biomolecules by functionalized inorganic/organic nanoparticles
NASA Astrophysics Data System (ADS)
Coelho, Silvia Maria de Castro
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
NASA Astrophysics Data System (ADS)
Neves, Cristina Sofia dos Santos
The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.
Zhou, Yihui; Wu, Wenbiao; Qiu, Keqiang
2010-11-01
In this research, a two-step process consisting of vacuum pyrolysis and vacuum centrifugal separation was employed to treat waste printed circuit boards (WPCBs). Firstly, WPCBs were pyrolysed under vacuum condition at 600 °C for 30 min in a lab-scale reactor. Then, the obtained pyrolysis residue was heated under vacuum until the solder was melted, and then the molten solder was separated from the pyrolysis residue by the centrifugal force. The results of vacuum pyrolysis showed that the type-A of WPCBs (the base plates of which was made from cellulose paper reinforced phenolic resin) pyrolysed to form an average of 67.97 wt.% residue, 27.73 wt.% oil, and 4.30 wt.% gas; and pyrolysis of the type-B of WPCBs (the base plates of which was made from glass fiber reinforced epoxy resin) led to an average mass balance of 72.20 wt.% residue, 21.45 wt.% oil, and 6.35 wt.% gas. The results of vacuum centrifugal separation showed that the separation of solder was complete when the pyrolysis residue was heated at 400 °C, and the rotating drum was rotated at 1200 rpm for 10 min. The pyrolysis oil and gas can be used as fuel or chemical feedstock after treatment. The pyrolysis residue after solder separation contained various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The recovered solder can be reused directly and it can also be a good resource of lead and tin for refining. Copyright © 2010 Elsevier Ltd. All rights reserved.
Process of Making Boron-Fiber Reinforced Composite Tape
NASA Technical Reports Server (NTRS)
Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)
2002-01-01
The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.
Plasma-Spray Metal Coating On Foam
NASA Technical Reports Server (NTRS)
Cranston, J.
1994-01-01
Molds, forms, and other substrates made of foams coated with metals by plasma spraying. Foam might be ceramic, carbon, metallic, organic, or inorganic. After coat applied by plasma spraying, foam left intact or removed by acid leaching, conventional machining, water-jet cutting, or another suitable technique. Cores or vessels made of various foam materials plasma-coated with metals according to method useful as thermally insulating containers for foods, liquids, or gases, or as mandrels for making composite-material (matrix/fiber) parts, or making thermally insulating firewalls in automobiles.
High-Temperature Insulating Gap Filler
NASA Technical Reports Server (NTRS)
Toombs, Gordon R.; Oyoung, Kevin K.; Stevens, Everett G.
1991-01-01
New inorganic, ceramic filler for gaps between refractory ceramic tiles offers high resistance to heat and erosion. Consists of ceramic-fiber fabric precoated with silica and further coated with silica containing small amount of silicon carbide powder to increase thermal emittance. Developed as replacement for organic filler used on thermal-protection system of Space Shuttle. Promises to serve for many missions and to reduce cost and delay of refurbishing aerospace craft. Used as sealing material in furnaces or as heat shield for sensitive components in automobiles, aircraft, and home appliances.
Influence of fiber quality on draftometer measurements
USDA-ARS?s Scientific Manuscript database
Fiber-to-fiber and fiber-to-machine friction play an important role in determining textile processing efficiency and end-product quality. A process, known as drafting, is used to control the attenuation of the fiber mass being processed in carding, drawing and spinning. The amount of attenuation t...
Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries
NASA Technical Reports Server (NTRS)
Abbey, K. M.; Britton, D. L.
1983-01-01
Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders.
Simultaneous Effect of Mechanical Tension on Electrical Lifetime of Some Inorganic Composites
NASA Astrophysics Data System (ADS)
Özcanli, Y. Lenger; BoydaǦ, F. Ş.; Alekberov, V. A.; Hikmet, I.; Cantürk, M.
In this work, the simultaneous effect of mechanical tension (σ) and electrical strength (E) on electrical lifetime (τE) for pure low density polyethylene (LDPE)/polypropylene (PP) and composites with different commercial diamond-additive/glass fiber additive percentages is experimentally studied. The role of this effect on degradation mechanisms is investigated. logτE,σ-f(E) and Eσ-f(σ) graphs are drawn, new equations are proposed and determined parameters at constant temperature for pure LDPE and PP, and for optimum composites (LDPE/0.5% diamond, PP/0.5% glass fiber) are listed. The results indicate that the degradation speed decreases more for composites than for pure LDPE and PP. The electrical durability for composites after the simultaneous effect of σ decreases 18-20%, while for pure LDPE and PP, it decreases 50-55%.
Photochromic Inorganic/Organic Thermoplastic Elastomers.
Zhang, Jiuyang; Li, Jing; Huo, Mengmeng; Li, Naixu; Zhou, Jiancheng; Li, Tuoqi; Jiang, Jing
2017-08-01
Photochromic materials are an important class of "smart materials" and are broadly utilized in technological devices. However, most photochromic materials reported so far are composed of inorganic compounds that are challenging to process and suffer from poor mechanical performance, severely limiting their applications in various markets. In this paper, inorganic photochromic tungsten trioxide (WO 3 ) nanocrystals are conveniently grafted with polymers to hurdle the deficiency in processability and mechanical properties. This new type of photochromic material can be thermally processed into desired geometries like disks and dog-bone specimens. Fully reversible photochromic response under UV light is also achieved for WO 3 -graft polymers, exhibiting tunable response rate, outperforming the pristine WO 3 nanocrystals. Notably, the resulted graft polymers show extraordinary mechanical performance with excellent ductility (≈800% breaking strain) and relatively high breaking strength (≈2 MPa). These discoveries elucidate an effective pathway to design smart inorganic/organic hybrid thermoplastic elastomers endowed with outstanding photochromic and mechanical properties as well as exceptional processability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The friction and wear of TPS fibers
NASA Technical Reports Server (NTRS)
Bascom, W. D.; Wong, S.
1987-01-01
The sliding friction behavior of single filaments of SiO2, SiC, and an aluminoborosilicate has been determined. These fibers are used in thermal protection systems (TPS) and are subject to damage during weaving and aero-maneuvering. All fibers exhibited stick-slip friction indicating the successive formation and rupture of strong junctions between the contacting filaments. The static frictional resistance of the sized SiC filament was 4X greater than for the same filament after heat cleaning. This result suggests that the sizing is an organic polymer with a high shear yield strength. Heat cleaning exposes the SiC surface and/or leaves an inorganic residue so that the adhesional contact between filaments has a low fracture energy and frictional sliding occurs by brittle fracture. The frictional resistances of the sized and heat cleaned SiO2 and glass filaments were all comparable to that of the heat cleaned SiC. It would appear that the sizings as well as the heat cleaned surfaces of the silica and glass have low fracture energies so that the sliding resistance is determined by brittle fracture.
Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Ayaskanta; Russ, Boris; Su, Norman C.
Hybrid organic/inorganic thermoelectric materials based on conducting polymers and inorganic nanostructures have been demonstrated to combine both the inherently low thermal conductivity of the polymer and the superior charge transport properties (high power factors) of the inorganic component. While their performance today still lags behind that of conventional inorganic thermoelectric materials, solution-processable hybrids have made rapid progress and also offer unique advantages not available to conventional rigid inorganic thermoelectrics, namely: (1) low cost fabrication on rigid and flexible substrates, as well as (2) engineering complex conformal geometries for energy harvesting/cooling. While the number of reports of new classes of viablemore » hybrid thermoelectric materials is growing, no group has reported a general approach for bottom-up design of both p- and n-type materials from one common base. Thus, unfortunately, the literature comprises mostly of disconnected discoveries, which limits development and calls for a first-principles approach for property manipulation analogous to doping in traditional semiconductor thermoelectrics. Here, molecular engineering at the organic/inorganic interface and simple processing techniques are combined to demonstrate a modular approach enabling de novo design of complex hybrid thermoelectric systems. Here, we chemically modify the surfaces of inorganic nanostructures and graft conductive polymers to yield robust solution processable p- and n-type inorganic/organic hybrid nanostructures. Our new modular approach not only offers researchers new tools to perform true bottom-up design of thermoelectric hybrids, but also strong performance advantages as well due to the quality of the designed interfaces. For example, we obtain enhanced power factors in existing (by up to 500% in Te/PEDOT:PSS) and novel (Bi 2S 3/PEDOT:PSS) p-type systems, and also generate water-processable and air-stable high performing n-type hybrid systems (Bi 2Te 3/PEDOT:PSS), thus highlighting the potency of our ex situ strategy in opening up new material options for thermoelectric applications. Finally, this strategy establishes a unique platform with broad handles for custom tailoring of thermal and electrical properties through hybrid material tunability and enables independent control over inorganic material chemistry, nanostructure geometry, and organic material properties, thus providing a robust pathway to major performance enhancements.« less
Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing
Sahu, Ayaskanta; Russ, Boris; Su, Norman C.; ...
2017-01-01
Hybrid organic/inorganic thermoelectric materials based on conducting polymers and inorganic nanostructures have been demonstrated to combine both the inherently low thermal conductivity of the polymer and the superior charge transport properties (high power factors) of the inorganic component. While their performance today still lags behind that of conventional inorganic thermoelectric materials, solution-processable hybrids have made rapid progress and also offer unique advantages not available to conventional rigid inorganic thermoelectrics, namely: (1) low cost fabrication on rigid and flexible substrates, as well as (2) engineering complex conformal geometries for energy harvesting/cooling. While the number of reports of new classes of viablemore » hybrid thermoelectric materials is growing, no group has reported a general approach for bottom-up design of both p- and n-type materials from one common base. Thus, unfortunately, the literature comprises mostly of disconnected discoveries, which limits development and calls for a first-principles approach for property manipulation analogous to doping in traditional semiconductor thermoelectrics. Here, molecular engineering at the organic/inorganic interface and simple processing techniques are combined to demonstrate a modular approach enabling de novo design of complex hybrid thermoelectric systems. Here, we chemically modify the surfaces of inorganic nanostructures and graft conductive polymers to yield robust solution processable p- and n-type inorganic/organic hybrid nanostructures. Our new modular approach not only offers researchers new tools to perform true bottom-up design of thermoelectric hybrids, but also strong performance advantages as well due to the quality of the designed interfaces. For example, we obtain enhanced power factors in existing (by up to 500% in Te/PEDOT:PSS) and novel (Bi 2S 3/PEDOT:PSS) p-type systems, and also generate water-processable and air-stable high performing n-type hybrid systems (Bi 2Te 3/PEDOT:PSS), thus highlighting the potency of our ex situ strategy in opening up new material options for thermoelectric applications. Finally, this strategy establishes a unique platform with broad handles for custom tailoring of thermal and electrical properties through hybrid material tunability and enables independent control over inorganic material chemistry, nanostructure geometry, and organic material properties, thus providing a robust pathway to major performance enhancements.« less
Femtosecond laser direct-write of optofluidics in polymer-coated optical fiber
NASA Astrophysics Data System (ADS)
Joseph, Kevin A. J.; Haque, Moez; Ho, Stephen; Aitchison, J. Stewart; Herman, Peter R.
2017-03-01
Multifunctional lab in fiber technology seeks to translate the accomplishments of optofluidic, lab on chip devices into silica fibers. a robust, flexible, and ubiquitous optical communication platform that can underpin the `Internet of Things' with distributed sensors, or enable lab on chip functions deep inside our bodies. Femtosecond lasers have driven significant advances in three-dimensional processing, enabling optical circuits, microfluidics, and micro-mechanical structures to be formed around the core of the fiber. However, such processing typically requires the stripping and recoating of the polymer buffer or jacket, increasing processing time and mechanically weakening the device. This paper reports on a comprehensive assessment of laser damage in urethane-acrylate-coated fiber. The results show a sufficient processing window is available for femtosecond laser processing of the fiber without damaging the polymer jacket. The fiber core, cladding, and buffer could be simultaneously processed without removal of the buffer jacket. Three-dimensional lab in fiber devices were successfully fabricated by distortion-free immersionlens focusing, presenting fiber-cladding optical circuits and progress towards chemically-etched channels, microfluidic cavities, and MEMS structure inside buffer-coated fiber.
Yamauchi, Yusuke; Suzuki, Norihiro; Radhakrishnan, Logudurai; Wang, Liang
2009-01-01
Currently, ordered mesoporous materials prepared through the self-assembly of surfactants have attracted growing interests owing to their special properties, including uniform mesopores and a high specific surface area. Here we focus on fine controls of compositions, morphologies, mesochannel orientations which are important factors for design of mesoporous materials with new functionalities. This Review describes our recent progress toward advanced mesoporous materials. Mesoporous materials now include a variety of inorganic-based materials, for example, transition-metal oxides, carbons, inorganic-organic hybrid materials, polymers, and even metals. Mesoporous metals with metallic frameworks can be produced by using surfactant-based synthesis with electrochemical methods. Owing to their metallic frameworks, mesoporous metals with high electroconductivity and high surface areas hold promise for a wide range of potential applications, such as electronic devices, magnetic recording media, and metal catalysts. Fabrication of mesoporous materials with controllable morphologies is also one of the main subjects in this rapidly developing research field. Mesoporous materials in the form of films, spheres, fibers, and tubes have been obtained by various synthetic processes such as evaporation-mediated direct templating (EDIT), spray-dried techniques, and collaboration with hard-templates such as porous anodic alumina and polymer membranes. Furthermore, we have developed several approaches for orientation controls of 1D mesochannels. The macroscopic-scale controls of mesochannels are important for innovative applications such as molecular-scale devices and electrodes with enhanced diffusions of guest species. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hammell, James A.
There is a critical need for the development of materials for eliminating fire as a cause of death in aircraft accidents. Currently available composites that use organic matrices not only deteriorate at temperatures above 300°C but also emit toxic fumes. The results presented in this dissertation focus on the development of an inorganic matrix that does not burn or emit toxic fumes. The matrix, known as polysialate, can withstand temperatures in excess of 1000°C. The matrix behaves like a ceramic, but does not need high curing temperatures, so it can be processed like many common organic matrices. The major parameters evaluated in this dissertation are: (i) Influence of reinforcement type, (ii) Matrix formulation for both wet-dry durability and high temperature resistance, (iii) Influence of processing variables such as moisture reduction and storage, (iv) Tensile strain capacity of modified matrices and matrices reinforced with ceramic microfibers and discrete carbon fibers, and (v) analytical modeling of mechanical properties. For the reinforcement type; carbon, glass, and stainless steel wire fabrics were investigated. Carbon fabrics with 1, 3, 12, and 50k tows were used. A matrix chemical formulation that can withstand wetting and drying was developed. This formulation was tested at high temperatures to ascertain its stability above 400°C. On the topic of processing, shelf life of prepregged fabric layers and efficient moisture removal methods were studied. An analytical model based on layered reinforcement was developed for analyzing flexural specimens. It is shown that the new inorganic matrix can withstand wetting and drying, and also high temperature. The layered reinforcement concept provides accurate prediction of strength and stiffness for composites reinforced with 1k and 3k tows. The prepregged fabric layers can be stored for 14 days at -15°C without losing strength.
NASA Astrophysics Data System (ADS)
Krishna Golla, Sai; Prasanthi, P.
2016-11-01
A fiber reinforced polymer (FRP) composite is an important material for structural application. The diversified application of FRP composites has become the center of attention for interdisciplinary research. However, improvements in the mechanical properties of this class of materials are still under research for different applications. The reinforcement of inorganic particles in a composite improves its structural properties due to their high stiffness. The present research work is focused on the prediction of the mechanical properties of the hybrid composites where continuous fibers are reinforced in a micro boron carbide particle mixed polypropylene matrix. The effectiveness of the addition of 30 wt. % of boron carbide (B4C) particle contributions regarding the longitudinal and transverse properties of the basalt fiber reinforced polymer composite at various fiber volume fractions is examined by finite element analysis (FEA). The experimental approach is the best way to determine the properties of the composite but it is expensive and time-consuming. Therefore, the finite element method (FEM) and analytical methods are the viable methods for the determination of the composite properties. The FEM results were obtained by adopting a micromechanics approach with the support of FEM. Assuming a uniform distribution of reinforcement and considering one unit-cell of the whole array, the properties of the composite materials are determined. The predicted elastic properties from FEA are compared with the analytical results. The results suggest that B4C particles are a good reinforcement for the enhancement of the transverse properties of basalt fiber reinforced polypropylene.
Ianakiev, Kiril D [Los Alamos, NM; Hsue, Sin Tao [Santa Fe, NM; Browne, Michael C [Los Alamos, NM; Audia, Jeffrey M [Abiquiu, NM
2006-07-25
The present invention includes an apparatus and corresponding method for temperature correction and count rate expansion of inorganic scintillation detectors. A temperature sensor is attached to an inorganic scintillation detector. The inorganic scintillation detector, due to interaction with incident radiation, creates light pulse signals. A photoreceiver processes the light pulse signals to current signals. Temperature correction circuitry that uses a fast light component signal, a slow light component signal, and the temperature signal from the temperature sensor to corrected an inorganic scintillation detector signal output and expanded the count rate.
Coating Carbon Fibers With Platinum
NASA Technical Reports Server (NTRS)
Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.
2007-01-01
A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.
A Modeling Approach to Fiber Fracture in Melt Impregnation
NASA Astrophysics Data System (ADS)
Ren, Feng; Zhang, Cong; Yu, Yang; Xin, Chunling; Tang, Ke; He, Yadong
2017-02-01
The effect of process variables such as roving pulling speed, melt temperature and number of pins on the fiber fracture during the processing of thermoplastic based composites was investigated in this study. The melt impregnation was used in this process of continuous glass fiber reinforced thermoplastic composites. Previous investigators have suggested a variety of models for melt impregnation, while comparatively little effort has been spent on modeling the fiber fracture caused by the viscous resin. Herein, a mathematical model was developed for impregnation process to predict the fiber fracture rate and describe the experimental results with the Weibull intensity distribution function. The optimal parameters of this process were obtained by orthogonal experiment. The results suggest that the fiber fracture is caused by viscous shear stress on fiber bundle in melt impregnation mold when pulling the fiber bundle.
Thermoplastic coating of carbon fibers
NASA Technical Reports Server (NTRS)
Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.
1989-01-01
A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.
NASA Technical Reports Server (NTRS)
Jenkins, Michael G.; Ghosh, Asish; Salem, Jonathan A.
1990-01-01
Micromechanics fracture models are incorporated into three distinct fracture process zones which contribute to the crack growth resistance of fibrous composites. The frontal process zone includes microcracking, fiber debonding, and some fiber failure. The elastic process zone is related only to the linear elastic creation of new matrix and fiber fracture surfaces. The wake process zone includes fiber bridging, fiber pullout, and fiber breakage. The R-curve predictions of the model compare well with empirical results for a unidirectional, continuous fiber C/C composite. Separating the contributions of each process zone reveals the wake region to contain the dominant crack growth resistance mechanisms. Fractography showed the effects of the micromechanisms on the macroscopic fracture behavior.
Tenne, Reshef; Tsverin, Yulia; Burghaus, Uwe; Komarneni, Mallikharjuna Rao
2016-01-26
This invention relates to a hybrid component comprising at least one nanoparticle of inorganic layered compound (in the form of fullerene-like structure or nanotube), and at least one metal nanoparticle, uses thereof as a catalyst, (e.g. photocatalysis) and processes for its preparation.
Efficiency of beef extract for the recovery of poliovirus from wastewater effluents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landry, E.F.; Vaughn, J.M.; Thomas, M.Z.
1978-10-01
The efficiency of poliovirus elution from fiber glass cartridge filters (K27), epoxy-fiber glass-asbestos filters (M780), and pleated cartridge filters was assessed by using 3% beef extract (pH 9.0) or 0.1 M glycine (pH 11.5). Poliovirus type I, strain LSc, was seeded into 20 to 25 gallon (ca. 75.6 to 95.6 liter) samples of treated sewage effluent and concentrated by using a filter adsorption-elution technique. Virus elution was accomplished by using either two 600-ml portions of 3% beef extract (pH 9.0), or two 1 liter portions of 0.1 M glycine (pH 11.5). In all experiments, beef extract elution followed by organicmore » flocculation was found to be superior, yielding a mean recovery efficiency of 85%, with recoveries ranging from 68 to 100%. Elution with 0.1 M glycine (pH 11.5) followed by inorganic flocculation resulted in a mean recovery efficiency of 36%. The variable range of recoveries with beef extract could not be significantly improved by varying the type of beef extract or by extending the elution time to 30 min. Second-step reconcentration of 1 liter seeded sewage effluent and renovated wastewater samples indicated that organic flocculation was a more efficient method for virus recovery than inorganic flocculation. Beef extract concentrations of less than 3% were found to be efficient in the recovery of poliovirus from renovated wastewater.« less
Ghasemi, Ensieh; Najafi, Nahid Mashkouri; Raofie, Farhad; Ghassempour, Alireza
2010-09-15
A simple and effective speciation and preconcentration method based on hollow fiber liquid phase microextraction (HF-LPME) was developed for simultaneous separation of trace inorganic tellurium and selenium in environmental samples prior to electrothermal atomic absorption spectroscopy (ETAAS) determination. The method involves the selective extraction of the Te (IV) and Se (IV) species by HF-LPME with the use of ammonium pyrrolidinecarbodithioate (APDC) as the chelating agent. The complex compounds were extracted into 10 microL of toluene and the solutions were injected into a graphite furnace for the determination of Te (IV) and Se (IV). To determine the total tellurium and selenium in the samples, first Te (VI) and Se (VI) were reduced to Te (IV) and Se (IV), and then the microextraction method was performed. The experimental parameters of HF-LPME were optimized using a central composite design after a 2(n-1) fractional factorial experimental design. Under optimum conditions, enrichment factors of up to 520 and 480 were achieved for Te (IV) and Se (IV), respectively. The detection limits were 4 ng L(-1) with 3.5% RSD (n=5, c=2.0 microg L(-1)) for Te (IV) and 5 ng L(-1) with 3.1% RSD for Se (IV). The applicability of the developed technique was evaluated by application to spiked, environmental water and soil samples. Copyright 2010 Elsevier B.V. All rights reserved.
Production process of a new cellulosic fiber with antimicrobial properties.
Zikeli, Stefan
2006-01-01
The Lyocell process (system: cellulose-water-N-methylmorpholine oxide) of Zimmer AG offers special advantages for the production of cellulose fibers. The process excels by dissolving the most diverse cellulose types as these are optimally adjusted to the process by applying different pretreatment methods. Based on this stable process, Zimmer AG's objective is to impart to the Lyocell fiber additional value to improve quality of life and thus to tap new markets for the product. Thanks to the specific incorporation of seaweed, the process allows to produce cellulose Lyocell fibers with additional and new features. They are activated in a further step - by specific charging with metal ions - in order to obtain antibacterial properties. The favorable textile properties of fibers produced by the Lyocell process are not adversely affected by the incorporation of seaweed material or by activation to obtain an antibacterial fiber so that current textile products can be made from the fibers thus produced. The antibacterial effect is achieved by metal ion activation of the Lyocell fibers with incorporated seaweed, which contrasts with the antibacterial fibers known so far. Antibacterial fibers produced by conventional methods are in part only surface finished with antibacterially active chemicals or else they are produced by incorporating organic substances with antibacterial and fungicidal effects. Being made from cellulose, the antibacterial Lyocell fiber Sea Cell Active as the basis for quality textiles exhibits a special wear comfort compared to synthetic fibers with antibacterial properties and effects. This justifies the conclusion that the Zimmer Lyocell process provides genuine value added and that it is a springboard for further applications.
Marguerite Sykes; John Klungness; Freya Tan; Mathew Stroika; Said Abubakr
1999-01-01
Production of a lightweight, high opacity printing paper is a common goal of papermakers using virgin or recycled fibers. Fiber loading is an innovative, commercially viable process that can substantially upgrade and extend most types of wood fibers. Fiber loading, a process carried out at high consistency and high alkalinity, precipitates calcium carbonate (PCC) in...
Measuring the wetting angle and perimeter of single wood pulp fibers : a modified method
John H. Klungness
1981-01-01
In pulp processing development it is often necessary to measure the effect of a process variable on individual pulp fiber wettability. Such processes would include drying of market pulps, recycling of secondary fibers, and surface modification of fibers as in sizing. However, if wettability is measured on a fiber sheet surface, the results are confounded by...
NASA Astrophysics Data System (ADS)
Liu, F.; Chen, L.; Zhang, B.; Wang, G.; Qin, S.; Yang, Y.
2017-12-01
Permafrost thaw could result in a large portion of frozen carbon being laterally transferred to aquatic ecosystems as dissolved organic carbon (DOC). During this delivery process, the size of biodegradable DOC (BDOC) determines the proportion of DOC mineralized by microorganisms and associated carbon loss to the atmosphere, which may further trigger positive carbon-climate feedback. Thermokarst is an abrupt permafrost thaw process that can enhance DOC export and also impact DOC processing through increased inorganic nitrogen (N) and sunlight exposure. However, it remains unclear how thermokarst-impacted BDOC responds to inorganic N addition and ultraviolet (UV) light irradiation. Here we explored the responses of DOC concentration, composition and its biodegradability to inorganic N and UV light in a typical thermokarst on the Tibetan Plateau, by combining field observation and laboratory incubation with spectra analyses (UV-visible absorption and three-dimensional fluorescence spectra) and parallel factor analyses. Our results showed that BDOC in thermokarst feature outflows was significantly higher than in reference water. Furthermore, inorganic N addition had no influence on thermokarst-impacted BDOC, whereas exposure to UV light significantly increased BDOC by as much as 2.3 times higher than the dark-control. Moreover, N addition and UV irradiation did not generate additive effects on BDOC. These results imply that sunlight rather than inorganic N can increase thermokarst-derived BDOC, potentially strengthening the positive permafrost carbon-climate feedback.
Force-controlled inorganic crystallization lithography.
Cheng, Chao-Min; LeDuc, Philip R
2006-09-20
Lithography plays a key role in integrated circuits, optics, information technology, biomedical applications, catalysis, and separation technologies. However, inorganic lithography techniques remain of limited utility for applications outside of the typical foci of integrated circuit manufacturing. In this communication, we have developed a novel stamping method that applies pressure on the upper surface of the stamp to regulate the dewetting process of the inorganic buffer and the evaporation rate of the solvent in this buffer between the substrate and the surface of the stamp. We focused on generating inorganic microstructures with specific locations and also on enabling the ability to pattern gradients during the crystallization of the inorganic salts. This approach utilized a combination of lithography with bottom-up growth and assembly of inorganic crystals. This work has potential applications in a variety of fields, including studying inorganic material patterning and small-scale fabrication technology.
Synthesis of hydroxyapatite whiskers through dissolution reprecipitation process using EDTA
NASA Astrophysics Data System (ADS)
Seo, Dong Seok; Lee, Jong Kook
2008-04-01
Hydroxyapatite (HA) has been of interest in many industrial applications, such as ion exchange, catalysis and biomaterials. Chelating agents have often been used to prepare inorganic powders in the form of sphere, rod, whisker and fiber. In this study, HA whiskers were synthesized directly from typically shaped HA powders by refluxing at 80 and 100 °C for 24 h using ethylenediamine tetraacetic acid (EDTA). 3% or 6% of hydrogen peroxide (H 2O 2) was used to promote precipitation of HA crystals. The pH of the solution was adjusted at 7 or 9 by adding ammonia solution. The higher the H 2O 2 concentration, pH value and refluxing temperature, the longer and thinner whiskers were formed. The whiskers produced at 100 °C with 6% of H 2O 2 and pH 9 had the highest aspect ratio of about 50-60 (a length of 3 μm and a width of 0.05 μm).
Liu, Qinli; Ding, Xin; Du, Bowen; Fang, Tao
2017-11-02
Supercritical water oxidation (SCWO), as a novel and efficient technology, has been applied to wastewater treatment processes. The use of phase equilibrium data to optimize process parameters can offer a theoretical guidance for designing SCWO processes and reducing the equipment and operating costs. In this work, high-pressure phase equilibrium data for aromatic compounds+water systems and inorganic compounds+water systems are given. Moreover, thermodynamic models, equations of state (EOS) and empirical and semi-empirical approaches are summarized and evaluated. This paper also lists the existing problems of multi-phase equilibria and solubility studies on aromatic compounds and inorganic compounds in sub- and supercritical water.
Fukunaga, Ryuya; Zamore, Phillip D
2014-01-01
The enzyme Dicer is central to the production of small silencing RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs). Like other insects, Drosophila melanogaster uses different Dicers to make siRNAs and miRNAs: Dicer-1 produces miRNAs from pre-miRNAs, whereas Dicer-2 generates siRNAs from long double-stranded RNA (dsRNA). How do the 2 Dicers achieve their substrate specificity? Here, we review recent findings that inorganic phosphate restricts the substrate specificity of Dicer-2 to long dsRNA. Inorganic phosphate inhibits Dicer-2 from binding and cleaving pre-miRNAs, without affecting the processing of long dsRNA. Crystal structures of a fragment of human Dicer in complex with an RNA duplex identify a phosphate-binding pocket that recognizes both the 5′-monophosphate of a substrate RNA and inorganic phosphate. We propose that inorganic phosphate occupies the phosphate-binding pocket in the fly Dicer-2, blocking binding of pre-miRNA and restricting pre-miRNA processing to Dicer-1. Thus, a small molecule can alter the substrate specificity of a nucleic acid-processing enzyme. PMID:24787225
Hybrid and Mixed Matrix Membranes for Separations from Fermentations
Davey, Christopher John; Leak, David; Patterson, Darrell Alec
2016-01-01
Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs) for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s), Greater understanding of the compatibility between the polymer and inorganic phase(s), Improved methods for homogeneously dispersing the inorganic phase. PMID:26938567
Ethanol extraction of phytosterols from corn fiber
Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.
2010-11-16
The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-30
The New Lyme Landfill is a 40-acre facility operated from 1969 until 1978 as a trench and fill landfill with majority of the waste coming from industrial and commercial sources. Leachate includes both leachate seeps at the surface of the landfill and water that is either stagnant or moving very slowly in or out of the trenches. Organic compounds detected consisted of VOCs and phenolic compounds. Concentrations of inorganic compounds were generally an order-of-magnitude or more in ground water. Chrysotile asbestos fibers were found in two leachate water samples. The primary potential exposure pathways for leachate are direct contact ormore » inhalation of airborne asbestos fibers. Based on the nature of the contaminants and the hydrological conditions at the site, residential development of the area may not be suitable.« less
Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries
NASA Technical Reports Server (NTRS)
Abbey, K. M.; Britton, D. L.
1983-01-01
Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571
Arakaki, Atsushi; Shimizu, Katsuhiko; Oda, Mayumi; Sakamoto, Takeshi; Nishimura, Tatsuya; Kato, Takashi
2015-01-28
Organisms produce various organic/inorganic hybrid materials, which are called biominerals. They form through the self-organization of organic molecules and inorganic elements under ambient conditions. Biominerals often have highly organized and hierarchical structures from nanometer to macroscopic length scales, resulting in their remarkable physical and chemical properties that cannot be obtained by simple accumulation of their organic and inorganic constituents. These observations motivate us to create novel functional materials exhibiting properties superior to conventional materials--both synthetic and natural. Herein, we introduce recent progress in understanding biomineralization processes at the molecular level and the development of organic/inorganic hybrid materials by these processes. We specifically outline fundamental molecular studies on silica, iron oxide, and calcium carbonate biomineralization and describe material synthesis based on these mechanisms. These approaches allow us to design a variety of advanced hybrid materials with desired morphologies, sizes, compositions, and structures through environmentally friendly synthetic routes using functions of organic molecules.
NASA Astrophysics Data System (ADS)
Ding, Yong; Yu, Zongzhi; Zheng, Junping
2017-03-01
Dispersing inorganic nanoparticles in aqueous solutions is a key requirement for a great variety of products and processes, including carriers in drug delivery or fillers in polymers. To be highly functional in the final product, inorganic particles are required to be finely dispersed in nanoscale. In this study, silica was selected as a representative inorganic particle. Surface stabilizers with different chain length and charged group were designed to reveal the influence of electrostatic and van der Waals forces between silica and stabilizer on the dispersion of silica particles in aqueous medium. Results showed surface stabilizer with longer alkyl chain and charged group exerted best ability to deaggregate silica, leading to a hydrodynamic size of 51.1 nm. Surface stabilizer designing with rational structure is a promising solution for deagglomerating and reducing process time and energy. Giving the designability and adaptability of surface stabilizer, this method is of potential for dispersion of other inorganic nanoparticles.
Development of a biotechnological process for the production of high quality linen fibers.
