Science.gov

Sample records for inorganic groundwater contaminants

  1. Site Characterization To Support Use Of Monitored Natural Attentuation For Remediation Of Inorganic Contaminants In Groundwater

    EPA Science Inventory

    Technical recommendations have recently been published by the U.S. Environmental Protection Agency to address site characterization needed to support selection of Monitored Natural Attenuation (MNA) for cleanup of inorganic contaminant plumes in groundwater. Immobilization onto ...

  2. Site Characterization To Support Use Of Monitored Natural Attentuation For Remediation Of Inorganic Contaminants In Groundwater

    EPA Science Inventory

    Technical recommendations have recently been published by the U.S. Environmental Protection Agency to address site characterization needed to support selection of Monitored Natural Attenuation (MNA) for cleanup of inorganic contaminant plumes in groundwater. Immobilization onto ...

  3. Experiences with groundwater contamination

    SciTech Connect

    Not Available

    1984-01-01

    This book discusses developments in combating groundwater contamination. The papers include: Regulation of Groundwater; Utility Experiences Related to Existing and Proposed Drinking Water Regulations; Point-of-Use Treatment Technology to Control Organic and Inorganic Contamination; Hazardous Waste Disposal Practices and Groundwater Contamination; Reverse Osmosis Treatment to Control Inorganic and Volatile Organic Contamination; The Dilemma of New Wells Versus Treatment; Characteristics and Handling of Wastes From Groundwater Treatment Systems; and Removing Solvents to Restore Drinking Water at Darien, Connecticut.

  4. MONITORED NATURAL ATTENUATION FOR INORGANIC CONTAMINANT REMEDIATION IN GROUNDWATER

    EPA Science Inventory

    Monitored natural attenuation (MNA) has been applied as a knowledge-based remediation technology for organic contaminants in ground water. Development of a site-specific assessment of biotic and abiotic processes that lead to organic contaminant degradation provides the technica...

  5. MONITORED NATURAL ATTENUATION FOR INORGANIC CONTAMINANT REMEDIATION IN GROUNDWATER

    EPA Science Inventory

    Monitored natural attenuation (MNA) has been applied as a knowledge-based remediation technology for organic contaminants in ground water. Development of a site-specific assessment of biotic and abiotic processes that lead to organic contaminant degradation provides the technica...

  6. EVALUATING MONITORED NATURAL ATTENUATION FOR RADIONUCLIDE AND INORGANIC CONTAMINANTS IN GROUNDWATER

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) for inorganic contaminants is dependent on naturally occurring processes in the subsurface that act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of contaminants. EPA is developing a technical refer...

  7. EVALUATING MONITORED NATURAL ATTENUATION FOR RADIONUCLIDE AND INORGANIC CONTAMINANTS IN GROUNDWATER

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) for inorganic contaminants is dependent on naturally occurring processes in the subsurface that act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of contaminants. EPA is developing a technical refer...

  8. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium.

    PubMed

    Bacquart, Thomas; Frisbie, Seth; Mitchell, Erika; Grigg, Laurie; Cole, Christopher; Small, Colleen; Sarkar, Bibudhendra

    2015-06-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic

  9. Groundwater contamination

    SciTech Connect

    Haimes, Y. . Dept. of Systems Engineering)

    1986-01-01

    The subject of these conference proceedings is the groundwater contamination. It is by nature multifarious - dealing with detection and monitoring, prevention, abatement and containment, and correction and restoration of contaminated groundwater - it intrinsically encompasses myriad disciplines, and it involves all levels of government. Also, the subject of groundwater contamination is complex because decisions concerning groundwater pollution control that are scientifically sound, technologically within the state of the art, economically feasible, politically tractable, legally sustainable, socially acceptable, morally accountable, and organizationally implementable must be grounded on appropriate information and intelligence bases in their respective areas - science, technology, economics, politics, the law, society, ethics, and management. Indeed, the human health effects (e.g., cancer, damage to the central nervous system, liver and kidney damage) and non-health effects (economic hardship to industry, agriculture, households, and municipalities; environmental impacts; social impacts) necessitate that we, as a society, address in a somber way the following variations of the same question: How safe is safe enough How clean is safe enough The enormous cost - in billions of dollars over the next decade - that various studies project for the prevention, detection and monitoring, abatement and containment, and correction and restoration of groundwater contamination make an answer to these questions even more urgent. There are sixteen papers in these proceedings.

  10. FRAMEWORK APPROACH FOR MONITORED NATURAL ATTENUATION OF RADIONUCLIDE AND INORGANIC CONTAMINANTS IN GROUNDWATER

    EPA Science Inventory

    The USEPA is leading an effort to develop technical documentation that provides the policy, scientific and technical framework for assessing the viability of MNA for inorganic contaminants in ground water (hereafter referred to as the Framework Document). Initial guidance on the...

  11. FRAMEWORK APPROACH FOR MONITORED NATURAL ATTENUATION OF RADIONUCLIDE AND INORGANIC CONTAMINANTS IN GROUNDWATER

    EPA Science Inventory

    The USEPA is leading an effort to develop technical documentation that provides the policy, scientific and technical framework for assessing the viability of MNA for inorganic contaminants in ground water (hereafter referred to as the Framework Document). Initial guidance on the...

  12. Surfactant-modified zeolites as permeable barriers to organic and inorganic groundwater contaminants

    SciTech Connect

    Bowman, R.S.; Sullivan, E.J.

    1995-10-01

    We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost ({approximately}$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs{sup +} or Ca{sup 2+}), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb{sup 2+}) via ion exchange and surface complexation, and inorganic anions (CrO{sub 4}{sup 2-}, SeO{sub 4}{sup 2-}, SO{sub 4}{sup 2-}) via surface precipitation.The goal of this work is to demonstrate the use of surfactant-modified zeolite as a permeable barrier to ground water contaminants.

  13. REACTIVE BARRIER TREATMENT WALL TECHNOLOGY FOR REMEDIATION OF INORGANIC CONTAMINATED GROUNDWATER

    SciTech Connect

    T. TAYLOR; ET AL

    2001-03-01

    The potential for subsurface reactive barrier wall technology to aid in remediation of contaminated groundwater in situ has prompted testing of novel porous media. Treatability testing of contaminants contacted with various media has been conducted using equilibrium batch techniques, one-dimensional (1-D) columns and 2-D boxes. Continuous mode column and box experiments are useful for assessing critical design parameters under dynamic flow conditions. Experiments have been conducted using a multi-layer barrier treatment approach to immobilize a suite of contaminants. For example, basalt coated with a cationic polymer (poly diallyl dimethyl ammonium chloride [Catfloc{reg_sign}]) was used to agglomerate colloids, Apatite II{reg_sign} sorbed aqueous phase metals and radionuclides including {sup 85,87}Sr and {sup 235}U and facilitated reduction of nitrate and perchlorate, crushed pecan shells sorbed aqueous phase metals and served as a secondary medium for reduction of nitrate and perchlorate concentrations, and finally limestone raised the pH of exiting pore waters close to natural levels.

  14. FACILITATED TRANSPORT OF INORGANIC CONTAMINANTS IN GROUNDWATER: PART II. COLLOIDAL TRANSPORT

    EPA Science Inventory

    This project consisted of both field and laboratory components. Field studies evaluated routine sampling procedures for determination of aqueous inorganicgeochemistry and assessment of contaminant transport by colloidal mobility. Research at three different metal-contaminated sit...

  15. FACILITATED TRANSPORT OF INORGANIC CONTAMINANTS IN GROUNDWATER: PART II. COLLOIDAL TRANSPORT

    EPA Science Inventory

    This project consisted of both field and laboratory components. Field studies evaluated routine sampling procedures for determination of aqueous inorganicgeochemistry and assessment of contaminant transport by colloidal mobility. Research at three different metal-contaminated sit...

  16. Application of inorganic-contaminated groundwater to surface soils and compliance with toxicity characteristic (TCLP) regulations

    SciTech Connect

    Bergren, C.L.; Flora, M.A. ); Jackson, J.L.; Hicks, E.M. )

    1991-01-01

    The Westinghouse Savannah River Company (WSRC) is currently implementing a Purged Water Management Program (PWMP) at the Savannah River Site (SRS) near Aiken, South Carolina. A variety of constituents and disposal strategies are being considered. Constituents investigated in the PWMP include radionuclides, organics, and inorganics (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag). One practical disposal alternative is to discharge purged water (all constituents below regulatory levels) to the ground surface near the monitoring well that is being purged. The purpose of this investigation is to determine if long-term application of purged water that contains inorganic constituents (below regulatory levels) to surface soils will result in the accumulation of inorganics such that the soil becomes a hazardous waste according to the Toxicity Characteristic regulations (40 CFR Part 261.24). Two study soils were selected that encompass the range of soils found at the SRS: Lakeland and Orangeburg. Laboratory batch equilibrium studies indicate that the soils, although able to retain a large amount of inorganics, will not exceed Toxicity Characteristic concentrations when subjected to the TCLP. Field studies are underway to confirm this.

  17. Application of inorganic-contaminated groundwater to surface soils and compliance with toxicity characteristic (TCLP) regulations

    SciTech Connect

    Bergren, C.L.; Flora, M.A.; Jackson, J.L.; Hicks, E.M.

    1991-12-31

    The Westinghouse Savannah River Company (WSRC) is currently implementing a Purged Water Management Program (PWMP) at the Savannah River Site (SRS) near Aiken, South Carolina. A variety of constituents and disposal strategies are being considered. Constituents investigated in the PWMP include radionuclides, organics, and inorganics (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag). One practical disposal alternative is to discharge purged water (all constituents below regulatory levels) to the ground surface near the monitoring well that is being purged. The purpose of this investigation is to determine if long-term application of purged water that contains inorganic constituents (below regulatory levels) to surface soils will result in the accumulation of inorganics such that the soil becomes a hazardous waste according to the Toxicity Characteristic regulations (40 CFR Part 261.24). Two study soils were selected that encompass the range of soils found at the SRS: Lakeland and Orangeburg. Laboratory batch equilibrium studies indicate that the soils, although able to retain a large amount of inorganics, will not exceed Toxicity Characteristic concentrations when subjected to the TCLP. Field studies are underway to confirm this.

  18. Groundwater recharge and agricultural contamination

    USGS Publications Warehouse

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  19. Inorganic contaminants from diffuse pollution in shallow groundwater of the Campanian Plain (Southern Italy). Implications for geochemical survey.

    PubMed

    Cuoco, E; Darrah, T H; Buono, G; Verrengia, G; De Francesco, S; Eymold, W K; Tedesco, D

    2015-02-01

    The Campanian Plain (CP) shallow aquifer (Southern Italy) represents a natural laboratory to validate geochemical methods for differentiating diffuse anthropogenic pollution from natural water-rock interaction processes. The CP is an appropriate study area because of numerous potential anthropogenic pollution vectors including agriculture, animal husbandry, septic/drainage sewage systems, and industry. In order to evaluate the potential for geochemical methods to differentiate various contamination vectors, 538 groundwater wells from the shallow aquifer in Campanian Plain (CP) were sampled. The dataset includes both major and trace elements. Natural water-rock interactions, which primarily depend on local lithology, control the majority of geochemical parameters, including most of the major and trace elements. Using prospective statistical methods in combination with the traditional geochemical techniques, we determined the chemical variables that are enriched by anthropogenic contamination (i.e. NO3, SO4 and U) by using NO3 as the diagnostic variable for detecting polluted groundwater. Synthetic agricultural fertilizers are responsible for the majority of SO4 and U pollution throughout the CP area. Both SO4 and U are present in the groundmass of synthetic fertilizers; the uranium concentration is specifically applicable as a tracer for non-point source agricultural fertilizer contamination. The recognition of non-geological (anthropogenic) inputs of these elements has to be considered in the geochemical investigations of contaminated aquifers.

  20. Remediation of Organic and Inorganic Arsenic Contaminated Groundwater using a Nonocrystalline TiO2 Based Adsorbent

    SciTech Connect

    Jing, C.; Meng, X; Calvache, E; Jiang, G

    2009-01-01

    A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 ?g L-1 As(III), 246 ?g L-1 As(V), 151 ?g L-1 MMA, and 202 ?g L-1 DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11 000, 14 000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 ?g L-1. However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III). A nanocrystalline TiO2-based adsorbent could be used for the simultaneous removal of As(V), As(III), MMA, and DMA in contaminated groundwater.

  1. Bioremediation of contaminated groundwater

    SciTech Connect

    Hazen, T.C.; Fliermans, C.B.

    1992-12-31

    The present invention relates to a method for in situ bioremediation of contaminated soil and groundwater. In particular, the invention relates to remediation of contaminated soil and groundwater by the injection of nutrients to stimulate growth of pollutant-degrading microorganisms. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  2. Groundwater contamination in Japan

    NASA Astrophysics Data System (ADS)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  3. Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO2-based adsorbent.

    PubMed

    Jing, Chuanyong; Meng, Xiaoguang; Calvache, Edwin; Jiang, Guibin

    2009-01-01

    A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 microg L(-1) As(III), 246 microg L(-1) As(V), 151 microg L(-1) MMA, and 202 microg L(-1) DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11,000, 14,000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 microg L(-1). However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III).

  4. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  5. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  6. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  7. Solutions Remediate Contaminated Groundwater

    NASA Technical Reports Server (NTRS)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  8. Glycol Ethers As Groundwater Contaminants

    NASA Astrophysics Data System (ADS)

    Ross, Benjamin; Johannson, Gunnar; Foster, Gregory D.; Eckel, William P.

    1992-01-01

    Ether derivatives of dihydroxy alcohols, which are formed from ethylene or propylene, comprise an important group of groundwater contaminants known as glycol ethers. Compounds in this group are used as solvents, cleaning agents, and emulsifiers in many chemical products and manufacturing operations. Glycol ethers have been associated with a variety of toxic effects, and some compounds in the group are relatively potent teratogens. The limited information available suggests that glycol ethers are contaminants in groundwater, especially in anaerobic plumes emanating from disposal of mixed industrial and household waste. Most methods used to analyze groundwater samples cannot adequately detect μg/? (ppb) concentrations of glycol ethers, and the existing methods perform worst for the most widely used and toxic species. A new method capable of analyzing μg/? concentrations of glycol ethers was recently developed, and its use is recommended for groundwater samples where glycol ethers are likely to be present.

  9. Groundwater arsenic contamination throughout China.

    PubMed

    Rodríguez-Lado, Luis; Sun, Guifan; Berg, Michael; Zhang, Qiang; Xue, Hanbin; Zheng, Quanmei; Johnson, C Annette

    2013-08-23

    Arsenic-contaminated groundwater used for drinking in China is a health threat that was first recognized in the 1960s. However, because of the sheer size of the country, millions of groundwater wells remain to be tested in order to determine the magnitude of the problem. We developed a statistical risk model that classifies safe and unsafe areas with respect to geogenic arsenic contamination in China, using the threshold of 10 micrograms per liter, the World Health Organization guideline and current Chinese standard for drinking water. We estimate that 19.6 million people are at risk of being affected by the consumption of arsenic-contaminated groundwater. Although the results must be confirmed with additional field measurements, our risk model identifies numerous arsenic-affected areas and highlights the potential magnitude of this health threat in China.

  10. Groundwater contamination and emergency response guide

    SciTech Connect

    Guswa, J.H.; Donigian, A.S.

    1984-01-01

    This book provides a review of equipment, methods, and field techniques; an overview of groundwater hydrology; and a methodology for estimating groundwater contamination under emergency response conditions. It describes techniques used to identify, quantify, and respond to groundwater pollution incidents.

  11. Y-12 Groundwater Protection Program Extent Of The Primary Groundwater Contaminants At The Y-12 National Security Complex

    SciTech Connect

    None, None

    2013-12-01

    This report presents data summary tables and maps used to define and illustrate the approximate lateral extent of groundwater contamination at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The data tables and maps address the primary (i.e., most widespread and mobile) organic, inorganic, and radiological contaminants in the groundwater. The sampling locations, calculated contaminant concentrations, plume boundary values, and paired map format used to define, quantify, delineate, and illustrate the approximate extent of the primary organic, inorganic, and radiological contaminants in groundwater at Y-12 are described.

  12. Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants

    SciTech Connect

    J. T. Brown; G. Matthern; A. Glenn; J. Kauffman; S. Rock; M. Kuperberg; C. Ainsworth; J. Waugh

    2000-02-01

    The Metals and Radionuclides Product Line of the US Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted and is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies.

  13. Situ treatment of contaminated groundwater

    DOEpatents

    McNab, Jr., Walt W.; Ruiz, Roberto; Pico, Tristan M.

    2001-01-01

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  14. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  15. Removing dissolved inorganic contaminants from water

    SciTech Connect

    Clifford, D.; Subramonian, S.; Sorg, T.J.

    1986-11-01

    This article describes the physicochemical treatment processes typically used to remove the more common inorganic contaminants from water and wastewater. These are precipitation, coprecipitation, adsorption, ion exchange, membrane separations by reverse osmosis and electrodialysis, and combinations of these processes. The general criteria for process selection are discussed, and the processes and their typical applications are described.

  16. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  17. [Construction of groundwater contamination prevention mapping system].

    PubMed

    Wang, Jun-Jie; He, Jiang-Tao; Lu, Yan; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-09-01

    Groundwater contamination prevention mapping is an important component of groundwater contamination geological survey and assessment work, which could provide the basis for making and implementing groundwater contamination prevention planning. A groundwater contamination prevention mapping system was constructed in view of the synthetic consideration on nature perspective derived from groundwater contamination sources and aquifer itself, social-economic perspective, policy perspective derived from outside. During the system construction process, analytic hierarchy process and relevant overlaying principles were used to couple groundwater contamination risk assessment, groundwater value as well as wellhead protection area zoning. Data processing and visualization of mapping results were achieved in the GIS environment. The research on groundwater contamination prevention mapping in Beijing Plain indicated that the final groundwater prevention map was in accordance with the actual conditions and well reflected the priorities of groundwater prevention, which could play a guidance role in designing and implementing further practical prevention and supervision measures. Besides, because of the dynamical properties of the system components, it was suggested to analyze the update frequency of the mapping.

  18. Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants

    SciTech Connect

    Brown, Jay Thatcher; Matthern, Gretchen Elise; Glenn, Anne Williams; Kauffman, J.; Rock, S.; Kuperberg, M.; Ainsworkth, C.; Waugh, J.

    2000-02-01

    The Metals and Radionuclides Product Line of the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted and is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies. More specifically, the objectives of the workshop were to: · Determine the status of the existing baseline, including technological maturation, · Identify areas for future potential research, · Identify the key issues and recommendations for issue resolution, · Recommend a strategy for maturing key aspects of phytoremediation, · Improve communication and collaboration among organizations currently involved in phytoremediation research, and · Identify technical barriers to making phytoremediation commercially

  19. Environmental contamination of groundwater in the Gaza Strip

    NASA Astrophysics Data System (ADS)

    Al-Agha, M. R.

    1995-03-01

    Environmental problems of groundwater contamination in the Gaza Strip are summarized in this paper. The Gaza Strip is a very narrow and highly populated area along the coast of the Mediterranean Sea (360 km2). Human activities greatly threaten the groundwater resources in the area, while the unconfined nature of some parts of the coastal main aquifer favors groundwater contamination. Recent investigations show contamination of the aquifer with organic substances from detergents, agrochemicals, sewage (cesspools), and waste degradation. These effects enhance each other because there is no recycling industry, sewage system, or any type of environmental protection management at present. Inorganic contamination results from overpumping, which increases the salinity of the groundwater. Seawater intrusion also increases the salinity of the groundwater that are used for drinking and agricultural purposes. Consequently, at present about 80 percent of the groundwater in the Gaza Strip is unfit for both human and animal consumption. Solutions are very urgently needed for these problems in order to prevent the spread of dangerous diseases.

  20. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOEpatents

    McNab, Jr., Walt W.; Reinhard, Martin

    2002-01-01

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  1. Hydrochemistry indicating groundwater contamination and the potential fate of chlorohydrocarbons in combined polluted groundwater: a case study at a contamination site in North China.

    PubMed

    Huang, Shuang-Bing; Han, Zhan-Tao; Zhao, Long; Kong, Xiang-Ke

    2015-05-01

    Groundwater contamination characteristics and the potential fate of chlorohydrocarbons were investigated at a combined polluted groundwater site in North China. Groundwater chemistry and (2)D and (18)O isotope compositions indicated that high salination of groundwater was related with chemical pollution. The elevated salinity plume was consistent with the domain where typical chlorohydrocarbon contaminants occurred. The concentrations of heavy metals, oxidation-reduction potential, and pH in organic polluted areas significantly differed from those in peripheral (background) areas, indicating modified hydrochemistry possibly resulting from organic pollution. Under the presented redox conditions of groundwater, monochlorobenzene oxidation may have occurred when the trichlorohydrocarbons underwent reductive dechlorination. These findings suggested that inorganic hydrochemistry effectively indicated the occurrence of chemical contamination in groundwater and the potential fate of chlorohydrocarbons.

  2. Groundwater nitrate contamination: Factors and indicators

    PubMed Central

    Wick, Katharina; Heumesser, Christine; Schmid, Erwin

    2012-01-01

    Identifying significant determinants of groundwater nitrate contamination is critical in order to define sensible agri-environmental indicators that support the design, enforcement, and monitoring of regulatory policies. We use data from approximately 1200 Austrian municipalities to provide a detailed statistical analysis of (1) the factors influencing groundwater nitrate contamination and (2) the predictive capacity of the Gross Nitrogen Balance, one of the most commonly used agri-environmental indicators. We find that the percentage of cropland in a given region correlates positively with nitrate concentration in groundwater. Additionally, environmental characteristics such as temperature and precipitation are important co-factors. Higher average temperatures result in lower nitrate contamination of groundwater, possibly due to increased evapotranspiration. Higher average precipitation dilutes nitrates in the soil, further reducing groundwater nitrate concentration. Finally, we assess whether the Gross Nitrogen Balance is a valid predictor of groundwater nitrate contamination. Our regression analysis reveals that the Gross Nitrogen Balance is a statistically significant predictor for nitrate contamination. We also show that its predictive power can be improved if we account for average regional precipitation. The Gross Nitrogen Balance predicts nitrate contamination in groundwater more precisely in regions with higher average precipitation. PMID:22906701

  3. Groundwater nitrate contamination: factors and indicators.

    PubMed

    Wick, Katharina; Heumesser, Christine; Schmid, Erwin

    2012-11-30

    Identifying significant determinants of groundwater nitrate contamination is critical in order to define sensible agri-environmental indicators that support the design, enforcement, and monitoring of regulatory policies. We use data from approximately 1200 Austrian municipalities to provide a detailed statistical analysis of (1) the factors influencing groundwater nitrate contamination and (2) the predictive capacity of the Gross Nitrogen Balance, one of the most commonly used agri-environmental indicators. We find that the percentage of cropland in a given region correlates positively with nitrate concentration in groundwater. Additionally, environmental characteristics such as temperature and precipitation are important co-factors. Higher average temperatures result in lower nitrate contamination of groundwater, possibly due to increased evapotranspiration. Higher average precipitation dilutes nitrates in the soil, further reducing groundwater nitrate concentration. Finally, we assess whether the Gross Nitrogen Balance is a valid predictor of groundwater nitrate contamination. Our regression analysis reveals that the Gross Nitrogen Balance is a statistically significant predictor for nitrate contamination. We also show that its predictive power can be improved if we account for average regional precipitation. The Gross Nitrogen Balance predicts nitrate contamination in groundwater more precisely in regions with higher average precipitation.

  4. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 1 – Technical Basis for Assessment

    EPA Science Inventory

    This document represents the first volume of a set of three volumes that address the technical basis and requirements for assessing the potential applicability of MNA as part of a ground-water remedy for plumes with non-radionuclide and/or radionuclide inorganic contaminants. Vo...

  5. MNA of Inorganic Contaminants: Contrasting Behavior of Base Metals and Oxyanions

    EPA Science Inventory

    EPA’s Office of Research and Development has recently prepared technical resource documents for the application of MNA to inorganic contaminants in groundwater. These documents present a framework and tiered approach for evaluating whether MNA presents a viable remediation optio...

  6. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 1 – Technical Basis for Assessment

    EPA Science Inventory

    This document represents the first volume of a set of three volumes that address the technical basis and requirements for assessing the potential applicability of MNA as part of a ground-water remedy for plumes with non-radionuclide and/or radionuclide inorganic contaminants. Vo...

  7. MNA of Inorganic Contaminants: Contrasting Behavior of Base Metals and Oxyanions

    EPA Science Inventory

    EPA’s Office of Research and Development has recently prepared technical resource documents for the application of MNA to inorganic contaminants in groundwater. These documents present a framework and tiered approach for evaluating whether MNA presents a viable remediation opt...

  8. MNA of Inorganic Contaminants: Contrasting Behavior of Base Metals and Oxyanions

    EPA Science Inventory

    EPA’s Office of Research and Development has recently prepared technical resource documents for the application of MNA to inorganic contaminants in groundwater. These documents present a framework and tiered approach for evaluating whether MNA presents a viable remediation opt...

  9. MNA of Inorganic Contaminants: Contrasting Behavior of Base Metals and Oxyanions

    EPA Science Inventory

    EPA’s Office of Research and Development has recently prepared technical resource documents for the application of MNA to inorganic contaminants in groundwater. These documents present a framework and tiered approach for evaluating whether MNA presents a viable remediation optio...

  10. Groundwater contamination and pollution in micronesia

    NASA Astrophysics Data System (ADS)

    Detay, M.; Alessandrello, E.; Come, P.; Groom, I.

    1989-12-01

    This paper is an overview of groundwater contamination and pollution in th e main islands of the Federated States of Micronesia, the Republic of the Marshall Islands and the Republic of Belau (Palau). A strategy for the comprehensive protection of groundwater resources in the Trust Territory of the Pacific Islands is proposed.

  11. Impact Of Groundwater Discharge On Contaminant Behavior In Sediments

    EPA Science Inventory

    The discharge of groundwater into surface water may influence the concentrations and availability of contaminants in sediments. There are three predominant pathways by which groundwater may affect the characteristics of contaminated sediments: 1) direct contribution of contamin...

  12. Impact Of Groundwater Discharge On Contaminant Behavior In Sediments

    EPA Science Inventory

    The discharge of groundwater into surface water may influence the concentrations and availability of contaminants in sediments. There are three predominant pathways by which groundwater may affect the characteristics of contaminated sediments: 1) direct contribution of contamin...

  13. Surface altered zeolites as permeable barriers for in situ treatment of contaminated groundwater

    SciTech Connect

    1996-11-01

    The authors characterized surfactant-modified zeolite (SMZ) for its ability to sorb organic and inorganic contaminants from water. The ultimate objective is to use SMZ as a permeable barrier to prevent migration of contaminants in groundwater. This report summarizes results under Phase 1 of a three-phase project leading to a full-scale field demonstration of SMZ permeable- barrier technology.

  14. Contamination and restoration of groundwater aquifers.

    PubMed Central

    Piver, W T

    1993-01-01

    Humans are exposed to chemicals in contaminated groundwaters that are used as sources of drinking water. Chemicals contaminate groundwater resources as a result of waste disposal methods for toxic chemicals, overuse of agricultural chemicals, and leakage of chemicals into the subsurface from buried tanks used to hold fluid chemicals and fuels. In the process, both the solid portions of the subsurface and the groundwaters that flow through these porous structures have become contaminated. Restoring these aquifers and minimizing human exposure to the parent chemicals and their degradation products will require the identification of suitable biomarkers of human exposure; better understandings of how exposure can be related to disease outcome; better understandings of mechanisms of transport of pollutants in the heterogeneous structures of the subsurface; and field testing and evaluation of methods proposed to restore and cleanup contaminated aquifers. In this review, progress in these many different but related activities is presented. PMID:8354172

  15. Association of leukemia with radium groundwater contamination.

    PubMed

    Lyman, G H; Lyman, C G; Johnson, W

    1985-08-02

    Radiation exposure, including the ingestion of radium, has been causally associated with leukemia in man. Groundwater samples from 27 counties on or near Florida phosphate lands were found to exceed 5 pCi/L total radium in 12.4% of measurements. The incidence of leukemia was greater in those counties with high levels of radium contamination (greater than 10% of the samples contaminated) than in those with low levels of contamination. Rank correlation coefficients of .56 and .45 were observed between the radium contamination level and the incidence of total leukemia and acute myeloid leukemia, respectively. The standardized incidence density ratio for those in high-contamination counties was 1.5 for total leukemia and 2.0 for acute myeloid leukemia. Further investigation is necessary, however, before a causal relationship between groundwater radium content and human leukemia can be established.

  16. RAPID REMOVAL OF A GROUNDWATER CONTAMINANT PLUME.

    USGS Publications Warehouse

    Lefkoff, L. Jeff; Gorelick, Steven M.; ,

    1985-01-01

    A groundwater management model is used to design an aquifer restoration system that removes a contaminant plume from a hypothetical aquifer in four years. The design model utilizes groundwater flow simulation and mathematical optimization. Optimal pumping and injection strategies achieve rapid restoration for a minimum total pumping cost. Rapid restoration is accomplished by maintaining specified groundwater velocities around the plume perimeter towards a group of pumping wells located near the plume center. The model does not account for hydrodynamic dispersion. Results show that pumping costs are particularly sensitive to injection capacity. An 8 percent decrease in the maximum allowable injection rate may lead to a 29 percent increase in total pumping costs.

  17. Hydraulic gradient control for groundwater contaminant removal

    USGS Publications Warehouse

    Fisher, Atwood D.; Gorelick, S.M.

    1985-01-01

    The Rocky Mountain Arsenal near Denver, Colarado, U.S.A., is used as a realistic setting for a hypothetical test of a procedure that plans the hydraulic stabilization and removal of a groundwater contaminant plume. A two-stage planning procedure successfully selects the best wells and their optimal pumping/recharge schedules to contain the plume while a well or system of wells within the plume removes the contaminated water. In stage I, a combined groundwater flow and solute transport model is used to simulate contaminant removal under an assumed velocity field. The result is the approximated plume boundary location as a function of time. In stage II, a linear program, which includes a groundwater flow model as part of the set of constraints, determines the optimal well selection and their optimal pumping/recharge schedules by minimizing total pumping and recharge. The simulation-management model eliminates wells far from the plume perimeter and activates wells near the perimeter as the plume decreases in size. This successfully stablizes the hydraulic gradient during aquifer cleanup.The Rocky Mountain Arsenal near Denver, Colorado, USA, is used as a realistic setting for a hypothetical test of a procedure that plans the hydraulic stabilization and removal of a groundwater contaminant plume. A two-stage planning procedure successfully selects the best wells and their optimal pumping/recharge schedules to contain the plume while a well or system of wells within the plume removes the contaminated water. In stage I, a combined groundwater flow and solute transport model is used to simulate contaminant removal under an assumed velocity field. The result is the approximated plume boundary location as a function of time. In stage II, a linear program, which includes a groundwater flow model as part of the set of constraints, determines the optimal well selection and their optimal pumping/recharge schedules by minimizing total pumping and recharge. Refs.

  18. Complexity of Groundwater Contaminants at DOE Sites

    SciTech Connect

    Hazen, T.C.; Faybishenko, B.; Jordan, P.

    2010-12-03

    The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base (GWD) presents data as of 2003 for 221 groundwater plumes at 60 DOE sites

  19. Method to Remove Uranium/Vanadium Contamination from Groundwater

    SciTech Connect

    Metzler, Donald R.; Morrison Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  20. Method to remove uranium/vanadium contamination from groundwater

    DOEpatents

    Metzler, Donald R.; Morrison, Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  1. Passive treatment of wastewater and contaminated groundwater

    DOEpatents

    Phifer, Mark A.; Sappington, Frank C.; Millings, Margaret R.; Turick, Charles E.; McKinsey, Pamela C.

    2007-11-06

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  2. Passive treatment of wastewater and contaminated groundwater

    DOEpatents

    Phifer, Mark A.; Sappington, Frank C.; Millings, Margaret R.; Turick, Charles E.; McKinsey, Pamela C.

    2006-12-12

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  3. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Tartakovsky, Guzel D.

    2015-09-01

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and site properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.

  4. Determination of reference concentrations for inorganic analytes in groundwater at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1996-03-01

    Background (or reference) concentrations for inorganics in Y-12 Plant groundwater were determined using a combination of statistical cluster analysis and conventional cumulative probability graphing. Objective was to develop a methodology for setting groundwater reference concentrations that uses all site groundwater data instead of only results of sampling upgradient of groundwater contamination. Y-12 was selected as prototype because the groundwater data set is very large and the data have been consistently collected since 1986. A conceptual framework of groundwater quality at Y-12 was formulated; as a quality check, data were statistically modeled or clustered. Ten hydrochemical regimes or clusters were identified. Six well clusters closely corresponded to the water quality framework and to observed water quality regimes in groundwater at Y-12. Four clusters were associated with nitrate, an S-3 Site contaminant, or with nonspecific contaminants commonly encountered at shallow depths at industrial sites (e.g., road salt). These four clusters were eliminated from the reference data set. Cumulative probability graphs were used within a cluster or group of clusters to distinguish contaminated wells from wells with ambient water quality. Only median values of unfiltered samples were plotted. Outlying data points (assumed to be contaminated samples) were identified and eliminated from the data set. When all outliers for a given inorganic had been identified and deleted from the data set, the reference concentration was set at the one-sided upper tolerance limit on the 95th percentile with 95% confidence. The methodology proved useful in integrating a large amount of data into the Y-12 plant groundwater conceptual framework and in identifying those wells or groups of wells that have monitoring or sample and analysis problems or that may be monitoring site-related contamination.

  5. Remediation technologies for heavy metal contaminated groundwater.

    PubMed

    Hashim, M A; Mukhopadhyay, Soumyadeep; Sahu, Jaya Narayan; Sengupta, Bhaskar

    2011-10-01

    The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility.

  6. Reverse osmosis treatment to remove inorganic contaminants from drinking water

    SciTech Connect

    Huxstep, M.R.; Sorg, T.J.

    1987-12-01

    The purpose of the research project was to determine the removal of inorganic contaminants from drinking water using several state-of-the-art reverse osmosis membrane elements. A small 5-KGPD reverse osmosis system was utilized and five different membrane elements were studied individually with the specific inorganic contaminants added to several natural Florida ground waters. Removal data were also collected on naturally occurring substances.

  7. Natural biodegradation of organic contaminants in groundwater

    SciTech Connect

    McNab, W W; Rice, D W

    1998-09-23

    There has recently been a growing awareness that natural processes are degrading contaminants of concern, and that the contribution these natural processes make to achieving cleanup goals needs to be formally considered during site-specific cleanup. Historical case data from a large number of releases has been used to evaluate the expectation for natural attenuation to contribute to the cleanup of petroleum hydrocarbons and chlorinated solvents. The use of historical case data has several advantages, among them: 1) sites can reduce characterization costs by sharing information on key hydrogeologic parameters controlling contaminant fate and transport, and 2) standard reference frameworks can be developed that individual sites can use as a basis of comparison regarding plume behavior. Definition of cleanup times must take into account basic constraints imposed by natural laws governing the transport and natural degradation process of petroleum hydrocarbons. The actual time to reach groundwater cleanup goals is determined by these laws and the limitations on residual subsurface contamination attenuation rates, through either active or natural biological processes. These limitations will practically constrain the time to achieve low concentration cleanup goals. Recognition is needed that sites will need to be transitioned to remediation by natural processes at some point following implementation of active remediation options. The results of an analysis of approximately 1800 California and 600 Texas fuel hydrocarbon (FHC) releases and 2.50 chlorinated volatile organic compound (CVOC) plumes will be summarized. Plume lengths and natural biodegradation potential were evaluated. For FHC releases, 90% of benzene groundwater plumes were less than 280 feet in length and evidence of natural biodegradation was found to be present at all sites studied in detail. For CVOC releases, source strength and groundwater flow velocity are dominant factors controlling groundwater plume

  8. Groundwater contamination downstream of a contaminant penetration site. I. Extension-expansion of the contaminant plume

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    2002-01-01

    This study concerns the possible use of boundary layer (BL) approach for the analysis and evaluation of contaminant transport in groundwater due to contaminant penetration into the groundwater aquifer through a site of limited size. The contaminant penetration may occur through either the upper (surface) or lower (bedrock) boundary of the aquifer. Two general cases of contaminant penetration mechanisms are considered: (1) the contaminant is transferred through an interface between a contaminating and freshwater fluid phases, and (2) the contaminant arrives at groundwater by leakage and percolation. For the purpose of BL evaluation the contaminant plume is divided into three different sections: (1) the penetration section, (2) the extension-expansion section, and (3) the spearhead section. In each section a different BL method approach yields simple analytical expressions for the description of the contaminant plume migration and contaminant transport. Previous studies of the BL method can be directly applied to the evaluation of contaminant transport at the contaminant penetration section. The present study extends those studies and concerns the contaminant transport in the two other sections, which are located downstream of the penetration section. This study shows that the contaminant concentration profiles in sections 2 and 3 incorporate two BLs: (1) an inner BL adjacent to the aquifer bottom or surface boundary, and (2) an outer BL, which develops above or below the inner one. The method developed in the present study has been applied to practical issues concerning salinity penetration into groundwater in south central Kansas.

  9. Treatment of inorganic contaminants using permeable reactive barriers

    NASA Astrophysics Data System (ADS)

    Blowes, David W.; Ptacek, Carol J.; Benner, Shawn G.; McRae, Che W. T.; Bennett, Timothy A.; Puls, Robert W.

    2000-09-01

    Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO 3, PO 4 and SO 4. Small-scale field studies have demonstrated treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO 3, PO 4 and SO 4. Permeable reactive barriers composed of zero-valent iron have been used in full-scale installations for the treatment of Cr, U, and Tc. Solid-phase organic carbon in the form of municipal compost has been used to remove dissolved constituents associated with acid-mine drainage, including SO 4, Fe, Ni, Co and Zn. Dissolved nutrients, including NO 3 and PO 4, have been removed from domestic septic-system effluent and agricultural drainage.

  10. Hydrocone groundwater study delineates petroleum contamination

    SciTech Connect

    Prochaska, K.; Hartness, J.; Christenson, K.

    1994-12-31

    Law Environmental, Inc., (LAW), conducted a groundwater survey at Myrtle Beach Air Force Base, South Carolina, to delineate the horizontal and vertical extent of petroleum contamination at the BX Service station. The survey was performed using the In-Situ Technology Hydrocone in conjunction with a field gas chromatograph. The Hydrocone proved to be a reliable, cost-effective method of extracting multi-depth groundwater samples without incurring the expenses associated with the installation and maintenance of monitoring wells. The process generates virtually no investigation-derived waste. The Hydrocone system consists of an elongated cylindrical steel sampler attached to drill rods on a direct push trailer mounted rig. A gas/electronic cable connects to the sampler, and a computer installed on the rig displays pressure on the tool, sampling time, and groundwater volume collected. A total of 18 groundwater samples were collected from 12 locations around the site at sampling depths of approximately 10, 20, and 30 feet below the ground surface. The Hydrocone/gas chromatograph method produced a large volume of groundwater quality data within a relatively short time interval.

  11. Arsenic contamination in groundwater of Samta, Bangladesh.

    PubMed

    Yokota, H; Tanabe, K; Sezaki, M; Yano, Y; Hamabe, K; Yabuuchi, K; Tokunaga, H

    2002-01-01

    In March 1997, we analyzed the water of all tubewells used for drinking in Samta village in the Jessore district, Bangladesh. It has been confirmed from the survey that the arsenic contamination in Samta was one of the worst in the Ganges basin including West Bengal, India. 90% of the tubewells had arsenic concentrations above the Bangladesh standard of 0.05 mg/l. Tubewells with higher arsenic concentrations of over 0.50 mg/l were distributed in the southern area with a belt-like shape from east to west, and the distribution of arsenic concentration showed gradual decreasing toward northern area of the village. In order to examine the characteristics of the arsenic distribution in Samta, we have performed investigations such as: 1) the characteristics of groundwater flow, 2) the distribution of arsenic in the ground, 3) the concentration of arsenic and the other dissolved materials in groundwater, and 4) the distribution of arsenic concentration of trivalence and pentavalence. This paper examines the mechanism of arsenic release to groundwater and explains the above-mentioned characteristics of the arsenic contamination in Samta through the investigations of the survey results for these years.

  12. MANOVA statistical analysis of inorganic compounds in groundwater Indonesia

    SciTech Connect

    Tanty, Heruna; Bekti, Rokhana Dwi; Herlina, Tati E-mail: nurlelasari@unpad.ac.id; Nurlelasari E-mail: nurlelasari@unpad.ac.id

    2014-10-24

    The present study was carried out to determine levels of inorganic compounds contained in the ground water and Reverse Osmosis (RO) water filtration result. The data in groundwater samples was collected from Bekasi, Tangerang and Jakarta in Indonesia. A total of 30 samples were collected and analyzed for the determine Cadmium (Cd), Chromium (Cr), Manganese (Mn), Cyanide (CN) and Lead (Pb). The results of the study revealed that in groundwater, the average of Cd 0.0058 mg / l, Mn 1.5233 mg / l, Cr 0.0127 mg/l, Pb 0.0060 mg / l, and CN 0.0040 mg / l. The level of RO result were: Cd 0.0027 mg / l, Mn 0.1767 mg / l, Cr 0.0024 mg / l, Pb 0.0021 mg / l, and CN 0.0023 mg / l . This means that Cd and Mn in ground water were higher than the values recommended by PAK-EPA and WHO or the standard of Indonesian Ministry of Health. But after filtration Reverse Osmosis (RO) Mn and Cd levels decreased to levels below the standardized value. By comparing of mean in MANOVA and nonparametric MANOVA in α=5%, there are differences in average levels of inorganic substances Mn, Cr, Cd, Pb, and CN between before and after RO filtration.

  13. MANOVA statistical analysis of inorganic compounds in groundwater Indonesia

    NASA Astrophysics Data System (ADS)

    Tanty, Heruna; Bekti, Rokhana Dwi; Herlina, Tati; Nurlelasari

    2014-10-01

    The present study was carried out to determine levels of inorganic compounds contained in the ground water and Reverse Osmosis (RO) water filtration result. The data in groundwater samples was collected from Bekasi, Tangerang and Jakarta in Indonesia. A total of 30 samples were collected and analyzed for the determine Cadmium (Cd), Chromium (Cr), Manganese (Mn), Cyanide (CN) and Lead (Pb). The results of the study revealed that in groundwater, the average of Cd 0.0058 mg / l, Mn 1.5233 mg / l, Cr 0.0127 mg/l, Pb 0.0060 mg / l, and CN 0.0040 mg / l. The level of RO result were: Cd 0.0027 mg / l, Mn 0.1767 mg / l, Cr 0.0024 mg / l, Pb 0.0021 mg / l, and CN 0.0023 mg / l . This means that Cd and Mn in ground water were higher than the values recommended by PAK-EPA and WHO or the standard of Indonesian Ministry of Health. But after filtration Reverse Osmosis (RO) Mn and Cd levels decreased to levels below the standardized value. By comparing of mean in MANOVA and nonparametric MANOVA in α=5%, there are differences in average levels of inorganic substances Mn, Cr, Cd, Pb, and CN between before and after RO filtration.

  14. Groundwater recharge and agricultural contamination in alluvial fan of Eastern Kofu basin, JAPAN

    NASA Astrophysics Data System (ADS)

    Nakamura, T.

    2009-12-01

    Agriculture has significant effects on the rate and composition of groundwater recharge. The chemical loading into groundwater have been dominated by the constituents derived directly or indirectly from agricultural practices and additives. The contamination of groundwater with nitrate is a major public health and environmental concern around the world. The inorganic constituents like, K+, Ca2+, Mg2+, SO42-, Cl- and variety of other minor elements of groundwater are often used as agricultural additives; and the natural occurrence of these elements are dominated by the agricultural sources. A recent study has reported that Kofu basin groundwater aquifer is contaminated by nitrate from agricultural areas because of the fertilizer application for the orchard (Kazama and Yoneyama, 2002; Sakamoto et al., 1997, Nakamura et al., 2007). The water-oxygen and hydrogen stable isotope (δ18O and δD) and nitrate-nitrogen stable isotope (δ15N) of groundwater, river water and precipitation samples were investigated to identify the source of groundwater and nitrate nitrogen contamination in groundwater in the Fuefukigawa and Hikawa_Kanegawa alluvial fans in Kofu basin. The plot of δD versus δ18O values of groundwater, river water and precipitation samples suggest that the groundwater is a mixture of precipitation and river water. And nitrate-nitrogen isotope values have suggested the nitrate contamination of groundwater is from agricultural area. The study revealed positive correlation between groundwater δ18O values and NO3-, Cl-, SO42-, Ca2+, Mg2+ concentration, which shows the agricultural contamination is carried by the recharge of groundwater from precipitation in alluvial fan. Whereas, NO3-, Cl-, SO42-, Ca2+, Mg2+ are diluted by the river water recharges. This study showed the quality of groundwater is resulted from the mixing of water from the different source during the groundwater recharge in the study area. References Kazama F, Yoneyama M (2002) Nitrogen generation

  15. Inorganic and organic contaminants in Alaskan shorebird eggs.

    PubMed

    Saalfeld, David T; Matz, Angela C; McCaffery, Brian J; Johnson, Oscar W; Bruner, Phil; Lanctot, Richard B

    2016-05-01

    Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines. To investigate potential threats and provide baseline data on shorebird contaminant levels in Alaskan shorebirds, contaminant concentrations were evaluated in shorebird eggs from 16 species residing in seven geographic distinct regions of Alaska. Similar to previous studies, low levels of most inorganic and organic contaminants were found, although concentrations of several inorganic and organic contaminants were higher than those of previous studies. For example, elevated strontium levels were observed in several species, especially black oystercatcher (Haematopus bachmani) sampled in Prince William Sound, Alaska. Additionally, contaminant concentrations varied among species, with significantly higher concentrations of inorganic contaminants found in eggs of pectoral sandpiper (Calidris melanotos), semipalmated sandpiper (Calidris pusilla), black oystercatcher, and bar-tailed godwit (Limosa lapponica). Similarly, significantly higher concentrations of some organic contaminants were found in the eggs of American golden plover (Pluvialis dominica), black-bellied plover (Pluvialis squatarola), pacific golden plover (Pluvialis fulva), bar-tailed godwit, and semipalmated sandpiper. Despite these elevated levels, current concentrations of contaminants in shorebird eggs suggest that breeding environments are

  16. Parallel Processing of a Groundwater Contaminant Code

    SciTech Connect

    Arnett, Ronald Chester; Greenwade, Lance Eric

    2000-05-01

    The U. S. Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) is conducting a field test of experimental enhanced bioremediation of trichoroethylene (TCE) contaminated groundwater. TCE is a chlorinated organic substance that was used as a solvent in the early years of the INEEL and disposed in some cases to the aquifer. There is an effort underway to enhance the natural bioremediation of TCE by adding a non-toxic substance that serves as a feed material for the bacteria that can biologically degrade the TCE.

  17. Anatomy of a groundwater contamination episode

    SciTech Connect

    Shechter, M.

    1985-03-01

    Using the contamination episode at Price Landfill, New Jersey, as a case study, major analytical and informational issues characterizing groundwater pollution, with special emphasis on uncertainty associated with the environmental medium, especially solute-transport processes, and the valuation of health risks, principally dose-response relationships, are addressed. Alternative approaches to modeling the physical-chemical processes are described and subsequently coupled with mortality risk predictions to derive estimates of expected pollution costs: reduced longevity (pollution damage costs) and cost of control and remedial measures (damage reductions costs.). 29 references, 1 figure, 4 tables.

  18. Remediation of Groundwater Contaminated by Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Parker, Jack; Palumbo, Anthony

    2008-07-01

    A Workshop on Accelerating Development of Practical Field-Scale Bioremediation Models; An Online Meeting, 23 January to 20 February 2008; A Web-based workshop sponsored by the U.S. Department of Energy Environmental Remediation Sciences Program (DOE/ERSP) was organized in early 2008 to assess the state of the science and knowledge gaps associated with the use of computer models to facilitate remediation of groundwater contaminated by wastes from Cold War era nuclear weapons development and production. Microbially mediated biological reactions offer a potentially efficient means to treat these sites, but considerable uncertainty exists in the coupled biological, chemical, and physical processes and their mathematical representation.

  19. IAHS/AGU symposium on groundwater contamination

    NASA Astrophysics Data System (ADS)

    Abriola, Linda M.; Bahr, Jean M.

    1991-05-01

    Papers presented at a two-day jointly sponsored IAHS/AGU symposium on groundwater contamination are briefly summarized. This international symposium was held 11 12 May, 1989, in Baltimore, Maryland. Presentations encompassed recent research developments in three general areas: abiotic and biotic processes governing contaminant transport; aquifer rehabilitation; and the influence of agricultural practices and nonpoint sources on aquifer quality. Contributions offered an interesting mixture of theoretical, mathematical, laboratory, and field studies. In the first session, transport processes explored ranged from dispersion and fingering to nonequilibrium sorption, metals complexation, and bacteria migration. The use of optimization modeling in the design of remediation strategies was the focus of another session. Here theoretical studies were presented alongside case histories of aquifer rehabilitation. In a final session, a number of models for agricultural management were described. These presentations were complemented by case studies of actual aquifer degradation resulting from land-use and management practices.

  20. Potassium ferrate treatment of RFETS` contaminated groundwater

    SciTech Connect

    1995-01-01

    The potassium ferrate treatment study of Rocky Flats Environmental Technology Site (RFETS) groundwater was performed under the Sitewide Treatability Studies Program (STSP). This study was undertaken to determine the effectiveness of potassium ferrate in a water treatment system to remove the contaminants of concern (COCS) from groundwater at the RFETS. Potassium ferrate is a simple salt where the iron is in the plus six valence state. It is the iron at the plus six valence state (Fe {sup +6}) that makes it an unique water treatment chemical, especially in waters where the pH is greater than seven. In basic solutions where the solubility of the oxides/hydroxides of many of the COCs is low, solids are formed as the pH is raised. By using ferrate these solids are agglomerated so they can be effectively removed by sedimentation in conventional water treatment equipment. The objective of this study was to determine the quality of water after treatment with potassium ferrate and to determine if the Colorado Water Quality Control Commission (CWQCC) discharge limits for the COCs listed in Table 1.0-1 could be met. Radionuclides in the groundwater were of special concern.

  1. Groundwater contaminant plume ranking. [UMTRA Project

    SciTech Connect

    Not Available

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs.

  2. THE SCENARIOS APPROACH TO ATTENUATION-BASED REMEDIES FOR INORGANIC AND RADIONUCLIDE CONTAMINANTS

    SciTech Connect

    Vangelas, K.; Rysz, M.; Truex, M.; Brady, P.; Newell, C.; Denham, M.

    2011-08-04

    Guidance materials based on use of conceptual model scenarios were developed to assist evaluation and implementation of attenuation-based remedies for groundwater and vadose zones contaminated with inorganic and radionuclide contaminants. The Scenarios approach is intended to complement the comprehensive information provided in the US EPA's Technical Protocol for Monitored Natural Attenuation (MNA) of Inorganic Contaminants by providing additional information on site conceptual models and extending the evaluation to consideration of Enhanced Attenuation approaches. The conceptual models incorporate the notion of reactive facies, defined as units with hydrogeochemical properties that are different from surrounding units and that react with contaminants in distinct ways. The conceptual models also incorporate consideration of biogeochemical gradients, defined as boundaries between different geochemical conditions that have been induced by waste disposal or other natural phenomena. Gradients can change over time when geochemical conditions from one area migrate into another, potentially affecting contaminant mobility. A recognition of gradients allows the attenuation-affecting conditions of a site to be projected into the future. The Scenarios approach provides a stepwise process to identify an appropriate category of conceptual model and refine it for a specific site. Scenario materials provide links to pertinent sections in the EPA technical protocol and present information about contaminant mobility and important controlling mechanism for attenuation-based remedies based on the categories of conceptual models.

  3. A technical approach to groundwater contamination problems

    SciTech Connect

    Burton, J.C.; Leser, C.; Rose, C.M.

    1993-06-01

    Argonne National Laboratory has been performing technical investigations at sites in Nebraska and Kansas that have identified groundwater contamination by carbon tetrachloride. This comprehensive program will ultimately provide the affected communities with safe drinking water. The first step in the program is to evaluate the available data and identify sites that will require an Alternate Water Supply Study (AWSS). The objective of the AWSS is to identify options for providing a safe drinking water supply to all users, in compliance with the Safe Drinking Water Act. The AWSS consists of an engineering and cost evaluation followed by implementation of the selected alternative. For sites with contamination less than a specific concentration, the AWSS is regarded as a satisfactory long term solution, and no further action is taken. For those sites with concentrations above that specific limit, the AWSS implementation is regarded as only a stopgap measure, and the site is selected for additional remedial action. The first step of the remedial action is an Expedited Site Characterization (ESC). The ESC was developed at Argonne to decrease the cost and time of the remedial investigation and feasibility study while producing a high-quality technical investigation. The ESC is designed to characterize the contaminant plume configuration and movement, which requires an understanding of the geological and hydrogeologic controls on groundwater movement as well as the nature and extent of any remaining carbon tetrachloride source in the soils. The ESC program uses a multidisciplinary technical approach that incorporates geology, geochemistry, geohydrology, and geophysics. Field activities include sampling, chemical analysis, and borehole and surface geophysical surveys.

  4. TREATMENT OF HIGHLY CONTAMINATED GROUNDWATER: A SITE DEMONSTRATION PROJECT

    EPA Science Inventory

    From 9-11/1994, the USEPA conducted a field demonstration of the remediation of highly contaminated groundwater at the Mascolite Superfund site located in Millville, NJ. Besides high concentrations of the major contaminant, methyl methacrylate (MMA), the groundwater also containe...

