Science.gov

Sample records for inorganic mercury determination

  1. Electrochemical determination of inorganic mercury and arsenic--A review.

    PubMed

    Zaib, Maria; Athar, Muhammad Makshoof; Saeed, Asma; Farooq, Umar

    2015-12-15

    Inorganic mercury and arsenic encompasses a term which includes As(III), As(V) and Hg(II) species. These metal ions have been extensively studied due to their toxicity related issues. Different analytical methods are used to monitor inorganic mercury and arsenic in a variety of samples at trace level. The present study reviews various analytical techniques available for detection of inorganic mercury and arsenic with particular emphasis on electrochemical methods especially stripping voltammetry. A detailed critical evaluation of methods, advantages of electrochemical methods over other analytical methods, and various electrode materials available for mercury and arsenic analysis is presented in this review study. Modified carbon paste electrode provides better determination due to better deposition with linear and improved response under studied set of conditions. Biological materials may be the potent and economical alternative as compared to macro-electrodes and chemically modified carbon paste electrodes in stripping analysis of inorganic mercury and arsenic.

  2. Inorganic: the other mercury.

    PubMed

    Risher, John F; De Rosa, Christopher T

    2007-11-01

    There is a broad array of mercury species to which humans may be exposed. While exposure to methylmercury through fish consumption is widely recognized, the public is less aware of the sources and potential toxicity of inorganic forms of mercury. Some oral and laboratory thermometers, barometers, small batteries, thermostats, gas pressure regulators, light switches, dental amalgam fillings, cosmetic products, medications, cultural/religious practices, and gold mining all represent potential sources of exposure to inorganic forms of mercury. The route of exposure, the extent of absorption, the pharmacokinetics, and the effects all vary with the specific form of mercury and the magnitude and duration of exposure. If exposure is suspected, a number of tissue analyses can be conducted to confirm exposure or to determine whether an exposure might reasonably be expected to be biologically significant. By contrast with determination of exposure to methylmercury, for which hair and blood are credible indicators, urine is the preferred biological medium for the determination of exposure to inorganic mercury, including elemental mercury, with blood normally being of value only if exposure is ongoing. Although treatments are available to help rid the body of mercury in cases of extreme exposure, prevention of exposure will make such treatments unnecessary. Knowing the sources of mercury and avoiding unnecessary exposure are the prudent ways of preventing mercury intoxication. When exposure occurs, it should be kept in mind that not all unwanted exposures will result in adverse health consequences. In all cases, elimination of the source of exposure should be the first priority of public health officials.

  3. Inorganic: the other mercury.

    PubMed

    Risher, John F; De Rosa, Christopher T

    2007-11-01

    There is a broad array of mercury species to which humans may be exposed. While exposure to methylmercury through fish consumption is widely recognized, the public is less aware of the sources and potential toxicity of inorganic forms of mercury. Some oral and laboratory thermometers, barometers, small batteries, thermostats, gas pressure regulators, light switches, dental amalgam fillings, cosmetic products, medications, cultural/religious practices, and gold mining all represent potential sources of exposure to inorganic forms of mercury. The route of exposure, the extent of absorption, the pharmacokinetics, and the effects all vary with the specific form of mercury and the magnitude and duration of exposure. If exposure is suspected, a number of tissue analyses can be conducted to confirm exposure or to determine whether an exposure might reasonably be expected to be biologically significant. By contrast with determination of exposure to methylmercury, for which hair and blood are credible indicators, urine is the preferred biological medium for the determination of exposure to inorganic mercury, including elemental mercury, with blood normally being of value only if exposure is ongoing. Although treatments are available to help rid the body of mercury in cases of extreme exposure, prevention of exposure will make such treatments unnecessary. Knowing the sources of mercury and avoiding unnecessary exposure are the prudent ways of preventing mercury intoxication. When exposure occurs, it should be kept in mind that not all unwanted exposures will result in adverse health consequences. In all cases, elimination of the source of exposure should be the first priority of public health officials. PMID:18044248

  4. Subnanogram determination of inorganic and organic mercury by helium-microwave induced plasma-atomic emission spectrometry

    SciTech Connect

    Fukushi, K. ); Willie, S.N.; Sturgeon, R.E. )

    1993-02-01

    Inorganic and organic mercury were determined by helium-microwave induced plasma-atomic emission spectrometry following cold vapor generation. Whereas only inorganic mercury was reduced by stannous ion in an acidic medium, both inorganic and organic mercury (total mercury) were reduced by stannous ion in the presence of cupric ion in a basic medium. Organic mercury was determined as the difference between total and inorganic mercury. Detection limits for inorganic and organic mercury were 11 and 10 pg, respectively. The accuracy of the proposed method was verified through the determination of inorganic, total and organic mercury in two marine biological standard reference materials, DORM-1 and TORT-1. 21 refs., 1 fig., 4 tabs.

  5. Simultaneous determination of inorganic mercury, methylmercury, and total mercury concentrations in cryogenic fresh-frozen and freeze-dried biological reference materials.

    PubMed

    Point, David; Davis, W Clay; Garcia Alonso, J Ignacio; Monperrus, Mathilde; Christopher, Steven J; Donard, Olivier F X; Becker, Paul R; Wise, Stephen A

    2007-10-01

    Two speciated isotope dilution (SID) approaches consisting of a single-spike (SS) method and a double-spike (DS) method including a reaction/transformation model for the correction of inadvertent transformations affecting mercury species were compared in terms of accuracy, method performance, and robustness for the simultaneous determination of methylmercury (MeHg), inorganic mercury (iHg), and total mercury (HgT) concentrations in five biological Standard Reference Materials (SRMs). The SRMs consisted of oyster and mussel tissue materials displaying different mercury species concentration levels and different textural/matrix properties including freeze-dried (FD) materials (SRMs 1566b, 2976, and 2977) and cryogenically prepared and stored fresh-frozen (FF) materials (SRMs 1974a, 1974b). Each sample was spiked with (201)iHg (Oak Ridge National Laboratory, ORNL) and Me(202)Hg (Institute for Reference Materials and Measurements. IRMM-670) solutions and analyzed using alkaline microwave digestion, ethylation, and gas chromatography inductively coupled plasma mass spectrometry (GC/ICP-MS). The results obtained by the SS-SID method suggested that FF and FD materials are not always commutable for the simultaneous determination of iHg, MeHg, and HgT, due to potential transformation reactions resulting probably from the methodology and/or from the textural/matrix properties of the materials. These transformations can occasionally significantly affect mercury species concentration results obtained by SS-SID, depending on the species investigated and the materials considered. The results obtained by the DS-SID method indicated that the two classes of materials were commutable. The simultaneous and corrected concentrations of iHg, MeHg, and HgT obtained by this technique were not found to be statistically different form the certified and reference concentration together with their expanded uncertainty budgets for the five SRMs investigated, exemplifying the robustness, the

  6. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Duarte, Fábio Andrei; Bizzi, Cezar Augusto; Antes, Fabiane Goldschmidt; Dressler, Valderi Luiz; Flores, Érico Marlon de Moraes

    2009-06-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 °C and the atomization temperature was set at 650 °C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  7. Determination of inorganic ionic mercury down to 5x10(-14) mol l(-1) by differential-pulse anodic stripping voltammetry.

    PubMed

    Meyer, S; Scholz, F; Trittler, R

    1996-09-01

    A new method is described for the reliable and ultrasensitive determination of inorganic ionic mercury, using differential-pulse anodic stripping voltammetry on a glassy carbon electrode. It has been possible to determine mercury down to a concentration of 5x10(-14) mol l(-1) (the lowest detection limit ever reported for a voltammetric method). This success was achieved by using a thiocyanate electrolyte and relatively long deposition times. The mercury ions are stabilized in the solution by the formation of strong thiocyanate complexes. This leads to a highly reproducible cathodic plating and anodic dissolution of mercury. A speciation analysis allowing to distinguish between dissolved atomic and ionic mercury in water is possible. PMID:15048362

  8. A rapid ultrasound-assisted thiourea extraction method for the determination of inorganic and methyl mercury in biological and environmental samples by CVAAS.

    PubMed

    Krishna, M V Balarama; Ranjit, Manjusha; Karunasagar, D; Arunachalam, J

    2005-07-15

    A rapid ultrasound-assisted extraction procedure for the determination of total mercury, inorganic and methyl mercury (MM) in various environmental matrices (animal tissues, samples of plant origin and coal fly ash) has been developed. The mercury contents were estimated by cold vapour atomic absorption spectrometry (CVAAS). Inorganic mercury (IM) was determined using SnCl(2) as reducing agent whereas total mercury was determined after oxidation of methyl mercury through UV irradiation. Operational parameters such as extractant composition (HNO(3) and thiourea), sonication time and sonication amplitude found to be different for different matrices and were optimized using IAEA-350 (Fish homogenate), IM and MM loaded moss and NIST-1633b (Coal fly ash) to get quantitative extraction of total mercury. The method was further validated through the analysis of additional certified reference materials (RM): NRCC-DORM2 (Dogfish muscle), NRCC-DOLT1 (Dogfish liver) and IAEA-336 (Lichen). Quantitative recovery of total Hg was achieved using mixtures of 5% HNO(3) and 0.02% thiourea, 10% HNO(3) and 0.02% thiourea, 20% HNO(3) and 0.2% thiourea for fish tissues, plant matrices and coal fly ash samples, respectively. The results obtained were in close agreement with certified values with an overall precision in the range of 5-15%. The proposed ultrasound-assisted extraction procedure significantly reduces the time required for sample treatment for the extraction of Hg species. The extracted mercury species are very stable even after 24h of sonication. Closed microwave digestion was also used for comparison purposes. The proposed method was applied for the determination of Hg in field samples of lichens, mosses, coal fly ash and coal samples.

  9. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    SciTech Connect

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.; George, Graham N.; Krone, Patrick H.

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

  10. A simple method for methylmercury, inorganic mercury and ethylmercury determination in plasma samples by high performance liquid chromatography-cold-vapor-inductively coupled plasma mass spectrometry.

    PubMed

    de Souza, Samuel S; Campiglia, Andres Dobal; Barbosa, Fernando

    2013-01-25

    A simple and sensitive method with a fast sample preparation procedure is proposed for the determination of mercury species in plasma/serum. The method combines online high-performance liquid chromatography separation, Hg cold-vapor formation and inductively coupled plasma mass spectrometry detection. Prior to analysis, plasma (250 μL) was accurately pipetted into 15 mL conical tubes. Then, an extractant solution containing mercaptoethanol, L-cysteine and HCl was added to the samples following sonication for 10 min. Quantitative mercury extraction was achieved with the proposed procedure. Separation of mercury species was accomplished in less than 8 min on a C8 reverse phase column with a mobile phase containing 3% v/v methanol + 97% v/v (0.5% v/v 2-mercaptoethanol + 0.05% v/v formic acid). The method detection limits were found to be 12 ng L(-1), 5 ng L(-1) and 4 ng L(-1) for inorganic mercury, ethylmercury and methylmercury, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from NIST. Additional validation was provided by the analysis of a secondary reference serum sample from the INSQ-Canada. Finally, the method was successfully applied for the speciation of mercury in plasma samples collected from volunteers exposed to methylmercury through fish consumption. For the first time to our knowledge, levels of different species of Hg in plasma samples from riverside populations exposed to MeHg were determined.

  11. Methylation of inorganic mercury in polar marine waters

    NASA Astrophysics Data System (ADS)

    Lehnherr, Igor; St. Louis, Vincent L.; Hintelmann, Holger; Kirk, Jane L.

    2011-05-01

    Monomethylmercury is a neurotoxin that accumulates in marine organisms, with serious implications for human health. The toxin is of particular concern to northern Inuit peoples, for example, whose traditional diets are composed primarily of marine mammals and fish. The ultimate source of monomethylmercury to marine organisms has remained uncertain, although various potential sources have been proposed, including export from coastal and deep-sea sediments and major river systems, atmospheric deposition and water-column production. Here, we report results from incubation experiments in which we added isotopically labelled inorganic mercury and monomethylmercury to seawater samples collected from a range of sites in the Canadian Arctic Archipelago. Monomethylmercury formed from the methylation of inorganic mercury in all samples. Demethylation of monomethylmercury was also observed in water from all sites. We determined steady-state concentrations of monomethylmercury in marine waters by incorporating the rate constants for monomethylmercury formation and degradation derived from these experiments into a numerical model. We estimate that the conversion of inorganic mercury to monomethylmercury in the water column accounts for around 47% (+/-62%, standard deviation) of the monomethylmercury present in polar marine waters, with site-to-site differences in inorganic mercury and monomethylmercury levels accounting for most of the variability. We suggest that water-column methylation of inorganic mercury is a significant source of monomethylmercury in pelagic marine food webs in the Arctic, and possibly in the world's oceans in general.

  12. Multiple spiking species-specific isotope dilution analysis by molecular mass spectrometry: simultaneous determination of inorganic mercury and methylmercury in fish tissues.

    PubMed

    Castillo, Angel; Rodríguez-González, Pablo; Centineo, Giuseppe; Roig-Navarro, Antoni Francesc; García Alonso, J Ignacio

    2010-04-01

    This work demonstrates, for the first time, the applicability of multiple spiking isotope dilution analysis to molecular mass spectrometry exemplified by the speciation analysis of mercury using GC(EI)MS instrumentation. A double spike isotope dilution approach using isotopically enriched mercury isotopes has been applied for the determination of inorganic mercury Hg(II) and methylmercury (MeHg) in fish reference materials. The method is based on the application of isotope pattern deconvolution for the simultaneous determination of degradation-corrected concentrations of methylmercury and inorganic mercury. Mass isotopomer distributions are employed instead of isotope ratios to calculate the corrected concentrations of the Hg species as well as the extent of species degradation reactions. The isotope pattern deconvolution equations developed here allow the calculation of the different molar fractions directly from the GC(EI)MS mass isotopomer distribution pattern and take into account possible impurities present in the spike solutions employed. The procedure has been successfully validated with the analysis of two different certified reference materials (BCR-464 and DOLT-4) and with the comparison of the results obtained by GC(ICP)MS. For the tuna fish matrix (BCR-464), no interconversion reactions were observed at the optimized conditions of open focused microwave extraction at 70 degrees C during 8 min. However, significant demethylation was found under the same conditions in the case of the certified dogfish liver DOLT-4. Methylation and demethylation factors were confirmed by GC(ICP)MS. Transformation reactions have been found to depend on the sample matrix and on the derivatization reagent employed. Thus, it is not possible to recommend optimum extraction conditions suitable for all types of matrices demonstrating the need to apply multiple spiking methodologies for the determination of MeHg and Hg(II) in biological samples. Double spike isotope dilution

  13. Multiple spiking species-specific isotope dilution analysis by molecular mass spectrometry: simultaneous determination of inorganic mercury and methylmercury in fish tissues.

    PubMed

    Castillo, Angel; Rodríguez-González, Pablo; Centineo, Giuseppe; Roig-Navarro, Antoni Francesc; García Alonso, J Ignacio

    2010-04-01

    This work demonstrates, for the first time, the applicability of multiple spiking isotope dilution analysis to molecular mass spectrometry exemplified by the speciation analysis of mercury using GC(EI)MS instrumentation. A double spike isotope dilution approach using isotopically enriched mercury isotopes has been applied for the determination of inorganic mercury Hg(II) and methylmercury (MeHg) in fish reference materials. The method is based on the application of isotope pattern deconvolution for the simultaneous determination of degradation-corrected concentrations of methylmercury and inorganic mercury. Mass isotopomer distributions are employed instead of isotope ratios to calculate the corrected concentrations of the Hg species as well as the extent of species degradation reactions. The isotope pattern deconvolution equations developed here allow the calculation of the different molar fractions directly from the GC(EI)MS mass isotopomer distribution pattern and take into account possible impurities present in the spike solutions employed. The procedure has been successfully validated with the analysis of two different certified reference materials (BCR-464 and DOLT-4) and with the comparison of the results obtained by GC(ICP)MS. For the tuna fish matrix (BCR-464), no interconversion reactions were observed at the optimized conditions of open focused microwave extraction at 70 degrees C during 8 min. However, significant demethylation was found under the same conditions in the case of the certified dogfish liver DOLT-4. Methylation and demethylation factors were confirmed by GC(ICP)MS. Transformation reactions have been found to depend on the sample matrix and on the derivatization reagent employed. Thus, it is not possible to recommend optimum extraction conditions suitable for all types of matrices demonstrating the need to apply multiple spiking methodologies for the determination of MeHg and Hg(II) in biological samples. Double spike isotope dilution

  14. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    PubMed Central

    Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety. PMID:23230464

  15. The use of emulsions for the determination of methylmercury and inorganic mercury in fish-eggs oil by cold vapor generation in a flow injection system with atomic absorption spectrometric detection.

    PubMed

    Burguera, J L; Quintana, I A; Salager, J L; Burguera, M; Rondón, C; Carrero, P; Anton de Salager, R; Petit de Peña, Y

    1999-04-01

    An on-line time based injection system used in conjunction with cold vapor generation atomic absorption spectrometry and microwave-aided oxidation with potassium persulfate has been developed for the determination of the different mercury species in fish-eggs oil samples. A three-phase surfactant-oil-water emulsion produced an advantageous flow when a peristaltic pump was used to introduce the highly viscous sample into the system. The optimum proportion of the oil-water mixture ratio was 2:3 v/v with a Tween 20 surfactant concentration in the emulsion of 0.008% v/v. Inorganic mercury was determined after reduction with sodium borohydride while total mercury was determined after an oxidation step with persulfate prior to the reduction step to elemental mercury with the same reducing agent. The difference between total and inorganic mercury determined the organomercury content in samples. A linear calibration graph was obtained in the range 0.1-20 micrograms l-1 of Hg2+ by injecting 0.7 ml of samples. The detection limits based on 3 sigma of the blank signals were 0.11 and 0.12 microgram l-1 for total and inorganic mercury, respectively. The relative standard deviation of ten independent measurements were 2.8 and 2.2% for 10 micrograms l-1 and 8.8 and 9.0% for 0.1 microgram l-1 amounts of total and inorganic mercury, respectively. The recoveries of 0.3, 0.6 and 8 micrograms l-1 of inorganic and organic mercury added to fish-eggs oil samples ranged from 93.0 to 94.8% and from 100 to 106%, respectively. Good agreement with those values obtained for total mercury content in real samples by electrothermal atomic absorption spectrometry was also obtained, differences between mean values were < 7%. With the proposed procedure, 22 proteropterous catfish-eggs oil samples from the northwestern coast of Venezuela were measured; while the organic mercury lay in the range 2.0 and 3.3 micrograms l-1, inorganic mercury was not detected.

  16. Intrarenal distribution of inorganic mercury and albumin after coadministration

    SciTech Connect

    Zalups, R.K. ); Barfuss, D.W. )

    1993-01-01

    The renal disposition and the intrarenal distribution of albumin and mercury were studied simultaneously in rats co-injected with a 0.5-[mu]mol/kg dose of albumin and a 0.25-[mu]mol/kg dose of inorganic mercury at 2, 5, 30, and 180 min after injection. These studies were carried out to test the hypothesis that one of the mechanisms involved in the renal tubular uptake of inorganic mercury is cotransport with albumin. By the end of the first 2 min after injection, the ratio of inorganic mercury to albumin in the renal cortex and outer strip of the outer medulla was approximately 2.6 and 1.6, respectively. Both the cortex and outer stripe contain segments of the proximal tubule, and it is these segments that have been shown to be principally involved in the renal tubular uptake of both albumin and inorganic mercury. The ration increased slightly in these two zones after 5 and 20 min after injection. These data demonstrate that there is a relatively close relationship in the renal content of inorganic mercury and albumin. However, the ratios are significantly greater than the ratio of inorganic mercury of albumin in the injection solution, which was 0.5. After 180 min following co-injection, the ratio increased to about 38 in the cortex and 15 in the outer stripe. This increase in the ratio is probably related to the metabolism of albumin. Based on the ratios of inorganic mercury to albumin in the renal cortex and outer stripe of the outer medulla, it appears that some proximal tubular uptake of inorganic mercury occurs by mechanisms other than endocytotic cotransport of inorganic mercury with albumin. However, since the ratios were small during the early times after injection, cotransport of inorganic mercury with albumin cannot be excluded as one of the mechanisms involved in the proximal tubular uptake of inorganic mercury. 32 refs., 12 figs., 4 tabs.

  17. Mercury

    MedlinePlus

    ... of the lungs Medicine to remove mercury and heavy metals from the body INORGANIC MERCURY For inorganic mercury ... Baum CR. Mercury: Heavy metals and inorganic agents. In: Shannon MW, ... Haddad and Winchester's Clinical Management of Poisoning and ...

  18. Polymer-supported ionic liquid solid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry.

    PubMed

    Escudero, Leticia B; Olsina, Roberto A; Wuilloud, Rodolfo G

    2013-11-15

    A simple and green technique named polymer-supported ionic liquid solid phase extraction (PSIL-SPE) was developed for mercury (Hg) species determination. Inorganic Hg (InHg) species was complexed with chloride ions followed by its introduction into a flow injection on-line system to quantitatively retain the anionic chlorocomplex (HgCl4(2-)) in a column packed with CYPHOS(®) IL 101-impregnated resin. The trapped InHg was then reduced with stannous chloride (SnCl2) and eluted with the same flow of reducing agent followed by cold vapor atomic absorption spectrometry (CV-AAS) detection. Organic mercury species (OrgHg) did not interact with the impregnated resin and were not retained into the column. Total concentration of OrgHg was evaluated by difference between total Hg and InHg concentration. A 95% extraction efficiency was achieved for InHg when the procedure was developed under optimal experimental conditions. The limit of detection obtained for preconcentration of 40 mL of sample was 2.4 ng L(-1) InHg. The relative standard deviation (RSD) was 2.7% (at 1 µg L(-1) InHg and n=10) calculated from the peak height of absorbance signals (Gaussian-shape and reproducible peaks). This work reports the first polymer-supported IL solid phase extraction approach implemented in a flow injection on-line system for determination of Hg species in mineral, tap and river water samples.

  19. Sexual differences in the distribution and retention of organic and inorganic mercury in methyl mercury-treated rats

    SciTech Connect

    Thomas, D.J.; Fisher, H.L.; Sumler, M.R.; Marcus, A.H.; Mushak, P.; Hall, L.L.

    1986-10-01

    At 56 days of age, male and female Long-Evans rats received 1 ..mu..mole of /sup 203/Hg-labeled mercuric chloride per kilogram sc and total, organic, and inorganic mercury contents and concentrations in tissues were determined for up to 98 days postdosing. When expressed on a concentration basis, the only significant sexual difference was in the higher average concentration of organic mercury in the kidneys of females. When expressed on a tissue content basis, significant male-female differences in the kinetics (sex x time interactions) of organic mercury retention were found in kidney, brain, skeletal muscle, pelt, and whole body. Significant sex x time interactions in the concentrations of organic mercury were found in kidney, skeletal muscle, and whole body. Kinetics of retention and concentration of inorganic Hg in the pelt differed significantly for males and females. Discordance of degree of statistical significance of differences in mercury contents and concentrations reflected in part differences in relative body composition of males and females. Differences in integrated exposure were estimated by the female-to-male ratio of areas under retention curves. Reconstruction of whole body organic and inorganic mercury burdens from constituent tissues indicated that integrated exposures of males and females to inorganic mercury were equal but females had a lower integrated exposure to organic mercury. Integrated exposure of liver to either form of mercury was about equal in males and females. However, the integrated exposure of the brain of females to inorganic mercury was 2.19 times that of males suggest'ing a sexual difference in accumulation or retention of inorganic mercury in the nervous system.

  20. Pressure-driven mesofluidic platform integrating automated on-chip renewable micro-solid-phase extraction for ultrasensitive determination of waterborne inorganic mercury.

    PubMed

    Portugal, Lindomar A; Laglera, Luis M; Anthemidis, Aristidis N; Ferreira, Sérgio L C; Miró, Manuel

    2013-06-15

    A dedicated pressure-driven mesofluidic platform incorporating on-chip sample clean-up and analyte preconcentration is herein reported for expedient determination of trace level concentrations of waterborne inorganic mercury. Capitalizing upon the Lab-on-a-Valve (LOV) concept, the mesofluidic device integrates on-chip micro-solid phase extraction (μSPE) in automatic disposable mode followed by chemical vapor generation and gas-liquid separation prior to in-line atomic fluorescence spectrometric detection. In contrast to prevailing chelating sorbents for Hg(II), bare poly(divinylbenzene-N-vinylpyrrolidone) copolymer sorptive beads were resorted to efficient uptake of Hg(II) in hydrochloric acid milieu (pH=2.3) without the need for metal derivatization nor pH adjustment of prior acidified water samples for preservation to near-neutral conditions. Experimental variables influencing the sorptive uptake and retrieval of target species and the evolvement of elemental mercury within the miniaturized integrated reaction chamber/gas-liquid separator were investigated in detail. Using merely <10 mg of sorbent, the limits of detection and quantification at the 3s(blank) and 10s(blank) levels, respectively, for a sample volume of 3 mL were 12 and 42 ng L(-1) Hg(II) with a dynamic range extending up to 5.0 μg L(-1). The proposed mesofluidic platform copes with the requirements of regulatory bodies (US-EPA, WHO, EU-Commission) for drinking water quality and surface waters that endorse maximum allowed concentrations of mercury spanning from 0.07 to 6.0 μg L(-1). Demonstrated with the analysis of aqueous samples of varying matrix complexity, the LOV approach afforded reliable results with relative recoveries of 86-107% and intermediate precision down to 9% in the renewable μSPE format.

  1. Determination of total cadmium, lead, arsenic, mercury and inorganic arsenic in mushrooms: outcome of IMEP-116 and IMEP-39

    PubMed Central

    Cordeiro, F.; Llorente-Mirandes, T.; López-Sánchez, J.F.; Rubio, R.; Sánchez Agullo, A.; Raber, G.; Scharf, H.; Vélez, D.; Devesa, V.; Fiamegos, Y.; Emteborg, H.; Seghers, J.; Robouch, P.; de la Calle, M.B.

    2015-01-01

    The Institute for Reference Materials and Measurements (IRMM) of the Joint Research Centre (JRC), a Directorate General of the European Commission, operates the International Measurement Evaluation Program (IMEP). IMEP organises inter-laboratory comparisons in support of European Union policies. This paper presents the results of two proficiency tests (PTs): IMEP-116 and IMEP-39, organised for the determination of total Cd, Pb, As, Hg and inorganic As (iAs) in mushrooms. Participation in IMEP-116 was restricted to National Reference Laboratories (NRLs) officially appointed by national authorities in European Union member states. IMEP-39 was open to all other laboratories wishing to participate. Thirty-seven participants from 25 countries reported results in IMEP-116, and 62 laboratories from 36 countries reported for the IMEP-39 study. Both PTs were organised in support to Regulation (EC) No. 1881/2006, which sets the maximum levels for certain contaminants in food. The test item used in both PTs was a blend of mushrooms of the variety shiitake (Lentinula edodes). Five laboratories, with demonstrated measurement capability in the field, provided results to establish the assigned values (X ref). The standard uncertainties associated to the assigned values (u ref) were calculated by combining the uncertainty of the characterisation (u char) with a contribution for homogeneity (u bb) and for stability (u st), whilst u char was calculated following ISO 13528. Laboratory results were rated with z- and zeta (ζ)-scores in accordance with ISO 13528. The standard deviation for proficiency assessment, σ p, ranged from 10% to 20% depending on the analyte. The percentage of satisfactory z-scores ranged from 81% (iAs) to 97% (total Cd) in IMEP-116 and from 64% (iAs) to 84% (total Hg) in IMEP-39. PMID:25365736

  2. Determination of ultra-trace amount methyl-, phenyl- and inorganic mercury in environmental and biological samples by liquid chromatography with inductively coupled plasma mass spectrometry after cloud point extraction preconcentration.