Valladares Juárez, Ana Gabriela; Rost, Gernot; Heitmann, Uwe; Heger, Egon; Müller, Rudolf
2011-10-01
A novel biotechnological process for the production of high-quality flax fibers was developed. In this process, decorticated fibers from green flax were washed with 0.5% soda solution and treated with the pectinolytic strain Geobacillus thermoglucosidasius PB94A. Before drying the fibers, they were treated with the textile softener Adulcinol BUN. If the fibers contained contaminant shives, a bleaching step with hydrogen peroxide was performed before the softener treatment. In experiments where fibers were treated by the new process, and in which the bacterial solutions were reused seven times, the fiber quality was similar in all batches. The resolution of the treated fibers was 2.7 ± 0.4 and the fineness was 11.1 ± 1.1 dtex, while the starting material had a resolution of 7.3 and a fineness of 37 dtex. The new biotechnological treatment eliminates the weather-associated risks of the traditional fiber retting completely and produces consistently high-quality fibers that can be used to produce fine linen yarns.
Recycled fiber quality from a laboratory-scale blade separator/blend
Bei-Hong Liang; Stephen M. Shaler; Laurence Mott; Leslie Groom
1994-01-01
A simple and inexpensive fiber separator/blender was developed to generate useful secondary fibers from hydropulped waste paper. Processing wet hydropulped fiber resulted in a furnish with no change in average fiber length in three out of four types of recycled fibers tested. In all cases, the Canadian Standard freeness increased after processing compared to...
Recycled fiber quality from a laboratory-scale blade separator/blender
Bei-Hong Liang; Stephen M. Shaler; Laurence Mott; Leslie Groom
1994-01-01
A simple and inexpensive fiber separator/blender was developed to generate useful secondary fibers from hydropulped waste paper. Processing wet hydropulped fiber resulted in a furnish with no change in average fiber length in three out of four types of recycled fibers tested. In all cases, the canadian standard freeness increased after processing compared to...
Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers.
Chase, P B; Kushmerick, M J
1988-01-01
We have investigated (a) effects of varying proton concentration on force and shortening velocity of glycerinated muscle fibers, (b) differences between these effects on fibers from psoas (fast) and soleus (slow) muscles, possibly due to differences in the actomyosin ATPase kinetic cycles, and (c) whether changes in intracellular pH explain altered contractility typically associated with prolonged excitation of fast, glycolytic muscle. The pH range was chosen to cover the physiological pH range (6.0-7.5) as well as pH 8.0, which has often been used for in vitro measurements of myosin ATPase activity. Steady-state isometric force increased monotonically (by about threefold) as pH was increased from pH 6.0; force in soleus (slow) fibers was less affected by pH than in psoas (fast) fibers. For both fiber types, the velocity of unloaded shortening was maximum near resting intracellular pH in vivo and was decreased at acid pH (by about one-half). At pH 6.0, force increased when the pH buffer concentration was decreased from 100 mM, as predicted by inadequate pH buffering and pH heterogeneity in the fiber. This heterogeneity was modeled by net proton consumption within the fiber, due to production by the actomyosin ATPase coupled to consumption by the creatine kinase reaction, with replenishment by diffusion of protons in equilibrium with a mobile buffer. Lactate anion had little mechanical effect. Inorganic phosphate (15 mM total) had an additive effect of depressing force that was similar at pH 7.1 and 6.0. By directly affecting the actomyosin interaction, decreased pH is at least partly responsible for the observed decreases in force and velocity in stimulated muscle with sufficient glycolytic capacity to decrease pH. Images FIGURE 1 PMID:2969265
Mechanical properties and material characterization of polysialate structural composites
NASA Astrophysics Data System (ADS)
Foden, Andrew James
One of the major concerns in using Fiber Reinforced Composites in applications that are subjected to fire is their resistance to high temperature. Some of the fabrics used in FRC, such as carbon, are fire resistant. However, almost all the resins used cannot withstand temperatures higher than 200°C. This dissertation deals with the development and use of a potassium aluminosilicate (GEOPOLYMER) resin that is inorganic and can sustain more than 1000°C. The results presented include the mechanical properties of the unreinforced polysialate matrix in tension, flexure, and compression as well as the strain capacities and surface energy. The mechanical properties of the matrix reinforced with several different fabrics were obtained in flexure, tension, compression and shear. The strength and stiffness of the composite was evaluated for each loading condition. Tests were conducted on unexposed samples as well as samples exposed to temperatures from 200 to 1000°C. Fatigue properties were determined using flexural loading. A study of the effect of several processing variables on the properties of the composite was undertaken to determine the optimum procedure for manufacturing composite plates. The processing variables studied were the curing temperature and pressure, and the post cure drying time required to remove any residual water. The optimum manufacturing conditions were determined using the void content, density, fiber volume fraction, and flexural strength. Analytical models are presented based on both micro and macro mechanical analysis of the composite. Classic laminate theory is used to evaluate the state of the composite as it is being loaded to determine the failure mechanisms. Several failure criteria theories are considered. The analysis is then used to explain the mechanical behavior of the composite that was observed during the experimental study.
NASA Technical Reports Server (NTRS)
Locci, Ivan E.; Noebe, Ronald D.
1989-01-01
Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.
NASA Technical Reports Server (NTRS)
Shaw, Harry C. (Inventor); Ott, Melanie N. (Inventor); Manuel, Michele V. (Inventor)
2002-01-01
A process of fabricating a fiber device includes providing a hollow core fiber, and forming a sol-gel material inside the hollow core fiber. The hollow core fiber is preferably an optical fiber, and the sol-gel material is doped with a dopant. Devices made in this manner includes a wide variety of sensors.
Effects of Gravity on Processing Heavy Metal Fluoride Fibers
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.
1997-01-01
The effects of gravity on the crystal nucleation of heavy metal fluoride fibers have been studied in preliminary experiments utilizing NASA's KC-135 reduced gravity aircraft and a microgravity sounding rocket flight. Commercially produced fibers were heated to the crystallization temperature in normal and reduced gravity. The fibers processed in normal gravity showed complete crystallization while the fibers processed in reduced gravity did not show signs of crystallization.
Kang, Moon-Sung; Choi, Yong-Jin; Moon, Seung-Hyeon
2004-05-15
An approach to enhancing the water-splitting performance of bipolar membranes (BPMs) is introducing an inorganic substance at the bipolar (BP) junction. In this study, the immobilization of inorganic matters (i.e., iron hydroxides and silicon compounds) at the BP junction and the optimum concentration have been investigated. To immobilize these inorganic matters, novel methods (i.e., electrodeposition of the iron hydroxide and processing of the sol-gel to introduce silicon groups at the BP junction) were suggested. At optimal concentrations, the immobilized inorganic matters significantly enhanced the water-splitting fluxes, indicating that they provide alternative paths for water dissociation, but on the other hand possibly reduce the polarization of water molecules between the sulfonic acid and quaternary ammonium groups at high contents. Consequently, the amount of inorganic substances introduced should be optimized to obtain the maximum water splitting in the BPM.
Two-Dimensional CH3NH3PbI3 Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers.
Li, Pengfei; Chen, Yao; Yang, Tieshan; Wang, Ziyu; Lin, Han; Xu, Yanhua; Li, Lei; Mu, Haoran; Shivananju, Bannur Nanjunda; Zhang, Yupeng; Zhang, Qinglin; Pan, Anlian; Li, Shaojuan; Tang, Dingyuan; Jia, Baohua; Zhang, Han; Bao, Qiaoliang
2017-04-12
Even though the nonlinear optical effects of solution processed organic-inorganic perovskite films have been studied, the nonlinear optical properties in two-dimensional (2D) perovskites, especially their applications for ultrafast photonics, are largely unexplored. In comparison to bulk perovskite films, 2D perovskite nanosheets with small thicknesses of a few unit cells are more suitable for investigating the intrinsic nonlinear optical properties because bulk recombination of photocarriers and the nonlinear scattering are relatively small. In this research, we systematically investigated the nonlinear optical properties of 2D perovskite nanosheets derived from a combined solution process and vapor phase conversion method. It was found that 2D perovskite nanosheets have stronger saturable absorption properties with large modulation depth and very low saturation intensity compared with those of bulk perovskite films. Using an all dry transfer method, we constructed a new type of saturable absorber device based on single piece 2D perovskite nanosheet. Stable soliton state mode-locking was achieved, and ultrafast picosecond pulses were generated at 1064 nm. This work is likely to pave the way for ultrafast photonic and optoelectronic applications based on 2D perovskites.
Alamri, Haleema; Al-Shahrani, Abdullah; Bovero, Enrico; Khaldi, Turki; Alabedi, Gasan; Obaid, Waleed; Al-Taie, Ihsan; Fihri, Aziz
2018-03-01
Inspired by the self-cleaning lotus leaf, a facile method of fabricating superhydrophobic silica coated magnetite nanoparticles using a cost-effective process is presented in this work. The structural characterizations and magnetic properties of the obtained core-shell magnetic nanoparticles were characterized by means of X-ray diffraction (XRD), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). TEM analysis revealed that the particles present flower-like dendrimeric fibers morphology. The particles were uniformly dispersed on the surface of an epoxy resin coating with the purpose to increase the roughness and reduce the surface energy of the surface. The resulting superhydrophobic surface provides robust water-repellent surface under harsh conditions, thanks to its self-cleaning characteristic. The superhydrophobicity of this surface was confirmed based on the measurements of a water contact angle around 175°, which surpasses the theoretical limit of the superhydrophobicity. The simplicity and the cost-effectiveness of the process developed in this study appears to be a promising route for the preparation of other magnetic superhydrophobic organic-inorganic hybrid materials that would be beneficial in a wide variety of applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Natural Fiber Composite Retting, Preform Manufacture and Molding (Project 18988/Agreement 16313)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Kevin L.; Howe, Daniel T.; Laddha, Sachin
2009-12-31
Plant-based natural fibers can be used in place of glass in fiber reinforced automotive composites to reduce weight, cost and provide environmental benefits. Current automotive applications use natural fibers in injection molded thermoplastics for interior, non-structural applications. Compression molded natural fiber reinforced thermosets have the opportunity to extend natural fiber composite applications to structural and semi-structural parts and exterior parts realizing further vehicle weight savings. The development of low cost molding and fiber processing techniques for large volumes of natural fibers has helped in understanding the barriers of non-aqueous retting. The retting process has a significant effect on the fibermore » quality and its processing ability that is related to the natural fiber composite mechanical properties. PNNL has developed a compression molded fiber reinforced composite system of which is the basis for future preforming activities and fiber treatment. We are using this process to develop preforming techniques and to validate fiber treatment methods relative to OEM provided application specifications. It is anticipated for next fiscal year that demonstration of larger quantities of SMC materials and molding of larger, more complex components with a more complete testing regimen in coordination with Tier suppliers under OEM guidance.« less
Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors
Kagan; Mitzi; Dimitrakopoulos
1999-10-29
Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.
Process control using fiber optics and Fourier transform infrared spectroscopy
NASA Astrophysics Data System (ADS)
Kemsley, E. K.; Wilson, Reginald H.
1992-03-01
A process control system has been constructed using optical fibers interfaced to a Fourier transform infrared (FT-IR) spectrometer, to achieve remote spectroscopic analysis of food samples during processing. The multichannel interface accommodates six fibers, allowing the sequential observation of up to six samples. Novel fiber-optic sampling cells have been constructed, including transmission and attenuated total reflectance (ATR) designs. Different fiber types have been evaluated; in particular, plastic clad silica (PCS) and zirconium fluoride fibers. Processes investigated have included the dilution of fruit juice concentrate, and the addition of alcohol to fruit syrup. Suitable algorithms have been written which use the results of spectroscopic measurements to control and monitor the course of each process, by actuating devices such as valves and switches.
Low temperature stabilization process for production of carbon fiber having structural order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; McGuire, Michael Alan; More, Karren Leslie
A method for producing a carbon fiber, the method comprising: (i) subjecting a continuous carbon fiber precursor having a polymeric matrix in which strength-enhancing particles are incorporated to a stabilization process during which the carbon fiber precursor is heated to within a temperature range ranging from the glass transition temperature to no less than 20.degree. C. below the glass transition temperature of the polymeric matrix, wherein the maximum temperature employed in the stabilization process is below 400.degree. C., for a processing time within said temperature range of at least 1 hour in the presence of oxygen and in the presencemore » of a magnetic field of at least 1 Tesla, while said carbon fiber precursor is held under an applied axial tension; and (ii) subjecting the stabilized carbon fiber precursor, following step (i), to a carbonization process. The stabilized carbon fiber precursor, resulting carbon fiber, and articles made thereof are also described.« less
Seong, Dong Gi; Ha, Jong Rok; Lee, Jea Uk; Lee, Wonoh; Kim, Byung Sun
2015-11-01
Carbon fiber reinforced composite has been a good candidate of lightweight structural component in the automotive industry. As fast production speed is essential to apply the composite materials for the mass production area such as automotive components, the high speed liquid composite molding processes have been developed. Fast resin injection through the fiber preform by high pressure is required to improve the production speed, but it often results in undesirable deformations of the fiber preform which causes defectives in size and properties of the final composite products. In order to prevent the undesirable deformation and improve the stability of preform shape, polymer type binder materials are used. More stable fiber preform can be obtained by increasing the amount of binder material, but it disturbs the resin impregnation through the fiber preform. In this study, carbon nanomaterials such as graphene oxide were embedded on the surface of carbon fiber by electrophoretic deposition method in order to improve the shape stability of fiber preform and interfacial bonding between polymer and the reinforcing fiber. Effects of the modified reinforcing fiber were investigated in two respects. One is to increase the binding energy between fiber tows, and the other is to increase the interfacial bonding between polymer matrix and fiber surface. The effects were analyzed by measuring the binding force of fiber preform and interlaminar shear strength of the composite. This study also investigated the high speed liquid molding process of the composite materials composed of polymer matrix and the carbon fiber preforms embedded by carbon nanomaterials. Process parameter such as permeability of fiber preform was measured to investigate the effect of nanoscale surface modification on the macroscale processing condition for composite manufacturing.
Kinetics of Nucleation and Crystal Growth in Glass Forming Melts in Microgravity
NASA Technical Reports Server (NTRS)
Day, Delbert E.; Ray, Chandra S.
2003-01-01
This flight definition project has the specific objective of investigating the kinetics of nucleation and crystal growth in high temperature inorganic oxide, glass forming melts in microgravity. It is related to one1 of our previous NASA projects that was concerned with glass formation for high temperature containerless melts in microgravity. The previous work culminated in two experiments which were conducted aboard the space shuttle in 1983 and 1985 and which consisted of melting (at 1500 C) and cooling levitated 6 to 8 mm diameter spherical samples in a Single Axis Acoustic Levitator (SAAL) furnace. Compared to other types of materials, there have been relatively few experiments, 6 to 8, conducted on inorganic glasses in space. These experiments have been concerned with mass transport (alkali diffusion), containerless melting, critical cooling rate for glass formation, chemical homogeneity, fiber pulling, and crystallization of glass forming melts. One of the most important and consistent findings in all of these experiments has been that the glasses prepared in microgravity are more resistant to crystallization (better glass former) and more chemically homogeneous than equivalent glasses made on earth (1g). The chemical composition of the melt appears relatively unimportant since the same general results have been reported for oxide, fluoride and chalcogenide melts. These results for space-processed glasses have important implications, since glasses with a higher resistance to crystallization or higher chemical homogeneity than those attainable on earth can significantly advance applications in areas such as fiber optics communications, high power laser glasses, and other photonic devices where glasses are the key functional materials. The classical theories for nucleation and crystal growth for a glass or melt do not contain any parameter that is directly dependent upon the g-value, so it is not readily apparent why glasses prepared in microgravity should be more resistant to crystallization than equivalent glasses prepared on earth. Similarly, the gravity-driven convection in a fluid melt is believed to be the primary force field that is responsible for melt homogenization on earth. Thus, it is not obvious why a glass prepared in space, where gravity-driven convection is ideally absent, would be more chemically homogeneous than a glass identically prepared on earth. The primary objective of the present research is to obtain experimental data for the nucleation rate and crystal growth rate for a well characterized silicate melt (lithium disilicate) processed entirely in space (low gravity) and compare these rates with the nucleation and crystal growth rates for a similar glass prepared identically on earth (1g).
Phosphate and acidosis act synergistically to depress peak power in rat muscle fibers.
Nelson, Cassandra R; Debold, Edward P; Fitts, Robert H
2014-11-15
Skeletal muscle fatigue is characterized by the buildup of H(+) and inorganic phosphate (Pi), metabolites that are thought to cause fatigue by inhibiting muscle force, velocity, and power. While the individual effects of elevated H(+) or Pi have been well characterized, the effects of simultaneously elevating the ions, as occurs during fatigue in vivo, are still poorly understood. To address this, we exposed slow and fast rat skinned muscle fibers to fatiguing levels of H(+) (pH 6.2) and Pi (30 mM) and determined the effects on contractile properties. At 30°C, elevated Pi and low pH depressed maximal shortening velocity (Vmax) by 15% (4.23 to 3.58 fl/s) in slow and 31% (6.24 vs. 4.55 fl/s) in fast fibers, values similar to depressions from low pH alone. Maximal isometric force dropped by 36% in slow (148 to 94 kN/m(2)) and 46% in fast fibers (148 to 80 kN/m(2)), declines substantially larger than what either ion exerted individually. The strong effect on force combined with the significant effect on velocity caused peak power to decline by over 60% in both fiber types. Force-stiffness ratios significantly decreased with pH 6.2 + 30 mM Pi in both fiber types, suggesting these ions reduced force by decreasing the force per bridge and/or increasing the number of low-force bridges. The data indicate the collective effects of elevating H(+) and Pi on maximal isometric force and peak power are stronger than what either ion exerts individually and suggest the ions act synergistically to reduce muscle function during fatigue. Copyright © 2014 the American Physiological Society.
Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process.
Golkarnarenji, Gelayol; Naebe, Minoo; Badii, Khashayar; Milani, Abbas S; Jazar, Reza N; Khayyam, Hamid
2018-03-05
To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR) and Artificial Neural Network (ANN), were studied and compared, with a limited dataset obtained to predict physical property (density) of oxidative stabilized PAN fiber (OPF) in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large.
Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process
Golkarnarenji, Gelayol; Naebe, Minoo; Badii, Khashayar; Milani, Abbas S.; Jazar, Reza N.; Khayyam, Hamid
2018-01-01
To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR) and Artificial Neural Network (ANN), were studied and compared, with a limited dataset obtained to predict physical property (density) of oxidative stabilized PAN fiber (OPF) in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large. PMID:29510592
Anisotropic fibrous thermal insulator of relatively thick cross section and method for making same
Reynolds, Carl D.; Ardary, Zane L.
1979-01-01
The present invention is directed to an anisotropic thermal insulator formed of carbon-bonded organic or inorganic fibers and having a thickness or cross section greater than about 3 centimeters. Delaminations and deleterious internal stresses generated during binder curing and carbonizing operations employed in the fabrication of thick fibrous insulation of thicknesses greater than 3 centimeters are essentially obviated by the method of the present invention. A slurry of fibers, thermosetting resin binder and water is vacuum molded into the selected insulator configuration with the total thickness of the molded slurry being less than about 3 centimeters, the binder is thermoset to join the fibers together at their nexaes, and then the binder is carbonized to form the carbon bond. A second slurry of the fibers, binder and water is then applied over the carbonized body with the vacuum molding, binder thermosetting and carbonizing steps being repeated to form a layered insulator with the binder providing a carbon bond between the layers. The molding, thermosetting and carbonizing steps may be repeated with additional slurries until the thermal insulator is of the desired final thickness. An additional feature of the present invention is provided by incorporating opacifying materials in any of the desired layers so as to provide different insulating properties at various temperatures. Concentration and/or type of additive can be varied from layer-to-layer.
Angle-independent VO2 Thin Film on Glass Fiber Cloth as a Soft-Smart-Mirror (SSM)
Cai, Nianjin; Zhang, Wang; Wang, Wanlin; Zhu, Yuchen; Zada, Imran; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Guo, Cuiping; Zhang, Zhijian; Zhang, Jianzhong; Wu, Liping; Zhang, Di
2016-01-01
Designing materials with a negative feedback function is beneficial for achieving temperature regulation inside a greenhouse. VO2 has been studied extensively because of its low insulator-to-metal transition temperature (IMT). In this study, reflection changes during a VO2 phase transition were investigated. Glass fiber cloth was used as a substrate, as it is stable and soft. A VO2 thin film on a glass fiber cloth whose surface contained 96% V4+ and 4% V5+ was prepared using an inorganic sol-gels method. The insulator-to-metal transition temperature was decreased by 38 °C, which was observed from the reflection curve detected using an angle-resolved spectrometer. This decrease in IMT occurred mainly because of the presence of V5+, which causes destabilization of the monoclinic phase of VO2. When the greenhouse temperature was increased from 30 °C to 40 °C, the reflected intensity of VO2 on glass fiber cloth decreased by 22% for the wavelength range of 400 nm to 800 nm. In addition, the angle-independent property of the VO2 thin film was observed using an angle-resolved spectrometer. Owing to its thermo-reflective properties, the thin film can serve as a soft-smart-mirror (SSM) inside a greenhouse to stabilize the temperature, playing a negative feedback role. PMID:27849051
Angle-independent VO2 Thin Film on Glass Fiber Cloth as a Soft-Smart-Mirror (SSM)
NASA Astrophysics Data System (ADS)
Cai, Nianjin; Zhang, Wang; Wang, Wanlin; Zhu, Yuchen; Zada, Imran; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Guo, Cuiping; Zhang, Zhijian; Zhang, Jianzhong; Wu, Liping; Zhang, Di
2016-11-01
Designing materials with a negative feedback function is beneficial for achieving temperature regulation inside a greenhouse. VO2 has been studied extensively because of its low insulator-to-metal transition temperature (IMT). In this study, reflection changes during a VO2 phase transition were investigated. Glass fiber cloth was used as a substrate, as it is stable and soft. A VO2 thin film on a glass fiber cloth whose surface contained 96% V4+ and 4% V5+ was prepared using an inorganic sol-gels method. The insulator-to-metal transition temperature was decreased by 38 °C, which was observed from the reflection curve detected using an angle-resolved spectrometer. This decrease in IMT occurred mainly because of the presence of V5+, which causes destabilization of the monoclinic phase of VO2. When the greenhouse temperature was increased from 30 °C to 40 °C, the reflected intensity of VO2 on glass fiber cloth decreased by 22% for the wavelength range of 400 nm to 800 nm. In addition, the angle-independent property of the VO2 thin film was observed using an angle-resolved spectrometer. Owing to its thermo-reflective properties, the thin film can serve as a soft-smart-mirror (SSM) inside a greenhouse to stabilize the temperature, playing a negative feedback role.
Angle-independent VO2 Thin Film on Glass Fiber Cloth as a Soft-Smart-Mirror (SSM).
Cai, Nianjin; Zhang, Wang; Wang, Wanlin; Zhu, Yuchen; Zada, Imran; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Guo, Cuiping; Zhang, Zhijian; Zhang, Jianzhong; Wu, Liping; Zhang, Di
2016-11-16
Designing materials with a negative feedback function is beneficial for achieving temperature regulation inside a greenhouse. VO 2 has been studied extensively because of its low insulator-to-metal transition temperature (IMT). In this study, reflection changes during a VO 2 phase transition were investigated. Glass fiber cloth was used as a substrate, as it is stable and soft. A VO 2 thin film on a glass fiber cloth whose surface contained 96% V 4+ and 4% V 5+ was prepared using an inorganic sol-gels method. The insulator-to-metal transition temperature was decreased by 38 °C, which was observed from the reflection curve detected using an angle-resolved spectrometer. This decrease in IMT occurred mainly because of the presence of V 5+ , which causes destabilization of the monoclinic phase of VO 2 . When the greenhouse temperature was increased from 30 °C to 40 °C, the reflected intensity of VO 2 on glass fiber cloth decreased by 22% for the wavelength range of 400 nm to 800 nm. In addition, the angle-independent property of the VO 2 thin film was observed using an angle-resolved spectrometer. Owing to its thermo-reflective properties, the thin film can serve as a soft-smart-mirror (SSM) inside a greenhouse to stabilize the temperature, playing a negative feedback role.
Abolghasemi, Mir Mahdi; Arsalani, Naser; Yousefi, Vahid; Arsalani, Mahmood; Piryaei, Marzieh
2016-03-01
We have synthesized an organic-inorganic polyaniline-halloysite nanotube composite by an in situ polymerization method. This nanocomposite is immobilized on a stainless-steel wire and can be used as a fiber coating for solid-phase microextraction. It was found that our new solid-phase microextraction fiber is an excellent adsorbent for the extraction of some volatile organic compounds in aqueous samples in combination with gas chromatography and mass spectrometry. The coating can be prepared easily, is mechanically stable, and exhibits relatively high thermal stability. It is capable of extracting phenolic compounds from water samples. Following thermal desorption, the phenols were quantified by gas chromatography with mass spectrometry. The effects of extraction temperature, extraction time, sample ionic strength, stirring rate, pH, desorption temperature and desorption time were studied. Under optimal conditions, the repeatability for one fiber (n = 5), expressed as the relative standard deviation, is between 6.2 and 9.1%. The detection limits range from 0.005 to 4 ng/mL. The method offers the advantage of being simple to use, with a shorter analysis time, lower cost of equipment and higher thermal stability of the fiber in comparison to conventional methods of analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Developments in Hollow Graphite Fiber Technology
NASA Technical Reports Server (NTRS)
Stallcup, Michael; Brantley, Lott W., Jr. (Technical Monitor)
2002-01-01
Hollow graphite fibers will be lighter than standard solid graphite fibers and, thus, will save weight in optical components. This program will optimize the processing and properties of hollow carbon fibers developed by MER and to scale-up the processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA.
NASA Technical Reports Server (NTRS)
Pearson, A.
1975-01-01
The objective of this program was to establish feasibility of a process to produce low cost aluminum oxide fibers having sufficient strength, flexibility, and thermal stability for multiple re-use at temperatures to 1480 C in advanced RSI type heat shields for reentry vehicles. Using bench-scale processing apparatus, the Alcoa 'Saphiber' process was successfully modified to produce nominally 8 microns diameter polycrystalline alpha-alumina fiber. Thermal stability was demonstrated in vacuum reheating tests to 1371 C and in atmospheric reheating to 1483 C. Individual fiber properties of strength, modulus, and flexibility were not determined because of friability and short length of the fiber. Rigidized tile produced from fiber of nominally 8, 20 and 40 micron diameter had thermal conductivities significantly higher than those of RSI SiO2 or mullite at relatively low temperature but became comparable above about 1000 C. Tile densities were high due to short fiber length, especially in the coarser diameter fiber. No significant effect of fiber diameter on thermal properties could be determined form the data. Mechanical properties of tiles deteriorated as fiber diameter increased.
Bautista-Flores, Ana Nelly; De San Miguel, Eduardo Rodríguez; Gyves, Josefina de; Jönsson, Jan Åke
2011-08-18
Nickel (II) preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM) device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration) and to the sample properties (donor pH) on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed depending on the values of the different variables. The effects of the presence of inorganic anions (NO2-, SO42-, Cl-, NO3-, CO32-, CN-) and dissolved organic matter (DOM) in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K) = -8617.3 + 30.5T with an activation energy of 56.7 kJ mol-1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively).
NASA Astrophysics Data System (ADS)
Maier, A.; Schledjewski, R.
2016-07-01
For continuous manufacturing processes mechanical preloading of the fibers occurs during the delivery of the fibers from the spool creel to the actual manufacturing process step. Moreover preloading of the dry roving bundles might be mandatory, e.g. during winding, to be able to produce high quality components. On the one hand too high tensile loads within dry roving bundles might result in a catastrophic failure and on the other hand the part produced under too low pre-tension might have low quality and mechanical properties. In this work, load conditions influencing mechanical properties of dry glass fiber bundles during continuous composite manufacturing processes were analyzed. Load conditions, i.e. fiber delivery speed, necessary pre-tension and other effects of the delivery system during continuous fiber winding, were chosen in process typical ranges. First, the strain rate dependency under static tensile load conditions was investigated. Furthermore different free gauge lengths up to 1.2 m, interactions between fiber points of contact regarding influence of sizing as well as impregnation were tested and the effect of twisting on the mechanical behavior of dry glass fiber bundles during the fiber delivery was studied.
NASA Astrophysics Data System (ADS)
Pszenny, A.; Cotter, K.; Deegan, B.; Fischer, E.; Johnson, D.
2007-12-01
PM2.5 aerosol was sampled over nominal 3-hour intervals at the head of Zuma Beach in Malibu, California (USA) from 6 to 24 October 2006 by filtration at 1.13 m3 min-1 (STP) through 20 x 25 cm cellulose fiber (Whatman 41) filters that had been rinsed with deionized water (DIW). Exposed filters were removed from support cartridges as soon as possible after retrieval (usually within 2 hours), immediately sealed in clean polyethylene bags, and stored frozen until further processing. Following the field campaign one quarter of each filter was pressed into a pellet (2.0 cm diameter x 0.5 cm thick) and analyzed by neutron activation for total concentrations of I and several other trace elements. Our preliminary analyses indicate that sodium and iodine show a clear diel variation characterized by higher concentrations from late morning to early evening. We hypothesize that this diel variability is related to a persistent land/sea breeze circulation associated with the nearby coastal region. Other elements are indicative of variability in other aerosol sources such as soil dust (Al, Mn) and fossil fuel combustion (V). Second quarters are currently being extracted in DIW and analyzed in two ways: 1) for iodide by ion chromatography, and 2) for inorganic iodine in higher oxidation states (i.e., V to 0) by chemical reduction with ascorbic acid followed by determination of iodide by ion chromatography. Results of the trace element and speciated iodine analyses will be presented.
Process for removing sulfur from coal
Aida, Tetsuo; Squires, Thomas G.; Venier, Clifford G.
1985-02-05
A process for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.
Mechanical recycling of continuous fiber-reinforced thermoplastic sheets
NASA Astrophysics Data System (ADS)
Moritzer, Elmar; Heiderich, Gilmar
2016-03-01
This contribution examines possible material recycling of offcuts generated during the production of continuous-fiber-reinforced composite sheets. These sheets consist of a polyamide 6 matrix and glass fiber fabric. In the initial step, the offcut is shredded to obtain particles; following that, the particles are processed in a twin-screw process to produce fiber-reinforced plastic pellets with varying fiber contents. These pellets are intended for use in injection molding processes as a substitution for new raw materials. This investigation centers on the mechanical properties which can be achieved with the recycled material after both the twin-screw process and injection molding.
Integrated Risk Information System (IRIS)
Arsenic , inorganic ; CASRN 7440 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge
Kinetic Monte Carlo Simulations of Scintillation Processes in NaI(Tl)
NASA Astrophysics Data System (ADS)
Kerisit, Sebastien; Wang, Zhiguo; Williams, Richard T.; Grim, Joel Q.; Gao, Fei
2014-04-01
Developing a comprehensive understanding of the processes that govern the scintillation behavior of inorganic scintillators provides a pathway to optimize current scintillators and allows for the science-driven search for new scintillator materials. Recent experimental data on the excitation density dependence of the light yield of inorganic scintillators presents an opportunity to incorporate parameterized interactions between excitations in scintillation models and thus enable more realistic simulations of the nonproportionality of inorganic scintillators. Therefore, a kinetic Monte Carlo (KMC) model of elementary scintillation processes in NaI(Tl) is developed in this paper to simulate the kinetics of scintillation for a range of temperatures and Tl concentrations as well as the scintillation efficiency as a function of excitation density. The ability of the KMC model to reproduce available experimental data allows for elucidating the elementary processes that give rise to the kinetics and efficiency of scintillation observed experimentally for a range of conditions.
New reactions of paraformaldehyde and formaldehyde with inorganic compounds
NASA Technical Reports Server (NTRS)
Becker, R. S.; Bercovici, T.; Hong, K.
1974-01-01
Both paraformaldehyde and formaldehyde undergo reactions in the presence of several inorganic compounds to generate a variety of interesting organic products that can be important in chemical evolutionary processes. Some examples are acrolein, acetaldehyde, methyl formate, methanol, glycolaldehyde and formic acid. The organic compounds are produced at temperatures as low as 56 C and in high yield (up to 75%). The quantity produced depends principally on the nature of the inorganic compound, the ratio of the inorganic compound to paraformaldehyde, temperature and reaction time. The percent distribution of product depends on some of the foregoing factors.
Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents
Taylor-Pashow, Kathryn M. L.; Lin, Wenbin; Abney, Carter W.
2017-03-21
A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.
Nanocomposites Derived from Polymers and Inorganic Nanoparticles
Jeon, In-Yup; Baek, Jong-Beom
2010-01-01
Polymers are considered to be good hosting matrices for composite materials because they can easily be tailored to yield a variety of bulk physical properties. Moreover, organic polymers generally have long-term stability and good processability. Inorganic nanoparticles possess outstanding optical, catalytic, electronic and magnetic properties, which are significantly different their bulk states. By combining the attractive functionalities of both components, nanocomposites derived from organic polymers and inorganic nanoparticles are expected to display synergistically improved properties. The potential applications of the resultant nanocomposites are various, e.g. automotive, aerospace, opto-electronics, etc. Here, we review recent progress in polymer-based inorganic nanoparticle composites.