  5. Technetium-99 removal from process solutions and contaminated groundwater

    SciTech Connect

    Del Cul, G.D.; Bostick, W.D.; Trotter, D.R.; Osborne, P.E.

    1993-01-01

    The predominant form of technetium under oxic conditions is the pertechnetate anion (TcO{sub 4}{sup {minus}}), which is highly soluble in water and readily mobile in the environment. Technetium-99 is of particular concern because of its persistence and mobility. Various equipment decontamination and uranium recovery operations at the Portsmouth Gaseous Diffusion Plant generate a `raffinate` waste stream characterized by toxic heavy metals, high concentration of nitric acid, and low levels of radionuclides ({sup 235}U and {sup 99}Tc). Dilution and adjustment of solution pH to a value of 8.2 to 8.5 precipitates a heavy-metals-sludge and a filtrate. The removal of {sup 99}Tc from these waste streams and from contaminated groundwater can be accomplished using anionic ion-exchange resins. Batch equilibrium and packed column breakthrough and regeneration studies were performed using inorganic sorbents and organic ion-exchange resins (Dowex SRB-OH and Reillex resins). These studies were performed on actual and surrogate raw raffinates, filtrates, and surrogate groundwater samples. The experimental conditions were chosen to closely represent the actual process.

  6. What should be done to mitigate groundwater contamination?

    PubMed Central

    Patrick, R

    1990-01-01

    Groundwater contamination is a serious problem that is growing in the United States, but its true extent is not known and it is difficult to determine because of the complexities of contaminants, their transformation, and fate in groundwater systems. It is also difficult to predict their movement in groundwater. Since we know that the problem is serious and that our needs for groundwater will grow, the mitigation of groundwater contamination, despite the high cost, is necessary. Furthermore, it is very difficult to predict effects on human health because they have not been defined for many of the chemicals. Antagonism and synergistic effects of interacting chemicals have not been determined because they are complicated by many factors, for example, volatile organic compounds. The effects of leachates in groundwaters entering streams on the riverine environment and aquatic life have not been determined. Successful mitigation requires that we determine which microbial and chemical contaminants are the most serious threats to human health, develop the technology to biologically, chemically, and physically transform hazardous waste into nonhazardous materials; develop the technology to properly contain hazardous materials and to remediate contamination, and determine the effects of those hazardous materials on soils and water microorganisms and macroorganisms. Our challenge is how can we immobilize or destroy groundwater contaminants so that they will not enter groundwater, or if they enter groundwater, are confined and destroyed. PMID:2401260

  7. Inexact Socio-Dynamic Modeling of Groundwater Contamination Management

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Zhang, X.

    2015-12-01

    Groundwater contamination may alter the behaviors of the public such as adaptation to such a contamination event. On the other hand, social behaviors may affect groundwater contamination and associated risk levels such as through changing ingestion amount of groundwater due to the contamination. Decisions should consider not only the contamination itself, but also social attitudes on such contamination events. Such decisions are inherently associated with uncertainty, such as subjective judgement from decision makers and their implicit knowledge on selection of whether to supply water or reduce the amount of supplied water under the scenario of the contamination. A socio-dynamic model based on the theories of information-gap and fuzzy sets is being developed to address the social behaviors facing the groundwater contamination and applied to a synthetic problem designed based on typical groundwater remediation sites where the effects of social behaviors on decisions are investigated and analyzed. Different uncertainties including deep uncertainty and vague/ambiguous uncertainty are effectively and integrally addressed. The results can provide scientifically-defensible decision supports for groundwater management in face of the contamination.

  8. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    PubMed

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site

  9. The discharge of nitrate-contaminated groundwater from developed shoreline to marsh-fringed estuary

    USGS Publications Warehouse

    Portnoy, J.W.; Nowicki, B.L.; Roman, C.T.; Urish, D.W.

    1998-01-01

    As residential development, onsite wastewater disposal and groundwater contamination increase in the coastal zone, assessment of nutrient removal by soil and sedimentary processes becomes increasingly important. Nitrogen removal efficiency depends largely upon the specific flow paths taken by groundwater as it discharges into nitrogen-limited estuarine waters. Shoreline salinity surveys, hydraulic studies and thermal infrared imagery indicated that groundwater discharge into the Nauset Marsh estuary (Eastham, MA) occurred in high-velocity seeps immediately seaward of the upland-fringing salt marsh. Discharge was highly variable spatially and occurred through permeable, sandy sediments during low tide. Seepage chamber monitoring showed that dissolved inorganic nitrogen (principally nitrate) traversed nearly conservatively from the aquifer through shallow estuarine sediments to coastal waters at flux rates of 13 mmoles m2 h1. A significant relationship found between porewater NO3N concentrations and NO3N flux rates may provide a rapid method of estimating nitrogen loading from groundwater to the water column.

  10. Arsenic Contamination of Groundwater: A Review of Sources, Prevalence, Health Risks, and Strategies for Mitigation

    PubMed Central

    Shikha

    2014-01-01

    Arsenic contamination of groundwater in different parts of the world is an outcome of natural and/or anthropogenic sources, leading to adverse effects on human health and ecosystem. Millions of people from different countries are heavily dependent on groundwater containing elevated level of As for drinking purposes. As contamination of groundwater, poses a serious risk to human health. Excessive and prolonged exposure of inorganic As with drinking water is causing arsenicosis, a deteriorating and disabling disease characterized by skin lesions and pigmentation of the skin, patches on palm of the hands and soles of the feet. Arsenic poisoning culminates into potentially fatal diseases like skin and internal cancers. This paper reviews sources, speciation, and mobility of As and global overview of groundwater As contamination. The paper also critically reviews the As led human health risks, its uptake, metabolism, and toxicity mechanisms. The paper provides an overview of the state-of-the-art knowledge on the alternative As free drinking water and various technologies (oxidation, coagulation flocculation, adsorption, and microbial) for mitigation of the problem of As contamination of groundwater. PMID:25374935

  11. Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation.

    PubMed

    Shankar, Shiv; Shanker, Uma; Shikha

    2014-01-01

    Arsenic contamination of groundwater in different parts of the world is an outcome of natural and/or anthropogenic sources, leading to adverse effects on human health and ecosystem. Millions of people from different countries are heavily dependent on groundwater containing elevated level of As for drinking purposes. As contamination of groundwater, poses a serious risk to human health. Excessive and prolonged exposure of inorganic As with drinking water is causing arsenicosis, a deteriorating and disabling disease characterized by skin lesions and pigmentation of the skin, patches on palm of the hands and soles of the feet. Arsenic poisoning culminates into potentially fatal diseases like skin and internal cancers. This paper reviews sources, speciation, and mobility of As and global overview of groundwater As contamination. The paper also critically reviews the As led human health risks, its uptake, metabolism, and toxicity mechanisms. The paper provides an overview of the state-of-the-art knowledge on the alternative As free drinking water and various technologies (oxidation, coagulation flocculation, adsorption, and microbial) for mitigation of the problem of As contamination of groundwater.

  12. Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect

    Moore, G.K.

    1995-03-01

    Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location.

  13. Impact of inorganic contaminants on microalgae productivity and bioremediation potential.

    PubMed

    Torres, Eric M; Hess, Derek; McNeil, Brian T; Guy, Tessa; Quinn, Jason C

    2017-05-01

    As underdeveloped nations continue to industrialize and world population continues to increase, the need for energy, natural resources, and goods will lead to ever increasing inorganic contaminants, such as heavy metals, in various waste streams that can have damaging effects on plant life, wildlife, and human health. This work is focused on the evaluation of the potential of Nannochloropsis salina to be integrated with contaminated water sources for the concurrent production of a biofuel feedstock while providing an environmental service through bioremediation. Individual contaminants (As, Cd, Cr, Co, Cu, Pb, Ni, Hg, Se, and Zn) at various concentrations ranging from a low concentration (1X) to higher concentrations (10X, and 40X) found in contaminated systems (mine tailings, wastewater treatment plants, produced water) were introduced into growth media. Biological growth experimentation was performed in triplicate at the various contaminant concentrations and at 3 different light intensities. Results show that baseline concentrations of each contaminant slightly decreased biomass growth to between 89% and 99% of the control with the exception of Ni which dramatically reduced growth. Increased contaminant concentrations resulted in progressively lower growth rates for all contaminants tested. Lipid analysis shows most baseline contaminant concentrations slightly decrease or have minimal effects on lipid content at all light levels. Trace contaminant analysis on the biomass showed Cd, Co, Cu, Pb, and Zn were sorbed by the microalgae with minimal contaminants remaining in the growth media illustrating the effectiveness of microalgae to bioremediate these contaminants when levels are sufficiently low to not detrimentally impact productivity. The microalgae biomass was less efficient at sorption of As, Cr, Ni, and Se.

  14. Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea

    NASA Astrophysics Data System (ADS)

    Jeong, Chan Ho

    2001-11-01

    Taejon Metropolitan City located in the central part of South Korea has grown and urbanized rapidly. The city depends heavily on groundwater as a water resource. Because of ubiquitous pollution sources, the quality and contamination have become important issues for the urban groundwater supply. This study has investigated the chemical characteristics and the contamination of groundwater in relation to land use. An attempt was made to distinguish anthrophogenic inputs from the influence of natural chemical weathering on the chemical composition of groundwater at Taejon. Groundwater samples collected at 170 locations in the Taejon area show very variable chemical composition of groundwater, e.g. electrical conductance ranges from 65 to 1,290 μS/cm. Most groundwater is weakly acidic and the groundwater chemistry is more influenced by land use and urbanization than by aquifer rock type. Most groundwater from green areas and new town residential districts has low electrical conductance, and is of Ca-HCO 3 type, whereas the chemical composition of groundwater from the old downtown and industrial district is shifted towards a Ca-Cl (NO 3+SO 4) type with high electrical conductance. A number of groundwater samples in the urbanized area are contaminated by high nitrate and chlorine, and exhibit high hardness. The EpCO 2, that is the CO 2 content of a water sample relative to pure water, was computed to obtain more insight into the origin of CO 2 and bicarbonate in the groundwater. The CO 2 concentration of groundwater in the urbanized area shows a rough positive relationship with the concentration of major inorganic components. The sources of nitrate, chlorine and excess CO 2 in the groundwater are likely to be municipal wastes of unlined landfill sites, leaky latrines and sewage lines. Chemical data of commercial mineral water from other Jurassic granite areas were compared to the chemical composition of the groundwater in the Taejon area. Factor analysis of the chemical

  15. Groundwater.

    ERIC Educational Resources Information Center

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  16. Groundwater.

    ERIC Educational Resources Information Center

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  17. [Quantitative method of representative contaminants in groundwater pollution risk assessment].

    PubMed

    Wang, Jun-Jie; He, Jiang-Tao; Lu, Yan; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-03-01

    In the light of the problem that stress vulnerability assessment in groundwater pollution risk assessment is lack of an effective quantitative system, a new system was proposed based on representative contaminants and corresponding emission quantities through the analysis of groundwater pollution sources. And quantitative method of the representative contaminants in this system was established by analyzing the three properties of representative contaminants and determining the research emphasis using analytic hierarchy process. The method had been applied to the assessment of Beijing groundwater pollution risk. The results demonstrated that the representative contaminants hazards greatly depended on different research emphasizes. There were also differences between the sequence of three representative contaminants hazards and their corresponding properties. It suggested that subjective tendency of the research emphasis had a decisive impact on calculation results. In addition, by the means of sequence to normalize the three properties and to unify the quantified properties results would zoom in or out of the relative properties characteristic of different representative contaminants.

  18. Groundwater contamination and its effect on health in Turkey.

    PubMed

    Baba, Alper; Tayfur, Gokmen

    2011-12-01

    The sources of groundwater pollution in Turkey are identified, and pathways of contaminants to groundwater are first described. Then, the effects of groundwater quality on health in Turkey are evaluated. In general, sources of groundwater contamination fall into two main categories: natural and anthropogenic sources. Important sources of natural groundwater pollution in Turkey include geological formations, seawater intrusion, and geothermal fluid(s). The major sources of anthropogenic groundwater contamination are agricultural activities, mining waste, industrial waste, on-site septic tank systems, and pollution from imperfect well constructions. The analysis results revealed that natural contamination due to salt and gypsum are mostly found in Central and Mediterranean regions and arsenic in Aegean region. Geothermal fluids which contain fluoride poses a danger for skeleton, dental, and bone problems, especially in the areas of Denizli, Isparta, and Aydın. Discharges from surface water bodies contaminate groundwater by infiltration. Evidence of such contamination is found in Upper Kızılırmak basin, Gediz basin, and Büyük Melen river basin and some drinking water reservoirs in İstanbul. Additionally, seawater intrusion causes groundwater quality problems in coastal regions, especially in the Aegean coast. Industrial wastes are also polluting surface and groundwater in industrialized regions of Turkey. Deterioration of water quality as a result of fertilizers and pesticides is another major problem especially in the regions of Mediterranean, Aegean, Central Anatolia, and Marmara. Abandoned mercury mines in the western regions of Turkey, especially in Çanakkale, İzmir, Muğla, Kütahya, and Balıkesir, cause serious groundwater quality problems.

  19. REMOVAL OF ORGANIC CONTAMINANTS FROM GROUNDWATER.

    EPA Science Inventory

    More are than lOO million Americans depend on groundwater as a source of drinking water. hree quarters of U.S. cities get their water supplies totally or in part from groundwater and one-third of the largest cities rely on groundwater for at least part of their potable water supp...

  20. ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER

    EPA Science Inventory

    This paper presents information on two pilot-field appliations of advanced oxidation technologies for contaminated groundwater with organis. The two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidatrion Systems, Inc. of Tucso...

  1. ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER

    EPA Science Inventory

    This paper presents information on two pilot-field appliations of advanced oxidation technologies for contaminated groundwater with organis. The two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidatrion Systems, Inc. of Tucso...

  2. COLLOIDAL CONSIDERATIONS IN GROUNDWATER SAMPLING AND CONTAMINANT TRANSPORT PREDICTIONS

    EPA Science Inventory

    The association of contaminants with suspended colloidal material in groundwater is a possible transport mechanism and a complicating factor for accurate estimations of the aqueous geochemistry of subsurface systems. esearch to date indicates colloidal facilitated transport of co...

  3. Health effects of groundwater fluoride contamination.

    PubMed

    Nayak, Bishwajit; Roy, Madan Mohan; Das, Bhaskar; Pal, Arup; Sengupta, Mrinal Kumar; De, Shankar Prasad; Chakraborti, Dipankar

    2009-04-01

    The people in Berhait block, Sahibganj district, Jharkhand state, India, have been exposed chronically to fluoridecontaminated groundwater. Hereby, we report the clinical effects of chronic exposure to fluoride. The study population was a convenience sample of 342 adults and 258 children living in the affected area. All volunteers filled out questionnaires and were examined. Well water from the six affected villages and urine samples were analyzed for fluoride using an ion-sensitive electrode. Twenty nine percent of 89 well water samples had fluoride concentrations above the Indian permissible limit of fluoride in drinking water. Eighty-five children and 72 adults had clinical fluorosis. Urine fluoride concentrations in children were 0.758-2.88 mg/L whereas in adults they were 0.331-10.36 mg/L. Clinical effects of fluoride included abnormal tooth enamel in children; adults had joint pain and deformity of the limbs and spine, along with ligamentous calcifications and exostosis formations in seven patients. Elevated urine fluoride concentrations supported the clinical diagnosis of fluorosis. Owing to insufficient fluoride-safe wells and lack of awareness of the danger of fluoride toxicity, villagers often drink fluoride-contaminated water. Villagers of Berhait block, including children, are at risk from chronic fluoride toxicity. To combat the situation, villagers need fluoride-safe water, education, and awareness of the danger about fluoride toxicity.

  4. A multilayer groundwater sampler for characterizing contaminant plumes

    SciTech Connect

    Kaplan, E.; Heiser, J.

    1992-12-18

    This final report describes activities related to the design and initial demonstration of a passive multilayer groundwater sampling system. The apparatus consists of remotely controlled cylinders filled with deionized water which are connected in tandem. Vertical fine structure of contaminants are easily defined. Using the apparatus in several wells may lead to three dimensional depictions of groundwater contamination, thereby providing the information necessary for site characterization and remediation.

  5. A multilayer groundwater sampler for characterizing contaminant plumes. Final report

    SciTech Connect

    Kaplan, E.; Heiser, J.

    1992-12-18

    This final report describes activities related to the design and initial demonstration of a passive multilayer groundwater sampling system. The apparatus consists of remotely controlled cylinders filled with deionized water which are connected in tandem. Vertical fine structure of contaminants are easily defined. Using the apparatus in several wells may lead to three dimensional depictions of groundwater contamination, thereby providing the information necessary for site characterization and remediation.

  6. Use of an Artificial Sweetener to Identify Sources of Groundwater Nitrate Contamination.

    PubMed

    Robertson, W D; Van Stempvoort, D R; Roy, J W; Brown, S J; Spoelstra, J; Schiff, S L; Rudolph, D R; Danielescu, S; Graham, G

    2016-07-01

    The artificial sweetener acesulfame (ACE) is a potentially useful tracer of waste water contamination in groundwater. In this study, ACE concentrations were measured in waste water and impacted groundwater at 12 septic system sites in Ontario, Canada. All samples of septic tank effluent (n = 37) had ACE >6 µg/L, all samples of groundwater from the proximal plume zones (n = 93) had ACE >1 µg/L and, almost all samples from the distal plume zones had ACE >2 µg/L. Mean mass ratios of total inorganic nitrogen/ACE at the 12 sites ranged from 680 to 3500 for the tank and proximal plume samples. At five sites, decreasing ratio values in the distal zones indicated nitrogen attenuation. These ratios were applied to three aquifers in Canada that are nitrate-stressed and an urban stream where septic systems are present nearby to estimate the amount of waste water nitrate contamination. At the three aquifer locations that are agricultural, low ACE values (<0.02-0.15 µg/L) indicated that waste water contributed <15% of the nitrate in most samples. In groundwater discharging to the urban stream, much higher ACE values (0.2-11 µg/L) indicated that waste water was the likely source of >50% of the nitrate in most samples. This study confirms that ACE is a powerful tracer and demonstrates its use as a diagnostic tool for establishing whether waste water is a significant contributor to groundwater contamination or not.

  7. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes

    SciTech Connect

    Porowska, Dorota

    2015-05-15

    Highlights: • Research showed the origin of DIC in the groundwater around a reclaimed landfill. • Carbon isotope was used to evaluate the contributions of carbon from different sources. • The leachate-contaminated water was isotopically distinct from the natural groundwater. • DIC in the natural groundwater comes from organic matter and dissolution of carbonates. • In the contaminated water, DIC comes from organic matter in the aquifer and landfill. - Abstract: Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ{sup 13}C{sub DIC}) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ{sup 13}C{sub DIC} values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4–54% of the DIC pool is derived from organic matter degradation and 96–46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20–53% of the DIC is derived from organic matter degradation of natural origin and 80–47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO{sub 2} (P CO{sub 2}) was generally above the atmospheric, hence atmospheric CO{sub 2} as a source of carbon in DIC pool was negligible in the

  8. Assessing soil and groundwater contamination in a metropolitan redevelopment project.

    PubMed

    Yun, Junki; Lee, Ju Young; Khim, Jeehyeong; Ji, Won Hyun

    2013-08-01

    The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α).

  9. Assessing groundwater vulnerability to agrichemical contamination in the Midwest US

    USGS Publications Warehouse

    Burkart, M.R.; Kolpin, D.W.; James, D.E.

    1999-01-01

    Agrichemicals (herbicides and nitrate) are significant sources of diffuse pollution to groundwater. Indirect methods are needed to assess the potential for groundwater contamination by diffuse sources because groundwater monitoring is too costly to adequately define the geographic extent of contamination at a regional or national scale. This paper presents examples of the application of statistical, overlay and index, and process-based modeling methods for groundwater vulnerability assessments to a variety of data from the Midwest U.S. The principles for vulnerability assessment include both intrinsic (pedologic, climatologic, and hydrogeologic factors) and specific (contaminant and other anthropogenic factors) vulnerability of a location. Statistical methods use the frequency of contaminant occurrence, contaminant concentration, or contamination probability as a response variable. Statistical assessments are useful for defining the relations among explanatory and response variables whether they define intrinsic or specific vulnerability. Multivariate statistical analyses are useful for ranking variables critical to estimating water quality responses of interest. Overlay and index methods involve intersecting maps of intrinsic and specific vulnerability properties and indexing the variables by applying appropriate weights. Deterministic models use process-based equations to simulate contaminant transport and are distinguished from the other methods in their potential to predict contaminant transport in both space and time. An example of a one-dimensional leaching model linked to a geographic information system (GIS) to define a regional metamodel for contamination in the Midwest is included.

  10. Inorganic selenium speciation in groundwaters by solid phase extraction on Dowex 1X2.

    PubMed

    Lin, Tser-Sheng

    2007-10-01

    A Dowex 1X2 resin separation technique followed by analysis with atomic absorption spectroscopy was evaluated for the study of inorganic selenium speciation in groundwaters. After Se(IV) and Se(VI) were retained on the resin column, Se(IV) and Se(VI) were eluted out by 0.1 and 1M nitric acid solutions. The method detection limit was 5.6 ng/L for both Se(IV) and Se(VI). Analysis of synthetic solutions consistently yielded more than 90% recovery of these two selenium forms with negligible cross-contamination. The results of spiked well waters show that this method can be applied at ultra-trace level of Se in groundwater and the interference of chloride ion can be neglected. Water samples collected from the monitoring wells in the Science-based Industrial Park, Hsin-Chu, Taiwan, were analyzed. Average dissolved selenium concentrations were 32.1+/-17.6 ng/L. The proportion of Se(VI) to the total dissolved selenium ranged from 47.6 to 61.2% and an average of 53.8% in water samples analyzed.

  11. Evaluation of the fate of arsenic-contaminated groundwater at different aquifers of Thar coalfield Pakistan.

    PubMed

    Ali, Jamshed; Kazi, Tasneem G; Baig, Jameel A; Afridi, Hassan I; Arain, Mariam S; Ullah, Naeem; Brahman, Kapil D; Arain, Sadaf S; Panhwar, Abdul H

    2015-12-01

    In present study, the ground water at different aquifers was evaluated for physicochemical parameters, iron, total arsenic, total inorganic arsenic and arsenic species (arsenite and arsenate). The samples of groundwater were collected at different depths, first aquifer (AQ1) 50-60 m, second aquifer (AQ2) 100-120 m, and third aquifer (AQ3) 200-250 m of Thar coalfield, Pakistan. Total inorganic arsenic was determined by solid phase extraction using titanium dioxide as an adsorbent. The arsenite was determined by cloud point extraction using ammonium pyrrolidinedithiocarbamate as a chelating reagent, and resulted complex was extracted by Triton X-114. The resulted data of groundwater were reported in terms of basic statistical parameters, principal component, and cluster analysis. The resulted data indicated that physicochemical parameters of groundwater of different aquifers were exceeded the World Health Organization provisional guideline for drinking water except pH and SO4(2-). The positive correlation was observed between arsenic species and physicochemical parameters of groundwater except F(-) and K(+), which might be caused by geochemical minerals. Results of cluster analysis indicated that groundwater samples of AQ1 was highly contaminated with arsenic species as compared to AQ2 and AQ3 (p > 0.05).

  12. Implications of uncertainty in exposure assessment for groundwater contamination

    USGS Publications Warehouse

    Reichard, Eric G.; Izbicki, John A.; Martin, Peter

    1995-01-01

    Decision-making on regulation, mitigation, and treatment of drinking water contamination depends, in part, on estimates of human exposure. Assessment of past, present and potential future exposure levels requires quantitative characterization of the contaminant sources, the transport of contaminants and the level of actual human exposure to the contaminated water. Failure to consider the uncertainties in these three components of exposure assessment can lead to poor decisions such as implementing an inappropriate mitigation strategy or failing to regulate an important contaminant. Three examples from US Geological Survey hydrogeologic studies in southern California are presented to illustrate some of the unique uncertainties associated with exposure assessment for groundwater contamination.

  13. Groundwater Contamination Response Guide. Volume 1. Methodology.

    DTIC Science & Technology

    1983-06-01

    Reference are designed to help base level engineering personnel to address groundwater pollution problems in a logical manner. This will address such specific...They do, however, describe an overall approach which can be followed to ensure a logical, scientifically based response to a groundwater pollution incident...the art of the various techniques used to identify, quantify, and respond to groundwater pollution incidents. 2 SECTION 11 IDENTIFYING AND ASSESSING

  14. Identification of Groundwater Contaminant Location using Simulation-Optimization Methods with Various Contaminant Properties

    NASA Astrophysics Data System (ADS)

    Park, Y. C.

    2016-12-01

    Identification of groundwater contaminant location is one of the most important part in remediation of contaminated groundwater because remediation processes require enormous time and money. Especially identification of contaminant location could be the most serious part in industrial complexes where many potential contaminant sources exist. Simulation-Optimization methods have been used to identify contaminant location for decays. The accuracy of identification increases when the amount of information of aquifer properties and contaminant properties increases. Artificial contaminated groundwater systems were tested with various aquifer properties and contaminant properties. Deterministic and Stochastic approaches applied to estimate the accuracy of identification using simulation-optimization methods. Additionally, parallel computing techniques were used to improve the speed of simulation-optimization methods. This subject is supported by Korea Ministry of Environment as "The GAIA project".

  15. Viability of longitudinal trenches for capturing contaminated groundwater.

    PubMed

    Hudak, Paul F

    2010-04-01

    Using a groundwater flow and mass transport model, this study compared the capability of trenches with permeable backfill for capturing hypothetical contaminant plumes in homogeneous and heterogeneous unconfined aquifers. Longitudinal (parallel to groundwater flow), as well as conventional transverse (perpendicular to groundwater flow) trench configurations were considered. Alternate trench configurations intercepted the leading tip of an initial contaminant plume and had identical length, equal to the cross-gradient width of the plume. A longitudinal trench required 31% less time than its transverse counterpart to remediate a homogeneous aquifer. By contrast, in simulated heterogeneous aquifers, longitudinal remediation timeframes ranged from 41% less to 33% more than transverse trenches. Results suggest that longitudinal trenches may be a viable alternative for narrow contaminant plumes under low-groundwater velocity conditions, but may be impractical for plumes with wide leading tips, or in complex heterogeneous aquifers with divergent flow.

  16. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes.

    PubMed

    Porowska, Dorota

    2015-05-01

    Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ(13)CDIC) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ(13)CDIC values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4-54% of the DIC pool is derived from organic matter degradation and 96-46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20-53% of the DIC is derived from organic matter degradation of natural origin and 80-47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO2 (P CO2) was generally above the atmospheric, hence atmospheric CO2 as a source of carbon in DIC pool was negligible in the aquifer. P CO2 values in the aquifer in Otwock were always one to two orders of magnitude above the atmospheric P CO2, and thus CO2 escaped directly into the vadose zone.

  17. Monitored Attenuation of Inorganic Contaminants in Ground Water Volume 2 – Assessment for Non-Radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium

    EPA Science Inventory

    This document represents the second volume of a set of three volumes that address the technical basis and requirements for assessing the potential applicability of MNA as part of a ground-water remedy for plumes with non-radionuclide and/or radionuclide inorganic contaminants. V...

  18. Monitored Attenuation of Inorganic Contaminants in Ground Water Volume 2 – Assessment for Non-Radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium

    EPA Science Inventory

    This document represents the second volume of a set of three volumes that address the technical basis and requirements for assessing the potential applicability of MNA as part of a ground-water remedy for plumes with non-radionuclide and/or radionuclide inorganic contaminants. V...

  19. DEMONSTRATION BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANIC/INORGANIC CONTAMINANTS - SILICATE TECHNOLOGY CORPORATION

    EPA Science Inventory

    Silicate Technology Corporation's (STC's) technology for treating hazardous waste utilizes silicate compounds to stabilize organic and inorganic constituents in contaminated soils and sludges. STC has developed two groups of reagents: SOILSORB HM for treating wastes with inorgan...

  20. DEMONSTRATION BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANIC/INORGANIC CONTAMINANTS - SILICATE TECHNOLOGY CORPORATION

    EPA Science Inventory

    Silicate Technology Corporation's (STC's) technology for treating hazardous waste utilizes silicate compounds to stabilize organic and inorganic constituents in contaminated soils and sludges. STC has developed two groups of reagents: SOILSORB HM for treating wastes with inorgan...

  1. In Situ Treatment of Chromium-Contaminated Groundwater

    SciTech Connect

    Fruchter, Jonathan S. )

    2002-12-01

    In Situ Treatment of Chromate Contaminated Groundwater Jonathan S. Fruchter Pacific Northwest National Laboratory Abstract of paper published in Environmental Science and Technology, 2002 Although not as common as solvent or fuel products contamination, chromate (chromium (VI)) contamination of groundwater is relatively widespread. Chromate has a variety of industrial uses, including chrome plating, steel making, and use as a corrosion inhibitor, wood preservative, well-drilling fluid additive, biocide, and as a pigment in paints and primers. EPA has estimated that as many as 1300 sites in the United States may have groundwater contaminated with chromate. The paper discusses a number of approaches to in situ treatment of chromate contamination in groundwater aquifers. The approaches include various types of chemical treatments, biological treatments and natural attenuation. The strengths and weaknesses of each method are discussed and compared. Field examples of two types of chemical treatment, in situ redox manipulation and chemically enhanced pump and treat are presented. It is concluded that in situ methods show promise, but can be difficult to implement due to site-specific conditions and limited long-term experience with these methods. As more performance and cost data are acquired for the demonstrations that are ongoing, and continuing research increases our understanding of subsurface processes, in situ treatment methods for chromium (VI) contamination in groundwater should gain wider acceptance.

  2. Assessing Alternative Endpoints for Groundwater Remediation at Contaminated Sites

    DTIC Science & Technology

    2011-05-01

    containment area (a fenced area contained by a temporary cap and a 30 to 70 feet deep slurry wall filled with bentonite clay ). In addition, the ROD...remediation professionals are high concentrations of contaminants that have diffused into rock matrix, clay lenses, or other low-permeability zones...contaminated with arsenic and aniline present in clays and rock fractures), Highway 71/72 Refinery (215 acres contaminated with LNAPL where groundwater

  3. Groundwater pumping effects on contaminant loading management in agricultural regions.

    PubMed

    Park, Dong Kyu; Bae, Gwang-Ok; Kim, Seong-Kyun; Lee, Kang-Kun

    2014-06-15

    Groundwater pumping changes the behavior of subsurface water, including the location of the water table and characteristics of the flow system, and eventually affects the fate of contaminants, such as nitrate from agricultural fertilizers. The objectives of this study were to demonstrate the importance of considering the existing pumping conditions for contaminant loading management and to develop a management model to obtain a contaminant loading design more appropriate and practical for agricultural regions where groundwater pumping is common. Results from this study found that optimal designs for contaminant loading could be determined differently when the existing pumping conditions were considered. This study also showed that prediction of contamination and contaminant loading management without considering pumping activities might be unrealistic. Motivated by these results, a management model optimizing the permissible on-ground contaminant loading mass together with pumping rates was developed and applied to field investigation and monitoring data from Icheon, Korea. The analytical solution for 1-D unsaturated solute transport was integrated with the 3-D saturated solute transport model in order to approximate the fate of contaminants loaded periodically from on-ground sources. This model was further expanded to manage agricultural contaminant loading in regions where groundwater extraction tends to be concentrated in a specific period of time, such as during the rice-growing season, using a method that approximates contaminant leaching to a fluctuating water table. The results illustrated that the simultaneous management of groundwater quantity and quality was effective and appropriate to the agricultural contaminant loading management and the model developed in this study, which can consider time-variant pumping, could be used to accurately estimate and to reasonably manage contaminant loading in agricultural areas. Copyright © 2014 Elsevier Ltd. All

  4. Toxic groundwater contaminants: an overlooked contributor to urban stream syndrome?

    PubMed

    Roy, James W; Bickerton, Greg

    2012-01-17

    Screening for common groundwater contaminants was performed along eight urban stream reaches (100s-1000s of m) at approximately 25-75 cm below the streambeds. Four sites had known or suspected chlorinated-solvent plumes; otherwise no groundwater contamination was known previously. At each site, between 5 and 22 contaminants were detected at levels above guideline concentrations for the preservation of aquatic life, while several others were detected at lower levels, but which may still indicate some risk. Contaminants of greatest concern include numerous metals (Cd, Zn, Al, Cu, Cr, U), arsenic, various organics (chlorinated and petroleum), nitrate and ammonium, and chloride (road salt likely), with multiple types occurring at each site and often at the same sampling location. Substantial portions of the stream reaches (from 40 to 88% of locations sampled) possessed one or more contaminants above guidelines. These findings suggest that this diffuse and variable-composition urban groundwater contamination is a toxicity concern for all sites and over a large portion of each study reach. Synergistic toxicity, both for similar and disparate compounds, may also be important. We conclude that groundwater contaminants should be considered a genuine risk to urban stream aquatic ecosystems, specifically benthic organisms, and may contribute to urban stream syndrome.

  5. Biodegradation of thiocyanate in mining-contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Spurr, L. P.; Watts, M. P.; Moreau, J. W.

    2015-12-01

    In-situ SCN- biodegradation as a strategy for remediating contaminated groundwater remains largely unproven. This study aimed to culture and characterise a community of SCN--degrading microbes from mining-contaminated groundwater, and to optimize the efficiency of this process under varied geochemical conditions. A gold ore processing plant in Victoria, Australia, has generated high amounts of thiocyanate (SCN-)-contaminated waste effluent. This effluent collects in a tailings storage facility (TSF) on site and seepage has contaminated local groundwater. This SCN- plume recently escaped the mine lease in a plume flowing partly through a confined aquifer and partly along buried paleochannel gravels. Groundwater samples were collected using a low-flow pump from two bores near the TSF. The pH of the SCN- contaminated groundwater typically varies between 4 and 6, and dissolved O2 varies between 1 and 40 ppm. SCN- concentrations in off-lease groundwater have increased from 10 ppm in 2010 to over 150 ppm in 2015. Cultures were inoculated directly from the groundwater, and filtered groundwater was used with amendments as the basal growth medium Cultures were subjected to geochemical amendments including changes in dissolved O2, pH, SCN- concentration and additions of organic carbon, phosphate or both. The enriched microbial consortia could not degrade thiocyanate under anoxic conditions, but some could completely degrade high concentrations of SCN- (>800mg L-1) under oxic conditions. Biodegradation accelerated with the addition of phosphate, while the addition of organic carbon actually limited the rate. SCN- degrading cultures are undergoing DNA sequencing for species identification and comparison to SCN--degrading cultures inoculated from surface waters in the TSF.

  6. High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking.

    PubMed

    Rahman, M Azizur; Hasegawa, H

    2011-10-15

    Rice is the staple food for the people of arsenic endemic South (S) and South-East (SE) Asian countries. In this region, arsenic contaminated groundwater has been used not only for drinking and cooking purposes but also for rice cultivation during dry season. Irrigation of arsenic-contaminated groundwater for rice cultivation has resulted high deposition of arsenic in topsoil and uptake in rice grain posing a serious threat to the sustainable agriculture in this region. In addition, cooking rice with arsenic-contaminated water also increases arsenic burden in cooked rice. Inorganic arsenic is the main species of S and SE Asian rice (80 to 91% of the total arsenic), and the concentration of this toxic species is increased in cooked rice from inorganic arsenic-rich cooking water. The people of Bangladesh and West Bengal (India), the arsenic hot spots in the world, eat an average of 450g rice a day. Therefore, in addition to drinking water, dietary intake of arsenic from rice is supposed to be another potential source of exposure, and to be a new disaster for the population of S and SE Asian countries. Arsenic speciation in raw and cooked rice, its bioavailability and the possible health hazard of inorganic arsenic in rice for the population of S and SE Asia have been discussed in this review.

  7. A Contamination Vulnerability Assessment for the Sacramento Area Groundwater Basin

    SciTech Connect

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-03-10

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MtBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Ambient Groundwater Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement the groundwater assessment program in cooperation with local water purveyors. In 2001 and 2002, LLNL carried out this vulnerability study in the groundwater basin of Sacramento suburban area, located to the north of the American River and to the east of the Sacramento River. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3

  8. Enhancing aerobic biodegradation of 1,2-dibromoethane in groundwater using ethane or propane and inorganic nutrients

    NASA Astrophysics Data System (ADS)

    Hatzinger, Paul B.; Streger, Sheryl H.; Begley, James F.

    2015-01-01

    1,2-Dibromoethane (ethylene dibromide; EDB) is a probable human carcinogen that was previously used as both a soil fumigant and a scavenger in leaded gasoline. EDB has been observed to persist in soils and groundwater, particularly under oxic conditions. The objective of this study was to evaluate options to enhance the aerobic degradation of EDB in groundwater, with a particular focus on possible in situ remediation strategies. Propane gas and ethane gas were observed to significantly stimulate the biodegradation of EDB in microcosms constructed with aquifer solids and groundwater from the FS-12 EDB plume at Joint Base Cape Cod (Cape Cod, MA), but only after inorganic nutrients were added. Ethene gas was also effective, but rates were appreciably slower than for ethane and propane. EDB was reduced to < 0.02 μg/L, the Massachusetts state Maximum Contaminant Level (MCL), in microcosms that received ethane gas and inorganic nutrients. An enrichment culture (BE-3R) that grew on ethane or propane gas but not EDB was obtained from the site materials. The degradation of EDB by this culture was inhibited by acetylene gas, suggesting that degradation is catalyzed by a monooxygenase enzyme. The BE-3R culture was also observed to biodegrade 1,2-dichloroethane (DCA), a compound commonly used in conjunction with EDB as a lead scavenger in gasoline. The data suggest that addition of ethane or propane gas with inorganic nutrients may be a viable option to enhance degradation of EDB in groundwater aquifers to below current state or federal MCL values.

  9. Groundwater contamination downstream of a contaminant penetration site. II. Horizontal penetration of the contaminant plume

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    2002-01-01

    Part I of this study (Rubin, H.; Buddemeier, R.W. Groundwater Contamination Downstream of a Contaminant Penetration Site Part 1: Extension-Expansion of the Contaminant Plume. J. of Environmental Science and Health Part A (in press).) addressed cases, in which a comparatively thin contaminated region represented by boundary layers (BLs) developed within the freshwater aquifer close to contaminant penetration site. However, at some distance downstream from the penetration site, the top of the contaminant plume reaches the top or bottom of the aquifer. This is the location of the "attachment point," which comprises the entrance cross section of the domain evaluated by the present part of the study. It is shown that downstream from the entrance cross section, a set of two BLs develop in the aquifer, termed inner and outer BLs. It is assumed that the evaluated domain, in which the contaminant distribution gradually becomes uniform, can be divided into two sections, designated: (a) the restructuring section, and (b) the establishment section. In the restructuring section, the vertical concentration gradient leads to expansion of the inner BL at the expense of the outer BL, and there is almost no transfer of contaminant mass between the two layers. In the establishment section, each of the BLs occupies half of the aquifer thickness, and the vertical concentration gradient leads to transfer of contaminant mass from the inner to the outer BL. By use of BL approximations, changes of salinity distribution in the aquifer are calculated and evaluated. The establishment section ends at the uniformity point, downstream from which the contaminant concentration profile is practically uniform. The length of the restructuring section, as well as that of the establishment section, is approximately proportional to the aquifer thickness squared, and is inversely proportional to the transverse dispersivity. The study provides a convenient set of definitions and terminology that are

  10. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  11. Probability-based nitrate contamination map of groundwater in Kinmen.

    PubMed

    Liu, Chen-Wuing; Wang, Yeuh-Bin; Jang, Cheng-Shin

    2013-12-01

    Groundwater supplies over 50% of drinking water in Kinmen. Approximately 16.8% of groundwater samples in Kinmen exceed the drinking water quality standard (DWQS) of NO3 (-)-N (10 mg/L). The residents drinking high nitrate-polluted groundwater pose a potential risk to health. To formulate effective water quality management plan and assure a safe drinking water in Kinmen, the detailed spatial distribution of nitrate-N in groundwater is a prerequisite. The aim of this study is to develop an efficient scheme for evaluating spatial distribution of nitrate-N in residential well water using logistic regression (LR) model. A probability-based nitrate-N contamination map in Kinmen is constructed. The LR model predicted the binary occurrence probability of groundwater nitrate-N concentrations exceeding DWQS by simple measurement variables as independent variables, including sampling season, soil type, water table depth, pH, EC, DO, and Eh. The analyzed results reveal that three statistically significant explanatory variables, soil type, pH, and EC, are selected for the forward stepwise LR analysis. The total ratio of correct classification reaches 92.7%. The highest probability of nitrate-N contamination map presents in the central zone, indicating that groundwater in the central zone should not be used for drinking purposes. Furthermore, a handy EC-pH-probability curve of nitrate-N exceeding the threshold of DWQS was developed. This curve can be used for preliminary screening of nitrate-N contamination in Kinmen groundwater. This study recommended that the local agency should implement the best management practice strategies to control nonpoint nitrogen sources and carry out a systematic monitoring of groundwater quality in residential wells of the high nitrate-N contamination zones.

  12. Relation of Nickel Concentrations in Tree Rings to Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Yanosky, Thomas M.; Vroblesky, Don A.

    1992-08-01

    Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.

  13. Relation of nickel concentrations in tree rings to groundwater contamination

    USGS Publications Warehouse

    Yanosky, Thomas M.; Vroblesky, Don A.

    1992-01-01

    Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.

  14. Identification and Tracing Groundwater Contamination by Livestock Burial Sites

    NASA Astrophysics Data System (ADS)

    Ko, K.; Ha, K.; Park, S.; Kim, Y.; Lee, K.

    2011-12-01

    Foot-and-mouth disease (FMD) or hoof-and-mouth disease is a severe plague for animal farming that affects cloven-hoofed animals such as cattle, pigs, sheep, and goats. Since it is highly infectious and can be easily proliferated by infected animals, contaminated equipments, vehicles, clothing, people, and predators. It is widely known that the virus responsible for FMD is a picornavirus, the prototypic member of the genus Aphthovirus. A serious outbreak of foot-and-mouth disease, leading to the stamping out of 3.53 millions of pigs and cattle and the construction of 4,538 burial sites until 15th March, 2011. The build-up of carcass burial should inevitably produce leachate by the decomposition of buried livestock affecting the surround environment such as air, soil, groundwater, and surface water. The most important issues which are currently raised by scientists are groundwater contamination by leachate from the livestock burial sites. This study examined the current status of FMD outbreak occurred in 2010-2011 and the issues of groundwater contamination by leachate from livestock burial sites. The hydrogeochemical, geophysical, and hydrogeological studies were executed to identify and trace groundwater contamination by leachate from livestock burial sites. Generally livestock mortality leachate contains high concentrations of NH3-N, HCO3-, Cl-, SO42-, K+, Na+, P along with relative lesser amounts of iron, calcium, and magnesium. The groundwater chemical data around four burial sites showed high NH3-N, HCO3-, and K+ suggesting the leachate leakage from burial sites. This is also proved by resistivity monitoring survey and tracer tests. The simulation results of leachate dispersion showed the persistent detrimental impacts for groundwater environment for a long time (~50 years). It is need to remove the leachate of burial sites to prevent the dispersion of leachate from livestock burial to groundwater and to monitor the groundwater quality. The most important

  15. Effective contaminant detection networks in uncertain groundwater flow fields.

    PubMed

    Hudak, P F

    2001-01-01

    A mass transport simulation model tested seven contaminant detection-monitoring networks under a 40 degrees range of groundwater flow directions. Each monitoring network contained five wells located 40 m from a rectangular landfill. The 40-m distance (lag) was measured in different directions, depending upon the strategy used to design a particular monitoring network. Lagging the wells parallel to the central flow path was more effective than alternative design strategies. Other strategies allowed higher percentages of leaks to migrate between monitoring wells. Results of this study suggest that centrally lagged groundwater monitoring networks perform most effectively in uncertain groundwater-flow fields.

  16. Public health risk assessment of groundwater contamination in Batman, Turkey.

    PubMed

    Nalbantcilar, M Tahir; Pinarkara, Sukru Yavuz

    2016-08-01

    In this study, a comprehensive analysis of groundwater was performed to assess contamination and phenol content in Batman, Turkey, particularly in residential areas near agriculture, livestock and oil industry facilities. From these areas, where potentially contaminated groundwater used for drinking and irrigation threatens public health, 30 groundwater samples were collected and analyzed for heavy metal concentrations (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Na, Ni, NO3, P, Pb, phenol, S, Sb, Se, SO4, Sr, U, and Zn). Compared with the standards of the Environmental Protection Agency, Al, Fe, and Mn concentrations in groundwater exceeded secondary drinking water regulations, NO3 concentrations were high for maximum contaminant levels, and As, Pb, and U concentrations exceeded maximum contaminant level goals in all samples. Ni, Sb, and Se concentrations also exceeded limits set by the Turkish Standards Institution. Nearly all samples revealed concentrations of Se, Sb, Hg, and phenol due to nearby petroleum refineries, oil storage plants, and agricultural and livestock areas. The results obtained from this study indicate that the groundwater in Batman contains elements in concentrations that approach or exceed limits and thus threatens public health with increased blood cholesterol, decreased blood sugar, and circulatory problems.

  17. ASSESSING THE ROLE OF NATURAL ATTENUATION FOR INORGANIC CONTAMINANT REMEDIATION IN GROUND WATER

    EPA Science Inventory

    Monitored natural attenuation (MNA) has been applied as a knowledge-based remediation technology for organic contaminants in ground water. The application of this technology is being considered for remediation of inorganic contaminants in ground water at hazardous waste sites. ...

  18. ASSESSING THE ROLE OF NATURAL ATTENUATION FOR INORGANIC CONTAMINANT REMEDIATION IN GROUND WATER

    EPA Science Inventory

    Monitored natural attenuation (MNA) has been applied as a knowledge-based remediation technology for organic contaminants in ground water. The application of this technology is being considered for remediation of inorganic contaminants in ground water at hazardous waste sites. ...

  19. Efficiency of biochar for reducing mobility of inorganic contaminants

    NASA Astrophysics Data System (ADS)

    De Pasquale, Claudio; Cimò, Giulia; Sidoti, Lucio; Conte, Pellegrino; Alonzo, Giuseppe

    2013-04-01

    Anthropogenic activities have produced numerous sites with extensive contamination close to residential areas. Several physicochemical and biological remediation methods exist for remediation of metal contaminated soils and lands, such as soil washing, soil flushing, phytoremediation, and electrokinetics. Biochar (biologically derived charcoal) is produced by pyrolysis of biomasses under low oxygen conditions, and it can be applied for recycling organic waste in soils. The main objectives of the present study were to determine the possible use of biochar from forest ersidues (Populus nigra) in order to achieve a stabilization of inorganic contaminants by adsorption processes. Adsorption of copper by biochar from dilute solutions showed a closer agreement with the Langmuir isotherm in a concentration range 25-500 mM. The decontamination by biochar is very suitable because the treatment is passive and does not require specialized equipment or extensive labor as compared to other remediation methods. Moreover, biochar is also a possible carbon sink due to its long term storage in environment, thereby favouring mitigation of the anthropic impact on environment.

  20. [Risk assessment of quaternary groundwater contamination in Beijing Plain].

    PubMed

    Guo, Gao-Xuan; Li, Yu; Xu, Liang; Li, Zhi-Ping; Yang, Qing; Xu, Miao-Juan

    2014-02-01

    Firstly, advances in investigation and evaluation of groundwater pollution in China in the last decade were presented, and several issues in the field which hinder the development of groundwater environment were pointed out. Then, four key concepts in risk assessment of groundwater pollution were briefly described with more emphasis on the difference between groundwater pollution assessment and groundwater quality assessment in this paper. After that, a method on risk assessment of groundwater pollution which included four indicators, the pollution assessment, the quality assessment, the vulnerability and the pollution load of groundwater, was presented based on the regional characteristics of Beijing Plain. Also, AHP and expert scoring method were applied to determine the weight of the four evaluation factors. Finally, the application of this method in Beijing Plain showed the area with high, relative high, medium, relative low and low risk of groundwater contamination was 1 232.1 km2, 699.3 km2, 1 951.4 km, 2 644 km2, and 133.2 km2, respectively. The study results showed that the higher risk in the western region was likely caused by the higher pollution load and its higher vulnerability, while the relatively high risk in the southeast of Beijing plain area, the Tongzhou District, is mainly caused by historical pollution sources.

  1. Assessing conceptual models for subsurface reactive transport of inorganic contaminants

    USGS Publications Warehouse

    Davis, James A.; Yabusaki, Steven B.; Steefel, Carl; Zachara, John M.; Curtis, Gary P.; Redden, George D.; Criscenti, Louise J.; Honeyman, Bruce D.

    2004-01-01

    In many subsurface situations where human health and environmental quality are at risk (e.g., contaminant hydrogeology petroleum extraction, carbon sequestration, etc.),scientists and engineers are being asked by federal agency decision-makers to predict the fate of chemical species under conditions where both reactions and transport are processes of first-order importance.In 2002, a working group (WG) was formed by representatives of the U.S. Geological Survey, Environmental Protection Agency, Department of Energy Nuclear Regulatory Commission, Department of Agriculture, and Army Engineer Research and Development Center to assess the role of reactive transport modeling (RTM) in addressing these situations. Specifically the goals of the WG are to (1) evaluate the state of the art in conceptual model development and parameterization for RTM, as applied to soil,vadose zone, and groundwater systems, and (2) prioritize research directions that would enhance the practical utility of RTM.

  2. Estimating exposure to groundwater contaminants in karst areas

    NASA Astrophysics Data System (ADS)

    Butscher, C.

    2012-12-01

    Large multidisciplinary projects investigate health effects and environmental impacts of contamination. Such multidisciplinary projects challenge groundwater hydrologist because they demand estimations of human or environmental exposure to groundwater contaminants. But especially in karst regions, groundwater quality is subject to rapid changes resulting from highly dynamic flow systems with rapid groundwater recharge and contaminant transport in karst conduits. There is a strong need for tools that allow the quantification of the risk of contaminant exposure via the karst groundwater and its temporal variation depending on rainfall events and overall hydrological conditions. A fact that makes the assessment of contaminant exposure even more difficult is that many contaminants behave differently in the subsurface than the groundwater, because they do not dissolve and exist as a separate phase. Important examples are particulate contaminants, such as bacteria, and non-aqueous phase liquids (NAPLs), such as many organic compounds. Both are ubiquitous in the environment and have large potential for health impacts. It is known from bacterial contamination of karst springs that such contamination is strongly related to flow conditions. Bacteria, which are present at the land surface, in the soil, rock matrix or the conduit system, are immobile during base flow conditions. During storm events however, they become mobilized and are rapidly transported through the conduit flow system from sources to areas of potential exposure. As a result, bacteria concentrations that most times are low at a spring can show a high peak during storm flow. Conceptual models exist that suggest that the transport of NAPLs in karst aquifers is, just like bacterial contamination, related to flow conditions. Light NAPLs that reach the saturated zone float and accumulate on the water table; and dense NAPLs sink downward in the aquifer until they are trapped in pores, fractures and conduits where

  3. Sources of Nitrate Contamination in Groundwater Under Developing Asian Megacities

    NASA Astrophysics Data System (ADS)

    Umezawa, Y.; Hosono, T.; Onodera, S.; Siringan, F.; Buapeng, S.; Delinom, R. M.; Yoshimizu, C.; Tayasu, I.; Nagata, T.; Taniguchi, M.

    2008-12-01

    The status of nitrate, nitrite and ammonium contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate d15N and d18O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas. The exponential increase in nitrate d15N along with the nitrate reduction and clear d18O/d15N slopes of nitrate (~0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer nitrate contamination via active denitrification and reduced nitrification. Our results showed that nitrate and ammonium contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas.

  4. Effect of Particles on Fenton Oxidation of Organic Contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, Y.; Gwak, J.; Lee, C.; Ha, J.

    2009-12-01

    Fenton oxidation has been widely applied for a variety of water treatment due to non-selectively oxidative capability at a high reaction rate and cost effectiveness. Even though wide and deep range of studies were conducted for understanding the Fenton reaction with various contaminants, effect of particles on Fenton reaction has been little studied. This study explored the performance of Fenton oxidation for organic contaminated groundwater treatment in the presence of particles. The contaminated groundwater was a free oil separated groundwater obtained from a pilot scale bioslurping process for LNAPL treatment. The groundwater was characterized by a high suspended solid (SS) concentration relative to total organic carbon (TOC) concentration varying from 4 to 7.3. It was found that the optimum ratio of Fenton’s reagent (Fe2+:H2O2) was 1:10 in terms of TOC removal efficiency. Presence of solid particles significantly affected the TOC removal efficiency by Fenton’s reaction accounting for 37% for raw groundwater and 61% for soluble groundwater. Particles larger than 5 µm could be effectively settled out by a quiescent settling for 3 hr based on particle size distribution analysis. The TOC removal efficiency for the supernatant after settling was a similar to that of soluble sample. Total petroleum hydrocarbon (TPH) was mostly present in the adsorbed form to the particles in the groundwater and was potentially persistent to Fenton oxidation. TPH removal efficiency by Fenton oxidation was 24% which was less than that of the total groundwater indicating that hydroxyl radicals generated from Fenton oxidation did not directly attack the adsorbed organic carbon and removal of the adsorbed organic carbon was dependent on its mass transfer to bulk region. The concept for particle effect on Fenton oxidation was confirmed in another experiment spiking washed soil to the soluble groundwater. TOC removal efficiency was lowered by addition of the soil probably because the

  5. Attenuation of landfill leachate by clay liner materials in laboratory columns: 2. Behaviour of inorganic contaminants.