    PubMed

    Chen, Jianguo; Chen, Hengwu; Jin, Xianzhong; Chen, Haiting

    2009-02-15

    The cloud point extraction (CPE) preconcentration of ultra-trace amount of mercury species prior to reverse-phase high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) detection was studied. Mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were transformed into hydrophobic chelates by reaction with sodium diethyldithiocarbamate, and the hydrophobic chelates were extracted into a surfactant-rich phase of Triton X-114 upon heating in a water bath at 40 degrees C. Ethylmercury was found partially decomposed during the CPE process, and was not included in the developed method. Various experimental conditions affecting the CPE preconcentration, HPLC separation, and ICP-MS determination were optimized. Under the optimized conditions, detection limits of 13, 8 and 6 ng l(-1) (as Hg) were achieved for MeHg(+), PhHg(+) and Hg(2+), respectively. Seven determinations of a standard solution containing the three mercury species each at 0.5 ng ml(-1) level produced relative standard deviations of 5.3, 2.3 and 4.4% for MeHg(+), PhHg(+) and Hg(2+), respectively. The developed method was successfully applied for the determination of the three mercury species in environmental water samples and biological samples of human hair and ocean fish.

  3. Determination of trace inorganic mercury species in water samples by cloud point extraction and UV-vis spectrophotometry.

    PubMed

    Ulusoy, Halil Ibrahim

    2014-01-01

    A new micelle-mediated extraction method was developed for preconcentration of ultratrace Hg(II) ions prior to spectrophotometric determination. 2-(2'-Thiazolylazo)-p-cresol (TAC) and Ponpe 7.5 were used as the chelating agent and nonionic surfactant, respectively. Hg(II) ions form a hydrophobic complex with TAC in a micelle medium. The main factors affecting cloud point extraction efficiency, such as pH of the medium, concentrations of TAC and Ponpe 7.5, and equilibration temperature and time, were investigated in detail. An overall preconcentration factor of 33.3 was obtained upon preconcentration of a 50 mL sample. The LOD obtained under the optimal conditions was 0.86 microg/L, and the RSD for five replicate measurements of 100 microg/L Hg(II) was 3.12%. The method was successfully applied to the determination of Hg in environmental water samples.

  4. Historical and other patterns of monomethyl and inorganic mercury in the Florida panther (Puma concolor coryi).

    PubMed

    Newman, J; Zillioux, E; Rich, E; Liang, L; Newman, C

    2005-01-01

    Since the late 1980s, elevated levels of mercury have been reported in the tissues of the Florida panther (Puma concolor coryi) from the Florida Everglades. The extent, degree, and length of time of mercury contamination in the Florida panther are unknown. The objective of this study was to determine the historical and other patterns of monomethyl and inorganic mercury in the Florida panther by analysis of mercury in panther hair from museum collections. In addition, this study evaluated the effects of preservation of skins on mercury concentrations in hair and the representativeness of museum collections for evaluating historical trends of contamination in the Florida panther. Hair from 42 Florida panther specimens collected from 1896 to 1995 was analyzed for both monomethyl and inorganic mercury. Monomethyl mercury (MMHg) and inorganic mercury (IHg) were found in all specimens. Monomethyl mercury in hair from untanned skins was significantly higher than MMHg in hair from tanned skins. For untanned specimens, the mean MMHg concentration in hair was 1.62 +/- 1.87 mug/g (range 0.11 to 6.68 mug/g, n = 16). Monomethyl mercury accounted for 88% of the total mercury in untanned Florida panther hair. No sexual or geographical differences were found. Although MMHg is generally stable in hair, the tanning process appears to reduce the amount of MMHg in hair. In addition, exogenous IHg contamination of the panther hair was found in museum specimens, especially in older specimens. The implication of these and other factors in interpreting results of museum studies is discussed. The presence of MMHg in panther hair since the 1890s indicates long-term and widespread exposure of the Florida panther to mercury. Levels of MMHg are significantly greater in the 1990s than the 1890s. When combined with field studies of mercury in the Florida panther, considerable individual variability is observed, reflecting short-term changes in exposure of individual panthers to mercury. Although

  5. Determination of organic and inorganic mercury species in water and sediment samples by HPLC on-line coupled with ICP-MS.

    PubMed

    dos Santos, José Soares; de la Guárdia, Miguel; Pastor, Augustin; dos Santos, Maria Lúcia Pires

    2009-11-15

    This paper describes a preconcentration method for Hg(2+) and MeHg(+) in water samples using sodium diethyldithiocarbamate immobilized in polyurethane foam (PU-NaDDC) and an extraction method for several mercury species in sediment samples, including MeHg(+), EtHg(+) and PhHg(+), which is simple, rapid, and uses a single organic solvent. Separation and measurement were done by high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Initially, the test of recovery was applied using procedures compatible with HPLC. Under the optimum extraction conditions, recoveries of 96.7, 96.3 and 97.3% were obtained for MeHg(+), EtHg(+), and PhHg(+), respectively, from n=4 spiked sediment samples. This study also demonstrates that the combination of solid-phase extraction on PU-NaDDC with HPLC separation and ICP-MS detection is an effective preconcentration procedure for simultaneous measurement of Hg(2+) and MeHg(+) at ultra-trace levels in water samples. The application of the proposed procedure to the determination of mercury species in drinking water sample was investigated. The proposed method clearly gave satisfactory average recoveries between 93.7 and 101.5%.

  6. Sediment-water partitioning of inorganic mercury in estuaries.

    PubMed

    Turner, A; Millward, G E; Le Roux, S M

    2001-12-01

    The sediment-water partitioning and speciation of inorganic mercury have been studied under simulated estuarine conditions by monitoring the hydrophobicity and uptake of dissolved 203Hg(II) in samples from a variety of estuarine environments. A persistent increase in the distribution coefficientwith increasing salinity is inconsistent with inorganic speciation calculations, which predict an increase in the concentration of the soluble HgCl4(2-) complex (or reduction in sediment-water distribution coefficient) with increasing salinity. Partition data are, however, defined by an empirical equation relating to the salting out of nonelectrolytes via electrostriction and are characterized by salting constants between about 1.4 and 2.0 L mol(-1). Salting out of the neutral, covalent chloro-complex, HgCl2(0), is predicted but cannot account for the magnitude of salting out observed. Since Hg(II) strongly complexes with dissolved (and particulate) organic matter in natural environments, of more significance appears to be the salting out of Hg(II)-organic complexes. Operational measurements of the speciation of dissolved Hg(II) using Sep-Pak C18 columns indicate a reduction in the proportion of hydrophobic (C18-retained) dissolved Hg(II) complexes with increasing salinity, both in the presence and absence of suspended particles. Ratios of hydrophobic Hg(ll) before and after particle addition suggest a coupled salting out-sorption mechanism, with the precise nature of Hg(II) species salted out being determined bythe characteristics and concentrations of dissolved and sediment organic matter. PMID:11770766

  7. Thorough removal of inorganic and organic mercury from aqueous solutions by adsorption on Lemna minor powder.

    PubMed

    Li, Shun-Xing; Zheng, Feng-Ying; Yang, Huang; Ni, Jian-Cong

    2011-02-15

    The adsorption ability of duckweed (Lemna minor) powders for removing inorganic and organic mercury (methyl and ethyl mercury) has been studied using cold vapour atomic absorption spectrometry. The optimal adsorption conditions were: (a) the pH value of the solution 7.0 for inorganic and ethyl mercury, 9.0 for methyl mercury, and (b) equilibrium adsorption time 10, 20, and 40 min for inorganic mercury, methyl mercury, and ethyl mercury, respectively. After adsorption by L. minor powder for 40 min, when the initial concentrations of inorganic and organic mercury were under 12.0 μg L(-1) and 50.0 μg L(-1), respectively, the residual concentrations of mercury could meet the criterion of drinking water (1.0 μg L(-1)) and the permitted discharge limit of wastewater (10.0 μg L(-1)) set by China and USEPA, respectively. Thorough removal of both inorganic and organic mercury from aqueous solutions was reported for the first time. The significant adsorption sites were C-O-P and phosphate groups by the surface electrostatic interactions with aqueous inorganic and organic mercury cations, and then the selective adsorption was resulted from the strong chelating interaction between amine groups and mercury on the surface of L. minor cells.

  8. Determination of mercurous chloride and total mercury in mercury ores

    USGS Publications Warehouse

    Fahey, J.J.

    1937-01-01

    A method for the determination of mercurous chloride and total mercury on the same sample is described. The mercury minerals are volatilized in a glass tube and brought into intimate contact with granulated sodium carbonate. The chlorine is fixed as sodium chloride, determined with silver nitrate, and computed to mercurous chloride. The mercury is collected on a previously weighed gold coil and weighed.

  9. Intracellular speciation and transformation of inorganic mercury in marine phytoplankton.

    PubMed

    Wu, Yun; Wang, Wen-Xiong

    2014-03-01

    Metal speciation is closely related to toxicity in aquatic organisms, but quantitative study of mercury transformation has rarely been reported. In this study, the ability of three marine phytoplankton species, including a green alga Chlorella autotrophica, a flagellate Isochrysis galbana and a diatom Thalassiosira weissflogii, to convert inorganic mercury were examined. We found that all algae tested were able to transform Hg(II) into dissolved gaseous mercury (DGM), phytochelatin (PC) complexes and metacinnabar (β-HgS). The most tolerant species, T. weissflogii, generally produced the highest level of PCs and β-HgS. Attributed to the highest DGM production ability, C. autotrophica accumulated the least Hg, but was the most sensitive due to low PC induction and β-HgS formation. Of the added Hg(II), less than 5% was reduced to DGM per day in all species. Of the intracellular Hg, <20% and 20-90% were chelated by PCs and transformed into β-HgS, respectively. These results suggest that intracellular biotransformation might be more important than bioavailability regulation in Hg(II) detoxification in marine phytoplankton.

  10. Accumulation properties of inorganic mercury and organic mercury in the red-crowned crane Grus japonensis in east Hokkaido, Japan.

    PubMed

    Teraoka, Hiroki; Okamoto, Erika; Kudo, Moe; Nakayama, Shouta M M; Ikenaka, Yoshinori; Ishizuka, Mayumi; Endo, Tetsuya; Kitazawa, Takio; Hiraga, Takeo

    2015-12-01

    The red-crowned (Japanese) crane Grus japonensis is native to east Hokkaido, Japan, in contrast to the East Asia mainland. Previously, we reported that red-crowned cranes in Hokkaido were highly contaminated with mercury in the 1990s and that the contamination rapidly decreased to a moderate level in the 2000s. In the present study, we determined levels of organic mercury (O-Hg) in the liver and kidney of cranes in east Hokkaido in comparison with levels of total mercury (T-Hg). T-Hg levels in the kidneys were higher than those in the livers in adults but not in subadults and juveniles; however, the reverse was the case for O-Hg even for adults. The ratio of O-Hg to T-Hg in both the liver and kidney decreased as T-Hg increased in the three developmental stages. While the ratios of O-Hg to T-Hg in the liver and kidney of adults were significantly lower than those of juveniles, the ratios were similar for adults and juveniles in a lower range of T-Hg. The ratio of selenium (Se) to T-Hg decreased as T-Hg increased in both the liver and kidney, irrespective of stages. Mercury burdens in feathers were about 59% and 67% of the total body burdens for juveniles and adults, respectively. Furthermore, ratios of carbon and nitrogen stable isotopes to T-Hg varied greatly, with no relation to mercury level in the liver. The results suggest slow accumulation of inorganic mercury in the kidney of red-crowned cranes in east Hokkaido, Japan.

  11. Accumulation properties of inorganic mercury and organic mercury in the red-crowned crane Grus japonensis in east Hokkaido, Japan.

    PubMed

    Teraoka, Hiroki; Okamoto, Erika; Kudo, Moe; Nakayama, Shouta M M; Ikenaka, Yoshinori; Ishizuka, Mayumi; Endo, Tetsuya; Kitazawa, Takio; Hiraga, Takeo

    2015-12-01

    The red-crowned (Japanese) crane Grus japonensis is native to east Hokkaido, Japan, in contrast to the East Asia mainland. Previously, we reported that red-crowned cranes in Hokkaido were highly contaminated with mercury in the 1990s and that the contamination rapidly decreased to a moderate level in the 2000s. In the present study, we determined levels of organic mercury (O-Hg) in the liver and kidney of cranes in east Hokkaido in comparison with levels of total mercury (T-Hg). T-Hg levels in the kidneys were higher than those in the livers in adults but not in subadults and juveniles; however, the reverse was the case for O-Hg even for adults. The ratio of O-Hg to T-Hg in both the liver and kidney decreased as T-Hg increased in the three developmental stages. While the ratios of O-Hg to T-Hg in the liver and kidney of adults were significantly lower than those of juveniles, the ratios were similar for adults and juveniles in a lower range of T-Hg. The ratio of selenium (Se) to T-Hg decreased as T-Hg increased in both the liver and kidney, irrespective of stages. Mercury burdens in feathers were about 59% and 67% of the total body burdens for juveniles and adults, respectively. Furthermore, ratios of carbon and nitrogen stable isotopes to T-Hg varied greatly, with no relation to mercury level in the liver. The results suggest slow accumulation of inorganic mercury in the kidney of red-crowned cranes in east Hokkaido, Japan. PMID:26432029

  12. Solid phase extraction of inorganic mercury using 5-phenylazo-8-hydroxyquinoline and determination by cold vapor atomic fluorescence spectroscopy in natural water samples.

    PubMed

    Daye, Mirna; Ouddane, Baghdad; Halwani, Jalal; Hamzeh, Mariam

    2013-01-01

    8-Hydroxyquinoline (8-HQ) was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ) is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II) is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t 1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II), which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II). The developed method showed quantitative recoveries of Hg(II) with LOD = 0.21 pg mL(-1) and RSD = 3-6% using cold vapor atomic fluorescence spectroscopy (CV-AFS) with a preconcentration factor greater than 250.

  13. Solid Phase Extraction of Inorganic Mercury Using 5-Phenylazo-8-hydroxyquinoline and Determination by Cold Vapor Atomic Fluorescence Spectroscopy in Natural Water Samples

    PubMed Central

    Daye, Mirna; Halwani, Jalal; Hamzeh, Mariam

    2013-01-01

    8-Hydroxyquinoline (8-HQ) was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ) is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II) is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II), which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II). The developed method showed quantitative recoveries of Hg(II) with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS) with a preconcentration factor greater than 250. PMID:24459417

  14. The retention time of inorganic mercury in the brain — A systematic review of the evidence

    SciTech Connect

    Rooney, James P.K.

    2014-02-01

    Reports from human case studies indicate a half-life for inorganic mercury in the brain in the order of years—contradicting older radioisotope studies that estimated half-lives in the order of weeks to months in duration. This study systematically reviews available evidence on the retention time of inorganic mercury in humans and primates to better understand this conflicting evidence. A broad search strategy was used to capture 16,539 abstracts on the Pubmed database. Abstracts were screened to include only study types containing relevant information. 131 studies of interest were identified. Only 1 primate study made a numeric estimate for the half-life of inorganic mercury (227–540 days). Eighteen human mercury poisoning cases were followed up long term including autopsy. Brain inorganic mercury concentrations at death were consistent with a half-life of several years or longer. 5 radionucleotide studies were found, one of which estimated head half-life (21 days). This estimate has sometimes been misinterpreted to be equivalent to brain half-life—which ignores several confounding factors including limited radioactive half-life and radioactive decay from surrounding tissues including circulating blood. No autopsy cohort study estimated a half-life for inorganic mercury, although some noted bioaccumulation of brain mercury with age. Modelling studies provided some extreme estimates (69 days vs 22 years). Estimates from modelling studies appear sensitive to model assumptions, however predications based on a long half-life (27.4 years) are consistent with autopsy findings. In summary, shorter estimates of half-life are not supported by evidence from animal studies, human case studies, or modelling studies based on appropriate assumptions. Evidence from such studies point to a half-life of inorganic mercury in human brains of several years to several decades. This finding carries important implications for pharmcokinetic modelling of mercury and potentially for

  15. Inorganic mercury accumulation in rice (Oryza sativa L.).

    PubMed

    Meng, Bo; Feng, Xinbin; Qiu, Guangle; Wang, Dingyong; Liang, Peng; Li, Ping; Shang, Lihai

    2012-09-01

    To investigate the source and process of inorganic mercury (IHg) accumulation in rice, we monitored the concentrations of IHg in tissues of rice plants (Oryza sativa L.) from four experimental plantation plots. Biweekly during the rice-growing season, tissues of rice plants, corresponding soil, precipitation, and irrigation water samples were collected. The sampling data support the following: (1) the atmosphere is the principal source of IHg to the aboveground parts of the rice plant; (2) both the atmosphere and soil contribute to IHg content in stalks, but the former source tends to be more important; and (3) soil is the major source of root IHg content. These observations and the fact that the gradually increasing concentration and mass of IHg in stalks and leaves during the rice-growing season suggested that atmospheric Hg could be absorbed by and incorporated into the aboveground parts of the rice plant and that limited or no Hg emission to the air or translocation to the soil occurred after deposition of atmospheric Hg. The root surface acted as a potential Hg barrier and consequently reduced the translocation of Hg ion mass through the root system to the aboveground parts. Accumulated IHg in aboveground parts of rice plants cannot be transported to seeds, which is completely different from the case of methylmercury.

  16. Essential Indicators Identifying Chronic Inorganic Mercury Intoxication: Pooled Analysis across Multiple Cross-Sectional Studies

    PubMed Central

    Doering, Stefan

    2016-01-01

    Background The continuous exposure to inorganic mercury vapour in artisanal small-scale gold mining (ASGM) areas leads to chronic health problems. It is therefore essential to have a quick, but reliable risk assessing tool to diagnose chronic inorganic mercury intoxication. This study re-evaluates the state-of-the-art toolkit to diagnose chronic inorganic mercury intoxication by analysing data from multiple pooled cross-sectional studies. The primary research question aims to reduce the currently used set of indicators without affecting essentially the capability to diagnose chronic inorganic mercury intoxication. In addition, a sensitivity analysis is performed on established biomonitoring exposure limits for mercury in blood, hair, urine and urine adjusted by creatinine, where the biomonitoring exposure limits are compared to thresholds most associated with chronic inorganic mercury intoxication in artisanal small-scale gold mining. Methods Health data from miners and community members in Indonesia, Tanzania and Zimbabwe were obtained as part of the Global Mercury Project and pooled into one dataset together with their biomarkers mercury in urine, blood and hair. The individual prognostic impact of the indicators on the diagnosis of mercury intoxication is quantified using logistic regression models. The selection is performed by a stepwise forward/backward selection. Different models are compared based on the Bayesian information criterion (BIC) and Cohen`s kappa is used to evaluate the level of agreement between the diagnosis of mercury intoxication based on the currently used set of indicators and the result based on our reduced set of indicators. The sensitivity analysis of biomarker exposure limits of mercury is based on a sequence of chi square tests. Results The variable selection in logistic regression reduced the number of medical indicators from thirteen to ten in addition to the biomarkers. The estimated level of agreement using ten of thirteen medical

  17. Disposition of inorganic mercury in pregnant rats and their offspring

    PubMed Central

    Oliveira, Cláudia S.; Joshee, Lucy; Zalups, Rudolfs K.; Pereira, Maria E.; Bridges, Christy C.

    2015-01-01

    Environmental toxicants such as methylmercury have been shown to negatively impact fetal health. Despite the prevalence of inorganic mercury (Hg2+) in the environment and the ability of methylmercury to biotransform into Hg2+, little is known about the ability of Hg2+ to cross the placenta into fetal tissues. Therefore, it is important to understand the handing and disposition of Hg2+ in the reproductive system. The purpose of the current study was to assess the disposition and transport of Hg2+ in placental and fetal tissues, and to test the hypothesis that acute renal injury in dams can alter the accumulation of Hg2+ in fetal tissues. Pregnant Wistar rats were injected intravenously with 0.5 or 2.5 μmol kg−1 HgCl2 for 6 or 48 h and the disposition of Hg2+ was measured. Accumulation of Hg2+ in the placenta was rapid and dose-dependent. Very little Hg2+ was eliminated during the initial 48 h after exposure. When dams were exposed to the low dose of HgCl2, fetal accumulation of Hg2+ increased between 6 h and 48 h, while at the higher dose, accumulation was similar at each time point. Within fetal organs, the greatest concentration of Hg2+ (nmol/g) was localized in the kidneys, followed by the liver and brain. A dose-dependent increase in the accumulation of Hg2+ in fetal organs was observed, suggesting that continued maternal exposure may lead to increased fetal exposure. Taken together, these data indicate that Hg2+ is capable of crossing the placenta and gaining access to fetal organs in a dose-dependent manner. PMID:26196528

  18. Gaseous methyl- and inorganic mercury in landfill gas from landfills in Florida, Minnesota, Delaware, and California

    NASA Astrophysics Data System (ADS)

    Lindberg, S. E.; Southworth, G.; Prestbo, E. M.; Wallschläger, D.; Bogle, M. A.; Price, J.

    2005-01-01

    Municipal waste landfills contain numerous sources of mercury which could be emitted to the atmosphere. Their generation of methane by anaerobic bacteria suggests that landfills may act as bioreactors for methylated mercury compounds. Since our previous study at a single Florida landfill, gaseous inorganic and methylated mercury species have now been identified and quantified in landfill gas at nine additional municipal landfills in several regions of the US. Total gaseous mercury occurs at concentrations in the μg m-3 range, while methylated compounds occur at concentrations in the ng m-3 range at all but one of the landfill sites. Dimethylmercury is the predominant methylated species, at concentrations up to 100 ng m-3, while monomethyl mercury was generally lower. Limited measurements near sites where waste is exposed for processing (e.g. working face, transfer areas) suggest that dimethylmercury is released during these activities as well. Although increasing amounts of landfill gas generated in the US are flared (which should thermally decompose the organic mercury to inorganic mercury), unflared landfill gas is a potentially important anthropogenic source of methylated mercury emissions to the atmosphere.

  19. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    SciTech Connect

    Gill, Randall; Lanni, Lydia; Jen, K.-L. Catherine; McCabe, Michael J.; Rosenspire, Allen

    2015-01-01

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg{sup 2+}) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg{sup 2+} intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3.

  20. Trophic transfer efficiency of methylmercury and inorganic mercury to lake trout Salvelinus namaycush from its prey

    USGS Publications Warehouse

    Madenijian, C.P.; David, S.R.; Krabbenhoft, D.P.

    2012-01-01

    Based on a laboratory experiment, we estimated the net trophic transfer efficiency of methylmercury to lake trout Salvelinus namaycush from its prey to be equal to 76.6 %. Under the assumption that gross trophic transfer efficiency of methylmercury to lake trout from its prey was equal to 80 %, we estimated that the rate at which lake trout eliminated methylmercury was 0.000244 day−1. Our laboratory estimate of methylmercury elimination rate was 5.5 times lower than the value predicted by a published regression equation developed from estimates of methylmercury elimination rates for fish available from the literature. Thus, our results, in conjunction with other recent findings, suggested that methylmercury elimination rates for fish have been overestimated in previous studies. In addition, based on our laboratory experiment, we estimated that the net trophic transfer efficiency of inorganic mercury to lake trout from its prey was 63.5 %. The lower net trophic transfer efficiency for inorganic mercury compared with that for methylmercury was partly attributable to the greater elimination rate for inorganic mercury. We also found that the efficiency with which lake trout retained either methylmercury or inorganic mercury from their food did not appear to be significantly affected by the degree of their swimming activity.

  1. Isotopic fractionation during the uptake and elimination of inorganic mercury by a marine fish.

    PubMed

    Xu, Xiaoyu; Wang, Wen-Xiong

    2015-11-01

    This study investigated the mass dependent (MDF) and independent fractionation (MIF) of stable mercury isotopes in fish during the uptake and elimination of inorganic species. Mercury accumulation during the exposure led to re-equilibration of organ isotopic compositions with the external sources, and elimination terminated the equilibrating with isotope ratios moving back to the original values. Generally, the isotopic behaviors corresponded to the changes of Hg accumulation in the muscle and liver, causing by the internal transportation, organ redistribution, and mixing of different sources. A small degree of MDF caused by biotransformation of Hg in the liver was documented during the elimination, whereas MIF was not observed. The absence of MIF during geochemical and metabolic processes suggested that mercury isotopes can be used as source tracers. Additionally, fish liver is a more responsive organ than muscle to track Hg source when it is mainly composed of inorganic species.

  2. Maternal transfer of inorganic mercury and methylmercury in aquatic and terrestrial arthropods.

    PubMed

    Saxton, Heidi J; Goodman, James R; Collins, Jeffrey N; Black, Frank J

    2013-11-01

    The transfer of mercury from females to their offspring plays an important role in mercury accumulation and toxicity during early development. To quantify the transfer of inorganic mercury and methylmercury from female arthropods to their eggs, the authors collected and analyzed brine shrimp (Artemia franciscana), wolf spiders (Alopecosa spp.), and their attached eggs from aquatic and terrestrial ecosystems at the Great Salt Lake, Utah, USA. Essentially all of the mercury in both the female brine shrimp and their eggs was methylmercury (94 ± 17% and 90 ± 21%, respectively). The brine shrimp eggs had methylmercury concentrations that were 84 ± 2% lower than in the females, reflecting the fact that females transferred 45 ± 4% of their total body mass but only 11 ± 3% of their methylmercury burden to their eggs. As a result of this sequestration, the concentration of methylmercury in the female brine shrimp increased by 62 ± 8% during egg formation. The percentage of the total mercury that was methylmercury in female wolf spiders (77 ± 21%) was similar to that in their egg masses (81 ± 19%), indicating similar maternal transfer efficiencies for inorganic mercury and methylmercury in these invertebrates. The concentration of inorganic mercury and methylmercury in the female spiders was the same as in their eggs. These arachnids transferred 48 ± 9% of their total body mass, 55 ± 13% of their inorganic mercury, and 50 ± 9% of their methylmercury to their egg masses. Thus, female wolf spiders do not have the ability to reduce the transfer of methylmercury to their eggs, nor does this process represent an important pathway for the depuration of mercury. The present study demonstrates that although some arthropods have mechanisms to minimize the transfer of methylmercury to their eggs and reduce the potential for mercury toxicity during early development, other arthropods do not. PMID:23939924

  3. Maternal transfer of inorganic mercury and methylmercury in aquatic and terrestrial arthropods.

    PubMed

    Saxton, Heidi J; Goodman, James R; Collins, Jeffrey N; Black, Frank J

    2013-11-01

    The transfer of mercury from females to their offspring plays an important role in mercury accumulation and toxicity during early development. To quantify the transfer of inorganic mercury and methylmercury from female arthropods to their eggs, the authors collected and analyzed brine shrimp (Artemia franciscana), wolf spiders (Alopecosa spp.), and their attached eggs from aquatic and terrestrial ecosystems at the Great Salt Lake, Utah, USA. Essentially all of the mercury in both the female brine shrimp and their eggs was methylmercury (94 ± 17% and 90 ± 21%, respectively). The brine shrimp eggs had methylmercury concentrations that were 84 ± 2% lower than in the females, reflecting the fact that females transferred 45 ± 4% of their total body mass but only 11 ± 3% of their methylmercury burden to their eggs. As a result of this sequestration, the concentration of methylmercury in the female brine shrimp increased by 62 ± 8% during egg formation. The percentage of the total mercury that was methylmercury in female wolf spiders (77 ± 21%) was similar to that in their egg masses (81 ± 19%), indicating similar maternal transfer efficiencies for inorganic mercury and methylmercury in these invertebrates. The concentration of inorganic mercury and methylmercury in the female spiders was the same as in their eggs. These arachnids transferred 48 ± 9% of their total body mass, 55 ± 13% of their inorganic mercury, and 50 ± 9% of their methylmercury to their egg masses. Thus, female wolf spiders do not have the ability to reduce the transfer of methylmercury to their eggs, nor does this process represent an important pathway for the depuration of mercury. The present study demonstrates that although some arthropods have mechanisms to minimize the transfer of methylmercury to their eggs and reduce the potential for mercury toxicity during early development, other arthropods do not.