Effect of Voltage and Flow Rate Electrospinning Parameters on Polyacrylonitrile Electrospun Fibers
NASA Astrophysics Data System (ADS)
Bakar, S. S. S.; Fong, K. C.; Eleyas, A.; Nazeri, M. F. M.
2018-03-01
Currently, electrospinning is a very famous technique and widely used for forming polymer nanofibers. In this paper, the Polyacrylonitrile (PAN) nanofibers were prepared in concentration of 10wt% with varied processing parameters that can affect the properties of PAN fiber in term of fiber diameter and electrical conductivity was presented. Voltage of 10, 15 and 20 kV with PAN flow rate of 1 electrospun PAN fibers were then undergo pyrolysis at 800°C for 30 minutes. The resultant PAN nanofibers were then analysed by SEM, XRD and four point probe test after pyrolysis process. SEM image show continuos uniform and smooth surface fibrous structure of electrospun PAN fibers with average diameter of 1.81 μm. The fiber morphology is controlled by manipulating the processing parameters of electrospinning process. The results showed that the resistance of electrospun PAN fibers decreases as the processing parameter changes by increasing the applied voltage and flow rate of electrospinning.
Electrospun amplified fiber optics.
Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario
2015-03-11
All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.
Presence of Tungsten-Containing Fibers in Tungsten Refining and Manufacturing Processes
Mckernan, John L.; Toraason, Mark A.; Fernback, Joseph E.; Petersen, Martin R.
2009-01-01
In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 μm, diameter >0.01 μm and aspect ratios ≥3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length ≈3 μm and diameter ≈0.3 μm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter ≤ 10 μm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting ‘B’ rules (length > 5 μm, diameter < 3 μm and aspect ratio ≥ 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm−3, with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The finding of airborne tungsten-containing fibers in this occupational setting needs to be confirmed in similar settings and demonstrates the need to obtain information on the durability and associated health effects of these fibers. PMID:19126624
NASA Technical Reports Server (NTRS)
Yun, Hee-Mann (Inventor); DiCarlo, James A. (Inventor)
2014-01-01
Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties tier each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.
Methods for producing silicon carbide architectural preforms
NASA Technical Reports Server (NTRS)
DiCarlo, James A. (Inventor); Yun, Hee (Inventor)
2010-01-01
Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties for each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.
Enhanced radiation resistant fiber optics
Lyons, Peter B.; Looney, Larry D.
1993-01-01
A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.
Enhanced radiation resistant fiber optics
Lyons, P.B.; Looney, L.D.
1993-11-30
A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.
Stack-and-Draw Manufacture Process of a Seven-Core Optical Fiber for Fluorescence Measurements
NASA Astrophysics Data System (ADS)
Samir, Ahmed; Batagelj, Bostjan
2018-01-01
Multi-core, optical-fiber technology is expected to be used in telecommunications and sensory systems in a relatively short amount of time. However, a successful transition from research laboratories to industry applications will only be possible with an optimized design and manufacturing process. The fabrication process is an important aspect in designing and developing new multi-applicable, multi-core fibers, where the best candidate is a seven-core fiber. Here, the basics for designing and manufacturing a single-mode, seven-core fiber using the stack-and-draw process is described for the example of a fluorescence sensory system.
Process for removing sulfur from coal
Aida, T.; Squires, T.G.; Venier, C.G.
1983-08-11
A process is disclosed for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.
Microstructure analysis in the coupling region of fiber coupler with a novel electrical micro-heater
NASA Astrophysics Data System (ADS)
Shuai, Cijun; Gao, Chengde; Nie, Yi; Hu, Huanlong; Peng, Shuping
2011-12-01
Fused-tapered fiber coupler is widely used in optical-fiber communication, optical-fiber sensor and optical signal processing. Its optical performance is mainly determined by the glass properties in the coupling region. In this study, the effect of fused biconical taper (FBT) process on glass microstructure of fiber coupler was investigated by testing the microstructure of the cross-section of coupling region. The fiber coupler is fabricated with a novel home-designed electrical heater. Our experimental results show that the boundary between fiber core and fiber cladding become vague or indistinct after FBT under transmission electron microscopy (TEM) and Ge 2+ in fiber core diffuses into fiber cladding. Crystallizations are observed in coupling region under scanning electron microscope (SEM) and microscopic infrared (IR), and the micro crystallizations become smaller with the drawing speed increasing. The wave number of fiberglass increases after FBT and it is in proportion to the drawing speed. The analysis of the microstructure in the coupling region explored the mechanism of the improvement in the performance of fiber couplers which can be used for the guidance of fabrication process.
Automated fiber placement: Evolution and current demonstrations
NASA Technical Reports Server (NTRS)
Grant, Carroll G.; Benson, Vernon M.
1993-01-01
The automated fiber placement process has been in development at Hercules since 1980. Fiber placement is being developed specifically for aircraft and other high performance structural applications. Several major milestones have been achieved during process development. These milestones are discussed in this paper. The automated fiber placement process is currently being demonstrated on the NASA ACT program. All demonstration projects to date have focused on fiber placement of transport aircraft fuselage structures. Hercules has worked closely with Boeing and Douglas on these demonstration projects. This paper gives a description of demonstration projects and results achieved.
Fiber-optic strain gauge with attached ends and unattached microbend section
Weiss, J.D.
1992-07-21
A strain gauge is made of an optical fiber into which quasi-sinusoidal microbends have been permanently introduced. The permanent microbends cause a reduction in the fiber's optical transmission, but, when the gauge is attached to a substrate that is subsequently strained, the amplitude of the deformations will diminish and the optical transmission through the fiber will increase. An apparatus and process for manufacturing these microbends into the optical fiber through a heat-set process is employed; this apparatus and process includes a testing and calibration system. 5 figs.
Flame and acid resistant polymide fibers
NASA Technical Reports Server (NTRS)
Stringham, R. S.; Toy, M. S.
1977-01-01
Economical process improves flame resistance and resistance to acids of polyamide fibers, without modifying colors of mechanical properties. Process improves general safety of garments and other items made from polyamide fibers and makes them suitable for applications requiring exposure to oxygen-rich atmosphere or corrosive acids. Halo-olefins are added to surface of fibers by photoadditon in sealed chamber. Process could be used with films and other forms of polyamide.
Continuous Fiber Ceramic Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fareed, Ali; Craig, Phillip A.
2002-09-01
Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.
Flow-through pretreatment of lignocellulosic biomass with inorganic nanoporous membranes
Bhave, Ramesh R.; Lynd, Lee; Shao, Xiongjun
2018-04-03
A process for the pretreatment of lignocellulosic biomass is provided. The process generally includes flowing water through a pretreatment reactor containing a bed of particulate ligno-cellulosic biomass to produce a pressurized, high-temperature hydrolyzate exit stream, separating solubilized compounds from the hydrolyzate exit stream using an inorganic nanoporous membrane element, fractionating the retentate enriched in solubilized organic components and recycling the permeate to the pretreatment reactor. The pretreatment process provides solubilized organics in concentrated form for the subsequent conversion into biofuels and other chemicals.
The comparison of two methods to manufacture fused biconical tapered optical fiber coupler
NASA Astrophysics Data System (ADS)
Wang, Yue; Liu, Hairong
2009-08-01
Optical fiber coupler is a directional coupler which is crucial component for optical fiber communication systems. The fused biconical taper is the most important method in facture of optical fiber coupler, with many advantages of low excess loss, precise coupling ratio, good consistency and stability. In this paper we have introduced a new method to manufacture optical fiber coupler. And more over the new manufacture process has been compared with the traditional manufacture method. In the traditional crafts, two optical fibers are parallel placed, and then use the method of tie a knot of the two optical fibers. In the new process, a new program of fiber placement is introduced. Two optical fibers are parallel placed in the middle of the fixture, and then in order to make the bare part of the optical fiber close as much as possible, the new plan using high temperature resistant material bind the both end of the fiber which are not removing the cladding. After many contrast tests, we can see that adopt the improved method of fiber placement, during the process of fiber pulling, the variation of optical power in the directional arm and the coupler arm are more smooth and steady. But the excess loss (EL) generated in the process of pulling is a bit higher than the traditional method of tie a knot. The tests show that the new method of optical fiber placement is feasible in the actual projects for the manufacture of coupler with low coupling ratio, but for the control of the EL still need further studying.
Material processing with fiber based ultrafast pulse delivery
NASA Astrophysics Data System (ADS)
Baumbach, S.; Stockburger, R.; Führa, B.; Zoller, S.; Thum, S.; Moosmann, J.; Maier, D.; Kanal, F.; Russ, S.; Kaiser, E.; Budnicki, A.; Sutter, D. H.; Pricking, S.; Killi, A.
2018-02-01
We report on TRUMPF's ultrafast laser systems equipped with industrialized hollow core fiber laser light cables. Beam guidance in general by means of optical fibers, e.g. for multi kilowatt cw laser systems, has become an integral part of laser-based material processing. One advantage of fiber delivery, among others, is the mechanical separation between laser and processing head. An equally important benefit is given by the fact that the fiber end acts as an opto-mechanical fix-point close to successive optical elements in the processing head. Components like lenses, diffractive optical elements etc. can thus be designed towards higher efficiency which results in better material processing. These aspects gain increasing significance when the laser system operates in fundamental mode which is usually the case for ultrafast lasers. Through the last years beam guidance of ultrafast laser pulses by means of hollow core fiber technology established very rapidly. The combination of TRUMPF's long-term stable ultrafast laser sources, passive fiber coupling, connector and packaging forms a flexible and powerful system for laser based material processing well suited for an industrial environment. In this article we demonstrate common material processing applications with ultrafast lasers realized with TRUMPF's hollow core fiber delivery. The experimental results are contrasted and evaluated against conventional free space propagation in order to illustrate the performance of flexible ultrafast beam delivery.
Arsenic (+3 Oxidation State) Methyltransferase and the Methylation of Arsenicals
Thomas, David J.; Li, Jiaxin; Waters, Stephen B.; Xing, Weibing; Adair, Blakely M.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav
2008-01-01
Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono-, di-, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification process. Intermediates and products formed in this pathway may be more reactive and toxic than inorganic arsenic. Like all metabolic pathways, understanding the pathway for arsenic methylation involves identification of each individual step in the process and the characterization of the molecules which participate in each step. Among several arsenic methyltransferases that have been identified, arsenic (+3 oxidation state) methyltransferase is the one best characterized at the genetic and functional levels. This review focuses on phylogenetic relationships in the deuterostomal lineage for this enzyme and on the relation between genotype for arsenic (+3 oxidation state) methyltransferase and phenotype for conversion of inorganic arsenic to methylated metabolites. Two conceptual models for function of arsenic (+3 oxidation state) methyltransferase which posit different roles for cellular reductants in the conversion of inorganic arsenic to methylated metabolites are compared. Although each model accurately represents some aspects of enzyme’s role in the pathway for arsenic methylation, neither model is a fully satisfactory representation of all the steps in this metabolic pathway. Additional information on the structure and function of the enzyme will be needed to develop a more comprehensive model for this pathway. PMID:17202581
NASA Technical Reports Server (NTRS)
Seidenberg, Benjamin (Inventor); Swanson, Theodore (Inventor)
1989-01-01
A wick for use in a capillary loop pump heat pipe is disclosed. The wick material is an essentially uniformly porous, permeable, open-cell, silicon dioxide/aluminum oxide inorganic ceramic foam having a silica fiber ratio, by weight, of about 78 to 22, respectively, a density of 6 lbs/cu ft, and an average pore size of less than 5 microns. A representative material having these characteristics is Lockheed Missile and Space Company, Inc.'s HTP 6-22. This material is fully compatible with the freons and anhydrous ammonia and allows for the use of these very efficient working fluids, and others, in capillary loops.
Rotating cathode device for molten salt bath
NASA Astrophysics Data System (ADS)
1983-11-01
The invention relates to a rotating cathode device for molten salt baths used to prepare metallic titanium or aluminum and the like by electrolysis of molten salts. The rotating cathode device is described. It is a cyclindrical cathode mounted on a rotating spindle, made of a lightweight material and mounted in such a way as to avoid thermal strain between the rotational shaft and the cylindrical cathode. At least one of the upper and lower ends of the cylindrical cathode are closed by a cap and a seal consisting of an inorganic fiber composite in the area between the cap and the cathode.
Development program to produce mullite fiber insulation
NASA Technical Reports Server (NTRS)
Long, W. G.
1975-01-01
Processing methods were utilized to form a mullite fiber-Kaowool felt. The formation of a blended felt using the Rotoformer wet-laying method was successful. Felt products were evaluated for tensile strength, thermal stability, thermal conductivity and structural integrity at 1259 C and 1371 C. Textile processing methods failed in an attempt to form a yarn from staple and multifilament mullite fiber due to fiber damage through mechanical handling. The refractoriness of pure Kaowool ceramic fiber is improved with additions of 30% or greater mullite fiber.
Engineering nanomaterials with a combined electrochemical and molecular biomimetic approach
NASA Astrophysics Data System (ADS)
Dai, Haixia
Biocomposite materials, such as bones, teeth, and shells, are created using mild aqueous solution-based processes near room temperature. Proteins add flexibility to these processes by facilitating the nucleation, growth, and ordering of specific inorganic materials into hierarchical structures. We aim to develop a biomimetic strategy for engineering technologically relevant inorganic materials with controlled compositions and structures, as Nature does, using proteins to orchestrate material formation and assembly. This approach involves three basic steps: (i) preparation of inorganic substrates compatible with combinatorial polypeptide screening; (ii) identification of inorganic-binding polypeptides and their engineering into inorganic-binding proteins; and (iii) protein-mediated inorganic nucleation and organization. Cuprous oxide (Cu2O), a p-type semiconductor, has been used to demonstrate all three steps. Zinc oxide (ZnO), an n-type semiconductor, has been used to show the generality of selected steps. Step (i), preparation of high quality inorganic substrates to select inorganic-binding polypeptides, was accomplished using electrochemical microfabrication to grow and pattern Cu2O and ZnO. Raman spectroscopy and x-ray photoelectron spectroscopy were used to verify phase purity and compositional stability of these surfaces during polypeptide screening. Step (ii), accomplished in collaboration with personnel in Prof Baneyx' lab at the University of Washington, involved incubating the inorganic substrates with the FliTrx(TM) random peptide library to identify cysteine-constrained dodecapeptides that bind the targeted inorganic. Insertion of a Cu2O-binding dodecapeptide into the DNA-binding protein TraI endowed the engineered TraI with strong affinity for Cu2O (Kd ≈ 10 -8 M). Finally, step (iii) involved nonequilibrium synthesis and organization of Cu2O nanoparticles, taking advantage of the inorganic and DNA recognition properties of the engineered TraI. The high affinity of the engineered TraI for Cu2O over other related copper compounds led to the formation of Cu2O nanoparticles from a cuprous chloride complex (Cu2Cln1-n, n = 2 or 3) electrolyte under conditions where the mineral atacamite (CuCl(OH) 3) is thermodynamically preferred. The nonequilibrium Cu 2O nanoparticles consisted of 2--3 nm Cu2O cores and functional protein shells that enabled predictable meso-scale assembly on DNA templates. In short, we have rationally designed a protein-based scheme for forming and organizing inorganic materials that Nature has not previous worked with.
Rose, Devin J; DeMeo, Mark T; Keshavarzian, Ali; Hamaker, Bruce R
2007-02-01
The benefits of dietary fiber on inflammatory bowel disease may be related to the fermentative production of butyrate in the colon, which appears to decrease the inflammatory response. The benefits of dietary fiber against colon cancer may be related to both fermentative and non-fermentative processes, although poorly fermentable fibers appear more influential. Dietary fiber fermentation profiles are important in determining optimal fibers for colonic health, and may be a function of structure, processing conditions, and other food components. A greater understanding of the relationships between fermentation rate and dietary fiber structure would allow for development of dietary fibers for optimum colonic health.
Lead and compounds (inorganic)
Integrated Risk Information System (IRIS)
Lead and compounds ( inorganic ) ; CASRN 7439 - 92 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for
ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE AND THE METHYLATION OF ARSENICALS
Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono, di, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification...
MONITORED NATURAL ATTENUATION FOR INORGANIC CONTAMINANT REMEDIATION IN GROUND WATER: MNA MECHANISMS
This presentation discusses the various mechanisms that are recognized to result in the attenuation of inorganic contaminants in ground water. The presentation will provide details on the contaminant sequestration processes that occur at the mineral-water interface.
EVALUATING MONITORED NATURAL ATTENUATION FOR RADIONUCLIDE AND INORGANIC CONTAMINANTS IN GROUNDWATER
Monitored Natural Attenuation (MNA) for inorganic contaminants is dependent on naturally occurring processes in the subsurface that act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of contaminants. EPA is developing a technical refer...
Decreasing diameter fluctuation of polymer optical fiber with optimized drawing conditions
NASA Astrophysics Data System (ADS)
Çetinkaya, Onur; Wojcik, Grzegorz; Mergo, Pawel
2018-05-01
The diameter fluctuations of poly(methyl methacrylate) based polymer optical fibers, during drawing processes, have been comprehensively studied. In this study, several drawing parameters were selected for investigation; such as drawing tensions, preform diameters, preform feeding speeds, and argon flows. Varied drawing tensions were used to draw fibers, while other parameters were maintained at constant. At a later stage in the process, micro-structured polymer optical fibers were drawn under optimized drawing conditions. Fiber diameter deviations were reduced to 2.2%, when a 0.2 N drawing tension was employed during the drawing process. Higher drawing tensions led to higher diameter fluctuations. The Young’s modulus of fibers drawn with different tensions was also measured. Our results showed that fiber elasticity increased as drawing tensions decreased. The inhomogeneity of fibers was also determined by comparing the deviation of Young’s modulus.
Yen, Feng-Chi; You, Sheng-Jie; Chang, Tien-Chin
2017-02-01
Wastewater reclamation is considered an absolute necessity in Taiwan, as numerous industrial parks experience water shortage. However, the water quality of secondary treated effluents from sewage treatment plants generally does not meet the requirements of industrial water use because of the high inorganic constituents. This paper reports experimental data from a pilot-plant study of two treatment processes-(i) fiber filtration (FF)-ultrafiltration (UF)-reverse osmosis (RO) and (ii) sand filtration (SF)-electrodialysis reversal (EDR)-for treating industrial high conductivity effluents from the Xianxi wastewater treatment plant in Taiwan. The results demonstrated that FF-UF was excellent for turbidity removal and it was a suitable pretreatment process for RO. The influence of two membrane materials on the operating characteristics and process stability of the UF process was determined. The treatment performance of FF-UF-RO was higher than that of SF-EDR with an average desalination rate of 97%, a permeate conductivity of 272.7 ± 32.0, turbidity of 0.183 ± 0.02 NTU and a chemical oxigen demand of <4.5 mg/L. The cost analysis for both processes in a water reclamation plant of 4000 m 3 /d capacity revealed that using FF-UF-RO had a lower treatment cost than using SF-EDR, which required activated carbon filtration as a post treatment process. On the basis of the results in this study, the FF-UF-RO system is recommended as a potential process for additional applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tenne, Reshef; Rao, C N R
2004-10-15
Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS(2), will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous other inorganic nanotubes has been reported in recent years. Various techniques for the synthesis of inorganic nanotubes, including high-temperature reactions and strategies based on 'chemie douce' (soft chemistry, i.e. low-temperature) processes, are described. First-principle, density functional theory based calculations are able to provide substantial information on the structure and properties of such nanotubes. Various properties of inorganic nanotubes, including mechanical, electronic and optical properties, are described in brief. Some potential applications of the nanotubes in tribology, protection against impact, (photo)catalysis, batteries, etc., are discussed.
Park, J H; Brown, R L; Park, C R; McCully, K; Cohn, M; Haselgrove, J; Chance, B
1987-01-01
Quantitative probing of heterogeneous regions in muscle is feasible with phosphorus-31 magnetic resonance spectroscopy because of the differentiation of metabolic patterns of glycolytic and oxidative fibers. A differential recruitment of oxidative and glycolytic fibers during exercise was demonstrated in 4 of 10 untrained young men by following changes in phosphate metabolites. Concentrations of inorganic phosphate (Pi), phosphocreatine, and ATP were estimated in the wrist flexor muscles of the forearm at rest, during two cycles of three grades of exercise, and in recovery. At high work levels (40% of maximum strength), two distinct Pi peaks were observed and identified with Pi pools at pH 6.9 and pH 5.9-6.4, respectively. These could be accounted for as follows. At the lowest level of work (using 20% of maximum strength), early recruitment primarily of oxidative (type I) and possibly some intermediate (type IIA) muscle fibers occurs with relatively little net lactate production and consequently little decrease in pH. At higher work loads, however, primarily glycolytic (type IIB) muscle fibers are recruited, which have relatively high net lactate production and therefore generate a second pool of Pi at low pH. ATP depletion (35-54%) and Pi losses accompanied the reduction in ability to perform during the first exercise cycle. When the cycle of graded exercise was repeated immediately, the total Pi remained high but gave rise to only one peak at pH 6.8-7.0. These observations indicated exhaustion of glycolytic type IIB fibers, removal of lactate by high local blood flow, and sustained contractions largely by oxidative type I and IIA fibers. A functional differentiation of fiber types could also be demonstrated during recovery if exercise was stopped while two pools of Pi were still apparent. In the first 3 min of recovery, the Pi peak at pH 6.8-6.9 disappeared almost entirely, whereas the Pi peak at pH 6.0 remained unaltered, reflecting the faster recovery of oxidative type I fibers. The potential of magnetic resonance spectroscopy to characterize oxidative and glycolytic fibers, predict capacity for aerobic performance, and signal the presence of muscle pathology is discussed. PMID:3480522
Processing and characterization of polycrystalline YAG (Yttrium Aluminum Garnet) core-clad fibers
NASA Astrophysics Data System (ADS)
Kim, Hyun Jun; Fair, Geoff E.; Potticary, Santeri A.; O'Malley, Matthew J.; Usechak, Nicholas G.
2014-06-01
Polycrystalline YAG fiber has recently attracted considerable attention for the role it could play as a fiber-laser gain media. This primarily due to its large surface-to-volume ratio, high stimulated Brillouin scattering threshold, and its high thermal conductivity; all of which are superior to that of silica-glass fibers. As a consequence, techniques which enable the fabrication of poly- and single-crystalline YAG fibers have recently been the focus of a number of efforts. In this work we have endeavored to reduce the scattering loss of polycrystalline-YAG-core fibers while simultaneously demonstrating optical gain by enhancing our processing techniques using feedback from mechanical testing and through the development of a technique to encase doped YAG-core fibers with un-doped YAG claddings. To this end we have recently fabricated fibers with both core and claddings made up of polycrystalline YAG and subsequently confirmed that they indeed guide light. In this paper, the processes leading to the fabrication of these fibers will be discussed along with their characterization.
The development of an alternative thermoplastic powder prepregging technique
NASA Technical Reports Server (NTRS)
Ogden, A. L.; Hyer, M. W.; Wilkes, G. L.; Loos, A. C.
1992-01-01
An alternative powder prepregging technique is discussed that is based on the deposition of powder onto carbon fibers that have been moistened using an ultrasonic humidifier. The dry fiber tow is initially spread to allow a greater amount of the fiber surface to be exposed to the powder, thus ensuring a significant amount of intimate contact between the fiber and the matrix. Moisture in the form of ultrafine water droplets is then deposited onto the spread fiber tow. The moisture promotes adhesion to the fiber until the powder can be tacked to the fibers by melting. Powdered resin is then sieved onto the fibers and then tacked onto the fibers by quick heating in a convective oven. This study focuses on the production of prepregs and laminates made with LaRC-TPI (thermoplastic polyimide) using this process. Although the process appears to be successful, early evaluation was hampered by poor interfacial adhesion. The adhesion problem, however, seems to be the result of a material system incompatibility, rather than being influenced by the process.
NASA Astrophysics Data System (ADS)
Walter, Juergen; Brodesser, Alexander; Hustedt, Michael; Bluemel, Sven; Jaeschke, Peter; Kaierle, Stefan
Cutting and ablation using short-pulsed laser radiation are promising technologies to produce or repair CFRP components with outstanding mechanical properties e.g. for automotive and aircraft industry. Using sophisticated laser processing strategies and avoiding excessive heating of the workpiece, a high processing quality can be achieved. However, the interaction of laser radiation and composite material causes a notable release of hazardous substances from the process zone, amongst others carbon fiber segments or fibrous particles. In this work, amounts and geometries of the released fiber segments are analyzed and discussed in terms of their hazardous potential. Moreover, it is investigated to what extent gaseous organic process emissions are adsorbed at the fiber segments, similar to an adsorption of volatile organic compounds at activated carbon, which is typically used as filter material.
Daguerre-Martini, S; Vanotti, M B; Rodriguez-Pastor, M; Rosal, A; Moral, R
2018-06-15
Gas-permeable membranes coupled with low-rate aeration is useful to recover ammonia (NH 4 + ) from livestock effluents. In this study, the role of inorganic carbon (bicarbonate, HCO 3 - ) to enhance the N recovery process was evaluated using synthetic effluents with various NH 4 + to HCO 3 - molar ratios of 0.5, 1.0, 1.5 and 2.0. The study also evaluated the effect of increased organic matter on the NH 4 + recovery using humic acids (3000-6000 mg L -1 ), and the N recovery from high-strength swine manure. The release of hydroxide from the HCO 3 - with aeration increased the wastewater pH and promoted gaseous ammonia formation and membrane uptake. At the same time, the recovery of gaseous ammonia (NH 3 ) through the membrane acidified the wastewater. Therefore, an abundant inorganic carbon supply in balance with the NH 4 + is needed for a successful operation of the technology. NH 4 + removal efficiencies >96% were obtained with NH 4 + to HCO 3 - ratios ≤1. However, higher molar ratios inhibited the N recovery process resulting in lower efficiencies (<65%). Fortunately, most swine manures contain ample supply of endogenous inorganic carbon and the process can be used to more economically recover the ammonia using the natural inorganic carbon instead of expensive alkali chemicals. In 4 days, the recovered NH 4 + from swine manure contained 48,000 mg L -1 . Finally, it was found the process was not inhibited by the increasing levels of organic matter in the wastewater evaluated. Published by Elsevier Ltd.
Innovative Approach for High Strength, High Thermal Conductive Composite Materials: Data Base
2013-11-01
pitch fiber types, from which we were able to down select K6356U pitch fiber with balanced TC and strength properties. A prepreg processing line was...Creating a robust prepreg processing line to infuse unidirectional pitch fiber tape that can be used with other fibers…Pan-based carbon or glass...pitch fiber composites • Compression molding process outperforms autoclaving in mechanical and thermal properties using the same prepreg material and
Hu, Hongqiang; Westover, Tyler L.; Cherry, Robert; ...
2016-10-03
Inorganic species (ash) in biomass feedstocks negatively impact thermochemical and biochemical energy conversion processes. In this work, a process simulation model is developed to model the reduction in ash content of loblolly logging residues using a combination of air classification and dilute-acid leaching. Various scenarios are considered, and it is found that costs associated with discarding high-ash material from air classification are substantial. The costs of material loss can be reduced by chemical leaching the high-ash fraction obtained from air classification. The optimal leaching condition is found to be approximately 0.1 wt% sulfuric acid at 24°C. In example scenarios, totalmore » process costs in the range of $10-12/dry tonnes of product are projected that result in a removal of 11, 66, 53 and 86% of organics, total ash (inorganics), alkaline earth metals and phosphorus (AAEMS+P), and silicon, respectively. Here, sensitivity analyses indicate that costs associated with loss of organic material during processing (yield losses), brine disposal, and labor have the greatest potential to impact the total processing cost.« less
Energy storage options for space power
NASA Astrophysics Data System (ADS)
Hoffman, H. W.; Martin, J. F.; Olszewski, M.
Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels are assessed; the results obtained suggest that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 kJ/kg to 2000 kJ/kg at temperatures to 1675 K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (about 500 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.
Fiberglass Grids as Sustainable Reinforcement of Historic Masonry
Righetti, Luca; Edmondson, Vikki; Corradi, Marco; Borri, Antonio
2016-01-01
Fiber-reinforced composite (FRP) materials have gained an increasing success, mostly for strengthening, retrofitting and repair of existing historic masonry structures and may cause a significant enhancement of the mechanical properties of the reinforced members. This article summarizes the results of previous experimental activities aimed at investigating the effectiveness of GFRP (Glass Fiber Reinforced Polymers) grids embedded into an inorganic mortar to reinforce historic masonry. The paper also presents innovative results on the relationship between the durability and the governing material properties of GFRP grids. Measurements of the tensile strength were made using specimens cut off from GFRP grids before and after ageing in aqueous solution. The tensile strength of a commercially available GFRP grid has been tested after up 450 days of storage in deionized water and NaCl solution. A degradation in tensile strength and Young’s modulus up to 30.2% and 13.2% was recorded, respectively. This degradation indicated that extended storage in a wet environment may cause a decrease in the mechanical properties. PMID:28773725
Fiberglass Grids as Sustainable Reinforcement of Historic Masonry.
Righetti, Luca; Edmondson, Vikki; Corradi, Marco; Borri, Antonio
2016-07-21
Fiber-reinforced composite (FRP) materials have gained an increasing success, mostly for strengthening, retrofitting and repair of existing historic masonry structures and may cause a significant enhancement of the mechanical properties of the reinforced members. This article summarizes the results of previous experimental activities aimed at investigating the effectiveness of GFRP (Glass Fiber Reinforced Polymers) grids embedded into an inorganic mortar to reinforce historic masonry. The paper also presents innovative results on the relationship between the durability and the governing material properties of GFRP grids. Measurements of the tensile strength were made using specimens cut off from GFRP grids before and after ageing in aqueous solution. The tensile strength of a commercially available GFRP grid has been tested after up 450 days of storage in deionized water and NaCl solution. A degradation in tensile strength and Young's modulus up to 30.2% and 13.2% was recorded, respectively. This degradation indicated that extended storage in a wet environment may cause a decrease in the mechanical properties.
Galan-Marin, Carmen; Rivera-Gomez, Carlos; Garcia-Martinez, Antonio
2016-06-13
During the last decades natural polymers have become more and more frequent to replace traditional inorganic stabilizers in building materials. The purpose of this research is to establish a comparison between the most conventional building material solutions for load-bearing walls and a type of biomaterial. This comparison will focus on load-bearing walls as used in a widespread type of twentieth century dwelling construction in Europe and still used in developing countries nowadays. To carry out this analysis, the structural and thermal insulation characteristics of different construction solutions are balanced. The tool used for this evaluation is the life cycle assessment throughout the whole lifespan of these buildings. This research aims to examine the environmental performance of each material assessed: fired clay brick masonry walls (BW), concrete block masonry walls (CW), and stabilized soil block masonry walls (SW) stabilized with natural fibers and alginates. These conventional and new materials are evaluated from the point of view of both operational and embodied energy.
Galan-Marin, Carmen; Rivera-Gomez, Carlos; Garcia-Martinez, Antonio
2016-01-01
During the last decades natural polymers have become more and more frequent to replace traditional inorganic stabilizers in building materials. The purpose of this research is to establish a comparison between the most conventional building material solutions for load-bearing walls and a type of biomaterial. This comparison will focus on load-bearing walls as used in a widespread type of twentieth century dwelling construction in Europe and still used in developing countries nowadays. To carry out this analysis, the structural and thermal insulation characteristics of different construction solutions are balanced. The tool used for this evaluation is the life cycle assessment throughout the whole lifespan of these buildings. This research aims to examine the environmental performance of each material assessed: fired clay brick masonry walls (BW), concrete block masonry walls (CW), and stabilized soil block masonry walls (SW) stabilized with natural fibers and alginates. These conventional and new materials are evaluated from the point of view of both operational and embodied energy. PMID:28773586
Fabrication and Properties of Carbon Fibers
Huang, Xiaosong
2009-01-01
This paper reviews the research and development activities conducted over the past few decades on carbon fibers. The two most important precursors in the carbon fiber industry are polyacrylonitrile (PAN) and mesophase pitch (MP). The structure and composition of the precursor affect the properties of the resultant carbon fibers significantly. Although the essential processes for carbon fiber production are similar, different precursors require different processing conditions in order to achieve improved performance. The research efforts on process optimization are discussed in this review. The review also attempts to cover the research on other precursor materials developed mainly for the purpose of cost reduction.