    PubMed

    Thornton, S F; Lerner, D N; Tellam, J H

    2001-02-01

    The chemical attenuation of inorganic contaminants in methanogenic landfill leachate, spiked with heavy metals (Cd, Cd, Ni and Zn), by two UK clay liner materials was compared in laboratory columns over 15 months. Ammonium was attenuated by ion-exchange but this attenuation was finite and when exhausted, NH4 passed through the liners at concentrations found in the leachate. The breakthrough behaviour of NH4 could be described by a simple distribution coefficient. Heavy metals were attenuated by sorption and precipitation of metal sulphide and carbonate compounds near the top of the liner. Adequate SO4 and CaCO3 in the liner is necessary to ensure the long term retention of heavy metals, and pH buffering agents added to stabilise reactive metal fractions should be admixed with the liner. Some metals may not be chemically attenuated by clay liners due to the formation of stable complexes with organic and/or colloidal fractions in leachate. Flushing of the liners with oxygenated water after leachate caused mobilisation of attenuated contaminants. Sorbed NH4 was released by the liners but groundwater loadings were manageable. Re-oxidation of metal sulphides under these conditions resulted in the release of heavy metals from the liners when the pH buffering capacity was poor. Contaminant attenuation by the clay liners was similar and the attenuation of NH4 and heavy metals could be predicted from the geochemical properties of the liner using simple tests. A conceptual model of clay liner performance is presented. Chemical attenuation of inorganic pollutants can be included in containment liner design to produce a dual reactive-passive barrier for landfills.

  6. Distribution of Land Use to Purify Contaminated Groundwater by Nitrate

    NASA Astrophysics Data System (ADS)

    Iizumi, Y.; Tanaka, T.; Kinouchi, T.; Tase, N.; Fukami, K.

    2006-12-01

    Groundwater contamination by nitrate results from over-fertilizing and/or inadequate disposal of livestock excreta has been large-scale problem in agricultural area. Because nitrate is primarily transported to streams via ground water flow, explaining actual condition of groundwater is needed to propose an effective measure for the conservation and restoration of sound nitrogen cycle in agricultural river catchments. The purpose of this research was to clarify a triangular relationship between the groundwater quality and flow system, river water quality and land use. The experimental field is located on a slope from Tsukuba tableland to bottomland, which is a part of Nishi- Yata River watershed in Ibaraki Prefecture, Japan. The site area is about 0.0675 square kilometers and the altitude varies from 24 m to 19 m. Land use of tableland, bottomland and intermediate between them are forestland, paddy field and cropland, respectively. Groundwater quality and level were monitored for the year 2004. During the study period significant differences were not observed in groundwater ionic concentrations. Relative high concentrations of dissolved nitrate were detected in cropland (3 - 43 mg/l) and forestland (74 - 179 mg/l). It revealed that there was a purification zone in the paddy field and the area around its 2-4m and denitrification eliminates nitrate-nitrogen. The pressure head converted into hydraulics head, and the groundwater flow were calculated. According to the results, it seems that groundwater flow from tableland to the riverbed through bottomland. It is presumed that groundwater cultivated in cropland with chemical fertilizer pass through the purification zone of nitrate. On the other hand, it is assumed that groundwater containing nitrate originated from inadequate disposal of livestock excreta discharge from forestland does not pass through the depth of this spot. It is suggested that considering flow system of groundwater to manage distribution of land use

  7. Inorganic and organic ground-water chemistry in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, M.M.; Vroblesky, D.A.

    1989-01-01

    Groundwater chemical data were collected from November 1986 through April 1987 in the first phase of a 5-year study to assess the possibility of groundwater contamination in the Canal Creek area of Aberdeen Proving Ground, Maryland. Water samples were collected from 87 observation wells screened in Coastal Plain sediments; 59 samples were collected from the Canal Creek aquifer, 18 from the overlying surficial aquifer, and 10 from the lower confined aquifer. Dissolved solids, chloride, iron, manganese, fluoride, mercury, and chromium are present in concentrations that exceed the Federal maximum contaminant levels for drinking water. Elevated chloride and dissolved-solids concentrations appear to be related from contaminant plumes but also could result from brackish-water intrusion. Excessive concentrations of iron and manganese were the most extensive water quality problems found among the inorganic constituents and are derived from natural dissolution of minerals and oxide coatings in the aquifer sediments. Volatile organic compounds are present in the Canal Creek and surficial aquifers, but samples from the lower confined aquifer do not show any evidence of contamination by inorganic or organic chemicals. The volatile organic contaminants detected in the groundwater and their maximum concentrations (in micrograms/L) include 1,1,2,2- tetrachloroethane (9,000); carbon tetrachloride (480); chloroform (460); 1,1,2-trichloroethane (80); 1,2-dichloroethane (990); 1,1-dichloroethane (3.1); tetrachloroethylene (100); trichloroethylene (1,800); 1,2-trans- dichloroethylene (1,200); 1,1-dichloroethylene (4.4); vinyl chloride (140); benzene (70); and chlorobenzene (39). On the basis of information on past activities in the study area, some sources of the volatile organic compounds include: (1) decontaminants and degreasers; (2) clothing-impregnating operations; (3) the manufacture of impregnite material; (4) the manufacture of tear gas; and (5) fuels used in garages and at

  8. Nitrate contamination risk assessment in groundwater at regional scale

    NASA Astrophysics Data System (ADS)

    Daniela, Ducci

    2016-04-01

    Nitrate groundwater contamination is widespread in the world, due to the intensive use of fertilizers, to the leaking from the sewage network and to the presence of old septic systems. This research presents a methodology for groundwater contamination risk assessment using thematic maps derived mainly from the land-use map and from statistical data available at the national institutes of statistic (especially demographic and environmental data). The potential nitrate contamination is considered as deriving from three sources: agricultural, urban and periurban. The first one is related to the use of fertilizers. For this reason the land-use map is re-classified on the basis of the crop requirements in terms of fertilizers. The urban source is the possibility of leaks from the sewage network and, consequently, is linked to the anthropogenic pressure, expressed by the population density, weighted on the basis of the mapped urbanized areas of the municipality. The periurban sources include the un-sewered areas, especially present in the periurban context, where illegal sewage connections coexist with on-site sewage disposal (cesspools, septic tanks and pit latrines). The potential nitrate contamination map is produced by overlaying the agricultural, urban and periurban maps. The map combination process is very easy, being an algebraic combination: the output values are the arithmetic average of the input values. The groundwater vulnerability to contamination can be assessed using parametric methods, like DRASTIC or easier, like AVI (that involves a limited numbers of parameters). In most of cases, previous documents produced at regional level can be used. The pollution risk map is obtained by combining the thematic maps of the potential nitrate contamination map and the groundwater contamination vulnerability map. The criterion for the linkages of the different GIS layers is very easy, corresponding to an algebraic combination. The methodology has been successfully

  9. Geochemistry and sources of fluoride and nitrate contamination of groundwater in Lar area, south Iran.

    PubMed

    Rezaei, Mohsen; Nikbakht, Masume; Shakeri, Ata

    2017-06-01

    Groundwater quality in bone-dry and semiarid areas of Iran is decreasing because of contaminants from natural origins and anthropogenic sources. Among many harmful contaminants, nitrate and fluoride ions are more common. This study was carried out with the aim of determining geochemical processes controlling chemistry of groundwater with special reference to nitrate and fluoride enrichment in groundwater in Lar plain aquifer, south of Iran. Groundwater samples were collected from 17 sites and analyzed for main constituents (Na, K, Ca, Mg, Cl, SO4(2-), HCO3(-), F(-), and NO3(-)). Composite diagram, saturation indices calculation, and multivariate analysis techniques including cluster and factor analyses were employed in evaluating groundwater quality. The EC ranges from 8793.87 to 13,345.00 μS/cm in wet season and from 9621.59 to 12,640.00 μS/cm in dry season. Fluoride amounts range between 0.59 and 3.92 mg/L. Nitrate concentrations range between 1.47 and 70.66 mg/L. Results indicate that dissolution-precipitation of carbonate and evaporate minerals, evaporation (in terms of agricultural water return), and opposite ion interchange are the main processes that determine groundwater chemistry. It seems that fluoride has a natural origin and the equilibrium reaction between fluorite and calcite is very significant to control fluoride concentration level in water. Vertical variation of nitrate concentration and distribution of agricultural areas have indicated that nitrate originated from nitrogenous inorganic fertilizers used during irrigation periods. The results also indicate that denitrification takes place in the aquifer and that nitrate decline is not only a function of dilution but also a process of denitrification.

  10. Inclusion of emerging organic contaminants in groundwater monitoring plans.

    PubMed

    Lamastra, Lucrezia; Balderacchi, Matteo; Trevisan, Marco

    2016-01-01

    Groundwater is essential for human life and its protection is a goal for the European policies. All the anthropogenic activities could impact on water quality. •Conventional pollutants and more than 700 emerging pollutants, resulting from point and diffuse source contamination, threat the aquatic ecosystem.•Policy-makers and scientists will have to cooperate to create an initial groundwater emerging pollutant priority list, to answer at consumer demands for safety and to the lack of conceptual models for emerging pollutants in groundwater.•Among the emerging contaminants and pollutants this paper focuses on organic wastewater contaminants (OWCs) mainly released into the environment by domestic households, industry, hospitals and agriculture. This paper starts from the current regulatory framework and from the literature overview to explain how the missing conceptual model for OWCs could be developed.•A full understanding of the mechanisms leading to the contamination and the evidence of the contamination must be the foundation of the conceptual model. In this paper carbamazepine, galaxolide and sulfamethozale, between the OWCs, are proposed as "environmental tracers" to identify sources and pathways ofcontamination/pollution.

  11. Studies in geophysics groundwater contamination by Geophysics Study Committee

    SciTech Connect

    Not Available

    1984-01-01

    The book cites the massive application of chemicals to the land and the possibility of groundwater contamination and the extent of contamination on the natural scale. Movement by microscopic and macroscopic processes is discussed together with a description of chemical processes involved. This is followed by description of shallow land disposal of municipal waste and deep well injection. Several specific examples are then described and discussed. For example, the section on the Love Canal discusses a modeling system and recommendations for receiving the problem. Each section includes an abstract and a comprehensive set of references. It is well written, comprehensive and a valuable addition to the library of anyone working on the environmental problems of groundwater contamination.

  12. Linking bacterial diversity and geochemistry of uranium-contaminated groundwater.

    PubMed

    Cho, Kelly; Zholi, Alma; Frabutt, Dylan; Flood, Matthew; Floyd, Dalton; Tiquia, Sonia M

    2012-01-01

    To understand the link between bacterial diversity and geochemistry in uranium-contaminated groundwater, microbial communities were assessed based on clone libraries of 16S rDNA genes from the USDOE Oak Ridge Field Research Centre (FRC) site. Four groundwater wells (GW835, GW836, FW113-47 and FW215-49) with a wide range of pH (3 to 7), nitrate (44 to 23,400 mg L(-1)), uranium (0.73 to 60.36 mg L(-1)) and other metal contamination, were investigated. Results indicated that bacterial diversity correlated with the geochemistry of the groundwater. Microbial diversity decreased in relation to the contamination levels of the wells. The highly contaminated well (FW113-47) had lower gene diversity than less contaminated wells (FW215-49, GW835 and GW836). The high concentrations of contaminants present in well FW113-47 stimulated the growth of organisms capable of reducing uranium (Shewanella and Pseudomonas), nitrate (Pseudomonas, Rhodanobacter and Xanthomonas) and iron (Stenotrophomonas), and which were unique to this well. The clone libraries consisted primarily of sequences closely related to the phylum Proteobacteria, with FW-113-47 almost exclusively containing this phylum. Metal-reducing bacteria were present in all four wells, which may suggest that there is potential for successful bioremediation of the groundwater at the Oak Ridge FRC. The microbial community information gained from this study and previous studies at the site can be used to develop predictive multivariate and geographical information system (GIS) based models for microbial populations at the Oak Ridge FRC. This will allow for a better understanding of what organisms are likely to occur where and when, based on geochemistry, and how these organisms relate to bioremediation processes at the site.

  13. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  14. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  15. Dilution and volatilization of groundwater contaminant discharges in streams.

    PubMed

    Aisopou, Angeliki; Bjerg, Poul L; Sonne, Anne T; Balbarini, Nicola; Rosenberg, Louise; Binning, Philip J

    2015-01-01

    An analytical solution to describe dilution and volatilization of a continuous groundwater contaminant plume into streams is developed for risk assessment. The location of groundwater plume discharge into the stream (discharge through the side versus bottom of the stream) and different distributions of the contaminant plume concentration (Gaussian, homogeneous or heterogeneous distribution) are considered. The model considering the plume discharged through the bank of the river, with a uniform concentration distribution was the most appropriate for risk assessment due to its simplicity and limited data requirements. The dilution and volatilization model is able to predict the entire concentration field, and thus the mixing zone, maximum concentration and fully mixed concentration in the stream. It can also be used to identify groundwater discharge zones from in-stream concentration measurement. The solution was successfully applied to published field data obtained in a large and a small Danish stream and provided valuable information on the risk posed by the groundwater contaminant plumes. The results provided by the dilution and volatilization model are very different to those obtained with existing point source models, with a distributed source leading to a larger mixing length and different concentration field. The dilution model can also provide recommendations for sampling locations and the size of impact zones in streams. This is of interest for regulators, for example when developing guidelines for the implementation of the European Water Framework Directive.

  16. Dilution and volatilization of groundwater contaminant discharges in streams

    NASA Astrophysics Data System (ADS)

    Aisopou, Angeliki; Bjerg, Poul L.; Sonne, Anne T.; Balbarini, Nicola; Rosenberg, Louise; Binning, Philip J.

    2015-01-01

    An analytical solution to describe dilution and volatilization of a continuous groundwater contaminant plume into streams is developed for risk assessment. The location of groundwater plume discharge into the stream (discharge through the side versus bottom of the stream) and different distributions of the contaminant plume concentration (Gaussian, homogeneous or heterogeneous distribution) are considered. The model considering the plume discharged through the bank of the river, with a uniform concentration distribution was the most appropriate for risk assessment due to its simplicity and limited data requirements. The dilution and volatilization model is able to predict the entire concentration field, and thus the mixing zone, maximum concentration and fully mixed concentration in the stream. It can also be used to identify groundwater discharge zones from in-stream concentration measurement. The solution was successfully applied to published field data obtained in a large and a small Danish stream and provided valuable information on the risk posed by the groundwater contaminant plumes. The results provided by the dilution and volatilization model are very different to those obtained with existing point source models, with a distributed source leading to a larger mixing length and different concentration field. The dilution model can also provide recommendations for sampling locations and the size of impact zones in streams. This is of interest for regulators, for example when developing guidelines for the implementation of the European Water Framework Directive.

  17. Remediation alternatives for low-level herbicide contaminated groundwater

    SciTech Connect

    Conger, R.M.

    1995-10-01

    In early 1995, an evaluation of alternatives for remediation of a shallow groundwater plume containing low-levels of an organic herbicide was conducted at BASF Corporation, a petrochemical facility located in Ascension Parish, Louisiana. The contaminated site is located on an undeveloped portion of property within 1/4 mile of the east bank of the Mississippi River near the community of Geismar. Environmental assessment data indicated that about two acres of the thirty acre site had been contaminated from past waste management practices with the herbicide bentazon. Shallow soils and groundwater between 5 to 15 feet in depth were affected. Maximum concentrations of bentazon in groundwater were less than seven parts per million. To identify potentially feasible remediation alternatives, the environmental assessment data, available research, and cost effectiveness were reviewed. After consideration of a preliminary list of alternatives, only two potentially feasible alternatives could be identified. Groundwater pumping, the most commonly used remediation alternative, followed by carbon adsorption treatment was identified as was a new innovative alternative known as vegetative transpiration. This alternative relies on the natural transpiration processes of vegetation to bioremediate organic contaminants. Advantages identified during screening suggest that the transpiration method could be the best remediation alternative to address both economic and environmental factors. An experiment to test critical factors of the vegetatived transpiration alternative with bentazon was recommended before a final decision on feasibility can be made.

  18. Hydrochemical profiles in urban groundwater systems: New insights into contaminant sources and pathways in the subsurface from legacy and emerging contaminants.

    PubMed

    White, D; Lapworth, D J; Stuart, M E; Williams, P J

    2016-08-15

    It has long been known that groundwaters beneath urban areas carry a fingerprint from urban activities but finding a consistent tracer for anthropogenic influence has proved elusive. The varied sources of urban contaminants means that a single consistent and inexpensive means of tracing the fate of urban contaminants is not generally possible and multiple tracers are often required to understand the contaminant sources and pathways in these complex systems. This study has utilized a combination of micro-organic (MO) contaminants and inorganic hydrochemistry to trace recharge pathways and quantify the variability of groundwater quality in multi-level piezometers in the city of Doncaster, UK. A total of 23 MOs were detected during this study, with more compounds consistently detected during higher groundwater table conditions highlighting the importance of sampling under different hydrological conditions. Four of the compounds detected are EU Water Framework Directive priority substances: atrazine, simazine, naphthalene and DEHP, with a maximum concentration of 0.18, 0.03, 0.2, 16μg/l respectively. Our study shows that the burden of the banned pesticide atrazine persists in the Sherwood Sandstone and is detected at two of the three study sites. Emerging contaminants are seen throughout the borehole profiles and provide insights into transient pathways for contaminant migration in the sub-surface. Long term changes in inorganic hydrochemistry show possible changes in contaminant input or the dissolution of minerals. Nitrate was detected above 50mg/l but on the whole nitrate concentrations have declined in the intervening years either due to a reduction of nitrate application at the surface or a migration of peak nitrate concentrations laterally or to greater depth. This study shows that multiple tracers together with multi-level piezometers can give a better resolution of contaminant pathways and variable flow regimes within the relatively uncomplicated aquifer of

  19. Nitrate contamination in groundwater on an urbanized dairy farm.

    PubMed

    Showers, William J; Genna, Bernard; McDade, Timothy; Bolich, Rick; Fountain, John C

    2008-07-01

    Urbanization of rural farmland is a pervasive trend around the globe, and maintaining and protecting adequate water supplies in suburban areas is a growing problem. Identification of the sources of groundwater contamination in urbanized areas is problematic, but will become important in areas of rapid population growth and development. The isotopic composition of NO3 (delta15N(NO3) and delta18O NO3), NH4 (delta15N(NH4)), groundwater (delta2H(wt) and delta18O(wt)) and chloride/bromide ratios were used to determine the source of nitrate contamination in drinking water wells in a housing development that was built on the site of a dairy farm in the North Carolina Piedmont, U.S. The delta15N(NO3) and delta18O NO3 compositions imply that elevated nitrate levels at this site in drinking well water are the result of waste contamination, and that denitrification has not significantly attenuated the groundwater nitrate concentrations. delta15N(NO3) and delta18O(NO3) compositions in groundwater could not differentiate between septic effluent and animal waste contamination. Chloride/ bromide ratios in the most contaminated drinking water wells were similar to ratios found in animal waste application fields, and were higher than Cl/Br ratios observed in septic drain fields in the area. delta18O(wt) was depleted near the site of a buried waste lagoon without an accompanying shift in delta2H(wt) suggesting water oxygen exchange with CO2. This water-CO2 exchange resulted from the reduction of buried lagoon organic matter, and oxidation of the released gases in aerobic soils. delta18O(wt) is not depleted in the contaminated drinking water wells, indicating that the buried dairy lagoon is not a source of waste contamination. The isotope and Cl/Br ratios indicate that nitrate contamination in these drinking wells are not from septic systems, but are the result of animal waste leached from pastures into groundwater during 35 years of dairy operations which did not violate any

  20. Comparative metagenomics reveals impact of contaminants on groundwater microbiomes

    DOE PAGES

    Hemme, Christopher L.; Tu, Qichao; Shi, Zhou; ...

    2015-10-31

    To understand patterns of geochemical cycling in pristine versus contaminated groundwater ecosystems, pristine shallow groundwater (FW301) and contaminated groundwater (FW106) samples from the Oak Ridge Integrated Field Research Center (OR-IFRC) were sequenced and compared to each other to determine phylogenetic and metabolic difference between the communities. Proteobacteria (e.g., Burkholderia, Pseudomonas) are the most abundant lineages in the pristine community, though a significant proportion ( >55%) of the community is composed of poorly characterized low abundance (individually <1%) lineages. The phylogenetic diversity of the pristine community contributed to a broader diversity of metabolic networks than the contaminated community. In addition, themore » pristine community encodes redundant and mostly complete geochemical cycles distributed over multiple lineages and appears capable of a wide range of metabolic activities. In contrast, many geochemical cycles in the contaminated community appear truncated or minimized due to decreased biodiversity and dominance by Rhodanobacter populations capable of surviving the combination of stresses at the site. In conclusion, these results indicate that the pristine site contains more robust and encodes more functional redundancy than the stressed community, which contributes to more efficient nutrient cycling and adaptability than the stressed community.« less

  1. Nitrate contamination of groundwater: A conceptual management framework

    SciTech Connect

    Almasri, Mohammad N. . E-mail: mnmasri@najah.edu

    2007-04-15

    In many countries, public concern over the deterioration of groundwater quality from nitrate contamination has grown significantly in recent years. This concern has focused increasingly on anthropogenic sources as the potential cause of the problem. Evidence indicates that the nitrate (NO{sub 3}) levels routinely exceed the maximum contaminant level (MCL) of 10 mg/l NO{sub 3}-N in many aquifer systems that underlie agriculture-dominated watersheds. Degradation of groundwater quality due to nitrate pollution along with the increasing demand for potable water has motivated the adoption of restoration actions of the contaminated aquifers. Restoration efforts have intensified the dire need for developing protection alternatives and management options such that the ultimate nitrate concentrations at the critical receptors are below the MCL. This paper presents a general conceptual framework for the management of groundwater contamination from nitrate. The management framework utilizes models of nitrate fate and transport in the unsaturated and saturated zones to simulate nitrate concentration at the critical receptors. To study the impact of different management options considering both environmental and economic aspects, the proposed framework incorporates a component of a multi-criteria decision analysis. To enhance spatiality in model development along with the management options, the utilization of a land use map is depicted for the allocation and computation of on-ground nitrogen loadings from the different sources.

  2. Comparative metagenomics reveals impact of contaminants on groundwater microbiomes

    SciTech Connect

    Hemme, Christopher L.; Tu, Qichao; Shi, Zhou; Qin, Yujia; Gao, Weimin; Deng, Ye; Nostrand, Joy D. Van; Wu, Liyou; He, Zhili; Chain, Patrick S. G.; Tringe, Susannah G.; Fields, Matthew W.; Rubin, Edward M.; Tiedje, James M.; Hazen, Terry C.; Arkin, Adam P.; Zhou, Jizhong

    2015-10-31

    To understand patterns of geochemical cycling in pristine versus contaminated groundwater ecosystems, pristine shallow groundwater (FW301) and contaminated groundwater (FW106) samples from the Oak Ridge Integrated Field Research Center (OR-IFRC) were sequenced and compared to each other to determine phylogenetic and metabolic difference between the communities. Proteobacteria (e.g., Burkholderia, Pseudomonas) are the most abundant lineages in the pristine community, though a significant proportion ( >55%) of the community is composed of poorly characterized low abundance (individually <1%) lineages. The phylogenetic diversity of the pristine community contributed to a broader diversity of metabolic networks than the contaminated community. In addition, the pristine community encodes redundant and mostly complete geochemical cycles distributed over multiple lineages and appears capable of a wide range of metabolic activities. In contrast, many geochemical cycles in the contaminated community appear truncated or minimized due to decreased biodiversity and dominance by Rhodanobacter populations capable of surviving the combination of stresses at the site. In conclusion, these results indicate that the pristine site contains more robust and encodes more functional redundancy than the stressed community, which contributes to more efficient nutrient cycling and adaptability than the stressed community.

  3. Comparative metagenomics reveals impact of contaminants on groundwater microbiomes

    PubMed Central

    Hemme, Christopher L.; Tu, Qichao; Shi, Zhou; Qin, Yujia; Gao, Weimin; Deng, Ye; Nostrand, Joy D. Van; Wu, Liyou; He, Zhili; Chain, Patrick S. G.; Tringe, Susannah G.; Fields, Matthew W.; Rubin, Edward M.; Tiedje, James M.; Hazen, Terry C.; Arkin, Adam P.; Zhou, Jizhong

    2015-01-01

    To understand patterns of geochemical cycling in pristine versus contaminated groundwater ecosystems, pristine shallow groundwater (FW301) and contaminated groundwater (FW106) samples from the Oak Ridge Integrated Field Research Center (OR-IFRC) were sequenced and compared to each other to determine phylogenetic and metabolic difference between the communities. Proteobacteria (e.g., Burkholderia, Pseudomonas) are the most abundant lineages in the pristine community, though a significant proportion ( >55%) of the community is composed of poorly characterized low abundance (individually <1%) lineages. The phylogenetic diversity of the pristine community contributed to a broader diversity of metabolic networks than the contaminated community. In addition, the pristine community encodes redundant and mostly complete geochemical cycles distributed over multiple lineages and appears capable of a wide range of metabolic activities. In contrast, many geochemical cycles in the contaminated community appear truncated or minimized due to decreased biodiversity and dominance by Rhodanobacter populations capable of surviving the combination of stresses at the site. These results indicate that the pristine site contains more robust and encodes more functional redundancy than the stressed community, which contributes to more efficient nutrient cycling and adaptability than the stressed community. PMID:26583008

  4. Groundwater contamination studies - The state-of-the-art

    SciTech Connect

    Khondaker, A.N.; Al-Layla, R.I.; Hussain, T. )

    1990-01-01

    A systematic study was made of the available theoretical and experimental works. The study of groundwater flow and contaminant transport requires knowledge of many of the basic principles of geology, physics, chemistry, and mathematics; there is a close kinship between groundwater hydrology, soil physics, soil mechanics, rock mechanics, and petroleum engineering. These interdisciplinary studies can be broadly categorized as theory and development of solute-transport phenomena, modeling of solute transport, and studies on model parameters. There are a number of important areas which need further research to predict the fate and the behavior of contaminants in the subsurface system, including: (1) additional work to derive field-scale models; (2) correlation between field and laboratory values of input parameters for solute transport models; (3) continued investigation of the geochemistry of contaminant reactions in both saturated and unsaturated subsurface environments; (4) further study of the chemical and biological reaction on the permeability of aquifer materials; (5) systematic comparison of all existing models and the advanced solution techniques; (6) development of an efficient model including all the biological processes; (7) better understanding of reaction rates in the subsurface environment. The necessity of interdisciplinary cooperation among investigators is essential for the future advancements in the ability to deal with groundwater contamination problems.

  5. Arsenic contamination in groundwater in the Southeast Asia region.

    PubMed

    Rahman, Mohammad Mahmudur; Naidu, R; Bhattacharya, Prosun

    2009-04-01

    The adverse impact of groundwater contaminated with arsenic (As) on humans has been reported worldwide, particularly in Asian countries. In this study, we present an overview of the As crisis in the Southeast Asian region where groundwater is contaminated with naturally occurring As and where contamination has become more widespread in recent years. In this region more than 100 million people are estimated to be at risk from groundwater As contamination, and some 700,000 people are known so far to have been affected by As-related diseases. Despite investments exceeding many millions of dollars, there are still substantial knowledge gaps about the prevalence and impact of As, notably in its epidemiology, temporal variations, social factors, patient identification, treatment, etc. Arsenic-affected people in the affected regions also face serious social problems. Of major concern is the fact that many researchers from different countries have been conducting research in SE Asia region but with a lack of coordination, thus duplicating their work. There is an urgent need to coordinate these various studies to ensure better delivery of research outcomes. Further research is needed to improve field testing and monitoring of drinking water sources, and to develop new treatments for chronic As toxicity and new sources of safe drinking water.

  6. Comparative metagenomics reveals impact of contaminants on groundwater microbiomes.

    PubMed

    Hemme, Christopher L; Tu, Qichao; Shi, Zhou; Qin, Yujia; Gao, Weimin; Deng, Ye; Nostrand, Joy D Van; Wu, Liyou; He, Zhili; Chain, Patrick S G; Tringe, Susannah G; Fields, Matthew W; Rubin, Edward M; Tiedje, James M; Hazen, Terry C; Arkin, Adam P; Zhou, Jizhong

    2015-01-01

    To understand patterns of geochemical cycling in pristine versus contaminated groundwater ecosystems, pristine shallow groundwater (FW301) and contaminated groundwater (FW106) samples from the Oak Ridge Integrated Field Research Center (OR-IFRC) were sequenced and compared to each other to determine phylogenetic and metabolic difference between the communities. Proteobacteria (e.g., Burkholderia, Pseudomonas) are the most abundant lineages in the pristine community, though a significant proportion ( >55%) of the community is composed of poorly characterized low abundance (individually <1%) lineages. The phylogenetic diversity of the pristine community contributed to a broader diversity of metabolic networks than the contaminated community. In addition, the pristine community encodes redundant and mostly complete geochemical cycles distributed over multiple lineages and appears capable of a wide range of metabolic activities. In contrast, many geochemical cycles in the contaminated community appear truncated or minimized due to decreased biodiversity and dominance by Rhodanobacter populations capable of surviving the combination of stresses at the site. These results indicate that the pristine site contains more robust and encodes more functional redundancy than the stressed community, which contributes to more efficient nutrient cycling and adaptability than the stressed community.

  7. Tracing enteric pathogen contamination in sub-Saharan African groundwater.

    PubMed

    Sorensen, J P R; Lapworth, D J; Read, D S; Nkhuwa, D C W; Bell, R A; Chibesa, M; Chirwa, M; Kabika, J; Liemisa, M; Pedley, S

    2015-12-15

    Quantitative PCR (qPCR) can rapidly screen for an array of faecally-derived bacteria, which can be employed as tracers to understand groundwater vulnerability to faecal contamination. A microbial DNA qPCR array was used to examine 45 bacterial targets, potentially relating to enteric pathogens, in 22 groundwater supplies beneath the city of Kabwe, Zambia in both the dry and subsequent wet season. Thermotolerant (faecal) coliforms, sanitary risks, and tryptophan-like fluorescence, an emerging real-time reagentless faecal indicator, were also concurrently investigated. There was evidence for the presence of enteric bacterial contamination, through the detection of species and group specific 16S rRNA gene fragments, in 72% of supplies where sufficient DNA was available for qPCR analysis. DNA from the opportunistic pathogen Citrobacter freundii was most prevalent (69% analysed samples), with Vibrio cholerae also perennially persistent in groundwater (41% analysed samples). DNA from other species such as Bifidobacterium longum and Arcobacter butzleri was more seasonally transient. Bacterial DNA markers were most common in shallow hand-dug wells in laterite/saprolite implicating rapid subsurface pathways and vulnerability to pollution at the surface. Boreholes into the underlying dolomites were also contaminated beneath the city highlighting that a laterite/saprolite overburden, as occurs across much of sub-Saharan aquifer, does not adequately protect underlying bedrock groundwater resources. Nevertheless, peri-urban boreholes all tested negative establishing there is limited subsurface lateral transport of enteric bacteria outside the city limits. Thermotolerant coliforms were present in 97% of sites contaminated with enteric bacterial DNA markers. Furthermore, tryptophan-like fluorescence was also demonstrated as an effective indicator and was in excess of 1.4μg/L in all contaminated sites. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Nebraska's groundwater legacy: Nitrate contamination beneath irrigated cropland

    PubMed Central

    Exner, Mary E; Hirsh, Aaron J; Spalding, Roy F

    2014-01-01

    A 31 year record of ∼44,000 nitrate analyses in ∼11,500 irrigation wells was utilized to depict the decadal expansion of groundwater nitrate contamination (N ≥ 10 mg/L) in the irrigated corn-growing areas of eastern and central Nebraska and analyze long-term nitrate concentration trends in 17 management areas (MAs) subject to N fertilizer and budgeting requirements. The 1.3 M contaminated hectares were characterized by irrigation method, soil drainage, and vadose zone thickness and lithology. The areal extent and growth of contaminated groundwater in two predominately sprinkler-irrigated areas was only ∼20% smaller beneath well-drained silt loams with thick clayey-silt unsaturated layers and unsaturated thicknesses >15 m (400,000 ha and 15,000 ha/yr) than beneath well and excessively well-drained soils with very sandy vadose zones (511,000 ha and 18,600 ha/yr). Much slower expansion (3700 ha/yr) occurred in the 220,000 contaminated hectares in the central Platte valley characterized by predominately gravity irrigation on thick, well-drained silt loams above a thin (∼5.3 m), sandy unsaturated zone. The only reversals in long-term concentration trends occurred in two MAs (120,500 ha) within this contaminated area. Concentrations declined 0.14 and 0.20 mg N/L/yr (p < 0.02) to ∼18.3 and 18.8 mg N/L, respectively, during >20 years of management. Average annual concentrations in 10 MAs are increasing (p < 0.05) and indicate that average nitrate concentrations in leachates below the root zone and groundwater concentrations have not yet reached steady state. While management practices likely have slowed increases in groundwater nitrate concentrations, irrigation and nutrient applications must be more effectively controlled to retain nitrate in the root zone. PMID:25558112

  9. Comparing Modeled and Measured Mercury Speciation in Contaminated Groundwater: Importance of Dissolved Organic Matter Composition.

    PubMed

    Richard, Jan-Helge; Bischoff, Cornelia; Biester, Harald

    2016-07-19

    In addition to analytical speciation, reliable Hg species modeling is crucial for predicting the mobility and toxicity of Hg, but geochemical speciation codes have not yet been tested for their prediction accuracy. Our study compares analyses of Hg species in highly Hg-contaminated groundwater (Hgtot: 0.02-4 μmol·L(-1)) at three sites with predictions of Hg speciation obtained from three geochemical codes (WHAM, Visual MINTEQ, PHREEQC) with and without implementation of Hg complexation by dissolved organic matter (DOM). Samples were analyzed for chemical composition, elemental, inorganic, and DOM-bound Hg (Hg(0), Hginorg, HgDOM). Hg-DOM complexation was modeled using three approaches: binding to humic/fulvic acids, binding to thiol-groups, or a combination of both. Results of Hg(0) modeling were poor in all scenarios. Prediction accuracy for Hginorg and HgDOM strongly depended on the assumed DOM composition. Best results were achieved when weaker binding sites, simulated by WHAMs DOM submodel, were combined with strongly binding thiol groups. Indications were found that thiol-DOM ratios in groundwater are likely to be lower than in surface water, highlighting the need for analytical thiol quantification in groundwater DOM. This study shows that DOM quality is a crucial parameter for prediction of Hg speciation in groundwater by means of geochemical modeling.

  10. Groundwater arsenic contamination in Bangladesh-21 Years of research.

    PubMed

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Mukherjee, Amitava; Alauddin, Mohammad; Hassan, Manzurul; Dutta, Rathindra Nath; Pati, Shymapada; Mukherjee, Subhash Chandra; Roy, Shibtosh; Quamruzzman, Quazi; Rahman, Mahmuder; Morshed, Salim; Islam, Tanzima; Sorif, Shaharir; Selim, Md; Islam, Md Razaul; Hossain, Md Monower

    2015-01-01

    Department of Public Health Engineering (DPHE), Bangladesh first identified their groundwater arsenic contamination in 1993. But before the international arsenic conference in Dhaka in February 1998, the problem was not widely accepted. Even in the international arsenic conference in West-Bengal, India in February, 1995, representatives of international agencies in Bangladesh and Bangladesh government attended the conference but they denied the groundwater arsenic contamination in Bangladesh. School of Environmental Studies (SOES), Jadavpur University, Kolkata, India first identified arsenic patient in Bangladesh in 1992 and informed WHO, UNICEF of Bangladesh and Govt. of Bangladesh from April 1994 to August 1995. British Geological Survey (BGS) dug hand tube-wells in Bangladesh in 1980s and early 1990s but they did not test the water for arsenic. Again BGS came back to Bangladesh in 1992 to assess the quality of the water of the tube-wells they installed but they still did not test for arsenic when groundwater arsenic contamination and its health effects in West Bengal in Bengal delta was already published in WHO Bulletin in 1988. From December 1996, SOES in collaboration with Dhaka Community Hospital (DCH), Bangladesh started analyzing hand tube-wells for arsenic from all 64 districts in four geomorphologic regions of Bangladesh. So far over 54,000 tube-well water samples had been analyzed by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). From SOES water analysis data at present we could assess status of arsenic groundwater contamination in four geo-morphological regions of Bangladesh and location of possible arsenic safe groundwater. SOES and DCH also made some preliminary work with their medical team to identify patients suffering from arsenic related diseases. SOES further analyzed few thousands biological samples (hair, nail, urine and skin scales) and foodstuffs for arsenic to know arsenic body burden and people sub

  11. Semivolatile organic (GC-MS) and inorganic analyses of groundwater samples during the hydrous pyrolysis/oxidation (HPO) field test in Visalia, CA, 1997

    SciTech Connect

    Chiarappa, M; Knauss, K G; Kumamoto, G; Leif, R N; Newmark, R L

    1998-02-05

    Hydrous pyrolysis/oxidation (HPO) is a novel, in situ, thermal-remediation technology that uses hot, oxygenated groundwater to completely oxidize a wide range of organic pollutants. A field demonstration of HPO was performed during the summer of 1997 at the Southern California Edison Pole Yard in Visalia, California, a site contaminated with creosote. The goal of the field experiment was to confirm the success of HPO under field remediation conditions. The groundwater was heated by steam injections, and oxygen was added by co-injection of compressed air. The progress of the HPO remediation process was evaluated by monitoring groundwater from multiple wells for dissolved oxygen, dissolved inorganic carbon, and dissolved organic contaminant levels. Analyses of groundwater chemistry allowed us to measure the concentrations of creosote components and to identify oxygenated intermediates produced by the HPO treatment. Dissolved organic carbon levels increased in response to steam injections because of the enhanced dissolution and mobilization of the creosote into the heated groundwater. Elevated concentrations of phenols and benzoic acid were measured in wells affected by the steam injections. Concentrations of other oxygenated compounds (i.e., fluorenone, anthrone, and 9,10-anthracenedione) increased in response to the steam injections. The production of these partially oxidized compounds is consistent with the aqueous-phase HPO reactions of creosote. Additional changes in the groundwater in response to steam injection were also consistent with the groundwater HPO chemistry. A drop in dissolved oxygen was observed in the aquifer targeted for the steam injections, and isotope shifts in the dissolved inorganic pool reflected the input of oxidized carbon derived from the creosote carbon.

  12. Magnetic properties changes due to hydrocarbon contaminated groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Ameen, Nawrass

    2013-04-01

    This study aims to understand the mechanisms and conditions which control the formation and transformation of ferro(i)magnetic minerals caused by hydrocarbon contaminated groundwater, in particular in the zone of fluctuating water levels. The work extends previous studies conducted at the same site. The study area is a former military air base at Hradčany, Czech Republic (50°37'22.71"N, 14°45'2.24"E). The site was heavily contaminated with petroleum hydrocarbons, due to leaks in petroleum storage tanks and jet fuelling stations over years of active use by the Soviet Union, which closed the base in 1991. The site is one of the most important sources of high quality groundwater in the Czech Republic. In a previous study, Rijal et al. (2010) concluded that the contaminants could be flushed into the sediments as the water level rose due to remediation processes leading to new formation of magnetite. In this previous study three different locations were investigated; however, from each location only one core was obtained. In order to recognize significant magnetic signatures versus depth three cores from each of these three locations were drilled in early 2012, penetrating the unsaturated zone, the groundwater fluctuation (GWF) zone and extending to about one meter below the groundwater level (~2.3 m depth at the time of sampling). Magnetic susceptibility (MS) profiles combined with other magnetic properties were analyzed to obtain a significant depth distribution of the ferro(i)magnetic concentration. Sediment properties, hydrocarbon content and bacterial activity were additionally studied. The results show that the highest ferrimagnetic mineral concentrations exist between 1.4-1.9 m depth from the baseline which is interpreted as the top of the GWF zone. Spikes of MS detected in the previous studies turned out to represent small-scale isolated features, but the trend of increasing MS values from the lowermost position of the groundwater table upward was verified

  13. Determination of micro-organic contaminants in groundwater (Maribor, Slovenia).

    PubMed

    Koroša, A; Auersperger, P; Mali, N

    2016-11-15

    Micro-organic (MO) contaminants in groundwater can have adverse effects on both the environment and on human health. They enter the natural environment as a result of various processes, their presence in groundwater is the result of current anthropogenic activity and pollution loads from the past. A study on the occurrence and concentrations levels of selected contaminants in water was performed in the city of Maribor, Slovenia. A total of 56 groundwater and 4 surface water samples were collected in together four rounds in different hydrogeological periods (dry and wet seasons), and a total of 13 selected contaminants were analysed in this study. Carbamazepine, propyphenazone, caffeine, 2-methyl-2H-benzotriazole (2-MBT) and 2.4-dimethyl-2H-benzotriazole (2.4-DMBT) were determined as indicators of urban pollution, while pesticides and their metabolites (atrazine, desethylatrazine, deisopropylatrazine, terbuthylazine, desethylterbuthylazine, metolachlor, simazine, propazine) were mainly defined as indicators of crop production. All of the selected MO contaminants were detected both in the aquifer and Drava River. The most frequently detected MO compounds in groundwater were desethylatrazine (frequency of detection 98.2%; max. concentration 103.0ngL(-1)), atrazine (94.6%; 229ngL(-1)), 2.4-DMBT (92.9%; 273ngL(-1)), carbamazepine (80.4%; 88.00ngL(-1)), desethylterbuthylazine (76.8%; 7.0ngL(-1)) and simazine (76.8%; 29.6ngL(-1)), whereas propyphenazone (14.3%; 10.7ngL(-1)) was the least frequently detected. Detected MO concentrations in the study were compared with results published elsewhere around the world. Concentrations in groundwater indicate specific land use in their recharge areas. On the basis of correlations and the spatial distribution of selected MOs, groundwater origin for every sampling point was determined. Sampling sites were divided into three different groups for which indicative groundwater quality properties were defined. Copyright © 2016 Elsevier B

  14. Comparing Groundwater Contamination Vulnerability in Large, Urbanized Basins of California

    NASA Astrophysics Data System (ADS)

    Moran, J. E.; Hudson, G. B.; Leif, R.; Eaton, G. F.

    2002-12-01

    We have sampled over 700 public drinking water wells as part of a study to assess relative contamination susceptibility of the major groundwater basins in California. The parameters used to rank wells according to vulnerability are groundwater age dates (using the tritium-3helium method), stable isotopes of the water molecule (for water source determination), and occurrence of low level Volatile Organic Compounds (VOCs). Long-screened production wells supply clean, high quality samples, and sample the resource that is being used. However, the groundwater age distribution from production wells may be quite broad, and comparisons to the predicted initial tritium value for the measured mean age, along with analysis of radiogenic 4Helium are used to de-convolute the mixed age. Results from the Los Angeles and Orange County Basins, and Santa Clara Valley, will be presented. A large volume of both imported and locally captured water is artificially recharged in these intensively managed basins. An effective confining unit in the Santa Clara Valley basin prevents widespread vertical transport of contaminants down to drinking water wells. In the southern California basins, groundwater age and the frequency of occurrence of low-level VOCs are spatially correlated, with more recently recharged water likely to have VOC detections. 'Pre-modern' water is nearly always free of VOCs, except when a suspected 'short circuit', (e.g., loss of integrity in well casing) allows near surface contamination to reach 'old' water. Methyl-tertiary-Butyl Ether (MTBE) can be a useful time marker in groundwater basins, with water recharged after the 1980's showing traces of MTBE. Water resource managers can use these vulnerability assessments to focus monitoring efforts, site new wells, plan land use, and evaluate remediation activities. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under

  15. Price's landfill: an anatomy of a groundwater contamination episode

    SciTech Connect

    Schechter, M.

    1982-01-01

    This paper focuses on the major methodological issues which characterize groundwater contamination episodes, analyzing them within the framework of a cost-benefit analysis of an actual case, the Price's Landfill episode. Following a short description of this episode, each of these methodological problems which must be resolved by public agencies handling groundwater pollution cases is analyzed: modeling and prediction of contamination spread through subsurface water, assessment of health and related risks, and the valuation of damages and remedial actions. Some of the problems associated with these issues are common to other major environmental episodes; others however, are unique due to the nature of the environmental transport mechanism and the resource itself, namely, drinking water. 46 references, 6 figures, 6 tables.

  16. Groundwater protection from cadmium contamination by permeable reactive barriers.

    PubMed

    Di Natale, F; Di Natale, M; Greco, R; Lancia, A; Laudante, C; Musmarra, D

    2008-12-30

    This work studies the reliability of an activated carbon permeable reactive barrier in removing cadmium from a contaminated shallow aquifer. Laboratory tests have been performed to characterize the equilibrium and kinetic adsorption properties of the activated carbon in cadmium-containing aqueous solutions. A 2D numerical model has been used to describe pollutant transport within a groundwater and the pollutant adsorption on the permeable adsorbing barrier (PRB). In particular, it has been considered the case of a permeable adsorbing barrier (PAB) used to protect a river from a Cd(II) contaminated groundwater. Numerical results show that the PAB can achieve a long-term efficiency by preventing river pollution for several months.

  17. Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling

    USGS Publications Warehouse

    Wagner, B.J.

    1992-01-01

    Parameter estimation and contaminant source characterization are key steps in the development of a coupled groundwater flow and contaminant transport simulation model. Here a methodologyfor simultaneous model parameter estimation and source characterization is presented. The parameter estimation/source characterization inverse model combines groundwater flow and contaminant transport simulation with non-linear maximum likelihood estimation to determine optimal estimates of the unknown model parameters and source characteristics based on measurements of hydraulic head and contaminant concentration. First-order uncertainty analysis provides a means for assessing the reliability of the maximum likelihood estimates and evaluating the accuracy and reliability of the flow and transport model predictions. A series of hypothetical examples is presented to demonstrate the ability of the inverse model to solve the combined parameter estimation/source characterization inverse problem. Hydraulic conductivities, effective porosity, longitudinal and transverse dispersivities, boundary flux, and contaminant flux at the source are estimated for a two-dimensional groundwater system. In addition, characterization of the history of contaminant disposal or location of the contaminant source is demonstrated. Finally, the problem of estimating the statistical parameters that describe the errors associated with the head and concentration data is addressed. A stage-wise estimation procedure is used to jointly estimate these statistical parameters along with the unknown model parameters and source characteristics. ?? 1992.

  18. Tracing groundwater recharge in the San Luis Valley, Colorado: Groundwater contamination susceptibility in an agricultural watershed

    NASA Astrophysics Data System (ADS)

    Patel, Tanya; Hindshaw, Ruth; Singer, Michael

    2015-04-01

    Water is a vital resource in any agricultural watershed, yet in the arid western United States farming practices threaten the quality and availability of groundwater. This is a pressing concern in the San Luis Valley, southern Colorado, where agriculture comprises 30% of the local economy, and employs over half the valley population. Although 54 % of the water used for irrigation is surface water, farmers do not usually apply this water directly to their fields. Instead, the water is often diverted into pits which recharge the aquifer, and the water is subsequently pumped during the following irrigation season. The Rio Grande Water Conservation District recognises that recharge to the unconfined aquifer has been outpaced by commercial irrigation for at least four decades, resulting in a decline in groundwater levels. Recycled irrigation water, and leakage from unlined canals now represent the greatest recharge contribution to the unconfined aquifer in this region. This makes the shallow groundwater particularly susceptible to agricultural contamination. The purpose of this study is to assess groundwater contamination in the unconfined and upper confined aquifers of the San Luis Valley, which are the most susceptible to contamination due to their close proximity to the surface. Although concentrations of potentially harmful contaminants from agricultural runoff are regularly monitored, the large spatial and temporal fluctuations in values make it difficult to determine long-term trends. We have analysed δ18O, δ2H and major-ion chemistry of 57 groundwater, stream and precipitation samples, collected in June 2014, and interpreted them alongside regional stream flow data and groundwater levels. This will allow us to study the seasonality and locality of groundwater recharge to provide greater insight into the watershed's potential for pollution. A groundwater vulnerability assessment was performed using the model DRASTIC (Depth to water, Recharge, Aquifer media, Soil

  19. Mapping organic contaminant plumes in groundwater using spontaneous potentials

    NASA Astrophysics Data System (ADS)

    Forte, Sarah

    Increased water demands have raised awareness of its importance. One of the challenges facing water resource management is dealing with contaminated groundwater; delineating, characterizing and remediating it. In the last decade, spontaneous potentials have been proposed as a method for delineating degrading organic contaminant plumes in groundwater. A hypothesis proposed that the redox potential gradient due to degradation of contaminants generated an electrical potential gradient that could be measured at the ground surface. This research was undertaken to better understand this phenomenon and find under what conditions it occurs. Spontaneous potentials are electrical potentials generated by three sources that act simultaneously: electrokinetic, thermoelectric and electrochemical sources. Over contaminant plumes electrochemical sources are those of interest. Thermoelectric sources are negligible unless in geothermal areas, but we hypothesized that electrokinetic potentials could be impacted by contaminants altering sediment surface properties. We built and calibrated a laboratory apparatus to make measurements that allowed us to calculate streaming current coupling coefficients. We tested sediment from hydrocarbon impacted sites with clean and hydrocarbon polluted groundwater and found a measurable though inconsistent effect. Moreover, numerical modelling was used to demonstrate that the impact of these changes on field measurements was negligible. Spontaneous potential surveys were conducted on two field sites with well characterized degrading hydrocarbon plumes in groundwater. We did not find a correlation between redox conditions and spontaneous potential, even after the electrical measurements were corrected for anthropogenic noise. In order to determine why the expected signal was not seen, we undertook numerical modelling based on coupled fluxes using two hypothesized types of current: redox and diffusion currents. The only scenarios that produced

  20. Managing Groundwater Radioactive Contamination at the Daiichi Nuclear Plant

    PubMed Central

    Marui, Atsunao; Gallardo, Adrian H.

    2015-01-01

    The Great East Japan Earthquake and tsunami of March 2011 severely damaged three reactors at the Fukushima Daiichi nuclear power station, leading to a major release of radiation into the environment. Groundwater flow through these crippled reactors continues to be one of the main causes of contamination and associated transport of radionuclides into the Pacific Ocean. In this context, a number of strategies are being implemented to manage radioactive pollution of the water resources at the nuclear plant site. Along with water treatment and purification, it is critical to restrict the groundwater flow to and from the reactors. Thus, the devised strategies combine walls containment, bores abstraction, infiltration control, and the use of tanks for the temporary storage of contaminated waters. While some of these techniques have been previously applied in other environments, they have never been tested at such a large scale. Therefore, their effectiveness remains to be seen. The present manuscript presents an overview of the methods being currently implemented to manage groundwater contamination and to mitigate the impact of hydrological pathways in the dispersion of radionuclides at Fukushima. PMID:26197330

  1. Managing Groundwater Radioactive Contamination at the Daiichi Nuclear Plant.

    PubMed

    Marui, Atsunao; Gallardo, Adrian H

    2015-07-21

    The Great East Japan Earthquake and tsunami of March 2011 severely damaged three reactors at the Fukushima Daiichi nuclear power station, leading to a major release of radiation into the environment. Groundwater flow through these crippled reactors continues to be one of the main causes of contamination and associated transport of radionuclides into the Pacific Ocean. In this context, a number of strategies are being implemented to manage radioactive pollution of the water resources at the nuclear plant site. Along with water treatment and purification, it is critical to restrict the groundwater flow to and from the reactors. Thus, the devised strategies combine walls containment, bores abstraction, infiltration control, and the use of tanks for the temporary storage of contaminated waters. While some of these techniques have been previously applied in other environments, they have never been tested at such a large scale. Therefore, their effectiveness remains to be seen. The present manuscript presents an overview of the methods being currently implemented to manage groundwater contamination and to mitigate the impact of hydrological pathways in the dispersion of radionuclides at Fukushima.

  2. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China.

    PubMed

    Wang, Junjie; He, Jiangtao; Chen, Honghan

    2012-08-15

    Groundwater contamination risk assessment is an effective tool for groundwater management. Most existing risk assessment methods only consider the basic contamination process based upon evaluations of hazards and aquifer vulnerability. In view of groundwater exploitation potentiality, including the value of contamination-threatened groundwater could provide relatively objective and targeted results to aid in decision making. This study describes a groundwater contamination risk assessment method that integrates hazards, intrinsic vulnerability and groundwater value. The hazard harmfulness was evaluated by quantifying contaminant properties and infiltrating contaminant load, the intrinsic aquifer vulnerability was evaluated using a modified DRASTIC model and the groundwater value was evaluated based on groundwater quality and aquifer storage. Two groundwater contamination risk maps were produced by combining the above factors: a basic risk map and a value-weighted risk map. The basic risk map was produced by overlaying the hazard map and the intrinsic vulnerability map. The value-weighted risk map was produced by overlaying the basic risk map and the groundwater value map. Relevant validation was completed by contaminant distributions and site investigation. Using Beijing Plain, China, as an example, thematic maps of the three factors and the two risks were generated. The thematic maps suggested that landfills, gas stations and oil depots, and industrial areas were the most harmful potential contamination sources. The western and northern parts of the plain were the most vulnerable areas and had the highest groundwater value. Additionally, both the basic and value-weighted risk classes in the western and northern parts of the plain were the highest, indicating that these regions should deserve the priority of concern. Thematic maps should be updated regularly because of the dynamic characteristics of hazards. Subjectivity and validation means in assessing the

  3. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water – Technical Report Series

    EPA Science Inventory

    This presentation will cover the development and content of new EPA Technical Resource Documents on the application of monitored natural attenuation for inorganic contaminants in ground water. This presentation discusses the various mechanisms that are recognized to result in th...

  4. COLLOIDAL-FACILITATED TRANSPORT OF INORGANIC CONTAMINANTS IN GROUND WATER: PART I. SAMPLING CONSIDERATIONS

    EPA Science Inventory

    Investigations at Pinal Creek, Arizona, evaluated routine sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. Sampling variables included pump type and flow rate, collection under air or nitrogen,...

  5. Ground-water contamination and legal controls in Michigan

    USGS Publications Warehouse

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  6. Uranium removal from contaminated groundwater by synthetic resins.