  4. Efficiency of solvent extraction methods for the determination of methyl mercury in forest soils.

    PubMed

    Qian, J; Skyllberg, U; Tu, Q; Bleam, W F; Frech, W

    2000-07-01

    Methyl mercury was determined by gas chromatography, microwave induced plasma, atomic emission spectrometry (GC-MIP-AES) using two different methods. One was based on extraction of mercury species into toluene, pre-concentration by evaporation and butylation of methyl mercury with a Grignard reagent followed by determination. With the other, methyl mercury was extracted into dichloromethane and back extracted into water followed by in situ ethylation, collection of ethylated mercury species on Tenax and determination. The accuracy of the entire procedure based on butylation was validated for the individual steps involved in the method. Methyl mercury added to various types of soil samples showed an overall average recovery of 87.5%. Reduced recovery was only caused by losses of methyl mercury during extraction into toluene and during pre-concentration by evaporation. The extraction of methyl mercury added to the soil was therefore quantitative. Since it is not possible to directly determine the extraction efficiency of incipient methyl mercury, the extraction efficiency of total mercury with an acidified solution containing CuSO4 and KBr was compared with high-pressure microwave acid digestion. The solvent extraction efficiency was 93%. For the IAEA 356 sediment certified reference material, mercury was less efficiently extracted and determined methyl mercury concentrations were below the certified value. Incomplete extraction could be explained by the presence of a large part of inorganic sulfides, as determined by x-ray absorption near-edge structure spectroscopy (XANES). Analyses of sediment reference material CRM 580 gave results in agreement with the certified value. The butylation method gave a detection limit for methyl mercury of 0.1 ng g(-1), calculated as three times the standard deviation for repeated analysis of soil samples. Lower values were obtained with the ethylation method. The precision, expressed as RSD for concentrations 20 times above the

  5. Uptake dynamics of inorganic mercury and methylmercury by the earthworm Pheretima guillemi.

    PubMed

    Dang, Fei; Zhao, Jie; Zhou, Dongmei

    2016-02-01

    Mercury uptake dynamics in the earthworm Pheretima guillemi, including the dissolved uptake rate constant (ku) from pore-water and assimilation efficiencies (AEs) from mercury-contaminated soil, was quantified in this study. Dissolved uptake rate constants were 0.087 and 0.553 L g(-1) d(-1) for inorganic mercury (IHg) and methylmercury (MeHg), respectively. Assimilation efficiency of IHg in field-contaminated soil was 7.2%, lower than 15.4% of spiked soil. In contrast, MeHg exhibited comparable AEs for both field-contaminated and spiked soil (82.4-87.2%). Within the framework of biodynamic model, we further modelled the exposure pathways (dissolved exposure vs soil ingestion) to source the accumulated mercury in Pheretima guillemi. The model showed that the relative importance of soil ingestion to mercury bioaccumulation depended largely on mercury partitioning coefficients (K(d)), and was also influenced by soil ingestion rate of earthworms. In the examined field-contaminated soil, almost (>99%) accumulated IHg and MeHg was predicted to derive from soil ingestion. Therefore, soil ingestion should be carefully considered when assessing mercury exposure risk to earthworms.

  6. DIVALENT INORGANIC REACTIVE GASEOUS MERCURY EMISSIONS FROM A MERCURY CELL CHLOR-ALKALI PLANT AND ITS IMPACT ON NEAR FIELD ATMOSPHERIC DRY DEPOSITION

    EPA Science Inventory

    The emission of inorganic divalent reactive gaseous mercury (RGM) from a mercury cell chlor-alkali plant (MCCAP) cell building and the impact on near field (100 km) dry deposition was investigated as part of a larger collaborative study between EPA, University of Michigan, Oak ...

  7. Sequential extraction of inorganic mercury in dumped blast furnace sludge.

    PubMed

    Földi, Corinna; Andrée, Corlin-Anna; Mansfeldt, Tim

    2015-10-01

    Blast furnace sludge (BFS) is an industrial waste with elevated mercury (Hg) contents due to the enrichment during the production process of pig iron. To investigate the potential pollution status of dumped BFS, 14 samples with total Hg contents ranging from 3.91 to 20.8 mg kg(-1) from five different locations in Europe were sequentially extracted. Extracts used included demineralized water (fraction 1, F1), 0.1 mol L(-1) CH3COOH + 0.01 mol L(-1) HCl (F2), 1 mol L(-1) KOH (F3), 7.9 mol L(-1) HNO3 (F4), and aqua regia (F5). The total recovery ranged from 72.3 to 114 %, indicating that the procedure was reliable when adapted to this industrial waste. Mercury mainly resided in the fraction of "elemental" Hg (48.5-98.8 %) rather being present as slightly soluble Hg species associated with sludge particles. Minor amounts were found as mercuric sulfide (F5; 0.725-37.3 %) and Hg in crystalline metal ores and silicates (F6; 2.21-15.1 %). The ecotoxically relevant fractions (F1 and F2) were not of significance (F1,

  8. Sequential extraction of inorganic mercury in dumped blast furnace sludge.

    PubMed

    Földi, Corinna; Andrée, Corlin-Anna; Mansfeldt, Tim

    2015-10-01

    Blast furnace sludge (BFS) is an industrial waste with elevated mercury (Hg) contents due to the enrichment during the production process of pig iron. To investigate the potential pollution status of dumped BFS, 14 samples with total Hg contents ranging from 3.91 to 20.8 mg kg(-1) from five different locations in Europe were sequentially extracted. Extracts used included demineralized water (fraction 1, F1), 0.1 mol L(-1) CH3COOH + 0.01 mol L(-1) HCl (F2), 1 mol L(-1) KOH (F3), 7.9 mol L(-1) HNO3 (F4), and aqua regia (F5). The total recovery ranged from 72.3 to 114 %, indicating that the procedure was reliable when adapted to this industrial waste. Mercury mainly resided in the fraction of "elemental" Hg (48.5-98.8 %) rather being present as slightly soluble Hg species associated with sludge particles. Minor amounts were found as mercuric sulfide (F5; 0.725-37.3 %) and Hg in crystalline metal ores and silicates (F6; 2.21-15.1 %). The ecotoxically relevant fractions (F1 and F2) were not of significance (F1,

  9. Toxicity of organic and inorganic mercury species in differentiated human neurons and human astrocytes.

    PubMed

    Lohren, Hanna; Blagojevic, Lara; Fitkau, Romy; Ebert, Franziska; Schildknecht, Stefan; Leist, Marcel; Schwerdtle, Tanja

    2015-10-01

    Organic mercury (Hg) species exert their toxicity primarily in the central nervous system. The food relevant Hg species methylmercury (MeHg) has been frequently studied regarding its neurotoxic effects in vitro and in vivo. Neurotoxicity of thiomersal, which is used as a preservative in medical preparations, is to date less characterised. Due to dealkylation of organic Hg or oxidation of elemental Hg, inorganic Hg is present in the brain albeit these species are not able to readily cross the blood brain barrier. This study compared for the first time toxic effects of organic MeHg chloride (MeHgCl) and thiomersal as well as inorganic mercury chloride (HgCl2) in differentiated human neurons (LUHMES) and human astrocytes (CCF-STTG1). The three Hg species differ in their degree and mechanism of toxicity in those two types of brain cells. Generally, neurons are more susceptible to Hg species induced cytotoxicity as compared to astrocytes. This might be due to the massive cellular mercury uptake in the differentiated neurons. The organic compounds exerted stronger cytotoxic effects as compared to inorganic HgCl2. In contrast to HgCl2 exposure, organic Hg compounds seem to induce the apoptotic cascade in neurons following low-level exposure. No indicators for apoptosis were identified for both inorganic and organic mercury species in astrocytes. Our studies clearly demonstrate species-specific toxic mechanisms. A mixed exposure towards all Hg species in the brain can be assumed. Thus, prospectively coexposure studies as well as cocultures of neurons and astrocytes could provide additional information in the investigation of Hg induced neurotoxicity.

  10. Cardiovascular responses to lead are biphasic, while methylmercury, but not inorganic mercury, monotonically increases blood pressure in rats.

    PubMed

    Wildemann, Tanja M; Mirhosseini, Naghmeh; Siciliano, Steven D; Weber, Lynn P

    2015-02-01

    Cardiovascular diseases, such as heart attack and stroke, are the major cause of death worldwide. It is well known that a high number of environmental and physiological risk factors contribute to the development of cardiovascular diseases. Although risk factors are additive, increased blood pressure (hypertension) is the greatest risk factor. Over the last two decades, a growing number of epidemiological studies associate environmental exposure to lead or mercury species with hypertension. However, cardiovascular effects beyond blood pressure are rarely studied and thresholds for effect are not yet clear. To explore effects of lead or mercury species on the cardiovascular system, normal male Wistar rats were exposed to a range of doses of lead, inorganic mercury or methylmercury through the drinking water for four weeks. High-resolution ultrasound was used to measure heart and vascular function (carotid artery blood flow) at baseline and at the end of the exposure, while blood pressure was measured directly in the femoral artery at the end of the 4-week exposure. After 4 weeks, blood pressure responses to lead were biphasic. Low lead levels decreased blood pressure, dilated the carotid artery and increased cardiac output. At higher lead doses, rats had increased blood pressure. In contrast, methylmercury-exposed rats had increased blood pressure at all doses despite dilated carotid arteries. Inorganic mercury did not show any significant cardiovascular effects. Based on the current study, the benchmark dose level 10% (BMDL10s) for systolic blood pressure for lead, inorganic mercury and methylmercury are 1.1, 1.3 and 1.0 μg/kg-bw/d, respectively. However, similar total mercury blood levels attributed to inorganic mercury or methylmercury produced strikingly different results with inorganic mercury having no observable effect on the cardiovascular system but methylmercury increasing systolic and pulse pressures. Therefore, adverse cardiovascular effects cannot be

  11. Submicron silica spheres decorated with silver nanoparticles as a new effective sorbent for inorganic mercury in surface waters.

    PubMed

    Yordanova, Tanya; Vasileva, Penka; Karadjova, Irina; Nihtianova, Diana

    2014-03-21

    An analytical method using silica supported silver nanoparticles as a novel sorbent for the enrichment and determination of inorganic mercury (iHg) in surface water samples has been developed. Silver nanoparticles (AgNPs) were synthesized by a completely green procedure and were deposited onto the amine functionalized surface of silica submicrospheres (SiO2-NH2). The prepared nanocomposite material (SiO2/AgNPs) was characterized by transmission electron microscopy, UV-vis spectroscopy, X-ray diffraction and atomic force microscopy. The sorption and desorption characteristics of the nanosorbent SiO2/AgNPs toward Hg species were investigated by a batch method. An excellent separation of iHg and methylHg was achieved in 20 minutes at pH 2. The high selectivity of the SiO2/AgNPs toward iHg was explained by Hg(ii) reduction and subsequent silver-mercury amalgam formation. The analytical procedure for the enrichment and determination of inorganic mercury in surface waters was developed based on solid phase extraction and ICP-MS measurements. The total Hg content was determined after water sample mineralization. The recoveries reached for iHg in different surface waters e.g. river and Black sea water samples varied from 96-101%. The limits of quantification are 0.002 μg L(-1) and 0.004 μg L(-1) for iHg and total Hg, respectively; the relative standard deviations varied in the ranges of 5-9% and 6-11% for iHg and total Hg, respectively, for Hg content from 0.005 to 0.2 μg L(-1). The accuracy of the procedure developed for total Hg determination was confirmed by a comparative analysis of surface river (ICP-MS) and sea (CV AFS) waters. PMID:24479124

  12. Determination of total and methyl mercury in human permanent healthy teeth by electrothermal atomic absorption spectrometry after extraction in organic phase.

    PubMed

    Saber-Tehrani, M; Givianrad, M H; Hashemi-Moghaddam, H

    2007-02-28

    A simple and sensitive method has been developed for determination of inorganic and methyl mercury in biological samples by ETAAS. For determination of methyl mercury; it was transferred to toluene phase by acid leaching extraction method. For total mercury after digestion of samples; it was extracted to toluene phase by means of the chelating agent diethyldithiocarbamate. Formation of complex between MeHg and diethyldithiocarbamate enhance the MeHg signal and increases the reproducibility. Furthermore, Pd-DDC was used as modifier for both mercury and methyl mercury determinations. The optimization performance was independently carried out by modifying the parameters such as temperature of mineralization, atomization and gas flow rate for methylmercury and inorganic mercury in ETAAS. The limits of detection were 0.15 and 0.12mugg(-1) for methyl mercury and total mercury, respectively. The repeatability of the measurements of whole procedure were 15.8% for methyl mercury and 16.9% for total mercury determination. The accuracy of the method has been investigated by means of spiking different amounts of methylmercury and inorganic mercury to the samples. The recoveries were found within the range of 88-95% for methyl mercury and 85-92% for total mercury. For determination of total mercury, the method was validated by CVAAS. The obtained results by the present procedure were in good agreement with those of the CVAAS. The proposed method was applied for 30 human permanent healthy teeth (without filling) which significant positive correlations were found among number of amalgam filling and total mercury and MeHg.

  13. MRP2 and the handling of mercuric ions in rats exposed acutely to inorganic and organic species of mercury

    SciTech Connect

    Bridges, Christy C. Joshee, Lucy; Zalups, Rudolfs K.

    2011-02-15

    Mercuric ions accumulate preferentially in renal tubular epithelial cells and bond with intracellular thiols. Certain metal-complexing agents have been shown to promote extraction of mercuric ions via the multidrug resistance-associated protein 2 (MRP2). Following exposure to a non-toxic dose of inorganic mercury (Hg{sup 2+}), in the absence of complexing agents, tubular cells are capable of exporting a small fraction of intracellular Hg{sup 2+} through one or more undetermined mechanisms. We hypothesize that MRP2 plays a role in this export. To test this hypothesis, Wistar (control) and TR{sup -} rats were injected intravenously with a non-nephrotoxic dose of HgCl{sub 2} (0.5 {mu}mol/kg) or CH{sub 3}HgCl (5 mg/kg), containing [{sup 203}Hg], in the presence or absence of cysteine (Cys; 1.25 {mu}mol/kg or 12.5 mg/kg, respectively). Animals were sacrificed 24 h after exposure to mercury and the content of [{sup 203}Hg] in blood, kidneys, liver, urine and feces was determined. In addition, uptake of Cys-S-conjugates of Hg{sup 2+} and methylmercury (CH{sub 3}Hg{sup +}) was measured in inside-out membrane vesicles prepared from either control Sf9 cells or Sf9 cells transfected with human MRP2. The amount of mercury in the total renal mass and liver was significantly greater in TR{sup -} rats than in controls. In contrast, the amount of mercury in urine and feces was significantly lower in TR{sup -} rats than in controls. Data from membrane vesicles indicate that Cys-S-conjugates of Hg{sup 2+} and CH{sub 3}Hg{sup +} are transportable substrates of MRP2. Collectively, these data indicate that MRP2 plays a role in the physiological handling and elimination of mercuric ions from the kidney.

  14. Oral and intramuscular toxicity or inorganic and organic mercury chloride to growing quail

    SciTech Connect

    Hill, E.F.; Soares, J.H. Jr.

    1987-01-01

    The lethal toxicity of inorganic (HgCl/sub 2/) and organic (CH/sub 3/HgCl) mercury chloride was compared for Coturnix (Japanese quail, Coturnix japonica) of different ages from hatch through adulthood by single-dose acute oral and intramuscular injections and by a 5-d dietary trial. Sublethal mercury toxicity was studied by evaluation of plasma and brain cholinesterase activity. CH/sub 3/HgCl was more toxic than HgCl/sub 2/ in all tests at each age tested. LD50s consistently increased over the first 4 wk for both acute methods and both mercurials and then stabilized. The striking difference between single-dose acute and 5-d dietary tests was that CH/sub 3/HgCl averaged about twice as toxic as HgCl/sub 2/ by both acute methods, compared to 100 times as toxic by the dietary method. For example, at 2 wk of age, the oral LD50s for CH/sub 3/HgCl and HgCl/sub 2/ were 18 and 42 mg/kg and the dietary LC50s were 47 and 5086 ppm. When birds were fed HgCl/sub 2/ developed clinical signs of intoxication, they could recover once treatment was withdrawn; however, on CH/sub 3/HgCl, clinical signs often commenced after treatment was withdrawn, and then actually intensified for several days and culminated in death.

  15. Oral and intramuscular toxicity of inorganic and organic mercury chloride to growing quail

    USGS Publications Warehouse

    Hill, E.F.; Soares, J.H.

    1987-01-01

    The lethal toxicity of inorganic (HgCl2) and organic (CH3HgCl) mercury chloride was compared for Coturnix (Japanese quail, Coturnix japonica) of different ages from hatch through adulthood by single-dose acute oral and intramuscular injections and by a 5-d dietary trial. Sublethal mercury toxicity was studied by evaluation of plasma and brain cholinesterase activity. CH3HgCl was more toxic than HgCl2 in all tests at each age tested. LD50s consistently increased over the first 4 wk for both acute methods and both mercurials and then stabilized. The striking difference between single-dose acute and 5-d dietary tests was that CH3HgCl averaged about twice as toxic as HgCl2 by both acute methods, compared to 100 times as toxic by the dietary method. For example, at 2 wk of age, the oral LD50s for CH3HgCl and HgCl2 were 18 and 42 mg/kg and the dietary LC50s were 47 and 5086 ppm. When birds were fed HgCl2 and developed clinical signs of intoxication, they could recover once treatment was withdrawn; however, on CH3HgCl, clinical signs often commenced after treatment was withdrawn, and then actually intensified for several days and culminated in death.

  16. Human inorganic mercury exposure, renal effects and possible pathways in Wanshan mercury mining area, China.

    PubMed

    Li, Ping; Du, Buyun; Chan, Hing Man; Feng, Xinbin

    2015-07-01

    Rice can accumulate methylmercury (MeHg) and rice consumption is the main route of MeHg exposure for the local population in Guizhou, China. However, inorganic Hg (IHg) load in human body is not comprehensively studied in highly Hg polluted areas such as Hg mining areas. This study is designed to evaluate human IHg exposure, related renal effects and possible pathways in Wanshan Hg mining area, Guizhou, Southwest China. Residents lived within 3 km to the mine waste heaps showed high Urine Hg (UHg) concentrations and the geometrical means (Geomean) of UHg were 8.29, 5.13, and 10.3 μg/g Creatinine (Cr) at site A, D, and E, respectively. It demonstrated a gradient of UHg concentrations with the distance from the pollution sources. A significantly positive correlation between paired results for UHg concentrations and serum creatinine (SCr) was observed in this study, but not for UHg and blood urea nitrogen (BUN). There are significant increases of SCr in two quartiles with high UHg concentrations. The results indicated that human IHg exposure may cause impairment of renal function. By calculation of Probable Daily Intake from different routes, we found that dietary intake is the main pathway of IHg exposure for the local population, rather than inhalation of Hg vapor. PMID:25863593

  17. The Determination Mercury's Moment of Inertia

    NASA Astrophysics Data System (ADS)

    Peale, S. J.

    2005-12-01

    In determining Mercury's core structure from its rotational properties, the value of C/MR2 from the location of Cassini state 1 is crucial. (C,M,R are Mercury's moment of inertia, mass and radius.) The occupancy of Cassini state 1 means the spin axis is nearly fixed in the frame precessing with the orbit and its position would thereby determine the position of the state. Although tidal and core-mantle dissipation drive the spin to the Cassini state with a time scale O(105) years, the spin might still be displaced from the Cassini state if the variations in the orbital elements induced by planetary perturbations, which change the position of the Cassini state, cause the spin to lag behind as it attempts to follow the state. The spin axis is expected to follow the Cassini state for variations with time scales long compared to the 1000 year precession period of the spin about the Cassini state because the solid angle swept out by the spin axis as it precesses is an adiabatic invariant. Short period variations in the orbital elements of small amplitude should cause displacements that are commensurate with the amplitudes of the short period terms. The exception would be if there are forcing terms in the perturbations that are nearly resonant with the 1000 year precession period. The precision of the radar and eventual spacecraft measurments of the position of Mercury's spin axis warrants a check on the likely proximity of the spin axis to the Cassini state. How confident should we be that the spin axis position defines the Cassini state sufficiently well for a precise determination of C/MR2? By following simultaneously the spin position and the Cassini state position during long time scale orbital variations over past 3 million years (Quinn et al., 1991) and short time scale variations for 20000 years (JPL Ephemeris DE 408, Standish, 2005), we show that the spin axis will remain within one arcsec of the Cassini state after it is brought there by dissipative torques. In

  18. 'Reactive' Inorganic Mercury: A critical examination of preservation and storage techniques

    NASA Astrophysics Data System (ADS)

    Beaulieu, E.; Marvin-DiPasquale, M. C.; Alpers, C. N.; Fleck, J.

    2012-12-01

    Mercury (Hg) studies in the Sacramento-San Joaquin Delta and San Francisco Bay and elsewhere suggest that 'reactive' (stannous chloride reducible) inorganic mercury (Hg(II)R) in sediment is a reasonable proxy measurement for the in situ pool of inorganic Hg(II) that is truly available to bacteria that produce toxic methylmercury (MeHg) from Hg(II). This study rigorously tested the effects of sample handling, holding time, and storage temperature (prior to Hg(II)R analysis), with the goal of identifying an optimal sample treatment and preservation protocol for Hg(II)R analysis. Because specific sediment properties such as organic content, grain size, redox conditions, water content, and total reduced sulfur concentration can affect Hg(II)R concentration, sediment with a range of these parameters was collected from four distinct Hg-contaminated regions surrounding the Sacramento-San Joaquin Delta and San Francisco Bay. For most sites, there was a statistically significant difference in Hg(II)R concentration related to sample holding time (0 to 180 days), but no significant difference related to sample storage temperature (-80 to 5 °C). Samples exposed to oxic conditions did not differ significantly in Hg(II)R from those subsampled in a glove bag under anoxic conditions. The results from this study will be used to develop a standard set of practices with respect to sediment sub-sampling and preservation when Hg(II)R is a targeted analyte. Hg(II)R was identified in the Delta Regional Ecosystem Restoration Implementation Plan (DRERIP) Hg Conceptual Model as an important driver affecting the fate and transport of Hg in the Sacramento-San Joaquin Delta ecosystem.

  19. Supercritical fluid extraction of mercury species.

    PubMed

    Foy, G P; Pacey, G E

    2003-12-23

    Supercritical fluid extraction was used to recover organic and inorganic mercury species. Variations in pressure, water, methanol, and chelator create methods that allowed separation of inorganic from organic mercury species. When extracted using a compromised set of extraction conditions, the order of extraction was methyl, phenyl and inorganic mercury. For the individually optimized conditions, quantitative recoveries were observed. Level as low as 20 ppb were extracted and then determined using ICP.

  20. A comprehensive study of Mercury and MESSENGER orbit determination

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Nicholas, Joseph B.; Rowlands, David D.; Smith, David E.; Zuber, Maria; Solomon, Sean C.

    2016-10-01

    The MErcury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury for more than 4 years. The probe started its science mission in orbit around Mercury on 18 March 2011. The Mercury Laser Altimeter (MLA) and radio science system were the instruments dedicated to geodetic observations of the topography, gravity field, orientation, and tides of Mercury. X-band radio-tracking range-rate data collected by the NASA Deep Space Network (DSN) allowed the determination of Mercury's gravity field to spherical harmonic degree and order 100, the planet's obliquity, and the Love number k2.The extensive range data acquired in orbit around Mercury during the science mission (from April 2011 to April 2015), and during the three flybys of the planet in 2008 and 2009, provide a powerful dataset for the investigation of Mercury's ephemeris. The proximity of Mercury's orbit to the Sun leads to a significant perihelion precession attributable to the gravitational flattening of the Sun (J2) and the Parameterized Post-Newtonian (PPN) coefficients γ and β, which describe the space curvature produced by a unit rest mass and the nonlinearity in superposition of gravity, respectively. Therefore, the estimation of Mercury's ephemeris can provide crucial information on the interior structure of the Sun and Einstein's general theory of relativity. However, the high correlation among J2, γ, and β complicates the combined recovery of these parameters, so additional assumptions are required, such as the Nordtvedt relationship η = 4β - γ - 3.We have modified our orbit determination software, GEODYN II, to enable the simultaneous integration of the spacecraft and central body trajectories. The combined estimation of the MESSENGER and Mercury orbits allowed us to determine a more accurate gravity field, orientation, and tides of Mercury, and the values of GM and J2 for the Sun, where G is the gravitational constant and M is the solar mass

  1. Isotopic Composition of Inorganic Mercury and Methylmercury Downstream of a Historical Gold Mining Region.

    PubMed

    Donovan, Patrick M; Blum, Joel D; Singer, Michael Bliss; Marvin-DiPasquale, Mark; Tsui, Martin T K

    2016-02-16

    We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ(202)Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ(202)Hg = -0.38 ± 0.17‰ and Δ(199)Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ(202)Hg of MMHg prior to photodegradation (-1.29 to -1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to -0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments.

  2. Isotopic composition of inorganic mercury and methylmercury downstream of a historical gold mining region

    USGS Publications Warehouse

    Donovan, Patrick M.; Blum, Joel D.; Singer, Michael B.; Marvin-DiPasquale, Mark C.; Tsui, Martin T.K.

    2016-01-01

    We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ202Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ202Hg = −0.38 ± 0.17‰ and Δ199Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ202Hg of MMHg prior to photodegradation (−1.29 to −1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to −0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments.

  3. Isotopic Composition of Inorganic Mercury and Methylmercury Downstream of a Historical Gold Mining Region.

    PubMed

    Donovan, Patrick M; Blum, Joel D; Singer, Michael Bliss; Marvin-DiPasquale, Mark; Tsui, Martin T K

    2016-02-16

    We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ(202)Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ(202)Hg = -0.38 ± 0.17‰ and Δ(199)Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ(202)Hg of MMHg prior to photodegradation (-1.29 to -1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to -0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments. PMID:26789018

  4. Bioaccumulation and metallothionein response in the Asiatic clam (Corbicula fluminea) after experimental exposure to cadmium and inorganic mercury

    SciTech Connect

    Baudrimont, M.; Metivaud, J.; Maury-Brachet, R.; Ribeyre, F.; Boudou, A.