The separation and recovery of VOCs from surfactant-containing aqueous solutions by a composite hollow fiber membrane-based pervaporation process has been studied. The process employed hydrophobic microporous polypropylene hollow fibers having a thin plasma polymerized silicon...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rantanen, Mika K.; Lehtiö, Lari; Rajagopal, Lakshmi
Two S. agalactiae proteins, the inorganic pyrophosphatase and the serine/threonine phosphatase, were crystallized and diffraction data were collected and processed from these crystals. The data from the two protein crystals extended to 2.80 and 2.65 Å, respectively. Streptococcus agalactiae, which infects human neonates and causes sepsis and meningitis, has recently been shown to possess a eukaryotic-like serine/threonine protein phosphorylation signalling cascade. Through their target proteins, the S. agalactiae Ser/Thr kinase and Ser/Thr phosphatase together control the growth as well as the morphology and virulence of this organism. One of the targets is the S. agalactiae family II inorganic pyrophosphatase. Themore » inorganic pyrophosphatase and the serine/threonine phosphatase have therefore been purified and crystallized and diffraction data have been collected from their crystals. The data were processed using XDS. The inorganic pyrosphosphatase crystals diffracted to 2.80 Å and the Ser/Thr phosphatase crystals to 2.65 Å. Initial structure-solution experiments indicate that structure solution will be successful in both cases. Solving the structure of the proteins involved in this cascade is the first step towards understanding this phenomenon in atomic detail.« less
Lemloh, Marie-Louise; Altintoprak, Klara; Wege, Christina; Weiss, Ingrid M; Rothenstein, Dirk
2017-01-28
Proteins regulate diverse biological processes by the specific interaction with, e.g., nucleic acids, proteins and inorganic molecules. The generation of inorganic hybrid materials, such as shell formation in mollusks, is a protein-controlled mineralization process. Moreover, inorganic-binding peptides are attractive for the bioinspired mineralization of non-natural inorganic functional materials for technical applications. However, it is still challenging to identify mineral-binding peptide motifs from biological systems as well as for technical systems. Here, three complementary approaches were combined to analyze protein motifs consisting of alternating positively and negatively charged amino acids: (i) the screening of natural biomineralization proteins; (ii) the selection of inorganic-binding peptides derived from phage display; and (iii) the mineralization of tobacco mosaic virus (TMV)-based templates. A respective peptide motif displayed on the TMV surface had a major impact on the SiO₂ mineralization. In addition, similar motifs were found in zinc oxide- and zirconia-binding peptides indicating a general binding feature. The comparative analysis presented here raises new questions regarding whether or not there is a common design principle based on acidic and basic amino acids for peptides interacting with minerals.
Khazaeinezhad, Reza; Hosseinzadeh Kassani, Sahar; Paulson, Bjorn; Jeong, Hwanseong; Gwak, Jiyoon; Rotermund, Fabian; Yeom, Dong-Il; Oh, Kyunghwan
2017-01-01
A new extraordinary application of deoxyribonucleic acid (DNA) thin-solid-film was experimentally explored in the field of ultrafast nonlinear photonics. Optical transmission was investigated in both linear and nonlinear regimes for two types of DNA thin-solid-films made from DNA in aqueous solution and DNA-cetyltrimethylammonium chloride (CTMA) in an organic solvent. Z-scan measurements revealed a high third-order nonlinearity with n2 exceeding 10−9 at a wavelength of 1570 nm, for a nonlinarity about five orders of magnitude larger than that of silica. We also demonstrated ultrafast saturable absorption (SA) with a modulation depth of 0.43%. DNA thin solid films were successfully deposited on a side-polished optical fiber, providing an efficient evanescent wave interaction. We built an organic-inorganic hybrid all-fiber ring laser using DNA film as an ultrafast SA and using Erbium-doped fiber as an efficient optical gain medium. Stable transform-limited femtosecond soliton pulses were generated with full width half maxima of 417 fs for DNA and 323 fs for DNA-CTMA thin-solid-film SAs. The average output power was 4.20 mW for DNA and 5.46 mW for DNA-CTMA. Detailed conditions for DNA solid film preparation, dispersion control in the laser cavity and subsequent characteristics of soliton pulses are discussed, to confirm unique nonlinear optical applications of DNA thin-solid-film. PMID:28128340
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duff, M; Keisha Martin, K; S Crump, S
2007-03-23
The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating highly radioactive fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of FD residue from radionuclide metals involves using solid phase microextraction (SPME) fibers to remove the residues of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most (radioactive) metals. The focus of this research was to develop an examination protocol that was applicable to safe work inmore » facilities where high radiation doses are shielded from the workers (as in radioactive shielded cells or ''hot cells''). We also examined the affinity of stable radionuclide surrogate metals (Co, Ir, Re, Ni, Ba, Cs, Nb, Zr and Nd) for sorption by the SPME fibers. This was done under exposure conditions that favor the uptake of FD residues under conditions that will provide little contact between the SPME and the FD material (such as charred carpet or wood that contains commonly-used accelerants). Our results from mass spectrometric analyses indicate that SPME fibers show promise for use in the room temperature head space uptake of organic FD residue (namely, diesel fuel oil, kerosene, gasoline and paint thinner) with subsequent analysis by gas chromatography (GC) with mass spectrometric (MS) detection. No inorganic forms of ignitable fluids were included in this study.« less
Abbasi, Vajihe; Sarafraz-Yazdi, Ali; Amiri, Amirhassan; Vatani, Hossein
2016-01-01
A headspace solid-phase microextraction (HS-SPME) method was developed for isolation of monocyclic aromatic amines from water samples followed by gas chromatography–flame ionization detector (GC–FID). In this work, the effect of the presence of ionic liquid (namely, 1-hexyl-3-methyl-imidazolium hexafluorophosphate [C6MIM][PF6]) was investigated in the sol–gel coating solutions on the morphology and extraction behavior of the resulting hybrid organic–inorganic sol–gel sorbents utilized in SPME. Hydroxy-terminated poly(dimethylsiloxane) (PDMS) was used as the sol–gel active organic component for sol–gel hybrid coatings. Two different coated fibers that were prepared are PDMS and PDMS-IL ([C6MIM][PF6]) fibers. Under the optimal conditions, the method detection limits (S/N = 3) with PDMS-IL were in the range of 0.001–0.1 ng/mL and the limits of quantification (S/N = 10) between 0.005 and 0.5 ng/mL. The relative standard deviations for one fiber (n = 5) were obtained from 3.1 up to 8.5% and between fibers or batch to batch (n = 3) in the range of 5.3–10.1%. The developed method was successfully applied to real water and juice fruits samples while the relative recovery percentages obtained for the spiked water samples at 0.1 ng/mL were from 83.3 to 95.0%. PMID:26759488
NASA Astrophysics Data System (ADS)
Drossel, Welf-Guntram; Schubert, Andreas; Putz, Matthias; Koriath, Hans-Joachim; Wittstock, Volker; Hensel, Sebastian; Pierer, Alexander; Müller, Benedikt; Schmidt, Marek
2018-01-01
The technique joining by forming allows the structural integration of piezoceramic fibers into locally microstructured metal sheets without any elastic interlayers. A high-volume production of the joining partners causes in statistical deviations from the nominal dimensions. A numerical simulation on geometric process sensitivity shows that the deviations have a high significant influence on the resulting fiber stresses after the joining by forming operation and demonstrate the necessity of a monitoring concept. On this basis, the electromechanical behavior of piezoceramic array transducers is investigated experimentally before, during and after the joining process. The piezoceramic array transducer consists of an arrangement of five electrical interconnected piezoceramic fibers. The findings show that the impedance spectrum depends on the fiber stresses and can be used for in-process monitoring during the joining process. Based on the impedance values the preload state of the interconnected piezoceramic fibers can be specifically controlled and a fiber overload.
Processing and characterization of natural cellulose fibers/thermoset polymer composites.
Thakur, Vijay Kumar; Thakur, Manju Kumari
2014-08-30
Recently natural cellulose fibers from different biorenewable resources have attracted the considerable attraction of research community all around the globe owing to their unique intrinsic properties such as biodegradability, easy availability, environmental friendliness, flexibility, easy processing and impressive physico-mechanical properties. Natural cellulose fibers based materials are finding their applications in a number of fields ranging from automotive to biomedical. Natural cellulose fibers have been frequently used as the reinforcement component in polymers to add the specific properties in the final product. A variety of cellulose fibers based polymer composite materials have been developed using various synthetic strategies. Seeing the immense advantages of cellulose fibers, in this article we discuss the processing of biorenewable natural cellulose fibers; chemical functionalization of cellulose fibers; synthesis of polymer resins; different strategies to prepare cellulose based green polymer composites, and diverse applications of natural cellulose fibers/polymer composite materials. The article provides an in depth analysis and comprehensive knowledge to the beginners in the field of natural cellulose fibers/polymer composites. The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fabricating and Characterizing Physical Properties of Electrospun Polypeptide-based Nanofibers
NASA Astrophysics Data System (ADS)
Khadka, Dhan Bahadur
This dissertation has aimed to fabricate polypeptide based biomaterial and characterize physical properties. Electrospinning is used as a tool for the sample fabrication. Project focused on determining the feasibility of electrospinning of certain synthetic polypeptides and certain elastin-like peptides from aqueous feedstocks and to characterize physical properties of polymer aqueous solution, cast film and spun fibers and fiber mats. The research involves peptide design, polymer electrospinning, fibers crosslinking, determining the extent of crosslinking, fibers protease degradation study, fibers stability and self-organization analysis, structure and composition determination by various spectroscopy and microscopy techniques and characterization of mechanical properties of individual suspended fibers. Fiber mats of a synthetic cationic polypeptide poly(L-ornithine) (PLO) and an anionic co-polypeptide of L-glutamic acid and L-tyrosine (PLEY) of defined composition have been produced by electrospinning. Fibers were obtained from polymer aqueous solution at concentrations of 20-45% (w/v) in PLO and at concentrations of 20-60% (w/v) in PLEY. Applied voltage and spinneret-collector distance were also found to influence polymer spinnability and fibers morphology. Oriented fibers were obtained by parallel electrodes geometry. Fiber diameter and morphology was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). PLO fibers exposed on glutaraldehyde (GTA) vapor rendered fiber mats water-insoluble. A common chemical reagent, carbodiimide was used to crosslink PLEY fibers. Fiber solubility in aqueous solution varied as a function of crosslinking time and crosslinker concentration. Crosslink density has been quantified by a visible-wavelength dye-based method. Degradation of crosslinked fibers by different proteases has been demonstrated. Investigation of crosslinked PLEY fibers has provided insight into the mechanisms of stability at different pH values. Variations in fiber morphology, elemental composition and stability have been studied by microscopy and energy-dispersive X-ray spectroscopy (EDX), following the treatment of samples at different pH values in the 2-12 range. Fiber stability has been interpreted with reference to the pH dependence of the UV absorbance and fluorescence of PLEY chains in solution. The data show that fiber stability is crucially dependent on the extent of side chain ionization, even after crosslinking. Self-organization kinetics of electrospun PLO and PLEY fibers during solvent annealing has been studied. After being crosslinked in situ , fibers were annealed in water at 22 °C. Analysis by Fourier transform infrared spectroscopy (FTIR) has revealed that annealing involved fiber restructuring with an overall time constant of 29 min for PLO and 63 min for PLEY, and that changes in the distribution of polymer conformations occurred during the first 13 min of annealing. There was a substantial decrease in the amount of Na+ bound to PLEY fibers during annealing. Kinetic modeling has indicated that two parallel pathways better account for the annealing trajectory than a single pathway with multiple transition states. Taken together, the results will advance the rational design of polypeptides for peptide-based materials, especially materials prepared by electrospinning. It is believed that this research will increase basic knowledge of polymer electrospinning and advance the development of electrospun materials, especially in medicine and biotechnology. The study has yielded two advances on previous work in the area: avoidance of an animal source of peptides and avoidance of inorganic solvent. The present results thus advance the growing field of peptide-based materials. Non-woven electrospun fiber mats made of polypeptides are increasingly considered attractive for basic research and technology development in biotechnology, medicine and other areas. (Abstract shortened by UMI.)
Experimental analysis of graphene nanocomposite on Kevlar
NASA Astrophysics Data System (ADS)
Manigandan, S.; Gunasekar, P.; Nithya, S.; Durga Revanth, G.; Anudeep, A. V. S. C.
2017-08-01
Graphene nanocomposite is a two dimensional structure which has intense role in material science. This paper investigates the topological property of the graphene nanocomposite doped in Kevlar fiber by direct mixing process. The Kevlar fiber by direct mixing process. The Kevlar fiber taken as the specimen which is fabricated by vacuum bag moulding process. Epoxy used as resin and HY951 as hardener. Three different specimens are fabricated based on the percentage of graphene nanocomposite 2%, 5%, 10% and 20% respectively. We witnessed the strength of the Kevlar fiber is increased when it is treated with nanocomposite. The percentage of the nanocomposite increase the strength of the fiber is increased. However as the nanocomposite beyond 5% the strength of fiber is dropped. In addition, we also seen the interfacial property of the fiber is dropped when the nanocomposite is added beyond threshold limit.
Kramer, D.P.
1994-08-09
Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.
Effect of Glass Fiber Incorporation on Flexural Properties of Experimental Composites
Fonseca, Rodrigo Borges; Marques, Aline Silva; Bernades, Karina de Oliveira; Carlo, Hugo Lemes; Naves, Lucas Zago
2014-01-01
This study evaluated the effect of fiber addiction in flexural properties of 30 wt% silica filled BisGMA resin (FR) or unfilled Bis-GMA (UR). Ten groups were created (N = 10) varying the resin (FR or UR) and quantity of glass fibers (wt%: 0, 10, 15, 20, and 30). Samples (10 × 2 × 1 mm) were submitted to flexural strength test following SEM examination. Data were analyzed by two-way ANOVA, Tukey, and Student t-test (α = 0.05). Results for flexural strength (MPa) were FR-groups: 0% (442.7 ± 140.6)C, 10% (772.8 ± 446.3)ABC, 15% (854.7 ± 297.3)AB, 20% (863.4 ± 418.0)A, 30% (459.5 ± 140.5)BC; UR-groups: 0% (187.7 ± 120.3)B, 10% (795.4 ± 688.1)B, 15% (1999.9 ± 1258.6)A, 20% (1911.5 ± 596.8)A, and 30% (2090.6 ± 656.7)A, and for flexural modulus (GPa) FR-groups: 0% (2065.63 ± 882.15)B, 10% (4479.06 ± 3019.82)AB, 15% (5694.89 ± 2790.3)A, 20% (6042.11 ± 3392.13)A, and 30% (2495.67 ± 1345.86)B; UR-groups: 0% (1090.08 ± 708.81)C, 10% (7032.13 ± 7864.53)BC, 15% (19331.57 ± 16759.12)AB, 20% (15726.03 ± 8035.09)AB, and 30% (29364.37 ± 13928.96)A. Fiber addiction in BisGMA resin increases flexural properties, and the interaction between resin and fibers seems better in the absence of inorganic fillers increasing flexural properties. PMID:25136595
Effect of glass fiber incorporation on flexural properties of experimental composites.
Fonseca, Rodrigo Borges; Marques, Aline Silva; Bernades, Karina de Oliveira; Carlo, Hugo Lemes; Naves, Lucas Zago
2014-01-01
This study evaluated the effect of fiber addiction in flexural properties of 30 wt% silica filled BisGMA resin (FR) or unfilled Bis-GMA (UR). Ten groups were created (N = 10) varying the resin (FR or UR) and quantity of glass fibers (wt%: 0, 10, 15, 20, and 30). Samples (10 × 2 × 1 mm) were submitted to flexural strength test following SEM examination. Data were analyzed by two-way ANOVA, Tukey, and Student t-test (α = 0.05). Results for flexural strength (MPa) were FR-groups: 0% (442.7 ± 140.6)(C), 10% (772.8 ± 446.3)(ABC), 15% (854.7 ± 297.3)(AB), 20% (863.4 ± 418.0)(A), 30% (459.5 ± 140.5)(BC); UR-groups: 0% (187.7 ± 120.3)(B), 10% (795.4 ± 688.1)(B), 15% (1999.9 ± 1258.6)(A), 20% (1911.5 ± 596.8)(A), and 30% (2090.6 ± 656.7)(A), and for flexural modulus (GPa) FR-groups: 0% (2065.63 ± 882.15)(B), 10% (4479.06 ± 3019.82)(AB), 15% (5694.89 ± 2790.3)(A), 20% (6042.11 ± 3392.13)(A), and 30% (2495.67 ± 1345.86)(B); UR-groups: 0% (1090.08 ± 708.81)(C), 10% (7032.13 ± 7864.53)(BC), 15% (19331.57 ± 16759.12)(AB), 20% (15726.03 ± 8035.09)(AB), and 30% (29364.37 ± 13928.96)(A). Fiber addiction in BisGMA resin increases flexural properties, and the interaction between resin and fibers seems better in the absence of inorganic fillers increasing flexural properties.
J. F. Hunt; C. B. Vick
1999-01-01
Recycled paper fiber recovered from our municipal solid waste stream could potentially be used in structural hardboard products. This study compares strength properties and processing variables of wet-formed high-density hardboard panels made from recycled old corrugated container (OCC) fibers and virgin hardboard fibers using continuous pressure during drying. The...
USDA-ARS?s Scientific Manuscript database
Harnessing natural fibers to produce polymer composites requires processing of fibers from harvest to the dried state, which can then be dispersed in the polymer resin. Bast fibers are found in the bark layer of fibrous plants such as kenaf (Hibiscus cannabinus), jute (Corchorus olitorius), and flax...
Organic and inorganic priority pollutants codisposed with municipal solid waste (MSW) in ten pilot-scale simulated landfill columns, operated under single pass leaching or leachate recycle, were capable of being attenuated by microbially-mediated landfill stabilization processes....
Sol-gel coating of inorganic nanostructures with resorcinol-formaldehyde resin.
Li, Na; Zhang, Qiao; Liu, Jian; Joo, Jibong; Lee, Austin; Gan, Yang; Yin, Yadong
2013-06-07
A general sol-gel process has been developed to form a coating of resorcinol-formaldehyde (RF) resin on inorganic nanostructures of various compositions and morphologies. The RF shell can be conveniently converted into carbon through high temperature carbonization under an inert atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia
Biorefineries convert biomass into many useful intermediates. For bio-based products to be used for fuel, energy, chemical, and many other applications, water needs to be removed from these aqueous products. Membrane separation technologies can significantly reduce separation energy consumption compared with conventional separation processes such as distillation. Nanoporous inorganic membranes have superior pervaporation performance with excellent organic fouling resistance. However, their commercial applications are limited due to high membrane costs and poor production reproducibility. A novel cost-effective inorganic membrane fabrication technology has been developed with low cost materials and using an advanced membrane fabrication technology. Low cost precursor material formulationmore » was successfully developed with desired material properties for membrane fabrication. An advanced membrane fabrication process was developed using the novel membrane materials to enable the fabrication of separation membranes of various geometries. The structural robustness and separation performance of the low cost inorganic membranes were evaluated. The novel inorganic membranes demonstrated high structural integrity and were effective in pervaporation removal of water.« less
Evaluation of Production Version of the NASA Improved Inorganic-Organic Separator
NASA Technical Reports Server (NTRS)
Sheibley, D.
1983-01-01
The technology of an inorganic-organic (I/O) separator, which demonstrated improved flexibility, reduced cost, production feasibility and improved cycle life was developed. Substrates to replace asbestos and waterbased separator coatings to replace the solvent based coatings were investigated. An improved fuel cell grade asbestos sheet was developed and a large scale production capability for the solvent based I/O separator was demonstrated. A cellulose based substrate and a nonwoven polypropylene fiber substrate were evaluated as replacements for the asbestos. Both the cellulose and polypropylene substrates were coated with solvent based and water based coatings to produce a modified I/O separator. The solvent based coatings were modified to produce aqueous separator coatings with acceptable separator properties. A single ply fuel cell grade asbestos with a binder (BTA) was produced. It has shown to be an acceptable substrate for the solvent and water based separator coatings, an acceptable absorber for alkaline cells, and an acceptable matrix for alkaline fuel cells. The original solvent based separator (K19W1), using asbestos as a substrate, was prepared.
NASA Astrophysics Data System (ADS)
Kurkowski, Michael; Cangany, Catherine; Jordan, Louis; Manukyan, Khachatur; Schultz, Zachary; Wiescher, Michael
2017-09-01
This project entailed studying the cellulose in paper, the ink, colorants, and other materials used to produce American colonial currency. The technique primarily used in this project was X-Ray Fluorescence Spectroscopy (XRF). XRF mapping was used to provide both elemental analysis of large-scale objects as well as microscopic examination of individual pigment particles in ink, in addition to the inorganic additives used to prepare paper. The combination of elemental mapping with Fourier Transform Infrared (FTIR) and Raman Spectroscopies permits an efficient analysis of the currency. These spectroscopic methods help identify the molecular composition of the pigments. This combination of atomic and molecular analytical techniques provided an in-depth characterization of the paper currency on the macro, micro, and molecular levels. We have identified several of pigments that were used in the preparation of inks and colorants. Also, different inorganic crystals, such as alumina-silicates, have been detected in different papers. The FTIR spectroscopy allowed us to determine the type of cellulose fiber used in the production of paper currency. Our future research will be directed toward revealing important historical relationships between currencies printed throughout the colonies. ISLA Da Vinci Grant.
Programming Cells for Dynamic Assembly of Inorganic Nano-Objects with Spatiotemporal Control.
Wang, Xinyu; Pu, Jiahua; An, Bolin; Li, Yingfeng; Shang, Yuequn; Ning, Zhijun; Liu, Yi; Ba, Fang; Zhang, Jiaming; Zhong, Chao
2018-04-01
Programming living cells to organize inorganic nano-objects (NOs) in a spatiotemporally precise fashion would advance new techniques for creating ordered ensembles of NOs and new bio-abiotic hybrid materials with emerging functionalities. Bacterial cells often grow in cellular communities called biofilms. Here, a strategy is reported for programming dynamic biofilm formation for the synchronized assembly of discrete NOs or hetero-nanostructures on diverse interfaces in a dynamic, scalable, and hierarchical fashion. By engineering Escherichia coli to sense blue light and respond by producing biofilm curli fibers, biofilm formation is spatially controlled and the patterned NOs' assembly is simultaneously achieved. Diverse and complex fluorescent quantum dot patterns with a minimum patterning resolution of 100 µm are demonstrated. By temporally controlling the sequential addition of NOs into the culture, multilayered heterostructured thin films are fabricated through autonomous layer-by-layer assembly. It is demonstrated that biologically dynamic self-assembly can be used to advance a new repertoire of nanotechnologies and materials with increasing complexity that would be otherwise challenging to produce. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of zinc on the calcium carbonate biomineralization of Halomonas halophila
2012-01-01
Background The salt tolerance of halophilic bacteria make them promising candidates for technical applications, like isolation of salt tolerant enzymes or remediation of contaminated saline soils and waters. Furthermore, some halophilic bacteria synthesize inorganic solids resulting in organic–inorganic hybrids. This process is known as biomineralization, which is induced and/or controlled by the organism. The adaption of the soft and eco-friendly reaction conditions of this formation process to technical syntheses of inorganic nano materials is desirable. In addition, environmental contaminations can be entrapped in biomineralization products which facilitate the subsequent removal from waste waters. The moderately halophilic bacteria Halomonas halophila mineralize calcium carbonate in the calcite polymorph. The biomineralization process was investigated in the presence of zinc ions as a toxic model contaminant. In particular, the time course of the mineralization process and the influence of zinc on the mineralized inorganic materials have been focused in this study. Results H. halophila can adapt to zinc contaminated medium, maintaining the ability for biomineralization of calcium carbonate. Adapted cultures show only a low influence of zinc on the growth rate. In the time course of cultivation, zinc ions accumulated on the bacterial surface while the medium depleted in the zinc contamination. Intracellular zinc concentrations were below the detection limit, suggesting that zinc was mainly bound extracellular. Zinc ions influence the biomineralization process. In the presence of zinc, the polymorphs monohydrocalcite and vaterite were mineralized, instead of calcite which is synthesized in zinc-free medium. Conclusions We have demonstrated that the bacterial mineralization process can be influenced by zinc ions resulting in the modification of the synthesized calcium carbonate polymorph. In addition, the shape of the mineralized inorganic material is chancing through the presence of zinc ions. Furthermore, the moderately halophilic bacterium H. halophila can be applied for the decontamination of zinc from aqueous solutions. PMID:23198844
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi
Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey’s equation a diffusive type of term by introducing amore » phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29{sup th} International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.« less
NASA Astrophysics Data System (ADS)
Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato
2015-05-01
Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey's equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.
Kinetic Monte Carlo simulations of scintillation processes in NaI(Tl)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerisit, Sebastien N.; Wang, Zhiguo; Williams, Richard
2014-04-26
Developing a comprehensive understanding of the processes that govern the scintillation behavior of inorganic scintillators provides a pathway to optimize current scintillators and allows for the science-driven search for new scintillator materials. Recent experimental data on the excitation density dependence of the light yield of inorganic scintillators presents an opportunity to incorporate parameterized interactions between excitations in scintillation models and thus enable more realistic simulations of the nonproportionality of inorganic scintillators. Therefore, a kinetic Monte Carlo (KMC) model of elementary scintillation processes in NaI(Tl) is developed in this work to simulate the kinetics of scintillation for a range of temperaturesmore » and Tl concentrations as well as the scintillation efficiency as a function of excitation density. The ability of the KMC model to reproduce available experimental data allows for elucidating the elementary processes that give rise to the kinetics and efficiency of scintillation observed experimentally for a range of conditions.« less
Controllable lasing performance in solution-processed organic-inorganic hybrid perovskites.
Kao, Tsung Sheng; Chou, Yu-Hsun; Hong, Kuo-Bin; Huang, Jiong-Fu; Chou, Chun-Hsien; Kuo, Hao-Chung; Chen, Fang-Chung; Lu, Tien-Chang
2016-11-03
Solution-processed organic-inorganic perovskites are fascinating due to their remarkable photo-conversion efficiency and great potential in the cost-effective, versatile and large-scale manufacturing of optoelectronic devices. In this paper, we demonstrate that the perovskite nanocrystal sizes can be simply controlled by manipulating the precursor solution concentrations in a two-step sequential deposition process, thus achieving the feasible tunability of excitonic properties and lasing performance in hybrid metal-halide perovskites. The lasing threshold is at around 230 μJ cm -2 in this solution-processed organic-inorganic lead-halide material, which is comparable to the colloidal quantum dot lasers. The efficient stimulated emission originates from the multiple random scattering provided by the micro-meter scale rugged morphology and polycrystalline grain boundaries. Thus the excitonic properties in perovskites exhibit high correlation with the formed morphology of the perovskite nanocrystals. Compared to the conventional lasers normally serving as a coherent light source, the perovskite random lasers are promising in making low-cost thin-film lasing devices for flexible and speckle-free imaging applications.
Diekman, E. F.; Visser, G.; Schmitz, J. P. J.; Nievelstein, R. A. J.; de Sain-van der Velden, M.; Wardrop, M.; Van der Pol, W. L.; Houten, S. M.; van Riel, N. A. W.; Takken, T.; Jeneson, J. A. L.
2016-01-01
Rhabdomyolysis is common in very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and other metabolic myopathies, but its pathogenic basis is poorly understood. Here, we show that prolonged bicycling exercise against a standardized moderate workload in VLCADD patients is associated with threefold bigger changes in phosphocreatine (PCr) and inorganic phosphate (Pi) concentrations in quadriceps muscle and twofold lower changes in plasma acetyl-carnitine levels than in healthy subjects. This result is consistent with the hypothesis that muscle ATP homeostasis during exercise is compromised in VLCADD. However, the measured rates of PCr and Pi recovery post-exercise showed that the mitochondrial capacity for ATP synthesis in VLCADD muscle was normal. Mathematical modeling of oxidative ATP metabolism in muscle composed of three different fiber types indicated that the observed altered energy balance during submaximal exercise in VLCADD patients may be explained by a slow-to-fast shift in quadriceps fiber-type composition corresponding to 30% of the slow-twitch fiber-type pool in healthy quadriceps muscle. This study demonstrates for the first time that quadriceps energy balance during exercise in VLCADD patients is altered but not because of failing mitochondrial function. Our findings provide new clues to understanding the risk of rhabdomyolysis following exercise in human VLCADD. PMID:26881790
Ruppert, L; Lin, Z-Q; Dixon, R P; Johnson, K A
2013-11-15
Phytoremediation, the use of plants and microbes to clean up inorganic and organic pollutants, has shown great promise as an inexpensive and feasible form of remediation. More recently, studies have shown that some plants have an amazing capacity to volatilize contaminants and can be an effective remediation strategy if the chemicals released are non-toxic. Arsenic contamination and remediation has drawn great attention in the scientific community. However, its toxicity also varies depending on its form. We evaluated, optimized, and then utilized a solid phase microfiber extraction (SPME) head space sampling technique to characterize the organoarsinical emissions from rabbitfoot grass (Polypogon monspeliensis) in arsenic treated soils to determine if the potentially more toxic organic forms of arsenic (AsH3, AsH2CH3, AsH(CH3)2, and As(CH3)3) were being emitted from the plant-soil system. The SPME fiber that proved best fitted for this application was the DVB/CAR/PDMS fiber with a 45 min sampling period. We did detect and confirm the emissions of dimethylchloroarsine (AsCl(CH3)2) and pentamethylarsine (As(CH3)5). However, it was determined that the more toxic organic forms of arsenic were not released during phytovolatilization. Copyright © 2012 Elsevier B.V. All rights reserved.
7 CFR 28.956 - Prescribed fees.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., TESTING, AND STANDARDS Cotton Fiber and Processing Tests Fiber and Processing Tests § 28.956 Prescribed fees. Fees for fiber and processing tests shall be assessed as listed below: Item number and kind of test Fee per test 1.0Calibration cotton for use with High Volume Instruments, per 5 pound package: a. f...
7 CFR 28.956 - Prescribed fees.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., TESTING, AND STANDARDS Cotton Fiber and Processing Tests Fiber and Processing Tests § 28.956 Prescribed fees. Fees for fiber and processing tests shall be assessed as listed below: Item number and kind of test Fee per test 1.0Calibration cotton for use with High Volume Instruments, per 5 pound package: a. f...
Lightweight, high-opacity paper : process costs and energy use reduction
John H. Klungness; Fabienne Pianta; Mathew L. Stroika; Marguerite Sykes; Freya Tan; Said AbuBakr
1999-01-01
Fiber loading is an environmentally friendly, energy efficient, and economical method for depositing precipitated calcium carbonate (PCC) partly within pulp fibers. Fiber loading can easily be done within the existing pulp processing system. This paper is a review of the process development from bench-scale to industrial-scale demonstrations, with additional...
Fraczek-Szczypta, A; Rabiej, S; Szparaga, G; Pabjanczyk-Wlazlo, E; Krol, P; Brzezinska, M; Blazewicz, S; Bogun, M
2015-06-01
The paper presents the results of the manufacture of carbon fibers (CF) from polyacrylonitrile fiber precursor containing bioactive ceramic nanoparticles. In order to modify the precursor fibers two types of bio-glasses and wollastonite in the form of nanoparticles were used. The processing variables of the thermal conversion of polyacrylonitrile (PAN) precursor fibers into carbon fibers were determined using the FTIR method. The carbonization process of oxidized PAN fibers was carried out up to 1000°C. The carbon fibers were characterized by a low ordered crystalline structure. The bioactivity tests of carbon fibers modified with a ceramic nanocomponent carried out in the artificial serum (SBF) revealed the apatite precipitation on the fibers' surfaces. Copyright © 2015 Elsevier B.V. All rights reserved.
Voet, Vincent S D; Kumar, Kamlesh; ten Brinke, Gerrit; Loos, Katja
2015-10-01
The unique mechanical performance of nacre, the pearly internal layer of shells, is highly dependent on its complex morphology. Inspired by the structure of nacre, the fabrication of well-ordered layered inorganic-organic nanohybrids is presented herein. This biomimetic approach includes the use of a block copolymer template, consisting of hydrophobic poly(vinylidene fluoride) (PVDF) lamellae covered with hydrophilic poly(methacrylic acid) (PMAA), to direct silica (SiO2 ) mineralization. The resulting PVDF/PMAA/SiO2 nanohybrid material resembles biogenic nacre with respect to its well-ordered and layered nanostructure, alternating organic-inorganic phases, macromolecular template, and mild processing conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Supported catalysts using nanoparticles as the support material
Wong, Michael S.; Wachs, Israel E.; Knowles, William V.
2010-11-02
A process for making a porous catalyst, comprises a) providing an aqueous solution containing a nanoparticle precursor, b) forming a composition containing nanoparticles, c) adding a first catalytic component or precursor thereof and a pore-forming agent to the composition containing nanoparticles and allowing the first catalytic component, the pore-forming agent, and the nanoparticles form an organic-inorganic structure, d) removing water from the organic-inorganic structure; and e) removing the pore-forming agent from the organic-inorganic structure so as to yield a porous catalyst.