    PubMed

    Phillips, D H; Gu, B; Watson, D B; Parmele, C S

    2008-01-01

    Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing groundwaters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g(-1) before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 m L of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L(-1) uranium, the uranium concentrations ranged from 0.95 mg L(-1) at 1-h equilibrium to 0.08 mg L(-1) at 24-h equilibrium for Diphonix and 0.17 mg L(-1) at 1-h equilibrium to 0.03 mg L(-1) at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100mL of acidic-(pH 5)-high-nitrate-containing groundwater ( approximately 5 mg L(-1) uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kenetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs.

  7. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    USGS Publications Warehouse

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  8. Review of risk from potential emerging contaminants in UK groundwater.

    PubMed

    Stuart, Marianne; Lapworth, Dan; Crane, Emily; Hart, Alwyn

    2012-02-01

    This paper provides a review of the types of emerging organic groundwater contaminants (EGCs) which are beginning to be found in the UK. EGCs are compounds being found in groundwater that were previously not detectable or known to be significant and can come from agricultural, urban and rural point sources. EGCs include nanomaterials, pesticides, pharmaceuticals, industrial compounds, personal care products, fragrances, water treatment by-products, flame retardants and surfactants, as well as caffeine and nicotine. Many are relatively small polar molecules which may not be effectively removed by drinking water treatment. Data from the UK Environment Agency's groundwater screening programme for organic pollutants found within the 30 most frequently detected compounds a number of EGCs such as pesticide metabolites, caffeine and DEET. Specific determinands frequently detected include pesticides metabolites, pharmaceuticals including carbamazepine and triclosan, nicotine, food additives and alkyl phosphates. This paper discusses the routes by which these compounds enter groundwater, their toxicity and potential risks to drinking water and the environment. It identifies challenges that need to be met to minimise risk to drinking water and ecosystems. Copyright © 2012. Published by Elsevier B.V.

  9. Prevalence of organic and inorganic contaminants within a rapidly developing catchment

    NASA Astrophysics Data System (ADS)

    Njumbe, E. S.; Curtis, C. D.; Cooke, D. A.; Polya, D. A.; Wogelius, R. A.; Hughes, C.

    2003-04-01

    Industrialization rates in many developing countries typically outpace investment in water supply, sewage treatment and other waste water facilities. This is futher compounded by the absence of stringent land-use and waste disposal policies. The consequence of this has been contamination of land, surface water, and groundwater in such areas. Efforts to control and remediate these types of systems will rely on a thorough understanding of contaminant levels and mobility. Reliable data, however, is usually not available. Therefore this study was designed to acquire baseline data from a representative developing urban area in tropical west Africa. 43 water and 20 sediment/soil samples from streams, hand-dug wells, springs and deep boreholes within the city and surrounding areas of Douala in Cameroon were characterised. Analyses were aimed at obtaining information on the type and quantity of organic and inorganic contaminants present, and linking them to specific point and non-point sources. Results from gas chromatography (GC/FID) and gas chromatography/mass spectrometry analyses of total organic extracts (TOE) of water samples have revealed the presence of a wide range of organic compounds including phenols, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), phthalates, acids and aliphatic derivatives. Concentrations as high as 500 ng ml-1 were detected. These high levels of non-polar compounds measured in drinking water represent a clear health problem. Heavy metal concentrations in bulk alluvial sands and loamy soil have been determined by microwave assisted nitric acid digestion. Concentration ranges (in ppm of dry weight) for the important metals were: Cr, 3.2-84.2 ; Ni, 0.2-57.4 ; Zn, 2.1-92 ; Pb, 0.3-33 ; As, 0.081-9.4 ; Cu, 0.61-17.4 ; and Cd, 0-3.1. Point sources have been identified for several of the organic and inorganic compounds and this spatial information will be integrated with the chemical data to present an overview of

  10. Emerging contaminants in urban groundwater sources in Africa.

    PubMed

    Sorensen, J P R; Lapworth, D J; Nkhuwa, D C W; Stuart, M E; Gooddy, D C; Bell, R A; Chirwa, M; Kabika, J; Liemisa, M; Chibesa, M; Pedley, S

    2015-04-01

    The occurrence of emerging organic contaminants within the aquatic environment in Africa is currently unknown. This study provides early insights by characterising a broad range of emerging organic contaminants (n > 1000) in groundwater sources in Kabwe, Zambia. Groundwater samples were obtained during both the dry and wet seasons from a selection of deep boreholes and shallow wells completed within the bedrock and overlying superficial aquifers, respectively. Groundwater sources were distributed across the city to encompass peri-urban, lower cost housing, higher cost housing, and industrial land uses. The insect repellent DEET was ubiquitous within groundwater at concentrations up to 1.8 μg/L. Other compounds (n = 26) were detected in less than 15% of the sources and included the bactericide triclosan (up to 0.03 μg/L), chlorination by-products - trihalomethanes (up to 50 μg/L), and the surfactant 2,4,7,9-tetramethyl-5-decyne-4,7-diol (up to 0.6 μg/L). Emerging contaminants were most prevalent in shallow wells sited in low cost housing areas. This is attributed to localised vulnerability associated with inadequate well protection, sanitation, and household waste disposal. The five-fold increase in median DEET concentration following the onset of the seasonal rains highlights that more mobile compounds can rapidly migrate from the surface to the aquifer suggesting the aquifer is more vulnerable than previously considered. Furthermore it suggests DEET is potentially useful as a wastewater tracer in Africa. There was a general absence of personal care products, life-style compounds, and pharmaceuticals which are commonly detected in the aquatic environment in the developed world. This perhaps reflects some degree of attenuation within the subsurface, but could also be a result of the current limited use of products containing emerging contaminants by locals due to unaffordability and unavailability. As development and population increases in Africa, it is

  11. Uranium Removal from Contaminated Groundwater by Synthetic Resins

    SciTech Connect

    Phillips, Debra H.; Gu, Baohua; Watson, David B; Parmele, C. S.

    2008-01-01

    Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing ground waters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex{trademark} 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g{sup -1} before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 mL of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L{sup -1} uranium, the uranium concentrations ranged from 0.95 mg L{sup -1} at 1-h equilibrium to 0.08 mg L{sup -1} at 24-h equilibrium for Diphonix and 0.17 mg L{sup -1} at 1-h equilibrium to 0.03 mg L{sup -1} at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100 mL of acidic-(pH 5)-high-nitrate-containing groundwater (5 mg L{sup -1} uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kinetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs.

  12. Groundwater flow and contaminant transport in geologic media

    SciTech Connect

    Rizk, T.A.

    1991-01-01

    The classical approaches to the study of groundwater flow and contaminant transport in geologic media may lead to erroneous results depending on the particular site of interest. This emphasis is on improving the state of the art parameter estimation techniques using the Darcian equation of fluid motion. The new parameter estimation technique was applied to a model validation experiment conducted at Bear Creek Valley on the Oak Ridge Reservation, Oak Ridge, TN, under an Oak Ridge National Laboratory research contract. It is shown that the new approach to parameter estimation using the Darcy theory reproduced the groundwater movement and tracer plume behavior with reasonable accuracy. In addition, a set of governing field equations using the theory of interacting continuua are derived. Through a relative order of magnitude analysis of the Bear Creek Valley study, the mixture equations of motion were shown to reduce to the Darcy equation of motion.

  13. Degradation of Environmental Contaminants with Water-Soluble Cobalt Catalysts: An Integrative Inorganic Chemistry Investigation

    ERIC Educational Resources Information Center

    Evans, Alexandra L.; Messersmith, Reid E.; Green, David B.; Fritsch, Joseph M.

    2011-01-01

    We present an integrative laboratory investigation incorporating skills from inorganic chemistry, analytical instrumentation, and physical chemistry applied to a laboratory-scale model of the environmental problem of chlorinated ethylenes in groundwater. Perchloroethylene (C[subscript 2]Cl[subscript 4], PCE) a common dry cleaning solvent,…

  14. Degradation of Environmental Contaminants with Water-Soluble Cobalt Catalysts: An Integrative Inorganic Chemistry Investigation

    ERIC Educational Resources Information Center

    Evans, Alexandra L.; Messersmith, Reid E.; Green, David B.; Fritsch, Joseph M.

    2011-01-01

    We present an integrative laboratory investigation incorporating skills from inorganic chemistry, analytical instrumentation, and physical chemistry applied to a laboratory-scale model of the environmental problem of chlorinated ethylenes in groundwater. Perchloroethylene (C[subscript 2]Cl[subscript 4], PCE) a common dry cleaning solvent,…

  15. Depth and Well Type Related to Groundwater Microbiological Contamination

    PubMed Central

    Maran, Nayara Halimy; Crispim, Bruno do Amaral; Iahnn, Stephanie Ramirez; de Araújo, Renata Pires; Grisolia, Alexeia Barufatti; de Oliveira, Kelly Mari Pires

    2016-01-01

    Use of groundwater from private wells in households has increased considerably, owing to a better cost/benefit ratio than that of water provided by local utilities for a fee. However, this water is usually untreated, which makes it a vehicle for diseases. Thus, monitoring this water is necessary to ensure its integrity and quality. We aimed to evaluate the physical, chemical, and microbiological parameters of untreated groundwater drawn from different types of wells, and the antimicrobial susceptibility profile of the bacteria isolated from this water. Wellwater samples were collected in two Brazilian cities. Although physical and chemical parameters of the water were suitable for drinking, Escherichia coli was detected in 33% of the samples. E. coli contaminated 65% of dug wells and 10.25% of drilled wells. Many bacteria isolated were resistant to multiple antibacterial agents, including β-lactams. Microbial contamination of this water was related to the well depth, and was more common in dug wells, making this water unfit for human consumption. Consumption of such contaminated and untreated water is a public health concern. Thus, individuals who regularly use such water must be alerted so they may either take preventive measures or connect to the water distribution system operated by local utilities. PMID:27775681

  16. Arsenic Contaminated Groundwater and Its Treatment Options in Bangladesh

    PubMed Central

    Jiang, Jia-Qian; Ashekuzzaman, S. M.; Jiang, Anlun; Sharifuzzaman, S. M.; Chowdhury, Sayedur Rahman

    2012-01-01

    Arsenic (As) causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues. PMID:23343979

  17. Depth and Well Type Related to Groundwater Microbiological Contamination.

    PubMed

    Maran, Nayara Halimy; Crispim, Bruno do Amaral; Iahnn, Stephanie Ramirez; Araújo, Renata Pires de; Grisolia, Alexeia Barufatti; Oliveira, Kelly Mari Pires de

    2016-10-21

    Use of groundwater from private wells in households has increased considerably, owing to a better cost/benefit ratio than that of water provided by local utilities for a fee. However, this water is usually untreated, which makes it a vehicle for diseases. Thus, monitoring this water is necessary to ensure its integrity and quality. We aimed to evaluate the physical, chemical, and microbiological parameters of untreated groundwater drawn from different types of wells, and the antimicrobial susceptibility profile of the bacteria isolated from this water. Wellwater samples were collected in two Brazilian cities. Although physical and chemical parameters of the water were suitable for drinking, Escherichia coli was detected in 33% of the samples. E. coli contaminated 65% of dug wells and 10.25% of drilled wells. Many bacteria isolated were resistant to multiple antibacterial agents, including β-lactams. Microbial contamination of this water was related to the well depth, and was more common in dug wells, making this water unfit for human consumption. Consumption of such contaminated and untreated water is a public health concern. Thus, individuals who regularly use such water must be alerted so they may either take preventive measures or connect to the water distribution system operated by local utilities.

  18. TREATMENT OF INORGANIC CONTAMINANTS USING PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the ...

  19. TREATMENT OF INORGANIC CONTAMINANTS USING PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the ...

  20. Soda ash treatment of a strontium-90-contaminated groundwater seep

    SciTech Connect

    Spalding, B.P.; Munro, I.I.

    1983-01-01

    A /sup 90/Sr-contaminated groundwater seep on the perimeter of a low-level radioactive solid waste disposal area at the Oak Ridge National Laboratory (ORNL) was treated by burying 315 kg of soda ash in the groundwater flow path leading to the seep, and placing 45 kg of soda ash on the surface of the seep. The concentration of /sup 90/Sr in the seep water fell from an average of 7000 Bq L/sup -1/ to 900 Bq L/sup -1/ for the 90 d after burial, followed by a period of gradual rise back to pretreatment levels over the next 100 d. The electrical conductivity and pH of the seep water increased following soda ash burial, while water hardness fell. Hardness was highly correlated (r = 0.84) with /sup 90/Sr concentrations over the entire 2-year observation period, indicating the similar behavior of /sup 90/Sr and soluble Ca and Mg. This in situ softening of, and /sup 90/Sr precipitation from, the seep water was achieved by coprecipitation of /sup 90/Sr with Ca(Mg)CO/sub 3/ until the buried soda ash was depleted by dissolution in the groundwater. The soda ash treatment of groundwater seeps appears to be most practical as an interim technique for those situations requiring an immediate, but temporary, corrective action. During this limited but effective period, more permanent corrective actions could be planned at the source of contamination. The electrical conductivity, pH, and hardness of the larger surface stream, into which this seep discharges, were not affected by the soda ash burial, most likely due to the approximately 2000-fold dilution effected by this stream.

  1. Phytoremediation of contaminated soils and groundwater: lessons from the field.

    PubMed

    Vangronsveld, Jaco; Herzig, Rolf; Weyens, Nele; Boulet, Jana; Adriaensen, Kristin; Ruttens, Ann; Thewys, Theo; Vassilev, Andon; Meers, Erik; Nehnevajova, Erika; van der Lelie, Daniel; Mench, Michel

    2009-11-01

    The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).

  2. Phytoremediation of contaminated soils and groundwater: lessons from the field

    SciTech Connect

    Vangronsveld, J.; van der Lelie, D.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; Mench, M.

    2009-11-01

    The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).

  3. Contamination of groundwater by outdoor highway deicing agent storage

    NASA Astrophysics Data System (ADS)

    Ostendorf, David W.; Hinlein, Erich S.; Rotaru, Camelia; DeGroot, Don J.

    2006-07-01

    This research quantifies the impact of outdoor highway deicing agent storage on groundwater quality. Data and theory realize the objective at a well characterized salt/premix storage facility on a glacial drumlin comprised of clayey sand till. Tritium and tritiogenic helium were observed in 17 monitoring wells in 2003, while chloride concentrations were measured in 43 monitoring wells from 1998 through 2004. The 3He/ 3H ratios confirm an analytical model of drumlin hydraulics (Ostendorf, D.W., DeGroot, D.J., Shelburne, W.M., and Mitchell, T.J., 2004. Hydraulic head in a clayey sand till over multiple timescales. Can. Geotech. J. 41, 89-105.), and support advective travel time estimates from the monitoring well screens back to the water table. An advective balance of recharge, precipitation, and surface runoff routes the water table Cl - concentrations inwards to the outdoor storage pile maintained at the site from the 1960s to the mid 1980s. Concentrations as high as 320 meq Cl -/L were observed in groundwater, although the deicing agent contamination had not yet reached the bottom of the drumlin in the study area. The travel time simulations yield a 200 meq Cl -/L water table isopleth in 1985 under the prior outdoor storage pile. The recharge concentration model matches the radial decrease of Cl - water table concentrations from the pile, and implies that 4400 kg of Cl - leached into the groundwater in 1985. This is about 0.3% of the deicing agent Cl - stored at the site each year. These results suggest that outdoor storage of highway deicing agents significantly impacted groundwater quality near the pile. The groundwater quality began to recover after source removal however: the leached Cl - flux dropped to 2,300 kg in 1992, more than 5 years after elimination of the outdoor storage pile.

  4. Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.

    2002-01-01

    The distribution of inorganic arsenic species must be preserved in the field to eliminate changes caused by metal oxyhydroxide precipitation, photochemical oxidation, and redox reactions. Arsenic species sorb to iron and manganese oxyhydroxide precipitates, and arsenite can be oxidized to arsenate by photolytically produced free radicals in many sample matrices. Several preservatives were evaluated to minimize metal oxyhydroxide precipitation, such as inorganic acids and ethylenediaminetetraacetic acid (EDTA). EDTA was found to work best for all sample matrices tested. Storing samples in opaque polyethylene bottles eliminated the effects of photochemical reactions. The preservation technique was tested on 71 groundwater and six acid mine drainage samples. Concentrations in groundwater samples reached 720 ??g-As/L for arsenite and 1080 ??g-As/L for arsenate, and acid mine drainage samples reached 13 000 ??g-As/L for arsenite and 3700 ??g-As/L for arsenate. The arsenic species distribution in the samples ranged from 0 to 90% arsenite. The stability of the preservation technique was established by comparing laboratory arsenic speciation results for samples preserved in the field to results for subsamples speciated onsite. Statistical analyses indicated that the difference between arsenite and arsenate concentrations for samples preserved with EDTA in opaque bottles and field speciation results were analytically insignificant. The percentage change in arsenite:arsenate ratios for a preserved acid mine drainage sample and groundwater sample during a 3-month period was -5 and +3%, respectively.

  5. Groundwater contamination by Temik Aldicarb pesticide: The first 8 months

    NASA Astrophysics Data System (ADS)

    Wartenberg, Daniel

    1988-02-01

    In 1979, Temik aldicarb pesticide was detected in the groundwater of Suffolk County, New York. Concentrations detected in drinking water supplies exceeded health guidelines, causing concern among thousands of residents. In spite of suggestive evidence prior to detection and inquiries from local investigators, EPA did not consider contamination a likely event. Upon detection of the contamination, EPA officials instituted an emergency response. Then, when they were sure there was no acute hazard, they left the situation in the hands of local health authorities, who struggled without adequate resources or sufficient in-house expertise. The local officials' failure to acknowledge these limitations led to public mistrust and discontent. From this case study one sees the consequences of limited implementation of the federal pesticide regulatory system. More stringent requirements would have likely prevented the contamination. In addition, an integrated response from agencies at many levels of government would have helped prevent similar contamination elsewhere and provided more comprehensive management of this episode on Long Island. Openness by government officials on the limitations of the health data would have helped defuse public animosity and encouraged a more satisfactory resolution of the contamination.

  6. Numerical model for the uptake of groundwater contaminants by phreatophytes

    USGS Publications Warehouse

    Widdowson, M.A.; El-Sayed, A.; Landmeyer, J.E.

    2008-01-01

    Conventional solute transport models do not adequately account for the effects of phreatophytic plant systems on contaminant concentrations in shallow groundwater systems. A numerical model was developed and tested to simulate threedimensional reactive solute transport in a heterogeneous porous medium. Advective-dispersive transport is coupled to biodegradation, sorption, and plantbased attenuation processes including plant uptake and sorption by plant roots. The latter effects are a function of the physical-chemical properties of the individual solutes and plant species. Models for plant uptake were tested and evaluated using the experimental data collected at a field site comprised of hybrid poplar trees. A non-linear equilibrium isotherm model best represented site conditions.

  7. Migration of wood-preserving chemicals in contaminated groundwater in a sand aquifer at Pensacola, Florida

    USGS Publications Warehouse

    Goerlitz, D.F.; Troutman, D.E.; Godsy, E.M.; Franks, B.J.

    1985-01-01

    Operation of a wood-preserving facility for nearly 80 years at Pensacola, FL, contaminated the near-surface groundwater with creosote and pentachlorophenol. The major source of aquifer contamination was unlined surface impoundments that were in direct hydraulic contact with the groundwater. Episodes of overtopping the impoundments and overland flow of treatment liquor and waste were also significant to the migration and contamination of the groundwater. Solutes contaminating the ground-water are mainly naphthalene and substituted phenols. Sorption did not influence retardation of solutes in transport in the groundwater. Phenol and the mono substituted methylphenols appear to be undergoing bio-transformation. Pentachlorophenol (PCP) was not found in significant concentrations in the groundwater possibly because the solubility of PCP is approximately 5 mg/L at pH 6, near the average acidity for the groundwater.

  8. History of ground-water contamination and summary of ground-water investigations through 1985 at four industrial sites, Logan Township, New Jersey

    SciTech Connect

    Lewis, J.C.; Hochreitner, J.J. )

    1990-01-01

    Investigations of potential sources of groundwater contamination conducted by various regulatory agencies and consultants at four industrial sites in Logan Township, New Jersey found groundwater contamination at all four sites and at properties adjoining two of the sites. The four sites directly overlie the Potomac-Raritan-Magothy aquifer system, the Township's sole source of potable water. One site was a waste-oil processing and storage facility. The major source of groundwater contamination at the site is a lagoon containing waste oil. Groundwater within 1,000 ft of the lagoon is contaminated. The second site is used to maintain, dispatch, and clean chemical-transportation tanks. Potential sources of groundwater contamination at the site include former wastewater lagoons, leaking storage drums, and leaking tank trucks. Groundwater at and immediately north of the property is contaminated. Organic compounds are manufactured at the third site. Potential sources of groundwater contamination at this site include landfilled industrial wastes. Groundwater underlying the property is contaminated, but there is no evidence of offsite groundwater contamination from this source. The fourth site is used to treat and dispose of hazardous wastes. The major source of groundwater contamination at this site is landfilled residue from waste-treatment processes. Groundwater underlying the property is contaminated, but there is no evidence of off-site groundwater contamination from this source.

  9. EVALUATING MONITORED NATURAL ATTENUATION FOR RADIONUCLIDE & ORGANIC CONTAMINATION IN GROUNDWATER (SALT LAKE CITY, UT)

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) for radionuclides and inorganic contaminants is dependent on naturally occurring processes in the subsurface that act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of contaminants. EPA is developing ...

  10. EVALUATING MONITORED NATURAL ATTENUATION FOR RADIONUCLIDE & ORGANIC CONTAMINATION IN GROUNDWATER (SALT LAKE CITY, UT)

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) for radionuclides and inorganic contaminants is dependent on naturally occurring processes in the subsurface that act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of contaminants. EPA is developing ...

  11. Degradation of sucralose in groundwater and implications for age dating contaminated groundwater.

    PubMed

    Robertson, W D; Van Stempvoort, D R; Spoelstra, J; Brown, S J; Schiff, S L

    2016-01-01

    The artificial sweetener sucralose has been in use in Canada and the US since about 2000 and in the EU since 2003, and is now ubiquitous in sanitary wastewater in many parts of the world. It persists during sewage treatment and in surface water environments and as such, has been suggested as a powerful tracer of wastewater. In this study, longer-term persistence of sucralose was examined in groundwater by undertaking a series of three sampling snapshots of a well constrained wastewater plume in Canada (Long Point septic system) over a 6-year period from 2008 to 2014. A shrinking sucralose plume in 2014, compared to earlier sampling, during this period when sucralose use was likely increasing, provides clear evidence of degradation. However, depletion of sucralose from a mean of 40 μg/L in the proximal plume zone, occurred at a relatively slow rate over a period of several months to several years. Furthermore, examination of septic tank effluent and impacted groundwater at six other sites in Canada, revealed that sucralose was present in all samples of septic tank effluent (6-98 μg/L, n = 32) and in all groundwater samples (0.7-77 μg/L, n = 64). Even though sucralose degradation is noted in the Long Point plume, its ubiquitous presence in the groundwater plumes at all seven sites implies a relatively slow rate of decay in many groundwater septic plume environments. Thus, sucralose has the potential to be used as an indicator of 'recent' wastewater contamination. The presence of sucralose identifies groundwater that was recharged after 2000 in Canada and the US and after 2003 in the EU and many Asian countries.

  12. Assessment of Nitrate Contamination of Groundwater in Korea Using a Mathematical Simulation Model

    NASA Astrophysics Data System (ADS)

    Lee, E.; Kim, M.; Lee, K.

    2005-12-01

    According to the nationwide groundwater monitoring system, nitrate is one of the major contaminants found in groundwater in Korea. Septic systems, animal waste and fertilizer are potential sources of nitrate contamination. There have been a growing number of studies on identification of the source of nitrate contamination of groundwater at agricultural sites, or analysis of the groundwater contamination at intensive livestock facilities. However, there have been a few studies on linkage between the surface loading of nitrate sources and the level of groundwater contamination. The objective of this study is to assess the groundwater contamination with nitrate resulted from current agricultural practices, and the potential impacts of changes in the practices on the groundwater contamination by using a mathematical model. An integrated modeling framework incorporating the nitrogen leaching model, LEACHN, and mass transport model, RT3D linked to MODFLOW was used to account for the fate and transport of nitrate through soil and groundwater. Data were collected from different areas so that they could represent the condition of agricultural sites in Korea. The groundwater nitrate contamination was assessed for different crops and soil types under varying fertilization rates and manure application.

  13. Preliminary hydrogeologic assessment of a ground-water contamination area in Wolcott, Connecticut

    USGS Publications Warehouse

    Stone, J.R.; Casey, G.D.; Mondazzi, R.A.; Frick, T.W.

    1997-01-01

    Contamination of ground water by volatile organic compounds and inorganic constituents has been identified at a number of industrial sites in the Town of Wolcott, Connecticut. Contamination is also present at a municipal landfill in the City of Waterbury that is upgradient from the industrial sites in the local ground-water-flow system. The study area, which lies in the Western Highlands of Connecticut, is in the Mad River Valley, a tributary to the Naugatuck River. Geohydrologic units (aquifer materials) include unconsolidated glacial sediments (surficial materials) and fractured crystalline (metamorphic) bedrock. Surficial materials include glacial till, coarse-grained andfine-grained glacial stratified deposits, and postglacial floodplain alluvium and swamp deposits. The ground-water-flow system in the surficial aquifer is complex because the hydraulic properties of the surficial materials are highly variable. In the bedrock aquifer, ground water moves exclusively through fractures. Hydrologic characteristics of the crystalline bedrock-degree of confinement, hydraulic conductivity, storativity, and porosity-are poorly defined in the study area. Further study is needed to adequately assess ground-water flow and contaminant migration under current or past hydrologic conditions. All known water-supply wells in the study area obtain water from the bedrock aquifer. Twenty households in a hillside residential area on Tosun Road currently obtain drinking water from private wells tapping the bedrock aquifer. The extent of contamination in the bedrock aquifer and the potential for future contamination from known sources of contamination in the surficial aquifer is of concern to regulatory agencies. Previous investigations have identified ground-water contamination by volatile organic compounds at the Nutmeg Valley Road site area. Contamination has been associated with on-site disposal of heavy metals, chlorinated and non-chlorinated volatile organic compounds, and

  14. Review of groundwater contamination hazard rating systems for old landfills.

    PubMed

    Singh, Raj Kumar; Datta, Manoj; Nema, Arvind Kumar

    2010-02-01

    A large number of old uncontrolled landfills exist in developing countries. These are potentially harmful to the environment, especially with respect to groundwater contamination, and therefore, are in need of appropriate control and remedial measures. However, due to resource constraints, such measures are to be undertaken in a phased manner. An appropriate landfill hazard rating system that can evaluate relative groundwater contamination hazard of different sites is a useful tool for site ranking in order to set priorities. This paper reviews 18 existing hazard rating systems that follow the index function approach. Nine systems that are best representative of the existing systems, have been applied to six hazardous waste landfills as well as six municipal solid waste landfills. When used for ranking hazardous waste landfills, some systems such as HRS-1990, ERPHRS, WARM and RSS respond well whereas others like DRASTIC, NCS, NPC system and JENV system show a clustering effect. However, these rating systems do not perform well when applied to old municipal solid waste landfills. Even the HRS-1990, which is observed to be the most sensitive among all rating systems, exhibits some shortcomings. Improvements have been suggested in the waste quantity factor values of HRS-1990 to make it suitable for old municipal solid waste landfills. The improved system is observed to provide superior results in comparison with the existing systems, making it appropriate for use as a tool for ranking of old landfills in need of remediation and control measures.

  15. Full scale biological treatment of heavy metal contaminated groundwater

    SciTech Connect

    Vegt, A.L. De; Buisman, C.J.N.

    1995-07-01

    Soil and groundwater beneath a zinc production plant in The Netherlands are contaminated with metals and sulfate. To avoid contamination of nearby drinking water aquifers, a hydro-geological containment system and a biological treatment plant for the extracted ground water have been installed. Currently about 5,000 M{sup 3}/day of groundwater is extracted from a combination of 12 shallow and deep wells. Heavy metals and sulfate have to be removed from the extracted water before it can be discharged into a river. Several water treatment methods have been studied and pilot tested at the site. The preferred and selected process is based on the activity of sulfate reducing bacteria (SRB) and combines sulfate removal and heavy metal removal in one single installation. Anaerobic bacteria reduce sulfate to sulfide resulting in the precipitation of metal sulfides. Excess sulfide is biologically converted to elemental sulfur. A full scale biological treatment system was started up in May 1992. Design, start-up, commissioning and operational experiences are reported in this paper. Concentrations of metals and sulfate in the SRB water treatment plant effluent are well within the limits set by the Dutch Authorities for discharge to surface water.

  16. Screening of French groundwater for regulated and emerging contaminants.

    PubMed

    Lopez, Benjamin; Ollivier, Patrick; Togola, Anne; Baran, Nicole; Ghestem, Jean-Philippe

    2015-06-15

    Nationwide screening of 411 emerging contaminants and other regulated compounds, including parent molecules and transformation products (TPs) having various uses and origins, was done at 494 groundwater sites throughout France during two sampling campaigns in the Spring and the Fall of 2011. One hundred and eighty substances (44% of the targeted compounds) were quantified in at least one sampling point. These included pharmaceuticals, industrial products, pesticides, their transformation products and other emerging compounds. Fifty-five compounds were quantified in more than 1% of the samples. Both regulated and emerging compounds were found. Among the unregulated compounds, acetaminophen, carbamazepine, perfluorinated compounds, dioxins/furans, tolyltriazole, bisphenol A, triazine transformation products, and caffeine were quantified in more than 10% of the samples analyzed. Concentrations exceeding the threshold of toxicological concern of 0.1 μg/L were found for tolyltriazole, bisphenol A and some of the triazine transformation products (DEDIA). These new results should help the water resource managers and environmental regulators develop sound policies regarding the occurrence and distribution of regulated and emerging contaminants in groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Contaminated groundwater characterization at the Chalk River Laboratories, Ontario, Canada

    SciTech Connect

    Schilk, A.J.; Robertson, D.E.; Thomas, C.W.; Lepel, E.A.; Champ, D.R.; Killey, R.W.D.; Young, J.L.; Cooper, E.L.

    1993-03-01

    The licensing requirements for the disposal of low-level radioactive waste (10 CFR 61) specify the performance objectives and technical requisites for federal and commercial land disposal facilities, the ultimate goal of which is to contain the buried wastes so that the general population is adequately protected from harmful exposure to any released radioactive materials. A major concern in the operation of existing and projected waste disposal sites is subterranean radionuclide transport by saturated or unsaturated flow, which could lead to the contamination of groundwater systems as well as uptake by the surrounding biosphere, thereby directly exposing the general public to such materials. Radionuclide transport in groundwater has been observed at numerous commercial and federal waste disposal sites [including several locations within the waste management area of Chalk River Laboratories (CRL)], yet the physico-chemical processes that lead to such migration are still not completely understood. In an attempt to assist in the characterization of these processes, an intensive study was initiated at CRL to identify and quantify the mobile radionuclide species originating from three separate disposal sites: (a) the Chemical Pit, which has received aqueous wastes containing various radioisotopes, acids, alkalis, complexing agents and salts since 1956, (b) the Reactor Pit, which has received low-level aqueous wastes from a reactor rod storage bay since 1956, and (c) the Waste Management Area C, a thirty-year-old series of trenches that contains contaminated solid wastes from CRL and various regional medical facilities. Water samples were drawn downgradient from each of the above sites and passed through a series of filters and ion-exchange resins to retain any particulate and dissolved or colloidal radionuclide species, which were subsequently identified and quantified via radiochemical separations and gamma spectroscopy. These groundwaters were also analyzed for anions

  18. PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF INORGANIC CONTAMINANTS

    EPA Science Inventory

    The permeable reactive barrier (PRB) technology is an in-situ approach for groundwater remediation that couples subsurface flow management with a passive chemical or biochemical treatment zone. The development and application of the PRB technology has progressed over the last de...

  19. PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF INORGANIC CONTAMINANTS

    EPA Science Inventory

    The permeable reactive barrier (PRB) technology is an in-situ approach for groundwater remediation that couples subsurface flow management with a passive chemical or biochemical treatment zone. The development and application of the PRB technology has progressed over the last de...

  20. REMEDIATION OF NITRATE-CONTAMINATED GROUNDWATER USING A BIOBARRIER

    SciTech Connect

    B. STRIETELMEIR; ET AL

    2000-12-01

    A biobarrier system has been developed for use in remediating shallow alluvial groundwater. This barrier is made from highly porous materials that are relatively long-lasting, carbon-based (to supply a limiting nutrient in nitrate destruction, in most cases), and extremely inexpensive and easy to emplace. In a series of laboratory studies, we have determined the effectiveness of this barrier at destroying nitrate and perchlorate in groundwater from Mortandad Canyon at Los Alamos National Laboratory (LANL). This groundwater was obtained from a monitoring well, MCO-5, which is located in the flowpath of the discharge waters from the LANL Radioactive Liquid Waste Treatment Facility (RLWTF). Water with elevated nitrate levels has been discharged from this plant for many years, until recently when the nitrate levels have been brought under the discharge limits. However, the historical discharge has resulted in a nitrate plume in the alluvial groundwater in this canyon. The LANL Multi-Barrier project was initiated this past year to develop a system of barriers that would prevent the transport of radionuclides, metals, colloids and other contaminants, including nitrate and perchlorate, further down the canyon in order to protect populations down-gradient. The biobarrier. will be part of this Multi-Barrier system. We have demonstrated the destruction of nitrate at levels up to 6.5-9.7 mhl nitrate (400-600 mg/L), and that of perchlorate at levels of about 4.3 {micro}M perchlorate (350 ppb). We have quantified the populations of microorganisms present in the biofilm that develops on the biobarrier. The results of this research will be discussed along with other potential applications of this system.

  1. REMEDIATION OF NITRATE-CONTAMINATED GROUNDWATER USING A BIOBARRIER

    SciTech Connect

    B. STRIETELMEIER; M. ESPINOSA

    2001-01-01

    A biobarrier system has been developed for use in remediating shallow alluvial groundwater. This barrier is made from highly porous materials that are relatively long-lasting, carbon-based (to supply a limiting nutrient in nitrate destruction, in most cases), extremely inexpensive, and easy to replace. In a series of laboratory studies, we have determined the effectiveness of this barrier at destroying nitrate and perchlorate in groundwater from Mortandad Canyon at Los Alamos National Laboratory (LANL). This groundwater was obtained from a monitoring well, MCO-5, which is located in the flowpath of the discharge waters from the LANL Radioactive Liquid Waste Treatment Facility (RLWTF). Water with elevated nitrate levels was discharged from this plant for many years. Recently, the nitrate levels have been brought under the discharge limits. However, the historical discharge has resulted in a nitrate plume in the alluvial groundwater in this canyon. The LANL Multi-Barrier project was initiated in 1999 to develop a system of barriers that would prevent the transport of radionuclides, metals, colloids and other contaminants, including nitrate and perchlorate, further down the canyon in order to protect populations down-gradient. The biobarrier will be part of this Multi-Barrier system. We have demonstrated the destruction of nitrate at levels up to 6.5-9.7 mM nitrate (400-600 mg/L), and that of perchlorate at levels of about 4.3 {micro}M perchlorate (350 ppb). We have quantified the populations of microorganisms present in the biofilm that develops on the biobarrier. The results of this research will be discussed along with other potential applications of this system.

  2. Groundwater Arsenic Contamination in Kopruoren Basin (Kutahya), Turkey

    NASA Astrophysics Data System (ADS)

    Arslan, S.; Dokuz, U.; Celik, M.; Cheng, Z.

    2012-12-01

    Groundwater quality in the Kopruoren Basin located to the west of Kutahya city in western Anatolia was investigated. Kopruoren Basin is about 275 km2 with about 6,000 residents, but the surface and ground-water quality in this basin impacts a much larger population since the area is located upstream of Kutahya and Eskisehir plains. Groundwater occurs under confined conditions in the limestones of Pliocene units. The only silver deposit of Turkey is developed in the metamorphic basement rocks, Early Miocene volcanics and Pliocene units near Gumuskoy. The amount of silver manufactured annually comprises about 1% of the World's Silver Production. The cyanide-rich wastes of the Eti Gumus silver plant is stored in waste pools. There have been debates about the safety of this facility after a major collapse occurred in one of the pools in May 2011. In this study samples from 31 wells and 21 springs were collected in July and October 2011 and May 2012. The groundwaters are of Ca-Mg-HCO3 type, with arsenic, zinc and antimony occurring at high concentrations. Dissolved arsenic concentrations are as high as 48 ug/L in springs and 734 ug/L in well water. Arsenic in 57% of the springs and 68% of the wells exceeded the WHO guideline value (10 ug/L). Natural sources of arsenic in the area include the dissolution of arsenic-rich minerals such as realgar and orpiment associated with the mineral deposits in the southern part of the study area. In the northern part, arsenic is enriched due to the dissolution of arsenic-bearing coal deposits. Besides these natural sources of contamination, the silver mining activity could be an important anthropogenic source. The leakage of cyanide and arsenic, together with other trace elements to the environment from the waste pools, will continue to poison the environment if necessary precautions are not taken immediately.

  3. Human health risks of petroleum-contaminated groundwater.

    PubMed

    López, Eva; Schuhmacher, Marta; Domingo, José L

    2008-05-01

    The volatile organic compounds Benzene, Toluene, Ethylbenzene and Xylene (BTEX) are commonly found in petroleum derivatives and, at relatively high levels, can be associated with human health risks. Due to industrial activities, accidental petroleum spills are the main route of soil and groundwater contamination. The aim of the present study was to evaluate the indoor health risks due to tap water consumption contaminated by BTEX. BTEX indoor exposure can occur through three principal pathways: inhalation, ingestion and dermal absorption. A multiphase and multicomponent model was used to simulate BTEX transport in groundwater. For evaluation of human risks due to the use of contaminated tap water, a mathematical model was elaborated. BTEX concentrations in a drinking well were obtained as a function over time. These concentrations were used to obtain the exposure due to the use of water from the contaminated drinking well. In addition to showing the highest concentration in water, benzene was the compound that remained for a longer period before being completely degraded. For all the evaluated BTEX, oral ingestion was also the main pathway of exposure for adults, whereas the contribution of inhalation and oral exposition in children were seen to be of the same magnitude. The sensitivity analysis of BTEX total dose for adults showed that direct ingestion was the most significant factor, followed by shower time, volume of the shower room, inhalation rate, and shower flow rate. For children, the most significant variable was also direct ingestion, followed by shower time, volume of the shower room, and body weight. In the current design situation, there would not be any health risks by the use of BTEX-contaminated water to the general population living in the neighborhood of the petroleum spill. Therefore, no remediation measures in the area of the spill would be necessary. The present results indicate that the design of a good scenario can perform an accuracy risk

  4. A review of groundwater contamination near municipal solid waste landfill sites in China.

    PubMed

    Han, Zhiyong; Ma, Haining; Shi, Guozhong; He, Li; Wei, Luoyu; Shi, Qingqing

    2016-11-01

    Landfills are the most widely used method for municipal solid waste (MSW) disposal method in China. However, these facilities have caused serious groundwater contamination due to the leakage of leachate. This study, analyzed 32 scientific papers, a field survey and an environmental assessment report related to groundwater contamination caused by landfills in China. The groundwater quality in the vicinity of landfills was assessed as "very bad" by a comprehensive score (FI) of 7.85 by the Grading Method in China. Variety of pollutants consisting of 96 groundwater pollutants, 3 organic matter indicators, 2 visual pollutants and 6 aggregative pollutants had been detected in the various studies. Twenty-two kinds of pollutants were considered to be dominant. According to the Kruskal-Wallis test and the median test, groundwater contamination differed significantly between regions in China, but there were no significant differences between dry season and wet season measurements, except for some pollutants in a few landfill sites. Generally, the groundwater contamination appeared in the initial landfill stage after five years and peaked some years afterward. In this stage, the Nemerow Index (PI) of groundwater increased exponentially as landfill age increased at some sites, but afterwards decreased exponentially with increasing age at others. After 25years, the groundwater contamination was very low at selected landfills. The PI values of landfills decreased exponentially as the pollutant migration distance increased. Therefore, the groundwater contamination mainly appeared within 1000m of a landfill and most of serious groundwater contamination occurred within 200m. The results not only indicate that the groundwater contamination near MSW landfills should be a concern, but also are valuable to remediate the groundwater contamination near MSW landfills and to prevent the MSW landfill from secondary pollutions, especially for developing countries considering the similar

  5. Groundwater Contamination. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Cole, Charles A.

    Described is a presentation and learning session on groundwater, which is intended to educate advisory groups interested in improving water quality decision making. Among the areas addressed are the importance of groundwater, sources of contamination, and groundwater pollution control programs. These materials are part of the Working for Clean…

  6. Groundwater Contamination. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Cole, Charles A.

    Described is a presentation and learning session on groundwater, which is intended to educate advisory groups interested in improving water quality decision making. Among the areas addressed are the importance of groundwater, sources of contamination, and groundwater pollution control programs. These materials are part of the Working for Clean…

  7. Remedy Evaluation Framework for Inorganic, Non-Volatile Contaminants in the Vadose Zone

    SciTech Connect

    Truex, Michael J.; Carroll, Kenneth C.

    2013-05-01

    Contaminants in the vadose zone may act as a potential long-term source of groundwater contamination and need to be considered in remedy evaluations. In many cases, remediation decisions for the vadose zone will need to be made all or in part based on projected impacts to groundwater. Because there are significant natural attenuation processes inherent in vadose zone contaminant transport, remediation in the vadose zone to protect groundwater is functionally a combination of natural attenuation and use of other remediation techniques, as needed, to mitigate contaminant flux to groundwater. Attenuation processes include both hydrobiogeochemical processes that serve to retain contaminants within porous media and physical processes that mitigate the rate of water flux. In particular, the physical processes controlling fluid flow in the vadose zone are quite different and generally have a more significant attenuation impact on contaminant transport relative to those within the groundwater system. A remedy evaluation framework is presented herein that uses an adaptation of the established EPA Monitored Natural Attenuation (MNA) evaluation approach and a conceptual model based approach focused on identifying and quantifying features and processes that control contaminant flux through the vadose zone. A key concept for this framework is to recognize that MNA will comprise some portion of all remedies in the vadose zone. Thus, structuring evaluation of vadose zone waste sites to use an MNA-based approach provides information necessary to either select MNA as the remedy, if appropriate, or to quantify how much additional attenuation would need to be induced by a remedial action (e.g., technologies considered in a feasibility study) to augment the natural attenuation processes and meet groundwater protection goals.

  8. EPA Workshop on Monitored Natural Attenuation for Inorganic Contaminants: 3 – Discussion of Specific Contaminants & Case Study

    EPA Science Inventory

    The purpose of this training is to present an overview of site characterization approaches to support evaluation of the potential for Monitored Natural Attenuation (MNA) as a remedy for inorganic contaminants in ground water. The training will include discussion of the types of ...

  9. PERMEABLE REACTIVE BARRIER STRATEGIES FOR REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Results are presented from laboratory batch tests using zero-valent iron to treat arsenic-contaminated groundwater. The laboratory tests were conducted using near- neutral pH groundwater from a contaminated aquifer located adjacent to a custom smelting facility. Experiments we...

  10. Proactive screening approach for detecting groundwater contaminants along urban streams at the reach-scale.

    PubMed

    Roy, James W; Bickerton, Greg

    2010-08-15

    Here we outline and demonstrate a screening approach for the detection of groundwater contaminants along urban streams within unconsolidated beds. It involves the rapid acquisition of groundwater samples along urban stream reaches at a spacing of about 10 m and from depths of about 25-75 cm below the streambed, with analyses for a suite of potential contaminants. This screening approach may serve two functions: a) providing information for assessing and mitigating the toxicity and eutrophication risks to aquatic ecosystems posed by groundwater contaminants and b) detecting and identifying groundwater contamination in urban settings more rapidly and inexpensively compared to land-based well installations. The screening approach was tested at three urban streams, each affected by a known chlorinated-solvent plume. All three known groundwater plumes were detected and roughly delineated. Multiple, previously unknown, areas or types of groundwater contamination were also identified at each stream. The newly identified contaminants and plumes included petroleum hydrocarbons (BTEX, naphthalene, MTBE), 1,4-dioxane, nitrate and phosphate, road salt, and various metals (including arsenic, cadmium, chromium, copper, lead) at elevated concentrations compared to background values and relevant Canadian water quality guidelines. These findings suggest that this screening approach may be a useful tool for both ecologists performing ecological assessments and stream restorations and for hydrogeologists undertaking groundwater protection activities. Given the numerous contaminants detected, it may be appropriate to apply this technique proactively to better determine the pervasiveness of urban groundwater contaminants, especially along urban streams.

  11. Geogenic Groundwater Contamination: A Case Study Of Canakkale - Western Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ozan; Çalık, Ayten

    2016-04-01

    Study area is located NW of Turkey. Total area of the drainage basin is 465 square kilometers and mostly covered by volcanic rocks. Majority of these rocks have highly altered and lost their primary properties because of alteration processes. Especially argillic alteration is common. Tectonic movements and cooling fractures were created suitable circulation environment of groundwater in the rocks (secondary porosity). Alteration affects the composition of groundwater and some rock elements pass into groundwater during the movement of water in the cavities of rocks. High concentration of natural contaminants related to water-rock interaction in spring water has been studied in this research. Field measurements such as pH, electrical conductivity, temperature, oxidation-reduction potential and salinity carried out in 500 water points (spring, drilling, well and stream). 150 water samples taken from the water points and 50 rock samples taken from the source of springs has been investigated in point of major anion-cations, heavy metals and trace elements. Some components in the water such as pH (3.5-9.1), specific electrical conductivity (84-6400 microS/cm), aluminum (27-44902 ppb), iron (10-8048 ppb), manganese (0.13-8740 ppb), nickel (0.2-627 ppb), lead (0.1-42.5 ppb) and sulphate (10 to 1940 ppm) extremely high or low in the springs sourced from especially highly altered Miocene aged volcanic rocks. Some measured parameters highly above according to European Communities Drinking Water Regulations (2007) and TS266 (2015-Intended for Human Consumption Water Regulations of Turkey) drinking water standards. The most common element which is found in the groundwater is aluminum that is higher than to the drinking water standards (200 microg/L). The highest levels of the Al values measured in acidic waters with very low pH (3.4) emerging from altered volcanic rocks because of acid mine drainage in Obakoy district, north of the study area. The abundance of this element in

  12. Predicting geogenic arsenic contamination in shallow groundwater of south Louisiana, United States.

    PubMed

    Yang, Ningfang; Winkel, Lenny H E; Johannesson, Karen H

    2014-05-20

    Groundwater contaminated with arsenic (As) threatens the health of more than 140 million people worldwide. Previous studies indicate that geology and sedimentary depositional environments are important factors controlling groundwater As contamination. The Mississippi River delta has broadly similar geology and sedimentary depositional environments to the large deltas in South and Southeast Asia, which are severely affected by geogenic As contamination and therefore may also be vulnerable to groundwater As contamination. In this study, logistic regression is used to develop a probability model based on surface hydrology, soil properties, geology, and sedimentary depositional environments. The model is calibrated using 3286 aggregated and binary-coded groundwater As concentration measurements from Bangladesh and verified using 78 As measurements from south Louisiana. The model's predictions are in good agreement with the known spatial distribution of groundwater As contamination of Bangladesh, and the predictions also indicate high risk of As contamination in shallow groundwater from Holocene sediments of south Louisiana. Furthermore, the model correctly predicted 79% of the existing shallow groundwater As measurements in the study region, indicating good performance of the model in predicting groundwater As contamination in shallow aquifers of south Louisiana.

  13. Ground-water contamination in East Bay Township, Michigan

    USGS Publications Warehouse

    Twenter, F.R.; Cummings, T.R.; Grannemann, N.G.

    1985-01-01

    Glacial deposits, as much as 360 feet thick, underlie the study area. The upper 29 to 118 feet, a sand and gravel unit, is the aquifer tapped for water by all wells in the area. This unit is underlain by impermeable clay that is at least 100 feet thick. Ground-water flow is northeastward at an estimated rate of 3 to 6 feet per day. Hydraulic conductivities in the aquifer range from 85 to 150 feet per day; 120 feet per day provided the best match of field data in a ground-water flow model. The depth to water ranged from 1 to 20 feet. Chemical anlayses indicate that ground water is contaminated with organic chemicals from near the Hangar/Administration building at the U.S. Coast Guard Air Station to East Bay, about 4,300 feet northeast. The plume, which follows ground-water flow lines, ranges from 180 to 400 feet wide. In the upper reach of the plume, hydrocarbons less dense than water occur at the surface of the water table; they move downward in the aquifer as they move toward East Bay. Maximum concentrations of the major organic compounds include: benzene, 3,390 micrograms per liter; toluene, 55,500 micrograms per liter; xylene, 3,900 micrograms per liter; tetrachloroethylene, 3,410 micrograms per liter; and bis (2-ethyl hexyl) phthalate, 2,100 micrograms per liter. Soils are generally free of these hydrocarbons; however, in the vicinity of past drum storage, aircraft maintenance operations, and fuel storage and dispensing, as much as 1,100 micrograms per kilogram of tetrachloroethylene and 1,500 micrograms per kilogram of bis (2-ethyl hexyl) phthalate were detected. At a few locations higher molecular weight hydrocarbons, characteristic of petroleum distillates, were found.

  14. Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone.

    PubMed

    Zhu, Jianting; Sun, Dongmin

    2016-09-01

    Groundwater flowing through residual nonaqueous phase liquid (NAPL) source zone will cause NAPL dissolution and generate large contaminant plume. The use of contaminant mass discharge (CMD) measurements in addition to NAPL aqueous phase concentration to characterize site conditions and assess remediation performance is becoming popular. In this study, we developed new and generic numerical models to investigate the significance of groundwater flux temporal variations on the NAPL source dynamics. The developed models can accommodate any temporal variations of groundwater flux in the source zone. We examined the various features of groundwater flux using a few selected functional forms of linear increase/decrease, gradual smooth increase/decrease, and periodic fluctuations with a general trend. Groundwater flux temporal variations have more pronounced effects on the contaminant mass discharge dynamics than the aqueous concentration. If the groundwater flux initially increases, then the reduction in contaminant mass discharge (CMDR) vs. NAPL mass reduction (MR) relationship is mainly downward concave. If the groundwater flux initially decreases, then CMDR vs. MR relationship is mainly upward convex. If the groundwater flux variations are periodic, the CMDR vs. MR relationship tends to also have periodic variations ranging from upward convex to downward concave. Eventually, however, the CMDR vs. MR relationship approaches 1:1 when majority of the NAPL mass becomes depleted. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone

    NASA Astrophysics Data System (ADS)

    Zhu, Jianting; Sun, Dongmin

    2016-09-01

    Groundwater flowing through residual nonaqueous phase liquid (NAPL) source zone will cause NAPL dissolution and generate large contaminant plume. The use of contaminant mass discharge (CMD) measurements in addition to NAPL aqueous phase concentration to characterize site conditions and assess remediation performance is becoming popular. In this study, we developed new and generic numerical models to investigate the significance of groundwater flux temporal variations on the NAPL source dynamics. The developed models can accommodate any temporal variations of groundwater flux in the source zone. We examined the various features of groundwater flux using a few selected functional forms of linear increase/decrease, gradual smooth increase/decrease, and periodic fluctuations with a general trend. Groundwater flux temporal variations have more pronounced effects on the contaminant mass discharge dynamics than the aqueous concentration. If the groundwater flux initially increases, then the reduction in contaminant mass discharge (CMDR) vs. NAPL mass reduction (MR) relationship is mainly downward concave. If the groundwater flux initially decreases, then CMDR vs. MR relationship is mainly upward convex. If the groundwater flux variations are periodic, the CMDR vs. MR relationship tends to also have periodic variations ranging from upward convex to downward concave. Eventually, however, the CMDR vs. MR relationship approaches 1:1 when majority of the NAPL mass becomes depleted.

  16. Plant algae method for arsenic removal from arsenic contaminated groundwater.

    PubMed

    de la Paix, Mupenzi Jean; Lanhai, Li; de Dieu, Habumugisha Jean; John, Maina Nyongesah

    2012-01-01

    Field studies were carried out in Urumqi River Basin in Northwest China. The study focused on experimentation on a plant algae method that was tested by taking various water chemistries into consideration. The results from a greenhouse experiment evaluated for four doses of P (0, 100, 200, and 300 μmol/L) using two ferns (30 and 60 day old) on 15 L of contaminated groundwater per plant revealed that the biomass of 30-day old ferns gained was higher than 60-day fern. As solution-P increased from 0 to 450 μmol/L, Phosphorus concentration in the fronds increased from 1.9 to 3.9 mg/kg and 1.95 to 4.0 mg/kg for 30-d and 60-d ferns respectively. This study showed that the plant algae method may be a good solution to maximize arsenic uptake in the short term under normal climatic conditions.

  17. Modeling uranium transport in acidic contaminated groundwater with base addition.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2011-06-15

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO(3)(-), SO(4)(2-), U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  18. Submerged filter biofilm formation by nitrate-contaminated groundwater microbiota.