    1997-10-01

    The involvement of metallothioneins (MTs) in cadmium (Cd) and inorganic mercury (Hg[II]) bioaccumulation by the freshwater bivalve Corbicula fluminea was experimentally investigated after 0, 15, 30 and 45 d of exposure from the water column source. Three levels of contamination were studied for each metal: 0, 5, and 35 {micro}g Cd/L and 0, 1.45, and 5 {micro}g Hg/L, with two replicates per condition. Forty eight experimental units (EUs) were conducted simultaneously. The mollusks were fed twice a week by additions of phytoplanktonic algae. Quantification of MTs was done by Hg-saturation assay, using cold Hg(II). A partial purification of these proteins was conducted by gel-filtration chromatography, followed by Cd determinations in the different eluted fractions. Results at the whole organism (soft tissues) and organ or tissue group (gills, mantle, foot, visceral mass) levels show high metal concentrations, with a fourfold greater accumulation of inorganic Hg than Cd after 30 d exposure at the same concentration of 5 {micro}g/L. Gills and visceral mass were the principal storage compartments. A significant increase in MT concentrations was revealed in these two organs after exposure to Cd: ratios between the MT concentrations in contaminated and control mollusks were 2.4 and 2.8, respectively, for 5 and 35 {micro}g Cd/L. Cd burdens in the cytosol and in {le}18-kDa protein fractions, similar to purified mammal MTs, correspond to 30 and 14% of the total Cd accumulated in the whole organisms. No significant increase in MT biosynthesis was observed after exposure to inorganic Hg, despite the high metal concentrations in the organs.

  5. Mercury

    SciTech Connect

    Vilas, F.; Chapman, C.R.; Matthews, M.S.

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury.

  6. Mercury exposure in French Guiana: Levels and determinants

    SciTech Connect

    Cordier, S.; Mandereau, L.; Grasmick, C.; Paquier-Passelaigue, M.; Weber, J.P.; Jouan, M.

    1998-07-01

    Mercury is used widely for gold extraction in French Guiana and throughout the entire Amazon basin. To evaluate contamination among the general population, the authors chose individuals who attended 13 health centers and maternity hospitals dispersed geographically across the territory and served Guiana`s different populations. Five hundred individuals (109 pregnant women, 255 other adults, and 136 children) who received care at one of the centers were selected randomly for this study. Each individual answered a questionnaire and provided a hair sample. The authors determined mercury in hair with atomic absorption spectrometry. The following mean levels of mercury were observed: 1.6 {micro}g/g among pregnant women; 3.4 {micro}g/g among other adults; and 2.5 {micro}g/g among children. Diet factors contributed the most to mercury levels, especially consumption of freshwater fish and livers from game. Other factors, including age, dental amalgams, use of skin-lightening cosmetics, and residence near a gold-mining community, did not contribute significantly to mercury levels. Overall, 12% of the samples contained mercury levels in excess of 10 {micro}g/g, but in some Amerindian communities up to 79% of the children had hair mercury levels that exceeded 10 {micro}g/g. The results of this study indicated that (a) diet played a predominant role in total mercury burden, and (b) in some communities, mercury contamination exceeded safe levels.

  7. Flow injection-chemical vapor generation atomic fluorescence spectrometry hyphenated system for organic mercury determination: A step forward

    NASA Astrophysics Data System (ADS)

    Angeli, Valeria; Biagi, Simona; Ghimenti, Silvia; Onor, Massimo; D'Ulivo, Alessandro; Bramanti, Emilia

    2011-11-01

    Monomethylmercury and ethylmercury were determined on line using flow injection-chemical vapor generation atomic fluorescence spectrometry without neither requiring a pre-treatment with chemical oxidants, nor UV/MW additional post column interface, nor organic solvents, nor complexing agents, such as cysteine. Inorganic mercury, monomethylmercury and ethylmercury were detected by atomic fluorescence spectrometry in an Ar/H 2 miniaturized flame after sodium borohydride reduction to Hg 0, monomethylmercury hydride and ethylmercury hydride, respectively. The effect of mercury complexing agent such as cysteine, ethylendiaminotetracetic acid and HCl with respect to water and Ar/H 2 microflame was investigated. The behavior of inorganic mercury, monomethylmercury and ethylmercury and their cysteine-complexes was also studied by continuous flow-chemical vapor generation atomic fluorescence spectrometry in order to characterize the reduction reaction with tetrahydroborate. When complexed with cysteine, inorganic mercury, monomethylmercury and ethylmercury cannot be separately quantified varying tetrahydroborate concentration due to a lack of selectivity, and their speciation requires a pre-separation stage (e.g. a chromatographic separation). If not complexed with cysteine, monomethylmercury and ethylmercury cannot be separated, as well, but their sum can be quantified separately with respect to inorganic mercury choosing a suitable concentration of tetrahydroborate (e.g. 10 - 5 mol L - 1 ), thus allowing the organic/inorganic mercury speciation. The detection limits of the flow injection-chemical vapor generation atomic fluorescence spectrometry method were about 45 nmol L - 1 (as mercury) for all the species considered, a relative standard deviation ranging between 1.8 and 2.9% and a linear dynamic range between 0.1 and 5 μmol L - 1 were obtained. Recoveries of monomethylmercury and ethylmercury with respect to inorganic mercury were never less than 91%. Flow injection

  8. The determination of mercury in fish

    SciTech Connect

    Sullivan, J.R.; Delfino, J.J.

    1982-01-01

    An acid digestion method followed by cold vapor atomic absorption spectrophotometry for the determination of mercury in fish is described. Sample portions are weighed into partial reflux tubes and digested with a H/sub 2/SO/sub 4//HNO/sub 3/ mixture. Hydrogen peroxide is added to facilitate complete destruction of organic matter. Sample digestion is performed using a Technicon/sup TM/ GD-40 Block Digestor held at 265/sup 0/C for up to 75 min. After digestion KMnO/sub 4/ is added to insure complete oxidation of Hg to Hg(II). Good precision and accuracy are observed based on replicate analyses of NBS reference materials and also spikes of CH/sub 3/HgCl solution added to fish tissue homogenates. The detection limit is 0.01 ..mu..g Hg/g fish tissue. The concentrations of Hg in fish collected from Wisconsin waters have generally decreased since 1970 after a Hg discharge control program was initiated by the Wisconsin Department of Natural Resources.

  9. Determination of trace mercury species by high performance liquid chromatography-inductively coupled plasma mass spectrometry after cloud point extraction.

    PubMed

    Chen, Haiting; Chen, Jianguo; Jin, Xianzhong; Wei, Danyi

    2009-12-30

    A sensitive method for speciation analysis of inorganic mercury (Hg(2+)) and methyl mercury (MeHg(+)) has been developed by using high performance liquid chromatography (HPLC) combined with inductively coupled plasma mass spectrometry (ICP-MS) after cloud point extraction. The analytes were complexed with sodium diethyldithiocarbamate (DDTC) and preconcentrated by a non-ionic surfactant Triton X-114. Mercury species were effectively separated by HPLC in less than 6 min. The enhancement factors for 25 mL sample solution were 42 and 21, and the limits of detection were 4 and 10 ng L(-1) for Hg(2+) and MeHg(+), respectively. The developed method was successfully applied to the determination of trace amount of mercury species in environmental and biological samples.

  10. Inorganic mercury dissociates preassembled Fas/CD95 receptor oligomers in T lymphocytes

    SciTech Connect

    Ziemba, Stamatina E.; McCabe, Michael J.; Rosenspire, Allen J. . E-mail: arosensp@sun.science.wayne.edu

    2005-08-15

    Genetically susceptible rodents exposed to low burdens of inorganic mercury (Hg{sup 2+}) develop autoimmune disease. Previous studies have shown that low, noncytotoxic levels of Hg{sup 2+} inhibit Fas-mediated apoptosis in T cells. These results suggest that inhibition of the Fas death receptor pathway potentially contributes to autoimmune disease after Hg{sup 2+} exposure, as a consequence of disruption of peripheral tolerance. The formation of active death inducing signaling complexes (DISC) following CD95/Fas receptor oligomerization is a primary step in the Fas-mediated apoptotic pathway. Other recent studies have shown that Hg{sup 2+} at concentrations that inhibit apoptosis also inhibit formation of active DISC, suggesting that inhibition of DISC is the mechanism responsible for Hg{sup 2+}-mediated inhibition of apotosis. Preassociated Fas receptors have been implicated as key elements necessary for the production of functional DISC. We present evidence in this study showing that low and nontoxic concentrations of Hg{sup 2+} induce the dissociation of preassembled Fas receptor complexes in Jurkat T cells. Thus, this Hg{sup 2+}-induced event should subsequently decrease the amount of preassembled Fas available for DISC formation, potentially resulting in the attenuation of Fas-mediated apoptosis in T lymphocytes.

  11. Low-dose exposure to inorganic mercury accelerates disease and mortality in acquired murine lupus.

    PubMed

    Via, Charles S; Nguyen, Phuong; Niculescu, Florin; Papadimitriou, John; Hoover, Dennis; Silbergeld, Ellen K

    2003-08-01

    Inorganic mercury (iHg) is known to induce autoimmune disease in susceptible rodent strains. Additionally, in inbred strains of mice prone to autoimmune disease, iHg can accelerate and exacerbate disease manifestations. Despite these well-known links between iHg and autoimmunity in animal models, no association between iHg alone and autoimmune disease in humans has been documented. However, it is possible that low-level iHg exposure can interact with disease triggers to enhance disease expression or susceptibility. To address whether exposure to iHg can alter the course of subsequent acquired autoimmune disease, we used a murine model of acquired autoimmunity, lupus-like chronic graft-versus-host disease (GVHD), in which autoimmunity is induced using normal, nonautoimmune prone donor and F1 recipient mice resistant to Hg-induced autoimmunity. Our results indicate that a 2-week exposure to low-dose iHg (20 or 200 micro g/kg every other day) to donor and host mice ending 1 week before GVHD induction can significantly worsen parameters of disease severity, resulting in premature mortality. iHg pretreatment clearly worsened chronic lupus-like disease, rather than GVHD worsening iHg immunotoxicity. These results are consistent with the hypothesis that low-level, nontoxic iHg preexposure may interact with other risk factors, genetic or acquired, to promote subsequent autoimmune disease development.

  12. Fumigant methyl iodide can methylate inorganic mercury species in natural waters.

    PubMed

    Yin, Yongguang; Li, Yanbin; Tai, Chao; Cai, Yong; Jiang, Guibin

    2014-01-01

    Methyl iodide or iodomethane (CH3I) has recently been registered as a fumigant in many countries, although its environmental impacts are not well understood. Here we report the results of a study on the methylation of mercury by CH3I in natural water by incubation experiments using both Hg ((199)HgCl2 and CH3(201)Hg(+))- and hydrogen (CD3I)-stable isotope addition techniques. We find that methylation of Hg(0), Hg2(2+) and Hg(2+) by CH3I can occur in natural water under sunlight, while only Hg(0) and Hg2(2+) can be methylated in deionized water. We propose that the methylation of Hg by CH3I in natural waters is mediated by sunlight and involves two steps, the reduction of Hg(2+) to Hg(0)/Hg2(2+) and the subsequent methylation of Hg(0)/Hg2(2+) by CH3I. Further quantitative assessment suggests that CH3I-involved methylation of inorganic Hg could be an important source of CH3Hg(+) in an environment where CH3I has been used in large amounts as a fumigant. PMID:25137238

  13. Studies on thio-substituted polyurethane foam (T-PUF) as a new efficient separation medium for the removal of inorganic/organic mercury from industrial effluents and solid wastes.

    PubMed

    Anjaneyulu, Y; Marayya, R; Rao, T H

    1993-01-01

    Novel thio-substituted flexible polyurethane foam (T-PUF) was synthesised by addition polymerisation of mercaptan with the precursors of an open-cell polyurethane foam, which can be used as a highly selective sorbent for inorganic and organic mercury from complex matrices. The percentage extraction of inorganic mercury was studied at different flow-rates, over a wide pH range at different concentrations ranging from 1 ppm, to 100 ppm. The break-through capacity and total capacity of unmodified and thio-foams were determined for inorganic and organic mercurials. The absorption efficiency of thio-foam was far superior to other sorbent media, such as activated carbon, polymeric ion-exchange resins and reagent-loaded polyurethane foams. It was observed that even at the 1000 ppm level, divalent ions like Cu, Mg, Ca, Zn do not appreciably influence the per cent extraction of inorganic mercury at the 10 ppm level. These matrix levels are the most concentrated ones which are likely to occur, both in local sewage and effluent waters. Further, the efficiency of this foam was sufficiently high at 10-100 ppm levels of Hg, even from 5-10 litres of effluent volumes using 50 g of thio-foam packed into different columns in series. Thio-foams were found to possess excellent abilities to remove and recover mercury even at low levels from industrial effluents and brine mud of chlor-alkali industry after pre-acid extraction. This makes it a highly efficient sorbent for possible application in effluent treatment. Model schemes for the removal and recovery of mercury from industrial effluents and municipal sewage (100-1000 litre) by a dynamic method are proposed and the costs incurred in a full-scale application method are indicated to show that the use of thio-foam could be commercially attractive.

  14. Intestinal solubilization of particle-associated organic and inorganic mercury as a measure of bioavailability to benthic invertebrates

    SciTech Connect

    Lawrence, A.L.; McAloon, K.M.; Mason, R.P.; Mayer, L.M.

    1999-06-01

    The bioavailability of particle-associated inorganic mercury (Hg{sub I}) and monomethylmercury (MMHg) was evaluated in vitro using digestive fluid of the deposit feeding lugworm, Arenicola marina. Digestive fluid, removed from the midgut of the polychaete, was incubated with contaminated sediment, and the proportion of Hg{sub I} or MMHg solubilized by the digestive fluid was determined. Digestive fluid was found to be a more effective solvent than seawater in solubilizing particle-associated Hg{sub I} or MMHg. A greater percentage of MMHg than Hg{sub I} was solubilized from most sediments, suggesting that sediment-associated MMHg is generally more readily available from sediment for biological uptake. The proportion of MMHg released from the sediment was inversely correlated with sediment organic matter content, decreasing exponentially with increasing organic matter content of the sediment. The results for Hg{sub I} were equivocal. MMHg bioaccumulation factors (BAFs) from previous studies showed a similar trend with organic content of sediment, suggesting that solubilization may be the process limiting the bioaccumulation of particle-bound MMHg. It is concluded that in vitro extraction with a deposit feeder`s digestive fluid provides a potential tool to study the process of Hg bioaccumulation via ingestion routes, although its application to various sediments and organisms needs further investigation.

  15. Inorganic mercury detection by valve closure response in the freshwater clam Corbicula fluminea: integration of time and water metal concentration changes.

    PubMed

    Tran, Damien; Fournier, Elodie; Durrieu, Gilles; Massabuau, Jean-Charles

    2007-07-01

    The objective of the present study was to monitor water-quality assessment by a biological method. Optimum dissolved inorganic mercury sensitivity in the freshwater bivalve Corbicula fluminea was estimated using a combined approach to determine their potentials and limits in detecting contaminants. Detection by bivalves is based on shell closure, a protective strategy when exposed to a water contaminant. To take the rate of spontaneous closures into account, stress associated with fixation by one valve in common valvometers was integrated, and the spontaneous rhythm was associated with daily activity. The response in conditions where the probability of spontaneous closing is the lowest was thus taken into account. To develop dose-response curves, impedance valvometry, in which lightweight impedance electrodes are applied to study free-ranging animals in low-stress conditions, also was used combined with a new analytical approach. The logistic regression dose-response curves take into account variations in both response time and metal concentration in water to significantly improve the methods aiming at determining the optimal sensitivity threshold response. This approach demonstrates that in C. fluminea, inorganic mercury concentrations under the range of 2.0 to 5.1 microg/L (95% confidence interval) cannot be detected within 5 h of addition. PMID:17665698

  16. Atomic fluorescence determination of mercury in fresh water ecosystems.

    PubMed

    Knox, R; Kammin, W R; Thomson, D

    1995-01-01

    This paper reports on an investigation into determining nanogram/l quantities of mercury in marine and fresh water matrices using a cold vapour generation of mercury, followed by fluorescence detection. Samples were prepared for analysis using a free bromine oxidation technique. A high efficiency gas-liquid separator was used to enhance the detection of mercury. For fresh water, typical method detection limits (MDL) were determined at less than 1 nanogram/l (ng/l). For near shore seawater, the MDL was 1.2 ng/l. Method spikes, which were performed at 20 ng/l, showed mean recoveries within US EPA Contract Laboratory Protocol (CLP) acceptance criteria. System blanks averaged 0.12 ng/l, and recoveries of NIST 1641c diluted to 29.4 ng/l averaged 93.4%. A number of local rivers and streams were sampled, and mercury was determined. All results to date indicate mercury levels below the US EPA chronic water quality criteria for mercury. PMID:18925015

  17. [Mercury determination in prehispanic Colombian biological samples: first experiences and investigation perspectives].

    PubMed

    Idrovo, Alvaro J; Romero, William M; Silva, Elizabeth; Villamil de García, Gladys; Ortiz, Jaime E

    2002-03-01

    Mercury is useful as a tracer of environmental pollution levels. We measured mercury levels in hair from two human mummies (XII and XIV centuries, respectively) and from a stag (Odocoileus virginianus). The total and inorganic mercury levels found in the samples were very low. This findings indicated a minimal exposure to mercury in food and its absence in the atmosphere. Mercury levels can be used to explore the relationship between humans and environment, especially after metallurgy appeared, and to assess environmental contamination in different periods.

  18. Determination of inorganic phosphate by electroanalytical methods: a review.

    PubMed

    Berchmans, Sheela; Issa, Touma B; Singh, Pritam

    2012-06-01

    Determination of inorganic phosphate is of very high importance in environmental and health care applications. Hence knowledge of suitable analytical techniques available for phosphate sensing for different applications becomes essential. Electrochemical methods for determining inorganic phosphate have several advantages over other common techniques, including detection selectivity, stability and relative environmental insensitivity of electroactive labels. The different electrochemical sensing strategies adopted for the determination of phosphate using selective ionophores are discussed in this review. The various sensing strategies are classified based on the electrochemical detection techniques used viz., potentiometry, voltammetry, amperometry, unconventional electrochemical methods etc., The enzymatic sensing of phosphate coupled with electrochemical detection is also included. Various electroanalytical methods available in the literature are assessed for their merits in terms of selectivity, simplicity, miniaturisation, adaptability and suitability for field measurements.

  19. In vitro evaluation of inorganic and methyl mercury mediated cytotoxic effect on neural cells derived from different animal species.

    PubMed

    Tong, Jing; Wang, Youwei; Lu, Yuanan

    2016-03-01

    To extend the current understanding of the mercury-mediated cytotoxic effect, five neural cell lines established from different animal species were comparatively analyzed using three different endpoint bioassays: thiazolyl blue tetrazolium bromide, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (MTT), neutral red uptake assay (NRU), and Coomassie blue assay (CB). Following a 24-hr exposure to selected concentrations of mercury chloride (HgCl2) and methylmercury (II) chloride (MeHgCl), the cytotoxic effect on test cells was characterized by comparing their 50% inhibition concentration (IC50) values. Experimental results indicated that both these forms of mercury were toxic to all the neural cells, but at very different degrees. The IC50 values of MeHgCl among these cell lines ranged from 1.15±0.22 to 10.31±0.70μmol/L while the IC50 values for HgCl2 were much higher, ranging from 6.44±0.36 to 160.97±19.63μmol/L, indicating the more toxic nature of MeHgCl. The IC50 ratio between HgCl2 and MeHgCl ranged from 1.75 to 96.0, which confirms that organic mercury is much more toxic to these neural cells than inorganic mercury. Among these cell lines, HGST-BR and TriG44 derived from marine sea turtles showed a significantly high tolerance to HgCl2 as compared to the three mammalian neural cells. Among these neural cells, SK-N-SH represented the most sensitive cells to both chemical forms of mercury. PMID:26969059

  20. Application of speciated isotope dilution mass spectrometry to evaluate extraction methods for determining mercury speciation in soils and sediments.

    PubMed

    Rahman, G M Mizanur; Kingston, H M Skip

    2004-07-01

    Extraction techniques commonly used to extract methylmercury or mercury species from various matrixes have been evaluated regarding their potential to transform inorganic mercury to methylmercury, or vice versa, during sample preparation steps by applying speciated isotope dilution mass spectrometry. Two of the five tested methods were highly prone to form inorganic mercury from methylmercury. Some published methods converted methylmercury to inorganic mercury approximately 100% (including the spiked CH(3)(201)Hg(+)). In other methods, as much as 45% of methylmercury was converted to inorganic mercury during extraction. The methods evaluated included cold acid extraction and sonication. Other methods, such as the proposed EPA RCRA Draft Method 3200, microwave-assisted extraction, and another sonication-based methods induced very little or no methylmercury transformation to inorganic mercury. Among these three methods, the proposed Draft EPA Method 3200 was found to be the most efficient.

  1. Effects of inorganic mercury on the olfactory pits of zebrafish larvae.

    PubMed

    MacDonald, Tracy C; Sylvain, Nicole J; James, Ashley K; Pickering, Ingrid J; Krone, Patrick H; George, Graham N

    2016-05-01

    Mercury compounds are highly toxic; due to the rising levels of mercury pollution, both human and environmental exposure to mercury are increasing. Occupational exposure to inhaled mercury can be high, causing adverse effects not only in the lungs, but in the olfactory system as well. Olfaction plays a critical role in the survival of fish and other vertebrates, and impaired olfaction can substantially impact human quality of life. We present a study of the effects of mercury exposure in the olfactory pits of zebrafish larvae using a combination of X-ray fluorescence imaging and immunohistochemistry. We show that mercury accumulates in the sensory cells of the olfactory pits and also that it may also damage primary neurons, such as those that innervate olfactory pits. PMID:27108745

  2. Determination of mercury by cold vapor atomic absorption spectrometry

    SciTech Connect

    Chou, H.N.; Naleway, C.A.

    1984-08-01

    An atomic absorption spectroscopy (AAS) method for determining mercury levels in liquid samples to the parts per billion range was determined. The method is attractive because of the ease of application and the accuracy and precision of the results. Liquid samples may be analyzed that are as small as one milliliter. 6 references, 1 figure.

  3. Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS.

    PubMed

    Wang, Meng; Feng, Weiyue; Shi, Junwen; Zhang, Fang; Wang, Bing; Zhu, Motao; Li, Bai; Zhao, Yuliang; Chai, Zhifang

    2007-03-30

    A mild, efficient and convenient extraction method of using 2-mercaptoethanol contained extractant solution combined with an incubator shaker for determination of mercury species in biological samples by HPLC-ICP-MS has been developed. The effects of the concentration of 2-mercaptoethanol, the composition of the extractant solution and the shaking time on the efficiency of mercury extraction were evaluated. The optimization experiments indicated that the quantitative extraction of mercury species from biological samples could be achieved by using 0.1% (v/v) HCl, 0.1% (v/v) 2-mercapoethanol and 0.15% (m/v) KCl extractant solution in an incubator shaker for shaking overnight (about 12h) at room temperature. The established method was validated by analysis of various biological certified reference materials, including NRCC DOLT-3 (dogfish liver), IAEA 436 (tuna fish), IAEA MA-B-3/TM (garfish filet), IAEA MA-M-2/TM (mussel tissue), GBW 08193 (bovine liver) and GBW 08572 (prawn). The analytical results of the reference materials were in good agreement with the certified or reference values of both methyl and total mercury, indicating that no distinguishable transformation between mercury species had occurred during the extraction and determination procedures. The limit of detection (LOD) for methyl (CH(3)Hg(+)) and inorganic mercury (Hg(2+)) by the method are both as 0.2microg L(-1). The relative standard deviation (R.S.D.s) for CH(3)Hg(+) and Hg(2+) are 3.0% and 5.8%, respectively. The advantages of the developed extraction method are that (1) it is easy to operate in HPLC-ICP-MS for mercury species determination since the extracted solution can be directly injected into the HPLC column without pH adjustment and (2) the memory effect of mercury in the ICP-MS measurement system can be reduced.

  4. Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts

    USGS Publications Warehouse

    Henneberry, Y.K.; Kraus, T.E.C.; Fleck, J.A.; Krabbenhoft, D.P.; Bachand, P.M.; Horwath, W.R.

    2011-01-01

    The presence of inorganic mercury (IHg) and methylmercury (MeHg) in surface waters is a health concern worldwide. This study assessed the removal potential use of metal-based coagulants as a means to remove both dissolved IHg and MeHg from natural waters and provides information regarding the importance of Hg associations with the dissolved organic matter (DOM) fraction and metal hydroxides. Previous research indicated coagulants were not effective at removing Hg from solution; however these studies used high concentrations of Hg and did not reflect naturally occurring concentrations of Hg. In this study, water collected from an agricultural drain in the Sacramento-San Joaquin Delta was filtered to isolate the dissolved organic matter (DOM) fraction. The DOM was then treated with a range of coagulant doses to determine the efficacy of removing all forms of Hg from solution. Three industrial-grade coagulants were tested: ferric chloride, ferric sulfate, and polyaluminum chloride. Coagulation removed up to 85% of DOM from solution. In the absence of DOM, all three coagulants released IHg into solution, however in the presence of DOM the coagulants removed up to 97% of IHg and 80% of MeHg. Results suggest that the removal of Hg is mediated by DOM-coagulant interactions. There was a preferential association of IHg with the more aromatic, higher molecular weight fraction of DOM but no such relationship was found for MeHg. This study offers new fundamental insights regarding large-scale removal of Hg at environmentally relevant regarding large-scale removal of Hg at environmentally relevant concentrations.

  5. Mercury

    MedlinePlus

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  6. A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate as a solvent for extraction and preconcentration of mercury with determination by cold vapor atomic absorption spectrometry.

    PubMed

    Li, Zaijun; Wei, Qin; Yuan, Rui; Zhou, Xia; Liu, Huizhen; Shan, Haixia; Song, Qijun

    2007-01-15

    A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate abbreviated as [C(4)tmsim][PF(6)] was synthesized and developed as a novel medium for liquid/liquid extraction of inorganic mercury in this work. Under optimal condition, o-carboxyphenyldiazoamino-p-azobenzene abbreviated as CDAA reacted with inorganic mercury to form a neutral Hg-CDAA complex, the complex was rapidly extracted into ionic liquid phase. After back-extracting into aqueous phase with sulfide sodium solution, the mercury concentration was detected by cold vapor atomic absorption spectrometry. The extraction and back-extraction efficiencies were 99.9 and 100.1% for 5.0microg L(-1) standard mercury in 1000mL of water solution, respectively. The detection limit, calculated using three times the standard error of estimate of the calibration graph, is 0.01ng of mercury per milliliter water sample. The proposed method has been used to the determination of trace inorganic mercury in natural water with satisfactory results. Moreover, Zeta potential and surface tension of [C(4)tmsim][PF(6)] solution were measured and applied to explain the extraction mechanism of [C(4)tmsim][PF(6)] system.