NASA Astrophysics Data System (ADS)
Tenne, Reshef; Rao, C. N. R.
2004-10-01
Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS2, will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous other inorganic nanotubes has been reported in recent years. Various techniques for the synthesis of inorganic nanotubes, including high-temperature reactions and strategies based on 'chemie douce' (soft chemistry, i.e. low-temperature) processes, are described. First-principle, density functional theory based calculations are able to provide substantial information on the structure and properties of such nanotubes. Various properties of inorganic nanotubes, including mechanical, electronic and optical properties, are described in brief. Some potential applications of the nanotubes in tribology, protection against impact, (photo)catalysis, batteries, etc., are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churg, A.; Wiggs, B.
1986-01-01
We analyzed chrysotile and chrysotile-associated amphibole (largely tremolite) asbestos fibers in 21 workers exposed to various types of processed (milled) chrysotile ore, 20 long-term chrysotile miners, and 20 members of the general population (controls). Significantly greater amounts of both chrysotile and tremolite were found in processed-ore workers and miners than in controls. On average, the mean fiber lengths and aspect ratios for the mining and processed-ore-exposed workers were similar and were significantly greater than the values seen in the controls; within the processed-ore group, there was a marked variation in these parameters, and some workers appeared to be exposed tomore » fairly long, thin fibers. It was found empirically that the fiber size data, and to a lesser extent the concentration data, could be used to classify workers accurately into those with processed-ore exposure and controls. We conclude that fiber sizes in the lungs of processed-ore-exposed workers are similar to those of chrysotile miners and are considerably longer than those found in the general population; some processed-ore workers have longer fibers which might be responsible for higher disease incidences in certain working groups; tremolite accompanies chrysotile in a variable proportion of workers exposed to processed chrysotile products and might be important in the genesis of mesothelioma in such workers; and mineralogic analysis will usually detect exposure even when chrysotile has largely disappeared from lung tissue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin
2010-02-23
This report describes the work conducted under the Cooperative Research and Development Agreement (CRADA) (Nr. 260) between the Pacific Northwest National Laboratory (PNNL) and Autodesk, Inc. to develop and implement process models for injection-molded long-fiber thermoplastics (LFTs) in processing software packages. The structure of this report is organized as follows. After the Introduction Section (Section 1), Section 2 summarizes the current fiber orientation models developed for injection-molded short-fiber thermoplastics (SFTs). Section 3 provides an assessment of these models to determine their capabilities and limitations, and the developments needed for injection-molded LFTs. Section 4 then focuses on the development of amore » new fiber orientation model for LFTs. This model is termed the anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model as it explores the concept of anisotropic rotary diffusion to capture the fiber-fiber interaction in long-fiber suspensions and uses the reduced strain closure method of Wang et al. to slow down the orientation kinetics in concentrated suspensions. In contrast to fiber orientation modeling, before this project, no standard model was developed to predict the fiber length distribution in molded fiber composites. Section 5 is therefore devoted to the development of a fiber length attrition model in the mold. Sections 6 and 7 address the implementations of the models in AMI, and the conclusions drawn from this work is presented in Section 8.« less
NASA Technical Reports Server (NTRS)
Patel, Parimal J.; Messier, Donald R.; Rich, R. E.
1991-01-01
Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.
Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S.R.; Henneberger, F.; Koch, N.
2015-01-01
The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach. PMID:25872919
Schlesinger, R; Bianchi, F; Blumstengel, S; Christodoulou, C; Ovsyannikov, R; Kobin, B; Moudgil, K; Barlow, S; Hecht, S; Marder, S R; Henneberger, F; Koch, N
2015-04-15
The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.
Fiber Metal Laminates Made by the VARTM Process
NASA Technical Reports Server (NTRS)
Jensen, Brian J.; Cano, Roberto J.; Hales, Stephen J.; Alexa, Joel A.; Weiser, Erik S.; Loos, Alfred; Johnson, W.S.
2009-01-01
Fiber metal laminates (FMLs) are multi-component materials utilizing metals, fibers and matrix resins. Tailoring their properties is readily achievable by varying one or more of these components. Established FMLs like GLARE utilize aluminum foils, glass fibers and epoxy matrices and are manufactured using an autoclave. Two new processes for manufacturing FMLs using vacuum assisted resin transfer molding (VARTM) have been developed at the NASA Langley Research Center (LaRC). A description of these processes and the resulting FMLs are presented.
Farley Three-Dimensional-Braiding Machine
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1991-01-01
Process and device known as Farley three-dimensional-braiding machine conceived to fabricate dry continuous fiber-reinforced preforms of complex three-dimensional shapes for subsequent processing into composite structures. Robotic fiber supply dispenses yarn as it traverses braiding surface. Combines many attributes of weaving and braiding processes with other attributes and capabilities. Other applications include decorative cloths, rugs, and other domestic textiles. Concept could lead to large variety of fiber layups and to entirely new products as well as new fiber-reinforcing applications.
The fiber walk: a model of tip-driven growth with lateral expansion.
Bucksch, Alexander; Turk, Greg; Weitz, Joshua S
2014-01-01
Tip-driven growth processes underlie the development of many plants. To date, tip-driven growth processes have been modeled as an elongating path or series of segments, without taking into account lateral expansion during elongation. Instead, models of growth often introduce an explicit thickness by expanding the area around the completed elongated path. Modeling expansion in this way can lead to contradictions in the physical plausibility of the resulting surface and to uncertainty about how the object reached certain regions of space. Here, we introduce fiber walks as a self-avoiding random walk model for tip-driven growth processes that includes lateral expansion. In 2D, the fiber walk takes place on a square lattice and the space occupied by the fiber is modeled as a lateral contraction of the lattice. This contraction influences the possible subsequent steps of the fiber walk. The boundary of the area consumed by the contraction is derived as the dual of the lattice faces adjacent to the fiber. We show that fiber walks generate fibers that have well-defined curvatures, and thus enable the identification of the process underlying the occupancy of physical space. Hence, fiber walks provide a base from which to model both the extension and expansion of physical biological objects with finite thickness.
The Fiber Walk: A Model of Tip-Driven Growth with Lateral Expansion
Bucksch, Alexander; Turk, Greg; Weitz, Joshua S.
2014-01-01
Tip-driven growth processes underlie the development of many plants. To date, tip-driven growth processes have been modeled as an elongating path or series of segments, without taking into account lateral expansion during elongation. Instead, models of growth often introduce an explicit thickness by expanding the area around the completed elongated path. Modeling expansion in this way can lead to contradictions in the physical plausibility of the resulting surface and to uncertainty about how the object reached certain regions of space. Here, we introduce fiber walks as a self-avoiding random walk model for tip-driven growth processes that includes lateral expansion. In 2D, the fiber walk takes place on a square lattice and the space occupied by the fiber is modeled as a lateral contraction of the lattice. This contraction influences the possible subsequent steps of the fiber walk. The boundary of the area consumed by the contraction is derived as the dual of the lattice faces adjacent to the fiber. We show that fiber walks generate fibers that have well-defined curvatures, and thus enable the identification of the process underlying the occupancy of physical space. Hence, fiber walks provide a base from which to model both the extension and expansion of physical biological objects with finite thickness. PMID:24465607
Hua, Xiao; Xu, Shanan; Wang, Mingming; Chen, Ying; Yang, Hui; Yang, Ruijin
2017-10-01
Tomato residue fibers obtained after derosination and deproteinization were processed by high-speed homogenization (HSH) and high-pressure homogenization (HPH), and their effects on fiber structure was investigated, respectively. Characterizations including particle size distribution, SEM, TEM and XRD were performed. HSH could break raw fibers to small particles of around 60μm, while HPH could reshape fibers to build network structure. Microfibrils were released and their nanostructure consisting of elementary fibrils was observed by TEM. XRD patterns indicated both HSH and HPH could hardly alter the nanostructure of the fibers. Physicochemical properties including expansibility, WHC and OHC were determined. Both HSH and HPH could increase the soluble fiber content by about 8%, but HSH-HPH combined processing did not show better result. Acid (4mol/L HCl) was used in replacement of water medium and the acidic degradation of fibers could be promoted by high speed shearing or high pressure processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)
2003-01-01
An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.
Zhu, Naishu; Ma, Shining; Sun, Xiaofeng
2016-12-28
In this paper, active screen plasma nitriding (ASPN) treatment was performed on polyacrylonitrile carbon fiber papers. Electric resistivity and microwave loss factor of carbon fiber were described to establish the relationship between processing parameters and fiber's ability to absorb microwaves. The surface processing effect of carbon fiber could be characterized by dynamic thermal mechanical analyzer testing on composites made of carbon fiber. When the process temperature was at 175 °C, it was conducive to obtaining good performance of dynamical mechanical properties. The treatment provided a way to change microwave heating properties of carbon fiber paper by performing different treatment conditions, such as temperature and time parameters. Atomic force microscope, scanning electron microscope, and X-ray photoelectron spectroscopy analysis showed that, during the course of ASPN treatment on carbon fiber paper, nitrogen group was introduced and silicon group was removed. The treatment of nitrogen-doped carbon fiber paper represented an alternative promising candidate for microwave curing materials used in repairing and heating technology, furthermore, an efficient dielectric layer material for radar-absorbing structure composite in metamaterial technology.
Manufacturing of Smart Structures Using Fiber Placement Manufacturing Processes
NASA Technical Reports Server (NTRS)
Thomas, Matthew M.; Glowasky, Robert A.; McIlroy, Bruce E.; Story, Todd A.
1996-01-01
Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.
Resin impregnation process for producing a resin-fiber composite
NASA Technical Reports Server (NTRS)
Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)
1994-01-01
Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Grimsley, Brian W.; Ratcliffe, James G.; Gordon, Keith L.; Smith, Joseph G.; Siochi, Emilie J.
2015-01-01
Ongoing efforts at NASA Langley Research Center (LaRC) have resulted in the identification of several commercially available thermoplastic resin systems which self-heal after ballistic impact and through penetration. One of these resins, polybutylene graft copolymer (PBg), was selected as a matrix for processing with unsized carbon fibers to fabricate reinforced composites for further evaluation. During process development, data from thermo-physical analyses was utilized to determine a processing cycle to fabricate laminate panels, which were analyzed by photo microscopy and acid digestion. The process cycle was further optimized based on these results to fabricate panels for mechanical property characterization. The results of the processing development effort of this composite material, as well as the results of the mechanical property characterization, indicated that bonding between the fiber and PBg was not adequate. Therefore, three sizings were investigated in this work to assess their potential to improve fiber/matrix bonding compared to previously tested unsized IM7 fiber. Unidirectional prepreg was made at NASA LaRC from three sized carbon fibers and utilized to fabricate test coupons that were tested in double cantilever beam configurations to determine GIc fracture toughness.
Making Ceramic Fibers By Chemical Vapor
NASA Technical Reports Server (NTRS)
Revankar, Vithal V. S.; Hlavacek, Vladimir
1994-01-01
Research and development of fabrication techniques for chemical vapor deposition (CVD) of ceramic fibers presented in two reports. Fibers of SiC, TiB2, TiC, B4C, and CrB2 intended for use as reinforcements in metal-matrix composite materials. CVD offers important advantages over other processes: fibers purer and stronger and processed at temperatures below melting points of constituent materials.
Characterization of co-products from producing ethanol by sequential extraction processing of corn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hojilla-Evangelista, M.P.; Johnson, L.A.; Pometto, A.L. III
1996-12-31
Sequential Extraction Processing (SEP) is a new process for ethanol production that has potential to produce more valuable co-products than alternative processes. Previous work determined the yields of oil and protein and evaluated their chemical and functional properties. The properties of the crude fiber and spent solids, however, have yet to be studied. This research was conducted to evaluate the potential of SEP corn fiber to increase ethanol conversion and as replacement for gum arabic, and evaluate the potential of SEP starch and fiber to be fermented to ethanol. SEP hemicellulose from crude fiber was readily dispersible in water andmore » its solution (5%) gave low viscosity despite having high solids content. These properties indicated potential utilization as stabilizers, thickeners, and adhesive for coatings and batters in food and industrial products. Enzyme hydrolysis studies and batch fermentation of SEP starch/fiber indicated that SEP crude fiber was more readily accessible to the action of cellulases. More ethanol (about 10%) was produced from the fermentation of SEP starch/fiber than from undegermed or degermed soft dent corn, particularly when the hemicellulose fraction was absent from the SEP fiber.« less
Bautista-Flores, Ana Nelly; de San Miguel, Eduardo Rodríguez; de Gyves, Josefina; Jönsson, Jan Åke
2011-01-01
Nickel (II) preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM) device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration) and to the sample properties (donor pH) on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed depending on the values of the different variables. The effects of the presence of inorganic anions (NO2−, SO42−, Cl−, NO3−, CO32−, CN−) and dissolved organic matter (DOM) in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K) = −8617.3 + 30.5T with an activation energy of 56.7 kJ mol−1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively). PMID:24957733
Ekpo, U; Ross, A B; Camargo-Valero, M A; Williams, P T
2016-01-01
Thermal hydrolysis and hydrothermal processing show promise for converting biomass into higher energy density fuels. Both approaches facilitate the extraction of inorganics into the aqueous product. This study compares the behaviour of microalgae, digestate, swine and chicken manure by thermal hydrolysis and hydrothermal processing at increasing process severity. Thermal hydrolysis was performed at 170°C, hydrothermal carbonisation (HTC) was performed at 250°C, hydrothermal liquefaction (HTL) was performed at 350°C and supercritical water gasification (SCWG) was performed at 500°C. The level of nitrogen, phosphorus and potassium in the product streams was measured for each feedstock. Nitrogen is present in the aqueous phase as organic-N and NH3-N. The proportion of organic-N is higher at lower temperatures. Extraction of phosphorus is linked to the presence of inorganics such as Ca, Mg and Fe in the feedstock. Microalgae and chicken manure release phosphorus more easily than other feedstocks. Copyright © 2015. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.
2016-03-01
In February 2015, Savannah River National Laboratory (SRNL) received a Strip Effluent (SE) coalescer (FLT-304) from MCU. That coalescer was first installed at MCU in July 2014 and removed in October 2014. While processing approximately 31,400 gallons of strip solution, the pressure drop steadily increased from 1 psi to beyond the administrative limit of 20 psi. The physical and chemical analysis was conducted on this coalescer to determine the mechanism that led to the plugging of this coalescer. Characterization of this coalescer revealed the adsorption of organic containing amines as well as MCU modifier. The amines are probably from themore » decomposition of the suppressor (TiDG) as well as from bacteria. This adsorption may have changed the surface energetics (characteristics) of the coalescer fibers and therefore, their wetting behavior. A very small amount of inorganic solids were found to have deposited on this coalescer (possibly an artifact of cleaning the coalescer with Boric acid. However, we believe that inorganic precipitation, as has been seen in the past, did not play a role in the high pressure drop rise of this coalescer. With regards to the current practice of reducing the radioactive content of the SE coalescer, it is recommended that future SE coalescer should be flushed with 10 mM boric acid which is currently used at MCU. Plugging of the SE coalescer was most likely due to the formation and accumulation of a water-in-oil emulsion that reduced the overall porosity of the coalescer. There is also evidence that a bimodal oil particle distribution may have entered and deposited in the coalescer and caused the initial increase in pressure drop.« less
Chauhan, Divya; Dwivedi, Jaya; Sankararamakrishnan, Nalini
2014-01-01
Enhanced removal application of both forms of inorganic arsenic from arsenic-contaminated aquifers at near-neutral pH was studied using a novel electrospun chitosan/PVA/zerovalent iron (CPZ) nanofibrous mat. CPZ was carefully examined using scanning electron microscopy (SEM) equipped with energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), atomic fluorescence spectroscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). Application of the adsorbent towards the removal of total inorganic arsenic in batch mode has also been studied. A suitable mechanism for the adsorption has also been discussed. CPZ nanofibers mat was found capable to remove 200.0±10.0 mg g(-1) of As(V) and 142.9±7.2 mg g(-1) of As(III) from aqueous solution of pH 7.0 at ambient condition. Addition of ethylenediaminetetraacetic acid (EDTA) enabled the stability of iron in zerovalent state (ZVI). Enhanced capacity of the fibrous mat could be attributed to the high surface area of the fibers, presence of ZVI, and presence of functional groups such as amino, carboxyl, and hydroxyl groups of the chitosan and EDTA. Both Langmuir and Freundlich adsorption isotherms were applicable to describe the removal process. The possible mechanism of adsorption has been explained in terms of electrostatic attraction between the protonated amino groups of chitosan/arsenate ions and oxidation of arsenite to arsenate by Fentons generated from ZVI and subsequent complexation of the arsenate with the oxidized iron. These CPZ nanofibrous mats has been prepared with environmentally benign naturally occurring biodegradable biopolymer chitosan, which offers unique advantage in the removal of arsenic from contaminated groundwater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertzscher, G; Beddar, S
Purpose: To study the promising potential of inorganic scintillator detectors (ISDs) and investigate various unwanted luminescence properties which may compromise their accuracy. Methods: The ISDs were comprised of a ruby crystal coupled to a polymethyl methacrylate (PMMA) fiber-optic cable and a charged coupled device camera. A new type of ISD was manufactured and included a long-pass filter that was sandwiched between the crystal and the fiber-optic cable. The purpose of the filter was to suppress the Cerenkov and fluorescence background light induced in the PMMA (the stem signal) from striking the ruby crystal, generating unwanted ruby excitation. A variety ofmore » experiments were performed to characterize the ruby based ISDs. The relative contribution of the induced ruby signal and the stem signal were quantified while exposing the detector and a bare fiber-optic cable to a high dose rate (HDR) brachytherapy (BT) source, respectively. The unwanted ruby excitation was quantified while irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and a comparison to other commonly used organic scintillator detectors (BCF-12, BCF-60). Results: When the BT source dwelled 0.5 cm away from the fiber-optic cable, the unwanted ruby excitation amounted to >5% of the total signal if the source-distance from the scintillator was >7 cm. However, the unwanted excitation was suppressed to <1% if the ISD incorporated an optic filter. The stem signal was suppressed with a 20 nm band-pass filter and was <3% as long as the source-distance was <7 cm. The ruby based ISDs generated signal up to 20(40) times that of BCF-12(BCF-60). Conclusion: The study presents solutions to unwanted luminescence properties of ruby based ISDs for HDR BT. An optic filter should be sandwiched between the scintillator volume and the fiber-optic cable to prevent the stem signal to excite the ruby crystal.« less
Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)
1999-01-01
A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.
System to continuously produce carbon fiber via microwave assisted plasma processing
White, Terry L [Knoxville, TN; Paulauskas, Felix L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN
2010-11-02
A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.
Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Charles; Beery, Kyle; Orth, Rick
2007-09-28
The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50%more » of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.« less
One-step Tape Casting of Composites via Slurry on Fiber
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III
2001-01-01
A process by which metal matrix composites can be made was presented. The process involves putting a powder slurry on fibers to make a precursor green tape. These green tapes are cut, stacked and hot pressed to form the fully dense composite. A computer program was presented which enables complete quantification and control of the process. Once some easily obtained properties of the slurry and its behavior are determined (such as the shrinkage from the wet to green state, and the density of the green tape) modification of the fiber spacing and blade height give the maker precise control of fiber volume fraction, and fiber architecture in the composite. The process was shown to be accurate and flexible through the production of a wide variety of volume fraction fiber composites made from a wide variety of fibers and powders. The most time consuming step of the tape casting process (other than hot pressing) was winding the fiber on the drum. The tape casting techniques developed resulted in high quality metal matrix composites, with ultimate tensile strength in the range of 215 ksi (1477 MPa), a strain at failure of 1.15 percent, and in fatigue at room temperature 0 to 120 ksi, n = 0.3 Hz, a 4-ply Ti-24Al-11Nb/SCS-6, 32 vol% fiber tape cast composite lasted 202,205 cycles with a maximum strain on the 100th cycle of 0.43 percent.
Fatigue failure processes in aligned carbon-epoxy laminates
NASA Astrophysics Data System (ADS)
Piggott, Michael R.; Lam, Patrick W. K.
The failure mechanism involved in the tensile-tensile fatigue of carbon fiber-reinforced polymer matrices may be initiated by the fiber curvature that can be present in the composite. The varying stresses encountered in fatigue begin to damage the composite at the antinodes of the fiber profiles, perhaps in the form of fiber debonds that generate matrix cracks and result in comminution of the polymer; eventually, as the process proceeds, the flexural stresses in the fiber are sufficiently great to cause early fiber failure in wavy regions. The breaks are connected by splits in the polymer.
Two-step sulfonation process for the conversion of polymer fibers to carbon fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, Bryan E.; Patton, Jasson T.; Hukkanen, Eric J.
Disclosed herein are processes for preparing carbon fibers, comprising: sulfonating a polymer fiber with a sulfonating agent that is fuming sulfuric acid, sulfuric acid, chlorosulfonic acid, or a combination thereof; treating the sulfonated polymer with a heated solvent, wherein the temperature of the heated solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 501-3000.degree. C. Carbon fibers prepared according to these methods are also disclosed herein.
1993-04-01
tensile fiber stress of 150-300 MPa, too little compared to measured fiber strengths of 3-4 GPa. A final possibility is that of nonuniform inelastic...flow of the matrix as a result of a spatially nonuniform distribution of porosity; this leads to a nonuniform distribution of forces along the fiber...the damage with the specific mechanism being fiber bending. The effects due to nonuniform inelastic flow (i.e., fiber bending) can be thought to occur
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belley, MD; Current Address Rhode Island Hospital, Providence, RI; Faught, A
Purpose: Development of a novel on-line dosimetry tool is needed to move toward patient-specific quality assurance measurements for Ir-192 HDR brachytherapy to verify accurate dose delivery to the intended location. This work describes the development and use of a nano-crystalline yttrium oxide inorganic scintillator based optical-fiber detector capable of acquiring real-time high-precision dose measurements during tandem and ovoid (T&O) gynecological (GYN) applicator Ir-192 HDR brachytherapy procedures. Methods: An optical-fiber detector was calibrated by acquiring light output measurements in liquid water at 3, 5, 7, and 9cm radial source-detector-distances from an Ir-192 HDR source. A regression model was fit to themore » data to describe the relative light output per unit dose (TG-43 derived) as a function of source-detector-distance. Next, the optical-fiber detector was attached to a vaginal balloon fixed to a Varian Fletcher-Suit-Delclos-style applicator (to mimic clinical setup), and localized by acquiring high-resolution computed tomography (CT) images. To compare the physical point dose to the TPS calculated values (TG-43 and Acuros-BV), a phantom measurement was performed, by submerging the T&O applicator in a liquid water bath and delivering a treatment template representative of a clinical T&O procedure. The fiber detector collected scintillation signal as a function of time, and the calibration data was applied to calculate both real-time dose rate, and cumulative dose. Results: Fiber cumulative dose values were 100.0cGy, 94.3cGy, and 348.9cGy from the tandem, left ovoid, and right ovoid dwells, respectively (total of 443.2cGy). A plot of real time dose rate during the treatment was also acquired. The TPS values at the fiber location were 458.4cGy using TG-43, and 437.6cGy using Acuros-BV calculated as Dm,m (per TG-186). Conclusion: The fiber measured dose value agreement was 3% vs TG-43 and −1% vs Acuros-BV. This fiber detector opens up new possibilities for performing patient-specific quality assurance for Ir-192 HDR GYN procedures. Funding from Coulter Foundation, Duke Bio-medical Engineering. Company is being created around the detector technology. Duke holds patents on the technology.« less
Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang
2014-01-01
New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960
NASA. Langley Research Center dry powder towpreg system
NASA Technical Reports Server (NTRS)
Baucom, Robert M.; Marchello, Joseph M.
1990-01-01
Dry powder polymer impregnated carbon fiber tows were produced for preform weaving and composite materials molding applications. In the process, fluidized powder is deposited on spread tow bundles and melted on the fibers by radiant heating to adhere the polymer to the fiber. Unit design theory and operating correlations were developed to provide the basis for scale up of the process to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed, resin feeder, and quality control system. Bench scale experiments, at tow speeds up to 50 cm/sec, demonstrated that process variables can be controlled to produce weavable LARC-TPI carbon fiber towpreg. The towpreg made by the dry powder process was formed into unidirectional fiber moldings and was woven and molded into preform material of good quality.
da Silva, Davi Vieira Teixeira; Silva, Fabricio de Oliveira; Perrone, Daniel; Pierucci, Anna Paola Trindade Rocha; Conte-Junior, Carlos Adam; Alvares, Thiago da Silveira; Aguila, Eduardo Mere Del; Paschoalin, Vania Margaret Flosi
2016-01-01
Background Beetroot (Beta vulgaris L.) is a dietary source of natural antioxidants and inorganic nitrate (NO3-). It is well known that the content of antioxidant compounds and inorganic nitrate in beetroot can reduce blood pressure (BP) and the risk of adverse cardiovascular effects. Objective The aim of the present study was to formulate a beetroot gel to supplement dietary nitrate and antioxidant compounds able to cause beneficial health effects following acute administration. Design and subjects A beetroot juice produced from Beta vulgaris L., without any chemical additives, was used. The juice was evaluated by physicochemical and microbiological parameters. The sample was tested in five healthy subjects (four males and one female), ingesting 100 g of beetroot gel. Results The formulated gel was nitrate enriched and contained carbohydrates, fibers, saponins, and phenolic compounds. The formulated gels possess high total antioxidant activity and showed adequate rheological properties, such as high viscosity and pleasant texture. The consumer acceptance test for flavor, texture, and overall acceptability of beetroot gel flavorized with synthetic orange flavor had a sensory quality score >6.6. The effects of acute inorganic nitrate supplementation on nitric oxide production and BP of five healthy subjects were evaluated. The consumption of beetroot gel increased plasma nitrite threefold after 60 min of ingestion and decreased systolic BP (−6.2 mm Hg), diastolic BP (−5.2 mm Hg), and heart rate (−7 bpm). PMID:26790368
NASA Astrophysics Data System (ADS)
Ramesh, Sivalingam; Sivasamy, Arumugam; Kim, Joo-Hyung
2012-06-01
Maleimide-functionalized polystyrene (PSMA-SiO2/TiO2) hybrid nanocomposites were prepared by sol-gel reaction starting from tratraethoxysilane (TEOS) and titanium isopropoxide in the solution of polystyrene maleimide in 1,4-dioxane. The hybrid films were obtained by the hydrolysis and polycondensation of TEOS and titanium isopropoxide in maleimide-functionalized polystyrene solution followed by the Michael addition reaction. The transparency of polymer (PSMA-SiO2/TiO2) hybrid was prepared from polystyrene titanium isopropoxide using the γ-aminopropyltriethoxy silane as crosslinking agent by in situ sol-gel process via covalent bonding between the organic-inorganic hybrid nanocomposites. The maleimide-functionalized polystyrene was synthesized by Friedel-Crafts reaction from N-choloromethyl maleimide. The FTIR spectroscopy data conformed the occurrence of Michael addition reaction between the pendant maleimide moieties of the styrene and γ-aminopropyltriethoxysilane. The chemical structure and morphology of PSMA-SiO2/TiO2 hybrid nanocomposites were characterized by FTIR, nuclear magnetic resonance (NMR), 13 C NMR, SEM, XRD, and TEM analyses. The results also indicate that the inorganic particles are much smaller in the ternary systems than in the binary systems; the shape of the inorganic particles and compatibility for maleimide-functionalized polystrene and inorganic moieties are varied with the ratio of the inorganic moieties in the hybrids. Furthermore, TGA and DSC results indicate that the thermal stability of maleimide-functionalized polystyrene was enhanced through the incorporation of the inorganic moieties in the hybrid materials.
Inorganic acid emission factors of semiconductor manufacturing processes.
Chein, HungMin; Chen, Tzu Ming; Aggarwal, Shankar Gopala; Tsai, Chuen-Jinn; Huang, Chun-Chao
2004-02-01
A huge amount of inorganic acids can be produced and emitted with waste gases from integrated circuit manufacturing processes such as cleaning and etching. Emission of inorganic acids from selected semiconductor factories was measured in this study. The sampling of the inorganic acids was based on the porous metal denuders, and samples were then analyzed by ion chromatography. The amount of chemical usage was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County according to the Taiwan Environmental Protection Agency regulation. The emission factor is defined as the emission rate (kg/month) divided by the amount of chemical usage (L/month). Emission factors of three inorganic acids (i.e., hydrofluoric acid [HF], hydrochloric acid [HCl], and sulfuric acid [H2SO4]) were estimated by the same method. The emission factors of HF and HCl were determined to be 0.0075 kg/L (coefficient of variation [CV] = 60.7%, n = 80) and 0.0096 kg/L (CV = 68.2%, n = 91), respectively. Linear regression equations are proposed to fit the data with correlation coefficient square (R2) = 0.82 and 0.9, respectively. The emission factor of H2SO4, which is in the droplet form, was determined to be 0.0016 kg/L (CV = 99.2%, n = 107), and its R2 was 0.84. The emission profiles of gaseous inorganic acids show that HF is the dominant chemical in most of the fabricators.
Zhang, Wei; Chen, Lizhao; Zhou, Yanyan; Wu, Yun; Zhang, Li
2016-03-01
Arsenic (As) is well known to be biodiminished along marine food chains. The marine herbivorous fish at a lower trophic level are expected to accumulate more As. However, little is known about how marine herbivorous fish biotransform the potential high As bioaccumulation. Therefore, the present study quantified the biotransformation of two inorganic As species (As(III) and As(V)) in a marine herbivorous fish Siganus fuscescens following dietborne exposure. The fish were fed on As contaminated artificial diets at nominal concentrations of 400 and 1500 μg As(III) or As(V) g(-1) (dry weight) for 21 d and 42 d. After exposure, As concentrations in intestine, liver, and muscle tissues of rabbitfish increased significantly and were proportional to the inorganic As exposure concentrations. The present study demonstrated that both inorganic As(III) and As(V) in the dietborne phases were able to be biotransformed to the less toxic arsenobetaine (AsB) (63.3-91.3% in liver; 79.0%-95.2% in muscle). The processes of As biotransformation in rabbitfish could include oxidation of As(III) to As(V), reduction of As(V) to As(III), methylation to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and subsequent conversion to AsB. These results also demonstrated that AsB synthesis processes were diverse facing different inorganic As species in different tissues. In summary, the present study elucidated that marine herbivorous fish had high ability to biotransform inorganic As to the organic forms (mainly AsB), resulting in high As bioaccumulation. Therefore, marine herbivorous fish could detoxify inorganic As in the natural environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yu, Xing-Xiu; Ma, Qian; Liu, Qian-Jin; Lü, Guo-An
2011-02-01
Field in-situ rainfall simulation tests with two rainfall intensities (40 mm x h(-1) and 70 mm x h(-1)), which were conducted at typical sloping cropland in Yimeng mountainous area, were designed to analyze the output characteristics of dissolved inorganic nitrogen, Inorganic-N (NO3(-)-N, NH4(+) -N) and dissolved phosphorus (DP) in runoff water, as well as to compare the eutrophication risk in this water by calculating three ratios of Inorganic-N/DP, NO3(-) -N/DP, and NH4(+)-N/DP, respectively, in cross ridge and longitudinal ridge tillage methods. Results showed that, under the same rainfall intensity, the DP level in runoff water was higher in cross ridge than longitudinal ridge, while the change of different Inorganic-N level between the two tillage methods were not consistent. Cross ridge could effectively reduce runoff and the output rate of Inorganic-N and DP when compared to the longitudinal ridge tillage, which would be more outstanding with the increases of rainfall intensities. The losses of Inorganic-N and DP in runoff water were 43% and 5% less, respectively, in cross ridge than longitudinal ridge at the 40 mm x h(-1) rainfall intensity, and were 68% and 55%, respectively, at 70 mm x h(-1). The higher Inorganic-N/DP and NO3(-) -N/DP ratios suggest that runoff water from either cross ridge or longitudinal ridge tillage have a certain eutrophication risk, which present an increasing trend during the precipitation-runoff process. Compared with longitudinal ridge, cross ridge can not only hinder the increasing trend of eutrophication risk, but also can significantly lower it, and thus effectively reduce the effect of sloping cropland runoff on the eutrophication processes of receiving waters.
Sulfur cycling, retention, and mobility in soils: A review
Pamela J. Edwards
1998-01-01
Sulfur inputs to forests originate from mineral weathering, atmospheric deposition, and organic matter decomposition. In the soil, sulfur occurs in organic and inorganic forms and is cycled within and between those forms via mobilization, immobilization, mineralization, oxidation, and reduction processes. Organic sulfur compounds are largely immobile. Inorganic sulfur...
The purpose of this training is to present an overview of site characterization approaches to support evaluation of the potential for Monitored Natural Attenuation (MNA) as a remedy for inorganic contaminants in ground water. The training will include discussion of the types of ...