    PubMed

    de la Rua, A; Rodelas, B; González-López, J; Gómez, M A

    2011-01-01

    Denitrifying biofilms developed in a lab-scale submerged filter by autochthonous bacteria from nitrate-contaminated groundwater were studied. The system was supplied with groundwater (16 mg N-NO(3)(-)/L), from which the oxygen had been eliminated and to which an excess of carbon source had been added. The reactor was incubated in a thermostated chamber at 5°C, 10°C, 20°C and 30°C. Colonization of the support was studied using surface scanning microscopy, and biofilm bacterial composition was studied by PCR/TGGE. Support material was colonized at all the temperatures assayed, although this parameter affected the growth of the biofilm, which developed most at temperatures over 20°C. The composition of bacterial communities varied according to the temperature. Community profiles of the biofilm formed at 5°C and 10°C clustered away from those of the biofilm formed at 20°C and 30°C. 16S rDNA sequences reveled that the biofilm was mainly composed of psychrotolerant species typically inhabiting freshwaters, and we obtained sequencing bands that were affiliated to denitrifying and non-denitrifying heterotrophic species. The extent of colonization was low when compared to previously inoculated systems, and the capacity for nitrate elimination was also low.

  19. Delineation of groundwater contamination around an ash pond: geochemical and GIS approach.

    PubMed

    Praharaj, T; Swain, S P; Powell, M A; Hart, B R; Tripathy, S

    2002-03-01

    The study has investigated the levels of metal contamination in groundwater due to particulate matter fallout and leaching from ash pond and assigned contamination indices for the adjacent localities around an ash disposal site with application of geographic information systems (GIS). Fe, Ba, Cu, Mn, S, Pb, V, and Zn were found to be the major contaminants in groundwater. Enrichment factors (EF) of these elements with respect to the United States Environmental Protection Agency (USEPA) maximum contaminant levels show high values for Mn, Fe, and Pb in groundwater. The zone of attenuation for Ba, Fe, Cu, Mn, S, and Zn in groundwater is about 600-900 m from the ash pond, while Pb did not show any significant attenuation even at a distance of 1200 m. Tube wells around Rankasingha and Kukurhanga villages are most contaminated whereas open wells of Lachhmanpur, Kaniapada, and Kurudul villages showed higher degrees of contamination.

  20. Groundwater arsenic contamination and its health effects in India

    NASA Astrophysics Data System (ADS)

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Das, Bhaskar; Chatterjee, Amit; Das, Dipankar; Nayak, Biswajit; Pal, Arup; Chowdhury, Uttam Kumar; Ahmed, Sad; Biswas, Bhajan Kumar; Sengupta, Mrinal Kumar; Hossain, Md. Amir; Samanta, Gautam; Roy, M. M.; Dutta, Rathindra Nath; Saha, Khitish Chandra; Mukherjee, Subhas Chandra; Pati, Shyamapada; Kar, Probir Bijoy; Mukherjee, Adreesh; Kumar, Manoj

    2017-03-01

    During a 28-year field survey in India (1988-2016), groundwater arsenic contamination and its health effects were registered in the states of West Bengal, Jharkhand, Bihar and Uttar Pradesh in the Ganga River flood plain, and the states of Assam and Manipur in the flood plain of Brahamaputra and Imphal rivers. Groundwater of Rajnandgaon village in Chhattisgarh state, which is not in a flood plain, is also arsenic contaminated. More than 170,000 tubewell water samples from the affected states were analyzed and half of the samples had arsenic >10 μg/L (maximum concentration 3,700 μg/L). Chronic exposure to arsenic through drinking water causes various health problems, like dermal, neurological, reproductive and pregnancy effects, cardiovascular effects, diabetes mellitus, diseases of the respiratory and gastrointestinal systems, and cancers, typically involving the skin, lungs, liver, bladder, etc. About 4.5% of the 8,000 children from arsenic-affected villages of affected states were registered with mild to moderate arsenical skin lesions. In the preliminary survey, more than 10,000 patients were registered with different types of arsenic-related signs and symptoms, out of more than 100,000 people screened from affected states. Elevated levels of arsenic were also found in biological samples (urine, hair, nails) of the people living in affected states. The study reveals that the population who had severe arsenical skin lesions may suffer from multiple Bowens/cancers in the long term. Some unusual symptoms, such as burning sensation, skin itching and watering of eyes in the presence of sun light, were also noticed in arsenicosis patients.

  1. Groundwater arsenic contamination and its health effects in India

    NASA Astrophysics Data System (ADS)

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Das, Bhaskar; Chatterjee, Amit; Das, Dipankar; Nayak, Biswajit; Pal, Arup; Chowdhury, Uttam Kumar; Ahmed, Sad; Biswas, Bhajan Kumar; Sengupta, Mrinal Kumar; Hossain, Md. Amir; Samanta, Gautam; Roy, M. M.; Dutta, Rathindra Nath; Saha, Khitish Chandra; Mukherjee, Subhas Chandra; Pati, Shyamapada; Kar, Probir Bijoy; Mukherjee, Adreesh; Kumar, Manoj

    2017-06-01

    During a 28-year field survey in India (1988-2016), groundwater arsenic contamination and its health effects were registered in the states of West Bengal, Jharkhand, Bihar and Uttar Pradesh in the Ganga River flood plain, and the states of Assam and Manipur in the flood plain of Brahamaputra and Imphal rivers. Groundwater of Rajnandgaon village in Chhattisgarh state, which is not in a flood plain, is also arsenic contaminated. More than 170,000 tubewell water samples from the affected states were analyzed and half of the samples had arsenic >10 μg/L (maximum concentration 3,700 μg/L). Chronic exposure to arsenic through drinking water causes various health problems, like dermal, neurological, reproductive and pregnancy effects, cardiovascular effects, diabetes mellitus, diseases of the respiratory and gastrointestinal systems, and cancers, typically involving the skin, lungs, liver, bladder, etc. About 4.5% of the 8,000 children from arsenic-affected villages of affected states were registered with mild to moderate arsenical skin lesions. In the preliminary survey, more than 10,000 patients were registered with different types of arsenic-related signs and symptoms, out of more than 100,000 people screened from affected states. Elevated levels of arsenic were also found in biological samples (urine, hair, nails) of the people living in affected states. The study reveals that the population who had severe arsenical skin lesions may suffer from multiple Bowens/cancers in the long term. Some unusual symptoms, such as burning sensation, skin itching and watering of eyes in the presence of sun light, were also noticed in arsenicosis patients.

  2. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    SciTech Connect

    Not Available

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  3. Risk Management of Groundwater Contamination in a Multiobjective Framework

    NASA Astrophysics Data System (ADS)

    Kaunas, John R.; Haimes, Yacov Y.

    1985-11-01

    This paper addresses the issue of uncertainty in groundwater contamination by applying risk analysis concepts to the problem of industrial chemical spills. A hypothetical aquifer system is considered that includes a factory and two water supply wells. Accidental spills of solvent at the factory enter the aquifer, causing well solute concentrations to exceed a mandated limit. Regulation forces the company owning the factory to reduce the frequency and magnitude of the spills. Its managers need to determine the optimal levels of investment in spill control technologies that will achieve three objectives: minimize the cost of contamination prevention, minimize the proportion (ratio) of time in which a maximum contaminant limit (MCL) is exceeded, and minimize the sensitivity of the MCL exceedance ratio to uncertainties in aquifer dispersivity. Simulation with a stochastic time series of spills gives sample values of the MCL exceedance ratio for values of the investment decision variables and dispersivity; the investment decisions determine the statistics of the time series. Use of regression enables calculation of a continuous function relating the contamination time ratio objective to investments and dispersivity. The third objective is an approximation to the standard deviation of the MCL exceedance ratio and is computed through the risk dispersion index method (RDIM). The RDIM incorporates the surrogate worth trade-off method for optimizing the resulting multiple objectives. The simulations assume that the aquifer is in a steady state and behaves linearly. The concentration impulse response at the wells for a single spill is computed via a mass transport model. The well solute concentration over time, which is determined from the convolution of a series of spills, provides the basis for calculating the exceedance ratio. This ratio is defined as the portion of time that the pollution concentration limit is exceeded in some chosen time span. To obtain credible values

  4. Magnitude and costs of groundwater contamination from agricultural chemicals: a national perspective. Staff report

    SciTech Connect

    Nielsen, E.G.; Lee, L.K.

    1987-06-01

    Evidence is mounting that agricultural pesticide and fertilizer applications are causing groundwater contamination in some parts of the United States. A synthesis of national data has enabled researchers to identify regions potentially affected by contamination from pesticides and fertilizers and to estimate the number of people in these regions who rely on groundwater for their drinking water needs. The study found that pesticides and nitrates from fertilizers do not necessarily occur together in potentially contaminated regions.

  5. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China

    NASA Astrophysics Data System (ADS)

    Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi

    2015-11-01

    Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P < 0.001). Landfill leakage was an important source of nitrate in groundwater in the PRD (Pearl River Delta) region, since landfill yielded the highest nitrate concentration (38.14 mg/L) and the highest ratio of exceeded standard (42.50%). In this study, the driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth.

  6. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China.

    PubMed

    Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi

    2015-11-01

    Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P<0.001). Landfill leakage was an important source of nitrate in groundwater in the PRD (Pearl River Delta) region, since landfill yielded the highest nitrate concentration (38.14 mg/L) and the highest ratio of exceeded standard (42.50%). In this study, the driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth.

  7. WORKSHOP ON MONITORED NATURAL ATTENUATION OF INORGANIC CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The Office of Research and Development (ORD) has developed a one-day seminar to present an overview of site characterization approaches to support evaluation of the potential for Monitored Natural Attenuation (MNA) as a remedy for inorganic contaminants in ground water. These sem...

  8. MONITORED NATURAL ATTENUATION FOR INORGANIC CONTAMINANT REMEDIATION IN GROUND WATER: LINES OF EVIDENCE

    EPA Science Inventory

    Evaluation of MNA for inorganic contaminants requires detailed studies on the aqueous phase and the solid phase. This presentation covers the lines of evidence that may be collected during site investigations to evaluate natural attenuation mechanisms and site-specific capaciti...

  9. U.S. EPA WORKSHOP ON MONITORED NATURAL ATTENUATION FOR INORGANIC CONTAMINANTS

    EPA Science Inventory

    The Office of Research and Development (ORD) has developed a one-day seminar to present an overview of site characterization approaches to support evaluation of the potential for Monitored Natural Attenuation (MNA) as a remedy for inorganic contaminants in ground water. These se...

  10. U.S. EPA WORKSHOP ON MONITORED NATURAL ATTENUATION FOR INORGANIC CONTAMINANTS, 07/31/2007

    EPA Science Inventory

    The Office of Research and Development (ORD) has developed a one-day seminar to present an overview of site characterization approaches to support evaluation of the potential for Monitored Natural Attenuation (MNA) as a remedy for inorganic contaminants in ground water. These se...

  11. U.S. EPA WORKSHOP ON MONITORED NATURAL ATTENUATION FOR INORGANIC CONTAMINANTS

    EPA Science Inventory

    The Office of Research and Development (ORD) has developed a one-day seminar to present an overview of site characterization approaches to support evaluation of the potential for Monitored Natural Attenuation (MNA) as a remedy for inorganic contaminants in ground water. These se...

  12. WORKSHOP ON MONITORED NATURAL ATTENUATION OF INORGANIC CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The Office of Research and Development (ORD) has developed a one-day seminar to present an overview of site characterization approaches to support evaluation of the potential for Monitored Natural Attenuation (MNA) as a remedy for inorganic contaminants in ground water. These sem...

  13. Workshop on Monitored Natural Attenuation for Inorganic Contaminants: 1 – Introduction, MNA Processes and Characterization

    EPA Science Inventory

    The purpose of this training is to present an overview of site characterization approaches to support evaluation of the potential for Monitored Natural Attenuation (MNA) as a remedy for inorganic contaminants in ground water. The training will include discussion of the types of ...

  14. Tracing solid waste leachate in groundwater using δ13 C from dissolved inorganic carbon.

    PubMed

    Haarstad, Ketil; Mæhlum, Trond

    2013-01-01

    Tracers can be used to monitor emissions of leachate from landfills in order to detect hydrological pathways and to evaluate environmental pollution. We investigated the stable carbon isotope ratio (δ(13)C-Σ CO (2)) in dissolved inorganic carbon and tritium ((3)H) in water, in addition to the tracers of pollution commonly found in relatively high concentrations in leachate, such as chloride (Cl), organic matter (COD), nitrogen (total and NH(4)-N), iron (Fe), electrical conductivity (EC) and pH. The sampling was performed at seven landfills in the south-eastern part of Norway during a period of 5 years. The objective was to evaluate the potential for tracing leachate in the environment with emphasis on groundwater pollution. By measuring the δ(13)C-Σ CO (2) in leachates, groundwaters and surface waters, the influence of leachate can be identified. The value of δ(13)C-Σ CO (2) varied from-5.5 to 25.9 ‰ in leachate, from-25.4 to 14.7 ‰ in groundwater and from-19.7 to-13.1 ‰ in creeks. A comparison of the carbon isotope ratio with COD, EC and the concentrations of total and NH (4)-N, Cl and Fe showed that δ(13)C-Σ CO (2) is a good tracer for leachate due to higher sensitivity compared to other parameters. The mean concentrations of all the studied parameters were higher in the leachate samples; however, only the carbon isotope ratio showed significant differences between all the groups with strong and middle pollution and samples with low pollution, showing that it can be used as a convenient tracer for leachate in groundwater and surface water. The carbon isotope ratio showed strong correlation between nitrogen, EC and bicarbonate, but not with pH. Tritium was only sporadically found in measureable concentrations and is not considered as a suitable tracer at the sampled locations.

  15. Bioavailability of Fe(III) in natural soils and the impact on mobility of inorganic contaminants

    SciTech Connect

    Kosson, David S.; Cowan, Robert M.; Young, Lily Y.; Hacherl, Eric L.; Scala, David J.

    2002-10-03

    Inorganic contaminants, such as heavy metals and radionuclides, can adhere to insoluble Fe(III) minerals resulting in decreased mobility of these contaminants through subsurface environments. Dissimilatory Fe(III)-reducing bacteria (DIRB), by reducing insoluble Fe(III) to soluble Fe(II), may enhance contaminant mobility. The Savannah River Site, South Carolina (SRS), has been subjected to both heavy metal and radionuclide contamination. The overall objective of this project is to investigate the release of inorganic contaminants such as heavy metals and radionuclides that are bound to solid phase soil Fe complexes and to elucidate the mechanisms for mobilization of these contaminants that can be associated with microbial Fe(III) reduction. This is being accomplished by (i) using uncontaminated and contaminated soils from SRS as prototype systems, (ii) evaluating the diversity of DIRBs within the samples and isolating cultures for further study, (iii) using batch microcosms to evaluate the bioavailability of Fe(III) from pure minerals and SRS soils, (iv) developing kinetic and mass transfer models that reflect the system dynamics, and (v) carrying out soil column studies to elucidate the dynamics and interactions amongst Fe(III) reduction, remineralization and contaminant mobility.

  16. Denitrification in nitrate-contaminated groundwater: Occurrence in steep vertical geochemical gradients

    USGS Publications Warehouse

    Smith, R.L.; Howes, B.L.; Duff, J.H.

    1991-01-01

    A relatively narrow vertical zone (5-6 m thick) of NO3- containing groundwater was identified using multilevel sampling devices in a sand and gravel aquifer on Cape Cod, MA, USA. The aquifer has been chronically contaminated by surface disposal of treated sewage 0.3 km upgradient from the study area. The NO3- zone was anoxic and contained high concentrations of N2O (16.5 ??M), suggesting that it was a zone of active denitrification. Denitrifying activity was confirmed with direct measurement using acetylene block incubations with aquifer core material; the peak rate was 2.4 nmol N reduced (g sed)-1 day-1. Concentrations of dissolved inorganic carbon and N2 were close to atmospheric equilibrium in uncontaminated groundwater, but were more than 2 times higher within the contaminant plume. Excess CO2 and N2 suggested in situ formation with a stoichiometry of C and N mineralized via denitrification of 0.8 (C/N). Denitrification within the aquifer resulted in an increase in the natural ??15N of NO3- (from +13.6 to +42.0%.) and the N2 produced, with an isotopic enrichment factor, ??{lunate}, of -13.9%.. Vertical profiles of NH4+ and ??15N of NH4+ indicated that dissimilatory reduction of NO3- to NH4+ was also occurring but mass balance calculations indicated that denitrification was the predominant process. These results demonstrate that a combination approach using field mass balance, stable isotope analysis, and laboratory incubations yields useful insight as to the significance of denitrification in aquifer sediments and that closely spaced vertical sampling is necessary to adequately quantify the processes controlling C and N transport and transformation within these environments. ?? 1991.

  17. Increased concentrations of potassium in heartwood of trees in response to groundwater contamination

    USGS Publications Warehouse

    Vroblesky, D.A.; Yanosky, T.M.; Siegel, F.R.

    1992-01-01

    The wood of tuliptrees (Liriodendron tulipifera L.) growing above groundwater contamination from a hazardous-waste landfill in Maryland contained elevated concentrations of potassium (K). The groundwater contamination also contained elevated concentrations of dissolved K, as well as arsenic (As), cadmium (Cd), chloride (Cl), iron (Fe), manganese (Mn), zinc (Zn), and organic solvents. The dissolved K is derived from disposed smoke munitions. The excess K in the tuliptrees is concentrated in the heartwood, the part of the xylem most depleted in K in trees growing outside of the contamination. These data show that the uptake and translocation of K by tuliptrees can be strongly influenced by the availability of K in groundwater contamination and suggest the utility of this species as an areal indicator of groundwater contamination. ?? 1992 Springer-Verlag New York Inc.

  18. Resistivity mapping and geochemical data for groundwater contamination at Sarimukti municipal landfill, West Bandung

    NASA Astrophysics Data System (ADS)

    Ardi, Nanang Dwi; Iryanti, Mimin

    2015-09-01

    Opened dumping landfill system at the Municipal landfill Sarimukti, West Bandung has a possibility in related to the existence of leachates contamination, especially for shallow groundwater. Earth resistivity measured with 3 profiles resistivity survey on Wenner array and measurement of electrics conductivity of geochemistry samples its converted become water formation resistivity were conducted to delineate the spreading of leachates contamination by using empirical relationship. Leachates have been identified by resistivity range 0,61 - 6,3 Ωm with 6 m depth. However, result of geochemistry samples test and 2D resistivity profiles at surrounding civilian residences still have unclear in terms of leachates contamination to groundwater. High resistive rocks on imaging show that leachates are not possible to penetrate the shallow groundwater. But, this result is still early prediction to confirm a contamination to groundwater due to the age of landfill. Then, it needs improvement data continuously to monitor landfill contamination periodically.

  19. Evaluation of Deep Vadose Zone Contaminant Flux into Groundwater: Approach and Case Study

    SciTech Connect

    Oostrom, Martinus; Truex, Michael J.; Last, George V.; Strickland, Christopher E.; Tartakovsky, Guzel D.

    2016-03-09

    For sites with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant flux from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly measure contaminant flux. An integrated assessment approach, supported by site characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant flux to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford Site (WA, USA) SX Tank Farm was used as a case study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the site. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that site recharge is the most important flux-controlling process for future contaminant flux. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant flux into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant flux to groundwater using existing site data and has elements that are relevant to other disposal sites with a thick vadose zone.

  20. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Truex, M. J.; Last, G. V.; Strickland, C. E.; Tartakovsky, G. D.

    2016-06-01

    For sites with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant flux from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly measure contaminant flux. An integrated assessment approach, supported by site characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant flux to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford Site (WA, USA) SX Tank Farm was used as a case study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the site. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that site recharge is the most important flux-controlling process for future contaminant flux. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant flux into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant flux to groundwater using existing site data and has elements that are relevant to other disposal sites with a thick vadose zone.

  1. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study.

    PubMed

    Oostrom, M; Truex, M J; Last, G V; Strickland, C E; Tartakovsky, G D

    2016-06-01

    For sites with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant flux from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly measure contaminant flux. An integrated assessment approach, supported by site characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant flux to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford Site (WA, USA) SX Tank Farm was used as a case study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the site. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that site recharge is the most important flux-controlling process for future contaminant flux. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant flux into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant flux to groundwater using existing site data and has elements that are relevant to other disposal sites with a thick vadose zone.

  2. A regional flux-based risk assessment approach for multiple contaminated sites on groundwater bodies.

    PubMed

    Jamin, P; Dollé, F; Chisala, B; Orban, Ph; Popescu, I-C; Hérivaux, C; Dassargues, A; Brouyère, S

    2012-01-01

    In the context of the Water Framework Directive (EP and CEU, 2000), management plans have to be set up to monitor and to maintain water quality in groundwater bodies in the EU. In heavily industrialized and urbanized areas, the cumulative effect of multiple contaminant sources is likely and has to be evaluated. In order to propose adequate measures, the calculated risk should be based on criteria reflecting the risk of groundwater quality deterioration, in a cumulative manner and at the scale of the entire groundwater body. An integrated GIS- and flux-based risk assessment approach for groundwater bodies is described, with a regional scale indicator for evaluating the quality status of the groundwater body. It is based on the SEQ-ESO currently used in the Walloon Region of Belgium which defines, for different water uses and for a detailed list of groundwater contaminants, a set of threshold values reflecting the levels of water quality and degradation with respect to each contaminant. The methodology is illustrated with first results at a regional scale on a groundwater body-scale application to a contaminated alluvial aquifer which has been classified to be at risk of not reaching a good quality status by 2015. These first results show that contaminants resulting from old industrial activities in that area are likely to contribute significantly to the degradation of groundwater quality. However, further investigations are required on the evaluation of the actual polluting pressures before any definitive conclusion be established.

  3. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae.

    PubMed

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C

    2015-07-10

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in these wastes can potentially lead to bioaccumulation in microalgal biomass negatively impact productivity and limiting end use. This study focuses on the experimental evaluation of the impact and the fate of 14 inorganic contaminants (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, V and Zn) on Nannochloropsis salina growth. Microalgae were cultivated in photobioreactors illuminated at 984 µmol m(-2) sec(-1) and maintained at pH 7 in a growth media polluted with inorganic contaminants at levels expected based on the composition found in commercial coal flue gas systems. Contaminants present in the biomass and the medium at the end of a 7 day growth period were analytically quantified through cold vapor atomic absorption spectrometry for Hg and through inductively coupled plasma mass spectrometry for As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V and Zn. Results show N. salina is a sensitive strain to the multi-metal environment with a statistical decrease in biomass yieldwith the introduction of these contaminants. The techniques presented here are adequate for quantifying algal growth and determining the fate of inorganic contaminants.

  4. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae

    PubMed Central

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C.

    2015-01-01

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in these wastes can potentially lead to bioaccumulation in microalgal biomass negatively impact productivity and limiting end use. This study focuses on the experimental evaluation of the impact and the fate of 14 inorganic contaminants (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, V and Zn) on Nannochloropsis salina growth. Microalgae were cultivated in photobioreactors illuminated at 984 µmol m-2 sec-1 and maintained at pH 7 in a growth media polluted with inorganic contaminants at levels expected based on the composition found in commercial coal flue gas systems. Contaminants present in the biomass and the medium at the end of a 7 day growth period were analytically quantified through cold vapor atomic absorption spectrometry for Hg and through inductively coupled plasma mass spectrometry for As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V and Zn. Results show N. salina is a sensitive strain to the multi-metal environment with a statistical decrease in biomass yieldwith the introduction of these contaminants. The techniques presented here are adequate for quantifying algal growth and determining the fate of inorganic contaminants. PMID:26274060

  5. Preliminary Application of Microseisms into Groundwater Contamination Monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Tanimoto, T.; Spetzler, H.

    2004-12-01

    Microseisms, one scientist¡_s annoying noise are another¡_s diagnostic tool. We are conducting a controlled field experiments with the aim of detecting the infiltration of a contaminant - a biosurfactant - into groundwater. Three sets of instruments are placed 3m, 13m and 32m respectively from a 50m by 50m irrigation site. Each set of instruments consists of a 3-component seismometer and a tilt meter. We are seeking to detect temporal changes in local station corrections that are caused by the irrigation. We use natural signals, such as microseisms as seismic sources and solid Earth tides as sources for the tilt signals. Seasonal changes in the amplitude ratios (horizontal to vertical HZ) of signals from microseisms have been found in California. These seasonal changes are likely to be caused by rather shallow changes in the water table as well as a partial saturated level in the vadose zone. In our field experiment we control the influx of water and monitor it as it percolates down to the ground water. This represents a near ideal arrangement to experimentally check if the HZ ratio can indeed be changed by changes in the local groundwater, or if the cause for the observed seasonal variations has to be found elsewhere. In the laboratory we have found that small additions of some chemicals to water can drastically change the surface energies and thus the wettability of solid surfaces. Surface energy changes in a partially saturated porous rock lead to large changes in complex elastic moduli. In the field experiment we are changing the wettability of the subsurface and are analyzing seismic and tilt data at varying distance from the irrigation site for contaminant caused changes in the moduli. Tilt data show a pronounced change between the three stations during the summer months, probably caused by the differential heating that occurs between the covered irrigation site and the bare ground surrounding it. The observed effect trails off as the instrument

  6. Migration of contaminants in groundwater at a landfill: A case study. 2. Groundwater monitoring devices

    NASA Astrophysics Data System (ADS)

    Cherry, J. A.; Gillham, R. W.; Anderson, E. G.; Johnson, P. E.

    1983-05-01

    Six types of devices for groundwater monitoring were used on an experimental basis in the investigation of the plume of contamination in the unconfined sandy aquifer at the Borden landfill. These include: standpipe piezometers, water-table standpipes, an auger-head sampler, suction-type and positive-displacement-type multilevel point-samplers, and bundle-piezometers. With the exception of the first two, each of these devices provides a means of obtaining vertical sample profiles of groundwater from a single borehole. The auger-head sampler, which is a device that is attached to the cutting head of conventional continuous-flight hollow-stem augers, yields samples from relatively undisturbed aquifer zones as the augers are advanced downward in the borehole from one depth of sampling to another. This method is a rapid means of aquiring water-quality profiles for mapping the distribution of a contaminant plume. The other three profiling devices can be used to establish permanent networks for groundwater-quality monitoring. A suction-type multilevel sampler consists of twenty or more narrow polyethylene or polypropylene tubes contained in a PVC casing that is capped at the bottom. Each tube extends to a different depth and is attached to a small screened sampling point that extends through the casing to draw water from the aquifer when suction is applied. A positive-displacement multilevel sampler is similar except that each sampling point is connected to a positive-displacement pumping device located inside the PVC casing adjacent to the screen. Use of the suction-type multilevel sampler is limited to zones where the water table is less than the suction-lift depth of 8 or 9 m. The positive-displacement sampler can be used even if the water table is at a much greater depth. A bundle-piezometer consists of 1.2-cm O.D. flexible polyethylene tubes, each with a short screened section at the bottom, fastened as a bundle around a semi-rigid center-piezometer constructed of

  7. Monitoring ecological recovery in a stream impacted by contaminated groundwater

    SciTech Connect

    Southworth, G.R.; Cada, G.F.; Kszos, L.A.; Peterson, M.J.; Smith, J.G.

    1997-11-01

    Past in-ground disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. A biological monitoring program initiated in 1984 has evaluated the effectiveness of the extensive remedial actions undertaken to address contamination sources. Elements of the monitoring program included toxicity testing with fish and invertebrates, bioaccumulation monitoring, and instream monitoring of streambed invertebrate and fish communities. In the mid 1980`s, toxicity tests on stream water indicated that the headwaters of the stream were acutely toxic to fish and aquatic invertebrates as a result of infiltration of a metal-enriched groundwater from ponds used to dispose of acid wastes. Over a twelve year period, measurable toxicity in the headwaters decreased, first becoming non-toxic to larval fish but still toxic to invertebrates, then becoming intermittently toxic to invertebrates. By 1997, episodic toxicity was infrequent at the site that was acutely toxic at the start of the study. Recovery in the fish community followed the pattern of the toxicity tests. Initially, resident fish populations were absent from reaches where toxicity was measured, but as toxicity to fish larvae disappeared, the sites in upper Bear Creek were colonized by fish. The Tennessee dace, an uncommon species receiving special protection by the State of Tennessee, became a numerically important part of the fish population throughout the upper half of the creek, making Bear Creek one of the most significant habitats for this species in the region. Although by 1990 fish populations were comparable to those of similar size reference streams, episodic toxicity in the headwaters coincided with a recruitment failure in 1996. Bioaccumulation monitoring indicated the presence of PCBs and mercury in predatory fish in Bear Creek, and whole forage fish contained elevated levels of cadmium, lead, lithium, nickel, mercury, and uranium.

  8. Bioremediation of trichloroethylene contaminated groundwater using anaerobic process.

    PubMed

    Chomsurin, Cheema; Kajorntraidej, Juthathip; Luangmuang, Kongrit

    2008-01-01

    Anaerobic remediation of trichloroethylene (TCE) contaminated soil and groundwater was studied in laboratory setups. In this process fermentation of polymeric organic materials (POMS) produced volatile fatty acids (VFAs) that were electron donors in reductive dechlorination of TCE. Shredded peanut shell was selected as low cost POM and the experiments were set up in 500 ml Erlenmeyer flasks. In the setups, approximately 25 mg of leachate contaminated soil was used as the main source of microorganisms and about 5 g of shredded peanut shell (0.5-2.36 mm) was added to produce VFAs for dechlorination of TCE. In the first set of experiments, fermentation of soil and shredded peanut shell was studied and it was found that VFAs were produced continuously with increasing concentration (5.63 mM as CH3COOH from the first day to 17.17 in the 10th day of the experiment). During the fermentation, concentration of ammonia-nitrogen was 22-50 mg/L, the ratio of VFA to NH3 was 15.29-23.44 and pH was 5.24-6.00. These results show that the system was appropriate for microorganism activities. In the second set of experiments, TCE (approximately 48 mg/L) was added to the fermentation system and remediation of TCE by reductive dechlorination was studied. It was found that 0.04(+/-0.01) mg TCE adsorbed to a gram of soil and peanut shells at the beginning of the experiment and based on mass balance of the system, TCE concentration in water was linearly reduced at the rate of 0.0098 mg/hr.

  9. In Situ Formation of Calcium Apatite in Soil for Sequestering Contaminants in Soil and Groundwater

    SciTech Connect

    Moore, Robert; Szecsody, Jim; Thompson, Mike

    2015-10-20

    A new method for in situ formation of a calcium apatite permeable reactive barrier that is a groundbreaking technology for containing radioactive/heavy metal contaminants threatening groundwater supplies.

  10. PERMEABLE REACTIVE BARRIERS FOR IN-SITU TREATMENT OF ARSENIC-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Laboratory and field research has shown that permeable reactive barriers (PRBs) containing a variety of materials can treat arsenic (As) contaminated groundwater. Sites where these PRBs are located include a mine tailings facility, fertilizer and chemical manufacturing sites, a...

  11. Multi-Objective Optimization of an In situ Bioremediation Technology to Treat Perchlorate-Contaminated Groundwater

    EPA Science Inventory

    The presentation shows how a multi-objective optimization method is integrated into a transport simulator (MT3D) for estimating parameters and cost of in-situ bioremediation technology to treat perchlorate-contaminated groundwater.

  12. In Situ Formation of Calcium Apatite in Soil for Sequestering Contaminants in Soil and Groundwater

    ScienceCinema

    Moore, Robert; Szecsody, Jim; Thompson, Mike

    2016-07-12

    A new method for in situ formation of a calcium apatite permeable reactive barrier that is a groundbreaking technology for containing radioactive/heavy metal contaminants threatening groundwater supplies.

  13. A Technical Guide to Ground-Water Model Selection at Sites Contaminated with Radioactive Substances

    EPA Pesticide Factsheets

    This report addresses the selection of ground-water flow and contaminant transport models and is intended to be used by hydrogeologists and geoscientists responsible for selecting transport models for use at sites containing radioactive materials.

  14. PERMEABLE REACTIVE BARRIERS FOR IN-SITU TREATMENT OF ARSENIC-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Laboratory and field research has shown that permeable reactive barriers (PRBs) containing a variety of materials can treat arsenic (As) contaminated groundwater. Sites where these PRBs are located include a mine tailings facility, fertilizer and chemical manufacturing sites, a...

  15. Multi-Objective Optimization of an In situ Bioremediation Technology to Treat Perchlorate-Contaminated Groundwater

    EPA Science Inventory

    The presentation shows how a multi-objective optimization method is integrated into a transport simulator (MT3D) for estimating parameters and cost of in-situ bioremediation technology to treat perchlorate-contaminated groundwater.

  16. Assessment of diesel contamination in groundwater using electromagnetic induction geophysical techniques

    SciTech Connect

    Jin, S.; Fallgren, P.; Cooper, J.; Morris, J; . Urynowicz, M.

    2008-07-01

    Determining hydrocarbon plumes in groundwater is typically accomplished through the installation of extensive monitoring wells. Issues of scale and site heterogeneities tend to introduce errors in delineating the extent of contamination and environmental impact. In this study, electromagnetic induction survey was investigated as an alternative technique for mapping petroleum contaminants in the subsurface. The surveys were conducted at a coal mining site near Gillette, Wyoming, using the EM34-XL ground conductivity meter. Data from this survey were validated with known concentrations of diesel compounds detected in groundwater from the study site. Groundwater data correlated well with the electromagnetic survey data, which was used to generate a site model to identify subsurface diesel plumes. To our knowledge, this is one of the first studies to use electromagnetic survey techniques for mapping hydrocarbon contamination in groundwater. Results from this study indicate that this geophysical technique can be an effective tool for assessing subsurface petroleum hydrocarbon sources and plumes at contaminated sites.

  17. Assessment of diesel contamination in groundwater using electromagnetic induction geophysical techniques.

    PubMed

    Jin, Song; Fallgren, Paul; Cooper, Jeffrey; Morris, Jeffrey; Urynowicz, Michael

    2008-05-01

    Determining hydrocarbon plumes in groundwater is typically accomplished through the installation of extensive monitoring wells. Issues of scale and site heterogeneities tend to introduce errors in delineating the extent of contamination and environmental impact. In this study, electromagnetic induction survey was investigated as an alternative technique for mapping petroleum contaminants in the subsurface. The surveys were conducted at a coal mining site near Gillette, Wyoming, using the EM34-XL ground conductivity meter. Data from this survey were validated with known concentrations of diesel compounds detected in groundwater from the study site. Groundwater data correlated well with the electromagnetic survey data, which was used to generate a site model to identify subsurface diesel plumes. To our knowledge, this is one of the first studies to use electromagnetic survey techniques for mapping hydrocarbon contamination in groundwater. Results from this study indicate that this geophysical technique can be an effective tool for assessing subsurface petroleum hydrocarbon sources and plumes at contaminated sites.

  18. EPA proposes adding Riverside Groundwater Contamination site in Indianapolis to Superfund cleanup list

    EPA Pesticide Factsheets

    For Immediate Release No. 16-OPA007 EPA proposes adding Riverside Groundwater Contamination site in Indianapolis to Superfund cleanup list CHICAGO (April 6, 2016) - U.S. Environmental Protection Agency today ann

  19. Bioremediation Of Groundwater Contaminated Wtih Gasoline Hydrocarbons And Oxygenates Using A Membrane-Based Reactor

    EPA Science Inventory

    The objective of this study was to operate a novel, field-scale, aerobic bioreactor and assess its performance in the ex situ treatment of groundwater contaminated with gasoline from a leaking underground storage tank in Pascoag, RI. The groundwater contained elevated concentrat...

  20. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network

    USDA-ARS?s Scientific Manuscript database

    The arsenic (As) contamination of groundwater has increasingly been recognized as a major global issue of concern. As groundwater resources are one of most important freshwater sources for water supplies in Southeast Asian countries, it is important to investigate the spatial distribution of As cont...

  1. Bioremediation Of Groundwater Contaminated Wtih Gasoline Hydrocarbons And Oxygenates Using A Membrane-Based Reactor

    EPA Science Inventory

    The objective of this study was to operate a novel, field-scale, aerobic bioreactor and assess its performance in the ex situ treatment of groundwater contaminated with gasoline from a leaking underground storage tank in Pascoag, RI. The groundwater contained elevated concentrat...

  2. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates.

    PubMed

    Zhou, Dan; Li, Yan; Zhang, Yinbo; Zhang, Chang; Li, Xiongfei; Chen, Zhiliang; Huang, Junyi; Li, Xia; Flores, Giancarlo; Kamon, Masashi

    2014-11-01

    We investigated the optimum composition of permeable reactive barrier (PRB) materials for remediating groundwater heavily contaminated by landfill leachate, in column tests using various mixtures of zero-valent iron (ZVI), zeolite (Zeo) and activated carbon (AC) with 0.01-0.25, 3.0-5.0 and 0.7-1.0mm grain sizes, respectively. The main contributors to the removal of organic/inorganic contaminants were ZVI and AC, and the optimum weight ratio of the three PRB materials for removing the contaminants and maintaining adequate hydraulic conductivity was found to be 5:1:4. Average reductions in chemical oxygen demand (COD) and contents of total nitrogen (TN), ammonium, Ni, Pb and 16 polycyclic aromatic hydrocarbons (PAHs) from test samples using this mixture were 55.8%, 70.8%, 89.2%, 70.7%, 92.7% and 94.2%, respectively. We also developed a systematic method for estimating the minimum required thickness and longevity of the PRB materials. A ≥ 309.6 cm layer with the optimum composition is needed for satisfactory longevity, defined here as meeting the Grade III criteria (the Chinese National Bureau of Standards: GB/T14848/93) for in situ treatment of the sampled groundwater for ≥ 10 years.

  3. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Li, Yan; Zhang, Yinbo; Zhang, Chang; Li, Xiongfei; Chen, Zhiliang; Huang, Junyi; Li, Xia; Flores, Giancarlo; Kamon, Masashi

    2014-11-01

    We investigated the optimum composition of permeable reactive barrier (PRB) materials for remediating groundwater heavily contaminated by landfill leachate, in column tests using various mixtures of zero-valent iron (ZVI), zeolite (Zeo) and activated carbon (AC) with 0.01-0.25, 3.0-5.0 and 0.7-1.0 mm grain sizes, respectively. The main contributors to the removal of organic/inorganic contaminants were ZVI and AC, and the optimum weight ratio of the three PRB materials for removing the contaminants and maintaining adequate hydraulic conductivity was found to be 5:1:4. Average reductions in chemical oxygen demand (COD) and contents of total nitrogen (TN), ammonium, Ni, Pb and 16 polycyclic aromatic hydrocarbons (PAHs) from test samples using this mixture were 55.8%, 70.8%, 89.2%, 70.7%, 92.7% and 94.2%, respectively. We also developed a systematic method for estimating the minimum required thickness and longevity of the PRB materials. A ≥ 309.6 cm layer with the optimum composition is needed for satisfactory longevity, defined here as meeting the Grade III criteria (the Chinese National Bureau of Standards: GB/T14848/93) for in situ treatment of the sampled groundwater for ≥ 10 years.

  4. EPA (Environmental Protection Agency) activities related to sources of ground-water contamination

    SciTech Connect

    Black-Coleman, W.

    1987-02-01

    The report contains a listing of EPA programs and activities, as of October 1986, that address 33 sources of potential ground-water contamination. The information on each activity is presented in a matrix format that is organized by type of contamination source. The following information is presented for each program and activity listed: title, lead office, contact person, type of activity (study, regulation, guidance, strategy, etc.) status, and a summary of the activity. The 33 sources of ground-water contamination are discussed in the 1984 EPA Office of Technology report: Protecting the Nations Ground Water from Contamination.

  5. Risk assessment of groundwater contamination: a multilevel fuzzy comprehensive evaluation approach based on DRASTIC model.

    PubMed

    Zhang, Qiuwen; Yang, Xiaohong; Zhang, Yan; Zhong, Ming

    2013-01-01

    Groundwater contamination is a serious threat to water supply. Risk assessment of groundwater contamination is an effective way to protect the safety of groundwater resource. Groundwater is a complex and fuzzy system with many uncertainties, which is impacted by different geological and hydrological factors. In order to deal with the uncertainty in the risk assessment of groundwater contamination, we propose an approach with analysis hierarchy process and fuzzy comprehensive evaluation integrated together. Firstly, the risk factors of groundwater contamination are identified by the sources-pathway-receptor-consequence method, and a corresponding index system of risk assessment based on DRASTIC model is established. Due to the complexity in the process of transitions between the possible pollution risks and the uncertainties of factors, the method of analysis hierarchy process is applied to determine the weights of each factor, and the fuzzy sets theory is adopted to calculate the membership degrees of each factor. Finally, a case study is presented to illustrate and test this methodology. It is concluded that the proposed approach integrates the advantages of both analysis hierarchy process and fuzzy comprehensive evaluation, which provides a more flexible and reliable way to deal with the linguistic uncertainty and mechanism uncertainty in groundwater contamination without losing important information.

  6. Risk Assessment of Groundwater Contamination: A Multilevel Fuzzy Comprehensive Evaluation Approach Based on DRASTIC Model

    PubMed Central

    Zhang, Yan; Zhong, Ming

    2013-01-01

    Groundwater contamination is a serious threat to water supply. Risk assessment of groundwater contamination is an effective way to protect the safety of groundwater resource. Groundwater is a complex and fuzzy system with many uncertainties, which is impacted by different geological and hydrological factors. In order to deal with the uncertainty in the risk assessment of groundwater contamination, we propose an approach with analysis hierarchy process and fuzzy comprehensive evaluation integrated together. Firstly, the risk factors of groundwater contamination are identified by the sources-pathway-receptor-consequence method, and a corresponding index system of risk assessment based on DRASTIC model is established. Due to the complexity in the process of transitions between the possible pollution risks and the uncertainties of factors, the method of analysis hierarchy process is applied to determine the weights of each factor, and the fuzzy sets theory is adopted to calculate the membership degrees of each factor. Finally, a case study is presented to illustrate and test this methodology. It is concluded that the proposed approach integrates the advantages of both analysis hierarchy process and fuzzy comprehensive evaluation, which provides a more flexible and reliable way to deal with the linguistic uncertainty and mechanism uncertainty in groundwater contamination without losing important information. PMID:24453883

  7. Investigation of the potential source area, contamination pathway, and probable release history of chlorinated-solvent-contaminated groundwater at the Capital City Plume Site, Montgomery, Alabama, 2008-2010

    USGS Publications Warehouse

    Landmeyer, James E.; Miller, Scott; Campbell, Bruce G.; Vroblesky, Don A.; Gill, Amy C.; Clark, Athena P.

    2011-01-01

    Detection of the organic solvent perchloroethylene (PCE) in a shallow public-supply well in 1991 and exposure of workers in 1993 to solvent vapors during excavation activities to depths near the water table provided evidence that the shallow aquifer beneath the capital city of Montgomery, Alabama, was contaminated. Investigations conducted from 1993 to 1999 by State and Federal agencies confirmed the detection of PCE in the shallow aquifer, as well as the detection of the organic solvent trichloroethylene (TCE) and various inorganic compounds, but the source of the groundwater contamination was not determined. In May 2000 the U.S. Environmental Protection Agency proposed that the site, called the Capital City Plume (CCP) Site, be a candidate for the National Priorities List. Between 2000 and 2007, numerous site-investigation activities also did not determine the source of the groundwater contamination. In 2008, additional assessments were conducted at the CCP Site to investigate the potential source area, contamination pathway, and the probable release history of the chlorinated-solvent-contaminated groundwater. The assessments included the collection of (1) pore water in 2008 from the hyporheic zone of a creek using passive-diffusion bag samplers; (2) tissue samples in 2008 and 2009 from trees growing in areas of downtown Montgomery characterized by groundwater contamination and from trees growing in riparian zones along the Alabama River and Cypress Creek; and (3) groundwater samples in 2009 and 2010. The data collected were used to investigate the potential source area of contaminants detected in groundwater, the pathway of groundwater contamination, and constraints on the probable contaminant-release history. The data collected between 2008 and 2010 indicate that the PCE and TCE contamination of the shallow aquifer beneath the CCP Site most likely resulted from the past use and disposal of industrial wastewater from printing operations containing chlorinated

  8. Groundwater contaminants in the deep benthic zone of urban streams in Canada (Invited)

    NASA Astrophysics Data System (ADS)

    Roy, J. W.; Bickerton, G.

    2010-12-01

    There is little information available on the potential threat that groundwater containing land-based contaminants poses to aquatic ecosystems in urban environments. In this study, a rapid screening approach was applied at the stream reach-scale for eight urban streams (reaches from 100 to < 1000 m). The objective was to determine what types of groundwater contaminants could be detected in the deeper benthic zone of these streams, if any, to start to address questions of whether such contaminants are a concern and which types are the most problematic. The benthic community may be especially at risk since it may experience higher contaminant concentrations than the stream itself due to fewer losses from sorption, degradation and volatilization processes. For each stream, groundwater samples from below the stream bed (typically 25-75 cm) were collected using a drive-point mini-profiler at intervals of 10-15 m along the stream and were subsequently analysed for general chemistry and a wide range of common and emerging urban contaminants. For a few test streams with known contamination, the area of contamination was identified with this technique. In addition, previously unknown contaminants or areas of contamination were identified at all nine streams. Identified contaminants included benzene and other petroleum hydrocarbons, fuel oxygenates (e.g. MTBE), perchlorate, pesticides, artificial sweeteners, and various chlorinated solvent compounds. In addition, elevated levels of nitrate, phosphate, some heavy metals, including cadmium and arsenic, and elevated chloride (likely indicating road salt) were detected. Most streams had many different types of contaminants, often overlapping over small stretches, and together often covering substantial portions of the monitored reach. The findings provide support for this screening approach for delineating areas of potential ecological concern and identifying possible sources of groundwater contamination, for urban settings. They

  9. From Sequential Extraction to Transport Modeling, Monitored Natural Attenuation as a Remediation Approach for Inorganic Contaminants

    SciTech Connect

    POWELL, KIMBERLYR.

    2004-05-25

    Implementation of monitored natural attenuation (MNA) as a remediation method requires a mechanistic understanding of the natural attenuation processes occurring at a given site. For inorganic contaminants, natural attenuation typically involves a decrease in metal toxicity and/or mobility. These natural processes include dilution, dispersion, sorption (including adsorption, absorption, and precipitation), and redox processes. In order to better quantify these processes in terms of metal availability, sequential extraction experiments were carried out on subsurface soil samples impacted by a low pH, high sulfate, metals (Be, Ni, U, As) plume associated with the long-term operation of a coal plant at the Savannah River Site. These laboratory scale studies provide mechanistic information regarding the solid phases in the soils associated with natural attenuation of the contaminant metals. This data provides input to be evaluated in the definition of the contaminant source term as well as transport of contaminants for site transport models.

  10. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    SciTech Connect

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992.

  11. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    SciTech Connect

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992.

  12. Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater.

    PubMed

    Paul, Dhiraj; Kazy, Sufia K; Banerjee, Tirtha Das; Gupta, Ashok K; Pal, Taraknath; Sar, Pinaki

    2015-01-01

    Arsenic (As) biotransformation and release by indigenous bacteria from As rich groundwater was investigated. Metabolic landscape of 173 bacterial isolates indicated broad catabolic repertoire including abundance of As(5+) reductase activity and abilities in utilizing wide ranges of organic and inorganic respiratory substrates. Abundance of As homeostasis genes and utilization of hydrocarbon as carbon/electron donor and As(5+) as electron acceptor were noted within the isolates. Sediment microcosm study (for 300 days) showed a pivotal role of metal reducing facultative anaerobic bacteria in toxic As(3+) release in aqueous phase. Inhabitant bacteria catalyze As transformation and facilitate its release through a cascade of reactions including mineral bioweathering and As(5+) and/or Fe(3+) reduction activities. Compared to anaerobic incubation with As(5+) reducing strains, oxic state and/or incubation with As(3+) oxidizing bacteria resulted in reduced As release, thus indicating a strong role of such condition or biocatalytic mechanism in controlling in situ As contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Perched-Water Analysis Related to Deep Vadose Zone Contaminant Transport and Impact to Groundwater

    SciTech Connect

    Oostrom, Martinus; Truex, Michael J.; Carroll, KC; Chronister, Glen B.

    2013-11-15

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located just a few meters above the water table beneath the B-complex at the Hanford Site. The perched water, containing elevated concentrations of uranium and technetium-99, is important to consider in evaluating the future flux of contaminated water into the groundwater. A study was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and, 3) associated groundwater impact. Based on the current vertical transport pathways and large areal extent of the perched system, the evaluation was conducted using a one-dimensional (1-D) analysis. Steady-state scoping calculations showed that the perching-layer hydraulic conductivity is likely to be up to two orders of magnitude less than the base case value obtained from Hanford site literature. Numerical flow and transport simulations provided both steady-state and transient system estimates of water and contaminant behavior and were used to further refine the range of conditions consistent with current observations of perched water height and to provide estimates of future water and contaminant flux to groundwater. With a recharge rate of 6 cm/yr, representative of current disturbed surface conditions, contaminant flux from the perched water occurs over a time interval of tens of years. However, if the recharge rate is 0.35 cm/yr, representative of returning recharge to pre-Hanford Site levels, the contaminant flux into the groundwater is spread over hundreds of years. It was also demonstrated that removal of perched water by pumping would reduce the flux of water (and associated contaminants) to the groundwater, thereby impacting the long-term rate of contaminant movement to the groundwater.

  14. Sources of arsenic and fluoride in highly contaminated soils causing groundwater contamination in Punjab, Pakistan

    SciTech Connect

    Farooqi, A.; Masuda, H.; Siddiqui, R.; Naseem, M.

    2009-05-15

    Highly contaminated groundwater, with arsenic (As) and fluoride (F{sup -}) concentrations of up to 2.4 and 22.8 mg/L, respectively, has been traced to anthropogenic inputs to the soil. In the present study, samples collected from the soil surface and sediments from the most heavily polluted area of Punjab were analyzed to determine the F{sup -} and As distribution in the soil. The surface soils mainly comprise permeable aeolian sediment on a Pleistocene terrace and layers of sand and silt on an alluvial flood plain. Although the alluvial sediments contain low levels of F, the terrace soils contain high concentrations of soluble F{sup -} (maximum, 16 mg/kg; mean, 4 mg/kg; pH > 8.0). Three anthropogenic sources were identified as fertilizers, combusted coal, and industrial waste, with phosphate fertilizer being the most significance source of F{sup -} accumulated in the soil. The mean concentration of As in the surface soil samples was 10.2 mg/kg, with the highest concentration being 35 mg/kg. The presence of high levels of As in the surface soil implies the contribution of air pollutants derived from coal combustion and the use of fertilizers. Intensive mineral weathering under oxidizing conditions produces highly alkaline water that dissolves the F{sup -} and As adsorbed on the soil, thus releasing it into the local groundwater.

  15. Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles

    SciTech Connect

    Scott, J.; Case, N.; Coltman, K.

    2003-02-25

    Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes

  16. Arsenic contamination of groundwater: Mitigation strategies and policies

    NASA Astrophysics Data System (ADS)

    Alaerts, Guy J.; Khouri, Nadim

    Contamination of groundwater by arsenic from natural geochemical sources is at present a most serious challenge in the planning of large-scale use of groundwater for drinking and other purposes. Recent improvements in detection limits of analytical instruments are allowing the correlation of health impacts such as cancer with large concentrations of arsenic in groundwater. However, there are at present no known large-scale technological solutions for the millions of people-mostly rural-who are potentially affected in developing countries. An overall framework of combating natural resource degradation is combined with case studies from Chile, Mexico, Bangladesh and elsewhere to arrive at a set of strategic recommendations for the global, national and local dimensions of the arsenic ``crisis''. The main recommendations include: the need for flexibility in the elaboration of any arsenic mitigation strategy, the improvement and large-scale use of low-cost and participatory groundwater quality testing techniques, the need to maintain consistent use of key lessons learned worldwide in water supply and sanitation and to integrate arsenic as just one other factor in providing a sustainable water supply, and the following of distinct but communicable tracks between arsenic-related developments and enhanced, long-term, sustainable water supplies. La contamination des eaux souterraines par l'arsenic provenant de sources naturelles est actuellement un sujet des plus graves dans l'organisation d'un recours à grande échelle des eaux souterraines pour la boisson et d'autres usages. De récentes améliorations dans les limites de détection des équipements analytiques permettent de corréler les effets sur la santé tels que le cancer à de fortes concentrations en arsenic dans les eaux souterraines. Toutefois, il n'existe pas actuellement de solutions technologiques à grande échelle connues pour des millions de personnes, surtout en zones rurales, qui sont potentiellement

  17. Mobilisation processes responsible for iron and manganese contamination of groundwater in Central Adriatic Italy.

    PubMed

    Palmucci, William; Rusi, Sergio; Di Curzio, Diego

    2016-06-01

    Iron and manganese are two of the most common contaminants that exceed the threshold imposed by international and national legislation. When these contamination occurs in groundwater, the use of the water resource is forbidden for any purposes. Several studies investigated these two metals in groundwater, but research focused in the Central Adriatic area are still lacking. Thus, the objective of this study is to identify the origin of Fe and Mn contamination in groundwater and the hydrogeochemical processes that can enrich aquifers with these metals. This work is based on hydrogeochemical and multivariate statistical analysis of analytical results undertaken on soils and groundwater. Fe and Mn contamination are widespread in the alluvial aquifers, and their distribution is regulated by local conditions (i.e. long residence time, presence of peat or organic-rich fine sediments or anthropic pollution) that control redox processes in the aquifers and favour the mobilisation of these two metals in groundwater. The concentration of iron and manganese identified within soil indicates that the latter are a concrete source of the two metals. Anthropic impact on Fe and Mn contamination of groundwater is not related to agricultural activities, but on the contrary, the contribution of hydrocarbons (e.g. spills) is evident.

  18. 40 CFR 141.62 - Maximum contaminant levels for inorganic contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking Water Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.62 Maximum... water systems and non-transient, non-community water systems. The maximum contaminant level specified in...

  19. 40 CFR 141.62 - Maximum contaminant levels for inorganic contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking Water Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.62 Maximum... water systems and non-transient, non-community water systems. The maximum contaminant level specified in...

  20. Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions.