  7. Sources of inorganic and monomethyl mercury to high and sub Arctic marine ecosystems

    NASA Astrophysics Data System (ADS)

    Kirk, Jane Liza

    Monomethyl mercury (MMHg), a toxic and bioaccumulative form of Hg, is present in some Canadian high and sub Arctic marine mammals at concentrations high enough to pose health risks to Northern peoples using these animals as food. To quantify potentially large sources of Hg to Arctic marine ecosystems, we examined several aspects of Hg cycling in the Canadian Arctic Archipelago (CAA) and Hudson Bay. Firstly, we quantified net Hg inputs to Hudson Bay from atmospheric Hg depletion events (AMDEs). During AMDEs, gaseous elemental Hg(0) (GEM), which is present in the Arctic atmosphere at global background concentrations, is oxidized to inorganic Hg(II) species that deposit to snowpacks. By simultaneously monitoring Hg in the atmosphere and in snowpacks of western Hudson Bay, we demonstrated that most of the Hg(II) deposited during AMDEs is rapidly (photo)reduced and emitted to the atmosphere. Secondly, we examined Hg speciation in marine waters of the CAA and Hudson Bay. We found high concentrations of MMHg and dimethyl Hg (DMHg; a toxic, gaseous form of Hg) in deep marine waters, where they are likely produced from Hg(II). Arctic marine waters were also found to be a substantial source of DMHg and GEM to the atmosphere. Thirdly, we quantified Hg exports to Hudson Bay from two major rivers, the Nelson and the Churchill, which have been altered for hydroelectric power production. When landscapes are inundated during river diversion or reservoir creation, microbial production of MMHg is stimulated in flooded soils. Newly produced MMHg can then be exported to downstream waterbodies. We found that annual inputs of total Hg (THg; includes both Hg(II) and MMHg) to Hudson Bay from combined Nelson and Churchill River discharge were comparable to inputs from AMDEs. MMHg inputs from river discharge are, however, ˜13 times greater than those from annual snowmelt of Hudson Bay snowpacks. Finally, although combined river and AMDE Hg inputs may account for a large portion of the THg

  8. Determination of total mercury in biological and geological samples

    USGS Publications Warehouse

    Crock, James G.

    2005-01-01

    The analytical chemist is faced with several challenges when determining mercury in biological and geological materials. These challenges include widespread mercury contamination, both in the laboratory and the environment, possible losses of mercury during sample preparation and digestion, the wide range of mercury values commonly observed, ranging from the low nanogram per gram or per liter for background areas to hundreds of milligrams per kilogram in contaminated or ore-bearing areas, great matrix diversity, and sample heterogeneity1. These factors can be naturally occurring or anthropogenic, but must be addressed to provide a precise and accurate analysis. Although there are many instrumental methods available for the successful determination of mercury, no one technique will address all problems or all samples all of the time. The approach for the determination of mercury used at the U.S. Geological Survey, Crustal Imaging and Characterization Team, Denver Laboratories, utilizes a suite of complementary instrumental methods when approaching a study requiring mercury analyses. Typically, a study could require the analysis of waters, leachates or selective digestions of solids, vegetation, and biological materials such as tissue, bone, or shell, soils, rocks, sediments, coals, sludges, and(or) ashes. No one digestion or sample preparation method will be suitable for all of these matrices. The digestions typically employed at our laboratories include: (i) a closed-vessel microwave method using nitric acid and hydrogen peroxide, followed by digestion/dilution with a nitric acid/sodium dichromate solution, (ii) a robotic open test-tube digestion with nitric acid and sodium dichromate, (iii) a sealed Teflon? vessel with nitric acid and sodium dichromate, (iv) a sealed glass bottle with nitric acid and sodium dichromate, or (v) open test tube digestion with nitric and sulfuric acids and vanadium pentoxide. The common factor in all these digestions is that they are

  9. Calibrationless determination of mercury by flow-through stripping coulometry.

    PubMed

    Beinrohr, E; Cakrt, M; Dzurov, J; Kottas, P; Kozáková, E

    1996-09-01

    Trace concentrations of Hg were determined in a flow-system by constant current stripping chronopotentiometry in coulometric mode. Mercury was electrodeposited from the flowing sample solution in an electrochemical flow-through cell on a large surface porous electrode plated with a thin layer of gold. The deposited mercury was then stripped with constant current and the potential change of the working electrode was recorded and evaluated. Since complete electrochemical yields were achieved at both the deposition and dissolution steps, the mercury concentration in the sample solution could be calculated from Faraday's law. The detection limit and reproducibility of the method were about 0.1 ng/ml for 10 ml sample solution and 4%, respectively. The time for a complete analysis was 2 to 5 min. The utility of the method was demonstrated with the analysis of reference materials, water samples, waste materials, plants and charcoal catalysts.

  10. The Determination of Mercury's Rotational state with BepiColombo

    NASA Astrophysics Data System (ADS)

    Palli, Alessandra; Junior Mariani, Mirco; Silvestri, Davide; Tortora, Paolo; Zannoni, Marco

    2015-04-01

    The BepiColombo mission will start its one year nominal in-orbit operation phase at Mercury in January 2024. More than forty years after Mariner 10 discovered the presence of an intrinsic magnetic field, the study of Mercury's core still remains a fascinating objective and in-orbit investigations are a privileged condition for doing this. Since the strict connection existing between core and rotational state, measurements of Mercury's obliquity and librations at unprecedented accuracies became one the main purposes of MORE (Mercury Orbiter Radio science Experiment) rotation experiment. The rotation experiment avails of the employment of precise orbit determination data and high resolution images provided by HRIC, part of the SYMBIO-SYS payload. The correlation of surface landmarks extrapolated by two images of the same area taken at different epochs provides their displacement in time and hence constitutes an observable to be fed into an estimation process for deriving Mercury's rotation parameters. An end-to-end simulator has been built up employing the camera images as the primary observables with the final aim of defining their optimal acquisition scheduling. An extensive simulation campaign has been performed leading to the identification of the most favorable observational strategy and location of the landmarks on the surface so as to fulfill accuracies lower than 1 arcsecond for both obliquity and libration estimation. Finally, the full rotation experiment has been implemented in a global multiarc solution where both optical and radiometric simulated observables are processed by the filter in order to evaluate the science capabilities in terms of Mercury Orientation Parameters. The results also account for the effects of the onboard accelerometer (ISA) error model. The talk will focus on the description of the end-to-end simulator, illustrating the results obtained in terms of the optimal selection of the observations. Next, full simulations results, obtained

  11. Determination of total mercury in nuts at ultratrace level.

    PubMed

    da Silva, Maria José; Paim, Ana Paula S; Pimentel, Maria Fernanda; Cervera, M Luisa; de la Guardia, Miguel

    2014-08-01

    Total mercury, at μg kg(-1) level, was determined in different types of nuts (cashew nut, Brazil nuts, almond, pistachio, peanut, walnut) using a direct mercury analyser after previous sample defatting and by cold vapour atomic fluorescence spectrometry. There is not enough sensitivity in the second approach to determine Hg in previously digested samples due to the strong matrix effect. Mercury levels in 25 edible nut samples from Brazil and Spain were found in the range from 0.6 to 2.7μg kg(-1) by using the pyrolysis of sample after the extraction of the nut fat. The accuracy of the proposed method was confirmed by analysing certified reference materials of Coal Fly Ash-NIST SRM 1633b, Fucus-IAEA 140 and three unpolished Rice Flour NIES-10. The observed results were in good agreement with the certified values. The recoveries of different amounts of mercury added to nut samples ranged from 94 to 101%. RSD values corresponding to three measurements varied between 2.0 and 14% and the limit of detection and quantification of the method were 0.08 and 0.3μg kg(-1), respectively. PMID:25064238

  12. Determination of total mercury in nuts at ultratrace level.

    PubMed

    da Silva, Maria José; Paim, Ana Paula S; Pimentel, Maria Fernanda; Cervera, M Luisa; de la Guardia, Miguel

    2014-08-01

    Total mercury, at μg kg(-1) level, was determined in different types of nuts (cashew nut, Brazil nuts, almond, pistachio, peanut, walnut) using a direct mercury analyser after previous sample defatting and by cold vapour atomic fluorescence spectrometry. There is not enough sensitivity in the second approach to determine Hg in previously digested samples due to the strong matrix effect. Mercury levels in 25 edible nut samples from Brazil and Spain were found in the range from 0.6 to 2.7μg kg(-1) by using the pyrolysis of sample after the extraction of the nut fat. The accuracy of the proposed method was confirmed by analysing certified reference materials of Coal Fly Ash-NIST SRM 1633b, Fucus-IAEA 140 and three unpolished Rice Flour NIES-10. The observed results were in good agreement with the certified values. The recoveries of different amounts of mercury added to nut samples ranged from 94 to 101%. RSD values corresponding to three measurements varied between 2.0 and 14% and the limit of detection and quantification of the method were 0.08 and 0.3μg kg(-1), respectively.

  13. Inorganic mercury causes pancreatic beta-cell death via the oxidative stress-induced apoptotic and necrotic pathways

    SciTech Connect

    Chen Yawen; Huang Chunfa; Yang Chingyao; Yen Chengchieh; Tsai Kehsung; Liu Shinghwa

    2010-03-15

    Mercury is a well-known highly toxic metal. In this study, we characterize and investigate the cytotoxicity and its possible mechanisms of inorganic mercury in pancreatic beta-cells. Mercury chloride (HgCl{sub 2}) dose-dependently decreased the function of insulin secretion and cell viability in pancreatic beta-cell-derived HIT-T15 cells and isolated mouse pancreatic islets. HgCl{sub 2} significantly increased ROS formation in HIT-T15 cells. Antioxidant N-acetylcysteine effectively reversed HgCl{sub 2}-induced insulin secretion dysfunction in HIT-T15 cells and isolated mouse pancreatic islets. Moreover, HgCl{sub 2} increased sub-G1 hypodiploids and annexin-V binding in HIT-T15 cells, indicating that HgCl{sub 2} possessed ability in apoptosis induction. HgCl{sub 2} also displayed several features of mitochondria-dependent apoptotic signals including disruption of the mitochondrial membrane potential, increase of mitochondrial cytochrome c release and activations of poly (ADP-ribose) polymerase (PARP) and caspase 3. Exposure of HIT-T15 cells to HgCl{sub 2} could significantly increase both apoptotic and necrotic cell populations by acridine orange/ethidium bromide dual staining. Meanwhile, HgCl{sub 2} could also trigger the depletion of intracellular ATP levels and increase the LDH release from HIT-T15 cells. These HgCl{sub 2}-induced cell death-related signals could be significantly reversed by N-acetylcysteine. The intracellular mercury levels were markedly elevated in HgCl{sub 2}-treated HIT-T15 cells. Taken together, these results suggest that HgCl{sub 2}-induced oxidative stress causes pancreatic beta-cell dysfunction and cytotoxicity involved the co-existence of apoptotic and necrotic cell death.

  14. Simultaneous determination of mercury and organic carbon using a direct mercury analyzer: Mercury profiles in sediment cores from oxbow lakes in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sediment cores from seasonal wetland and open water areas from six oxbow lakes in the Mississippi River alluvial flood plain were analyzed for total-mercury (Hg) using a direct mercury analyzer (DMA). In the process we evaluated the feasibility of simultaneously determining organic matter content by...

  15. Inorganic and methylmercury levels in plasma are differentially associated with age, gender, and oxidative stress markers in a population exposed to mercury through fish consumption.

    PubMed

    Carneiro, Maria Fernanda Hornos; Grotto, Denise; Barbosa, Fernando

    2014-01-01

    This study aimed to determine the concentrations of plasma methylmercury (Me-Hg) and inorganic mercury (I-Hg) in a population exposed to Me-Hg. In addition, associations between each form of mercury (Hg) and gender, age, plasma selenium (Se), and oxidative stress markers were also investigated. The mean plasma I-Hg level was 5.7 μg/L while the mean for plasma Me-Hg was 3.6 μg/L, representing approximately 59 and 41% of the total Hg in blood, respectively. However, several plasma samples contained higher percentages of Me-Hg. Age displayed a direct linkage with plasma I-Hg levels, whereas gender did not correlate with any of the Hg species. In addition, fish intake was only correlated with and a predictor of plasma Me-Hg, suggesting that plasma I-Hg levels originated endogenously through a demethylation reaction that needs to be verified. Further, plasma Me-Hg was markedly correlated with adverse effects to a greater extent than plasma I-Hg and may be considered a valuable, reliable internal dose biomarker for Hg in chronically Me-Hg- exposed individuals.

  16. Tandem focused ultrasound (TFU) combined with fast furnace analysis as an improved methodology for total mercury determination in human urine by electrothermal-atomic absorption spectrometry.

    PubMed

    Capelo, J L; Dos Reis, C D; Maduro, C; Mota, A

    2004-09-01

    A new sample preparation procedure based on tandem (that is, different diameter probe sonicators used in the same sample treatment) focused ultrasound (TFU) for mercury separation, preconcentration and back-extraction in aqueous solution from human urine has been developed. The urine is first oxidized with KMnO(4)/HCl/focused ultrasound (6mm probe). Secondly, the mercury is extracted and preconcentrated with dithizone and cyclohexane. Finally, the mercury is back-extracted and preconcentrated again with the aid of focused ultrasound (3mm probe). The procedure allows determining mercury by electrothermal atomic absorption spectrometry with fast furnace analysis and calibration against aqueous standards. Matrix modification is provided by the chemicals used in the sample treatment. The procedure is accomplished with low sample volume (8.5ml). Low volume and low concentration reagents are used. The sample treatment is rapid (less than 3min per sample) and avoids the use of organic phase in the graphite furnace. The preconcentration factor used in this work was 14. The limit of detection and the limit of quantification in urine were, respectively, 0.27 and 0.9mugl(-1). The relative standard deviation of aqueous standards (n=10) was 4% for a concentration of 100mugl(-1) and 5% for a concentration of 400mugl(-1). Recoveries from spiked urine with inorganic mercury, methyl-mercury, phenyl-mercury and diphenyl-mercury ranged from 86 to 98%.

  17. Combined exposure to lead, inorganic mercury and methylmercury shows deviation from additivity for cardiovascular toxicity in rats.

    PubMed

    Wildemann, Tanja M; Weber, Lynn P; Siciliano, Steven D

    2015-08-01

    Environmental exposure to metal mixtures in the human population is common. Mixture risk assessments are often challenging because of a lack of suitable data on the relevant mixture. A growing number of studies show an association between lead or mercury exposure and cardiovascular effects. We investigated the cardiovascular effects of single metal exposure or co-exposure to methylmercury [MeHg(I)], inorganic mercury [Hg(II)] and lead [Pb(II)]. Male Wistar rats received four different metal mixtures for 28 days through the drinking water. The ratios of the metals were based on reference and environmental exposure values. Blood and pulse pressure, cardiac output and electrical activity of the heart were selected as end-points. While exposure to only MeHg(I) increased the systolic blood pressure and decreased cardiac output, the effects were reversed with combined exposures (antagonism). In contrast to these effects, combined exposures negatively affected the electrical activity of the heart (synergism). Thus, it appears that estimates of blood total Hg levels need to be paired with estimates of what species of mercury dominate exposure as well as whether lead co-exposure is present to link total blood Hg levels to cardiovascular effects. Based on current human exposure data and our results, there may be an increased risk of cardiac events as a result of combined exposures to Hg(II), MeHg(I) and Pb(II). This increased risk needs to be clarified by analyzing lead and Hg exposure data in relation to cardiac electrical activity in epidemiological studies.

  18. Comparison of Adsorbed Mercury Screening Method With Cold-Vapor Atomic Absorption Spectrophotometry for Determination of Mercury in Soil

    NASA Technical Reports Server (NTRS)

    Easterling, Donald F.; Hovanitz, Edward S.; Street, Kenneth W.

    2000-01-01

    A field screening method for the determination of elemental mercury in environmental soil samples involves the thermal desorption of the mercury from the sample onto gold and then the thermal desorption from the gold to a gold-film mercury vapor analyzer. This field screening method contains a large number of conditions that could be optimized for the various types of soils encountered. In this study, the conditions were optimized for the determination of mercury in silty clay materials, and the results were comparable to the cold-vapor atomic absorption spectrophotometric method of determination. This paper discusses the benefits and disadvantages of employing the field screening method and provides the sequence of conditions that must be optimized to employ this method of determination on other soil types.

  19. Assessment of genotoxicity of inorganic mercury in rats in vivo using both chromosomal aberration and comet assays.

    PubMed

    Bhowmik, Niladri; Patra, Manomita

    2015-07-01

    The major objective of the present investigation was to assess the genotoxic effects of mercuric chloride (HgCl2), an inorganic mercury (Hg), in rats (Rattus norvegicus) using two different genetic endpoints, namely, chromosomal aberration (CA) and comet assays following both short-term (acute) and long-term (chronic) exposures. The study showed that the acute exposures to HgCl2 at 2 and 5 mg/kg body weight (b.w.) induced nonsignificant effects. HgCl2 at 10 and 12 mg/kg b.w. was significantly toxic and is exhibited by the induction of different types of CAs like chromatid breaks, chromosomal breaks, clumps and damaged cells and types of comets. HgCl2 at 15 mg/kg b.w. was found to be highly toxic, as mitostatic condition of cells were observed in CA assay. Chronic exposure to the lowest dose (2 mg/kg b.w.) of HgCl2 for 15 consecutive days produced a significant genotoxicity. Although Hg was found to induce both DNA strand breakage and chromosomal breaks in a dose-dependent manner, the results of the present investigation showed that the combination of comet and CA assays provided a better choice for assessing the genotoxicity of inorganicHg. PMID:23448859

  20. Embryotoxic response produced by inorganic mercury in different strains of hamsters

    SciTech Connect

    Gale, T.F.

    1981-02-01

    This report compares the mercury-induced embryotoxicity among one noninbred and five inbred strains of hamsters. A single dose of mercuric acetate was injected into pregnant hamsters on the morning of the 8th gestation day. Treated and control animals were killed on either the 12th or 15th gestation day and studied for the types and frequency of external and internal abnormalities as well as the incidence of resorption sites. The hamster strains exhibited significant resorption rates as well as a variety of abnormalities including edema, retardation, ventral wall defects, pericardial cavity distention, cleft palate, hydrocephalus, and heart defects. Significant but varied interstrain differences were observed for most of these indicators of mercury-induced embryotoxicity. The results of this study were compared with prior work in which the same hamster strains were exposed to cadmium or lead.

  1. Isotopic Methods for Determining the Relative Importance of Bioavailability Versus Trophic Position in Controlling Mercury Concentrations in Everglades Mosquitofish

    NASA Astrophysics Data System (ADS)

    Bemis, B. E.; Kendall, C.

    2007-12-01

    The concentration of mercury in fish tissues is widely used as an indicator of the magnitude of mercury contamination in aquatic ecosystems. Eastern mosquitofish (Gambusia holbrookii) is an important sentinel species used for this purpose in the varied environments of the Florida Everglades, because mosquitofish are abundant, have a short lifespan, and migrate little. Like other freshwater fish, the primary route of mercury uptake into mosquitofish tissues is through diet as bioavailable methylmercury. Yet, it is unclear whether variations in mosquitofish mercury observed across the Everglades are due primarily to differences in bioaccumulation (i.e., trophic position) or abundance of methylmercury available to the food web base. We use isotopic methods to investigate the importance of these two controls on mosquitofish mercury at the landscape scale. As part of the USEPA REMAP project, mosquitofish and periphyton were collected during September 1996 from over one hundred sites throughout the Everglades and analyzed for mercury concentration. The USGS analyzed splits of the samples for nitrogen (d15N), carbon (d13C), and sulfur (d34S) isotopic composition, to investigate the causes of mercury variations. The d15N value of tissues is often used to estimate the relative trophic positions of organisms in a food web, and should correlate positively with tissue mercury if bioaccumulation is an important control on mosquitofish mercury concentration. The d13C value can be useful for detecting differences in food web base (e.g., algal versus detrital), and thus the entry point of contaminants. Tissue d34S potentially indicates the extent of dissimilatory sulfate reduction in sediments, a process used by sulfate-reducing bacteria (SRB) during conversion of inorganic Hg(II) to bioavailable methylmercury. Because this process increases the d34S value of remaining sulfate, which enters the food web base, mosquitofish sulfur isotopes should show positive correlations with SRB

  2. Inorganics

    SciTech Connect

    Qureshi, M.

    1986-01-01

    This comprehensive handbook is valuable when doing routine analysis or developing new methods of chromatography of organic materials. Section I presents the principles, techniques, quantitative determinations and detection methods used in chromatographic analysis. In the major part of the book, Section II summarizes data in voluminous tabular/graphic form on paper, thin layer, liquid and gas chromatography. Section III lists important books on electrophoresis, gel permeation chromatography, and ion exchange, in addition to the other forms of chromatography mentioned above.

  3. Evaluation of a sequential extraction process used for determining mercury binding mechanisms to coal combustion byproducts

    SciTech Connect

    James D. Noel; Pratim Biswas; Daniel E. Giammar

    2007-07-15

    This study evaluated the selectivity and effectiveness of a sequential extraction process used to determine mercury binding mechanisms to various materials that are present in coal combustion byproducts. A six-step sequential extraction process was applied to laboratory-synthesized materials with known mercury concentrations and binding mechanisms. These materials were calcite, hematite, goethite, and titanium dioxide. Fly ash from a full-scale coal-fired power plant was also investigated. The concentrations of mercury were measured using inductively coupled plasma (ICP) mass spectrometry, whereas the major elements were measured by ICP atomic emission spectrometry. The materials were characterized by X-ray powder diffraction and scanning electron microscopy with energy dispersive spectroscopy. The sequential extraction procedure provided information about the solid phases with which mercury was associated in the solid sample. The procedure effectively extracted mercury from the target phases. The procedure was generally selective in extracting mercury. However, some steps in the procedure extracted mercury from nontarget phases, and others resulted in mercury redistribution. Iron from hematite and goethite was only leached in the reducible and residual extraction steps. Some mercury associated with goethite was extracted in the ion exchangeable step, whereas mercury associated with hematite was extracted almost entirely in the residual step. Calcium in calcite and mercury associated with calcite were primarily removed in the acidsoluble extraction step. Titanium in titanium dioxide and mercury adsorbed onto titanium dioxide were extracted almost entirely in the residual step. 42 refs., 13 figs., 2 tabs.

  4. Renal mechanisms in the cardiovascular effects of chronic exposure to inorganic mercury in rats.

    PubMed Central

    Carmignani, M; Boscolo, P; Artese, L; Del Rosso, G; Porcelli, G; Felaco, M; Volpe, A R; Giuliano, G

    1992-01-01

    Male weanling Wistar rats received 200 micrograms/ml of mercury (Hg), as HgCl2, in drinking water for 180 days. At the end of the treatment, systemic arterial blood pressure was augmented, cardiac inotropism was reduced, and heart rate was unchanged. Light and electron microscopical studies of the kidney showed a mesangial proliferative glomerulonephritis in about 80% of the glomeruli. Tubular cells showed reduction of the acid phosphatase activity, which was related to functional abnormalities of the lysosomes. In the 24 hour urine samples of the Hg exposed rats, there was slight reduction of kallikrein activity, but evident proteinuria was not present in all samples. Plasma renin activity was reduced, that of angiotensin I-converting enzyme was augmented, and plasma aldosterone concentrations were unchanged. Mercury was accumulated mostly in the kidney of the Hg treated animals; and the content of Hg in the heart was higher than in the brain. These data show that chronic exposure to Hg acts on the kidney with complex mechanisms of toxicity; these contribute to modify systemic haemodynamics. Images PMID:1571292

  5. Evaluation of a sequential extraction process used for determining mercury binding mechanisms to coal combustion byproducts.

    PubMed

    Noel, James D; Biswas, Pratim; Giammar, Daniel E

    2007-07-01

    Leaching of mercury from coal combustion byproducts is a concern because of the toxicity of mercury. Leachability of mercury can be assessed by using sequential extraction procedures. Sequential extraction procedures are commonly used to determine the speciation and mobility of trace metals in solid samples and are designed to differentiate among metals bound by different mechanisms and to different solid phases. This study evaluated the selectivity and effectiveness of a sequential extraction process used to determine mercury binding mechanisms to various materials. A six-step sequential extraction process was applied to laboratory-synthesized materials with known mercury concentrations and binding mechanisms. These materials were calcite, hematite, goethite, and titanium dioxide. Fly ash from a full-scale power plant was also investigated. The concentrations of mercury were measured using inductively coupled plasma (ICP) mass spectrometry, whereas the major elements were measured by ICP atomic emission spectrometry. The materials were characterized by X-ray powder diffraction and scanning electron microscopy with energy dispersive spectroscopy. The sequential extraction procedure provided information about the solid phases with which mercury was associated in the solid sample. The procedure effectively extracted mercury from the target phases. The procedure was generally selective in extracting mercury. However, some steps in the procedure extracted mercury from nontarget phases, and others resulted in mercury redistribution. Iron from hematite and goethite was only leached in the reducible and residual extraction steps. Some mercury associated with goethite was extracted in the ion exchangeable step, whereas mercury associated with hematite was extracted almost entirely in the residual step. Calcium in calcite and mercury associated with calcite were primarily removed in the acid-soluble extraction step. Titanium in titanium dioxide and mercury adsorbed onto

  6. A recommended protocol for the preservation and storage of ';reactive' inorganic mercury in sediment

    NASA Astrophysics Data System (ADS)

    Stumpner, E. B.; Marvin-DiPasquale, M. C.; Alpers, C. N.; Fleck, J.

    2013-12-01

    Stannous-chloride-reducible divalent mercury, or ';reactive' mercury (Hg(II)R), is a methodologically defined Hg fraction that is increasingly being used as a surrogate measure of the Hg pool available for microbial Hg(II)-methylation. A critical examination of Hg(II)R stability was conducted in a set of experiments that examined techniques of sediment preservation and storage over time (1, 7, 30, 90, and 180 days), temperature (-80°C, -20°C, and 5°C), and with/without a glove bag that excluded atmospheric oxygen. A second set of experiments examined effects of homogenization and thaw time. On the basis of experimental results, a recommended protocol is presented here for studies where Hg(II)R is a targeted analyte. Recommendations include: (1) thorough sediment homogenization and sub-sampling for analysis of Hg(II)R, iron species, and total reduced sulfur inside of an oxygen-free glove bag, (2) refrigeration (5°C) storage after homogenization, and (3) completion of the Hg(II)R assay within 2 to 7 days after homogenization. Sediment for the experiments was chosen from four distinct Hg-contaminated sites surrounding the Sacramento-San Joaquin Delta and San Francisco Bay. Sites were chosen based on legacy Hg contamination in the form of cinnabar (HgS) from past Hg mining (Alviso Slough and Cache Creek sites), and elemental Hg from past gold mining (Cosumnes River and Humbug Creek (South Yuba River watershed) sites). Samples were chosen with a wide range of organic content, redox conditions, and total reduced sulfur concentration because these properties are known to influence Hg(II)R concentration. Geochemical modeling conducted with PHREEQC indicated that the oxidation of aqueous sulfide plays an important role in controlling the saturation index of cinnabar, which has a direct effect on the solubility of Hg(II), and by extension an influence on the sediment Hg(II)R assay.