40 CFR Table 1 to Subpart Bbbbb of... - Requirements for Performance Tests
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Semiconductor... necessary. 2. Process vent stream a. Measure organic and inorganic HAP concentration (two method option) i... simultaneous sampling at inlet and outlet of control device and analyze for same organic and inorganic HAP at...
40 CFR Table 1 to Subpart Bbbbb of... - Requirements for Performance Tests
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Semiconductor... necessary. 2. Process vent stream a. Measure organic and inorganic HAP concentration (two method option) i... simultaneous sampling at inlet and outlet of control device and analyze for same organic and inorganic HAP at...
SPECIATION AND PRESERVATION OF INORGANIC ARSENIC IN DRINKING WATER SUPPLIES WITH IC-ICP-MS
The speciation of inorganic arsenic in drinking water supplies is an essential part of devising an appropriate treatment process. Arsenate, because of its anion characteristics at drinking water pHs, is effectively removed by anion exchange treatment while arsenite remains in the...
NASA Astrophysics Data System (ADS)
Go, D.; Takarada, W.; Kikutani, T.
2017-10-01
The aim of this study was to investigate the mechanism for the improvement of mechanical properties of poly(ethylene terephthalate) (PET) fibers based on the concept of controlling the state of molecular entanglement. For this purpose, five different PET fibers were prepared through either the conventional melt spinning and drawing/annealing process or the high-speed melt spinning process. In both cases, the melt spinning process was designed so as to realize different Deborah number conditions. The prepared fibers were subjected to the laser Raman spectroscopy measurement and the characteristics of the scattering peak at around 1616 cm-1, which corresponds to the C-C/C=C stretching mode of the aromatic ring in the main chain, were investigated in detail. It was revealed that the fibers drawn and annealed after the melt spinning process of lower Deborah number showed higher tensile strength as well as lower value of full width at half maximum (FWHM) in the laser Raman spectrum. Narrow FWHM was considered to represent the homogeneous state of entanglement structure, which may lead to the higher strength and toughness of fibers because individual molecular chains tend to bare similar level of tensile stress when the fiber is stretched. In case of high-speed spun fibers prepared with a high Deborah number condition, the FWHM was narrow presumably because much lower tensile stress in comparison with the drawing/annealing process was applied when the fiber structure was developed, however the value increased significantly upon applying tensile load to the fibers during the laser Raman spectrum measurement. From these results, it was concluded that the Laser Raman spectroscopy could differentiate molecular chain entanglement structure of various fiber samples, in that low FWHM, which corresponds to either homogeneous state of molecular entanglement or lower level of mean residual stress, and small increase of FWTH upon applying tensile stress are considered to be the key factors for the improvement of the mechanical properties of PET fibers.
Bournazel, M; Lessire, M; Duclos, M J; Magnin, M; Même, N; Peyronnet, C; Recoules, E; Quinsac, A; Labussière, E; Narcy, A
2018-01-01
The optimization of dietary phosphorus (P) and calcium (Ca) supply requires a better understanding of the effect of dietary fiber content of co-products on the digestive utilization of minerals. This study was designed to evaluate the effects of dietary fiber content from 00-rapeseed meal (RSM) on P and Ca digestibility throughout the gastrointestinal tract in growing pigs fed diets without or with microbial phytase. In total, 48 castrated male pigs (initial BW=36.1±0.4 kg) were housed in metabolic crates for 29 days. After an 8-day adaptation period, pigs were allocated to one of the eight treatments. The impact of dietary fiber was modulated by adding whole RSM (wRSM), dehulled RSM (dRSM) or dRSM supplemented with 4.5% or 9.0% rapeseed hulls (dRSMh1 and dRSMh2). Diets contained 0 or 500 phytase unit of microbial phytase per kg. From day 14 to day 23, feces and urine were collected separately to determine apparent total tract digestibility (ATTD) and apparent retention (AR) of P and Ca. At the end of the experiment, femurs and digestive contents were sampled. No effect of variables of interest was observed on growth performance. Microbial phytase increased ATTD and AR of P (P<0.001) but the P equivalency with the wRSM diet was lower than expected. Moreover, stomach inorganic P (iP) solubility was improved by microbial phytase (P<0.001). The ATTD of Ca was not affected by microbial phytase which increased AR of Ca and femur characteristics (P<0.05). Ileal recovery of P was not affected by microbial phytase but cecal recovery was considerably reduced by microbial phytase (P<0.001). The decrease in digesta pH between the distal ileum and cecum (7.6 v. 5.9) enhanced the solubility of iP and may have improved its absorption, as supported by the negative relationship between soluble iP and pH (R 2=0.40, P<0.001 without microbial phytase and R 2=0.24, P=0.026 with microbial phytase). The inclusion of hulls improved the solubility of iP (P<0.05). In conclusion, dehulling does not largely increase nutrient digestibility although dRSM seems to improve the efficacy of microbial phytase in releasing phosphate in the stomach. Moreover, dietary fiber may affect solubilization process in the cecum which potentiates the effect of microbial phytase on P digestibility.
Fiber moisture content measurements of lint and seed cotton by a small microwave instrument
USDA-ARS?s Scientific Manuscript database
The timely and accurate measurement of cotton fiber moisture content is important, as deviations in moisture fiber content can impact the fiber quality and processing of cotton fiber. The Mesdan Aqualab is a small, modular, microwave-based fiber moisture measurement instrument for samples with mode...
USDA-ARS?s Scientific Manuscript database
Micronaire is a key cotton fiber classing and quality assessment property, and changes in fiber micronaire can impact downstream fiber processing and dye consistency in the textile manufacturing industry. Micronaire is a function of two fiber components—fiber maturity and fineness. Historically, m...
NASA Astrophysics Data System (ADS)
Abdulagatov, Aziz Ilmutdinovich
Atomic layer deposition (ALD) and molecular layer deposition (MLD) are advanced thin film coating techniques developed for deposition of inorganic and hybrid organic-inorganic films respectively. Decreasing device dimensions and increasing aspect ratios in semiconductor processing has motivated developments in ALD. The beginning of this thesis will cover study of new ALD chemistry for high dielectric constant Y 2O3. In addition, the feasibility of conducting low temperature ALD of TiN and TiAlN is explored using highly reactive hydrazine as a new nitrogen source. Developments of these ALD processes are important for the electronics industry. As the search for new materials with more advanced properties continues, attention has shifted toward exploring the synthesis of hierarchically nanostructured thin films. Such complex architectures can provide novel functions important to the development of state of the art devices for the electronics industry, catalysis, energy conversion and memory storage as a few examples. Therefore, the main focus of this thesis is on the growth, characterization, and post-processing of ALD and MLD films for fabrication of novel composite (nanostructured) thin films. Novel composite materials are created by annealing amorphous ALD oxide alloys in air and by heat treatment of hybrid organic-inorganic MLD films in inert atmosphere (pyrolysis). The synthesis of porous TiO2 or Al2O3 supported V2O5 for enhanced surface area catalysis was achieved by the annealing of inorganic TiVxOy and AlV xOy ALD films in air. The interplay between phase separation, surface energy difference, crystallization, and melting temperature of individual oxides were studied for their control of film morphology. In other work, a class of novel metal oxide-graphitic carbon composite thin films was produced by pyrolysis of MLD hybrid organic-inorganic films. For example, annealing in argon of titania based hybrid films enabled fabrication of thin films of intimately mixed TiO2 and nanographitized carbon. The graphitized carbon in the film was formed as a result of the removal of hydrogen by pyrolysis of the organic constituency of the MLD film. The presence of graphitic carbon allowed a 14 orders of magnitude increase in the electrical conductivity of the composite material compared fully oxidized rutile TiO 2.
Ultra High Temperature (UHT) SiC Fiber (Phase 2)
NASA Technical Reports Server (NTRS)
Dicarlo, James A.; Jacobson, Nathan S.; Lizcano, Maricela; Bhatt, Ramakrishna T.
2015-01-01
Silicon-carbide fiber-reinforced silicon-carbide ceramic matrix composites (SiCSiC CMC) are emerginglightweight re-usable structural materials not only for hot section components in gas turbine engines, but also for controlsurfaces and leading edges of reusable hypersonic vehicles as well as for nuclear propulsion and reactor components. Ithas been shown that when these CMC are employed in engine hot-section components, the higher the upper usetemperature (UUT) of the SiC fiber, the more performance benefits are accrued, such as higher operating temperatures,reduced component cooling air, reduced fuel consumption, and reduced emissions. The first generation of SiCSiC CMC with a temperature capability of 2200-2400F are on the verge of being introduced into the hot-section components ofcommercial and military gas turbine engines.Today the SiC fiber type currently recognized as the worlds best in terms ofthermo-mechanical performance is the Sylramic-iBN fiber. This fiber was previously developed by the PI at NASA GRC using patented processes to improve the high-cost commercial Sylramic fiber, which in turn was derived from anotherlow-cost low-performance commercial fiber. Although the Sylramic-iBN fiber shows state-of-the art creep and rupture resistance for use temperatures above 2550oF, NASA has shown by fundamental creep studies and model developmentthat its microstructure and creep resistance could theoretically be significantly improved to produce an Ultra HighTemperature (UHT) SiC fiber.This Phase II Seedling Fund effort has been focused on the key objective of effectively repeating the similar processes used for producing the Sylramic-iBN fiber using a design of experiments approach to first understand the cause of the less than optimum Sylramic-iBN microstructure and then attempting to develop processconditions that eliminate or minimize these key microstructural issues. In so doing, it is predicted that that theseadvanced process could result in an UHT SiC fiber with 20 times more creep resistance than the Sylramic-iBN fiber,which in turn would allow SiCSiC CMC to operate up to 2700oF and above, thereby further enhancing the performancebenefits of SiCSiC components in aero-propulsion engines. It was also envisioned that the fiber processes developedduring Phase II efforts would not only reduce production costs for the UHT fiber by using low-cost precursor fibers andcombined processes, but also allow the UHT fibers to be directly produced in preforms of the precursor fibers, possibly atthe facilities of the CMC fabricator.
A TEMPLATE-BASED FABRICATION TECHNIQUE FOR SPATIALLY-DESIGNED POLYMER MICRO/NANOFIBER COMPOSITES
Naik, Nisarga; Caves, Jeff; Kumar, Vivek; Chaikof, Elliot; Allen, Mark G.
2013-01-01
This paper reports a template-based technique for the fabrication of polymer micro/nanofiber composites, exercising control over the fiber dimensions and alignment. Unlike conventional spinning-based methods of fiber production, the presented approach is based on micro-transfer molding. It is a parallel processing technique capable of producing fibers with control over both in-plane and out-of-plane geometries, in addition to packing density and layout of the fibers. Collagen has been used as a test polymer to demonstrate the concept. Hollow and solid collagen fibers with various spatial layouts have been fabricated. Produced fibers have widths ranging from 2 µm to 50 µm, and fiber thicknesses ranging from 300 nm to 3 µm. Also, three-dimensionality of the process has been demonstrated by producing in-plane serpentine fibers with designed arc lengths, out-of-plane wavy fibers, fibers with focalized particle encapsulation, and porous fibers with desired periodicity and pore sizes. PMID:24533428
Fiber optic and laser sensors X; Proceedings of the Meeting, Boston, MA, Sept. 8-11, 1992
NASA Technical Reports Server (NTRS)
Udd, Eric (Editor); Depaula, Ramon P. (Editor)
1993-01-01
Topics addressed include acoustic and pressure sensors; fiber optic gyros; electric and magnetic field sensors; bend, strain, and temperature sensors; industrial applications of sensors; and processing techniques. Particular attention is given to fiber optic interferometric acoustic sensors for wind tunnel applications, polished coupler and resonator fabrication, second-harmonic detection for rotation sensing in fiber optic gyros, simplified control theory in closed-loop fiber optic gyroscopes, and a Fabry-Perot sensor with digital signal processing for the measurement of magnetostriction. Also discussed are a Bragg fiber laser sensor, commercialization of fiber optic strain gauge systems, thermal ignition in hazardous environments due to stray light from optical fibers, a system for absolute measurements by interferometric sensors, and high-performance interferometric demodulation techniques.
Krajina, Brad A.; Proctor, Amy C.; Schoen, Alia P.; ...
2017-08-08
Biomineralization, the process by which biological systems direct the synthesis of inorganic structures from organic templates, is an exquisite example of nanomaterial self-assembly in nature. Its products include the shells of mollusks and the bones and teeth of vertebrates. By comparison, conventional inorganic synthesis techniques provide limited control over inorganic nanomaterial architecture. Inspired by biomineralization in nature, over the last two decades, the field of biotemplating has emerged as a new paradigm for inorganic nanomaterial assembly, wherein researchers seek to design novel nano-structures in which inorganic nanomaterial synthesis is directed from an underlying biomolecular template. Here, we review the motivation,more » mechanistic understanding, progress, and challenges for the field of biotemplating. We highlight the interdisciplinary nature of this field, and survey a broad range of examples of bio-templated engineering: ranging from strategies that exploit the inherent capabilities of proteins in nature, to genetically-engineered systems that unlock new capabilities for self-assembly with biomolecules. Here, we illustrate that the use of biological materials as templates for inorganic self-assembly holds tremendous potential for nanomaterial engineering, with applications that range from electronics and energy to medicine.« less
Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging.
Elzoghby, Ahmed O; Hemasa, Ayman L; Freag, May S
2016-12-10
Recently, a great interest has been paid to the development of hybrid protein-inorganic nanoparticles (NPs) for drug delivery and cancer diagnostics in order to combine the merits of both inorganic and protein nanocarriers. This review primarily discusses the most outstanding advances in the applications of the hybrids of naturally-occurring proteins with iron oxide, gadolinium, gold, silica, calcium phosphate NPs, carbon nanotubes, and quantum dots in drug delivery and cancer imaging. Various strategies that have been utilized for the preparation of protein-functionalized inorganic NPs and the mechanisms involved in the drug loading process are discussed. How can the protein functionalization overcome the limitations of colloidal stability, poor dispersibility and toxicity associated with inorganic NPs is also investigated. Moreover, issues relating to the influence of protein hybridization on the cellular uptake, tumor targeting efficiency, systemic circulation, mucosal penetration and skin permeation of inorganic NPs are highlighted. A special emphasis is devoted to the novel approaches utilizing the protein-inorganic nanohybrids in combined cancer therapy, tumor imaging, and theranostic applications as well as stimuli-responsive drug release from the nanohybrids. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krajina, Brad A.; Proctor, Amy C.; Schoen, Alia P.
Biomineralization, the process by which biological systems direct the synthesis of inorganic structures from organic templates, is an exquisite example of nanomaterial self-assembly in nature. Its products include the shells of mollusks and the bones and teeth of vertebrates. By comparison, conventional inorganic synthesis techniques provide limited control over inorganic nanomaterial architecture. Inspired by biomineralization in nature, over the last two decades, the field of biotemplating has emerged as a new paradigm for inorganic nanomaterial assembly, wherein researchers seek to design novel nano-structures in which inorganic nanomaterial synthesis is directed from an underlying biomolecular template. Here, we review the motivation,more » mechanistic understanding, progress, and challenges for the field of biotemplating. We highlight the interdisciplinary nature of this field, and survey a broad range of examples of bio-templated engineering: ranging from strategies that exploit the inherent capabilities of proteins in nature, to genetically-engineered systems that unlock new capabilities for self-assembly with biomolecules. Here, we illustrate that the use of biological materials as templates for inorganic self-assembly holds tremendous potential for nanomaterial engineering, with applications that range from electronics and energy to medicine.« less
Automated process for solvent separation of organic/inorganic substance
Schweighardt, F.K.
1986-07-29
There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process. 4 figs.
Automated process for solvent separation of organic/inorganic substance
Schweighardt, Frank K.
1986-01-01
There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.
Kernel Regression Estimation of Fiber Orientation Mixtures in Diffusion MRI
Cabeen, Ryan P.; Bastin, Mark E.; Laidlaw, David H.
2016-01-01
We present and evaluate a method for kernel regression estimation of fiber orientations and associated volume fractions for diffusion MR tractography and population-based atlas construction in clinical imaging studies of brain white matter. This is a model-based image processing technique in which representative fiber models are estimated from collections of component fiber models in model-valued image data. This extends prior work in nonparametric image processing and multi-compartment processing to provide computational tools for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to related work on multi-compartment processing, this approach is based on directional measures of divergence and includes data-adaptive extensions for model selection and bilateral filtering. This is useful for reconstructing complex anatomical features in clinical datasets analyzed with the ball-and-sticks model, and our framework’s data-adaptive extensions are potentially useful for general multi-compartment image processing. We experimentally evaluate our approach with both synthetic data from computational phantoms and in vivo clinical data from human subjects. With synthetic data experiments, we evaluate performance based on errors in fiber orientation, volume fraction, compartment count, and tractography-based connectivity. With in vivo data experiments, we first show improved scan-rescan reproducibility and reliability of quantitative fiber bundle metrics, including mean length, volume, streamline count, and mean volume fraction. We then demonstrate the creation of a multi-fiber tractography atlas from a population of 80 human subjects. In comparison to single tensor atlasing, our multi-fiber atlas shows more complete features of known fiber bundles and includes reconstructions of the lateral projections of the corpus callosum and complex fronto-parietal connections of the superior longitudinal fasciculus I, II, and III. PMID:26691524
Film/Adhesive Processing Module for Fiber-Placement Processing of Composites
NASA Technical Reports Server (NTRS)
Hulcher, A. Bruce
2007-01-01
An automated apparatus has been designed and constructed that enables the automated lay-up of composite structures incorporating films, foils, and adhesives during the automated fiber-placement process. This apparatus, denoted a film module, could be used to deposit materials in film or thin sheet form either simultaneously when laying down the fiber composite article or in an independent step.
Contreras-Padilla, Margarita; Gutiérrez-Cortez, Elsa; Valderrama-Bravo, María Del Carmen; Rojas-Molina, Isela; Espinosa-Arbeláez, Diego Germán; Suárez-Vargas, Raúl; Rodríguez-García, Mario Enrique
2012-03-01
Chemical proximate analysis was done in order to determine the changes of nutritional characteristics of nopal powders from three different maturity stages 50, 100, and 150 days and obtained by three different drying processes: freeze dried, forced air oven, and tunnel. Results indicate that nopal powder obtained by the process of freeze dried retains higher contents of protein, soluble fiber, and fat than the other two processes. Also, freeze dried process had less effect on color hue variable. No changes were observed in insoluble fiber content, chroma and lightness with the three different drying processes. Furthermore, the soluble fibers decreased with the age of nopal while insoluble fibers and ash content shows an opposite trend. In addition, the luminosity and hue values did not show differences among the maturity stages studied. The high content of dietary fibers of nopal pad powder could to be an interesting source of these important components for human diets and also could be used in food, cosmetics and pharmaceutical industry.
Survey of inorganic polymers. [for composite matrix resins
NASA Technical Reports Server (NTRS)
Gerber, A. H.; Mcinerney, E. F.
1979-01-01
A literature search was carried out in order to identify inorganic, metallo-organic, and hybrid inorganic-organic polymers that could serve as potential matrix resins for advanced composites. The five most promising candidates were critically reviewed and recommendations were made for the achievement of their potential in terms of performance and cost. These generic polymer classes comprise: (1) Poly(arylsil sesquioxanes); (2) Poly(silyl arylene siloxanes); (3) Poly(silarylenes); (4) Poly(silicon-linked ferrocenes); and (5) Poly(organo phosphazenes). No single candidate currently possesses the necessary combination of physicomechanical properties, thermal stability, processability, and favorable economics. The first three classes exhibit the best thermal performance. On the other hand, poly (organo phosphazenes), the most extensively studied polymer class, exhibit the best combination of structure-property control, processability, and favorable economics.
Morphology control in polymer blend fibers—a high throughput computing approach
NASA Astrophysics Data System (ADS)
Sesha Sarath Pokuri, Balaji; Ganapathysubramanian, Baskar
2016-08-01
Fibers made from polymer blends have conventionally enjoyed wide use, particularly in textiles. This wide applicability is primarily aided by the ease of manufacturing such fibers. More recently, the ability to tailor the internal morphology of polymer blend fibers by carefully designing processing conditions has enabled such fibers to be used in technologically relevant applications. Some examples include anisotropic insulating properties for heat and anisotropic wicking of moisture, coaxial morphologies for optical applications as well as fibers with high internal surface area for filtration and catalysis applications. However, identifying the appropriate processing conditions from the large space of possibilities using conventional trial-and-error approaches is a tedious and resource-intensive process. Here, we illustrate a high throughput computational approach to rapidly explore and characterize how processing conditions (specifically blend ratio and evaporation rates) affect the internal morphology of polymer blends during solvent based fabrication. We focus on a PS: PMMA system and identify two distinct classes of morphologies formed due to variations in the processing conditions. We subsequently map the processing conditions to the morphology class, thus constructing a ‘phase diagram’ that enables rapid identification of processing parameters for specific morphology class. We finally demonstrate the potential for time dependent processing conditions to get desired features of the morphology. This opens up the possibility of rational stage-wise design of processing pathways for tailored fiber morphology using high throughput computing.
How current ginning processes affect fiber length uniformity index
USDA-ARS?s Scientific Manuscript database
There is a need to develop cotton ginning methods that improve fiber characteristics that are compatible with the newer and more efficient spinning technologies. A literature search produced recent studies that described how current ginning processes affect HVI fiber length uniformity index. Resul...
NASA Astrophysics Data System (ADS)
Murdy, Rachel Campbell; Mak, Michelle; Misra, Manjusri; Mohanty, Amar K.
2015-05-01
The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass, wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler's intrinsic properties on the resulting material performance.
NASA Technical Reports Server (NTRS)
Hou, T. H.
1985-01-01
High quality long fiber reinforced composites, such as those used in aerospace and industrial applications, are commonly processed in autoclaves. An adequate resin flow model for the entire system (laminate/bleeder/breather), which provides a description of the time-dependent laminate consolidation process, is useful in predicting the loss of resin, heat transfer characteristics, fiber volume fraction and part dimension, etc., under a specified set of processing conditions. This could be accomplished by properly analyzing the flow patterns and pressure profiles inside the laminate during processing. A newly formulated resin flow model for composite prepreg lamination process is reported. This model considers viscous resin flows in both directions perpendicular and parallel to the composite plane. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction, a poiseuille type pressure flow through porous media is assumed. Proper force and mass balances have been made and solved for the whole system. The effects of fiber-fiber interactions during lamination are included as well. The unique features of this analysis are: (1) the pressure gradient inside the laminate is assumed to be generated from squeezing action between two adjacent approaching fiber layers, and (2) the behavior of fiber bundles is simulated by a Finitely Extendable Nonlinear Elastic (FENE) spring.
Chin-Yin Hwang; Chung-Yun Hse; Elvin T. Choong
1999-01-01
Chemical compositions and fiber measurement of virgin and recycled fibers from three sources were determined. Results revealed that virgin southern pine fiber had highest alcohol-benzene extractive and lignin contents and lowest holo- and alpha-cellulose content among the three fiber types. Fiber length distribution of virgin fiber was less sensitive to disintegration...
NASA Astrophysics Data System (ADS)
Desplentere, Frederik; Six, Wim; Bonte, Hilde; Debrabandere, Eric
2013-04-01
In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length > 15mm) this investigation concentrates on the influence of the power law index on the final fiber length distribution within the injection molded part. To realize this, the Autodesk Simulation Moldflow Insight Scandium 2013 software has been used. In this software, a fiber breakage algorithm is available from this release on. Using virtual material data with realistic viscosity levels allows to separate the influence of the power law index on the fiber breakage from the other material and process parameters. Applying standard settings for the fiber breakage parameters results in an obvious influence on the fiber length distribution through the thickness of the part and also as function of position in the part. Finally, the influence of the shear rate constant within the fiber breakage model has been investigated illustrating the possibility to fit the virtual fiber length distribution to the possible experimentally available data.
Cellulosic fibers and nonwovens from solutions: Processing and properties
NASA Astrophysics Data System (ADS)
Dahiya, Atul
Cellulose is a renewable and bio-based material source extracted from wood that has the potential to generate value added products such as composites, fibers, and nonwoven textiles. This research was focused on the potential of cellulose as the raw material for fiber spinning and melt blowing of nonwovens. The cellulose was dissolved in two different benign solvents: the amine oxide 4-N-methyl morpholine oxide monohydrate (NMMO•H2O) (lyocell process); and the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([C 4MIM]Cl). The solvents have essentially no vapor pressure and are biologically degradable, making them environmentally advantageous for manufacturing processes. The objectives of this research were to: (1) characterize solutions of NMMO and [C4MIM]Cl; (2) develop processing techniques to melt blow nonwoven webs from cellulose using NMMO as a solvent; (3) electrospin cellulosic fibers from the [C4MIM]Cl solvent; (4) spin cellulosic single fibers from the [C4MIM]Cl solvent. Different concentration solutions of cellulose in NMMO and [C4MIM]Cl were initially characterized rheologically and thermally to understand their behavior under different conditions of stress, strain, and temperature. Results were used to determine processing conditions and concentrations for the melt blowing, fiber spinning, and electrospinning experiments. The cellulosic nonwoven webs and fibers were characterized for their physical and optical properties such as tensile strength, water absorbency, fiber diameter, and fiber surface. Thermal properties were also measured by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Lyocell webs were successfully melt blown from the 14% cellulose solution. Basis weights of the webs were 27, 79, and 141 g/m2 and thicknesses ranged from 0.3-0.9 mm, depending on die temperatures and die to collector distance. The average fiber diameter achieved was 2.3 microns. The 6% lyocell solutions exhibited poor spinability and did not form nonwoven webs. The electrospun nonwoven webs obtained were evaluated for fiber diameter and surface/web structure using scanning electron microscopy (SEM). The fibers obtained were in the range of 17-25 microns and the fiber surfaces and shapes varied with spinning conditions. A capillary rheometer was used to spin single fibers from [C 4MIM]Cl. Circular fibers in diameter ranging from 12-84 microns were obtained.
Overview of SBIR Phase II Work on Hollow Graphite Fibers
NASA Technical Reports Server (NTRS)
Stallcup, Michael; Brantley, Lott W. (Technical Monitor)
2001-01-01
Ultra-Lightweight materials are enabling for producing space based optical components and support structures. Heretofore, innovative designs using existing materials has been the approach to produce lighter-weight optical systems. Graphite fiber reinforced composites, because of their light weight, have been a material of frequent choice to produce space based optical components. Hollow graphite fibers would be lighter than standard solid graphite fibers and, thus, would save weight in optical components. The Phase I SBIR program demonstrated it is possible to produce hollow carbon fibers that have strengths up to 4.2 GPa which are equivalent to commercial fibers, and composites made from the hollow fibers had substantially equivalent composite strengths as commercial fiber composites at a 46% weight savings. The Phase II SBIR program will optimize processing and properties of the hollow carbon fiber and scale-up processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA. Information presented here includes an overview of the strength of some preliminary hollow fibers, photographs of those fibers, and a short discussion of future plans.
Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites: Influence of Interface Modification
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Eldridge, Jeffrey I.
1998-01-01
Unidirectional celsian matrix composites having 42-45 vol % of uncoated or BN-SIC coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01%, respectively, with ultimate strength as high as 960 MPa. The elastic Young modulus of the uncoated and coated fiber-reinforced composites were 184 +/- 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of composite with uncoated fibers is due to degradation of the fiber strength from mechanical damage during processing. Because both the coated- and uncoated-fiber-reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SIC dual layer is primarily the protection of fibers from mechanical damage during processing.
Tribological dry sliding behavior of chopped carbon fiber reinforced polyetheretherketone
NASA Astrophysics Data System (ADS)
Chumaevskii, A. V.; Ivanov, A. N.; Filippov, A. V.; Rubtsov, V. E.; Kolubaev, E. A.
2017-12-01
Tribological tests on 3D printed pure polyetheretherketone and carbon fiber reinforced polyetheretherketone samples were carried out. The negative effect of carbon fiber sticking out of the matrix on wear and sliding process stability was revealed. These fibers may be too long and oriented to the worn surface in a manner that prevents their removal by wear so that the worn surface becomes irregular and the sliding process instable.
NASA Technical Reports Server (NTRS)
Revankar, Vithal; Hlavacek, Vladimir
1991-01-01
The chemical vapor deposition (CVD) synthesis of fibers capable of effectively reinforcing intermetallic matrices at elevated temperatures which can be used for potential applications in high temperature composite materials is described. This process was used due to its advantage over other fiber synthesis processes. It is extremely important to produce these fibers with good reproducible and controlled growth rates. However, the complex interplay of mass and energy transfer, blended with the fluid dynamics makes this a formidable task. The design and development of CVD reactor assembly and system to synthesize TiB2, CrB, B4C, and TiC fibers was performed. Residual thermal analysis for estimating stresses arising form thermal expansion mismatch were determined. Various techniques to improve the mechanical properties were also performed. Various techniques for improving the fiber properties were elaborated. The crystal structure and its orientation for TiB2 fiber is discussed. An overall view of the CVD process to develop CrB2, TiB2, and other high performance ceramic fibers is presented.
Auguste, Jean-Louis; Humbert, Georges; Leparmentier, Stéphanie; Kudinova, Maryna; Martin, Pierre-Olivier; Delaizir, Gaëlle; Schuster, Kay; Litzkendorf, Doris
2014-01-01
The objective of this paper is to demonstrate the interest of a consolidation process associated with the powder-in-tube technique in order to fabricate a long length of specialty optical fibers. This so-called Modified Powder-in-Tube (MPIT) process is very flexible and paves the way to multimaterial optical fiber fabrications with different core and cladding glassy materials. Another feature of this technique lies in the sintering of the preform under reducing or oxidizing atmosphere. The fabrication of such optical fibers implies different constraints that we have to deal with, namely chemical species diffusion or mechanical stress due to the mismatches between thermal expansion coefficients and working temperatures of the fiber materials. This paper focuses on preliminary results obtained with a lanthano-aluminosilicate glass used as the core material for the fabrication of all-glass fibers or specialty Photonic Crystal Fibers (PCFs). To complete the panel of original microstructures now available by the MPIT technique, we also present several optical fibers in which metallic particles or microwires are included into a silica-based matrix. PMID:28788176
NASA Astrophysics Data System (ADS)
Yudhanto, F.; Jamasri; Rochardjo, Heru S. B.
2018-05-01
The characterized agave cantala fiber in this research came from Sumenep, Madura, Indonesia was chemically processed using sodium hydroxide (NaOH) and hydrogen peroxide (H2O2) solution. The treatment with both solutions is called bleaching process. Tensile strength test of single fiber was used to get mechanical properties from selecting process of the various parameter are temperature, PH and concentration of H2O2 with an L9 orthogonal array by Taguchi method. The results indicate that PH is most significant parameter influencing the tensile strength followed by temperature and concentration H2O2. The influence of bleaching treatment on tensile strength showed increasing of crystallinity index of fiber by 21%. It showed by lost of hemicellulose and lignin layers of fiber can be seen from waveforms changes of 1735 (C=O), 1627 (OH), 1319 (CH2), 1250 (C-O) by FTIR graph. The photo SEM showed that the bleaching of fibers causes the fibers more roughly and clearly than untreated fibers.
Differences in interfacial bond strengths of graphite fiber-epoxy resin composites
NASA Technical Reports Server (NTRS)
Needles, H. L.
1985-01-01
The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.
Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing
NASA Astrophysics Data System (ADS)
Chen, Hui; Buric, Michael; Ohodnicki, Paul R.; Nakano, Jinichiro; Liu, Bo; Chorpening, Benjamin T.
2018-03-01
The potential to use single-crystal sapphire optical fiber as an alternative to silica optical fibers for sensing in high-temperature, high-pressure, and chemically aggressive harsh environments has been recognized for several decades. A key technological barrier to the widespread deployment of harsh environment sensors constructed with sapphire optical fibers has been the lack of an optical cladding that is durable under these conditions. However, researchers have not yet succeeded in incorporating a high-temperature cladding process into the typical fabrication process for single-crystal sapphire fibers, which generally involves seed-initiated fiber growth from the molten oxide state. While a number of advances in fabrication of a cladding after fiber-growth have been made over the last four decades, none have successfully transitioned to a commercial manufacturing process. This paper reviews the various strategies and techniques for fabricating an optically clad sapphire fiber which have been proposed and explored in published research. The limitations of current approaches and future prospects for sapphire fiber cladding are discussed, including fabrication methods and materials. The aim is to provide an understanding of the past research into optical cladding of sapphire fibers and to assess possible material systems for future research on this challenging problem for harsh environment sensors.
Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells
Liu, Ruchuan
2014-01-01
Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells. PMID:28788591
Fabrication, functionalization, and application of electrospun biopolymer nanofibers.