    PubMed

    Mondal, Priyanka; Bhowmick, Subhamoy; Chatterjee, Debashis; Figoli, Alberto; Van der Bruggen, Bart

    2013-06-01

    Arsenic contaminations of groundwater in several parts of the world are the results of natural and/or anthropogenic sources, and have a large impact on human health. Millions of people from different countries rely on groundwater containing As for drinking purposes. This paper reviews removal technologies (oxidation, coagulation flocculation, adsorption, ion exchange and membrane processes) with attention for the drawbacks and limitations of these applied technologies. The technologies suggested and applied for treatment of As rich water have various problems, including the need for further treatment of As containing secondary waste generated from these water treatment processes. More efficient technologies, with a lower tendency to generate waste include the removal of As by membrane distillation or forward osmosis, instead of using pressure driven membrane processes and subsequently reducing soluble As to commercially valuable metallic As are surveyed. An integrated approach of two or more techniques is suggested to be more beneficial than a single process. Advanced technologies such as membrane distillation, forward osmosis as well as some hybrid integrated techniques and their potentials are also discussed in this review. Membrane processes combined with other process (especially iron based technologies) are thought to be most sustainable for the removal of arsenic and further research allowing scale up of these technologies is suggested. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ.

    PubMed

    Piscopo, Amy N; Neupauer, Roseanna M; Kasprzyk, Joseph R

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ

    NASA Astrophysics Data System (ADS)

    Piscopo, Amy N.; Neupauer, Roseanna M.; Kasprzyk, Joseph R.

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume.

  3. Characterization of nitrate contamination in groundwater in Gosan, western part of Jeju Island

    NASA Astrophysics Data System (ADS)

    Koh, E.; Kaown, D.; Kang, B.; Oh, S.; Moon, H.; Lee, K.

    2010-12-01

    Jeju Isalnd, composed of porous volcanic rocks, is located about 140 km south of the Korean peninsula. The annual mean rainfall of the island (1,975 mm) is about 600 mm higher than that of Korean mainland. Groundwater in Jeju Island is vulnerable to contamination sources in surface land because surface water easily percolates into groundwater when the rainfall event occurs. The western part of the island, where proportion of agricultural area is higher, nitrate contamination in groundwater has been observed. It is important to characterize nitrate contamination in the western part of the island to preserve the groundwater resources. In Gosan, located in the western part of Jeju Island, agricultural fields are broadly distributed resulting from readjustment of arable land in 1970s. Shallow perched groundwater is observed at the top soil layer with depth to water table range of 0.25 ~ 2.68. The nitrate-nitrogen concentration of the shallow groundwater is observed as 8.24 ~ 59.96 mg/l. The deep groundwater is distributed with depth to water table from 12.47 m to 29.11 m and the nitrate-nitrogen concentration is distributed between 0.10 ~ 29.16 mg/l. Such high concentrations of nitrate-nitrogen in the shallow groundwater might cause continuous nitrate contamination of deep groundwater in the study area. Analysis of stable isotope, δ 15N and δ18O of nitrate, in both shallow and deep groundwater was conducted to identify sources of nitrate and transformation processes of nitrogen. Shallow groundwater has broad ranges of δ 15N and δ18O values (δ 15N: 2.3 ~ 26.1‰, δ18O: 2.5 ~ 15.8‰) contrast to deep groundwater, which has limit ranges (δ 15N: 3.1 ~ 5.0‰, δ18O: 0.5 ~ 4.7‰). The source of nitrate in the deep groundwater was identified as the ammonium fertilizer and organic soil and in the shallow groundwater, complex source such as chemical fertilizer, organic soil and denitrification was consider to affect the nitrate contamination in the study area.

  4. Guidelines for active spreading during in situ chemical oxidation to remediate contaminated groundwater

    EPA Science Inventory

    The effectiveness of in situ chemical oxidation to remediate contaminated aquifers depends on the extent and duration of contact between the injected treatment chemical and the groundwater contaminant (the reactants). Techniques that inject and extract in the aquifer to ‘ac...

  5. IN SITU TREATMENT OF SOIL AND GROUNDWATER CONTAMINATED WITH CHROMIUM - TECHNICAL RESOURCE GUIDE

    EPA Science Inventory

    New information and treatment approaches have been developed for chromium-contaminated soil and groundwater treatment. The prupose of this report is to bring together the most current information pertaining to the science of chromium contamination and the insitu treatment and co...

  6. DEMONSTRATION OF THE HIPOX ADVANCED OXIDATION TECHNOLOGY FOR THE TREATMENT OF MTBE-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    The HiPOx technology is an advanced oxidation process that incorporates high-precision delivery of ozone and hydrogen peroxide to chemically destroy organic contaminants with the promise of minimizing bromate formation. A MTBE-contaminated groundwater from the Ventura County Nav...

  7. Guidelines for active spreading during in situ chemical oxidation to remediate contaminated groundwater

    EPA Science Inventory

    The effectiveness of in situ chemical oxidation to remediate contaminated aquifers depends on the extent and duration of contact between the injected treatment chemical and the groundwater contaminant (the reactants). Techniques that inject and extract in the aquifer to ‘ac...

  8. IN SITU TREATMENT OF SOIL AND GROUNDWATER CONTAMINATED WITH CHROMIUM - TECHNICAL RESOURCE GUIDE

    EPA Science Inventory

    New information and treatment approaches have been developed for chromium-contaminated soil and groundwater treatment. The prupose of this report is to bring together the most current information pertaining to the science of chromium contamination and the insitu treatment and co...

  9. DEMONSTRATION OF THE HIPOX ADVANCED OXIDATION TECHNOLOGY FOR THE TREATMENT OF MTBE-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    The HiPOx technology is an advanced oxidation process that incorporates high-precision delivery of ozone and hydrogen peroxide to chemically destroy organic contaminants with the promise of minimizing bromate formation. A MTBE-contaminated groundwater from the Ventura County Nav...

  10. PHYTOREMEDIATION: USING PLANTS TO CLEAN UP CONTAMINATED SOIL, GROUNDWATER, AND WASTEWATER

    EPA Science Inventory

    Phytoremediation is an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost. The cleanup technology is defined as the use of green plants to remove, contain, or render harmless such environmental contaminants as heavy ...

  11. PHYTOREMEDIATION: USING PLANTS TO CLEAN UP CONTAMINATED SOIL, GROUNDWATER, AND WASTEWATER

    EPA Science Inventory

    Phytoremediation is an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost. The cleanup technology is defined as the use of green plants to remove, contain, or render harmless such environmental contaminants as heavy ...

  12. Behavioral response to contamination risk information in a spatially explicit groundwater environment: Experimental evidence

    NASA Astrophysics Data System (ADS)

    Li, Jingyuan; Michael, Holly A.; Duke, Joshua M.; Messer, Kent D.; Suter, Jordan F.

    2014-08-01

    This paper assesses the effectiveness of aquifer monitoring information in achieving more sustainable use of a groundwater resource in the absence of management policy. Groundwater user behavior in the face of an irreversible contamination threat is studied by applying methods of experimental economics to scenarios that combine a physics-based, spatially explicit, numerical groundwater model with different representations of information about an aquifer and its risk of contamination. The results suggest that the threat of catastrophic contamination affects pumping decisions: pumping is significantly reduced in experiments where contamination is possible compared to those where pumping cost is the only factor discouraging groundwater use. The level of information about the state of the aquifer also affects extraction behavior. Pumping rates differ when information that synthesizes data on aquifer conditions (a "risk gauge") is provided, despite invariant underlying economic incentives, and this result does not depend on whether the risk information is location-specific or from a whole aquifer perspective. Interestingly, users increase pumping when the risk gauge signals good aquifer status compared to a no-gauge treatment. When the gauge suggests impending contamination, however, pumping declines significantly, resulting in a lower probability of contamination. The study suggests that providing relatively simple aquifer condition guidance derived from monitoring data can lead to more sustainable use of groundwater resources.

  13. Use of Additives in Bioremediation of Contaminated Groundwater and Soil

    EPA Science Inventory

    This chapter reviews application of additives used in bioremediation of chlorinated solvents and fuels for groundwater and soil remediation. Soluble carbon substrates are applicable to most site conditions except aquifers with very high or very low groundwater flow. Slow-release ...

  14. Use of Additives in Bioremediation of Contaminated Groundwater and Soil

    EPA Science Inventory

    This chapter reviews application of additives used in bioremediation of chlorinated solvents and fuels for groundwater and soil remediation. Soluble carbon substrates are applicable to most site conditions except aquifers with very high or very low groundwater flow. Slow-release ...

  15. Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination

    NASA Astrophysics Data System (ADS)

    Savard, Martine M.; Somers, George; Smirnoff, Anna; Paradis, Daniel; van Bochove, Eric; Liao, Shawna

    2010-02-01

    SummaryGlobally, fertilizers are identified as principle sources of nitrate in waters of intensely cultivated areas. Here this general concept is appraised on a seasonal basis over a two year period, under temperate climatic conditions. Water ( δ2H and δ18O) and nitrate ( δ15N and δ18O) isotopes in surface water and groundwater suggest that freshwater is acting as a transport vector conducting nitrate from agricultural soils to groundwater and ultimately to surface water. Measured nitrate isotopes of organic and inorganic fertilizers and of nitrate in groundwater are used to constrain a conceptual apportionment model quantifying the relative seasonal N contributions in an area of intense potato production. Source inputs differ strongly between the growing (summer and fall) and non-growing (winter and spring) periods. Chemical fertilizers and soil organic matter equally dominate and contribute to the growing period load, whereas soil organic matter dominates the non-growing period load, and accounts for over half of the overall annual nitrogen charge. These findings reveal the magnitude of nitrogen cycling by soil organic matter, and point to the benefits of controlling the timing of its nitrate release from this organic material. We conclude that strategies to attenuate contamination by nitrate in waters of temperate climate row-cropping regions must consider nitrogen cycling by soil organic matter, including the crucial role of crop residues throughout both the growing and non-growing seasons.

  16. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    SciTech Connect

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

  17. Groundwater contaminant science activities of the U.S. Geological Survey in New England

    USGS Publications Warehouse

    Weiskel, Peter K.

    2016-03-23

    Aquifers in New England provide water for human needs and natural ecosystems. In some areas, however, aquifers have been degraded by contaminants from geologic and human sources. In recent decades, the U.S. Geological Survey has been a leader in describing contaminant occurrence in the bedrock and surficial aquifers of New England. In cooperation with Federal, State, and local agencies, the U.S. Geological Survey has also studied the vulnerability of groundwater to contaminants, the factors affecting the geographic distribution of contaminants, and the geochemical processes controlling contaminant transport and fate. This fact sheet describes some of the major science needs in the region related to groundwater contaminants and highlights recent U.S. Geological Survey studies that provide a foundation for future investigations.

  18. Nitrate contamination of groundwater in the catchment of Goczałkowice reservoir

    NASA Astrophysics Data System (ADS)

    Czekaj, Joanna; Witkowski, Andrzej J.

    2014-05-01

    Goczałkowice dammed reservoir (area - 26 km2 , volume - 100 million m3 at a typical water level) is a very important source of drinking water for Upper Silesian agglomeration. At the catchment of the reservoir there are many potential sources of groundwater pollution (agriculture, bad practices in wastewater management, intensive fish farming). Thus local groundwater contamination, mainly by nitrogen compounds. The paper presents groundwater monitoring system and preliminary results of the research carried on at Goczałkowice reservoir and its catchment in 2010 - 2014 within the project "Integrated system supporting management and protection of dammed reservoir (ZiZoZap)'. The main objective for hydrogeologists in the project is to assess the role of groundwater in total water balance of the reservoir and the influence of groundwater on its water quality. During research temporal variability of groundwater - surface water exchange has been observed. Monitoring Network of groundwater quality consists of 22 observation wells (nested piezometers included) located around the reservoir - 13 piezometers is placed in two transects on northern and southern shore of reservoir. Sampling of groundwater from piezometers was conducted twice - in autumn 2011 and spring 2012. Maximum observed concentrations of nitrate, nitrite and ammonium were 255 mg/L, 0,16 mg/L and 3,48 mg/L, respectively. Surface water in reservoir (8 points) has also been sampled. Concentrations of nitrate in groundwater are higher than in surface water. Nitrate and ammonium concentrations exceeding standards for drinking water were reported in 18% and 50% of monitored piezometers, respectively. High concentration of nitrate (exceeding more than 5 times maximal admissible concentration) have been a significant groundwater contamination problem in the catchment of the reservoir. Periodically decrease of surface water quality is possible. Results of hydrogeological research indicate substantial spatial

  19. 40 CFR 141.51 - Maximum contaminant level goals for inorganic contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level... Mercury 0.002 Nitrate 10 (as Nitrogen). Nitrite 1 (as Nitrogen). Total Nitrate+Nitrite 10 (as Nitrogen...

  20. 40 CFR 141.51 - Maximum contaminant level goals for inorganic contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level... Mercury 0.002 Nitrate 10 (as Nitrogen). Nitrite 1 (as Nitrogen). Total Nitrate+Nitrite 10 (as Nitrogen...

  1. Stable isotope fractionation related to microbial nitrogen turnover in constructed wetlands treating contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Voloshchenko, O.; Knoeller, K.

    2013-12-01

    To improve the efficiency of ground- and wastewater treatment in constructed wetlands (CWs), better understanding of the occurring processes is necessary. This research explores N-isotope fractionations associated with the removal of ammonium from contaminated groundwater in pilot-scale CWs downstream of the chemical industrial area Leuna, Germany. The groundwater at the site is contaminated mainly by organic (BTEX, MTBE) and inorganic compounds (ammonium). We assume that the anaerobic ammonium oxidation (ANAMMOX) plays an important role in nitrogen removal in these CWs. However, to date, interactions between processes of aerobic and anaerobic ammonium oxidation in CWs still have not been well explored. Especially, the importance of the ANAMMOX process for the nitrogen removal is generally accepted, but its role in CWs is quite unknown. For this aim, three CWs were chosen: planted horizontal subsurface flow (HSSF); unplanted HSSF, and floating plant root mat (FPRM). Water samples were taken at the inflow and outflow as well as from the pore space at different distances (1, 2.5 and 4 m) from the inlet and at different depths (20, 30 and 40 cm in the HSSF-CWs, 30 cm in the FPRM). Samples were collected in a time interval of 1 to 6 weeks during 1 year with the exception of the winter season. Physicochemical parameters, nitrogen isotope signatures of ammonium, as well as nitrogen and oxygen isotope signatures of nitrate were analysed. Within the CWs, spatial concentration gradients of the nitrogen species (ammonium and nitrate) are observed. N-isotope variations of ammonium and nitrate are interpreted according to the prevailing processes of the N-transformations. Based on isotope mass-balance approach microbial processes such as nitrification, denitrification, and ANAMMOX are quantified. DNA from biofilms at roots and gravel was extracted using FastDNA Spin Kit For Soil (MP Biomedicals). PCR, quantitative PCR, cloning, and sequencing were applied with the purpose of

  2. Artificial neural networks to evaluate organic and inorganic contamination in agricultural soils.

    PubMed

    Bonelli, Maria Grazia; Ferrini, Mauro; Manni, Andrea

    2017-11-01

    The assessment of organic and inorganic contaminants in agricultural soils is a difficult challenge due to the large-scale dimensions of the areas under investigation and the great number of samples needed for analysis. On-site screening techniques, such as Field Portable X-ray Fluorescence (FPXRF) spectrometry, can be used for inorganic compounds, such as heavy metals. This method is not destructive and allows a rapid qualitative characterization, identifying hot spots from where to collect soil samples for analysis by traditional laboratory techniques. Recently, fast methods such as immuno-assays for the determination of organic compounds, such as dioxins, furans and PCBs, have been employed, but several limitations compromise their performance. The aim of the present study was to find a method able to screen contaminants in agricultural soil, using FPXRF spectrometry for metals and a statistical procedure, such as the Artificial Neural Networks technique, to estimate unknown concentrations of organic compounds based on statistical relationships between the organic and inorganic pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources.

    PubMed

    Farooqi, Abida; Masuda, Harue; Firdous, Nousheen

    2007-02-01

    The present study is the first attempt to put forward possible sources of As, F- and SO4(2-) contaminated groundwater in the Kalalanwala area, Punjab, Pakistan. Five rainwater and 24 groundwater samples from three different depths were analyzed. Shallow groundwater from 24 to 27 m depth contained high F- (2.47-21.1mg/L), while the groundwater samples from the deeper depth were free from fluoride contamination. All groundwater samples contained high As (32-1900 microg/L), in excess of WHO drinking water standards. The SO4(2-) ranges from 110 to 1550 mg/L. Delta34S data indicate three sources for SO4(2-) air pollutants (5.5-5.7 per thousand), fertilizers (4.8 per thousand), and household waste (7.0 per thousand). Our important finding is the presence of SO4(2-), As and F- in rainwater, indicating the contribution of these elements from air pollution. We propose that pollutants originate, in part, from coal combusted at brick factories and were mobilized promotionally by the alkaline nature of the local groundwater.

  4. Digital Model Study of Groundwater Contamination by Diisopropylmethylphosphonate (DIMP), Rocky Mountain Arsenal Near Denver, Colorado

    DTIC Science & Technology

    1977-06-01

    bar- rier at the north arsenal boundary. Contaminated water pumped from immedi- ately above the barrier to prevent waterlogging would not be returned...north arsenal boundary that effectively prevents further off- arsenal movement of contaminated ground water. Two shortcomings of the plan involve the lack... prevent the further contamination of the aquifer from the recent source near Reservoir F. Model results indicate that a physical barrier to ground-water

  5. Evaluation of long-term (1960-2010) groundwater fluoride contamination in Texas.

    PubMed

    Chaudhuri, Sriroop; Ale, Srinivasulu

    2014-07-01

    Groundwater quality degradation is a major threat to sustainable development in Texas. The aim of this study was to elucidate spatiotemporal patterns of groundwater fluoride (F) contamination in different water use classes in 16 groundwater management areas in Texas between 1960 and 2010. Groundwater F concentration data were obtained from the Texas Water Development Board and aggregated over a decadal scale. Our results indicate that observations exceeding the drinking water quality threshold of World Health Organization (1.5 mg F L) and secondary maximum contaminant level (SMCL) (2 mg F L) of the USEPA increased from 26 and 19% in the 1960s to 37 and 23%, respectively, in the 2000s. In the 2000s, F observations > SMCL among different water use classes followed the order: irrigation (39%) > domestic (20%) > public supply (17%). Extent and mode of interaction between F and other water quality parameters varied regionally. In western Texas, high F concentrations were prevalent at shallower depths (<50 m) and were positively correlated with bicarbonate (HCO) and sulfate anions. In contrast, in southern and southeastern Texas, higher F concentrations occurred at greater depths (>50 m) and were correlated with HCO and chloride anions. A spatial pattern has become apparent marked by "excess" F in western Texas groundwaters as compared with "inadequate" F contents in rest of the state. Groundwater F contamination in western Texas was largely influenced by groundwater mixing and evaporative enrichment as compared with water-rock interaction and mineral dissolution in the rest of the state.

  6. Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination

    NASA Astrophysics Data System (ADS)

    Jasechko, Scott; Perrone, Debra; Befus, Kevin M.; Bayani Cardenas, M.; Ferguson, Grant; Gleeson, Tom; Luijendijk, Elco; McDonnell, Jeffrey J.; Taylor, Richard G.; Wada, Yoshihide; Kirchner, James W.

    2017-06-01

    The vulnerability of groundwater to contamination is closely related to its age. Groundwaters that infiltrated prior to the Holocene have been documented in many aquifers and are widely assumed to be unaffected by modern contamination. However, the global prevalence of these `fossil' groundwaters and their vulnerability to modern-era pollutants remain unclear. Here we analyse groundwater carbon isotope data (12C, 13C, 14C) from 6,455 wells around the globe. We show that fossil groundwaters comprise a large share (42-85%) of total aquifer storage in the upper 1 km of the crust, and the majority of waters pumped from wells deeper than 250 m. However, half of the wells in our study that are dominated by fossil groundwater also contain detectable levels of tritium, indicating the presence of much younger, decadal-age waters and suggesting that contemporary contaminants may be able to reach deep wells that tap fossil aquifers. We conclude that water quality risk should be considered along with sustainable use when managing fossil groundwater resources.

  7. Identification of Groundwater Contaminant Location and Release History using Simulation-Optimization Method

    NASA Astrophysics Data System (ADS)

    Park, Y. C.

    2015-12-01

    Identification of location and release history of contaminant in groundwater is necessary to improve the remediation accuracy and to decrease the remediation cost. Especially in an industrial complex, groundwater is contaminated by various sources during unknown periods and groundwater remediation turns out complicated problems. A simulation-optimization method is preferred to solve the complicated problems of contaminant source identification because a simulation-optimization method has flexible applicability. For simulations of groundwater flow and contaminant transport, MODFLOW, MT3DMS and RT3D are used. These models are integrated with a genetic algorithm to obtain the optimization of contaminant location and release history. Because computing time and costs are enormous for a simulation-optimization method, a distributed computing technique is used to reduce computing time and costs. The performance of developed computer programs is evaluated with hypothetical examples with combinations of aquifers and contaminants from simple to complicated levels. The results shows the possibility of developed computer program to solve the problem of contaminant location and release history problems. This subject is supported by Korea Ministry of Environment as "The GAIA project".

  8. Urban groundwater baseflow influence upon inorganic river-water quality: The River Tame headwaters catchment in the City of Birmingham, UK

    NASA Astrophysics Data System (ADS)

    Rivett, Michael O.; Ellis, Paul A.; Mackay, Rae

    2011-03-01

    SummaryUnderstanding the linkage between urban land, groundwater, baseflow and river contamination at the city scale is lacking. This study evaluates the influence of inorganic (major/minor ions and metals) groundwater contamination in the Triassic sandstone-Quaternary deposits aquifer system underlying the City of Birmingham, UK upon the baseflow and water quality of the river Tame. Baseflow water-quality data have been collected from a riverbed piezometer network installed in the 7.4 km reach crossing the effluent unconfined sandstone aquifer and compared to river and aquifer water-quality data. Overall, the inorganic chemical quality of the baseflow was not as poor as potentially surmised from the urbanisation present. Baseflow impact upon river-water quality was also low. These conclusions were underpinned by evidences of: limited river-water quality changes along the reach; some river concentrations being diluted by better quality baseflow; only occasional breaching of water-quality criteria; limited impact upon river-reach quality local to elevated baseflow dicharges; natural attenuation occurrence within the riverbed; and, modest, albeit somewhat uncertain, baseflow mass fluxes. Baseflow fluxes to the reach were in the ranges 100-3500 t/yr for major ions, 1-50 t/yr for minor ions and 1-500 kg/yr for toxic metals with zinc and nickel most prominent. The sporadic occurrence of elevated baseflow concentrations was ascribed to discrete groundwater plume discharges. More detailed sub-reach studies would be required to fully resolve discrete plume baseflow contributions and improve mass flux estimates. Not uncommonly, the urban river studied was already contaminated and hence persistent baseflow fluxes may assume more importance if the river became cleaner through other control measures. Future research should hence consider the emergent significance of urban baseflows. There are needs to: conduct similar studies to investigate if city-scale baseflow impacts are

  9. Assessment of Groundwater Vulnerability for Antropogenic and Geogenic Contaminants in Subwatershed

    NASA Astrophysics Data System (ADS)

    Ko, K.; Koh, D.; Chae, G.; Cheong, B.

    2007-12-01

    Groundwater is an important natural resource that providing drinking water to more than five million people in Korea. Nonpoint source nitrate was frequently observed contaminant and the investigation result for small potable water supply system that mainly consisted of 70 percent groundwater showed that about 5 percent of water samples exceeded potable water quality standards of Korea. The geogenic contanminants such as arsenic and fluoride also frequently observed contaminants in Korea. In order to protect groundwater and to supply safe water to public, we need to assess groundwater vulnerability and to know the cause of occurrence of contaminants. To achieve this goal, we executed groundwater investigation and assessment study for Keumsan subwatershed with 600km2 in Keum-river watershed. The geostatistical and GIS technique were applied to map the spatial distribution of each contaminants and to calculate vulnerability index. The results of logistic regression for nitrate indicated the close relationship with land use. The results of hydrogeochemical analyses showed that nitrates in groundwater are largely influenced by land use and had high values in granitic region with dense agricultural field and resident. The high nitrates are closely related to groundwater of greenhouse area where large amount of manure and fertilizer were usually introduced in cultural land. The soil in granitic region had high contents of permeable sand of weathered products of granite that play as a role of pathway of contaminants in agricultural land and resident area. The high values of bicarbonate are originated from two sources, limestone dissolution of Ogcheon belt and biodegradation organic pollutants from municipal wastes in granitic region with dense agriculture and residence. It is considered that the anomalous distribution of arsenic and fluoride is related to limestone and metasedimentry rock of Ogcheon belt with high contents of sulfide minerals and F bearing minerals. The

  10. Organic adlayer on inorganic materials: XPS analysis selectivity to cope with adventitious contamination

    NASA Astrophysics Data System (ADS)

    Landoulsi, Jessem; Genet, Michel J.; Fleith, Sandrine; Touré, Yetioman; Liascukiene, Irma; Méthivier, Christophe; Rouxhet, Paul G.

    2016-10-01

    This work addresses the ubiquitous presence of organic contaminants at inorganic solid surfaces and the improvement of XPS analysis selectivity to cope with it. Water contact angle measurements showed that the adsorption of organic contaminants occurs readily in ambient air, and faster and more extensively under high vacuum. It is stronger on stainless steel (SS) compared to silica and is significantly reduced when SS is sterilized by autoclaving. The reliability of XPS data was evaluated (selectivity, precision, accuracy) by correlations between spectral data incorporating a large amount of results obtained with different XPS spectrometers on SS and glass samples cleaned in different ways and conditioned with several biomacromolecules. The methodology used allows a discrimination to be made between contaminants and deliberately adsorbed biomacromolecules, and offers perspectives for tracking the source of contamination. Furthermore, a discrimination can be made between oxygen from the organic adlayer and oxygen from the substrate, and the O 1s component above 532.0 eV observed for SS is shown to be due to organic contaminants rather than adsorbed water. This approach offers new perspectives to examine the interactions (displacement or not) between contaminants and compounds of interest, e.g. proteins, at the stage of the adsorption process.

  11. Effect of Waves on Groundwater Flows and Contaminant Fluxes in Coastal Aquifers - Recent Advances and Perspectives

    NASA Astrophysics Data System (ADS)

    Robinson, C. E.; Malott, S. S.; Xin, P.; Li, L.; O'Carroll, D. M.; Barry, D. A.

    2015-12-01

    Oceanic forcing impacts groundwater flows and contaminant fluxes in coastal aquifers. While numerous studies have quantified the influence of tides on coastal groundwater processes, wave effects are less understood. This is in part due to the difficultly in quantifying wave effects due to the temporal complexity of the forcing, i.e., irregular and higher frequency. This presentation provides an overview of recent advances in our understanding of the impact of waves on groundwater flows and contaminant fluxes along permeable shorelines. Although initial numerical efforts demonstrated the influence of steady wave conditions (i.e., constant wave height) on groundwater flows, salt-freshwater mixing and the fate of reactive constituents (nutrients) in the nearshore aquifer, waves are highly unsteady. More recent simulations and field data show that unsteady wave forcing, in particular episodic wave events, highly perturb nearshore groundwater flow patterns, salt-freshwater mixing conditions and contaminant residence times. Further, episodic wave events impact the salt-freshwater mixing zone and geochemical conditions in the nearshore aquifer for much longer periods than the time over which the higher waves occurred. While consideration of the phase-averaged effect of waves only (i.e., wave set up) has been shown to be adequate for evaluating the impact of waves on dissolved contaminants in coastal aquifers, recent data analysis suggests that phase-resolved instantaneous wave effects may strongly regulate the behaviour of particulate and colloidal constituents (i.e., particulate organic matter, microbial contaminants) close to the sediment-water interface.

  12. Enhanced detection of groundwater contamination from a leaking waste disposal site by microbial community profiles

    NASA Astrophysics Data System (ADS)

    Mouser, Paula J.; Rizzo, Donna M.; Druschel, Gregory K.; Morales, Sergio E.; Hayden, Nancy; O'Grady, Patrick; Stevens, Lori

    2010-12-01

    Groundwater biogeochemistry is adversely impacted when municipal solid waste leachate, rich in nutrients and anthropogenic compounds, percolates into the subsurface from leaking landfills. Detecting leachate contamination using statistical techniques is challenging because well strategies or analytical techniques may be insufficient for detecting low levels of groundwater contamination. We sampled profiles of the microbial community from monitoring wells surrounding a leaking landfill using terminal restriction fragment length polymorphism (T-RFLP) targeting the 16S rRNA gene. Results show in situ monitoring of bacteria, archaea, and the family Geobacteraceae improves characterization of groundwater quality. Bacterial T-RFLP profiles showed shifts correlated to known gradients of leachate and effectively detected changes along plume fringes that were not detected using hydrochemical data. Experimental sediment microcosms exposed to leachate-contaminated groundwater revealed a shift from a β-Proteobacteria and Actinobacteria dominated community to one dominated by Firmicutes and δ-Proteobacteria. This shift is consistent with the transition from oxic conditions to an anoxic, iron-reducing environment as a result of landfill leachate-derived contaminants and associated redox conditions. We suggest microbial communities are more sensitive than hydrochemistry data for characterizing low levels of groundwater contamination and thus provide a novel source of information for optimizing detection and long-term monitoring strategies at landfill sites.

  13. A Contamination Vulnerability Assessment for the Santa Clara and San Mateo County Groundwater Basins

    SciTech Connect

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-01-06

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MtBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Ambient Groundwater Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2001 and 2002, LLNL carried out this vulnerability study in the groundwater basins of Santa Clara County and San Mateo County, located to the south of the city of San Francisco. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements

  14. Acid mine drainage contaminates groundwater of a Tennessee watershed

    NASA Astrophysics Data System (ADS)

    O'Bara, Christopher J.; Don Estes, R.

    1985-09-01

    Water samples were collected from 18 natural springs within the West Fork of the Obey River watershed. Overton County, Tennessee, to determine if groundwater was adversely affected by runoff from abandoned surface coal mines Six springs were found to be affected severely and deemed unfit as a source of potable water Water quality of the remaining springs was essentially unaffected it appeared that proximity to surface mines, elevation at the outflow, and geology of the surrounding strata determined the quality of the groundwater

  15. Groundwater contamination from an inactive uranium mill tailings pile: 1. Application of a chemical mixing model

    NASA Astrophysics Data System (ADS)

    White, A. F.; Delany, J. M.; Narasimhan, T. N.; Smith, A.

    1984-11-01

    Low-pH process waters contained in a number of inactive and abandoned uranium mill tailings in the United States represent potential sources of radionuclide and trace metal contamination of groundwater. Detailed investigations at a typical site at Riverton, Wyoming, indicate that chemical transport occurs from initial dewatering of the tailings, downward infiltration due to precipitation, and groundwater intrusion into the base of the tailings pile. Except for elevated uranium and molybdenum concentrations, current radionuclide and trace metal transport is limited by the near-neutral pH conditions of the groundwater. Significant reactions include the dissolution of calcite, production of CO2, and precipitation of gypsum and the hydroxides of iron and aluminum. A geochemical mixing model employing the PHREEQE computer code is used to estimate current rates of the groundwater contamination by tailings water. A maximum mixing of 1.7% of pore water is a factor of 2 less than steady state estimates based on hydraulic parameters.

  16. Statistical evidence on the effectiveness of sewering to protect groundwater from VOC contamination

    NASA Astrophysics Data System (ADS)

    Willis, Cleve E.; Sacheti, Sandeep

    1996-03-01

    Volatile organic compounds (VOCs) are an important source of contamination of groundwater supplies in Massachusetts and many parts of the United States. One local response is to require sewering in wellhead protection areas as an easily enforceable policy designed to reduce the probability of VOC contamination of groundwater. Data were collected for 238 wellhead protection areas in Massachusetts on VOC contamination levels and the sewered and unsewered land uses in those aquifer recharge areas. Logistic regression procedures were used to see whether sewering had any statistical effect on likelihood of contamination of well water. The results provided limited, but not overpowering, support for the idea that requiring commercial and industrial land uses to use sewers would reduce the chance of VOC contamination.

  17. Chemical contaminant reactions and assessment of soil cleanup levels for protection of groundwater

    NASA Astrophysics Data System (ADS)

    Kargbo, D. M.

    1994-03-01

    About 70 percent of hazardous waste sites listed in the National Priority List (NPL) have some groundwater contamination that may require remediation. Such remediation is inadequate if the unsaturated soils above will continue to act as a source of groundwater contamination. Consequently, for most of these sites, it becomes necessary to determine what the cleanup levels for contaminants in soils should be so that subsequent contribution of contaminants from these soils to groundwater would not exceed groundwater protection levels. Representation of the dynamics of interactions between contaminants and soils is very complex, requiring among others, a thorough understanding of the chemical processes that influence the behavior of the contaminant once it enters the subsurface. Because of such complexities, environmental professionals frequently utilize methods with very simple assumptions that tend to err on the conservative side. While the public may feel protected, the needless spending of dollars could be avoided if attempts are made to incorporate, where possible, such complexities in the modeling efforts so that the system is represented as accurately as possible.

  18. Arsenic, manganese and aluminum contamination in groundwater resources of Western Amazonia (Peru).

    PubMed

    de Meyer, Caroline M C; Rodríguez, Juan M; Carpio, Edward A; García, Pilar A; Stengel, Caroline; Berg, Michael

    2017-12-31

    This paper presents a first integrated survey on the occurrence and distribution of geogenic contaminants in groundwater resources of Western Amazonia in Peru. An increasing number of groundwater wells have been constructed for drinking water purposes in the last decades; however, the chemical quality of the groundwater resources in the Amazon region is poorly studied. We collected groundwater from the regions of Iquitos and Pucallpa to analyze the hydrochemical characteristics, including trace elements. The source aquifer of each well was determined by interpretation of the available geological information, which identified four different aquifer types with distinct hydrochemical properties. The majority of the wells in two of the aquifer types tap groundwater enriched in aluminum, arsenic, or manganese at levels harmful to human health. Holocene alluvial aquifers along the main Amazon tributaries with anoxic, near pH-neutral groundwater contained high concentrations of arsenic (up to 700μg/L) and manganese (up to 4mg/L). Around Iquitos, the acidic groundwater (4.2≤pH≤5.5) from unconfined aquifers composed of pure sand had dissolved aluminum concentrations of up to 3.3mg/L. Groundwater from older or deeper aquifers generally was of good chemical quality. The high concentrations of toxic elements highlight the urgent need to assess the groundwater quality throughout Western Amazonia. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Tracing the Carbon Cycle in a Small Boreal Catchment of a Groundwater Dominated River Using the Isotopic Composition of Dissolved Inorganic Carbon

    NASA Astrophysics Data System (ADS)

    Niinikoski, P. I. A.; Karhu, J.

    2015-12-01

    Understanding the carbon cycle in river systems is particularly important in fragile catchments with agriculture, urbanization, water purification facilities and other possible contamination sources. The isotopic composition and concentration of dissolved inorganic carbon (DIC) has been used to determine carbon sinks and sources in river systems. The Vantaanjoki River, in southern Finland, is located in one of the most densely populated areas in Finland. Previous studies have shown the river having a considerable amount of groundwater - surface water interaction which leads to local groundwater being vulnerable to any contaminants released into the river. The catchment of the river has six water purification facilities, and during times of high discharge some of the waste water is released into the river without treatment. Other possible sources of contamination are urban areas, agriculture and a saw mill. In this study the isotopic composition of DIC was studied, along with the concentration of DIC in the river water, to determine the major influences in carbon balance in the river water, to see if human induced changes in the environment are affecting the carbon cycle. The highest δ13CDIC values were found in the summer, and the lowest ones in the spring. Locations of the water purification facilities or fields along the flow path did not show on the δ13CDIC values, nor in the DIC contents of the water. Similar trends in δ13CDIC values related to the variations between warm and cold seasons have been reported in other studies as well and are likely due to organic material forming and decaying in and around the river channel.

  20. Isotopic constraints on water source mixing, network leakage and contamination in an urban groundwater system.

    PubMed

    Grimmeisen, F; Lehmann, M F; Liesch, T; Goeppert, N; Klinger, J; Zopfi, J; Goldscheider, N

    2017-04-01

    Water supply in developing countries is prone to large water losses due to leaky distribution networks and defective sewers, which may affect groundwater quality and quantity in urban areas and result in complex subsurface mixing dynamics. In this study, a multi-stable isotope approach was used to investigate spatiotemporal fluctuations of surface and sub-surface water source partitioning and mixing, and to assess nitrogen (N) contamination in the urban water cycle of As-Salt, Jordan. Water import from the King Abdullah Canal (KAC), mains waters from the network, and wastewater are characterized by distinct isotopic signatures, which allowed us to quantify city effluents into the groundwater. Temporal variations in isotopic signatures of polluted groundwater are explained by seasonally fluctuating inflow, and dilution by water that originates from Lake Tiberias and enters the urban water cycle via the KAC. Isotopic analysis (N and O) and comparison between groundwater nitrate and nitrate from mains water, water imports and wastewater confirmed that septic waste from leaky sewers is the main contributor of nitrate contamination. The nitrate of strongly contaminated groundwater was characterized by highest δ(15)NNO3 values (13.3±1.8‰), whereas lowest δ(15)NNO3 values were measured in unpolluted groundwater (6.9‰). Analogously, nitrate concentration and isotopic ratios were used for source partitioning and qualitatively confirmed δDH2O and δ(18)OH2O-based estimates. Dual water isotope endmember mixing calculations suggest that city effluents from leaky networks and sewers contribute 30-64% to the heavily polluted groundwater. Ternary mixing calculations including also chloride revealed that 5-18% of the polluted groundwater is wastewater. Up to two thirds of the groundwater originates from mains, indicating excessive water loss from the network, and calling for improved water supply management. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Use of inorganic dryer-salts in the determination of organic contaminants in air

    SciTech Connect

    Simonov, V.A.

    1985-09-01

    This paper presents results of a study of the adsorptive activity of a number of inorganic salts relative to water vapor and to organic vapors in air under the dynamic conditions which are uses in the indicator tube method. Data are also given on the properties of dryer salts having a surface modified with glycerin. It is shown that lithium chloride on porcelain and potassium carbonate having a surface modified with glycerin can be used to dry air in determining contaminants of nonpolar and polar organic substances in it. Anhydrone on porcelain, calcium chloride, and potassium carbonate absorb some substances which are being determined and therefore are less suitable.

  2. [Simulation on contamination forecast and control of groundwater in a certain hazardous waste landfill].

    PubMed

    Ma, Zhi-Fei; An, Da; Jiang, Yong-Hai; Xi, Bei-Dou; Li, Ding-Long; Zhang, Jin-Bao; Yang, Yu

    2012-01-01

    On the basis of site investigation and data collection of a certain hazardous waste landfill, the groundwater flow and solute transport coupled models were established by applying Visual Modflow software, which was used to conduct a numerical simulation that forecast the transport process of Cr6+ in groundwater and the effects of three control measures (ground-harden, leakage-proof barriers and drainage ditches) of contaminants transport after leachate leakage happened in impermeable layer of the landfill. The results show that the contamination plume of Cr6+ transports with groundwater flow direction, the contamination rang would reach the pool's boundary in 10 years, and the distance of contamination transport is 1 450 m. But the diffusion range of contamination plume would not be obviously expanded between 10 and 20 years. While the ground is hardened, the contamination plume would not reach the pool's boundary in 20 years. When the leakage-proof barrier is set in the bottom of water table aquifer, the concentration of Cr6+ is higher than that the leakage-proof barrier is unset, but the result is just opposite when setting the leakage-proof barrier in the bottom of underlying aquifer. The range of contamination plume is effectively controlled by setting drainage ditches that water discharge is 2 642 m3 x d(-1), which makes the monitoring wells would not be contaminated in 20 years. Moreover, combining the ground-harden with drainage ditches can get the best effect in controlling contaminants diffusion, and meanwhile, the drainage ditches' daily discharge is reduced to 1 878 m3 x d(-1). Therefore, it is suggested that the control measure combining the ground-harden with drainage ditches should apply to prevent contamination diffusion in groundwater when leachate leakage have happened in impermeable layer of the landfill.

  3. Ultrasonic process for remediation of organics-contaminated groundwater/wastewater

    SciTech Connect

    Wu, J.M.; Peters, R.W.

    1995-07-01

    A technology is being developed that employs ultrasonic-wave energy for remediation of groundwater/wastewater contaminated with volatile organic compounds such as carbon tetrachloride (CCl{sub 4}) and trichloroethylene (TCE). This paper presents the updated results of a laboratory investigation of ultrasonic groundwater remediation using synthetic groundwaters prepared with laboratory deionized water. Key process parameters investigated included steady-state temperature, contaminant concentration, solution pH, sonication time, and intensity of the applied ultrasonics-wave energy. High destruction efficiencies of the target contaminants were achieved, and the sonication time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. The sonication time can be further reduced by adding a chemical oxidant such as hydrogen peroxide.

  4. Public health assessment for Ossineke groundwater contamination, Ossineke, Alpena County, Michigan, Region 5. Cerclis No. MID980794440. Final report

    SciTech Connect

    1995-09-07

    The Ossineke Ground-water Contamination site is listed on the U.S. Environmental Protection Agency (U.S. EPA) National Priorites List (NPL). A plume of contamination including benzene, toluene, xylenes, and other gasoline components has been found in the groundwater, and is attributed to spills from a gas station and possibly to leaking underground tanks. A nearby laundromat, which has reported spills and leaks of tetrachloroethylene, could also be a source of groundwater, surface water, and soil contamination. The contamination in the groundwater did pose a public health hazard in the past and could potentially in the future if the groundwater was used for portable purposes. All wells that are known to have used the contaminated aquifer in or near the contaminant plume have been replaced. Presently, the site poses no apparent public health hazard under current conditions.

  5. Persistence of a Groundwater Contaminant Plume after Hydraulic Source Containment at a Chlorinated-Solvent Contaminated Site

    PubMed Central

    Matthieu, D.E.; Brusseau, M.L.; Guo, Z.; Plaschke, M.; Carroll, K.C.; Brinker, F.

    2015-01-01

    The objective of this study was to characterize the behavior of a groundwater contaminant (trichloroethene) plume after implementation of a source-containment operation at a site in Arizona. The plume resides in a quasi three-layer system comprising a sand/gravel unit bounded on the top and bottom by relatively thick silty clayey layers. The system was monitored for 60 months beginning at start-up in 2007 to measure the change in contaminant concentrations within the plume, the change in plume area, the mass of contaminant removed, and the integrated contaminant mass discharge. Concentrations of trichloroethene in groundwater pumped from the plume extraction wells have declined significantly over the course of operation, as have concentrations for groundwater sampled from 40 monitoring wells located within the plume. The total contaminant mass discharge associated with operation of the plume extraction wells peaked at 0.23 kg/d, decreased significantly within one year, and thereafter began an asymptotic decline to a current value of approximately 0.03 kg/d. Despite an 87% reduction in contaminant mass and a comparable 87% reduction in contaminant mass discharge for the plume, the spatial area encompassed by the plume has decreased by only approximately 50%. This is much less than would be anticipated based on ideal flushing and mass-removal behavior. Simulations produced with a simplified 3-D numerical model matched reasonably well to the measured data. The results of the study suggest that permeability heterogeneity, back diffusion, hydraulic factors associated with the specific well field system, and residual discharge from the source zone are all contributing to the observed persistence of the plume, as well as the asymptotic behavior currently observed for mass removal and for the reduction in contaminant mass discharge. PMID:26069436

  6. Groundwater Nitrate Contamination Risk Assessment in Canicattì area (Sicily)

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Cusimano, Gioacchino; Favara, Rocco

    2010-05-01

    Groundwaters play a dominant role in the Sicily, because as most part of Mediterranean countries this island is interested by the phenomenon of desertification and the quality of the groundwater reservoir is one of the most important aim for the management policy strategies. During last decade most of the Italian regions the nitrate levels in river and groundwaters have increased gradually over mainly as a consequence of large-scale agricultural application of manure and fertilizers, thereby threatening drinking water quality. The excessive use of chemicals and fertilizers increases the risk to pollution of surface and groundwater from diffuse source, an important reflex to human health and the environment. The studied area is located in Canicattì (central Sicily, Italy), the current land use (grape, olive grove and almond) is the main source of groundwater pollution. In order to investigate the effect of the over farming on the groundwater quality we report the study on the potential risk of contamination from nitrate of agricultural origin through the join of the application of two parametric methods: the IPNOA method (the intrinsic nitrate contamination risk from Agricultural sources) applied to define the Nitrate Vulnerable Zones and the SINTACS method applied to determine the aquifer vulnerability to contamination.

  7. Assessment of groundwater contamination from a hazardous dump site in Ranipet, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Rao, G. Tamma; Rao, V. V. S. Gurunadha; Ranganathan, K.; Surinaidu, L.; Mahesh, J.; Ramesh, G.

    2011-12-01

    Tanneries located in an industrial development area of Ranipet (India) manufactured chromate chemicals during 1976-1996. A large quantity of associated hazardous solid wastes has been stacked about 5-m high above ground level, spread over 3.5 ha inside one of the factory premises. The study area receives an average annual rainfall of 1,100 mm. The granitic formation in the northern part of Palar River catchment has high infiltration rates and has resulted in fast migration of the contamination to the water table. Chromium levels in the groundwater were found up to 275 mg/l. The available hydrogeological, geophysical and groundwater quality data bases have been used to construct a groundwater flow and mass transport model for assessing the groundwater contamination and it has been calibrated for the next 30 years. The migration has been found to be very slow, with a groundwater velocity of 10 m/year. This is the first field-scale study of its kind in this industrial area. The findings are of relevance to addressing the groundwater pollution due to indiscriminate disposal practices of hazardous waste in areas located on the phreatic aquifer. Further, it has been reported that the untreated effluent discharge adjacent to the chromium dump site is most influential in the migration of contaminants.

  8. Electrical resistivity imaging (ERI) monitoring for groundwater contamination in an uncontrolled landfill, South Korea

    NASA Astrophysics Data System (ADS)

    Park, Samgyu; Yi, Myeong-Jong; Kim, Jung-Ho; Shin, Seung Wook

    2016-12-01

    In the study area, uncontrolled landfill leachate is a serious cause of groundwater contamination that occurs extensively and rapidly following the rainy season. For this reason, the use of traditional hydrogeological monitoring methods using drilled wells is expensive and limited. Electrical resistivity imaging (ERI) is suitable for monitoring groundwater contamination because this method helps quickly investigate a large site without the need for well drilling. The resistivity of the landfill leachate is lower than that of clean groundwater; based on this fact, we evaluated the diffusion of landfill leachate before and after the rainy season using 3-D ERI characterization. In addition, ERI results were compared with piezometric and hydrochemical data obtained from observation wells for the purpose of cross-validation. The groundwater monitoring results agreed with the 2-D and 3-D interpretation of ERI results. The electrical resistivity values of contaminated zones were lower than those of clean zones due to an abundance of ions or molecules in the groundwater. The resistivity boundary between contaminated and clean zones observed in the inverted 2-D and 3-D ERI sections was considered to be approximately 100 Ω-m. The low-resistivity anomaly of the contamination zones increased in extent after rainfall. The expansion was likely accelerated by groundwater movement and diffusion of the landfill leachate. Images of the change in electrical resistivity were helpful for characterization of the behavior. The two-directional behaviors of NE-SW and N-S trends were confirmed by the 3-D ratio images. It is therefore, considered that the ERI technique is excellent for imaging contaminated zones as well as monitoring the behaviors of landfill leachate in uncontrolled landfills.

  9. Groundwater contamination response guide. Volume 2. Desk reference. Final report Jun-Sep 82

    SciTech Connect

    Guswa, J.H.; Lyman, W.J.; Adams, J.; Bass, J.; Brecher, A.

    1983-06-01

    This technical report documents an overview of groundwater hydrology and a current technology review of equipment, methods, and techniques used in groundwater field investigations. Numerous topics applicable to the planning, scheduling, data collection, and integration steps essential in a comprehensive field program are addressed. The report, targeted for installation engineers and managers responsible for evaluation of or response to suspected instances of groundwater contamination, consists of two volumes. Volume II: Desk Reference. A comprehensive survey of technical works resulted in this compilation of groundwater fundamentals and field investigation activities. Topical coverage ranges from hydrology basics to state-of-the-art equipment and field methods. Sufficient material is presented to acquaint the reader with basic concepts and fundamentals of groundwater and water quality issues. Numerous illustrations highlight these items. An applications-oriented review of field methods identifies equipment types and limitations. The essentials of geophysics, drilling methods, well construction, and sampling are addressed, with emphasis on integrating information in an iterative process to devise a cost-effective program. A review of contaminant transport in groundwater identifies significant parameters and physical systems of concern. Finally, a summary of groundwater treatment methods provides an options list for potential use. The report concludes with an agency address directory for water quality information and some representative cost schedules for field activities.

  10. Analysis of hydrocarbon-contaminated groundwater metagenomes as revealed by high-throughput sequencing.

    PubMed

    Abbai, Nathlee S; Pillay, Balakrishna

    2013-07-01

    The tendency for chlorinated aliphatics and aromatic hydrocarbons to accumulate in environments such as groundwater and sediments poses a serious environmental threat. In this study, the metabolic capacity of hydrocarbon (aromatics and chlorinated aliphatics)-contaminated groundwater in the KwaZulu-Natal province of South Africa has been elucidated for the first time by analysis of pyrosequencing data. The taxonomic data revealed that the metagenomes were dominated by the phylum Proteobacteria (mainly Betaproteobacteria). In addition, Flavobacteriales, Sphingobacteria, Burkholderiales, and Rhodocyclales were the predominant orders present in the individual metagenomes. These orders included microorganisms (Flavobacteria, Dechloromonas aromatica RCB, and Azoarcus) involved in the degradation of aromatic compounds and various other hydrocarbons that were present in the groundwater. Although the metabolic reconstruction of the metagenome represented composite cell networks, the information obtained was sufficient to address questions regarding the metabolic potential of the microbial communities and to correlate the data to the contamination profile of the groundwater. Genes involved in the degradation of benzene and benzoate, heavy metal-resistance mechanisms appeared to provide a survival strategy used by the microbial communities. Analysis of the pyrosequencing-derived data revealed that the metagenomes represent complex microbial communities that have adapted to the geochemical conditions of the groundwater as evidenced by the presence of key enzymes/genes conferring resistance to specific contaminants. Thus, pyrosequencing analysis of the metagenomes provided insights into the microbial activities in hydrocarbon-contaminated habitats.

  11. Statistical Performance Evaluation of Spatiotemporal Characteristics of Groundwater Flow and Contaminant Mass Transport

    NASA Astrophysics Data System (ADS)

    Matiatos, Ioannis; Papadopoulou, Maria P.; Varouchakis, Emmanouil A.

    2016-04-01

    As groundwater remains one of the most critical natural resources worldwide, numerical models of groundwater flow and contaminant mass transport provide a reliable tool for the efficient protection, planning and sustainable management of groundwater resources. This work focuses on the evaluation of the performance of different numerical models which have been developed to simulate spatiotemporal groundwater flow and contaminant mass transport in a coastal aquifer system. The evaluation of the models' performance has been based on 9 different statistical measures and indices of goodness of fit. Overall, the simulation of groundwater level and contaminant mass concentration delivered very good calibration and validation results in all cases, quite close to the desired values. Maps of aquifer water level and contaminant mass concentrations are provided for all cases in order the differences to be discussed and assessed. The selection of the appropriate model(s) is case oriented and it should be based on the problem's characteristics in order the spatiotemporal variability of the components under study to be optimally estimated.

  12. Temporal dynamics of groundwater-dissolved inorganic carbon beneath a drought-affected braided stream: Platte River case study

    NASA Astrophysics Data System (ADS)

    Boerner, Audrey R.; Gates, John B.

    2015-05-01

    Impacts of environmental changes on groundwater carbon cycling are poorly understood despite their potentially high relevance to terrestrial carbon budgets. This study focuses on streambed groundwater chemistry during a period of drought-induced river drying and consequent disconnection between surface water and groundwater. Shallow groundwater underlying vegetated and bare portions of a braided streambed in the Platte River (Nebraska, USA) was monitored during drought conditions in summer 2012. Water temperature and dissolved inorganic carbon (dominated by HCO3-) in streambed groundwater were correlated over a 3 month period coinciding with a decline in river discharge from 35 to 0 m3 s-1. Physical, chemical, and isotopic parameters were monitored to investigate mechanisms affecting the HCO3- trend. Equilibrium thermodynamic modeling suggests that an increase of pCO2 near the water table, coupled with carbonate mineral weathering, can explain the trend. Stronger temporal trends in Ca2+ and Mg2+ compared to Cl- are consistent with carbonate mineral reequilibria rather than evaporative concentration as the primary mechanism of the increased HCO3-. Stable isotope trends are not apparent, providing further evidence of thermodynamic controls rather than evaporation from the water table. A combination of increased temperature and O2 in the dewatered portion of the streambed is the most likely driver of increased pCO2 near the water table. Results of this study highlight potential linkages between surface environmental changes and groundwater chemistry and underscore the need for high-resolution chemical monitoring of alluvial groundwater in order to identify environmental change impacts.

  13. Electrokinetic remediation of inorganic and organic pollutants in textile effluent contaminated agricultural soil.

    PubMed

    Annamalai, Sivasankar; Santhanam, Manikandan; Sundaram, Maruthamuthu; Curras, Marta Pazos

    2014-12-01

    The discharge from the dyeing industries constitutes unfixed dyes, inorganic salts, heavy metal complexes etc., which spoil the surrounding areas of industrial sites. The present article reports the use of direct current electrokinetic technique for the treatment of textile contaminated soil. Impressed direct current voltage of 20 V facilitates the dye/metal ions movement in the naturally available dye contaminated soil towards the opposite electrode by electromigration. IrO2–RuO2–TiO2/Ti was used as anode and Ti used as cathode. UV–Visible spectrum reveals that higher dye intensity was nearer to the anode. Ni, Cr and Pb migration towards the cathode and migration of Cu, SO42− and Cl− towards anode were noticed. Chemical oxygen demand in soil significantly decreased upon employing electrokinetic. This technology may be exploited for faster and eco-friendly removal of dye in soil environment.