  7. Distribution of inorganic mercury in Sacramento River water and suspended colloidal sediment material

    USGS Publications Warehouse

    Roth, D.A.; Taylor, H.E.; Domagalski, J.; Dileanis, P.; Peart, D.B.; Antweiler, R.C.; Alpers, C.N.

    2001-01-01

    The concentration and distribution of inorganic Hg was measured using cold-vapor atomic fluorescence spectrometry in samples collected at selected sites on the Sacramento River from below Shasta Dam to Freeport, CA, at six separate times between 1996 and 1997. Dissolved (ultrafiltered, 0.005 ??m equivalent pore size) Hg concentrations remained relatively constant throughout the system, ranging from the detection limit (< 0.4 ng/L) to 2.4 ng/L. Total Hg (dissolved plus colloidal suspended sediment) concentrations ranged from the detection limit at the site below Shasta Dam in September 1996 to 81 ng/L at the Colusa site in January 1997, demonstrating that colloidal sediment plays an important role in the downriver Hg transport. Sequential extractions of colloid concentrates indicate that the greatest amount of Hg associated with sediment Was found in the "residual" (mineral) phase with a significant quantity also occurring in the "oxidizable" phase. Only a minor amount of Hg was observed in the "reducible" phase. Dissolved Hg loads remained constant or increased slightly in the downstream direction through the study area, whereas the total inorganic Hg load increased significantly downstream especially in the reach of the fiver between Bend Bridge and Colusa. Analysis of temporal variations showed that Hg loading was positively correlated to discharge.

  8. High-Throughput Determination of Mercury in Tobacco and Mainstream Smoke from Little Cigars.

    PubMed

    Fresquez, Mark R; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Watson, Clifford H; Pappas, R Steven

    2015-09-01

    A method was developed that utilizes a platinum trap for mercury from mainstream tobacco smoke, which represents an improvement over traditional approaches that require impingers and long sample preparation procedures. In this approach, the trapped mercury is directly released for analysis by heating the trap in a direct mercury analyzer. The method was applied to the analysis of mercury in the mainstream smoke of little cigars. The mercury levels in little cigar smoke obtained under Health Canada Intense smoking machine conditions ranged from 7.1 × 10(-3) to 1.2 × 10(-2) mg/m(3). These air mercury levels exceed the chronic inhalation minimal risk level corrected for intermittent exposure to metallic mercury (e.g., 1 or 2 h per day, 5 days per week) determined by the Agency for Toxic Substances and Disease Registry. Multivariate statistical analysis was used to assess associations between mercury levels and little cigar physical design properties. Filter ventilation was identified as the principal physical parameter influencing mercury concentrations in mainstream little cigar smoke generated under ISO machine smoking conditions. With filter ventilation blocked under Health Canada Intense smoking conditions, mercury concentrations in tobacco and puff number (smoke volume) were the primary physical parameters that influenced mainstream smoke mercury concentrations.

  9. High Throughput Determination of Mercury in Tobacco and Mainstream Smoke from Little Cigars

    PubMed Central

    Fresquez, Mark R.; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Watson, Clifford H.; Pappas, R. Steven

    2015-01-01

    A method was developed that utilizes a platinum trap for mercury from mainstream tobacco smoke which represents an improvement over traditional approaches that require impingers and long sample preparation procedures. In this approach, the trapped mercury is directly released for analysis by heating the trap in a direct mercury analyzer. The method was applied to the analysis of mercury in the mainstream smoke of little cigars. The mercury levels in little cigar smoke obtained under Health Canada Intense smoking machine conditions ranged from 7.1 × 10−3 mg/m3 to 1.2 × 10−2 mg/m3. These air mercury levels exceed the chronic inhalation Minimal Risk Level corrected for intermittent exposure to metallic mercury (e.g., 1 or 2 hours per day, 5 days per week) determined by the Agency for Toxic Substances and Disease Registry. Multivariate statistical analysis was used to assess associations between mercury levels and little cigar physical design properties. Filter ventilation was identified as the principal physical parameter influencing mercury concentrations in mainstream little cigar smoke generated under ISO machine smoking conditions. With filter ventilation blocked under Health Canada Intense smoking conditions, mercury concentrations in tobacco and puff number (smoke volume) were the primary physical parameters that influenced mainstream smoke mercury concentrations. PMID:26051388

  10. Comparison of mercury levels in maternal blood, fetal cord blood, and placental tissues

    SciTech Connect

    Kuhnert, P.M.; Kuhnert, B.R.; Erhard, P.

    1981-01-01

    Previous studies have reported that mercury accumulates in cord blood during pregnancy. This study was carried out to determine where in cord blood the mercury accumulates, i.e., in cord erythrocytes, in cord plasma, or in both, and to determine whether the predominant form of mercury which accumulates is methyl or inorganic mercury. From our data it is clear that methyl mercury accumulates in cord erythrocytes: A total of 30% more methyl mercury was found in fetal erythrocytes than in maternal erythrocytes. Also correlation analysis of the methyl mercury levels in maternal and fetal erythrocytes showed a strong correlation (r = 0.87). In regard to inorganic mercury, the highest concentration was found in the placenta, suggesting a barrier role, but a significant correlation (r = 0.62) was also found between the maternal and fetal plasma levels of inorganic mercury. Moreover, the inorganic mercury concentration per gram of plasma was higher in fetal cord plasma than in maternal plasma. Overall, the relative levels of methyl and inorganic mercury reported here varied considerably in maternal and fetal erythrocytes, plasma, and in the placenta, but all of the levels were low (< 6 ng Hg/gm of tissue) and in agreement with total mercury levels reported by others.

  11. Determination of mercury in ayurvedic dietary supplements that are not rasa shastra using the hydra-C direct mercury analyzer.

    PubMed

    Abdalla, Amir A; Smith, Robert E

    2013-01-01

    Mercury has been determined in Ayurvedic dietary supplements (Trifala, Trifala Guggulu, Turmeric, Mahasudarshan, Yograj, Shatawari, Hingwastika, Shatavari, and Shilajit) by inductively coupled plasma-mass spectrometry (ICP-MS) and direct mercury analysis using the Hydra-C direct mercury analyzer (Teledyne Leeman Labs Hudson, NH, USA). Similar results were obtained from the two methods, but the direct mercury analysis method was much faster and safer and required no microwave digestion (unlike ICP-MS). Levels of mercury ranged from 0.002 to 56  μ g/g in samples of dietary supplements. Standard reference materials Ephedra 3240 and tomato leaves that were from the National Institute of Standard and Technology (NIST) and dogfish liver (DOLT3) that was from the Canadian Research Council were analyzed using Hydra-C method. Average mercury recoveries were 102% (RSD% 0.0018), 100% (RSD% 0.0009), and 101% (RSD% 0.0729), respectively. Hydra-C method Limit Of Quantitation was 0.5 ng. PMID:23710181

  12. Determination of Mercury in Ayurvedic Dietary Supplements That Are Not Rasa Shastra Using the Hydra-C Direct Mercury Analyzer

    PubMed Central

    Abdalla, Amir A.; Smith, Robert E.

    2013-01-01

    Mercury has been determined in Ayurvedic dietary supplements (Trifala, Trifala Guggulu, Turmeric, Mahasudarshan, Yograj, Shatawari, Hingwastika, Shatavari, and Shilajit) by inductively coupled plasma-mass spectrometry (ICP-MS) and direct mercury analysis using the Hydra-C direct mercury analyzer (Teledyne Leeman Labs Hudson, NH, USA). Similar results were obtained from the two methods, but the direct mercury analysis method was much faster and safer and required no microwave digestion (unlike ICP-MS). Levels of mercury ranged from 0.002 to 56 μg/g in samples of dietary supplements. Standard reference materials Ephedra 3240 and tomato leaves that were from the National Institute of Standard and Technology (NIST) and dogfish liver (DOLT3) that was from the Canadian Research Council were analyzed using Hydra-C method. Average mercury recoveries were 102% (RSD% 0.0018), 100% (RSD% 0.0009), and 101% (RSD% 0.0729), respectively. Hydra-C method Limit Of Quantitation was 0.5 ng. PMID:23710181

  13. [Determination of trace mercury in wastewater by a flow injection analysis composed of immobilized ionic liquid enrichment and colorimetric detection].

    PubMed

    Zhang, Jun; Mao, Li-li; Yang, Gui-peng; Gao, Xian-chi; Tang, Xu-li

    2010-07-01

    Amberlite XAD-7 resin was modified by room temperature ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate, [C6 mim]PF6) coating through a maceration method, gaining a new sort of hydrophobic adsorbent for the solid phase extraction mini-column. Trace inorganic mercury in wastewater samples was preconcentrated and determined by flow injection online mini-column sampling coupled with spectrophotometric determination. In acid medium, dithizone was employed as chelator with cetyltrimethylammonium bromide (CTMAB) to form a red neutral mercury-dithizone complex, which could be extracted quantificationally by solid phase extraction technique on the mini-column. Under the optimized conditions, the linearity and the detection limit of the proposed method were found to be 0.35 to 50.0 microg x L(-1) Hg2+ and 0.067 microg x L(-1) Hg2+, respectively. The enrichment factor of 25 times could be achieved with a 50 mL sampling volume and the developed procedure was successfully applied for the determination of mercury in the certified reference material (GSBZ50016-90) and the spiked dock wastewater samples with the recovery of 99%-103%. PMID:20828014

  14. Speciation of mercury in human whole blood by capillary gas chromatography with a microwave-induced plasma emission detector system following complexometric extraction and butylation.

    PubMed

    Bulska, E; Emteborg, H; Baxter, D C; Frech, W; Ellingsen, D; Thomassen, Y

    1992-03-01

    Methyl- and inorganic mercury were extracted from human whole blood samples, as their diethyldithiocarbamate complexes, into toluene and butylated by using a Grignard reagent. The mercury species were then separated by gas chromatography (on a 12 m non-polar DB-1 capillary column) and detected by a microwave-induced plasma atomic emission spectrometric (GC-MPD) system. The accuracy and precision of the proposed method were established by the analysis of Seronorm lyophilized human whole blood standards for methyl- and inorganic mercury. No statistical difference (t-test) between the sum of these two species determined by the GC-MPD based method and the recommended total mercury concentrations in the Seronorm samples was observed. Results for the determination of methyl- and inorganic mercury in 60 controls and 90 previously occupationally exposed (to inorganic mercury) workers are presented to illustrate the practical utility of the proposed method. No significantly elevated inorganic mercury concentrations between the two groups were evident.

  15. Inorganic mercury attenuates CD95-mediated apoptosis by interfering with formation of the death inducing signaling complex.

    PubMed

    McCabe, Michael J; Whitekus, Michael J; Hyun, Joogyung; Eckles, Kevin G; McCollum, Geniece; Rosenspire, Allen J

    2003-07-15

    Inorganic mercury (Hg2+) modulates several lymphocyte signaling pathways and has been implicated as an environmental factor linked to autoimmune disease. From the standpoint that autoimmune diseases represent disorders of cell accumulation, in which dysregulated apoptosis may be one mechanism leading to the accumulation of autoreactive lymphocytes, we have been investigating the influences of Hg2+ on CD95-mediated apoptosis. We demonstrate here that low and noncytotoxic concentrations of Hg2+ impair CD95 agonist-induced apoptosis in representative Type-I and Type-II T cell lines. Hg2+ treatment blocks the CD95 agonist-induced activation of initiator and effector caspases as well as the association between CD95 and the signaling adaptor, FADD. CD95 multimerization does not appear to be affected by Hg2+. Thus, the Hg2+ sensitive step within the CD95 death pathway is localized to the level of the death inducing signaling complex (DISC). Disruption of proper DISC formation may be a biochemical mechanism whereby Hg2+ contributes to autoimmune disease.

  16. [Mercury poisoning].

    PubMed

    Bensefa-Colas, L; Andujar, P; Descatha, A

    2011-07-01

    Mercury is a widespread heavy metal with potential severe impacts on human health. Exposure conditions to mercury and profile of toxicity among humans depend on the chemical forms of the mercury: elemental or metallic mercury, inorganic or organic mercury compounds. This article aims to reviewing and synthesizing the main knowledge of the mercury toxicity and its organic compounds that clinicians should know. Acute inhalation of metallic or inorganic mercury vapours mainly induces pulmonary diseases, whereas chronic inhalation rather induces neurological or renal disorders (encephalopathy and interstitial or glomerular nephritis). Methylmercury poisonings from intoxicated food occurred among some populations resulting in neurological disorders and developmental troubles for children exposed in utero. Treatment using chelating agents is recommended in case of symptomatic acute mercury intoxication; sometimes it improves the clinical effects of chronic mercury poisoning. Although it is currently rare to encounter situations of severe intoxication, efforts remain necessary to decrease the mercury concentration in the environment and to reduce risk on human health due to low level exposure (dental amalgam, fish contamination by organic mercury compounds…). In case of occupational exposure to mercury and its compounds, some disorders could be compensated in France. Clinicians should work with toxicologists for the diagnosis and treatment of mercury intoxication.

  17. Determination and assessment of mercury content in calcareous soils.

    PubMed

    Gil, C; Ramos-Miras, J; Roca-Pérez, L; Boluda, R

    2010-01-01

    This paper provides the first available information on the determination of the total mercury content in different Mediterranean calcareous soils by thermal decomposition, amalgamation and atomic absorption spectrophotometry. Fifty-three samples from five soil use groups (natural, dry land, greenhouse, irrigated and rice farming soils) were analysed. The results show that the levels of mercury in these soils were 9.4-1585mugkg(-1). Soil organic matter and the zinc equivalent index have been related to Hg content in soils, suggesting that Cu, Ni, Zn and Hg are of a similar origin. The background level (BL), geochemical baseline concentrations (GBC) and the reference value (RV) were established from natural soils. Calculations are according to the log-normal distribution criterion. The BL, GBC and RV values obtained were 25.1, 9.8-64.3, and 64.3mugkg(-1), respectively. The BL was similar to the baseline concentration in soils obtained at Admiralty Bay (Antarctica) (24.6mugkg(-1)) and a Spanish peat bog (Galicia) (22mugkg(-1)). These data show that rice farming soils (gleyic-calcaric Fluvisols, Fluvaquents), irrigated soils (calcaric Fluvisols, Xerofluvents) and some greenhouse soils (cumulic Antrosols) presented much higher levels, indicating contamination. Hg accumulation in these soils was associated with local anthropogenic sources. PMID:20004461

  18. Mercury and halogens in coal--Their role in determining mercury emissions from coal combustion

    USGS Publications Warehouse

    Kolker, Allan; Quick, Jeffrey C.; Senior, Connie L.; Belkin, Harvey E.

    2012-01-01

    Mercury is a toxic pollutant. In its elemental form, gaseous mercury has a long residence time in the atmosphere, up to a year, allowing it to be transported long distances from emission sources. Mercury can be emitted from natural sources such as volcanoes, or from anthropogenic sources, such as coal-fired powerplants. In addition, all sources of mercury on the Earth's surface can re-emit it from land and sea back to the atmosphere, from which it is then redeposited. Mercury in the atmosphere is present in such low concentrations that it is not considered harmful. Once mercury enters the aquatic environment, however, it can undergo a series of biochemical transformations that convert a portion of the mercury originally present to methylmercury, a highly toxic organic form of mercury that accumulates in fish and birds. Many factors contribute to creation of methylmercury in aquatic ecosystems, including mercury availability, sediment and nutrient load, bacterial influence, and chemical conditions. In the United States, consumption of fish with high levels of methylmercury is the most common pathway for human exposure to mercury, leading the U.S. Environmental Protection Agency (EPA) to issue fish consumption advisories in every State. The EPA estimates that 50 percent of the mercury entering the atmosphere in the United States is emitted from coal-burning utility powerplants. An EPA rule, known as MATS (for Mercury and Air Toxics Standards), to reduce emissions of mercury and other toxic pollutants from powerplants, was signed in December 2011. The rule, which is currently under review, specifies limits for mercury and other toxic elements, such as arsenic, chromium, and nickel. MATS also places limits on emission of harmful acid gases, such as hydrochloric acid and hydrofluoric acid. These standards are the result of a 2010 detailed nationwide program by the EPA to sample stack emissions and thousands of shipments of coal to coal-burning powerplants. The United

  19. [Determination of cadmium and mercury in tobacco leaves samples by CVAAS].

    PubMed

    Shi, Wei-wei; Gan, Wu-er; Su, Qing-de

    2005-07-01

    A new and sensitive method for the determination of cadmium and mercury was developed using nebulous phase reaction, cold vapor atomic absorption spectrometry (CVAAS). This design effectively reduces the loss of cadmium and volatile mercury species in aqueous solution and transfer process. The effects of several experimental parameters of the proposed system were optimized. Using the optimized experimental conditions, detection limits of 21 and 8 ng x L(-1) with RSD of 3.2% and 2.9% (n = 11) were obtained for cadmium and mercury, respectively. This method has been successfully applied to the determination of cadmium and mercury in tobacco leaves samples with the recoveries over 92%.

  20. Recent Developments in the Speciation and Determination of Mercury Using Various Analytical Techniques

    PubMed Central

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2015-01-01

    This paper reviews the speciation and determination of mercury by various analytical techniques such as atomic absorption spectrometry, voltammetry, inductively coupled plasma techniques, spectrophotometry, spectrofluorometry, high performance liquid chromatography, and gas chromatography. Approximately 126 research papers on the speciation and determination of mercury by various analytical techniques published in international journals since 2013 are reviewed. PMID:26236539

  1. Mercury speciation and total trace element determination of low-biomass biological samples.

    PubMed

    Taylor, Vivien F; Jackson, Brian P; Chen, Celia Y

    2008-12-01

    Current approaches to mercury speciation and total trace element analysis require separate extraction/digestions of the sample. Ecologically important aquatic organisms--notably primary consumers such as zooplankton, polychaetes and amphipods--usually yield very low biomass for analysis, even with significant compositing of multiple organisms. Individual organisms in the lower aquatic food chains (mussels, snails, oysters, silversides, killifish) can also have very low sample mass, and analysis of whole single organisms is important to metal uptake studies. A method for the determination of both methyl Hg and total heavy metal concentrations (Zn, As, Se, Cd, Hg, Pb) in a single, low-mass sample of aquatic organisms was developed. Samples (2 to 50 mg) were spiked with enriched with (201)MeHg and (199)Hg, then leached in 4 M HNO(3) at 55 degrees C for extraction of MeHg. After 16 h, an aliquot (0.05 mL) was removed to determine mercury species (methyl and inorganic Hg) by isotope dilution gas chromatography inductively coupled plasma mass spectrometry (ICP-MS). The leachate was then acidified to 9 M HNO(3) and digested in a microwave at 150 degrees C for 10 min, and total metal concentrations were determined by collision cell ICP-MS. The method was validated by analyzing five biological certified reference materials. Average percent recoveries for Zn, As, Se, Cd, MeHg, Hg(total) and Pb were 99.9%, 103.5%, 100.4%, 103.3%, 101%, 97.7%, and 97.1%, respectively. The correlation between the sum of MeHg and inorganic Hg from the speciation analysis and total Hg by conventional digestion of the sample was determined for a large sample set of aquatic invertebrates (n = 285). Excellent agreement between the two measured values was achieved. This method is advantageous in situations where sample size is limited, and where correlations between Hg species and other metals are required in the same sample. The method also provides further validation of speciation data, by

  2. Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Fang, Yong; Pan, Yushi; Li, Peng; Xue, Mei; Pei, Fei; Yang, Wenjian; Ma, Ning; Hu, Qiuhui

    2016-12-15

    An analytical method using reversed phase chromatography-inductively coupled plasma mass spectrometry for arsenic and mercury speciation analysis was described. The effect of ion-pairing reagent on simultaneous separation of four arsenic (arsenite, arsenate, monomethlyarsonate and dimethylarsinate) and three mercury species (inorganic mercury (Hg(II)), methylmecury and ethylmercury) was investigated. Parameters including concentrations and pH of the mobile phase were optimized. The separation and re-equilibration time was attained within 20min. Meanwhile, a sequential extraction method for arsenic and mercury in rice was tested. Subsequently, 1% HNO3 microwave-assisted extraction was chosen. Calibration curves based on peak area measurements were linear with correlation coefficient greater than 0.9958 for each species in the range studied. The detection limits of the species were in the range of 0.84-2.41μg/L for arsenic and 0.01-0.04μg/L for mercury, respectively. The proposed method was then successfully applied for the simultaneous determination of arsenic and mercury species in rice flour standard material and two kinds of rice from local markets. PMID:27451225

  3. On-line speciation of inorganic and methyl mercury in waters and fish tissues using polyaniline micro-column and flow injection-chemical vapour generation-inductively coupled plasma mass spectrometry (FI-CVG-ICPMS).

    PubMed

    Krishna, M V Balarama; Chandrasekaran, K; Karunasagar, D

    2010-04-15

    A simple and efficient method for the determination of ultra-trace amounts of inorganic mercury (iHg) and methylmercury (MeHg) in waters and fish tissues was developed using a micro-column filled with polyaniline (PANI) coupled online to flow injection-chemical vapour generation-inductively coupled plasma mass spectrometry (FI-CVG-ICPMS) system. Preliminary studies indicated that inorganic and methyl mercury species could be separated on PANI column in two different speciation approaches. At pH <3, only iHg could be sorbed and almost no adsorption of MeHg was found (speciation procedure 1). If the sample solution pH is approximately 7, both MeHg and iHg species could be sorbed on the PANI column. Subsequently both the Hg species were selectively eluted with 2% HCl and a mixture of 2% HCl and 0.02% thiourea respectively (speciation procedure 2). The adsorption percentage of iHg on the PANI column was unchanged even with acidity of the sample solution increased to 6 mol L(-1). Therefore, an acidic solution (5 mol L(-1) HCl), used for ultra-sound assisted extraction of the mercury species from biological samples, was used directly to separate MeHg from iHg in the fish tissues (tuna fish ERM-CE 463, ERM-CE 464 and IAEA-350) by PANI column using speciation procedure 1. The determined values were in good agreement with certified values. Under optimal conditions, the limits of detection (LODs) were 2.52 pg and 3.24 pg for iHg and MeHg (as Hg) respectively. The developed method was applied successfully to the direct determination of iHg and MeHg in various waters (tap water, lake water, ground water and sea-water) and the recoveries for the spiked samples were in the range of 96-102% for both the Hg species. PMID:20188947

  4. On-line speciation of inorganic and methyl mercury in waters and fish tissues using polyaniline micro-column and flow injection-chemical vapour generation-inductively coupled plasma mass spectrometry (FI-CVG-ICPMS).

    PubMed

    Krishna, M V Balarama; Chandrasekaran, K; Karunasagar, D

    2010-04-15

    A simple and efficient method for the determination of ultra-trace amounts of inorganic mercury (iHg) and methylmercury (MeHg) in waters and fish tissues was developed using a micro-column filled with polyaniline (PANI) coupled online to flow injection-chemical vapour generation-inductively coupled plasma mass spectrometry (FI-CVG-ICPMS) system. Preliminary studies indicated that inorganic and methyl mercury species could be separated on PANI column in two different speciation approaches. At pH <3, only iHg could be sorbed and almost no adsorption of MeHg was found (speciation procedure 1). If the sample solution pH is approximately 7, both MeHg and iHg species could be sorbed on the PANI column. Subsequently both the Hg species were selectively eluted with 2% HCl and a mixture of 2% HCl and 0.02% thiourea respectively (speciation procedure 2). The adsorption percentage of iHg on the PANI column was unchanged even with acidity of the sample solution increased to 6 mol L(-1). Therefore, an acidic solution (5 mol L(-1) HCl), used for ultra-sound assisted extraction of the mercury species from biological samples, was used directly to separate MeHg from iHg in the fish tissues (tuna fish ERM-CE 463, ERM-CE 464 and IAEA-350) by PANI column using speciation procedure 1. The determined values were in good agreement with certified values. Under optimal conditions, the limits of detection (LODs) were 2.52 pg and 3.24 pg for iHg and MeHg (as Hg) respectively. The developed method was applied successfully to the direct determination of iHg and MeHg in various waters (tap water, lake water, ground water and sea-water) and the recoveries for the spiked samples were in the range of 96-102% for both the Hg species.

  5. Use of red mud (bauxite residue) for the retention of aqueous inorganic mercury(II).

    PubMed

    Rubinos, David A; Barral, María Teresa

    2015-11-01

    The effectiveness of the oxide-rich residue from bauxite refining (red mud) to remove inorganic Hg(II) from aqueous solutions was assessed. The aspects studied comprised the kinetics of the process (t = 1 min-24 h), the effect of pH (3.5-11.5), the interacting effect between salt concentration (0.01-1 M NaNO3) and pH and the Hg(II) sorption isotherm. Hg leaching from spent red mud was evaluated using the toxicity characteristics leaching procedure (TCLP) method. The sorption of Hg(II) onto red mud was very fast, with most of Hg(II) (97.0-99.7%) being removed from 0.5-50 μM Hg solutions in few minutes. The kinetic process was best described by Ho's pseudo-second order equation, pointing to chemisorption as the rate controlling step. Hg(II) sorption efficiency was very high (% removal between 93.9 and 99.8%) within all the studied pH range (3.5-11.5) and added Hg concentrations (5 and 50 μM), being optimal at pH 5-8 and decreasing slightly at both lowest and highest pH. The effect of background electrolyte concentration suggests specific sorption as the main interaction mechanism between Hg(II) and red mud, but the increasing non-sorbed Hg concentrations at low and high pH for higher electrolyte concentrations also revealed the contribution of an electrostatic component to the process. The sorption isotherm showed the characteristic shape of high affinity sorbents, and it was better described by the Redlich-Peterson and Freundlich equations, which are models that assume sorbent heterogeneity and involvement of more than one mechanism. The estimated Hg(II) sorption capacity from the Langmuir equation (q m ~9 mmol/kg) was comparable to those of some inorganic commercial sorbents but lower than most bio- or specifically designed sorbents. The leachability of retained Hg(II) from spent red mud (0.02, 0.25 and 2.42 mmol Hg/kg sorbed concentration) was low (0.28, 1.15 and 2.23 μmol/kg, respectively) and accounted for 1.2, 0.5 and 0.1% of previously sorbed Hg

  6. DEVELOPMENT AND CHARACTERIZATION OF AN ANNULAR DENUDER METHODOLOGY FOR THE MEASUREMENT OF DIVALENT INORGANIC REACTIVE GASEOUS MERCURY IN AMBIENT AIR

    EPA Science Inventory

    Atmospheric mercury is predominantly present in the gaseous elemental form (Hg0). However, anthropogenic emissions (e.g. incineration, fossil fuel combustion) emit and natural processes create particulate-phase mercury (Hg(p)) and divalent reactive gas-phase mercury (RGM). RG...

  7. Effects of sediment composition on inorganic mercury partitioning, speciation and bioavailability in oxic surficial sediments.