Kriegel, Christina; Arecchi, Alessandra; Arrechi, Alessandra; Kit, Kevin; McClements, D J; Weiss, Jochen
2008-09-01
The use of novel nanostructured materials has attracted considerable interest in the food industry for their utilization as highly functional ingredients, high-performance packaging materials, processing aids, and food quality and safety sensors. Most previous application interest has focused on the development of nanoparticles. However, more recently, the ability to produce non-woven mats composed of nanofibers that can be used in food applications is beginning to be investigated. Electrospinning is a novel fabrication technique that can be used to produce fibers with diameters below 100 nm from (bio-) polymer solutions. These nanofibers have been shown to possess unique properties that distinguish them from non-woven fibers produced by other methods, e.g., melt-blowing. This is because first the process involved results in a high orientation of polymers within the fibers that leads to mechanically superior properties, e.g., increased tensile strengths. Second, during the spinning of the fibers from polymer solutions, the solvent is rapidly evaporated allowing the production of fibers composed of polymer blends that would typically phase separate if spun with other processes. Third, the small dimensions of the fibers lead to very high specific surface areas. Because of this the fiber properties may be greatly influenced by surface properties giving rise to fiber functionalities not found in fibers of larger sizes. For food applications, the fibers may find uses as ingredients if they are composed solely of edible polymers and GRAS ingredients, (e.g., fibers could contain functional ingredients such as nutraceuticals, antioxidants, antimicrobials, and flavors), as active packaging materials or as processing aids (e.g., catalytic reactors, membranes, filters (Lala et al., 2007), and sensors (Manesh et al., 2007; Ren et al., 2006; Sawicka et al., 2005). This review is therefore intended to introduce interested food and agricultural scientists to the concept of nano-fiber manufacturing with a particular emphasis on the use of biopolymers. We will review typical fabrication set-ups, discuss the influence of process conditions on nanofiber properties, and then review previous studies that describe the production of biopolymer-based nanofibers. Finally we briefly discuss emerging methods to further functionalize fibers and discuss potential applications in the area of food science and technology.
Development of inorganic resists for electron beam lithography: Novel materials and simulations
NASA Astrophysics Data System (ADS)
Jeyakumar, Augustin
Electron beam lithography is gaining widespread utilization as the semiconductor industry progresses towards both advanced optical and non-optical lithographic technologies for high resolution patterning. The current resist technologies are based on organic systems that are imaged most commonly through chain scission, networking, or a chemically amplified polarity change in the material. Alternative resists based on inorganic systems were developed and characterized in this research for high resolution electron beam lithography and their interactions with incident electrons were investigated using Monte Carlo simulations. A novel inorganic resist imaging scheme was developed using metal-organic precursors which decompose to form metal oxides upon electron beam irradiation that can serve as inorganic hard masks for hybrid bilayer inorganic-organic imaging systems and also as directly patternable high resolution metal oxide structures. The electron beam imaging properties of these metal-organic materials were correlated to the precursor structure by studying effects such as interactions between high atomic number species and the incident electrons. Optimal single and multicomponent precursors were designed for utilization as viable inorganic resist materials for sub-50nm patterning in electron beam lithography. The electron beam imaging characteristics of the most widely used inorganic resist material, hydrogen silsesquioxane (HSQ), was also enhanced using a dual processing imaging approach with thermal curing as well as a sensitizer catalyzed imaging approach. The interaction between incident electrons and the high atomic number species contained in these inorganic resists was also studied using Monte Carlo simulations. The resolution attainable using inorganic systems as compared to organic systems can be greater for accelerating voltages greater than 50 keV due to minimized lateral scattering in the high density inorganic systems. The effects of loading nanoparticles in an electron beam resist was also investigated using a newly developed hybrid Monte Carlo approach that accounts for multiple components in a solid film. The resolution of the nanocomposite resist process was found to degrade with increasing nanoparticle loading. Finally, the electron beam patterning of self-assembled monolayers, which were found to primarily utilize backscattered electrons from the high atomic number substrate materials to form images, was also investigated and characterized. It was found that backscattered electrons limit the resolution attainable at low incident electron energies.
Investigation on the durability of man-made vitreous fibers in rat lungs.
Bellmann, B; Muhle, H; Kamstrup, O; Draeger, U F
1994-01-01
Two types of sized stonewool with median lengths of 6.7 and 10.1 microns and median diameters of 0.63 and 0.85 microns, and crocidolite with fibers of median length of 4.8 microns and median diameter of 0.18 microns were instilled intratracheally into female Wistar rats. A single dose of 2 mg in 0.3 ml saline was used for the stonewool samples and 0.1 mg in 0.3 ml saline for crocidolite. The evenness of distribution of fibers in the lung was checked by scanning electron microscopy (SEM). Five animals per group were sacrificed after 2 days, 1, 3, 6, and 12 months. After low-temperature ashing of the lungs about 200 fibers per animal were analyzed by SEM for length and diameter. The number and mass of fibers in the total lung were calculated. For the stonewool samples the decrease in the number of fibers in the lung ash followed approximately first order kinetics resulting in half-times of 90 and 120 days. The analysis of fiber number and diameter of different length fractions was used to estimate the contribution of three processes of fiber elimination: transport by macrophages for short fibers, breakage of fibers, and dissolution of fibers. (The process of transport by macrophages was found fastest for fibers with length < 2.5 microns). For the elimination of critical fibers with length > 5 microns, the breakage and dissolution were the most important processes. The breakage of fibers was predominant for one of the stonewool samples. The preferential type of the mechanism of fiber elimination is dependent on chemical composition and size distribution. PMID:7882927
Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Honghu
Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering.more » Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.« less
40 CFR 63.11398 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... acrylonitrile units: acrylic fiber or modacrylic fiber. Acrylonitrile solution polymerization means a process where acrylonitrile and comonomers are dissolved in a solvent to form a polymer solution (typically... resulting reactor polymer solution (spin dope) is filtered and pumped directly to the fiber spinning process...
40 CFR 63.11398 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... acrylonitrile units: acrylic fiber or modacrylic fiber. Acrylonitrile solution polymerization means a process where acrylonitrile and comonomers are dissolved in a solvent to form a polymer solution (typically... resulting reactor polymer solution (spin dope) is filtered and pumped directly to the fiber spinning process...
Processing and Structural Advantages of the Sylramic-iBN SiC Fiber for SiC/SiC Components
NASA Technical Reports Server (NTRS)
Yun, H. M.; Dicarlo, J. A.; Bhatt, R. T.; Hurst, J. B.
2008-01-01
The successful high-temperature application of complex-shaped SiC/SiC components will depend on achieving as high a fraction of the as-produced fiber strength as possible during component fabrication and service. Key issues center on a variety of component architecture, processing, and service-related factors that can reduce fiber strength, such as fiber-fiber abrasion during architecture shaping, surface chemical attack during interphase deposition and service, and intrinsic flaw growth during high-temperature matrix formation and composite creep. The objective of this paper is to show that the NASA-developed Sylramic-iBN SiC fiber minimizes many of these issues for state-of-the-art melt-infiltrated (MI) SiC/BN/SiC composites. To accomplish this, data from various mechanical tests are presented that compare how different high performance SiC fiber types retain strength during formation of complex architectures, during processing of BN interphases and MI matrices, and during simulated composite service at high temperatures.
Dry Process for Making Polyimide/ Carbon-and-Boron-Fiber Tape
NASA Technical Reports Server (NTRS)
Belvin, Harry L.; Cano, Roberto J.; Johnston, Norman J.; Marchello, Joseph M.
2003-01-01
A dry process has been invented as an improved means of manufacturing composite prepreg tapes that consist of high-temperature thermoplastic polyimide resin matrices reinforced with carbon and boron fibers. Such tapes are used (especially in the aircraft industry) to fabricate strong, lightweight composite-material structural components. The inclusion of boron fibers results in compression strengths greater than can be achieved by use of carbon fibers alone. The present dry process is intended to enable the manufacture of prepreg tapes (1) that contain little or no solvent; (2) that have the desired dimensions, fiber areal weight, and resin content; and (3) in which all of the fibers are adequately wetted by resin and the boron fibers are fully encapsulated and evenly dispersed. Prepreg tapes must have these properties to be useable in the manufacture of high-quality composites by automated tape placement. The elimination of solvent and the use of automated tape placement would reduce the overall costs of manufacturing.
Naskar, Amit K.; Ozcan, Soydan; Eberle, Claude C.; Abdallah, Mohamed Gabr; Mackiewicz, Ludtka Gail; Ludtka, Gerard Michael; Paulauskas, Felix Leonard; Rivard, John Daniel Kennedy
2017-08-08
Method for the preparation of carbon fiber from fiber precursor, wherein the fiber precursor is subjected to a magnetic field of at least 3 Tesla during a carbonization process. The carbonization process is generally conducted at a temperature of at least 400.degree. C. and less than 2200.degree. C., wherein, in particular embodiments, the carbonization process includes a low temperature carbonization step conducted at a temperature of at least or above 400.degree. C. or 500.degree. C. and less than or up to 1000.degree. C., 1100.degree. C., or 1200.degree. C., followed by a high temperature carbonization step conducted at a temperature of at least or above 1200.degree. C. In particular embodiments, particularly in the case of a polyacrylonitrile (PAN) fiber precursor, the resulting carbon fiber may possess a minimum tensile strength of at least 600 ksi, a tensile modulus of at least 30 Msi, and an ultimate elongation of at least 1.5%.
Ansari, Farhan; Berglund, Lars A
2018-04-11
Cellulose nanocomposites can be considered for semistructural load-bearing applications where modulus and strength requirements exceed 10 GPa and 100 MPa, respectively. Such properties are higher than for most neat polymers but typical for molded short glass fiber composites. The research challenge for polymer matrix biocomposites is to develop processing concepts that allow high cellulose nanofibril (CNF) content, nanostructural control in the form of well-dispersed CNF, the use of suitable polymer matrices, as well as molecular scale interface tailoring to address moisture effects. From a practical point of view, the processing concept needs to be scalable so that large-scale industrial processing is feasible. The vast majority of cellulose nanocomposite studies elaborate on materials with low nanocellulose content. An important reason is the challenge to prevent CNF agglomeration at high CNF content. Research activities are therefore needed on concepts with the potential for rapid processing with controlled nanostructure, including well-dispersed fibrils at high CNF content so that favorable properties are obtained. This perspective discusses processing strategies, agglomeration problems, opportunities, and effects from interface tailoring. Specifically, preformed CNF mats can be used to design nanostructured biocomposites with high CNF content. Because very few composite materials combine functional and structural properties, CNF materials are an exception in this sense. The suggested processing concept could include functional components (inorganic clays, carbon nanotubes, magnetic nanoparticles, among others). In functional three-phase systems, CNF networks are combined with functional components (nanoparticles or fibril coatings) together with a ductile polymer matrix. Such materials can have functional properties (optical, magnetic, electric, etc.) in combination with mechanical performance, and the comparably low cost of nanocellulose may facilitate the use of large nanocomposite structures in industrial applications.
Rose, C.; Parker, A.; Jefferson, B.; Cartmell, E.
2015-01-01
The safe disposal of human excreta is of paramount importance for the health and welfare of populations living in low income countries as well as the prevention of pollution to the surrounding environment. On-site sanitation (OSS) systems are the most numerous means of treating excreta in low income countries, these facilities aim at treating human waste at source and can provide a hygienic and affordable method of waste disposal. However, current OSS systems need improvement and require further research and development. Development of OSS facilities that treat excreta at, or close to, its source require knowledge of the waste stream entering the system. Data regarding the generation rate and the chemical and physical composition of fresh feces and urine was collected from the medical literature as well as the treatability sector. The data were summarized and statistical analysis was used to quantify the major factors that were a significant cause of variability. The impact of this data on biological processes, thermal processes, physical separators, and chemical processes was then assessed. Results showed that the median fecal wet mass production was 128 g/cap/day, with a median dry mass of 29 g/cap/day. Fecal output in healthy individuals was 1.20 defecations per 24 hr period and the main factor affecting fecal mass was the fiber intake of the population. Fecal wet mass values were increased by a factor of 2 in low income countries (high fiber intakes) in comparison to values found in high income countries (low fiber intakes). Feces had a median pH of 6.64 and were composed of 74.6% water. Bacterial biomass is the major component (25–54% of dry solids) of the organic fraction of the feces. Undigested carbohydrate, fiber, protein, and fat comprise the remainder and the amounts depend on diet and diarrhea prevalence in the population. The inorganic component of the feces is primarily undigested dietary elements that also depend on dietary supply. Median urine generation rates were 1.42 L/cap/day with a dry solids content of 59 g/cap/day. Variation in the volume and composition of urine is caused by differences in physical exertion, environmental conditions, as well as water, salt, and high protein intakes. Urine has a pH 6.2 and contains the largest fractions of nitrogen, phosphorus, and potassium released from the body. The urinary excretion of nitrogen was significant (10.98 g/cap/day) with urea the most predominant constituent making up over 50% of total organic solids. The dietary intake of food and fluid is the major cause of variation in both the fecal and urine composition and these variables should always be considered if the generation rate, physical, and chemical composition of feces and urine is to be accurately predicted. PMID:26246784
Abbasi, Vajihe; Sarafraz-Yazdi, Ali; Amiri, Amirhassan; Vatani, Hossein
2016-04-01
A headspace solid-phase microextraction (HS-SPME) method was developed for isolation of monocyclic aromatic amines from water samples followed by gas chromatography-flame ionization detector (GC-FID). In this work, the effect of the presence of ionic liquid (namely, 1-hexyl-3-methyl-imidazolium hexafluorophosphate [C6MIM][PF6]) was investigated in the sol-gel coating solutions on the morphology and extraction behavior of the resulting hybrid organic-inorganic sol-gel sorbents utilized in SPME. Hydroxy-terminated poly(dimethylsiloxane) (PDMS) was used as the sol-gel active organic component for sol-gel hybrid coatings. Two different coated fibers that were prepared are PDMS and PDMS-IL ([C6MIM][PF6]) fibers. Under the optimal conditions, the method detection limits (S/N = 3) with PDMS-IL were in the range of 0.001-0.1 ng/mL and the limits of quantification (S/N = 10) between 0.005 and 0.5 ng/mL. The relative standard deviations for one fiber (n = 5) were obtained from 3.1 up to 8.5% and between fibers or batch to batch (n = 3) in the range of 5.3-10.1%. The developed method was successfully applied to real water and juice fruits samples while the relative recovery percentages obtained for the spiked water samples at 0.1 ng/mL were from 83.3 to 95.0%. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yi; Chen, Wei; Xu, Hongyi
To provide a seamless integration of manufacturing processing simulation and fiber microstructure modeling, two new stochastic 3D microstructure reconstruction methods are proposed for two types of random fiber composites: random short fiber composites, and Sheet Molding Compounds (SMC) chopped fiber composites. A Random Sequential Adsorption (RSA) algorithm is first developed to embed statistical orientation information into 3D RVE reconstruction of random short fiber composites. For the SMC composites, an optimized Voronoi diagram based approach is developed for capturing the substructure features of SMC chopped fiber composites. The proposed methods are distinguished from other reconstruction works by providing a way ofmore » integrating statistical information (fiber orientation tensor) obtained from material processing simulation, as well as capturing the multiscale substructures of the SMC composites.« less
Persson, Nils E; Rafshoon, Joshua; Naghshpour, Kaylie; Fast, Tony; Chu, Ping-Hsun; McBride, Michael; Risteen, Bailey; Grover, Martha; Reichmanis, Elsa
2017-10-18
High-throughput discovery of process-structure-property relationships in materials through an informatics-enabled empirical approach is an increasingly utilized technique in materials research due to the rapidly expanding availability of data. Here, process-structure-property relationships are extracted for the nucleation, growth, and deposition of semiconducting poly(3-hexylthiophene) (P3HT) nanofibers used in organic field effect transistors, via high-throughput image analysis. This study is performed using an automated image analysis pipeline combining existing open-source software and new algorithms, enabling the rapid evaluation of structural metrics for images of fibrillar materials, including local orientational order, fiber length density, and fiber length distributions. We observe that microfluidic processing leads to fibers that pack with unusually high density, while sonication yields fibers that pack sparsely with low alignment. This is attributed to differences in their crystallization mechanisms. P3HT nanofiber packing during thin film deposition exhibits behavior suggesting that fibers are confined to packing in two-dimensional layers. We find that fiber alignment, a feature correlated with charge carrier mobility, is driven by increasing fiber length, and that shorter fibers tend to segregate to the buried dielectric interface during deposition, creating potentially performance-limiting defects in alignment. Another barrier to perfect alignment is the curvature of P3HT fibers; we propose a mechanistic simulation of fiber growth that reconciles both this curvature and the log-normal distribution of fiber lengths inherent to the fiber populations under consideration.
The data obtained from the results of oscillographic investigations of the use of saline inorganic lubricants in the pilger mill rolling of steel...for experimental testing as lubricants in pilger mill pipe rolling. It is shown that with the use of the above developed compositions as high
USDA-ARS?s Scientific Manuscript database
Gas-permeable membranes coupled with low-rate aeration are useful to recover ammonium from livestock effluents. In this study, the role of inorganic carbon (bicarbonate) to enhance the nitrogen (N) recovery process was evaluated using synthetic effluents with various ammonium to bicarbonate molar ra...
USDA-ARS?s Scientific Manuscript database
The Elusieve process, a combination of sieving and elutriation (air classification), has been found to be effective in fiber separation from ground corn, distillers dried grains with solubles (DDGS) and soybean meal (SBM). The objective of this study was to determine the effect of removing fiber fro...
USDA-ARS?s Scientific Manuscript database
The U.S. food and non-food industries would benefit from the development of a domestically produced crude, semi-pure and pure bio-based fiber gum from corn bran and oat hulls processing waste streams. When corn bran and oat hulls are processed to produce a commercial cellulose enriched fiber gel, th...
Das, Priyadip; Duanias-Assaf, Tal; Reches, Meital
2017-03-06
The interactions between proteins or peptides and inorganic materials lead to several interesting processes. For example, combining proteins with minerals leads to the formation of composite materials with unique properties. In addition, the undesirable process of biofouling is initiated by the adsorption of biomolecules, mainly proteins, on surfaces. This organic layer is an adhesion layer for bacteria and allows them to interact with the surface. Understanding the fundamental forces that govern the interactions at the organic-inorganic interface is therefore important for many areas of research and could lead to the design of new materials for optical, mechanical and biomedical applications. This paper demonstrates a single-molecule force spectroscopy technique that utilizes an AFM to measure the adhesion force between either peptides or amino acids and well-defined inorganic surfaces. This technique involves a protocol for attaching the biomolecule to the AFM tip through a covalent flexible linker and single-molecule force spectroscopy measurements by atomic force microscope. In addition, an analysis of these measurements is included.
Nag, Angshuman; Chung, Dae Sung; Dolzhnikov, Dmitriy S; Dimitrijevic, Nada M; Chattopadhyay, Soma; Shibata, Tomohiro; Talapin, Dmitri V
2012-08-22
Colloidal semiconductor nanocrystals (NCs) provide convenient "building blocks" for solution-processed solar cells, light-emitting devices, photocatalytic systems, etc. The use of inorganic ligands for colloidal NCs dramatically improved inter-NC charge transport, enabling fast progress in NC-based devices. Typical inorganic ligands (e.g., Sn(2)S(6)(4-), S(2-)) are represented by negatively charged ions that bind covalently to electrophilic metal surface sites. The binding of inorganic charged species to the NC surface provides electrostatic stabilization of NC colloids in polar solvents without introducing insulating barriers between NCs. In this work we show that cationic species needed for electrostatic balance of NC surface charges can also be employed for engineering almost every property of all-inorganic NCs and NC solids, including photoluminescence efficiency, electron mobility, doping, magnetic susceptibility, and electrocatalytic performance. We used a suite of experimental techniques to elucidate the impact of various metal ions on the characteristics of all-inorganic NCs and developed strategies for engineering and optimizing NC-based materials.
Effect of dietary fiber on properties and acceptance of meat products: a review.
Talukder, Suman
2015-01-01
Meat is an important source of all essential nutritional components of our daily diet as it content most of the essential amino acids, fatty acids, vitamins, and minerals which are lack in plant based food, but it is devoid of dietary fiber, which is very essential component for normal physiological/biochemical process. During meat products processing, its functional values can be improved by supplementation of dietary fiber rich vegetative substances like cereal and pulse flour, vegetable and fruits pulp, etc. by this process, a significant proportion of required daily allowance of dietary fiber can be fulfilled for the frequent meat consumers. The consumption of meat products fortified with of dietary fiber can lead to the prevention of diseases like coronary heart disease, diabetes, irritable bowel disease, obesity, etc. On the other hand, the dietary fiber can effectively be incorporated in the processed meat products as binders, extender, and filler, they can significantly replace the unhealthy fat components from the products; increase acceptability by improving nutritional components, pH, water-holding capacity, emulsion stability, shear press value, sensory characters, etc. of finished products. Addition of dietary fiber in the meat products can increase the cooking yield therefore the economic gain as well.
Mäkelä, Valtteri; Wahlström, Ronny; Holopainen-Mantila, Ulla; Kilpeläinen, Ilkka; King, Alistair W T
2018-05-14
Herein, we describe a new method of assessing the kinetics of dissolution of single fibers by dissolution under limited dissolving conditions. The dissolution is followed by optical microscopy under limited dissolving conditions. Videos of the dissolution were processed in ImageJ to yield kinetics for dissolution, based on the disappearance of pixels associated with intact fibers. Data processing was performed using the Python language, utilizing available scientific libraries. The methods of processing the data include clustering of the single fiber data, identifying clusters associated with different fiber types, producing average dissolution traces and also extraction of practical parameters, such as, time taken to dissolve 25, 50, 75, 95, and 99.5% of the clustered fibers. In addition to these simple parameters, exponential fitting was also performed yielding rate constants for fiber dissolution. Fits for sample and cluster averages were variable, although demonstrating first-order kinetics for dissolution overall. To illustrate this process, two reference pulps (a bleached softwood kraft pulp and a bleached hardwood pre-hydrolysis kraft pulp) and their cellulase-treated versions were analyzed. As expected, differences in the kinetics and dissolution mechanisms between these samples were observed. Our initial interpretations are presented, based on the combined mechanistic observations and single fiber dissolution kinetics for these different samples. While the dissolution mechanisms observed were similar to those published previously, the more direct link of mechanistic information with the kinetics improve our understanding of cell wall structure and pre-treatments, toward improved processability.
Multi-channel measurement for hetero-core optical fiber sensor by using CMOS camera
NASA Astrophysics Data System (ADS)
Koyama, Yuya; Nishiyama, Michiko; Watanabe, Kazuhiro
2015-07-01
Fiber optic smart structures have been developed over several decades by the recent fiber optic sensor technology. Optical intensity-based sensors, which use LD or LEDs, can be suitable for the monitor system to be simple and cost effective. In this paper, a novel fiber optic smart structure with human-like perception has been demonstrated by using intensity-based hetero-core optical fiber sensors system with the CMOS detector. The optical intensity from the hetero-core optical fiber bend sensor is obtained as luminance spots indicated by the optical power distributions. A number of optical intensity spots are simultaneously readout by taking a picture of luminance pattern. To recognize the state of fiber optic smart structure with the hetero-core optical fibers, the template matching process is employed with Sum of Absolute Differences (SAD). A fiber optic smart glove having five optic fiber nerves have been employed to monitor hand postures. Three kinds of hand postures have been recognized by means of the template matching process. A body posture monitoring has also been developed by placing the wearable hetero-core optical fiber bend sensors on the body segments. In order for the CMOS system to be a human brain-like, the luminescent spots in the obtained picture were arranged to make the pattern corresponding to the position of body segments. As a result, it was successfully demonstrated that the proposed fiber optic smart structure could recognize eight kinds of body postures. The developed system will give a capability of human brain-like processing to the existing fiber optic smart structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Cong; Lin, Xuejun; Wang, Xinqiang, E-mail: xqwang@sdu.edu.cn
Highlights: • NiO and hollow Co{sub 3}O{sub 4} fibers with the diameter of about 10 μm were prepared through centrifugal-spinning technique. • The evolution mechanism from precursor to crystalline fibers was explored. • Both NiO and hollow Co{sub 3}O{sub 4} fibers show ferromagnetism. • The NiO fibers exhibit good photocatalytic performance. - Abstract: Both NiO and hollow Co{sub 3}O{sub 4} fibers with the diameter of about 10 μm have been successfully prepared through spinning high viscous sols into precursor fibers and followed calcination process. The evolution process from precursor to crystalline fibers and the microstructures of the obtained fibers weremore » characterized by TG-DSC, FT-IR, XRD, HRTEM, SEM and the like. The method is facile and cost-effective for mass production of fibers and the obtained fibers are pure phase with high crystallinity. Their magnetic properties were investigated, showing that both the fibers are ferromagnetic. Meanwhile, the NiO fibers exhibit good photocatalytic performance for the removal of Congo red from water under UV light irradiation.« less
CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites
NASA Astrophysics Data System (ADS)
Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey
2013-02-01
To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.
Electrical property of macroscopic graphene composite fibers prepared by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Sun, Haibin; Fu, Can; Gao, Yanli; Guo, Pengfei; Wang, Chunlei; Yang, Wenchao; Wang, Qishang; Zhang, Chongwu; Wang, Junya; Xu, Junqi
2018-07-01
Graphene fibers are promising candidates in portable and wearable electronics due to their tiny volume, flexibility and wearability. Here, we successfully synthesized macroscopic graphene composite fibers via a two-step process, i.e. first electrospinning and then chemical vapor deposition (CVD). Briefly, the well-dispersed PAN nanofibers were sprayed onto the copper surface in an electrified thin liquid jet by electrospinning. Subsequently, CVD growth process induced the formation of graphene films using a PAN-solid source of carbon and a copper catalyst. Finally, crumpled and macroscopic graphene composite fibers were obtained from carbon nanofiber/graphene composite webs by self-assembly process in the deionized water. Temperature-dependent conduct behavior reveals that electron transport of the graphene composite fibers belongs to hopping mechanism and the typical electrical conductivity reaches 4.59 × 103 S m‑1. These results demonstrated that the graphene composite fibers are promising for the next-generation flexible and wearable electronics.
NASA Technical Reports Server (NTRS)
1975-01-01
The feasibility and possible advantages of processing materials in a nongravitational field are considered. Areas of investigation include biomedical applications, the processing of inorganic materials, and flight programs and funding.
Multilayered BN Coatings Processed by a Continuous LPCVD Treatment onto Hi-Nicalon Fibers
NASA Astrophysics Data System (ADS)
Jacques, S.; Vincent, H.; Vincent, C.; Lopez-Marure, A.; Bouix, J.
2001-12-01
Boron nitride coatings were deposited onto SiC fibers by means of continuous low-pressure chemical vapor deposition (LPCVD) treatment from BF3/NH3 mixtures. This process lies in unrolling the fiber in the reactor axis. The relationships between the processing parameters and the structure of the BN deposits are presented. Thanks to a temperature gradient present in the reactor, multilayered BN films can be performed by stacking successive isotropic and anisotropic sublayers. Tensile tests show that when the temperature profile is well adapted, the SiC fibers are not damaged by the LPCVD treatment.
Kim, Dokyoon; Lee, Nohyun; Park, Yong Il; Hyeon, Taeghwan
2017-01-18
Several types of nanoparticle-based imaging probes have been developed to replace conventional luminescent probes. For luminescence imaging, near-infrared (NIR) probes are useful in that they allow deep tissue penetration and high spatial resolution as a result of reduced light absorption/scattering and negligible autofluorescence in biological media. They rely on either an anti-Stokes or a Stokes shift process to generate luminescence. For example, transition metal-doped semiconductor nanoparticles and lanthanide-doped inorganic nanoparticles have been demonstrated as anti-Stokes shift-based agents that absorb NIR light through two- or three-photon absorption process and upconversion process, respectively. On the other hand, quantum dots (QDs) and lanthanide-doped nanoparticles that emit in NIR-II range (∼1000 to ∼1350 nm) were suggested as promising Stokes shift-based imaging agents. In this topical review, we summarize and discuss the recent progress in the development of inorganic nanoparticle-based luminescence imaging probes working in NIR range.
RTM: Cost-effective processing of composite structures
NASA Technical Reports Server (NTRS)
Hasko, Greg; Dexter, H. Benson
1991-01-01
Resin transfer molding (RTM) is a promising method for cost effective fabrication of high strength, low weight composite structures from textile preforms. In this process, dry fibers are placed in a mold, resin is introduced either by vacuum infusion or pressure, and the part is cured. RTM has been used in many industries, including automotive, recreation, and aerospace. Each of the industries has different requirements of material strength, weight, reliability, environmental resistance, cost, and production rate. These requirements drive the selection of fibers and resins, fiber volume fractions, fiber orientations, mold design, and processing equipment. Research is made into applying RTM to primary aircraft structures which require high strength and stiffness at low density. The material requirements are discussed of various industries, along with methods of orienting and distributing fibers, mold configurations, and processing parameters. Processing and material parameters such as resin viscosity, perform compaction and permeability, and tool design concepts are discussed. Experimental methods to measure preform compaction and permeability are presented.
RGB generation by four-wave mixing in small-core holey fibers
NASA Astrophysics Data System (ADS)
Horak, Peter; Dupriez, Pascal; Poletti, Francesco; Petrovich, Marco N.; Jeong, Yoonchan; Nilsson, Johan; Richardson, David J.; Payne, David N.
2007-09-01
We report the generation of white light comprising red, green, and blue spectral bands from a frequency-doubled fiber laser in submicron-sized cores of microstructured holey fibers. Picosecond pulses of green light are launched into a single suspended core of a silica holey fiber where energy is transferred by an efficient four-wave mixing process into a red and blue sideband whose wavelengths are fixed by birefringent phase matching due to a slight asymmetry of the structure arising during the fiber fabrication. Numerical models of the fiber structure and of the nonlinear processes confirm our interpretation. Finally, we discuss power scaling and limitations of this white light source.
Lightweight Ceramic Insulation
NASA Technical Reports Server (NTRS)
Wheeler, W. H.; Creedon, J. F.
1986-01-01
Fiber burnout process yields low densities. Low density attained by process of sacrificial burnout. Graphite or carbon fibers mixed into slurry of silica, alumina, and boron-compound fibers in amounts ranging from 25 to 75 percent of total fiber content by weight. Mixture formed into blocks and dried. Blocks placed in kiln and heated to 1,600 degrees F(870 degrees C) for several hours. Graphite or carbon fibers slowly oxidize away, leaving voids and reducing block density. Finally, blocks heated to 2,350 degrees F (1,290 degrees C) for 90 minutes to bond remaining ceramic fibers together. Developed for use on Space Shuttle and other spacecraft, rigid insulation machined to requisite shape and bonded in place.
Li, Dongsheng; Cao, Hai
2012-01-01
The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed.
Apparatus and method for carbon fiber surface treatment
Paulauskas, Felix L; Sherman, Daniel M
2014-06-03
An apparatus and method for enhancing the surface energy and/or surface chemistry of carbon fibers involves exposing the fibers to direct or indirect contact with atmospheric pressure plasma generated using a background gas containing at least some oxygen or other reactive species. The fiber may be exposed directly to the plasma, provided that the plasma is nonfilamentary, or the fiber may be exposed indirectly through contact with gases exhausting from a plasma discharge maintained in a separate volume. In either case, the process is carried out at or near atmospheric pressure, thereby eliminating the need for vacuum equipment. The process may be further modified by moistening the fibers with selected oxygen-containing liquids before exposure to the plasma.
Apparatus and method for carbon fiber surface treatment
Paulauskas, Felix L [Knoxville, TN; Sherman, Daniel M [Knoxville, TN
2012-07-24
An apparatus and method for enhancing the surface energy and/or surface chemistry of carbon fibers involves exposing the fibers to direct or indirect contact with atmospheric pressure plasma generated using a background gas containing at least some oxygen or other reactive species. The fiber may be exposed directly to the plasma, provided that the plasma is nonfilamentary, or the fiber may be exposed indirectly through contact with gases exhausting from a plasma discharge maintained in a separate volume. In either case, the process is carried out at or near atmospheric pressure, thereby eliminating the need for vacuum equipment. The process may be further modified by moistening the fibers with selected oxygen-containing liquids before exposure to the plasma.
Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity.
Behabtu, Natnael; Young, Colin C; Tsentalovich, Dmitri E; Kleinerman, Olga; Wang, Xuan; Ma, Anson W K; Bengio, E Amram; ter Waarbeek, Ron F; de Jong, Jorrit J; Hoogerwerf, Ron E; Fairchild, Steven B; Ferguson, John B; Maruyama, Benji; Kono, Junichiro; Talmon, Yeshayahu; Cohen, Yachin; Otto, Marcin J; Pasquali, Matteo
2013-01-11
Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission.