  14. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    SciTech Connect

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

  15. In-situ remediation system and method for contaminated groundwater

    DOEpatents

    Corey, J.C.; Looney, B.B.; Kaback, D.S.

    1989-05-23

    A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like. 3 figs.

  16. In-situ remediation system and method for contaminated groundwater

    DOEpatents

    Corey, John C.; Looney, Brian B.; Kaback, Dawn S.

    1989-01-01

    A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like.

  17. Oxidative particle mixtures for groundwater treatment

    DOEpatents

    Siegrist, Robert L.; Murdoch, Lawrence C.

    2000-01-01

    The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants. The method and composition of the oxidative particle mixture for long-term treatment and immobilization of contaminants in soil and groundwater provides for a reduction in toxicity of contaminants in a subsurface area of contamination without the need for continued injection of treatment material, or for movement of the contaminants, or without the need for continuous pumping of groundwater through the treatment zone, or removal of groundwater from the subsurface area of contamination.

  18. Persistence of a Groundwater Contaminant Plume after Hydraulic Source Containment at a Chlorinated-Solvent Contaminated Site

    NASA Astrophysics Data System (ADS)

    Matthieu, D. E.; Plaschke, M.; Carroll, K. C.; Brinker, F.; Brusseau, M. L.

    2013-12-01

    Hydraulic containment is one approach available for management of source zones contaminated by chlorinated solvents and other organic liquids. The objective of this study was to characterize the behavior of a groundwater contaminant plume containing TCE and other organic contaminants after implementation of a source-containment operation at a site in Arizona. The plume is approximately 600 m long and 250 m wide, and it resides in a quasi three-layer system comprising a sand/gravel unit bounded on the top and bottom by relatively thick silty clayey layers. The system was monitored for 60 months beginning at start-up in 2007 to measure the change in contaminant concentrations within the plume, the change in plume area, the mass of contaminant removed, and the integrated contaminant mass discharge. Operation of two source-control wells appears to have established containment of the source area, which has resulted in isolation of the source from the contaminant plume. Concentrations of trichloroethene in groundwater pumped from the plume extraction wells have declined over the course of operation, as have concentrations for groundwater sampled from 45 monitoring wells located within the plume. The total contaminant mass discharge associated with operation of the plume extraction wells peaked at 0.23 kg/d, decreased significantly within one year, and thereafter began an asymptotic decline to a current value of approximately 0.03 kg/d. Despite an 87% reduction in contaminant mass and a comparable 87% reduction in contaminant mass discharge, the spatial area encompassed by the plume has decreased by only approximately 50%. This is much less than would be anticipated based on ideal flushing and mass-removal behavior. Trichloroethene concentrations in groundwater sampled from monitoring wells screened in the clayey units showed a composite decrease of less than 50%, compared to a ~90% reduction for the wells screened in the sand/gravel unit. This observation suggests that

  19. Development of Chemical Indicators of Groundwater Contamination Near the Carcass Burial Site

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, J.; Kim, M.; Choi, J.; Lee, M.; Lee, H.; Jeon, S.; Bang, S.; Noh, H.; Yoo, J.; Park, S.; Kim, H.; Kim, D.; Lee, Y.; Han, J.

    2011-12-01

    A serious outbreak of foot and mouth disease (FMD) and avian influenza (AI) led to the culling of millions of livestock in South Korea from late 2010 to earlier 2011. Because of the scale of FMD and AI epidemic in Korea and rapid spread of the diseases, mass burial for the disposal of carcass was conducted to halt the outbreak. The improper construction of the burial site or inappropriate management of the carcass burial facility can cause the contamination of groundwater mainly due to the discharges of leachate through the base of disposal pit. The leachate from carcass burial contains by products of carcass decay such as amino acids, nitrate, ammonia and chloride. The presence of these chemical components in groundwater can be used as indicators demonstrating contamination of groundwater with leachate from carcass. The major concern about using these chemical indicators is that other sources including manures, fertilizers and waste waters from human or animal activities already exist in farming area. However, we lack the understanding of how groundwater contamination due to mass burial of carcass can be differentiated from the contamination due to livestock manures which shows similar chemical characteristics. The chemical compositions of the leachate from carcass burial site and the wastewater from livestock manure treatment facilities were compared. The chemical compositions considered include total organic carbon (TOC), total nitrogen (TN), nitrate, organic nitrogen (Organic nitrogen =TN-Ammonium Nitrogen- Nitrate nitrogen), ammonia, chloride, sodium, potassium and amino acids (20 analytes). The ratios of concentrations of the chemical compositions as indicators of contamination were determined to distinguish the sources of contamination in groundwater. Indicators which showed a linear relationship between two factors and revealed a distinct difference between the carcass leachate and livestock manure were chosen. In addition, the background level of the

  20. Natural attenuation model and biodegradation for 1,1,1-trichloroethane contaminant in shallow groundwater

    PubMed Central

    Lu, Qiang; Zhu, Rui-Li; Yang, Jie; Li, Hui; Liu, Yong-Di; Lu, Shu-Guang; Luo, Qi-Shi; Lin, Kuang-Fei

    2015-01-01

    Natural attenuation is an effective and feasible technology for controlling groundwater contamination. This study investigated the potential effectiveness and mechanisms of natural attenuation of 1,1,1-trichloroethane (TCA) contaminants in shallow groundwater in Shanghai by using a column simulation experiment, reactive transport model, and 16S rRNA gene clone library. The results indicated that the majority of the contaminant mass was present at 2–6 m in depth, the contaminated area was approximately 1000 m × 1000 m, and natural attenuation processes were occurring at the site. The effluent breakthrough curves from the column experiments demonstrated that the effectiveness of TCA natural attenuation in the groundwater accorded with the advection-dispersion-reaction equation. The kinetic parameter of adsorption and biotic dehydrochlorination of TCA was 0.068 m3/kg and 0.0045 d–1. The contamination plume was predicted to diminish and the maximum concentration of TCA decreased to 280 μg/L. The bacterial community during TCA degradation in groundwater belonged to Trichococcus, Geobacteraceae, Geobacter, Mucilaginibacter, and Arthrobacter. PMID:26379629

  1. Speciation of trace inorganic contaminants in corrosion scales and deposits formed in drinking water distribution systems.

    PubMed

    Peng, Ching-Yu; Korshin, Gregory V

    2011-11-01

    Sequential extractions utilizing the modified Tessier scheme (Krishnamurti et al., 1995) and measurements of soluble and particulate metal released from suspended solids were used in this study to determine the speciation and mobility of inorganic contaminants (As, Cr, V, U, Cd, Ni, and Mn) found in corrosion scales and particles mobilized during hydraulic flushing events. Arsenic, chromium and vanadium are primarily associated with the mobilization-resistant fraction that is resistant to all eluents used in this study and also bound in highly stable crystalline iron oxides. Very low concentrations of these elements were released in resuspension experiments. X-ray absorbance measurements demonstrated that arsenic in the sample with the highest As concentration was dominated by As(V) bound by iron oxides. Significant fractions of uranium and cadmium were associated with carbonate solids. Nickel and manganese were determined to be more mobile and significantly associated with organic fractions. This may indicate that biofilms and natural organic matter in the drinking water distributions systems play an important role in the accumulation and release of these inorganic contaminants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Temporal Dynamics of NAPL Source Zone Strength: Relationship between Groundwater Flux and Contaminant Mass Discharge

    NASA Astrophysics Data System (ADS)

    Zhu, J.

    2015-12-01

    Use of contaminant mass discharge (CMD) or mass-flux measurements to characterize site conditions and assess remediation performance of nonaqueous phase liquid (NAPL) is becoming popular. The main objective of this study is to determine how groundwater flux variations in the source zone can affect NAPL dissolution dynamics. In particular, we develop interplays among groundwater flux variations, NAPL aqueous concentration, NAPL CMD and other source strength dynamics. The developed analytical models can capture a wide range of NAPL source zone dynamics encountered in real-world applications. The results demonstrate the significance of groundwater flux variations in influencing the NAPL source dynamics. If groundwater flux decreases with time, the CMD declines initially at higher rate but the rate decreases at later stages. On the other hand, when groundwater flux increases with time, the NAPL CMD exhibits a slower decline initially and faster decrease at later stage. When groundwater flux in the source zone increases with time, the reduction in CMD (CMDR) increases slower than the NAPL mass reduction (MR), leading to a concave downward CMDR versus MR curve. If groundwater flux decreases with time, the CMDR versus MR curve is convex upward. When the groundwater flux does not change with time, CMDR versus MR follows a 1:1 linear relationship.

  3. Groundwater resource vulnerability and spatial variability of nitrate contamination: Insights from high density tubewell monitoring in a hard rock aquifer.

    PubMed

    Buvaneshwari, Sriramulu; Riotte, Jean; Sekhar, M; Mohan Kumar, M S; Sharma, Amit Kumar; Duprey, Jean Louis; Audry, Stephane; Giriraja, P R; Praveenkumarreddy, Yerabham; Moger, Hemanth; Durand, Patrick; Braun, Jean-Jacques; Ruiz, Laurent

    2017-02-01

    Agriculture has been increasingly relying on groundwater irrigation for the last decades, leading to severe groundwater depletion and/or nitrate contamination. Understanding the links between nitrate concentration and groundwater resource is a prerequisite for assessing the sustainability of irrigated systems. The Berambadi catchment (ORE-BVET/Kabini Critical Zone Observatory) in Southern India is a typical example of intensive irrigated agriculture and then an ideal site to study the relative influences of land use, management practices and aquifer properties on NO3 spatial distribution in groundwater. The monitoring of >200 tube wells revealed nitrate concentrations from 1 to 360mg/L. Three configurations of groundwater level and elevation gradient were identified: i) NO3 hot spots associated to deep groundwater levels (30-60m) and low groundwater elevation gradient suggest small groundwater reserve with absence of lateral flow, then degradation of groundwater quality due to recycling through pumping and return flow; ii) high groundwater elevation gradient, moderate NO3 concentrations suggest that significant lateral flow prevented NO3 enrichment; iii) low NO3 concentrations, low groundwater elevation gradient and shallow groundwater indicate a large reserve. We propose that mapping groundwater level and gradient could be used to delineate zones vulnerable to agriculture intensification in catchments where groundwater from low-yielding aquifers is the only source of irrigation. Then, wells located in low groundwater elevation gradient zones are likely to be suitable for assessing the impacts of local agricultural systems, while wells located in zones with high elevation gradient would reflect the average groundwater quality of the catchment, and hence should be used for regional mapping of groundwater quality. Irrigation with NO3 concentrated groundwater induces a "hidden" input of nitrogen to the crop which can reach 200kgN/ha/yr in hotspot areas, enhancing

  4. Spatial interpolation methods and geostatistics for mapping groundwater contamination in a coastal area.

    PubMed

    Elumalai, Vetrimurugan; Brindha, K; Sithole, Bongani; Lakshmanan, Elango

    2017-04-01

    Mapping groundwater contaminants and identifying the sources are the initial steps in pollution control and mitigation. Due to the availability of different mapping methods and the large number of emerging pollutants, these methods need to be used together in decision making. The present study aims to map the contaminated areas in Richards Bay, South Africa and compare the results of ordinary kriging (OK) and inverse distance weighted (IDW) interpolation techniques. Statistical methods were also used for identifying contamination sources. Na-Cl groundwater type was dominant followed by Ca-Mg-Cl. Data analysis indicate that silicate weathering, ion exchange and fresh water-seawater mixing are the major geochemical processes controlling the presence of major ions in groundwater. Factor analysis also helped to confirm the results. Overlay analysis by OK and IDW gave different results. Areas where groundwater was unsuitable as a drinking source were 419 and 116 km(2) for OK and IDW, respectively. Such diverse results make decision making difficult, if only one method was to be used. Three highly contaminated zones within the study area were more accurately identified by OK. If large areas are identified as being contaminated such as by IDW in this study, the mitigation measures will be expensive. If these areas were underestimated, then even though management measures are taken, it will not be effective for a longer time. Use of multiple techniques like this study will help to avoid taking harsh decisions. Overall, the groundwater quality in this area was poor, and it is essential to identify alternate drinking water source or treat the groundwater before ingestion.

  5. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  6. STATISTICAL ESTIMATION AND VISUALIZATION OF GROUND-WATER CONTAMINATION DATA

    EPA Science Inventory

    This work presents methods of visualizing and animating statistical estimates of ground water and/or soil contamination over a region from observations of the contaminant for that region. The primary statistical methods used to produce the regional estimates are nonparametric re...

  7. STATISTICAL ESTIMATION AND VISUALIZATION OF GROUND-WATER CONTAMINATION DATA

    EPA Science Inventory

    This work presents methods of visualizing and animating statistical estimates of ground water and/or soil contamination over a region from observations of the contaminant for that region. The primary statistical methods used to produce the regional estimates are nonparametric re...

  8. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, Robert W.; Frank, James R.; Feng, Xiandong

    1998-01-01

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  9. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, R.W.; Frank, J.R.; Feng, X.

    1998-06-23

    An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

  10. Hydrogeology, ground-water quality, and potential for water-supply contamination near an abandoned wood-preserving plant site at Jackson, Tennessee

    USGS Publications Warehouse

    Parks, W.S.; Mirecki, J.E.; Kingsbury, J.A.

    1993-01-01

    Hydrogeologic and ground-water-quality data were collected near an abandoned wood-preserving plant site at Jackson, Tennessee to determine the extent and magnitude of ground-water contamination in offsite areas and to assess the potential for contamination of nearby water-supply wells. New methods were used to collect ground-water samples from the alluvial aquifer at six offsite stations at depths of less than about 40 feet below land surface. In addition, 36 offsite wells were installed at these stations to collect samples from the alluvial aquifer and to depths of about 150 feet in the deeper Fort Pillow aquifer. Ground-water samples collected by the new methods and from the 36 offsite wells were analyzed for selected volatile and semi-volatile compounds. The samples collected from the 36 wells also were analyzed for major and trace inorganic constituents. Naphthalene and some volatile organic compounds were detected at low concentrations in samples from both the alluvial aquifer and the Fort Pillow aquifer. To assess the potential for water-supply contamination from the site, four water-supply wells to the east (upgradient) and three wells to the west (down- gradient) of the abandoned plant site were sampled. These samples were analyzed for the same analytes as the samples from the 36 wells. Although volatile organic compounds and elevated concentrations of trace and major inorganic constituents were measured in samples from some wells east of the site, no organic compounds associated with the wood- preserving process were detected. No contaminants from the site were detected in samples from wells west of the site.

  11. Alternative Endpoints and Approaches Selected for the Remediation of Contaminated Groundwater at Complex Sites

    NASA Astrophysics Data System (ADS)

    Deeb, R. A.; Hawley, E.

    2011-12-01

    This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and alternative remedial strategies for groundwater remediation under a variety of Federal and state cleanup programs, including technical impracticability (TI) and other Applicable or Relevant and Appropriate Requirement (ARAR) waivers, state and local designations such as groundwater management zones, Alternate Concentration Limits (ACLs), use of monitored natural attenuation (MNA) over long timeframes, and more. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies to illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, timeframe, and potential remedial effectiveness. Case studies provide examples of the flexible, site-specific, application of alternative endpoints and alternative remedial strategies that have been used in the past to manage and remediate groundwater contamination at complex sites. For example, at least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. These designations typically indicate that groundwater contamination is present above permissible levels. Soil and groundwater within these zones are managed to protect human health and the environment. Lesson learned for the analyses

  12. Phytoremediation of explosives contaminated groundwater in constructed wetlands: 2. Flow through study. Draft report

    SciTech Connect

    DBehrends, L.L.; Sikora, F.J.; Phillips, W.D.; Baily, E.; McDonald, C.

    1996-02-01

    This study evaluates the utility of constructed wetlands for remediating explosives contaminated groundwaters using bench scale flow-through type reactors. Specifially the study examines: the degradation of TNT, TNB, RDX, and HMX in contaminated waters in plant lagoons and gravel-based wetlands. The study also provides design recommendations for the wetland demonstration project to be located at the Milan Army Ammunition Plant (MAAP), in Tennessee.

  13. Development of a microbial contamination susceptibility model for private domestic groundwater sources

    NASA Astrophysics Data System (ADS)

    Hynds, Paul D.; Misstear, Bruce D.; Gill, Laurence W.

    2012-12-01

    Groundwater quality analyses were carried out on samples from 262 private sources in the Republic of Ireland during the period from April 2008 to November 2010, with microbial quality assessed by thermotolerant coliform (TTC) presence. Assessment of potential microbial contamination risk factors was undertaken at all sources, and local meteorological data were also acquired. Overall, 28.9% of wells tested positive for TTC, with risk analysis indicating that source type (i.e., borehole or hand-dug well), local bedrock type, local subsoil type, groundwater vulnerability, septic tank setback distance, and 48 h antecedent precipitation were all significantly associated with TTC presence (p < 0.05). A number of source-specific design parameters were also significantly associated with bacterial presence. Hierarchical logistic regression with stepwise parameter entry was used to develop a private well susceptibility model, with the final model exhibiting a mean predictive accuracy of >80% (TTC present or absent) when compared to an independent validation data set. Model hierarchies of primary significance are source design (20%), septic tank location (11%), hydrogeological setting (10%), and antecedent 120 h precipitation (2%). Sensitivity analysis shows that the probability of contamination is highly sensitive to septic tank setback distance, with probability increasing linearly with decreases in setback distance. Likewise, contamination probability was shown to increase with increasing antecedent precipitation. Results show that while groundwater vulnerability category is a useful indicator of aquifer susceptibility to contamination, its suitability with regard to source contamination is less clear. The final model illustrates that both localized (well-specific) and generalized (aquifer-specific) contamination mechanisms are involved in contamination events, with localized bypass mechanisms dominant. The susceptibility model developed here could be employed in the

  14. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India: the role of organic and inorganic colloids.

    PubMed

    Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Chatterjee, Debashis; Roman-Ross, Gabriela; Hidalgo, Manuela

    2014-01-15

    Dissolved organic carbon (DOC) and Fe mineral phases are known to influence the mobility of arsenic (As) in groundwater. Arsenic can be associated with colloidal particles containing organic matter and Fe. Currently, no data is available on the dissolved phase/colloidal association of As in groundwater of alluvial aquifers in West Bengal, India. This study investigated the fractional distribution of As (and other metals/metalloids) among the particulate, colloidal and dissolved phases in groundwater to decipher controlling behavior of organic and inorganic colloids on As mobility. The result shows that 83-94% of As remained in the 'truly dissolved' phases (i.e., <0.05 μm size). Strong positive correlation between Fe and As (r(2) between 0.65 and 0.94) is mainly observed in the larger (i.e., >0.05 μm size) colloidal particles, which indicates the close association of As with larger Fe-rich inorganic colloids. In smaller (i.e., <0.05 μm size) colloidal particles strong positive correlation is observed between As and DOC (r(2)=0.85), which highlights the close association of As with smaller organic colloids. As(III) is mainly associated with larger inorganic colloids, whereas, As(V) is associated with smaller organic/organometallic colloids. Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy confirm the association of As with DOC and Fe mineral phases suggesting the formation of dissolved organo-Fe complexes and colloidal organo-Fe oxide phases. Attenuated total reflectance-Fourier transform infrared spectroscopy further confirms the formation of As-Fe-NOM organometallic colloids, however, a detailed study of these types of colloids in natural waters is necessary to underpin their controlling behavior. © 2013 Elsevier B.V. All rights reserved.

  15. Assessment of ground-water contamination in the alluvial aquifer near West Point, Kentucky

    USGS Publications Warehouse

    Lyverse, M.A.; Unthank, M.D.

    1988-01-01

    Well inventories, water level measurements, groundwater quality samples, surface geophysical techniques (specifically, electromagnetic techniques), and test drilling were used to investigate the extent and sources of groundwater contamination in the alluvial aquifer near West Point, Kentucky. This aquifer serves as the principal source of drinking water for over 50,000 people. Groundwater flow in the alluvial aquifer is generally unconfined and moves in a northerly direction toward the Ohio River. Two large public supply well fields and numerous domestic wells are located in this natural flow path. High concentrations of chloride in groundwater have resulted in the abandonment of several public supply wells in the West Point areas. Chloride concentrations in water samples collected for this study were as high as 11,000 mg/L. Electromagnetic techniques indicated and test drilling later confirmed that the source of chloride in well waters was probably improperly plugged or unplugged, abandoned oil and gas exploration wells. The potential for chloride contamination of wells exists in the study area and is related to proximity to improperly abandoned oil and gas exploration wells and to gradients established by drawdowns associated with pumped wells. Periodic use of surface geophysical methods, in combination with added observation wells , could be used to monitor significant changes in groundwater quality related to chloride contamination. (USGS)

  16. Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds.

    PubMed

    Stuart, Marianne E; Lapworth, Dan J; Thomas, Jenny; Edwards, Laura

    2014-01-15

    Evaluating the occurrence of microorganics helps to understand sources and processes which may be controlling the transport and fate of emerging contaminants (ECs). A study was carried out at the contrasting instrumented environmental observatory sites at Oxford, on the peri-urban floodplain gravel aquifer of the River Thames and Boxford, in the rural valley of the River Lambourn on the chalk aquifer, in Southern England to explore the use of ECs to fingerprint contaminant sources and flow pathways in groundwater. At Oxford compounds were typical of a local waste tip plume (not only plasticisers and solvents but also barbiturates and N,N-diethyl-m-toluamide (DEET)) and of the urban area (plasticisers and mood-enhancing drugs such as carbamazepine). At Boxford the results were different with widespread occurrence of agricultural pesticides, their metabolites and the solvent trichloroethene, as well as plasticisers, caffeine, butylated food additives, DEET, parabens and trace polyaromatic hydrocarbons (PAHs). Groups of compounds used in pharmaceuticals and personal care products of different provenance in the environment could be distinguished, i) historical household and medical waste, ii) long-term household usage persistent in groundwater and iii) current usage and contamination from surface water. Co-contaminant and degradation products can also indicate the likely source of contaminants. A cocktail of contaminants can be used as tracers to provide information on catchment pathways and groundwater/surface water interactions. A prominent feature in this study is the attenuation of many EC compounds in the hyporheic zone.

  17. Uncertainty quantification of adverse human health effects from continuously released contaminant sources in groundwater systems

    NASA Astrophysics Data System (ADS)

    Zarlenga, Antonio; de Barros, Felipe P. J.; Fiori, Aldo

    2016-10-01

    We propose a computationally efficient probabilistic modeling methodology to estimate the adverse effects on humans of exposure to contaminated groundwater. Our work is aligned with the standard suggested by the regulatory agencies and allows to propagate uncertainty from hydrogeological, toxicological and behavioral parameters to the final health risk endpoint. The problem under consideration consists of a contaminated aquifer supplying water to a population. Contamination stems from a continuous source that feeds a steady plume which constitutes the hazard source. This scenario is particularly suited for NAPL pollutants. The erratic displacement of the contaminant plume in groundwater, due to the spatial variability of hydraulic conductivity, is characterized within the Lagrangian stochastic framework which enables the complete probabilistic characterization of the contaminant concentration at an environmentally sensitive location. Following the probabilistic characterization of flow and transport, we quantify the adverse health effects on humans. The dose response assessment involves the estimation of the uncertain effects of the exposure to a given contaminant while accounting for the exposed individual's metabolism. The model integrates groundwater transport, exposure and human metabolism in a comprehensive probabilistic framework which allows the assessment of the risk probability through a novel simple analytical solution. Aside from its computational efficiency, the analytical features of the framework allows the assessment of uncertainty arising from the hydrogeological parameters.

  18. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    PubMed

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures.

  19. Using soil and contaminant properties to assess the potential for groundwater contamination to the lower Great Lakes, USA

    NASA Astrophysics Data System (ADS)

    Kaufman, Martin M.; Rogers, Daniel T.; Murray, Kent S.

    2009-01-01

    Contaminant risk factors in surface soil were evaluated within the urbanized Rouge River watershed in southeastern Michigan, USA, which includes metropolitan Detroit. An analytical risk factor model and Geographic Information Systems overlays were used to quantify and characterize the potential impacts of five categories of contaminants including DNAPLs (dense nonaqueous phase liquids), LNAPLs (light nonaqueous phase liquids), PAHs (polynuclear aromatic hydrocarbons), PCBs (polychlorinated biphenyls), and lead. The results indicate that DNAPL compounds released into sand, moraine, and sandy and silty clay soil types have the greatest potential to affect groundwater, and impact the Great Lakes ecosystem and the public health.

  20. Edible Oil Barriers for Treatment of Chlorinated Solvent Contaminated Groundwater

    DTIC Science & Technology

    2009-07-01

    Measurements 6-4 Laboratory Study: Biological Assay on Groundwater and Blended Sediment 6-5 Properties of Different Alkalis Used for pH Adjustments 6...of heavy metals (Cu, Hg, Zn) and some organic compounds can inhibit anaerobic biodegradation processes. A number of studies have shown that...different alkali materials to increase the pH of the aquifer. These included: hydrated lime (Ca(OH)2), magnesium hydroxide (Mg(OH)2), sodium hydroxide

  1. Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Kamal, Rakesh Kant

    2016-06-01

    The objective of the study is to reveal the seasonal variations in the groundwater quality with respect to heavy metal contamination. To get the extent of the heavy metals contamination, groundwater samples were collected from 45 different locations in and around Goa mining area during the monsoon and post-monsoon seasons. The concentration of heavy metals, such as lead, copper, manganese, zinc, cadmium, iron, and chromium, were determined using atomic absorption spectrophotometer. Most of the samples were found within limit except for Fe content during the monsoon season at two sampling locations which is above desirable limit, i.e., 300 µg/L as per Indian drinking water standard. The data generated were used to calculate the heavy metal pollution index (HPI) for groundwater. The mean values of HPI were 1.5 in the monsoon season and 2.1 in the post-monsoon season, and these values are well below the critical index limit of 100.

  2. Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Kamal, Rakesh Kant

    2017-06-01

    The objective of the study is to reveal the seasonal variations in the groundwater quality with respect to heavy metal contamination. To get the extent of the heavy metals contamination, groundwater samples were collected from 45 different locations in and around Goa mining area during the monsoon and post-monsoon seasons. The concentration of heavy metals, such as lead, copper, manganese, zinc, cadmium, iron, and chromium, were determined using atomic absorption spectrophotometer. Most of the samples were found within limit except for Fe content during the monsoon season at two sampling locations which is above desirable limit, i.e., 300 µg/L as per Indian drinking water standard. The data generated were used to calculate the heavy metal pollution index (HPI) for groundwater. The mean values of HPI were 1.5 in the monsoon season and 2.1 in the post-monsoon season, and these values are well below the critical index limit of 100.

  3. Contaminated land and groundwater management at Sellafield, a large operational site with significant legacy and contaminated land challenges

    SciTech Connect

    Reeve, Phil; Eilbeck, Katherine

    2007-07-01

    Sellafield is a former Royal Ordnance Factory used since the 1940's for the production and reprocessing of fissile materials. Leaks and spills from these plants and their associated waste facilities has led to radioactive contaminated ground legacy of up to 20 million m{sup 3}. Consideration of land contamination at Sellafield began in 1976, following discovery of a major leak from a waste storage silo. Over the past three decades there has been a programme of environmental monitoring and several phases of characterization. The latest phase of characterization is a pounds 10 million contract to develop second generation conceptual and numeric models. The Site Licence Company that operates the site has been subject to structural changes due to reorganizations within the British nuclear industry. There has also been a change in emphasis to place an increased importance on accelerated decommissioning. To address these challenges a new contaminated land team and contaminated land and groundwater management plan have been established. Setting and measuring performance against challenging objectives is important. The management plan has to be cognizant of the long timescales (ca. 80 years) for final remediation. Data review, collation, acquisition, analysis, and storage is critical for success. It is equally important to seize opportunities for early environmental gains. It is possible to accelerate the development and delivery of a contaminated land and groundwater management plan by using international experts. (authors)

  4. Preconcentration for Improved Long-term Monitoring of Contaminants in Groundwater

    DTIC Science & Technology

    2014-04-10

    facilities where waste from weapons manufacture , storage, and reclamation processes has leached into the soil and groundwater. Key contaminants...and current testing and training facilities where waste from weapons manufacture , storage, and reclamation processes has leached into the soil and...quality at munitions testing and training sites as well as sites of storage and manufacture . A baseline for performance was established using

  5. OASIS: A GEOGRAPHICAL DECISION SUPPORT SYSTEM FOR GROUND-WATER CONTAMINANT MODELING

    EPA Science Inventory

    Three new software technologies were applied to develop an efficient and easy to use decision support system for ground-water contaminant modeling. Graphical interfaces create a more intuitive and effective form of communication with the computer compared to text-based interfaces...

  6. EVALUATION OF SULFATE-REDUCING BACTERIA TO PRECIPITATE MERCURY FROM CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Several regions in the Republic of Kazakhstan are contaminated with mercury as a result of releases from industrial plants. Operations at an old chemical plant, "Khimprom", which produced chlorine and alkali in the 1970s - 1990s, resulted in significant pollution of groundwater ...

  7. Calibration of a groundwater flow and contaminant transport computer model: Progress toward model validation

    SciTech Connect

    Lee, R. R.; Ketelle, R. H.; Bownds, J. M.; Rizk, T. A.

    1989-09-01

    A groundwater flow and contaminant transport model calibration was performed to evaluate the ability of a typical, verified computer code to simulate groundwater tracer migration in the shallow aquifer of the Conasauga Group. Previously, standard practice site data interpretation and groundwater modeling resulted in inaccurate simulations of contaminant transport direction and rate compared with tracer migration behavior. The site's complex geology, the presence of flow in both fractured and weathered zones, and the transient character of flow in the shallow aquifer combined to render inaccurate assumptions of steady-state, homogeneous groundwater flow. The improvement of previous modeling results required iterative phases of conceptual model development, hypothesis testing, site field investigations, and modeling. The activities focused on generating a model grid that was compatible with site hydrogeologic conditions and on establishing boundary conditions based on site data. An annual average water table configuration derived from site data and fixed head boundary conditions was used as input for flow modeling. The contaminant transport model was combined with the data-driven flow model to obtain a preliminary contaminant plume. Calibration of the transport code was achieved by comparison with site tracer migration and concentration data. This study documents the influence of fractures and the transient character of flow and transport in the shallow aquifer. Although compatible with porous medium theory, site data demonstrate that the tracer migration pathway would not be anticipated using conventional porous medium analysis. 126 figs., 22 refs., 5 tabs.

  8. EVALUATION OF SULFATE-REDUCING BACTERIA TO PRECIPITATE MERCURY FROM CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Several regions in the Republic of Kazakhstan are contaminated with mercury as a result of releases from industrial plants. Operations at an old chemical plant, "Khimprom", which produced chlorine and alkali in the 1970s - 1990s, resulted in significant pollution of groundwater ...

  9. Ground-water and soil contamination near two pesticide-burial sites in Minnesota

    USGS Publications Warehouse

    Stark, J.R.; Strudell, J.D.; Bloomgren, P.A.; Eger, P.

    1987-01-01

    In general, concentrations of lead and arsenic in soil and groundwater were below background concentrations for the areas. Concentrations of organic pesticides generally were below analytical-detection limits. The limited solubility of the chemicals and the tendency of the contaminants to be sorbed on soil particles probably combined to restrict mobilization of the chemicals.

  10. Grand challenge problems in environmental modeling and remediation: groundwater contaminant transport

    SciTech Connect

    Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler

    1998-08-31

    This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.

  11. Modeling nonpoint source nitrate contamination and associated uncertainty in groundwater of U.S. regional aquifers

    NASA Astrophysics Data System (ADS)

    Gurdak, J. J.; Lujan, C.

    2009-12-01

    Nonpoint source nitrate contamination in groundwater is spatially variable and can result in elevated nitrate concentrations that threaten drinking-water quality in many aquifers of the United States. Improved modeling approaches are needed to quantify the spatial controls on nonpoint source nitrate contamination and the associated uncertainty of predictive models. As part of the U.S. Geological Survey National Water Quality Assessment Program, logistic regression models were developed to predict nitrate concentrations greater than background in recently recharged (less than 50 years) groundwater in selected regional aquifer systems of the United States; including the Central Valley, California Coastal Basins, Basin and Range, Floridan, Glacial, Coastal Lowlands, Denver Basin, High Plains, North Atlantic Coastal Plain, and Piedmont aquifer systems. The models were used to evaluate the spatial controls of climate, soils, land use, hydrogeology, geochemistry, and water-quality conditions on nitrate contamination. The novel model Raster Error Propagation Tool (REPTool) was used to estimate error propagation and prediction uncertainty in the predictive nitrate models and to determine an approach to reduce uncertainty in future model development. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the prediction uncertainty of the model output. The presented nitrate models, maps, and uncertainty analysis provide important tools for water-resource managers of regional groundwater systems to identify likely areas and the spatial controls on nonpoint source nitrate contamination in groundwater.

  12. IN-SITU REDUCTION OF CHROMIUM-CONTAMINATED GROUNDWATER, SOILS, AND SEDIMENTS BY SODIUM DITHIONITE

    EPA Science Inventory

    Laboratory studies were conducted to characterize the extent of chromium contamination in the groundwater and underlying soils and sediments of a chrome-plating shop at the USCG Support Center near Elizabeth City, NC. Most of the mobile Cr(VI) is present in the capillary zone ...

  13. Abiotic remediation of nitro-aromatic groundwater contaminants by zero-valent iron

    SciTech Connect

    Agrawal, A.; Tratnyek, P.G.

    1994-03-18

    Recent laboratory and field experiments have shown that some halogenated hydrocarbons undergo rapid reductive dehalogenation with zero-valent iron and the application of this process is being developed for in-situ remediation of contaminated groundwater. However, from can also reduce other organic substances and is commonly used to synthesize reduction products nitro compounds.

  14. TAILORING CATALYSTS FOR HYDRODECHLORINATING CHLORINATED HYDROCARBON CONTAMINANTS IN GROUNDWATER. (R825689C093)

    EPA Science Inventory

    Abstract

    A palladium-on-zeolite catalyst has been optimized for treating groundwater contaminated with halogenated hydrocarbon compounds (HHCs) by hydrodechlorination with dissolved hydrogen. Aqueous sulfite was used as the model poison and the dechlorination of 1,2-di...

  15. TAILORING CATALYSTS FOR HYDRODECHLORINATING CHLORINATED HYDROCARBON CONTAMINANTS IN GROUNDWATER. (R825689C078)

    EPA Science Inventory

    Abstract

    A palladium-on-zeolite catalyst has been optimized for treating groundwater contaminated with halogenated hydrocarbon compounds (HHCs) by hydrodechlorination with dissolved hydrogen. Aqueous sulfite was used as the model poison and the dechlorination of 1,2-di...

  16. IN-SITU REDUCTION OF CHROMIUM-CONTAMINATED GROUNDWATER, SOILS, AND SEDIMENTS BY SODIUM DITHIONITE

    EPA Science Inventory

    Laboratory studies were conducted to characterize the extent of chromium contamination in the groundwater and underlying soils and sediments of a chrome-plating shop at the USCG Support Center near Elizabeth City, NC. Most of the mobile Cr(VI) is present in the capillary zone ...

  17. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    SciTech Connect

    Robert S. Bowman; Zhaohui Li; Stephen J. Roy; Todd Burt; Timothy L. Johnson; Richard L. Johnson

    1999-08-30

    The overall objective of this effort is to develop and test a zeolite-based permeable barrier system for containing and remediating contaminated groundwater. The projected product is an engineered and tested permeable barrier system that can be adopted by the commercial sector.

  18. TAILORING CATALYSTS FOR HYDRODECHLORINATING CHLORINATED HYDROCARBON CONTAMINANTS IN GROUNDWATER. (R825689C093)

    EPA Science Inventory

    Abstract

    A palladium-on-zeolite catalyst has been optimized for treating groundwater contaminated with halogenated hydrocarbon compounds (HHCs) by hydrodechlorination with dissolved hydrogen. Aqueous sulfite was used as the model poison and the dechlorination of 1,2-di...

  19. TAILORING CATALYSTS FOR HYDRODECHLORINATING CHLORINATED HYDROCARBON CONTAMINANTS IN GROUNDWATER. (R825689C078)

    EPA Science Inventory

    Abstract

    A palladium-on-zeolite catalyst has been optimized for treating groundwater contaminated with halogenated hydrocarbon compounds (HHCs) by hydrodechlorination with dissolved hydrogen. Aqueous sulfite was used as the model poison and the dechlorination of 1,2-di...

  20. Testing of a benchscale Reverse Osmosis/Coupled Transport system for treating contaminated groundwater

    SciTech Connect

    Hodgson, K.M.; Lunsford, T.R.; Panjabi, G.

    1994-01-01

    The Reverse Osmosis/Coupled Transport process is a innovative means of removing radionuclides from contaminated groundwater at the Hanford Site. Specifically, groundwater in the 200 West Area of the Hanford Site has been contaminated with uranium, technetium, and nitrate. Investigations are proceeding to determine the most cost effective method to remove these contaminants. The process described in this paper combines three different membrane technologies (reverse osmosis, coupled transport, and nanofiltration to purify the groundwater while extracting and concentrating uranium, technetium, and nitrate into separate solutions. This separation allows for the future use of the radionuclides, if needed, and reduces the amount of waste that will need to be disposed of. This process has the potential to concentrate the contaminants into solutions with volumes in a ratio of 1/10,000 of the feed volume. This compares to traditional volume reductions of 10 to 100 for ion exchange and stand-alone reverse osmosis. The successful demonstration of this technology could result in significant savings in the overall cost of decontaminating the groundwater.

  1. OASIS: A GEOGRAPHICAL DECISION SUPPORT SYSTEM FOR GROUND-WATER CONTAMINANT MODELING

    EPA Science Inventory

    Three new software technologies were applied to develop an efficient and easy to use decision support system for ground-water contaminant modeling. Graphical interfaces create a more intuitive and effective form of communication with the computer compared to text-based interfaces...

  2. Past and Current Groundwater Flow and Contaminant Distribution at Single-Shell Tank Waste Management Areas

    SciTech Connect

    Horton, Duane G.

    2008-01-17

    This will be part of a CH2M HILL document. It summarizes important finidings from historic and recent groundwater investigations of the uppermost aquifer beneath the 200 East and 200 West Areas. The document also summarizes ongoing work to further characterize the unconfined aquifer and contaminants in that aquifer.

  3. Influence Of Groundwater Discharge On Arsenic Contamination In Sediments

    EPA Science Inventory

    A field investigation was conducted to evaluate the impact of a discharging arsenic plume on sediment contaminant characteristics at a site adjacent to a landfill in northeastern Massachusetts. Site characterization included assessment of the hydrologic and chemical samples coll...

  4. The Use of Bacteria for Remediation of Mercury Contaminated Groundwater

    EPA Science Inventory

    Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...

  5. The Use of Bacteria for Remediation of Mercury Contaminated Groundwater

    EPA Science Inventory

    Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...

  6. Influence Of Groundwater Discharge On Arsenic Contamination In Sediments

    EPA Science Inventory

    A field investigation was conducted to evaluate the impact of a discharging arsenic plume on sediment contaminant characteristics at a site adjacent to a landfill in northeastern Massachusetts. Site characterization included assessment of the hydrologic and chemical samples coll...

  7. Development and application of a novel method for regional assessment of groundwater contamination risk in the Songhua River Basin.

    PubMed

    Nixdorf, Erik; Sun, Yuanyuan; Lin, Mao; Kolditz, Olaf

    2017-12-15

    The main objective of this study is to quantify the groundwater contamination risk of Songhua River Basin by applying a novel approach of integrating public datasets, web services and numerical modelling techniques. To our knowledge, this study is the first to establish groundwater risk maps for the entire Songhua River Basin, one of the largest and most contamination-endangered river basins in China. Index-based groundwater risk maps were created with GIS tools at a spatial resolution of 30arc sec by combining the results of groundwater vulnerability and hazard assessment. Groundwater vulnerability was evaluated using the DRASTIC index method based on public datasets at the highest available resolution in combination with numerical groundwater modelling. As a novel approach to overcome data scarcity at large scales, a web mapping service based data query was applied to obtain an inventory for potential hazardous sites within the basin. The groundwater risk assessment demonstrated that <1% of Songhua River Basin is at high or very high contamination risk. These areas were mainly located in the vast plain areas with hotspots particularly in the Changchun metropolitan area. Moreover, groundwater levels and pollution point sources were found to play a significantly larger impact in assessing these areas than originally assumed by the index scheme. Moderate contamination risk was assigned to 27% of the aquifers, predominantly associated with less densely populated agricultural areas. However, the majority of aquifer area in the sparsely populated mountain ranges displayed low groundwater contamination risk. Sensitivity analysis demonstrated that this novel method is valid for regional assessments of groundwater contamination risk. Despite limitations in resolution and input data consistency, the obtained groundwater contamination risk maps will be beneficial for regional and local decision-making processes with regard to groundwater protection measures, particularly if

  8. A top specified boundary layer (TSBL) approximation approach for the simulation of groundwater contamination processes

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    1996-01-01

    This paper presents improvements in the 'classical boundary layer' (CBL) approximation method to obtain simple but robust initial characterization of aquifer contamination processes. Contaminants are considered to penetrate into the groundwater through the free surface of the aquifer. The improved method developed in this study is termed the 'top specified boundary layer' (TSBL) approach. It involves the specification of the contaminant concentration at the top of the contaminated 'region of interest' (ROI), which is simulated as a boundary layer. the TSBL modification significantly improves the ability of the boundary layer method to predict the development of concentration profiles over both space and time. The TSBL method can be useful for the simulation of cases in which the contaminant concentration is prescribed at the aquifer's free surface as well as for cases in which the contaminant mass flux is prescribed at the surface.

  9. Spatial distribution and health risk assessment for groundwater contamination from intensive pesticide use in arid areas.

    PubMed

    El Alfy, Mohamed; Faraj, Turki

    2017-02-01

    Arid and semiarid areas face major challenges in the management of scarce groundwater. This valuable resource is under pressures of population, economic expansion, contamination and over-exploitation. This research investigates groundwater vulnerability to pesticide contamination in the Al-Kharj area of Saudi Arabia. It explores the spatial distribution of pesticide concentrations in groundwater and other relevant factors. Thin permeable soils, permeable aquifers and shallow water tables, which are prevalent in the area, are especially vulnerable to pesticides. Analyses of 40 groundwater samples were performed using a gas chromatograph mass spectrometer coupled with a quadrupole mass spectrometer with a GC column. The analysis was conducted to detect 32 pesticides from different chemical families, and a total of 22 pesticides were detected. All 40 water samples were positive for at least one of the pesticides studied. In total, 21 compounds were above the quantification limit and 10 of them exceeded the legal limit. Total pesticide levels ranged from 0.18 to 2.21 μg/L, and 68 % of the analyzed samples exceeded the maximum allowable pesticide concentrations established by the European Community. Comparison of the daily intake peak (DIP) and daily intake mean (DIM) relative to the acceptable daily intake (ADI) shows that groundwater contamination with pesticides is a serious problem. Prolonged exposure to pesticides can cause adverse effects to human health and the ecosystem. Spatial distribution maps of groundwater contamination were developed using GIS. These maps will help risk managers identify vulnerable sources and provide a relative assessment of pesticide hazards to human health and the environment.

  10. Contamination of groundwater under cultivated fields in an arid environment, central Arava Valley, Israel

    USGS Publications Warehouse

    Oren, O.; Yechieli, Y.; Böhlke, J.K.; Dody, A.

    2004-01-01

    The purpose of this study is to obtain a better understanding of groundwater contamination processes in an arid environment (precipitation of 50 mm/year) due to cultivation. Additional aims were to study the fate of N, K, and other ions along the whole hydrological system including the soil and vadose zone, and to compare groundwater in its natural state with contaminated groundwater (through the drilling of several wells). A combination of physical, chemical, and isotopic analyses was used to describe the hydrogeological system and the recharge trends of water and salts to the aquifers. The results indicate that intensive irrigation and fertilization substantially affected the quantity and quality of groundwater recharge. Low irrigation efficiency of about 50% contributes approximately 3.5-4 millionm3/year to the hydrological system, which corresponds to 0.65 m per year of recharge in the irrigated area, by far the most significant recharge mechanism. Two main contamination processes were identified, both linked to human activity: (1) salinization due to circulation of dissolved salts in the irrigation water itself, mainly chloride, sulfate, sodium and calcium, and (2) direct input of nitrate and potassium mainly from fertilizers. The nitrate concentrations in a local shallow groundwater lens range between 100 and 300 mg/l and in the upper sub-aquifer are over 50 mg/l. A major source of nitrate is fertilizer N in the excess irrigation water. The isotopic compositions of ??15N- NO3 (range of 4.9-14.8???) imply also possible contributions from nearby sewage ponds and/or manure. Other evidence of contamination of the local groundwater lens includes high concentrations of K (20-120 mg/l) and total organic carbon (about 10 mg/l). ?? 2004 Elsevier B.V. All rights reserved.

  11. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales.

    PubMed

    Manamsa, Katya; Crane, Emily; Stuart, Marianne; Talbot, John; Lapworth, Dan; Hart, Alwyn

    2016-10-15

    A large variety of micro-organic (MO) compounds is used in huge quantities for a range of purposes (e.g. manufacturing, food production, healthcare) and is now being frequently detected in the aquatic environment. Interest in the occurrence of MO contaminants in the terrestrial and aquatic environments continues to grow, as well as in their environmental fate and potential toxicity. However, the contamination of groundwater resources by MOs has a limited evidence base compared to other freshwater resources. Of particular concern are newly 'emerging contaminants' such as pharmaceuticals and lifestyle compounds, particularly those with potential endocrine disrupting properties. While groundwater often has a high degree of protection from pollution due to physical, chemical and biological attenuation processes in the subsurface compared to surface aquatic environments, trace concentrations of a large range of compounds are still detected in groundwater and in some cases may persist for decades due to the long residence times of groundwater systems. This study provides the first national-scale assessment of micro-organic compounds in groundwater in England and Wales. A large set of monitoring data was analysed to determine the relative occurrence and detected concentrations of different groups of compounds and to determine relationships with land-use, aquifer type and groundwater vulnerability. MOs detected including emerging compounds such as caffeine, DEET, bisphenol A, anti-microbial agents and pharmaceuticals as well as a range of legacy contaminants including chlorinated solvents and THMs, petroleum hydrocarbons, pesticides and other industrial compounds. There are clear differences in MOs between land-use types, particularly for urban-industrial and natural land-use. Temporal trends of MO occurrence are assessed but establishing long-term trends is not yet possible. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  12. Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site—A Case Study, Tainan City, Taiwan

    PubMed Central

    Chen, Chao-Shi; Tu, Chia-Huei; Chen, Shih-Jen; Chen, Cheng-Chung

    2016-01-01

    Contaminant transport in subsurface water is the major pathway for contamination spread from contaminated sites to groundwater supplies, to remediate a contaminated site. The aim of this paper was to set up the groundwater contaminant transport model for the Wang-Tien landfill site, in southwestern Taiwan, which exhibits high contamination of soil and groundwater and therefore represents a potential threat for the adjacent Hsu-Hsian Creek. Groundwater Modeling System software, which is the most sophisticated groundwater modeling tool available today, was used to numerically model groundwater flow and contaminant transport. In the simulation, the total mass of pollutants in the aquifer increased by an average of 72% (65% for ammonium nitrogen and 79% for chloride) after 10 years. The simulation produced a plume of contaminated groundwater that extends 80 m in length and 20 m in depth northeastward from the landfill site. Although the results show that the concentrations of ammonium nitrogen and chlorides in most parts are low, they are 3.84 and 467 mg/L, respectively, in the adjacent Hsu-Hsian Creek. PMID:27153078

  13. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado. Revision 1

    SciTech Connect

    Not Available

    1994-04-01

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  14. Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic

    USGS Publications Warehouse

    Burgess, W.G.; Hoque, M.A.; Michael, H.A.; Voss, C.I.; Breit, G.N.; Ahmed, K.M.

    2010-01-01

    Shallow groundwater, the primary water source in the Bengal Basin, contains up to 100 times the World Health Organization (WHO) drinking-water guideline of 10g l 1 arsenic (As), threatening the health of 70 million people. Groundwater from a depth greater than 150m, which almost uniformly meets the WHO guideline, has become the preferred alternative source. The vulnerability of deep wells to contamination by As is governed by the geometry of induced groundwater flow paths and the geochemical conditions encountered between the shallow and deep regions of the aquifer. Stratification of flow separates deep groundwater from shallow sources of As in some areas. Oxidized sediments also protect deep groundwater through the ability of ferric oxyhydroxides to adsorb As. Basin-scale groundwater flow modelling suggests that, over large regions, deep hand-pumped wells for domestic supply may be secure against As invasion for hundreds of years. By contrast, widespread deep irrigation pumping might effectively eliminate deep groundwater as an As-free resource within decades. Finer-scale models, incorporating spatial heterogeneity, are needed to investigate the security of deep municipal abstraction at specific urban locations. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  15. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence.

    PubMed

    Lapworth, D J; Baran, N; Stuart, M E; Ward, R S

    2012-04-01

    Emerging organic contaminants (EOCs) detected in groundwater may have adverse effects on human health and aquatic ecosystems. This paper reviews the existing occurrence data in groundwater for a range of EOCs including pharmaceutical, personal care, 'life-style' and selected industrial compounds. The main sources and pathways for organic EOCs in groundwater are reviewed, with occurrence data for EOCs in groundwater included from both targeted studies and broad reconnaissance surveys. Nanogram-microgram per litre concentrations are present in groundwater for a large range of EOCs as well as metabolites and transformation products and under certain conditions may pose a threat to freshwater bodies for decades due to relatively long groundwater residence times. In the coming decades, more of these EOCs are likely to have drinking water standards, environmental quality standards and/or groundwater threshold values defined, and therefore a better understanding of the spatial and temporal variation remains a priority. Copyright © 2012 Natural Environment Research Council. Published by Elsevier Ltd.. All rights reserved.

  16. The assessment of groundwater nitrate contamination by using logistic regression model in a representative rural area

    NASA Astrophysics Data System (ADS)

    Ko, K.; Cheong, B.; Koh, D.

    2010-12-01

    Groundwater has been used a main source to provide a drinking water in a rural area with no regional potable water supply system in Korea. More than 50 percent of rural area residents depend on groundwater as drinking water. Thus, research on predicting groundwater pollution for the sustainable groundwater usage and protection from potential pollutants was demanded. This study was carried out to know the vulnerability of groundwater nitrate contamination reflecting the effect of land use in Nonsan city of a representative rural area of South Korea. About 47% of the study area is occupied by cultivated land with high vulnerable area to groundwater nitrate contamination because it has higher nitrogen fertilizer input of 62.3 tons/km2 than that of country’s average of 44.0 tons/km2. The two vulnerability assessment methods, logistic regression and DRASTIC model, were tested and compared to know more suitable techniques for the assessment of groundwater nitrate contamination in Nonsan area. The groundwater quality data were acquired from the collection of analyses of 111 samples of small potable supply system in the study area. The analyzed values of nitrate were classified by land use such as resident, upland, paddy, and field area. One dependent and two independent variables were addressed for logistic regression analysis. One dependent variable was a binary categorical data with 0 or 1 whether or not nitrate exceeding thresholds of 1 through 10 mg/L. The independent variables were one continuous data of slope indicating topography and multiple categorical data of land use which are classified by resident, upland, paddy, and field area. The results of the Levene’s test and T-test for slope and land use were showed the significant difference of mean values among groups in 95% confidence level. From the logistic regression, we could know the negative correlation between slope and nitrate which was caused by the decrease of contaminants inputs into groundwater with

  17. Characterization and assessment of contaminated soil and groundwater at an organic chemical plant site in Chongqing, Southwest China.

    PubMed

    Liu, Geng; Niu, Junjie; Zhang, Chao; Guo, Guanlin

    2016-04-01

    Contamination from organic chemical plants can cause serious pollution of soil and groundwater ecosystems. To characterize soil contamination and to evaluate the health risk posed by groundwater at a typical organic chemical plant site in Chongqing, China, 91 soil samples and seven groundwater samples were collected. The concentrations of different contaminants and their three-dimensional distribution were determined based on the 3D-krige method. Groundwater chemistry risk index (Chem RI) and cancer risk were calculated based on TRIAD and RBCA models. The chemistry risk indices of groundwater points SW5, SW18, SW22, SW39, SW52, SW80, and SW82 were 0.4209, 0.9972, 0.9324, 0.9990, 0.9991, 1.0000, and 1.0000, respectively, indicating that the groundwater has poor environmental status. By contrast, the reference Yangtse River water sample showed no pollution with a Chem RI of 0.1301. Benzene and 1,2-dichloroethane were the main contaminants in the groundwater and were responsible for the elevated cancer risk. The cumulative health risk of groundwater points (except SW5 and SW18) were all higher than the acceptable baselines of 10(-6), which indicates that the groundwater poses high cancer risk. Action is urgently required to control and remediate the risk for human health and groundwater ecosystems.