    PubMed

    Zhong, Huan; Wang, Wen-Xiong

    2008-01-01

    Artificially prepared sediments were used to assess the effects of sediment composition on inorganic Hg partitioning, speciation and bioavailability. Organic coating in sediment greatly increased the Hg partitioning and the amount of bioavailable Hg bound with the clay and the Fe and Mn oxides, but had little effect on that bound with the quartz and calcium carbonate as a result of weaker binding of humic acids and fulvic acids. The clay content increased the concentration of Hg in the sediments but inhibited the gut juice extraction due to the strong binding of Hg-organic matter (OM) complexes. Most Hg in the sediments was complexed by OM (mainly distributed in the organo-complexed phase and the strongly complexed phase), and the Hg-OM complexes (especially Hg in the strongly complexed phase) in sediments contributed much to gut juice extraction. Redistribution of Hg-OM complexes between sediments and gut juices may occur during gut juice extraction and modify Hg bioavailability and speciation in sediments.

  8. Some sources and sinks of monomethyl and inorganic mercury on Ellesmere Island in the Canadian High Arctic.

    PubMed

    St Louis, Vincent L; Sharp, Martin J; Steffen, Alexandra; May, Al; Barker, Joel; Kirk, Jane L; Kelly, David J A; Arnott, Shelley E; Keatley, Bronwyn; Smol, John P

    2005-04-15

    We identified some of the sources and sinks of monomethyl mercury (MMHg) and inorganic mercury (HgII) on Ellesmere Island in the Canadian High Arctic. Atmospheric Hg depletion events resulted in the deposition of Hg(II) into the upper layers of snowpacks, where concentrations of total Hg (all forms of Hg) reached over 20 ng/L. However, our data suggest that much of this deposited Hg(II) was rapidly photoreduced to Hg(0) which then evaded back to the atmosphere. As a result, we estimate that net wet and dry deposition of Hg(II) during winter was lower at our sites (0.4-5.9 mg/ha) than wet deposition in more southerly locations in Canada and the United States. We also found quite high concentrations of monomethyl Hg (MMHg) in snowpacks (up to 0.28 ng/L), and at times, most of the Hg in snowpacks was present as MMHg. On the Prince of Wales Icefield nearthe North Water Polynya, we observed a significant correlation between concentrations of Cl and MMHg in snow deposited in the spring, suggesting a marine source of MMHg. We hypothesize that dimethyl Hg fluxes from the ocean to the atmosphere through polynyas and open leads in ice, and is rapidly photolyzed to MMHgCl. We also found that concentrations of MMHg in initial snowmelt on John Evans Glacier (up to 0.24 ng/L) were higher than concentrations of MMHg in the snowpack (up to 0.11 ng/L), likely due to either sublimation of snow or preferential leaching of MMHg from snow during the initial melt phase. This springtime pulse of MMHg to the High Arctic, in conjunction with climate warming and the thinning and melting of sea ice, may be partially responsible for the increase in concentrations of Hg observed in certain Arctic marine mammals in recent decades. Concentrations of MMHg in warm and shallow freshwater ponds on Ellesmere Island were also quite high (up to 3.0 ng/L), leading us to conclude that there are very active regions of microbial Hg(II) methylation in freshwater systems during the short summer season in the

  9. Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury resistance. [Mercury reductase

    SciTech Connect

    Wang, Y.; Levinson, H.S.; Mahler, I. ); Moore, M.; Walsh, C. ); Silver, S. )

    1989-01-01

    A 13.5-kilobase HindIII fragment, bearing an intact mercury resistance (mer) operon, was isolated from chromosomal DNA of broad-spectrum mercury-resistant Bacillus sp. strain RC607 by using as a probe a clone containing the mercury reductase (merA) gene. The new clone, pYW33, expressed broad-spectrum mercury resistance both in Escherichia coli and in Bacillus subtilis, but only in B. subtilis was the mercuric reductase activity inducible. Sequencing of a 1.8-kilobase mercury hypersensitivity-producing fragment revealed four open reading frames (ORFs). ORF1 may code for a regulatory protein (MerR). ORF2 and ORF4 were associated with cellular transport function and the hypersensitivity phenotype. DNA fragments encompassing the merA and the merB genes were sequenced. The predicted Bacillus sp. strain RC607 MerA (mercuric reductase) and MerB (organomercurial lyase) were similar to those predicted from Staphylococcus aureus plasmid pI258 (67 and 73% amino acid identities, respectively); however, only 40% of the amino acid residues of RC607 MerA were identical to those of the mercuric reductase from gram-negative bacteria. A 69-kilodalton polypeptide was isolated and identified as the merA gene product by examination of its amino-terminal sequence.

  10. Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS)†

    PubMed Central

    Kenduzler, Erdal; Ates, Mehmet; Arslan, Zikri; McHenry, Melanie; Tchounwou, Paul B.

    2012-01-01

    A method based on cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS) has been developed for determination of inorganic mercury, Hg(II), and total mercury in fish otoliths. Sodium borohydride (NaBH4) was used as the only reducing agent and its concentration was optimized across an acidity gradient to selectively reduce Hg(II) without affecting methylmercury, CH3Hg(I). Inorganic Hg was quantitatively reduced to elemental mercury (Hg0) with 1×10−4% (m/v) NaBH4. CH3Hg(I) required a minimum of 0.5% (m/v) NaBH4 for complete reduction. Increasing the HCl concentration of solution to 5% (v/v) improved the selectivity toward Hg(II) as it decreased the signals from CH3Hg(I) to baseline levels. Potassium ferricyanide solution was the most effective in eliminating the memory effects of Hg compared with a number of chelating and oxidizing agents, including EDTA, gold chloride, thiourea, cerium ammonium nitrate and 2-mercaptoethylamine chloride. The relative standard deviation (RSD) was less than 5% for 1.0 μg L−1 Hg(II) solution. The detection limits were 4.2 and 6.4 ng L−1 (ppt) for Hg(II) and total Hg, respectively. Sample dissolution conditions and recoveries were examined with ultra-pure CaCO3 (99.99%) spiked with Hg(II) and CH3HgCl. Methylmercury was stable when dissolution was performed with up to 20% (v/v) HCl at 100 oC. Recoveries from spiked solutions were higher than 95% for both Hg(II) and CH3Hg(I). The method was applied to the determination of Hg(II) and total Hg concentrations in the otoliths of red emperor (CRM 22) and Pacific halibut. Total Hg concentration in the otoliths was 0.038 ± 0.004 μg g−1 for the red emperor and 0.021 ± 0.003 μg g−1 for the Pacific halibut. Inorganic Hg accounted for about 25% of total Hg indicating that Hg in the otoliths was predominantly organic mercury (e.g., methylmercury). However, as opposed to the bioaccumulation in tissues, methylmercury levels in otoliths was very low suggesting a

  11. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  12. Evaluation of the Effects of Chronic Intoxication with Inorganic Mercury on Memory and Motor Control in Rats

    PubMed Central

    Teixeira, Francisco B.; Fernandes, Rafael M.; Farias-Junior, Paulo M. A.; Costa, Natacha M. M.; Fernandes, Luanna M. P.; Santana, Luana N. S.; Silva-Junior, Ademir F.; Silva, Marcia C. F.; Maia, Cristiane S. F.; Lima, Rafael R.

    2014-01-01

    The aims of this study were to evaluate whether chronic intoxication with mercury chloride (HgCl2), in a low concentration over a long time, can be deposited in the central nervous tissue and to determine if this exposure induces motor and cognitive impairments. Twenty animals were intoxicated for 45 days at a dose of 0.375 mg/kg/day. After this period, the animals underwent a battery of behavioral tests, in a sequence of open field, social recognition, elevated T maze and rotarod tests. They were then sacrificed, their brains collected and the motor cortex and hippocampus dissected for quantification of mercury deposited. This study demonstrates that long-term chronic HgCl2 intoxication in rats promotes functional damage. Exposure to HgCl2 induced anxiety-related responses, short- and long-term memory impairments and motor deficits. Additionally, HgCl2 accumulated in both the hippocampus and cortex of the brain with a higher affinity for the cortex. PMID:25198682

  13. Toxicity of heavy metals: 1. Correlation of metal toxicity with in vitro calmodulin inhibition. 2. Interactions of inorganic mercury with red blood cells: Control vs. amyotrophic lateral sclerosis

    SciTech Connect

    Henson, J.L.C.

    1989-01-01

    The toxic effects of metals are examined in two separate in vitro systems. In the first system, the correlation between published mouse LD{sub 50} values and experimentally derived values for calmodulin inhibition was determined. Calmodulin activity was defined as stimulated phosphodiesterase (PDE) activity. The basal PDE activity was determined with each cation and was unaffected by any of the concentrations utilized. The IC{sub 50} was determined from a plot of the log of the cation concentration vs. stimulated PDE activity for each cation. A very strong correlation was obtained when the IC{sub 50} vs. mouse LD{sub 50} curve was examined (p < 0.001). Calmodulin regulates many enzyme systems and processes that affect or are affected by calcium. This study was examined in light of the possible role of calcium in cell damage and death. In the second study, the interactions of erythrocytes (RBCs) and inorganic mercury (Hg) were examined. A broad range of Hg concentrations were utilized to explore the nature of the interactions. Two different mechanisms of RBC Hg accumulation and retention were evident. At lower Hg concentrations (0.001-0.1 {mu}M), the RBC accumulation/retention of Hg was constant (52% of available Hg), reversible, and temperature sensitive. At higher concentrations (1-100 {mu}M), the accumulation increased with Hg concentration, was not reversible, and was not temperature sensitive. A relationship between Hg and amyotrophic lateral sclerosis (ALS) is suggested by several reports in the literature. The accumulation/ retention of Hg by RBCs from control and ALS patients were compared. The RBCs from ALS patients released far more Hg during a two hr incubation 37C at 10 and 100 {mu}M Hg compared to controls.

  14. Organ-specific accumulation, transportation, and elimination of methylmercury and inorganic mercury in a low Hg accumulating fish.

    PubMed

    Peng, Xiaoyan; Liu, Fengjie; Wang, Wen-Xiong

    2016-08-01

    Low mercury (Hg) concentrations down to several nanograms Hg per gram of wet tissue are documented in certain fish species such as herbivorous fish, and the underlying mechanisms remain speculative. In the present study, bioaccumulation and depuration patterns of inorganic Hg(II) and methylmercury (MeHg) in a herbivorous rabbitfish Siganus canaliculatus were investigated at organ and subcellular levels following waterborne or dietary exposures. The results showed that the efflux rate constants of Hg(II) and MeHg were 0.104 d(-1) and 0.024 d(-1) , respectively, and are probably the highest rate constants recorded in fish thus far. The dietary MeHg assimilation efficiency (68%) was much lower than those in other fish species (∼90%). The predominant distribution of MeHg in fish muscle was attributable to negligible elimination of MeHg from muscle (< 0) and efficient elimination of MeHg from gills (0.12 d(-1) ), liver (0.17 d(-1) ), and intestine (0.20 d(-1) ), as well as efficient transportation of MeHg from other organs into muscle. In contrast, Hg(II) was much more slowly distributed into muscle but was efficiently eliminated by the intestine (0.13 d(-1) ). Subcellular distribution indicated that some specific membrane proteins in muscle were the primary binding pools for MeHg, and both metallothionein-like proteins and Hg-rich granules were the important components in eliminating both MeHg and Hg(II). Overall, the present study's results suggest that the low tissue Hg concentration in the rabbitfish was partly explained by its unique biokinetics. Environ Toxicol Chem 2016;35:2074-2083. © 2016 SETAC.

  15. Uptake of atmospheric mercury by deionized water and aqueous solutions of inorganic salts at acidic, neutral and alkaline pH.

    PubMed

    Waite, D T; Snihura, A D; Liu, Y; Huang, G H

    2002-10-01

    Mercury (Hg) is well known as a toxic environmental pollutant that is among the most highly bioconcentrated trace metals in the human food chain. The atmosphere is one of the most important media for the environmental cycling of mercury, since it not only receives mercury emitted from natural sources such as volcanoes and soil and water surfaces but also from anthropogenic sources such as fossil fuel combustion, mining and metal smelting. Although atmospheric mercury exists in different physical and chemical forms, as much as 90% can occur as elemental vapour Hg0, depending on the geographic location and time of year. Atmospheric mercury can be deposited to aquatic ecosystems through both wet (rain or snow) and dry (vapour adsorption and particulate deposition) processes. The purpose of the present study was to measure, under laboratory conditions, the rate of deposition of gaseous, elemental mercury (Hg0) to deionized water and to solutions of inorganic salt species of varying ionic strengths with a pH range of 2-12. In deionized water the highest deposition rates occurred at both low (pH 2) and high (pH 12). The addition of different species of salt of various concentrations for the most part had only slight effects on the absorption and retention of atmospheric Hg0. The low pH solutions of various salt concentrations and the high pH solutions of high salt concentrations tested in this study generally showed a greater tendency to absorb and retain atmospheric Hg0 than those at a pH closer to neutral.

  16. Mercury

    NASA Technical Reports Server (NTRS)

    Gault, D. E.; Burns, J. A.; Cassen, P.; Strom, R. G.

    1977-01-01

    Prior to the flight of the Mariner 10 spacecraft, Mercury was the least investigated and most poorly known terrestrial planet (Kuiper 1970, Devine 1972). Observational difficulties caused by its proximity to the Sun as viewed from Earth caused the planet to remain a small, vague disk exhibiting little surface contrast or details, an object for which only three major facts were known: 1. its bulk density is similar to that of Venus and Earth, much greater than that of Mars and the Moon; 2. its surface reflects electromagnetic radiation at all wavelengths in the same manner as the Moon (taking into account differences in their solar distances); and 3. its rotation period is in 2/3 resonance with its orbital period. Images obtained during the flyby by Mariner 10 on 29 March 1974 (and the two subsequent flybys on 21 September 1974 and 16 March 1975) revealed Mercury's surface in detail equivalent to that available for the Moon during the early 1960's from Earth-based telescopic views. Additionally, however, information was obtained on the planet's mass and size, atmospheric composition and density, charged-particle environment, and infrared thermal radiation from the surface, and most significantly of all, the existence of a planetary magnetic field that is probably intrinsic to Mercury was established. In the following, this new information is summarized together with results from theoretical studies and ground-based observations. In the quantum jumps of knowledge that have been characteristic of "space-age" exploration, the previously obscure body of Mercury has suddenly come into sharp focus. It is very likely a differentiated body, probably contains a large Earth-like iron-rich core, and displays a surface remarkably similar to that of the Moon, which suggests a similar evolutionary history.

  17. Determination of mercury compounds in fish by microwave-assisted extraction and liquid chromatography-vapor generation-inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chiou, Chwei-Sheng; Jiang, Shiuh-Jen; Kumar Danadurai, K. Suresh

    2001-07-01

    A method employing a vapor generation system and LC combined with inductively coupled plasma mass spectrometry (LC-ICP-MS) is presented for the determination of mercury in biological tissues. An open vessel microwave digestion system was used to extract the mercury compounds from the sample matrix. The efficiency of the mobile phase, a mixture of L-cysteine and 2-mercaptoethanol, was evaluated for LC separation of inorganic mercury [Hg(II)], methylmercury (methyl-Hg) and ethylmercury (ethyl-Hg). The sensitivity, detection limits and repeatability of the liquid chromatography (LC) ICP-MS system with a vapor generator were comparable to, or better than, that of an LC-ICP-MS system with conventional pneumatic nebulization, or other sample introduction techniques. The experimental detection limits for various mercury species were in the range of 0.05-0.09 ng ml -1 Hg, based on peak height. The proposed method was successfully applied to the determination of mercury compounds in a swordfish sample purchased from the local market. The accuracy of the method was evaluated by analyzing a marine biological certified reference material (DORM-2, NRCC).

  18. Modeling Mercury in Proteins.

    PubMed

    Parks, J M; Smith, J C

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively nontoxic, other forms such as Hg(2+) and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg(2+) can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg(2+) to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed molecular picture and circumvent issues associated with toxicity. Here, we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intraprotein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand-binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confer mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multiscale model of environmental mercury cycling.

  19. Modeling Mercury in Proteins

    SciTech Connect

    Smith, Jeremy C; Parks, Jerry M

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  20. Modeling Mercury in Proteins.

    PubMed

    Parks, J M; Smith, J C

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively nontoxic, other forms such as Hg(2+) and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg(2+) can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg(2+) to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed molecular picture and circumvent issues associated with toxicity. Here, we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intraprotein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand-binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confer mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multiscale model of environmental mercury cycling. PMID:27497164

  1. Determination of total mercury in sorbent tubes using direct mercury analysis

    SciTech Connect

    Nortje, J.

    2008-08-15

    A U.S. EPA draft method, Method 30 B, has been approved as a reference method for relative accuracy testing audits of Continuous Emissions Monitoring Systems (CEMS) and sorbent trap monitoring systems installed at coal-fired utilities. It is also appropriate for mercury emissions testing at such facilities. This method is a procedure for measuring total vapor phase mercury emissions from coal-fired combustion sources using all extractive or thermal analytical technique and UV atomic absorption (AA) or UV atomic fluorescence (AF) cold vapor analyzers as the analytical system. The DMA-80 direct mercury analyzer uses thermal decomposition and ultimately AA spectrophotometry to analyze samples. The analyzer can be used for Method 30 B analysis.

  2. Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    NASA Technical Reports Server (NTRS)

    Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.; Zuber, Maria T.

    2014-01-01

    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.

  3. A simple extraction procedure for determination of total mercury in crude oil.

    PubMed

    Uddin, Razi; Al-Fahad, Mossaed A; Al-Rashwan, Ayman K; Al-Qarni, Mohammad A

    2013-05-01

    The determination of mercury in crude oil and petroleum products is particularly difficult due to the volatile nature of both mercury and the matrix, which may lead to significant loss of the analyte. A simple extraction method for total mercury has been developed to determine total mercury in crude oil using cold vapor atomic fluorescence spectrometry. The homogenized crude oil sample was diluted to 5, 10, and 20 % (w/w) in toluene. The diluted crude oil samples were spiked with 10 and 40 μg/kg (w/w). The samples were extracted using an oxidant/acid solution, BrCl/HCl. The mercury was extracted into the aqueous phase; the ionic mercury was then reduced to volatile elemental mercury (Hg(0)) by stannous chloride (SnCl2). The mercury vapor was detected by Merlin cold vapor atomic fluorescence spectrometry at a 253.7-nm wavelength. The average recoveries for mercury in spiked diluted crude oil (10 and 40 μg/kg, w/w) were between 96 and 103 %, respectively, in 5 and 10 % spiked diluted crude oil. Whereas, low recoveries (<50 %) were recorded in 20 % diluted spiked crude oil. The method detection limit was calculated as t (0.01)(n - 1) × SD where t is the student's value for 99 % confidence level and standard deviation estimate with n - 1 degrees of freedom. The method detection limit was found to be 0.38 μg/kg based on 5 g of diluted crude oil sample. The method is sensitive enough to determine low levels of mercury in crude oil.

  4. Gold nanoparticles for mercury determination in environmental water and vegetable samples

    NASA Astrophysics Data System (ADS)

    Kiran, K.

    2015-03-01

    Gold nanoparticles (AuNPs) capped with 2-mercapto succinic acid (MSA) were successfully applied for the determination of mercury in various water samples up to nanolevels without any interference. Alumina-coated MSA-capped AuNPs easily remove mercury species present in various samples. The absorbance spectrum was obtained at 547 nm. Other parameters like effect of pH, reagent concentration, interferences were studied. This method is simple, sensitive and successfully applied for the determination of mercury species in various water, soil and plant residues collected from different industrial areas.

  5. Superoxide anion radical (O2(-)) degrades methylmercury to inorganic mercury in human astrocytoma cell line (CCF-STTG1).

    PubMed

    Mailloux, Ryan J; Yumvihoze, Emmanuel; Chan, Hing Man

    2015-09-01

    Methylmercury (MeHg) is a global pollutant that is affecting the health of millions of people worldwide. However, the mechanism of MeHg toxicity still remains somewhat elusive and there is no treatment. It has been known for some time that MeHg can be progressively converted to inorganic mercury (iHg) in various tissues including the brain. Recent work has suggested that cleavage of the carbon-metal bond in MeHg in a biological environment is facilitated by reactive oxygen species (ROS). However, the oxyradical species that actually mediates this process has not been identified. Here, we provide evidence that superoxide anion radical (O2(-)) can convert MeHg to iHg. The calculated second-order rate constant for the degradation of 1μM MeHg by O2(-) generated by xanthine/xanthine oxidase was calculated to be 2×10(5)M(-1)s(-1). We were also able to show that this bioconversion can proceed in intact CCF-STTG1 human astrocytoma cells exposed to paraquat (PQ), a O2(-) generating viologen. Notably, exposure of cells to increasing amounts of PQ led to a dose dependent increase in both MeHg and iHg. Indeed, a 24h exposure to 500μM PQ induced a ∼13-fold and ∼18-fold increase in intracellular MeHg and iHg respectively. These effects were inhibited by superoxide dismutase mimetic MnTBAP. In addition, we also observed that a 24h exposure to a biologically relevant concentration of MeHg (1μM) did not induce cell death, oxidative stress, or even changes in cellular O2(-) and H2O2. However, co-exposure to PQ enhanced MeHg toxicity which was associated with a robust increase in cell death and oxidative stress. Collectively our results show that O2(-) can bioconvert MeHg to iHg in vitro and in intact cells exposed to conditions that simulate high intracellular O2(-) production. In addition, we show for the first time that O2(-) mediated degradation of MeHg to iHg enhances the toxicity of MeHg by facilitating an accumulation of both MeHg and iHg in the intracellular

  6. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    SciTech Connect

    Rey-Raap, Natalia

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  7. Comparison of direct mercury analyzer and FIA-CV-AAS in determination of methylmercury in fish

    NASA Astrophysics Data System (ADS)

    Ulrich, J. C.; Hortellani, M. A.; Sarkis, J. E. S.; Nakatsubo, M. A.

    2016-07-01

    Methylmercury (MeHg) has been determined in fish reference materials by direct mercury analyzer (DMA 80) and FIA-CV-AAS. In order to evaluate accuracy, certified reference materials (Fish protein, NRCC - Dorm 4 and fish material, Ipen - Dourada 1) were analyzed after extraction and separation of mercury species. Good agreement of the results have been obtained (relative error of the determination between the methods varied from 1.5% to 39%). The repeatability of the results varied from 4% to 26%.

  8. Fate of inorganic mercury and methyl mercury within the snow cover in the low arctic tundra on the shore of Hudson Bay (Québec, Canada)

    NASA Astrophysics Data System (ADS)

    Constant, Philippe; Poissant, Laurier; Villemur, Richard; Yumvihoze, Emmanuel; Lean, David

    2007-04-01

    Snow samples were collected in the seasonal snow cover of the low arctic tundra (Whapmagoostui-Kuujjuarapik, Québec) during episodic atmospheric mercury depletion events (AMDEs) and in the snowmelt period, long after AMDEs had occurred. Total and methyl mercury analyses were done in order to investigate the critical factors influencing the fate of mercury once deposited in the snowpack. Following AMDEs, snow total mercury (THg) concentrations increased and were inversely proportional to the distance from Hudson Bay. The correlations between MeHg, sulfate (SO42-), and chlorine (Cl-) snow concentrations implicated marine aerosols as a significant source of MeHg, independent of AMDEs. However, the newly deposited MeHg was unstable in the snow cover as 15-56% of the MeHg was demethylated or otherwise "lost" during the nighttime period. In contrast, during the snowmelt period, marine aerosols were not a significant source of MeHg. MeHg snow concentrations higher than 200 pg L-1 were observed when snow's heterotrophic plate counts, total suspended volatile solids, and total suspended solids were higher than 5.0 × 105 CFU L-1, 25 mg L-1, and 90 mg L-1, respectively. During the snowmelt, although the THg snow concentrations remained at 8-9 ng L-1, the proportion of MeHg increased from 2.7 to 7.6%. This is the first report suggestive of the presence of mercury methylation activities within the snow cover of the low arctic tundra.

  9. The bioaccessibility of soil-based mercury as determined by physiological based extraction tests and human biomonitoring in children.

    PubMed

    Safruk, Adam M; Berger, Robert G; Jackson, Blair J; Pinsent, Celine; Hair, Alan T; Sigal, Elliot A

    2015-06-15

    Environmental contaminants associated with soil particles are generally less bioavailable than contaminants associated with other exposure media where chemicals are often found in more soluble forms. In vitro methods, such as Physiological Based Extraction Tests (PBET), can provide estimates of bioaccessibility for soil-based contaminants. The results of these tests can be used to predict exposure to contaminants from soil ingestion pathways within human health risk assessment (HHRA). In the current investigation, an HHRA was conducted to examine the risks associated with elevated concentrations of mercury in soils in the northern Canadian smelter community of Flin Flon, Manitoba. A PBET was completed for residential soils and indicated mean bioaccessibilities of 1.2% and 3.0% for total mercury using gastric phase and gastric+intestinal phase methodologies, respectively. However, as many regulators only allow for the consideration of in vitro results for lead and arsenic in the HHRA process, in vitro bioaccessibility results for mercury were not utilized in the current HHRA. Based on the need to assume 100% bioaccessibility for inorganic mercury in soil, results from the HHRA indicated the need for further assessment of exposure and risk. A biomonitoring study was undertaken for children between 2 and 15 years of age in the community to examine urinary inorganic mercury concentrations. Overall, 375 children provided valid urine samples for analysis. Approximately 50% of urine samples had concentrations of urinary inorganic mercury below the limit of detection (0.1 μg/L), with an average creatinine adjusted concentration of 0.11 μg/g. Despite high variability in mercury soil concentrations within sub-communities, soil concentrations did not appear to influence urinary mercury concentrations. The results of the current investigation indicate that mercury bioaccessibility in residential soils in the Flin Flon area was likely limited and that HHRA estimates would

  10. State-of-the-art ion chromatographic determination of inorganic ions in food.

    PubMed

    Buldini, P L; Cavalli, S; Trifirò, A

    1997-11-21

    A review of the applications of ion chromatography (IC) to the determination of inorganic ions in food is presented. The most promising sample preparation techniques, such as accelerated solvent extraction, supercritical fluid extraction, solid-phase extraction, UV photolysis, microwave-oven digestion and pyrohydrolysis are discussed. Among the various inorganic anions, nitrogen, sulphur and phosphorus species and halides are widely determined in foods and to a lesser extent only, cyanide, carbonate, arsenic and selenium species are considered. IC determination of inorganic cations deals with ammonium ion, alkali, alkaline-earth, heavy and transition metals particularly and only a small amount of literature is found on the other ones, like aluminium and plantinum. A particular advantage of IC over traditional techniques is the simultaneous determination of several species. PMID:9440294

  11. Determination of mercury in phosphate fertilizers by cold vapor atomic absorption spectrometry.

    PubMed

    de Jesus, Robson M; Silva, Laiana O B; Castro, Jacira T; de Azevedo Neto, Andre D; de Jesus, Raildo M; Ferreira, Sergio L C

    2013-03-15

    In this paper, a method for the determination of mercury in phosphate fertilizers using slurry sampling and cold vapor atomic absorption spectrometry (CV QT AAS) is proposed. Because mercury (II) ions form strong complexes with phosphor compounds, the formation of metallic mercury vapor requires the presence of lanthanum chloride as a release agent. Thiourea increases the amount of mercury that is extracted from the solid sample to the liquid phase of the slurry. The method is established using two steps. First, the slurry is prepared using the sample, lanthanum chloride, hydrochloric acid solution and thiourea solution and is sonicated for 20 min. Afterward, mercury vapor is generated using an aliquot of the slurry in the presence of the hydrochloric acid solution and isoamylic alcohol with sodium tetrahydroborate solution as the reducing agent. The experimental conditions for slurry preparation were optimized using two-level full factorial design involving the factors: thiourea and lanthanum chloride concentrations and the duration of sonication. The method allows the determination of mercury by external calibration using aqueous standards with limits of detection and quantification of 2.4 and 8.2 μg kg(-1), respectively, and precision, expressed as relative standard deviation, of 6.36 and 5.81% for two phosphate fertilizer samples with mercury concentrations of 0.24 and 0.57 mg kg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of phosphate fertilizer that was provided by the National Institute of Standards & Technology (NIST). The method was applied to determine mercury in six commercial samples of phosphate fertilizers. The mercury content varied from 33.97 to 209.28 μg kg(-1). These samples were also analyzed employing inductively coupled plasma mass spectrometry (ICP-MS). The ICP-MS results were consistent with the results from our proposed method.