Li, Dongsheng; Cao, Hai
2012-01-01
The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed. PMID:23012555
Modified rod-in-tube for high-NA tellurite glass fiber fabrication: materials and technologies.
Chen, Qiuling; Wang, Hui; Wang, Qingwei; Chen, Qiuping; Hao, Yinlei
2015-02-01
In this paper, we report the whole fabrication process for high-numerical aperture (NA) tellurite glass fibers from material preparation to preform fabrication, and eventually, fiber drawing. A tellurite-based high-NA (0.9) magneto-optical glass fiber was drawn successfully and characterized. First, matchable core and cladding glasses were fabricated and matched in terms of physical properties. Second, a uniform bubble-free preform was fabricated by means of a modified rod-in-tube technique. Finally, the fiber drawing process was studied and optimized. The high-NA fibers (∅(core), 40-50 μm and ∅(cladding), 120-130 μm) so obtained were characterized for their geometrical and optical properties.
High aspect ratio template and method for producing same
NASA Technical Reports Server (NTRS)
Sakamoto, Jeff S. (Inventor); Weiss, James R. (Inventor); Fleurial, Jean-Pierre (Inventor); Kisor, Adam (Inventor); Tuszynski, Mark (Inventor); Stokols, Shula (Inventor); Holt, Todd Edward (Inventor); Welker, David James (Inventor); Breckon, Christopher David (Inventor)
2010-01-01
Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers.
Investigation of Carbon Fiber Architecture in Braided Composites Using X-Ray CT Inspection
NASA Technical Reports Server (NTRS)
Rhoads, Daniel J.; Miller, Sandi G.; Roberts, Gary D.; Rauser, Richard W.; Golovaty, Dmitry; Wilber, J. Patrick; Espanol, Malena I.
2017-01-01
During the fabrication of braided carbon fiber composite materials, process variations occur which affect the fiber architecture. Quantitative measurements of local and global fiber architecture variations are needed to determine the potential effect of process variations on mechanical properties of the cured composite. Although non-destructive inspection via X-ray CT imaging is a promising approach, difficulties in quantitative analysis of the data arise due to the similar densities of the material constituents. In an effort to gain more quantitative information about features related to fiber architecture, methods have been explored to improve the details that can be captured by X-ray CT imaging. Metal-coated fibers and thin veils are used as inserts to extract detailed information about fiber orientations and inter-ply behavior from X-ray CT images.
Morphology-preserving chemical conversion of bioorganic and inorganic templates
NASA Astrophysics Data System (ADS)
Vernon, Jonathan Paul
The generation of nanostructured assemblies with complex (three-dimensional, 3D) self-assembled morphologies and with complex (multicomponent) tailorable inorganic compositions is of considerable technological and scientific interest. This dissertation demonstrates self-assembled 3D organic templates of biogenic origin can be converted into replicas comprised of numerous other functional nanocrystalline inorganic materials. Nature provides a spectacular variety of biologically-assembled 3D organic structures with intricate, hierarchical (macro-to-micro-to-nanoscale) morphologies. Such processing on readily-available structurally complex templates provides a framework for chemical conversion of synthetic organic templates and, potentially, production of organic/inorganic composites. Four specific research thrusts are detailed in this document. First, chemical conversion of a nanostructured bioorganic template into a multicomponent oxide compound (tetragonal BaTiO3) via SSG coating and subsequent morphology-preserving microwave hydrothermal processing is demonstrated. Second, morphology-preserving chemical conversion of bioorganic templates into hierarchical photoluminescent microparticles is demonstrated to reveal both the dramatic change in properties such processing can provide, and the potential utility of chemically transformed templates in anti-counterfeiting / authentication applications. Third, determination of the reaction mechanism(s) for morphology-preserving microwave hydrothermal conversion of TiO2 to BaTiO3, through Au inert markers on single crystal rutile titania, is detailed. Finally, utilization of constructive coating techniques (SSG) and moderate temperature (< 500°C) heat treatments to modify and replicate structural color is coupled with deconstructive focused ion beam microsurgery to prepare samples for microscale structure interrogation. Specifically, the effects of coating thickness and composition on reflection spectra of structurally colored templates are examined. Also, the effects of the replacement of natural material with higher index of refraction inorganic materials on optical properties are discussed. The three processing research thrusts constituting chapters 1, 2 and 4 take advantage of moderate temperature processing to ensure nanocrystalline materials, either for shape preservation or to prevent scattering in optical applications. The research thrust detailed in chapter 3 examines hydrothermal conversion of TiO2 to BaTiO3, not only to identify the reaction mechanism(s) involved in hydrothermal conversion under morphology-preserving conditions, but also to introduce inert marker experiments to the field of microwave hydrothermal processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qinqin, E-mail: liu_qin_qin@126.com; Yang, Juan; Rong, Xiaoqing
2014-10-15
Novel ZrV{sub 2}O{sub 7} microfibers with diameters about 1–3 μm were synthesized using a sol–gel technique. For comparison, ZrV{sub 2}O{sub 7} powders were prepared by the same method. The resultant structures were studied by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The results indicated that both the pure ZrV{sub 2}O{sub 7} microfibers and powders could be synthesized by the sol–gel technique. The thermal expansion property of the as-prepared ZrV{sub 2}O{sub 7} microfibers and powders was characterized by a thermal mechanical analyzer, both the fibers with cylindrical morphology and irregular powders with average size between 100 and 200more » nm showed negative thermal expansion between 150 °C and 600 °C. The photocatalytic activity of the microfibers was compared to that of powders under UV radiations. The band gap of ZrV{sub 2}O{sub 7} microfibers decreased and its absorption edge exhibited red shift. The microfibers also had a higher surface area compared with the powders, resulting in considerably higher photocatalytic characteristics. The large surface area and the enhanced photocatalytic activity of the ZrV{sub 2}O{sub 7} microfibers also offer potential applications in sensors and inorganic ion exchangers. - Graphical abstract: (a and c) SEM photos of ZrV{sub 2}O{sub 7} powders and fibers. (b and d) TEM images of ZrV{sub 2}O{sub 7} powders and fibers. (e) Thermal expansion curves of ZrV{sub 2}O{sub 7} powders and fibers. (f) Degradation curves of ZrV{sub 2}O{sub 7} powders and ZrV{sub 2}O{sub 7} fibers. - Highlights: • Novel ZrV{sub 2}O{sub 7} fibers could be synthesized using sol–gel technique. • ZrV{sub 2}O{sub 7} powders with irregular shape are also prepared for comparison. • Both ZrV{sub 2}O{sub 7} microfibers and powders exhibit negative thermal expansion property. • ZrV{sub 2}O{sub 7} microfibers show outstanding photocatalytic activity under UV irradiation. • This synthesis technique can be easily extended to many other functional fibers.« less
Comparative fiber evaluation of the mesdan aqualab microwave moisture measurement instrument
USDA-ARS?s Scientific Manuscript database
Moisture is a key cotton fiber parameter, as it can impact the fiber quality and the processing of cotton fiber. The Mesdan Aqualab is a microwave-based fiber moisture measurement instrument for samples with moderate sample size. A program was implemented to determine the capabilities of the Aqual...
Increased dissolution rates of tranilast solid dispersions extruded with inorganic excipients.
Maniruzzaman, Mohammed; Ross, Steven A; Islam, Muhammad Tariqul; Scoutaris, Nikolaos; Nair, Arun; Douroumis, Dennis
2017-06-01
The purpose of this study was to evaluate the performance of Neusilin® (NEU) a synthetic magnesium aluminometasilicate as an inorganic drug carrier co-processed with the hydrophilic surfactants Labrasol and Labrafil to develop Tranilast (TLT)-based solid dispersions using continuous melt extrusion (HME) processing. Twin-screw extrusion was optimized to develop various TLT/excipient/surfactant formulations followed by continuous capsule filling in the absence of any downstream equipment. Physicochemical characterization showed the existence of TLT in partially crystalline state in the porous network of inorganic NEU for all extruded formulations. Furthermore, in-line NIR studies revealed a possible intermolecular H-bonding formation between the drug and the carrier resulting in the increase of TLT dissolution rates. The capsules containing TLT-extruded solid dispersions showed enhanced dissolution rates and compared with the marketed Rizaben ® product.
Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass
Elliott, Douglas C; Oyler, James R
2014-11-04
Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.
Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass
Elliott, Douglas C; Oyler, James
2013-12-17
Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.
NASA Astrophysics Data System (ADS)
Nguyen Thi, T. B.; Yokoyama, A.; Ota, K.; Kodama, K.; Yamashita, K.; Isogai, Y.; Furuichi, K.; Nonomura, C.
2014-05-01
One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.
Microbial fuel cell treatment of fuel process wastewater
Borole, Abhijeet P; Tsouris, Constantino
2013-12-03
The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.
NASA Astrophysics Data System (ADS)
De, Jyotiraman; Baxi, R. N., Dr.
2017-08-01
Mercerization or NaOH fiber surface treatment is one of the most popular surface treatment processes to make the natural fibers such as bamboo fibers compatible for use as reinforcing material in composites. But NaOH being a chemical is hazardous and polluting to the nature. This paper explores the possibility of use of naturally derived citric acid for bamboo fiber surface treatment and its comparison with NaOH treated Bamboo Fiber Composites. Untreated, 2.5 wt% NaOH treated and 5 wt% citric acid treated Bamboo Fiber Composites with 5 wt% fiber content were developed by Hand Lay process. Bamboo mats made of bamboo slivers were used as reinforcing material. Mechanical and physical characterization was done to compare the effects of NaOH and citric acid bamboo fiber surface treatment on mechanical and physical properties of Bamboo Fiber Composite. The experiment data reveals that the tensile and flexural strength was found to be highest for citric acid and NaOH treated Bamboo Fiber Composite respectively. Water absorption tendency was found more than the NaOH treated Bamboo Fiber Composites. SEM micrographs used to analyze the morphology of fracture surface of tensile test specimens confirm improvement in fiber-matrix interface bonding due to surface treatment of bamboo fibers.
Role of organic phosphorus in sediment in a shallow eutrophic lake
NASA Astrophysics Data System (ADS)
Shinohara, Ryuichiro; Hiroki, Mikiya; Kohzu, Ayato; Imai, Akio; Inoue, Tetsunori; Furusato, Eiichi; Komatsu, Kazuhiro; Satou, Takayuki; Tomioka, Noriko; Shimotori, Koichi; Miura, Shingo
2017-08-01
We tested the hypothesis that mineralization of molybdenum unreactive phosphorus (MUP) in pore water is the major pathway for the changes in the concentration of molybdenum-reactive P (MRP) in pore water and inorganic P in sediment particles. The concentration of inorganic P in the sediment particles increased from December to April in Lake Kasumigaura, whereas concentrations of organic P in the sediment particles and MUP in pore water decreased. These results suggest that MUP mineralization plays a key role as the source of MRP, whereas desorption of inorganic P from the sediment particles into the pore water is a minor process. One-dimensional numerical simulation of sediment particles and the pore water supported the hypothesis. Diffusive flux of MUP was small in pore water, even in near-surface layers, so mineralization was the dominant process for changing the MUP concentration in the pore water. For MRP, diffusion was the dominant process in the surface layer, whereas adsorption onto the sediment was the dominant process in deeper layers. Researchers usually ignore organic P in the sediment, but organic P in sediment particles and the pore water is a key source of inorganic P in the sediment particles and pore water; our results suggest that in Lake Kasumigaura, organic P in the sediment is an important source, even at depths more than 1 cm below the sediment surface. In contrast, the large molecular size of MUP in pore water hampers diffusion of MUP from the sediment into the overlying water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murdy, Rachel Campbell; Mak, Michelle; Misra, Manjusri
The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass,more » wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler’s intrinsic properties on the resulting material performance.« less
USDA Flax fiber utilization research
USDA-ARS?s Scientific Manuscript database
The United States is pursuing natural fibers as sustainable, environmentally friendly sources for a variety of industrial applications. Flax (Linum usitatissimum L.) fiber offers many possibilities towards this goal. Research on flax fiber production, processing, and standards development is urgen...
Wang, Xiang; Wu, Tong; Wang, Wei; Huang, Chen; Jin, Xiangyu
2016-01-01
A novel type of protein fibers, regenerated collagen fibers (RC) from cattle skin, was prepared through wet-spinning. Due to the combined effect of solvent exchange and subsequent drawing process, the fibers were found to have a grooved surface texture. The grooves provided not only ordered topographical cues, but also increased surface area. Protein content of the RC fibers was confirmed by Fourier Transform infrared spectroscopy (FTIR) and ninhydrin color reaction. The fibers could be readily fabricated into nonwovens or other textiles, owning to their comparable physical properties to other commercialized fibers. Cell growth behavior on RC nonwovens suggested both early adhesion and prompt proliferation. The high moisture regain, good processability, along with the excellent cytocompatibility indicated that the RC fibers and nonwovens developed in this study might offer a good candidate for biomedical and healthcare applications. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Seibold, R. W.; Basiulis, D. I.
1982-01-01
The feasibility of applying the in situ fiberization process to the fabrication of strain isolation pads (SIP) for the Space Shuttle and to the fabrication of graphite-epoxy composites was evaluated. The ISF process involves the formation of interconnected polymer fiber networks by agitation of dilute polymer solutions under controlled conditions. High temperature polymers suitable for SIP use were fiberized and a successful fiberization of polychloro trifluoroethylene, a relatively high melting polymer, was achieved. Attempts to fiberize polymers with greater thermal stability were unsuccessful, apparently due to characteristics caused by the presence of aromaticity in the backbone of such materials. Graphite-epoxy composites were fabricated by interconnecting two dimensional arrays of graphite fiber with polypropylene IS fibers with subsequent epoxy resin impregnation. Mechanical property tests were performed on laminated panels of this material to evaluate intralaminar and interlaminar shear strength, and thus fracture toughness. Test results were generally unpromising.
NASA Technical Reports Server (NTRS)
Zinn, Alfred A. (Inventor); Tarkanian, Ryan Jeffrey (Inventor)
2007-01-01
The invented insulation is a ceramic fiber insulation wherein the ceramic fibers are treated with a coating which contains transition metal oxides. The invented process for coating the insulation is a process of applying the transition metal oxide coating to the fibers of the insulation after the fibers have been formed into a tile or other porous body. The coating of transition metal oxide lowers the transmittance of radiation through the insulation thereby lowering the temperature of the backface of the insulation and better protecting the structure that underlies the insulation.
Utilization of Infrared Fiber Optic in the Automotive Industry
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)
2001-01-01
Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.
Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers
NASA Astrophysics Data System (ADS)
Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing
2016-12-01
We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.
Holographic patterning of organic-inorganic photopolymerizable nanocomposites
NASA Astrophysics Data System (ADS)
Sakhno, Oksana V.; Goldenberg, Leonid M.; Smirnova, Tatiana N.; Stumpe, J.
2009-09-01
We present here novel easily processible organic-inorganic nanocomposites suitable for holographic fabrication of diffraction optical elements (DOE). The nanocomposites are based on photocurable acrylate monomers and inorganic nanoparticles (NP). The compatibility of inorganic NP with monomers was achieved by capping the NP surface with proper organic shells. Surface modification allows to introduce up to 50wt.% of inorganic NP in organic media. Depending on the NP nature (metal oxides, phosphates, semiconductors, noble metals) and their properties, the materials for both efficient DOE and multifunctional elements can be designed. Organic-inorganic composites prepared have been successfully used for the effective inscription of periodic volume refractive index structures using the holographic photopolymerization method. The nanocomposite preparation procedure, their properties and optical performance of holographic gratings are reported. The use of functional NP makes it possible to obtain effective holographic gratings having additional physical properties such as light-emission or NLO. Some examples of such functional polymer-NP structures and their possible application fields are presented. The combination of easy photo-patterning of soft organic compounds with physical properties of inorganic materials in new nanocomposites and the flexibility of the holographic patterning method allow the fabrication of mono- and multifunctional one- and multi-dimensional passive or active optical and photonic elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Takahama; C.I. Davidson; S.N. Pandis
2006-04-01
Laboratory evidence suggests that inorganic acid seed particles may increase secondary organic aerosol yields secondary organic aerosol (SOA) through heterogeneous chemistry. Additional laboratory studies, however, report that organic acidity generated in the same photochemical process by which SOA is formed may be sufficient to catalyze these heterogeneous reactions. Understanding the interaction between inorganic acidity and SOA mass is important when evaluating emission controls to meet PM2.5 regulations. Semicontinuous measurements of organic carbon (OC), elemental carbon (EC), and inorganic species from the Pittsburgh Air Quality Study were examined to determine if coupling in the variations of inorganic acidity and OC couldmore » be detected. Significant enhancements of SOA production could not be detected due to inorganic acidity in Western Pennsylvania most of the time, but its signal might have been lost in the noise. If a causal relationship between inorganic acidity and OC is assumed, reductions in OC for Western Pennsylvania that might result from drastic reductions in inorganic acidity were estimated to be 2 {+-} 4% by a regression technique, and an upper bound for this geographic area was estimated to be 5 {+-} 8% based on calculations from laboratory measurements. 48 refs., 7 figs., 3 tabs.« less
Predicting Silk Fiber Mechanical Properties through Multiscale Simulation and Protein Design.
Rim, Nae-Gyune; Roberts, Erin G; Ebrahimi, Davoud; Dinjaski, Nina; Jacobsen, Matthew M; Martín-Moldes, Zaira; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y
2017-08-14
Silk is a promising material for biomedical applications, and much research is focused on how application-specific, mechanical properties of silk can be designed synthetically through proper amino acid sequences and processing parameters. This protocol describes an iterative process between research disciplines that combines simulation, genetic synthesis, and fiber analysis to better design silk fibers with specific mechanical properties. Computational methods are used to assess the protein polymer structure as it forms an interconnected fiber network through shearing and how this process affects fiber mechanical properties. Model outcomes are validated experimentally with the genetic design of protein polymers that match the simulation structures, fiber fabrication from these polymers, and mechanical testing of these fibers. Through iterative feedback between computation, genetic synthesis, and fiber mechanical testing, this protocol will enable a priori prediction capability of recombinant material mechanical properties via insights from the resulting molecular architecture of the fiber network based entirely on the initial protein monomer composition. This style of protocol may be applied to other fields where a research team seeks to design a biomaterial with biomedical application-specific properties. This protocol highlights when and how the three research groups (simulation, synthesis, and engineering) should be interacting to arrive at the most effective method for predictive design of their material.
Fu, Yijun; Xie, Qixue; Lao, Jihong; Wang, Lu
2016-01-01
Fiber shedding is a critical problem in biomedical textile debridement materials, which leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed as an in vitro evaluation for the fiber shedding property of a textile pile debridement material. Samples with different structural design (pile densities, numbers of ground yarns and coating times) were prepared and estimated under this testing method. Results show that single fiber pull-out test offers an appropriate in vitro evaluation for the fiber shedding property of textile pile debridement materials. Pull-out force for samples without back-coating exhibited a slight escalating trend with the supplement in pile density and number of ground yarn plies, while back-coating process significantly raised the single fiber pull-out force. For fiber shedding mechanism analysis, typical pull-out behavior and failure modes of the single fiber pull-out test were analyzed in detail. Three failure modes were found in this study, i.e., fiber slippage, coating point rupture and fiber breakage. In summary, to obtain samples with desirable fiber shedding property, fabric structural design, preparation process and raw materials selection should be taken into full consideration. PMID:28773428
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Eldridge, Jeffrey I.
1997-01-01
Unidirectional celsian matrix composites having approx. 42 volume percent of uncoated or BN/SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 +/- 35 MPa and a flat fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, with ultimate strength as high as 960 MPa. The elastic Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as 184 q 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechanical surface damage during processing. Because both the coated and uncoated fiber reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarily the protection of fibers from mechanical damage during processing.
The role of fiberoptics in remote temperature measurement
NASA Technical Reports Server (NTRS)
Vanzetti, Riccardo
1988-01-01
The use of optical fibers in conjunction with infrared detectors and signal processing electronics represents the latest advance in the field of non-contact temperature measurement and control. The operating principles and design of fiber-optic radiometric systems are discussed and the advantages and disadvantages of using optical fibers are addressed. Signal processing requirements and various infrared detector types are also described. Several areas in which infrared fiber-optic instrumentation is used for temperature monitoring and control are discussed.
Process optimization electrospinning fibrous material based on polyhydroxybutyrate
NASA Astrophysics Data System (ADS)
Olkhov, A. A.; Tyubaeva, P. M.; Staroverova, O. V.; Mastalygina, E. E.; Popov, A. A.; Ischenko, A. A.; Iordanskii, A. L.
2016-05-01
The article analyzes the influence of the main technological parameters of electrostatic spinning on the morphology and properties of ultrathin fibers on the basis of polyhydroxybutyrate. It is found that the electric conductivity and viscosity of the spinning solution affects the process of forming fibers macrostructure. The fiber-based materials PHB lets control geometry and optimize the viscosity and conductivity of a spinning solution. The resulting fibers have found use in medicine, particularly in the construction elements musculoskeletal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Luyi, E-mail: zhuly@sdu.edu.cn; Liu, Benxue; Qin, Weiwei, E-mail: jiuyuan.1001@163.com
Graphical abstract: The ultra-stable order mesoporous ZrO{sub 2}/TiO{sub 2} fibers with well-organized linear and spring structure and large surface area under higher temperatures were prepared by a simple EISA process. - Highlights: • The ZrO{sub 2}/TiO{sub 2} fibers were prepared by EISA process combined with steam heat-treatment. • The mesoporous ZrO{sub 2}/TiO{sub 2} fibers have well-organized linear and spring structure. • The fibers were composed of oval rod nanocrystals of ZrTiO{sub 4}. - Abstract: The ultra-stable order mesoporous ZrO{sub 2}/TiO{sub 2} fibers with well-organized linear and spring structure and large surface areas under higher temperatures were prepared by a (simplemore » evaporation-induced assembly) EISA process. The preparation, microstructures and formation processes were characterized by Fourier transformation infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N{sub 2} adsorption–absorption measurements. The fibers take on pinstripe configuration which is very orderly along or perpendicular to the axial direction of the fibers. The diameters of the pinstripe are in the region of 200–400 nm and arranges regularly, which are composed of oval rod nanocrystals of ZrTiO{sub 4}.« less
The importance of new processing techniques in tissue engineering
NASA Technical Reports Server (NTRS)
Lu, L.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)
1996-01-01
The use of polymer scaffolds in tissue engineering is reviewed and processing techniques are examined. The discussion of polymer-scaffold processing explains fiber bonding, solvent casting and particulate leaching, membrane lamination, melt molding, polymer/ceramic fiber composite-foam processing, phase separation, and high-pressure processing.
Critical fiber length technique for composite manufacturing processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivley, G.N.; Vandiver, T.L.; Dougherty, N.S.
1996-12-31
An improved injection technique for composite structures has been cooperatively developed by the U.S. Army Missile Command (MICOM) and Rockwell International (RI). This process simultaneously injects chopped fiberglass fibers and an epoxy resin matrix into a mold. Four injection techniques: (1){open_quotes}Little Willie{close_quotes} RTM system, (2) Pressure Vat system, (3) Pressure Vat system with vacuum assistance, and (4) Injection gun system, were investigated for use with a 304.8 mm x 304.8 mm x 5.08 mm (12 in x 12 in x 0.2 in) flat plaque mold. The driving factors in the process optimization included: fiber length, fiber weight, matrix viscosity, injectionmore » pressure, flow rate, and tool design. At fiber weights higher than 30 percent, the injection gun appears to have advantages over the other systems investigated. Results of an experimental investigation are reviewed in this paper. The investigation of injection techniques is the initial part of the research involved in a developing process, {open_quotes}Critical Fiber Length Technique{close_quotes}. This process will use the data collected in injection experiment along with mechanical properties derived from coupon test data to be incorporated into a composite material design code. The {open_quotes}Critical Fiber Length Technique{close_quotes} is part of a Cooperative Research and Development Agreement (CRADA) established in 1994 between MICOM and RI.« less
Patterned functional carbon fibers from polyethylene.
Hunt, Marcus A; Saito, Tomonori; Brown, Rebecca H; Kumbhar, Amar S; Naskar, Amit K
2012-05-08
Carbon fibers having unique morphologies, from hollow circular to gear-shaped, are produced from a novel melt-processable precursor and method. The resulting carbon fiber exhibits microstructural and topological properties that are dependent on processing conditions, rendering them highly amenable to myriad applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The development of a new corn fiber gum isolation process that preserves its functional components
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG) is a hemicellulose (arabinoxylan)-enriched fraction obtained by the extraction of corn bran/fiber using a mild alkaline hydrogen peroxide process. The unique polysaccharide, CFG, with its low solution viscosity has been proposed as a stabilizer for oil-in-water emulsions. We ha...
Continuous, linearly intermixed fiber tows and composite molded article thereform
NASA Technical Reports Server (NTRS)
McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)
2000-01-01
The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a carbon fiber tow; (b) forming a thermoplastic polymeric fiber tow; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.
Ultrathin nanofibrous films prepared from cadmium hydroxide nanostrands and anionic surfactants.
Peng, Xinsheng; Karan, Santanu; Ichinose, Izumi
2009-08-04
We developed a simple fabrication method of ultrathin nanofibrous films from the dispersion of cadmium hydroxide nanostrands and anionic surfactants. The nanostrands were prepared in a dilute aqueous solution of cadmium chloride by using 2-aminoethanol. They were highly positively charged and gave bundlelike fibers upon mixing an aqueous solution of anionic surfactant. The nanostrand/surfactant composite fibers were filtered on an inorganic membrane filter. The resultant nanofibrous film was very uniform in the area of a few centimeters square when the thickness was not less than 60 nm. The films obtained with sodium tetradecyl sulfate (STS) had a composition close to the electroneutral complex, [Cd37(OH)68(H2O)n] x 6(STS), as confirmed by energy dispersive X-ray analysis. They were water-repellent with a contact angle of 117 degrees, and the value slightly decreased with the alkyl chain length of anionic surfactants. Ultrathin nanofibrous films were stable enough to be used for ultrafiltration at pressure difference of 90 kPa. We could effectively separate Au nanoparticles of 40 nm at an extremely high filtration rate of 14000 L/(h m2 bar).
Building on Sub-Arctic Soil: Geopolymerization of Muskeg to a Densified Load-Bearing Composite.
Waetzig, Gregory R; Cho, Junsang; Lacroix, Max; Banerjee, Sarbajit
2017-11-07
The marshy water-saturated soil typical of the sub-Arctic represents a considerable impediment to the construction of roads, thereby greatly hindering human habitation and geological excavation. Muskeg, the native water-laden topsoil characteristic of the North American sub-Arctic, represents a particularly vexing challenge for road construction. Muskeg must either be entirely excavated, or for direct construction on muskeg, a mix of partial excavation and gradual compaction with the strategic placement of filling materials must be performed. Here, we demonstrate a novel and entirely reversible geopolymerization method for reinforcing muskeg with wood fibers derived from native vegetation with the addition of inorganic silicate precursors and without the addition of extraneous metal precursors. A continuous siloxane network is formed that links together the muskeg, wood fibers, and added silicates yielding a load-bearing and low-subsidence composite. The geopolymerization approach developed here, based on catalyzed formation of a siloxane network with further incorporation of cellulose, allows for an increase of density as well as compressive strength while reducing the compressibility of the composite.
NASA Technical Reports Server (NTRS)
Childers, Brooks A.; Froggatt, Mark E.; Allison, Sidney G.; Moore, Thomas C., Sr.; Hare, David A.; Batten, Christopher F.; Jegley, Dawn C.
2001-01-01
This paper describes the use of a fiber optic system to measure strain at thousands of locations along optical fibers where weakly reflecting Bragg gratings have been photoetched. The optical fibers were applied to an advanced composite transport wing along with conventional foil strain gages. A comparison of the fiber optic and foil gage systems used for this test will be presented including: a brief description of both strain data systems; a discussion of the process used for installation of the optical fiber; comparative data from the composite wing test; the processes used for the location and display of the high density fiber optic data. Calibration data demonstrating the potential accuracy of the fiber optic system will also be presented. The opportunities for industrial and commercial applications will be discussed. The fiber optic technique is shown to be a valuable augmentation to foil strain gages providing insight to structural behavior previously requiring reliance on modeling.
Meng, Xin; Pan, Hui; Lu, Tao; Chen, Zhixin; Chen, Yanru; Zhang, Di; Zhu, Shenmin
2018-08-10
Fibers with self-assembled photonic structures are of special interest due to their unique photonic properties and potential applications in the smart textile industry. Inspired by nature, the photonic-structured fibers were fabricated through the self-assembly of chiral nematic cellulose nanocrystals (CNCs) and the fibers showed tunably brilliant and selectively reflected colors under crossed-polarization. A simple wet-spinning method was applied to prepare composite fibers of the mixed CNC matrix and polyvinyl alcohol (PVA) additions. During the processing, a cholesteric CNC phase formed photonic fibers through a self-assembly process. The selective color reflection of the composite fibers in the polarized condition showed a typical red-shift tendency with an increase in the PVA content, which was attributed to the increased helical pitch of the CNC. Furthermore, the polarized angle could also alter the reflected colors. Owing to their excellent selective reflection properties under the polarized condition, CNC-based photonic fibers are promising as the next-generation of smart fibers, applied in the fields of specific display and sensing.
NASA Astrophysics Data System (ADS)
Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong
2015-12-01
A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.
Single-crystal silicon optical fiber by direct laser crystallization
Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; ...
2016-12-05
Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less
Molecular modeling of the microstructure evolution during carbon fiber processing
NASA Astrophysics Data System (ADS)
Desai, Saaketh; Li, Chunyu; Shen, Tongtong; Strachan, Alejandro
2017-12-01
The rational design of carbon fibers with desired properties requires quantitative relationships between the processing conditions, microstructure, and resulting properties. We developed a molecular model that combines kinetic Monte Carlo and molecular dynamics techniques to predict the microstructure evolution during the processes of carbonization and graphitization of polyacrylonitrile (PAN)-based carbon fibers. The model accurately predicts the cross-sectional microstructure of the fibers with the molecular structure of the stabilized PAN fibers and physics-based chemical reaction rates as the only inputs. The resulting structures exhibit key features observed in electron microcopy studies such as curved graphitic sheets and hairpin structures. In addition, computed X-ray diffraction patterns are in good agreement with experiments. We predict the transverse moduli of the resulting fibers between 1 GPa and 5 GPa, in good agreement with experimental results for high modulus fibers and slightly lower than those of high-strength fibers. The transverse modulus is governed by sliding between graphitic sheets, and the relatively low value for the predicted microstructures can be attributed to their perfect longitudinal texture. Finally, the simulations provide insight into the relationships between chemical kinetics and the final microstructure; we observe that high reaction rates result in porous structures with lower moduli.
Daniel H. Doctor; Carol Kendall; Stephen D. Sebestyen; James B. Shanley; Nobuhito Ohte; Elizabeth W. Boyer
2008-01-01
The stable isotopic composition of dissolved inorganic carbon (δ13C-DIC) was investigated as a potential tracer of streamflow generation processes at the Sleepers River Research Watershed, Vermont, USA. Downstream sampling showed δ13C-DIC increased between 3-5% from the stream source to the outlet weir...
Nanoscale studies at the early stages of the exposure of copper surfaces after systematic treatments in synthesized water solutions can provide useful information about corrosion processes. The corrosion and passivation of copper surfaces as influenced by pH, dissolved inorganic ...
NASA Astrophysics Data System (ADS)
Napoli, Jay
2016-05-01
Precision fiber optic gyroscopes (FOGs) are critical components for an array of platforms and applications ranging from stabilization and pointing orientation of payloads and platforms to navigation and control for unmanned and autonomous systems. In addition, FOG-based inertial systems provide extremely accurate data for geo-referencing systems. Significant improvements in the performance of FOGs and FOG-based inertial systems at KVH are due, in large part, to advancements in the design and manufacture of optical fiber, as well as in manufacturing operations and signal processing. Open loop FOGs, such as those developed and manufactured by KVH Industries, offer tactical-grade performance in a robust, small package. The success of KVH FOGs and FOG-based inertial systems is due to innovations in key fields, including the development of proprietary D-shaped fiber with an elliptical core, and KVH's unique ThinFiber. KVH continually improves its FOG manufacturing processes and signal processing, which result in improved accuracies across its entire FOG product line. KVH acquired its FOG capabilities, including its patented E•Core fiber, when the company purchased Andrew Corporation's Fiber Optic Group in 1997. E•Core fiber is unique in that the light-guiding core - critical to the FOG's performance - is elliptically shaped. The elliptical core produces a fiber that has low loss and high polarization-maintaining ability. In 2010, KVH developed its ThinFiber, a 170-micron diameter fiber that retains the full performance characteristics of E•Core fiber. ThinFiber has enabled the development of very compact, high-performance open-loop FOGs, which are also used in a line of FOG-based inertial measurement units and inertial navigation systems.