  18. Probabilistic health risk assessment for ingestion of seafood farmed in arsenic contaminated groundwater in Taiwan.

    PubMed

    Liang, Ching-Ping; Jang, Cheng-Shin; Chen, Jui-Sheng; Wang, Sheng-Wei; Lee, Jin-Jing; Liu, Chen-Wuing

    2013-08-01

    Seafood farmed in arsenic (As)-contaminated areas is a major exposure pathway for the ingestion of inorganic As by individuals in the southwestern part of Taiwan. This study presents a probabilistic risk assessment using limited data for inorganic As intake through the consumption of the seafood by local residents in these areas. The As content and the consumption rate are both treated as probability distributions, taking into account the variability of the amount in the seafood and individual consumption habits. The Monte Carlo simulation technique is utilized to conduct an assessment of exposure due to the daily intake of inorganic As from As-contaminated seafood. Exposure is evaluated according to the provisional tolerable weekly intake (PTWI) established by the FAO/WHO and the target risk based on the US Environmental Protection Agency guidelines. The assessment results show that inorganic As intake from five types of fish (excluding mullet) and shellfish fall below the PTWI threshold values for the 95th percentiles, but exceed the target cancer risk of 10(-6). The predicted 95th percentile for inorganic As intake and lifetime cancer risks obtained in the study are both markedly higher than those obtained in previous studies in which the consumption rate of seafood considered is a deterministic value. This study demonstrates the importance of the individual variability of seafood consumption when evaluating a high exposure sub-group of the population who eat higher amounts of fish and shellfish than the average Taiwanese.

  19. Enrichment of dissimilatory Fe(III)-reducing bacteria from groundwater of the Siklós BTEX-contaminated site (Hungary).

    PubMed

    Farkas, Milán; Szoboszlay, Sándor; Benedek, Tibor; Révész, Fruzsina; Veres, Péter Gábor; Kriszt, Balázs; Táncsics, András

    2017-01-01

    Dissimilatory iron-reducing bacteria are commonly found in microbial communities of aromatic hydrocarbon-contaminated subsurface environments where they often play key role in the degradation of the contaminants. The Siklós benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated area is one of the best characterized petroleum hydrocarbon-contaminated sites of Hungary. Continuous monitoring of the microbial community in the center of the contaminant plume indicated the presence of an emerging Geobacter population and a Rhodoferax phylotype highly associated with aromatic hydrocarbon-contaminated subsurface environments. The aim of the present study was to make an initial effort to enrich Rhodoferax-related and other dissimilatory iron-reducing bacteria from this environment. Accordingly, four slightly different freshwater media were used to enrich Fe(III) reducers, differing only in the form of nitrogen source (organic, inorganic nitrogen or gaseous headspace nitrogen). Although enrichment of the desired Rhodoferax phylotype was not succeeded, Geobacter-related bacteria were readily enriched. Moreover, the different nitrogen sources caused the enrichment of different Geobacter species. Investigation of the diversity of benzylsuccinate synthase gene both in the enrichments and in the initial groundwater sample indicated that the Geobacter population in the center of the contaminant plume may not play a significant role in the anaerobic degradation of toluene.

  20. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater.

    PubMed

    Turner, Brett D; Binning, Philip J; Sloan, Scott W

    2008-01-28

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process. The paper focuses on two issues in the implementation of calcite permeable reactive barriers for remediating fluoride contaminated water: the impact of the groundwater chemical matrix and CO2 addition on fluoride removal. Column tests comparing pure NaF solutions, synthetic SPL solutions, and actual SPL leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model results show that approximately 99% of 2300 mg/L fluoride can be removed when CO2 is injected directly into the barrier. This can be compared to approximately 30-50% removal when the influent solution is equilibrated with atmospheric CO2 before contact with calcite.

  1. [Simulation on remediation of benzene contaminated groundwater by air sparging].

    PubMed

    Fan, Yan-Ling; Jiang, Lin; Zhang, Dan; Zhong, Mao-Sheng; Jia, Xiao-Yang

    2012-11-01

    Air sparging (AS) is one of the in situ remedial technologies which are used in groundwater remediation for pollutions with volatile organic compounds (VOCs). At present, the field design of air sparging system was mainly based on experience due to the lack of field data. In order to obtain rational design parameters, the TMVOC module in the Petrasim software package, combined with field test results on a coking plant in Beijing, is used to optimize the design parameters and simulate the remediation process. The pilot test showed that the optimal injection rate was 23.2 m3 x h(-1), while the optimal radius of influence (ROI) was 5 m. The simulation results revealed that the pressure response simulated by the model matched well with the field test results, which indicated a good representation of the simulation. The optimization results indicated that the optimal injection location was at the bottom of the aquifer. Furthermore, simulated at the optimized injection location, the optimal injection rate was 20 m3 x h(-1), which was in accordance with the field test result. Besides, 3 m was the optimal ROI, less than the field test results, and the main reason was that field test reflected the flow behavior at the upper space of groundwater and unsaturated area, in which the width of flow increased rapidly, and became bigger than the actual one. With the above optimized operation parameters, in addition to the hydro-geological parameters measured on site, the model simulation result revealed that 90 days were needed to remediate the benzene from 371 000 microg x L(-1) to 1 microg x L(-1) for the site, and that the opeation model in which the injection wells were progressively turned off once the groundwater around them was "clean" was better than the one in which all the wells were kept operating throughout the remediation process.

  2. New interpretation of glacial history of Cape Cod may have important implications for groundwater contaminant transport

    NASA Astrophysics Data System (ADS)

    Mulligan, Ann; Uchupi, Elazar

    Fresh water resources of sufficient quantity and quality are critical for maintaining societies and for supporting additional growth and development. When these resources are threatened or compromised, as can occur through the release of hazardous compounds, additional stress is placed on the water supply system from loss of the resource and changes in the demand structure.In western Cape Cod, Massachusetts, such problems are currently being encountered as a result of contaminant releases from the Massachusetts Military Reservation (MMR). An effective long-term response to subsurface contamination requires, among other things, determining the lithology, stratigraphy, and structure of aquifer materials and their effects on groundwater flow and contaminant transport. A recent review and analysis of subsurface data across Cape Cod offers a new interpretation of the geologic history of the Cape, with potential implications for groundwater issues facing western Cape Cod (the Upper Cape).

  3. Identifying Possible Groundwater Contamination Sources at the Massachusetts Military Reservation

    NASA Astrophysics Data System (ADS)

    Neupauer, R. M.; Wilson, J. L.

    2001-05-01

    Backward location and travel time probabilities can be used to determine the likely former locations (e.g., source location) of contamination in an aquifer. For a contaminant parcel that was detected in an aquifer, backward location probability describes its position at some time prior to sampling, and backward travel time probability describes the time prior to sampling that the contamination was at a known upgradient position. We use backward probabilities to obtain information about the possible sources of a trichloroethylene (TCE) plume at the Massachusetts Military Reservation. The particular source had not previously been characterized, but a likely location had been identified. Using only four TCE samples from the central and terminal regions of the plume, we obtain location and travel time probabilities in three dimensions. The results reveal that one or more additional sources of TCE are likely.

  4. Second moment method for evaluating human health risks from groundwater contaminated by trichloroethylene.

    PubMed Central

    Jacobs, T L; Warmerdam, J M; Medina, M A; Piver, W T

    1996-01-01

    Pollutants in groundwater aquifers may constitute a significant human health risk. A large variation in response may result among human populations experiencing the same level and duration of exposure to pollutants. Variability in response, as a result of exposure to a carcinogenic contaminant such as trichloroethylene (TCE), can be represented by a distribution function of safe doses. Spatial variability in aquifer characteristics and contaminant transport parameters requires the use of stochastic transport models to quantify variability in exposure concentrations. A second moment method is used to evaluate the probability of exceeding safe dose levels for a contaminated aquifer. The name of this method stems from the fact that the formulation is based on the first and second moments of the random variables. With this method, the probability is a function of the variability of contaminant concentration (which incorporates variability in hydrogeologic parameters such as hydraulic conductivity) and the variability in response in the human population. In this manner, the severity of the health risk posed by a contaminated aquifer and the evaluation of appropriate strategies and technologies for aquifer remediation are a function of contaminant concentrations and human health risks. The applicability and limitations of this method are demonstrated with data on groundwater contaminated by TCE at Hill Air Force Base, Utah. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:8875161

  5. Assessing Groundwater Contamination Vulnerability at Public Water Supply Wells in California

    NASA Astrophysics Data System (ADS)

    Moran, J. E.; Hudson, B.; Dooher, B. P.; Leif, R.; Eaton, G. F.; Davisson, L.

    2001-12-01

    The California Aquifer Susceptibility project, sponsored by the California State Water Resources Control Board, uses a probabilistic approach to assess the vulnerability of public water supply wells to contamination by anthropogenic compounds. Sources of contamination to groundwater occur near the earth's surface, and have been present mostly since WWII. Therefore, wells that receive water that has recharged in the recent past are more likely to intercept contaminants transported by advection. The parameters that the study uses to rank wells according to vulnerability are groundwater age dates (using the tritium/helium method), stable isotopes of the water molecule (for water source determination), and analysis of low level Volatile Organic Compounds (VOCs). Results of a pilot project in which 300 public water supply wells were tested for vulnerability will be presented. Basins sampled for the study include the Livermore Valley, Santa Clara Valley, and the Sacramento Basin. Methyl-tertiary-Butyl Ether (MTBE) may be a useful time marker in groundwater basins, with water recharged after the 1980's showing traces of MTBE. Low-level detections of other VOCs such as TCE and PCE can give an early warning of a contaminant plume. When employed on a basin-scale, groundwater ages are an effective tool for identifying recharge areas, defining flowpaths, and determining the rate of transport of water and associated contaminants. Examination of these parameters also helps identify 'short circuits', whereby e.g., loss of integrity in well casing allows near surface contamination to reach 'old' (recharged >50 years ago) water. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.

  6. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA.

    PubMed

    Mair, Alan; El-Kadi, Aly I

    2013-10-01

    Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (>1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach

  7. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA

    NASA Astrophysics Data System (ADS)

    Mair, Alan; El-Kadi, Aly I.

    2013-10-01

    Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (> 1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach.

  8. Major issues regarding the efficiency of monitoring programs for nitrate contaminated groundwater.

    PubMed

    Stigter, T Y; Carvalho Dill, A M M; Ribeiro, L

    2011-10-15

    Major issues regarding the efficiency of moni toring programs for nitrate contaminated groundwater are analyzed in this paper: (i) representativeness of monitoring networks; (ii) correct interpretation of the monitoring data and resulting time series and trends; and (iii) differentiation among the different sources of nitrates in groundwater. Following an overview of the nitrate contamination problem and possible solutions, as well as some of the difficulties found, a relatively straightforward method for assessing monitoring network representativity is presented, namely interpolation standard error assessment. It is shown how nitrate-concentration time series resulting from periodic observations can be corrected with a conservative tracer, in order to avoid misinterpretation and confirm or correct apparent trends. Finally, coupled ¹⁵N and ¹⁸O isotope signatures of nitrate (NO₃⁻) in groundwater are used to differentiate among nitrogen (N) sources, to ensure correct targeting of restoration measures. The case study regards a Nitrate Vulnerable Zone in the south of Portugal, designated in compliance with the European Nitrates Directive, where coastal discharge of nutrient-rich groundwater threatens the good qualitative and ecological status of the Ria Formosa coastal lagoon. Results show that mineral fertilizer is the main source of N in groundwater, and that increases in N load can be masked by dilution phenomena.

  9. In situ disinfection of sewage contaminated shallow groundwater: a feasibility study.

    PubMed

    Bailey, Morgan M; Cooper, William J; Grant, Stanley B

    2011-11-01

    Sewage-contaminated shallow groundwater is a potential cause of beach closures and water quality impairment in marine coastal communities. In this study we set out to evaluate the feasibility of several strategies for disinfecting sewage-contaminated shallow groundwater before it reaches the coastline. The disinfection rates of Escherichia coli (EC) and enterococci bacteria (ENT) were measured in mixtures of raw sewage and brackish shallow groundwater collected from a coastal community in southern California. Different disinfection strategies were explored, ranging from benign (aeration alone, and aeration with addition of brine) to aggressive (chemical disinfectants peracetic acid (PAA) or peroxymonosulfate (Oxone)). Aeration alone and aeration with brine did not significantly reduce the concentration of EC and ENT after 6 h of exposure, while 4-5 mg L(-1) of PAA or Oxone achieved >3 log reduction after 15 min of exposure. Oxone disinfection was more rapid at higher salinities, most likely due to the formation of secondary oxidants (e.g., bromine and chlorine) that make this disinfectant inappropriate for marine applications. Using a Lagrangian modeling framework, we identify several factors that could influence the performance of in-situ disinfection with PAA, including the potential for bacterial regrowth, and the non-linear dependence of disinfection rate upon the residence time of water in the shallow groundwater. The data and analysis presented in this paper provide a framework for evaluating the feasibility of in-situ disinfection of shallow groundwater, and elucidate several topics that warrant further investigation.

  10. Groundwater pollution and remediation options for multi-source contaminated aquifers (Bitterfeld/Wolfen, Germany).

    PubMed

    Wycisk, P; Weiss, H; Kaschl, A; Heidrich, S; Sommerwerk, K

    2003-04-11

    Large-scale contaminated megasites like Bitterfeld/Wolfen in the eastern part of Germany are characterized by a regional pollution of soil, surface water and groundwater due to the long and varied history of the chemical industry on location. The pollutants in groundwater may spread to uncontaminated areas and endanger receptors like surface water and drinking water wells according to the site-specific hydrologic regime. In addition, the sheer extension of the contamination at megasites as well as the existence of large densely populated areas and land of high-reuse value prevent a simple risk management strategy of use restriction for the whole area. Since a complete clean-up of the groundwater on a megasite is neither economically feasible nor technically possible within a reasonable time-frame, a multi-approach remediation strategy is needed, taking into account the immediate risks for human health, ecosystem and so-called "protectable goods". Moreover, the contaminants at megasites typically represent a dangerous cocktail of multiple harmful substances stemming from a variety of sources, which may interact with each other and complicate the search for an appropriate remediation strategy. At the SAFIRA-project site in Bitterfeld approaches for in situ remediation of multiple contaminants in groundwater are being tested. Alternatives in local implementation strategies as well as consequences of long-term restrictions for megasites like Bitterfeld need an independent evaluation of the situation using a risk-based approach. For this reason, a GIS-based 3D model of the area including geology, contaminants, hydrogeology, land-use and protected areas has been built. The regional groundwater pollution is characterized by contamination profiles of all monitored substances. In the area of investigation, e.g. threefold and fourfold threshold levels of chlorinated methane, ethane and ethene as well as HCH-isomers, mono-, di- and tetrachlorobenzene, DDT-isomers and benzene

  11. Assessing of Conceptual Models for Subsurface Reactive Transport of Inorganic Contaminants

    NASA Astrophysics Data System (ADS)

    Davis, James A.; Yabusaki, Steven B.; Steefel, Carl I.; Zachara, John M.; Curtis, Gary P.; Redden, George D.; Criscenti, Louise J.; Honeyman, Bruce D.

    2004-11-01

    In many subsurface situations where human health and environmental quality are at risk (e.g., contaminant hydrogeology, petroleum extraction, carbon sequestration, etc.), scientists and engineers are being asked by federal agency decision-makers to predict the fate of chemical species under conditions where both reactions and transport are processes of first-order importance. In 2002, a working group (WG) was formed by representatives of the U.S. Geological Survey, Environmental Protection Agency, Department of Energy, Nuclear Regulatory Commission, Department of Agriculture, and Army Engineer Research and Development Center to assess the role of reactive transport modeling (RTM) in addressing these situations. Specifically, the goals of the WG are to (1) evaluate the state of the art in conceptual model development and parameterization for RTM, as applied to soil, vadose zone, and groundwater systems, and (2) prioritize research directions that would enhance the practical utility of RTM.

  12. Chronic exposure to aldicarb-contaminated groundwater and human immune function

    SciTech Connect

    Fiore, M.C.; Anderson, H.A.; Hong, R.; Golubjatnikov, R.; Seiser, J.E.; Nordstrom, D.; Hanrahan, L.; Belluck, D.

    1986-12-01

    Aldicarb, a carbamate pesticide, has been a known groundwater contaminant in Wisconsin since 1981. To assess the effects of chronic ingestion of low-level aldicarb-contaminated groundwater (less than 61 ppb) on the immune function of humans, we identified 50 women, ages 18 to 70, with no known underlying reason for immunodysfunction. Twenty-three of these women (exposed group) consumed groundwater with detectable levels of aldicarb, and 27 (unexposed group) consumed water from a source with no detectable levels of aldicarb. Data were collected on each woman's health status, immune function, and fluid intake. Exposed women as compared with unexposed women showed an elevated stimulation assay response to the antigen Candida (P less than 0.02, t test). The exposed group had increased numbers of T8 cells (P less than 0.05, t test), an increased percentage of total lymphocytes as T8 cells (P less than 0.02, t test), and a decreased ratio of T4:T8 cells (P less than 0.02, t test). Our results suggest an association between consumption of aldicarb-contaminated groundwater and abnormalities in T-cell subsets in women with otherwise intact immune systems.

  13. Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk.

    PubMed

    Bretzler, Anja; Lalanne, Franck; Nikiema, Julien; Podgorski, Joel; Pfenninger, Numa; Berg, Michael; Schirmer, Mario

    2017-04-15

    Arsenic contamination in groundwater from crystalline basement rocks in West Africa has only been documented in isolated areas and presents a serious health threat in a region already facing multiple challenges related to water quality and scarcity. We present a comprehensive dataset of arsenic concentrations from drinking water wells in rural Burkina Faso (n=1498), of which 14.6% are above 10μg/L. Included in this dataset are 269 new samples from regions where no published water quality data existed. We used multivariate logistic regression with arsenic measurements as calibration data and maps of geology and mineral deposits as independent predictor variables to create arsenic prediction models at concentration thresholds of 5, 10 and 50μg/L. These hazard maps delineate areas vulnerable to groundwater arsenic contamination in Burkina Faso. Bedrock composed of schists and volcanic rocks of the Birimian formation, potentially harbouring arsenic-containing sulphide minerals, has the highest probability of yielding groundwater arsenic concentrations >10μg/L. Combined with population density estimates, the arsenic prediction models indicate that ~560,000 people are potentially exposed to arsenic-contaminated groundwater in Burkina Faso. The same arsenic-bearing geological formations that are positive predictors for elevated arsenic concentrations in Burkina Faso also exist in neighbouring countries such as Mali, Ghana and Ivory Coast. This study's results are thus of transboundary relevance and can act as a trigger for targeted water quality surveys and mitigation efforts.

  14. Use of tree-ring chemistry to document historical ground-water contamination events

    USGS Publications Warehouse

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  15. Impact of Scale-Dependent Coupled Processes on Solute Fate and Transport in the Critical Zone: Case Studies Involving Inorganic and Radioactive Contaminants

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Gentry, R. W.

    2011-12-01

    Soil, the thin veneer of matter covering the Earths surface that supports a web of living diversity, is often abused through anthropogenic inputs of toxic waste. This subsurface regime, coupled with life sustaining surface water and groundwater is known as the "Critical Zone". The disposal of radioactive and toxic organic and inorganic waste generated by industry and various government agencies has historically involved shallow land burial or the use of surface impoundments in unsaturated soils and sediments. Presently, contaminated sites have been closing rapidly and many remediation strategies have chosen to leave contaminants in-place. As such, contaminants will continue to interact with the geosphere and investigations on long term changes and interactive processes is imperative to verify risks. In this presentation we provide a snap-shot of subsurface science research from the past 25 y that seeks to provide an improved understanding and predictive capability of multi-scale contaminant fate and transport processes in heterogeneous unsaturated and saturated environments. Investigations focus on coupled hydrological, geochemical, and microbial processes that control reactive contaminant transport and that involve multi-scale fundamental research ranging from the molecular scale (e.g. synchrotrons, electron sources, arrays) to in situ plume interrogation strategies at the macroscopic scale (e.g. geophysics, field biostimulation, coupled processes monitoring). We show how this fundamental research is used to provide multi-process, multi-scale predictive monitoring and modeling tools that can be used at contaminated sites to (1) inform and improve the technical basis for decision making, and (2) assess which sites are amenable to natural attenuation and which would benefit from source zone remedial intervention.

  16. Massive Microbiological Groundwater Contamination Associated with a Waterborne Outbreak in Lake Erie, South Bass Island, Ohio

    PubMed Central

    Fong, Theng-Theng; Mansfield, Linda S.; Wilson, David L.; Schwab, David J.; Molloy, Stephanie L.; Rose, Joan B.

    2007-01-01

    Background A groundwater-associated outbreak affected approximately 1,450 residents and visitors of South Bass Island, Ohio, between July and September 2004. Objectives To examine the microbiological quality of groundwater wells located on South Bass Island, we sampled 16 wells that provide potable water to public water systems 15–21 September 2004. Methods We tested groundwater wells for fecal indicators, enteric viruses and bacteria, and protozoa (Cryptosporidium and Giardia). The hydrodynamics of Lake Erie were examined to explore the possible surface water–groundwater interactions. Results All wells were positive for both total coliform and Escherichia coli. Seven wells tested positive for enterococci and Arcobacter (an emerging bacterial pathogen), and F+-specific coliphage was present in four wells. Three wells were positive for all three bacterial indicators, coliphages, and Arcobacter; adenovirus DNA was recovered from two of these wells. We found a cluster of the most contaminated wells at the southeast side of the island. Conclusions Massive groundwater contamination on the island was likely caused by transport of microbiological contaminants from wastewater treatment facilities and septic tanks to the lake and the subsurface, after extreme precipitation events in May–July 2004. This likely raised the water table, saturated the subsurface, and along with very strong Lake Erie currents on 24 July, forced a surge in water levels and rapid surface water–groundwater interchange throughout the island. Landsat images showed massive influx of organic material and turbidity surrounding the island before the peak of the outbreak. These combinations of factors and information can be used to examine vulnerabilities in other coastal systems. Both wastewater and drinking water issues are now being addressed by the Ohio Environmental Protection Agency and the Ohio Department of Health. PMID:17589591

  17. Nitrate contamination of shallow aquifer groundwater in the central districts of Punjab, India.

    PubMed

    Bhardwaj, Anil; Garg, Sunil; Sondhi, S K; Taneja, D S

    2012-01-01

    The increasing trend in nitrogenous fertilizer use and extensive irrigation in the agricultural production system in Punjab, India are the reasons of contamination of groundwater, which is the main source of drinking water. A study was conducted to determine the extent of nitrate-nitrogen (NO3-N) contamination of groundwater in the shallow aquifers of Ludhiana district. Pre and post-monsoon groundwater samples from hand pumps of 36 villages, located at or near the nodes of 6-12 km grid, were collected during the years 1998 and 1999 and were analyzed for NO3-N concentration. During the period of study, the NO3-N concentration in 34.7%, 37.5%, 15.3%, 11.1% and 1.4% of the groundwater samples was between 0-5 mg/L, 6-10 mg/L, 11-15 mg/L, 16-20 mg/L and 21-25 mg/L, respectively. Around 72% of the groundwater samples were safe and did not exceed the critical limit of NO3-N concentration (10 mg/L) prescribed for drinking water. Although, statistically no change in the mean NO3-N concentration level has been observed during the study period and is within the safe limit in most of the samples (72%), yet there is every possibility of further contamination of groundwater due to continuous high N-fertilizer use and over irrigation which necessitates judicious and efficient N-fertilizer and irrigation water use in Punjab (India).

  18. Evidence for Groundwater Contamination Vulnerability in California?s Central Valley

    SciTech Connect

    Moran, J E; Leif, R; Esser, B K; Singleton, M J

    2005-12-13

    The California Water Resources Control Board, in collaboration with the US Geological Survey and Lawrence Livermore National Laboratory, has implemented a program to assess the susceptibility of groundwater resources. Advanced techniques such as groundwater age dating using the tritium-helium method, extensive use of oxygen isotopes of the water molecule ({delta}{sup 18}O) for recharge water provenance, and analysis of common volatile organic compounds (VOCs) at ultra-low levels are applied with the goal of assessing the contamination vulnerability of deep aquifers, which are frequently used for public drinking water supply. Over 1200 public drinking water wells have been tested to date, resulting in a very large, tightly spaced collection of groundwater ages in some of the heavily exploited groundwater basins of California. Smaller scale field studies that include shallow monitoring wells are aimed at assessing the probability that nitrate will be transported to deep drinking water aquifers. When employed on a basin-scale, groundwater ages are an effective tool for identifying recharge areas, defining flowpaths, and determining the rate of transport of water and entrained contaminants. De-convolution of mixed ages, using ancillary dissolved noble gas data, gives insight into the water age distribution drawn at a well, and into the effective dilution of contaminants such as nitrate at long-screened production wells. In combination with groundwater ages, low-level VOCs are used to assess the impact of vertical transport. Special studies are focused on the fate and transport of nitrate with respect to vulnerability of aquifers in agricultural and formerly agricultural areas.

  19. Massive microbiological groundwater contamination associated with a waterborne outbreak in Lake Erie, South Bass Island, Ohio.

    PubMed

    Fong, Theng-Theng; Mansfield, Linda S; Wilson, David L; Schwab, David J; Molloy, Stephanie L; Rose, Joan B

    2007-06-01

    A groundwater-associated outbreak affected approximately 1,450 residents and visitors of South Bass Island, Ohio, between July and September 2004. To examine the microbiological quality of groundwater wells located on South Bass Island, we sampled 16 wells that provide potable water to public water systems 15-21 September 2004. We tested groundwater wells for fecal indicators, enteric viruses and bacteria, and protozoa (Cryptosporidium and Giardia). The hydrodynamics of Lake Erie were examined to explore the possible surface water-groundwater interactions. All wells were positive for both total coliform and Escherichia coli. Seven wells tested positive for enterococci and Arcobacter (an emerging bacterial pathogen), and F(+)-specific coliphage was present in four wells. Three wells were positive for all three bacterial indicators, coliphages, and Arcobacter; adenovirus DNA was recovered from two of these wells. We found a cluster of the most contaminated wells at the southeast side of the island. Massive groundwater contamination on the island was likely caused by transport of microbiological contaminants from wastewater treatment facilities and septic tanks to the lake and the subsurface, after extreme precipitation events in May-July 2004. This likely raised the water table, saturated the subsurface, and along with very strong Lake Erie currents on 24 July, forced a surge in water levels and rapid surface water-groundwater interchange throughout the island. Landsat images showed massive influx of organic material and turbidity surrounding the island before the peak of the outbreak. These combinations of factors and information can be used to examine vulnerabilities in other coastal systems. Both wastewater and drinking water issues are now being addressed by the Ohio Environmental Protection Agency and the Ohio Department of Health.

  20. Groundwater and Air Contamination: Risk, Toxicity, Exposure Assessment, Policy, and Regulation

    NASA Astrophysics Data System (ADS)

    Watts, R. J.; Teel, A. L.

    2003-12-01

    The improper disposal of hazardous wastes and subsequent contamination of surface and groundwaters has exposed the public and ecosystems to toxic chemicals that have detrimental consequences. The cost of cleaning up the thousands of hazardous waste sites throughout the world is daunting, and the effort to do so is economically impractical. As a result, some level of contamination will always remain, both locally and globally. The presence of a residual level of contamination carries with it the probability of negative impacts on the world's population; e.g., enhanced risk of cancer or the onset of neurological disorders. Risk is the probability of such events. Risk assessments are routinely performed at contaminated sites and in areas of widespread environmental contamination, such as an entire aquifer, as a means of quantifying the potential threats to public health and to ecosystems.

  1. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico. Draft

    SciTech Connect

    Not Available

    1993-09-01

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain.

  2. In situ treatment of cyanide-contaminated groundwater by iron cyanide precipitation

    SciTech Connect

    Ghosh, R.S.; Dzombak, D.A.; Luthy, R.G.; Smith, J.R.

    1999-10-01

    Groundwater contamination with cyanide is common at many former or active industrial sites. Metal-cyanide complexes typically dominate aqueous speciation of cyanide in groundwater systems, with iron-cyanide complexes often most abundant. Typically, metal-cyanide complexes behave as nonadsorbing solutes in sand-gravel aquifer systems in the neutral pH range, rendering cyanide relatively mobile in groundwater systems. Groundwater pump-and-treat systems have often been used to manage cyanide contamination in groundwater. This study examined the feasibility of using in situ precipitation of iron cyanide in a reactive barrier to attenuate the movement of cyanide in groundwater. Laboratory column experiments were performed in which cyanide solutions were passed through mixtures of sand and elemental iron filings. Removal of dissolved cyanide was evaluated in a variety of cyanide-containing influents under various flow rates and sand-to-iron weight ratios. Long-term column tests performed with various cyanide-containing influents under both oxic and anoxic conditions, at neutral pH and at flow rates typical of sand-gravel porous media, yielded effluent concentrations of total cyanide as low as 0.5 mg/L. Effluent cyanide concentrations achieved were close to the solubilities of Turnbull's blue-hydrous ferric oxide solid solutions, indicating co-precipitation of the two solids. Maximum cyanide removal efficiency was achieved with approximately 10% by weight of iron in the sand-iron mixtures; higher iron contents did not increase removal efficiency significantly. Results obtained indicate that in situ precipitation is a promising passive treatment approach for cyanide in groundwater.

  3. [Laboratory evaluation of remediation of nitrobenzene contaminated aquifer by using groundwater circulation well].

    PubMed

    Bai, Jing; Zhao, Yong-Sheng; Sun, Chao; Qin, Chuan-Yu; Yu, Ling

    2014-10-01

    A two-dimension simulated sand box was set up to investigate the influencing factors, such as the initial groundwater level, aeration rate and the initial groundwater rate, that affect groundwater circulation well (GCW) by determining the intensity of groundwater circulation which was characterized by the variation of groundwater level before and after aeration. The optimal operating parameters were used to remediate nitrobenzene contaminated aquifer. The results demonstrated that: GCW could be well operated under the conditions of 45 cm groundwater level, 0.7 m3 · h(-1) aeration rate. The effects of groundwater velocity less than 1.0 m · d(-1) could be ignored. The lateral mobility rate of nitrobenzene was faster than that of longitudinal. The average concentration of nitrobenzene was 246.97 mg · L(-1) on day 50 of leakage. During the remediation of circulation well, an efficient organics remediation region was gradually formed around the circulation well. The organics in this region was removed preferentially, and the concentration decreased continuously. Besides the efficient remediation region, there was a transient region, where the concentration of organics was influenced by the combined effects of adsorption/desorption and migration potential of organics. During the whole remediation process, the concentration of nitrobenzene went through three stages described as rapid removal, slow removal. After 14h aeration, the nitrobenzene average concentration was reduced to 71.19 mg L(-1). The residual nitrobenzene was distributed in regions far away from GCW. Therefore, nitrobenzene contaminated aquifer could be well remediated by GCW, and there were optimal operation conditions and appropriate remediation time which guaranteed the best remediation effect.

  4. Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat.

    PubMed

    Berg, M; Tran, H C; Nguyen, T C; Pham, H V; Schertenleib, R; Giger, W

    2001-07-01

    This is the first publication on arsenic contamination of the Red River alluvial tract in the city of Hanoi and in the surrounding rural districts. Due to naturally occurring organic matter in the sediments, the groundwaters are anoxic and rich in iron. With an average arsenic concentration of 159 micrograms/L, the contamination levels varied from 1 to 3050 micrograms/L in rural groundwater samples from private small-scale tubewells. In a highly affected rural area, the groundwater used directly as drinking water had an average concentration of 430 micrograms/L. Analysis of raw groundwater pumped from the lower aquifer for the Hanoi water supply yielded arsenic levels of 240-320 micrograms/L in three of eight treatment plants and 37-82 micrograms/L in another five plants. Aeration and sand filtration that are applied in the treatment plants for iron removal lowered the arsenic concentrations to levels of 25-91 micrograms/L, but 50% remained above the Vietnamese Standard of 50 micrograms/L. Extracts of sediment samples from five bore cores showed a correlation of arsenic and iron contents (r2 = 0.700, n = 64). The arsenic in the sediments may be associated with iron oxyhydroxides and released to the groundwater by reductive dissolution of iron. Oxidation of sulfide phases could also release arsenic to the groundwater, but sulfur concentrations in sediments were below 1 mg/g. The high arsenic concentrations found in the tubewells (48% above 50 micrograms/L and 20% above 150 micrograms/L) indicate that several million people consuming untreated groundwater might be at a considerable risk of chronic arsenic poisoning.

  5. Using trees to remediate groundwaters contaminated with chlorinated hydrocarbons. 1998 annual progress report

    SciTech Connect

    Strand, S.E.; Gordon, M.P.

    1998-06-01

    'Industrial practices in the past have resulted in contamination of groundwater with chlorinated hydrocarbons (CHCs) at many DOE sites, such as Hanford and Savannah River. Such contamination is a major problem because existing groundwater remediation technologies are expensive and difficult. An inexpensive method for groundwater remediation is greatly needed. Trees could be used to remediate CHC polluted groundwater at minimal cost (phytoremediation). Before phytoremediation can be extensively applied, the authors must determine the range of compounds that are attacked, the effects of metabolic products on the plants and the environment, and the effect of transpiration and concentration of CHC on uptake and metabolism. They will test the ability of hybrid poplar to take up and transform the chlorinated methanes, ethanes and ethylenes. The rate of uptake and transformation by poplar of TCE as a function of concentration in the soil, transpiration rate and illumination level will be determined. Methods will be developed to permit rapid testing of plants from contaminated sites for species able to oxidize and sequester chlorinated compounds. They will identify the nature of the bound residues of TCE metabolism in poplar. They will identify the mechanisms involved in CHC oxidation in poplar and use genetic manipulations to enhance that activity. They will introduce the genes for mammalian cytochrome P-450-IIE1, known to oxidize light CHCs such as TCE to attempt to increase the CHC metabolism capacity of poplar. The results of this research will place phytoremediation of CHCs on a firm scientific footing, allowing a rational assessment of its application to groundwater contamination. This report summarizes the results of the first 1.5 years of work on a three-year project.'

  6. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater.

    PubMed

    Jing, C; Landsberger, S; Li, Y L

    2017-09-01

    In this study, nanoscale zero valent iron I-NZVI was investigated as a remediation strategy for uranium contaminated groundwater from the former Cimarron Fuel Fabrication Site in Oklahoma, USA. The 1 L batch-treatment system was applied in the study. The result shows that 99.9% of uranium in groundwater was removed by I-NZVI within 2 h. Uranium concentration in the groundwater stayed around 27 μg/L, and there was no sign of uranium release into groundwater after seven days of reaction time. Meanwhile the release of iron was significantly decreased compared to NZVI which can reduce the treatment impact on the water environment. To study the influence of background pH of the treatment system on removal efficiency of uranium, the groundwater was adjusted from pH 2-10 before the addition of I-NZVI. The pH of the groundwater was from 2.1 to 10.7 after treatment. The removal efficiency of uranium achieved a maximum in neutral pH of groundwater. The desorption of uranium on the residual solid phase after treatment was investigated in order to discuss the stability of uranium on residual solids. After 2 h of leaching, 0.07% of the total uranium on residual solid phase was leached out in a HNO3 leaching solution with a pH of 4.03. The concentration of uranium in the acid leachate was under 3.2 μg/L which is below the EPA's maximum contaminant level of 30 μg/L. Otherwise, the concentration of uranium was negligible in distilled water leaching solution (pH = 6.44) and NaOH leaching solution (pH = 8.52). A desorption study shows that an acceptable amount of uranium on the residuals can be released into water system under strong acid conditions in short terms. For long term disposal management of the residual solids, the leachate needs to be monitored and treated before discharge into a hazardous landfill or the water system. For the first time, I-NZVI was applied for the treatment of uranium contaminated groundwater. These results provide proof that I-NZVI has

  7. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Last, George V.; Strickland, Christopher E.; Tartakovsky, Guzel D.

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  8. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    PubMed

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/√s, 0.00004 m/s, and 2.17 × 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated.

  9. Groundwater arsenic contamination on the Ganges Delta: biogeochemistry, hydrology, human perturbations, and human suffering on a large scale

    NASA Astrophysics Data System (ADS)

    Harvey, Charles F.; Swartz, Christopher H.; Badruzzaman, Abu Bohran M.; Keon-Blute, Nicole; Yu, Winston; Ali, M. Ashraf; Jay, Jenny; Beckie, Roger; Niedan, Volker; Brabander, Daniel; Oates, Peter M.; Ashfaque, Khandaker N.; Islam, Shafiqul; Hemond, Harold F.; Ahmed, M. Feroze

    2005-02-01

    Over the last several decades, much of population of Bangladesh and West Bengal switched their water supply from surface water to groundwater. Tragically, much of the region's groundwater is dangerously contaminated by arsenic, and consumption of this water has already created severe health effects. Here we consider how groundwater flow may affect arsenic biogeochemistry and we compare the vertical patterns of groundwater chemistry at our intensive study site with the average values across the country. Detailed hydraulic data are presented from our field site that begins to characterize the groundwater flow system. To cite this article: C.F. Harvey et al., C. R. Geoscience 337 (2005).

  10. Mixing parameter regression applied to ground-water contaminant flow

    SciTech Connect

    Ray, R.; Tarter, M.E.; Lock, M.D.

    1992-01-01

    A new form of regression is applied to the problem of modeling the flow of water and contaminants through soil. In a fashion analogous to nested ANOVA, the new method parametrizes global distributional structure separately from local structure. A blind study is conducted to assess the precision of mixing parameter estimation as a function of depth. It is shown that accurate estimates of the regression relationship can be obtained from a sample of size n=1000 for mixing parameters and all other component parameters, with the exception of the standard deviation of small components which have large variances. It is shown that the hydraulic conductivity, transport, or infiltration of water borne contaminants through the vadose zone can be effectively modeled and simulated by the mixing parameter regression methods.

  11. Draft Protocol for Controlling Contaminated Groundwater by Phytostabilization

    DTIC Science & Technology

    1999-11-05

    Phytoextraction is usually associated with metal contaminants. Plants called hyperaccumulators absorb large amounts of metals in comparison to other... hyperaccumulation of metals have not been included. Applied Natural Sciences 4129 Tonya Trail Fairfield, OH 45011 Phone: 513-895-6061 Fax: 513-895-6062 Ecolotree...with or, in some cases, in place of mechanical cleanup methods. Phytoremediation can be used to clean up metals , pesticides, Draft Protocol for

  12. Modeling Groundwater Flow and Contaminant Transport in Fractured Aquifers

    DTIC Science & Technology

    2005-03-01

    the hybrid discrete fracture network/equivalent porous medium (DFN/ EPM ) model was selected for further analysis. The DFN/ EPM model was selected...contaminant containment at the site. Based on these model simulations, the potential benefits to site managers of using the DFN/ EPM approach to model...19 2.3.2 Equivalent Porous Medium ( EPM ) .................................................................20 2.3.3 Dual-Continuum

  13. Erratum to "Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities".

    PubMed

    Umezawa, Yu; Hosono, Takahiro; Onodera, Shin-ichi; Siringan, Fernando; Buapeng, Somkid; Delinom, Robert; Yoshimizu, Chikage; Tayasu, Ichiro; Nagata, Toshi; Taniguchi, Makoto

    2009-04-15

    The status of nitrate (NO3-), nitrite (NO2-) and ammonium (NH4 +) contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate delta15N and delta18O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas: high nitrate contamination was observed in Jakarta (dry fields), and relatively lower nutrients consisting mainly of ammonium were detected in Bangkok (paddy fields). The exponential increase in NO3--delta15N along with the NO3- reduction and clear delta18O/delta15N slopes of NO3- (approximately 0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer NO3- contamination via active denitrification and reduced nitrification. Our results showed that NO3- and NH4+ contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas, and this information should be shared among adjacent countries with similar geographic and cultural settings.

  14. Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities.

    PubMed

    Umezawa, Yu; Hosono, Takahiro; Onodera, Shin-ichi; Siringan, Fernando; Buapeng, Somkid; Delinom, Robert; Yoshimizu, Chikage; Tayasu, Ichiro; Nagata, Toshi; Taniguchi, Makoto

    2008-10-15

    The status of nitrate (NO(3)(-)), nitrite (NO(2)(-)) and ammonium (NH(4)(+)) contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate delta(15)N and delta(18)O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas: high nitrate contamination was observed in Jakarta (dry fields), and relatively lower nutrients consisting mainly of ammonium were detected in Bangkok (paddy fields). The exponential increase in NO(3)(-)-delta(15)N along with the NO(3)(-) reduction and clear delta(18)O/delta(15)N slopes of NO(3)(-) ( approximately 0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer NO(3)(-) contamination via active denitrification and reduced nitrification. Our results showed that NO(3)(-) and NH(4)(+) contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas, and this information should be shared among adjacent countries with similar geographic and cultural settings.

  15. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  16. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.

    PubMed

    Rango, Tewodros; Vengosh, Avner; Dwyer, Gary; Bianchini, Gianluca

    2013-10-01

    This study investigates the mechanisms of arsenic (As) and other naturally occurring contaminants (F(-), U, V, B, and Mo) mobilization from Quaternary sedimentary aquifers of the Main Ethiopian Rift (MER) and their enrichment in the local groundwater. The study is based on systematic measurements of major and trace elements as well as stable oxygen and hydrogen isotopes in groundwater, coupled with geochemical and mineralogical analyses of the aquifer rocks. The Rift Valley aquifer is composed of rhyolitic volcanics and Quaternary lacustrine sediments. X-ray fluorescence (XRF) results revealed that MER rhyolites (ash, tuff, pumice and ignimbrite) and sediments contain on average 72 wt. % and 65 wt. % SiO2, respectively. Petrographic studies of the rhyolites indicate predominance of volcanic glass, sanidine, pyroxene, Fe-oxides and plagioclase. The As content in the lacustrine sediments (mean = 6.6 mg/kg) was higher than that of the rhyolites (mean: 2.5 mg/kg). The lacustrine aquifers of the Ziway-Shala basin in the northern part of MER were identified as high As risk zones, where mean As concentration in groundwater was 22.4 ± 33.5 (range of 0.60-190 μg/L) and 54% of samples had As above the WHO drinking water guideline value of 10 μg/L. Field As speciation measurements showed that most of the groundwater samples contain predominantly (~80%) arsenate-As(V) over arsenite-As(III) species. The As speciation together with field data of redox potential (mean Eh = +73 ± 65 mV) and dissolved-O2 (6.6 ± 2.2 mg/L) suggest that the aquifer is predominantly oxidative. Water-rock interactions, including the dissolution of volcanic glass produces groundwater with near-neutral to alkaline pH (range 6.9-8.9), predominance of Na-HCO3 ions, and high concentration of SiO2 (mean: 85.8 ± 11.3 mg/L). The groundwater data show high positive correlation of As with Na, HCO3, U, B, V, and Mo (R(2) > 0.5; p < 0.001). Chemical modeling of the groundwater indicates that Fe-oxides and

  17. Groundwater-derived contaminant fluxes along a channelized Coastal Plain stream

    SciTech Connect

    LaSage, Danita m; Fryar, Alan E; Mukherjee, Abhijit; Sturchio, Neil C; Heraty, Linnea J

    2008-10-01

    Recent studies in various settings across eastern North America have examined the movement of volatile organic compound (VOC) plumes from groundwater to streams, but few studies have addressed focused discharge of such plumes in unlithified sediments. From 1999 through 2002, we monitored concentrations of trichloroethene (TCE) and the non-volatile co-contaminant technetium-99 along Little Bayou Creek, a first -order perennial stream in the Coastal Plain of western Kentucky. Spring flow contributed TCE and technetium-99 to the creek, and TCE concentrations tended to vary with technetium-99 in springs. Contaminant concentrations in stream water fluctuated seasonally, but not always synchronously with stream flow. However, contaminant influxes varied seasonally with stream flow and were dominated by a few springs. Concentrations of O2, NO3⁻, and SO2-4, values of δ37CL in groundwater, and the lack of less-chlorinated ethenes in groundwater and stream water indicated that aerobic biodegradation of TCE was unlikely. Losses of TCE along Little Bayou Creek resulted mainly from volatilization, in contrast to streams receiving diffuse contaminated discharge, where intrinsic bioremediation of VOCs appears to be prevalent.

  18. Uptake and mobility of uranium in black oaks: implications for biomonitoring depleted uranium-contaminated groundwater.

    PubMed

    Edmands, J D; Brabander, D J; Coleman, D S

    2001-08-01

    In a preliminary study, the uptake and the mobility of uranium (U) by black oak trees (Quercus velutina) were assessed by measuring the isotopic composition of tree rings in two mature oak trees in a heavy metal contaminated bog in Concord, MA. The bog is adjacent to a nuclear industrial facility that has been processing depleted uranium (DU) since 1959. Over the past 40 years, DU has been leaking from an onsite holding basin and cooling pond down gradient to the bog where the oaks are located. Because DU has no source outside the nuclear industry, contamination from the industrial facility is readily discernable from uptake of natural U by measuring isotopic compositions. Isotope ratio analysis confirms the occurrence of DU in bark, sapwood and heartwood tree rings dating back to 1937, pre-dating the introduction of DU at the site by at least 20 years. Isotope dilution analysis indicates high concentrations of U (>3 ppb) in sapwood that drop rapidly to relatively constant concentrations (0.3-0.4 ppb) in heartwood. These data indicate that once incorporated into tree cells, U is mobile, possibly by diffusion through the tree wood. Concentrations of U in sapwood are approximately equal to average U concentrations in groundwater onsite over the past 10 years, suggesting that oak trees can be used as present-day bioindicators of U-contaminated groundwater. We suggest that regional sampling of oak bark and sapwood is a reasonable, inexpensive alternative to drilling wells to monitor shallow groundwater U contamination.

  19. [Study on the groundwater petroleum contaminant biodegradation by high efficient microorganism].

    PubMed

    Wang, Zhi-qiang; Wu, Qiang; Ye, Si-yuan; Li, Fu-qin; Xie, Hai-lan; Jin, Xiao-li

    2005-11-01

    The groundwater petroleum contaminant biodegradation effect by high efficient hybrid microorganism was. investigated and the groundwater contaminant biodegradation transportation mathematical model was established in this study. The high efficient bacteria was separated and filtrated from the soil contaminated by petroleum hydrocarbon, and it was identified as Pseudomonas, Flavobacterium and Micrococcus. The petroleum degradation rates by these three kinds microorganism were 62%, 56% and 62% respectively in 24 h, and the high petroleum biodegradation rate 85% could be achieved by the hybrid microorganism constituted by these three kinds of microorganism, which was higher than that of any other each single bacteria community. The hybrid microorganism in-flowed into the reactor imitating the aquifer media with the petroleum wastewater, and it could form a steady microorganism zone in the foreside of the reactor. The petroleum biodegradation rate could achieve 60% when the petroleum wastewater flowed through this microorganism zone and the average petroleum biodegradation rate could reach up to 90% in the effluent. The groundwater contaminant biodegradation transportation mathematical model can predict the biodegradation of the wastewater through the microorganism zone effectively, of which the calculating values have good relativity with those of measurement.

  20. Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments.

    PubMed

    Kim, Seok-Hwi; Kim, Kangjoo; Ko, Kyung-Seok; Kim, Yeongkyoo; Lee, Kwang-Sik

    2012-05-01

    The co-contamination of arsenic (As) and fluoride (F(-)) in shallow aquifers is frequently observed worldwide, and the correlations between those contaminants are different according to the redox conditions. This study geochemically explores the reasons for the co-contamination and for the redox-dependent correlations by investigating the groundwater of an alluvial aquifer in Korea. Geochemical signatures of the groundwater in the study area show that the As concentrations are enriched by the reductive dissolution of Fe-(hydr)oxides, and the correlations between As and F(-) concentrations are poor comparatively to those observed in the oxidizing aquifers. However, F(-) concentrations are strongly dependent on pH. Desorption/adsorption experiments using raw soils and citrate-bicarbonate-dithionite treated soils indicated that Fe-(hydr)oxides are the important As and F(-) hosts causing the co-contamination phenomenon. The weaker correlation between F(-) and As in reducing aquifers is likely to be associated with sulfate reduction, which removes As from groundwater without changing the F(-) concentration.

  1. Organic and inorganic colloids impacting total iodine behavior in groundwater from the Datong Basin, China.

    PubMed

    Qian, Kun; Li, Junxia; Xie, Xianjun; Wang, Yanxin

    2017-12-01

    The geochemical behaviors of colloids in aquifers played an important role in determining the fate of iodine in groundwater system. To decipher the impact of colloids on iodine mobilization in aquifers, three successive pore-sized colloids filtration (0.45μm, 30kDa and 5kDa) were conducted on in-situ during groundwater sampling. The results showed that the distribution ratios (f) of total iodine (IT) and iron in the dissolved solution (i.e., 5kDa ultrafiltered) were from 0.78 to 0.99 and from 0.56 to 0.94, respectively. Natural organic matter (NOM) in the colloidal fractions obtained the f values ranging from 0.14 to 1.00. The decreased Eh values from recharge area to discharge area indicated redox potential of groundwater system changed from oxidizing to reducing along groundwater flowpath, and interestingly, the corresponding iodine fractions in groundwater were decreasing in dissolved solution and increasing in colloidal fractions. Inverse correlation between Fe and DOC and positive correlation between iodine and DOC suggested the occurrence of reductive dissolution of iron oxyhydroxides and degradation of organic iodine in groundwater system. Iodine distribution increased in dissolved solution and decreased in colloids with pH increase. Moreover, as pH increased, f (Fe) and f (DOC) decreased in dissolved solution and increased in colloids. Relatively weak correlation of f (IT) with f (Fe) and strong relationship between f (IT) and f (DOC) in the large grain size fractions suggested the Fe-OM complexes controlled iodine distribution in groundwater, which depends on the presence of Fe bridges. Negligible association of iodine with Fe and NOM in the small grain size fractions might be attributed to the effects of abundant OH(-) content in groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Bioavailability of Fe(III) in Natural Soils and the Impact on Mobility of Inorganic Contaminants (Final Report)

    SciTech Connect

    Kosson, David S.; Cowan, Robert M.; Young, Lily Y.; Hatcherl, Eric L.; Scala, David J.

    2005-08-02

    Inorganic contaminants, such as heavy metals and radionuclides, can adhere to insoluble Fe(III) minerals resulting in decreased mobility of these contaminants through subsurface environments. Dissimilatory Fe(III)-reducing bacteria (DIRB), by reducing insoluble Fe(III) to soluble Fe(II), may enhance contaminant mobility. The Savannah River Site, South Carolina (SRS), has been subjected to both heavy metal and radionuclide contamination. The overall objective of this project is to investigate the release of inorganic contaminants such as heavy metals and radionuclides that are bound to solid phase soil Fe complexes and to elucidate the mechanisms for mobilization of these contaminants that can be associated with microbial Fe(III) reduction. This is being accomplished by (i) using uncontaminated and contaminated soils from SRS as prototype systems, (ii) evaluating the diversity of DIRBs within the samples and isolating cultures for further study, (iii) using batch microcosms to evaluate the bioavailability of Fe(III) from pure minerals and SRS soils, (iv) developing kinetic and mass transfer models that reflect the system dynamics, and (v) carrying out soil column studies to elucidate the dynamics and interactions amongst Fe(III) reduction, remineralization and contaminant mobility.

  3. Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated groundwater

    USGS Publications Warehouse

    Harvey, Ronald W.; Barber, Larry B.

    1992-01-01

    Associations of free-living bacteria (FLB) and dissolved organic contaminants in a 4-km-long plume of sewage-contaminated groundwater were investigated. Abundance of FLB in the core of the plume (as delineated by maximum specific conductance) steadily decreased in the direction of flow from a point 0.25 km downgradient from the source to the toe of the plume. At 0.25 km downgradient, FLB comprised up to 31% of the total bacterial population, but constituted <7% of the population at 2 km downgradient. Abundance of FLB correlated strongly (r = 0.80, n = 23) with total dissolved organic carbon (DOC) in contaminated groundwater between 0.64 and 2.1 km downgradient, although distributions of individual contaminants such as di-, tri- and tetrachloroethene were highly variable, and their association with FLB less clear. Numbers of FLB in the downgradient portion of the plume which is contaminated with branched-chain alkylbenzenesulfonate (ABS) surfactants were low (<5 · 108/L) in spite of relatively high levels of DOC (up to 4 mg/L). However, abundance of FLB correlated strongly with non-surfactant DOC along vertical transects through the plume. The ratio of FLB to DOC and the ratio of FLB to attached bacteria generally decreased in the direction of flow and, consequently, with the age of the organic contaminants.

  4. Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated groundwater

    USGS Publications Warehouse

    Harvey, R.W.; Barber, L.B.; ,

    1992-01-01

    Associations of free-living bacteria (FLB) and dissolved organic contaminants in a 4-km-long plume of sewage-contaminated groundwater were investigated. Abundance of FLB in the core of the plume (as delineated by maximum specific conductance) steadily decreased in the direction of flow from a point 0.25 km downgradient from the source to the toe of the plume. At 0.25 km downgradient, FLB comprised up to 31% of the total bacterial population, but constituted < 7% of the population at 2 km downgradient. Abundance of FLB correlated strongly (r = 0.80 n = 23) with total dissolved organic carbon (DOC) in contaminated groundwater between 0.64 and 2.1 km downgradient, although distributions of individual contaminants such as di-, tri- and tetrachloroethene were highly variable, and their association with FLB less clear. Numbers of FLB in the downgradient portion of the plume which is contaminated with branched-chain alkylbenzenesulfonate (ABS) surfactants were low (< 5??108/L) in spite of relatively high levels of DOC (up to 4 mg/L). However, abundance of FLB correlated strongly with non-surfactant DOC along vertical transects through the plume. The ratio of FLB to DOC and the ratio of FLB to attached bacteria generally decreased in the direction of flow and, consequently, with the age of the organic contaminants.

  5. Groundwater flow and contaminant transport modelling at an air weapons range

    NASA Astrophysics Data System (ADS)

    Bordeleau, Geneviève; Martel, Richard; Schäfer, Dirk; Ampleman, Guy; Thiboutot, Sonia

    2008-07-01

    Numerical modelling was done at the Cold Lake Air Weapons Range, Canada, to test whether the dissolved RDX and nitrate detected in groundwater come from the same sources, and to predict whether contamination poses a threat to the surface water receptors near the site. Military live fire training activiti