  12. Solid-phase extraction and spectrophotometric determination of mercury with 6-mercaptopurine in environmental samples.

    PubMed

    Saber-Tehrani, Mohammad; Hashemi-Moghaddam, Hamid; Husain, S Waqif; Zare, Karim

    2007-08-01

    A highly selective, sensitive and rapid method for the determination of trace amounts of inorganic mercury based on the reaction of Hg (II) with 6-mercaptopurine and the solid phase extraction of the complex on C18 membrane disks was developed. The 6-mercaptopurine selectively reacts with Hg (II) to form a complex in the pH range of 5-8. This complex was preconcentrated by solid phase extraction with C18 disks. An enrichment factor of 100 was achieved. The molar absorptivity of the complex is 0.26 x 10(-6) L. mol(-1) cm(-1) measured at 315 nm. The Beer's law is obeyed in the concentration range of 0.002-0.048 microg mL(-1). The relative standard deviation for eleven-replicated measurement of 0.04 microg mL(-1) is 1.5 %. The detection limit is 0.001 microg mL(-1) in the water samples. The advantage of the method is that the determination of Hg (II) is free from interference of almost all the cations and anions found in environment and wastewater samples. The determination of Hg (II) in water samples of different origins and marine sediment were carried out by the present method and cold vapor atomic absorption spectrometry (CVAAS). Also the method's accuracy was investigated by using SRM 2709. The obtained results by the present procedure were in good agreement with those of the CVAAS and certified value, so that the applicability of the proposed method was confirmed for the real samples.

  13. Study on the determination of trace methyl mercury in seawater by gas chromatography

    NASA Astrophysics Data System (ADS)

    Wang, Zhongzhu; Cui, Xianzhou

    1990-03-01

    Sample seawater containing trace methyl mercury was acidified and adsorbed on hydrosulfo-cotton, washed with hydrochloric acid, extracted by benzene and dried, and then determined by a gas chromatograph with electron capture detector. This method, which can detect a minimum concentration of 0.1×10-10%, can be used to monitor the 10-10% content of methyl mercury in seawater.

  14. Ion time-of-flight determinations of doubly to singly ionized mercury ion ratios from a mercury electron bombardment discharge

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Kemp, R. F.; Hall, D. F.

    1973-01-01

    Doubly to singly charged mercury ion ratios in electron bombardment ion thruster exhaust beams have been determined as functions of bombardment discharge potential, thrust beam current, thrust beam radial position, acceleration-deceleration voltage ratio, and propellant utilization fraction. A mathematical model for two-step ionization processes has been derived, and calculated ion ratios are compared to observed ratios. Production of Hg(++) appears to result primarily from sequential ionization of Hg(+) in the discharge. Experimental and analytical results are presented, and design, construction, and operation features of an electrostatic deflection ion time-of-flight analyzer for the determination of the above-mentioned ratios are reviewed.

  15. Mercury in the nation's streams: levels, trends, and implications

    USGS Publications Warehouse

    Wentz, Dennis A.; Brigham, Mark E.; Chasar, Lia C.; Lutz, Michelle A.; Krabbenhoft, David P.

    2014-01-01

    Mercury is a potent neurotoxin that accumulates in fish to levels of concern for human health and the health of fish-eating wildlife. Mercury contamination of fish is the primary reason for issuing fish consumption advisories, which exist in every State in the Nation. Much of the mercury originates from combustion of coal and can travel long distances in the atmosphere before being deposited. This can result in mercury-contaminated fish in areas with no obvious source of mercury pollution. Three key factors determine the level of mercury contamination in fish—the amount of inorganic mercury available to an ecosystem, the conversion of inorganic mercury to methylmercury, and the bioaccumulation of methylmercury through the food web. Inorganic mercury originates from both natural sources (such as volcanoes, geologic deposits of mercury, geothermal springs, and volatilization from the ocean) and anthropogenic sources (such as coal combustion, mining, and use of mercury in products and industrial processes). Humans have doubled the amount of inorganic mercury in the global atmosphere since pre-industrial times, with substantially greater increases occurring at locations closer to major urban areas. In aquatic ecosystems, some inorganic mercury is converted to methylmercury, the form that ultimately accumulates in fish. The rate of mercury methylation, thus the amount of methylmercury produced, varies greatly in time and space, and depends on numerous environmental factors, including temperature and the amounts of oxygen, organic matter, and sulfate that are present. Methylmercury enters aquatic food webs when it is taken up from water by algae and other microorganisms. Methylmercury concentrations increase with successively higher trophic levels in the food web—a process known as bioaccumulation. In general, fish at the top of the food web consume other fish and tend to accumulate the highest methylmercury concentrations. This report summarizes selected stream

  16. Colorimetric determination of inorganic iodine in fortified culinary products.

    PubMed

    Perring, I; Basic-Dvorzak, M; Andrey, D

    2001-07-01

    The presented colorimetric procedure only requires simple laboratory equipment and is suitable as a routine procedure for checking concentrations of iodine in fortified culinary products. The Moxon and Dixon colorimetric procedure for iodine determination has been optimised for the determination of iodide and iodate in fortified culinary products, always containing high salt levels. The high sensitivity of the method permits a high dilution of the product solutions, thus reducing interferences from the inherent colour of the products. The calibration is linear in the range from 0 to 12 microg L(-1) of iodine with R2 > 0.99. A series of commercial culinary products were used to validate the method. Recoveries of iodine, added as iodide and/or iodate, were generally in the range 100+/-10%. High concentrations of chloride are essential to obtain a complete recovery of iodate. Limit of quantification was estimated to be 2 mg kg(-1) of product, based on 2-3 g of product. Concentrations of iodine determined with this method were similar to those obtained by an ICP-MS procedure.

  17. Rapid Determination of Mercury in Seafood in an Introductory Environmental Science Class

    ERIC Educational Resources Information Center

    Rice, Jeanette K.; Jenkins, J. David; Manley, A. Citabria; Sorel, Eric; Smith, C. Jimmy

    2005-01-01

    An experiment is described which allows easy, rapid determination of mercury levels in commercially seafood samples from a contaminated area. Students gain experience in the preparation of a calibration curve, the determination of unknown concentrations, and risk assessment based on experimentally determined data.

  18. An Investigation of Organic and Inorganic Mercury Exposure and Blood Pressure in a Small-Scale Gold Mining Community in Ghana

    PubMed Central

    Rajaee, Mozhgon; Sánchez, Brisa N.; Renne, Elisha P.; Basu, Niladri

    2015-01-01

    There is increasing concern about the cardiovascular effects of mercury (Hg) exposure, and that organic methylmercury and inorganic Hg2+ may affect the cardiovascular system and blood pressure differentially. In small-scale gold mining communities where inorganic, elemental Hg exposures are high, little is known about the effects of Hg on blood pressure. In 2011, we assessed the relationship between Hg exposure and blood pressure (BP) in a cross-sectional study of adults from a small-scale gold mining community, Kejetia, and subsistence farming community, Gorogo, in Ghana’s Upper East Region. Participants’ resting heart rate and BP were measured, and hair and urine samples were provided to serve as biomarkers of organic and inorganic Hg exposure, respectively. Participants included 70 miners and 26 non-miners from Kejetia and 75 non-miners from Gorogo. Total specific gravity-adjusted urinary and hair Hg was higher among Kejetia miners than Kejetia non-miners and Gorogo participants (median urinary Hg: 5.17, 1.18, and 0.154 µg/L, respectively; hair Hg: 0.945, 0.419, and 0.181 µg/g, respectively). Hypertension was prevalent in 17.7% of Kejetia and 21.3% of Gorogo participants. Urinary and hair Hg were not significantly associated with systolic or diastolic BP for Kejetia or Gorogo participants while adjusting for sex, age, and smoking status. Although our results follow trends seen in other studies, the associations were not of statistical significance. Given the unique study population and high exposures to inorganic Hg, the work contained here will help increase our understanding of the cardiovascular effects of Hg. PMID:26308023

  19. An Investigation of Organic and Inorganic Mercury Exposure and Blood Pressure in a Small-Scale Gold Mining Community in Ghana.

    PubMed

    Rajaee, Mozhgon; Sánchez, Brisa N; Renne, Elisha P; Basu, Niladri

    2015-08-01

    There is increasing concern about the cardiovascular effects of mercury (Hg) exposure, and that organic methylmercury and inorganic Hg(2+) may affect the cardiovascular system and blood pressure differentially. In small-scale gold mining communities where inorganic, elemental Hg exposures are high, little is known about the effects of Hg on blood pressure. In 2011, we assessed the relationship between Hg exposure and blood pressure (BP) in a cross-sectional study of adults from a small-scale gold mining community, Kejetia, and subsistence farming community, Gorogo, in Ghana's Upper East Region. Participants' resting heart rate and BP were measured, and hair and urine samples were provided to serve as biomarkers of organic and inorganic Hg exposure, respectively. Participants included 70 miners and 26 non-miners from Kejetia and 75 non-miners from Gorogo. Total specific gravity-adjusted urinary and hair Hg was higher among Kejetia miners than Kejetia non-miners and Gorogo participants (median urinary Hg: 5.17, 1.18, and 0.154 µg/L, respectively; hair Hg: 0.945, 0.419, and 0.181 µg/g, respectively). Hypertension was prevalent in 17.7% of Kejetia and 21.3% of Gorogo participants. Urinary and hair Hg were not significantly associated with systolic or diastolic BP for Kejetia or Gorogo participants while adjusting for sex, age, and smoking status. Although our results follow trends seen in other studies, the associations were not of statistical significance. Given the unique study population and high exposures to inorganic Hg, the work contained here will help increase our understanding of the cardiovascular effects of Hg.

  20. Ionic liquid-based zinc oxide nanofluid for vortex assisted liquid liquid microextraction of inorganic mercury in environmental waters prior to cold vapor atomic fluorescence spectroscopic detection.

    PubMed

    Amde, Meseret; Liu, Jing-Fu; Tan, Zhi-Qiang; Bekana, Deribachew

    2016-01-01

    Zinc oxide nanofluid (ZnO-NF) based vortex assisted liquid liquid microextraction (ZnO-NF VA-LLME) was developed and employed in extraction of inorganic mercury (Hg(2+)) in environmental water samples, followed by cold vapor atomic fluorescence spectrometry (CV-AFS). Unlike other dispersive liquid liquid microextraction techniques, ZnO-NF VA-LLME is free of volatile organic solvents and dispersive solvent consumption. Analytical signals were obtained without back-extraction from the ZnO-NF phase prior to CV-AFS determination. Some essential parameters of the ZnO-NF VA-LLME and cold vapor generation such as composition and volume of the nanofluid, vortexing time, pH of the sample solution, amount of the chelating agent, ionic strength and matrix interferences have been studied. Under optimal conditions, efficient extraction of 1ng/mL of Hg(2+) in 10mL of sample solution was achieved using 50μL of ZnO-NF. The enrichment factor before dilution, detection limits and limits of quantification of the method were about 190, 0.019 and 0.064ng/mL, respectively. The intra and inter days relative standard deviations (n=8) were found to be 4.6% and 7.8%, respectively, at 1ng/mL spiking level. The accuracy of the current method was also evaluated by the analysis of certified reference materials, and the measured Hg(2+) concentration of GBW08603 (9.6ng/mL) and GBW(E)080392 (8.9ng/mL) agreed well with their certified value (10ng/mL). The method was applied to the analysis of Hg(2+) in effluent, influent, lake and river water samples, with recoveries in the range of 79.8-92.8% and 83.6-106.1% at 1ng/mL and 5ng/mL spiking levels, respectively. Overall, ZnO-NF VA-LLME is fast, simple, cost-effective and environmentally friendly and it can be employed for efficient enrichment of the analyte from various water samples.

  1. Ionic liquid-based zinc oxide nanofluid for vortex assisted liquid liquid microextraction of inorganic mercury in environmental waters prior to cold vapor atomic fluorescence spectroscopic detection.

    PubMed

    Amde, Meseret; Liu, Jing-Fu; Tan, Zhi-Qiang; Bekana, Deribachew

    2016-03-01

    Zinc oxide nanofluid (ZnO-NF) based vortex assisted liquid liquid microextraction (ZnO-NF VA-LLME) was developed and employed in extraction of inorganic mercury (Hg(2+)) in environmental water samples, followed by cold vapor atomic fluorescence spectrometry (CV-AFS). Unlike other dispersive liquid liquid microextraction techniques, ZnO-NF VA-LLME is free of volatile organic solvents and dispersive solvent consumption. Analytical signals were obtained without back-extraction from the ZnO-NF phase prior to CV-AFS determination. Some essential parameters of the ZnO-NF VA-LLME and cold vapor generation such as composition and volume of the nanofluid, vortexing time, pH of the sample solution, amount of the chelating agent, ionic strength and matrix interferences have been studied. Under optimal conditions, efficient extraction of 1ng/mL of Hg(2+) in 10mL of sample solution was achieved using 50μL of ZnO-NF. The enrichment factor before dilution, detection limits and limits of quantification of the method were about 190, 0.019 and 0.064ng/mL, respectively. The intra and inter days relative standard deviations (n=8) were found to be 4.6% and 7.8%, respectively, at 1ng/mL spiking level. The accuracy of the current method was also evaluated by the analysis of certified reference materials, and the measured Hg(2+) concentration of GBW08603 (9.6ng/mL) and GBW(E)080392 (8.9ng/mL) agreed well with their certified value (10ng/mL). The method was applied to the analysis of Hg(2+) in effluent, influent, lake and river water samples, with recoveries in the range of 79.8-92.8% and 83.6-106.1% at 1ng/mL and 5ng/mL spiking levels, respectively. Overall, ZnO-NF VA-LLME is fast, simple, cost-effective and environmentally friendly and it can be employed for efficient enrichment of the analyte from various water samples. PMID:26717850

  2. Determination of mercury in rice by MSFIA and cold vapour atomic fluorescence spectrometry.

    PubMed

    da Silva, Douglas G; Portugal, Lindomar A; Serra, Antonio M; Ferreira, Sergio L C; Cerdà, Victor

    2013-04-15

    In the present paper the use of a MSFIA system for determination of mercury in rice by cold vapour atomic fluorescence spectrometry (CV AFS) is proposed. The sample digestion is performed in a microwave oven using nitric acid and hydrogen peroxide. The experimental conditions for vapour generation were determined using a full two-level factorial design involving the following factors: nitric acid and tin chloride concentrations and sample flow rate. Employing the conditions optimised, the method allows the determination of mercury using the external calibration technique with aqueous standards. The reached limits of detection and quantification were 0.48 and 1.61 ng g⁻¹ respectively, and the precision (as relative standard deviation) was 3.28% and 1.56% for rice samples with a mercury content of 3.63 and 5.81 ng g⁻¹, respectively. The method accuracy was confirmed analysing a certified reference material of rice flour furnished by National Institute of Standard and Technology. The interference of nitrous acid and nitrous oxides are removed using potassium dichromate. The method was applied to mercury determination in twelve rice samples acquired in Palma de Mallorca (Spain) between the months of January and April of 2012. The mercury content found varied from 2.15 to 7.25 ng g⁻¹. These results agree with those reported by others authors.

  3. AQUEOUS AND VAPOR PHASE MERCURY SORPTION BY INORGANIC OXIDE MATERIALS FUNCTIONALIZED WITH THIOLS AND POLY-THIOLS

    EPA Science Inventory

    The objective of the study is the development of sorbents where the sorption sites are highly accessible for the capture of mercury from aqueous and vapor streams. Only a small fraction of the equilibrium capacity is utilized for a sorbent in applications involving short residenc...

  4. Effects of inorganic mercury and methylmercury on osteoclasts and osteoblasts in the scales of the marine teleost as a model system of bone.

    PubMed

    Yachiguchi, Koji; Sekiguchi, Toshio; Nakano, Masaki; Hattori, Atsuhiko; Yamamoto, Megumi; Kitamura, Kei-ichiro; Maeda, Masahiro; Tabuchi, Yoshiaki; Kondo, Takashi; Kamauchi, Hiromitsu; Nakabayashi, Hajime; Srivastav, Ajai K; Hayakawa, Kazuichi; Sakamoto, Tatsuya; Suzuki, Nobuo

    2014-05-01

    To evaluate the effects of inorganic mercury (InHg) and methylmercury (MeHg) on bone metabolism in a marine teleost, the activity of tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) as indicators of such activity in osteoclasts and osteoblasts, respectively, were examined in scales of nibbler fish (Girella punctata). We found several lines of scales with nearly the same TRAP and ALP activity levels. Using these scales, we evaluated the influence of InHg and MeHg. TRAP activity in the scales treated with InHg (10(-5) and 10(-4) M) and MeHg (10(-6) to 10(-4) M) during 6 hrs of incubation decreased significantly. In contrast, ALP activity decreased after exposure to InHg (10(-5) and 10(-4) M) and MeHg (10(-6) to 10(-4) M) for 18 and 36 hrs, although its activity did not change after 6 hrs of incubation. As in enzyme activity 6 hrs after incubation, mRNA expression of TRAP (osteoclastic marker) decreased significantly with InHg and MeHg treatment, while that of collagen (osteoblastic marker) did not change significantly. At 6 hrs after incubation, the mRNA expression of metallothionein, which is a metal-binding protein in osteoblasts, was significantly increased following treatment with InHg or MeHg, suggesting that it may be involved in the protection of osteoblasts against mercury exposure up to 6 hrs after incubation. To our knowledge, this is the first report of the effects of mercury on osteoclasts and osteoblasts using marine teleost scale as a model system of bone.

  5. Determination of total dissolved inorganic carbon in freshwaters by reagent-free ion chromatography.

    PubMed

    Polesello, Stefano; Tartari, Gabriele; Giacomotti, Paola; Mosello, Rosario; Cavalli, Silvano

    2006-06-16

    Studies of inorganic carbon cycle in natural waters provide important information on the biological productivity and buffer capacity. Determination of total inorganic carbon, alkalinity and dissolved carbon dioxide gives an indication of the balance between photosynthesis and respiration by biota, both within the water column and sediments, and carbon dioxide transfers from the water column to the atmosphere. There are few methods to measure and distinguish the different forms of inorganic carbon, but all require a measure or an indirect quantification of total inorganic carbon. A direct measurement of TIC in water is made possible by the introduction of electrolytic generated hydroxide eluent in ion chromatography which allows to detect a chromatographic peak for carbonate. The advantage of this method is that all the inorganic forms of carbon are converted in carbonate at eluent pH and can be detected as a single peak by conductivity detection. Repeatability of carbonate peak was evaluated at different levels from 0.02 to 6 mequiv.l(-1) both in high purity water and in real samples and ranged from 1 to 9%. The calibration curve was not linear and has to be fitted by a quadratic curve. Limit of detection was estimated to be 0.02 mequiv.l(-1). Accuracy has been estimated by comparing ion chromatography method with total inorganic carbon calculated from alkalinity and pH. The correlation between the two methods was good (R(2)=0.978, n=141). The IC method has been applied to different typologies of surface waters (alpine and subalpine lakes and rivers) characterised by different chemical characteristics (alkalinity from 0.05 to 2 mequiv.l(-1) and pH from 6.7 to 8.5) and low total organic carbon concentrations. This analytical method allowed to describe the distribution of TIC along the water column of two Italian deep lakes. PMID:16620857

  6. [Study on the determination of 14 inorganic elements in coffee by inductively coupled plasma mass spectrometry].

    PubMed

    Nie, Xi-Du; Fu, Liang

    2013-07-01

    Samples of coffee were digested by microwave digestion, and inorganic elements amounts of Na, Mg, P, Ca, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Mo and Pb in sample solutions were determined by inductively coupled plasma mass spectrometry (ICP-MS). HNO3 + H2O2 was used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The working parameters of the instrument were optimized. The results showed that the relative standard deviation (RSD) was less than 3.84% for all the elements, and the recovery was found to be 92.00% -106.52% by adding standard recovery experiment. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of coffee, which could satisfy the sample examination request and provide scientific rationale for determining inorganic elements of coffee.

  7. Determination of Total Mercury in Fillets of Sport Fishes Collected from Folsom Reservoir, California, 2006

    USGS Publications Warehouse

    May, Thomas W.; Brumbaugh, William G.

    2007-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the U.S. Bureau of Reclamation, to determine mercury concentrations in selected sport fishes from Folsom Reservoir in California. Fillets were collected from each fish sample, and after homogenization and lyophilization of fish fillets, mercury concentrations were determined with a direct mercury analyzer utilizing the process of thermal combustion-gold amalgamation atomic absorption spectroscopy. Mercury concentrations in fillets ranged from 0.031 to 0.20 micrograms per gram wet weight in rainbow trout (Oncorhynchus mykiss) samples and 0.071 to 0.16 micrograms per gram wet weight in bluegill (Lepomis macrochirus) samples. Mercury concentration was 0.98 microgram per gram wet weight in a single spotted bass (Micropterus punctulatus) sample, which was the only one in the sample set which exceeded the U.S. Environmental Protection Agency's fish consumption advisory of 0.30 microgram per gram wet weight.

  8. Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis.

    PubMed

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-08-01

    Mercury (Hg) is a prominent environmental contaminant that causes a variety of adverse effects on aquatic organisms. However, the mechanisms underlying inorganic Hg-induced reproductive impairment in fish remains largely unknown. In this study, adult zebrafish were exposed to 0 (control), 15 and 30μg Hg/l (added as mercuric chloride, HgCl2) for 30days, and the effects on histological structure, antioxidant status and sex hormone levels in the ovary and testis, as well as the mRNA expression of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Exposure to Hg caused pathological lesions in zebrafish gonads, and changed the activities and mRNA levels of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)) as well as the content of glutathione (GSH) and malondialdehyde (MDA). In females, although ovarian 17β-estradiol (E2) content remained relatively stable, significant down-regulation of lhβ, gnrh2, gnrh3, lhr and erα were observed. In males, testosterone (T) levels in the testis significantly decreased after Hg exposure, accompanied by down-regulated expression of gnrh2, gnrh3, fshβ and lhβ in the brain as well as fshr, lhr, ar, cyp17 and cyp11b in the testis. Thus, our study indicated that waterborne inorganic Hg exposure caused histological damage and oxidative stress in the gonads of zebrafish, and altered sex hormone levels by disrupting the transcription of related HPG-axis genes, which could subsequently impair the reproduction of fish. Different response of the antioxidant defense system, sex hormone and HPG-axis genes between females and males exposed to inorganic Hg indicated the gender-specific regulatory effect by Hg. To our knowledge, this is the first time to explore the effects and mechanisms of inorganic Hg exposure on reproduction at the histological, enzymatic and molecular levels, which will greatly extend our understanding on the mechanisms underlying of reproductive

  9. Determination of inorganic anions in ethyl acetate by ion chromatography with an electromembrane extraction method.

    PubMed

    Hu, Zhenzhen; Chen, Huadong; Yao, Chaoying; Zhu, Yan

    2011-09-01

    In this work, the determination of inorganic anions in slightly water-soluble organic solvents (ethyl acetate) was realized by ion chromatography (IC) with a novel-efficient electromembrane extraction method. From an 8 mL ethyl acetate sample, three inorganic anions migrated through the pores of a polypropylene hollow fiber membrane, and into deionized water inside the lumen of the hollow fiber by the application of 600 V. The transport was forced by an electrical potential difference sustained over the liquid membrane, resulting in electrokinetic migration of inorganic anions from the donor compartment to the acceptor solution. After the electromembrane extraction, the acceptor solution was analyzed by IC with a sodium carbonate-sodium bicarbonate eluent. The applied voltage, stirring speed, and extraction time for controlling the extraction efficiency were optimized. Within 10 min of operation at 600 V, chloride, bromide, and sulfate were extracted with recoveries in the range 76-110%, which corresponded to a linear range of 0.01-1 mg/L. The procedure was applied to the analysis of inorganic anions in a real ethyl acetate sample and expands onto other slightly water-soluble organic solvents. PMID:21859536

  10. Waterscape determinants of net mercury methylation in a tropical wetland.

    PubMed

    Lázaro, Wilkinson L; Díez, Sergi; da Silva, Carolina J; Ignácio, Áurea R A; Guimarães, Jean R D

    2016-10-01

    The periphyton associated with freshwater macrophyte roots is the main site of Hg methylation in different wetland environments in the world. The aim of this study was to test the use of connectivity metrics of water bodies, in the context of patches, in a tropical waterscape wetland (Guapore River, Amazonia, Brazil) as a predictor of potential net methylmercury (MeHg) production by periphyton communities. We sampled 15 lakes with different patterns of lateral connectivity with the main river channel, performing net mercury methylation potential tests in incubations with local water and Eichhornia crassipes root-periphyton samples, using (203)HgCl2 as a tracer. Physico-chemical variables, landscape data (morphological characteristics, land use, and lateral connection type of water bodies) using GIS resources and field data were analyzed with Generalized Additive Models (GAM). The net Me(203)Hg production (as % of total added (203)Hg) was expressive (6.2-25.6%) showing that periphyton is an important matrix in MeHg production. The model that best explained the variation in the net Me(203)Hg production (76%) was built by the variables: connection type, total phosphorus and dissolved organic carbon (DOC) in water (AICc=48.324, p=0.001). Connection type factor was the best factor to model fit (r(2)=0.32; p=0.008) and temporarily connected lakes had higher rates of net mercury methylation. Both DOC and total phosphorus showed positive significant covariation with the net methylation rates (r(2)=0.26; p=0.008 and r(2)=0.21; p=0.012 respectively). Our study suggests a strong relationship between rates of net MeHg production in this tropical area and the type of water body and its hydrological connectivity within the waterscape. PMID:27376931

  11. Waterscape determinants of net mercury methylation in a tropical wetland.

    PubMed

    Lázaro, Wilkinson L; Díez, Sergi; da Silva, Carolina J; Ignácio, Áurea R A; Guimarães, Jean R D

    2016-10-01

    The periphyton associated with freshwater macrophyte roots is the main site of Hg methylation in different wetland environments in the world. The aim of this study was to test the use of connectivity metrics of water bodies, in the context of patches, in a tropical waterscape wetland (Guapore River, Amazonia, Brazil) as a predictor of potential net methylmercury (MeHg) production by periphyton communities. We sampled 15 lakes with different patterns of lateral connectivity with the main river channel, performing net mercury methylation potential tests in incubations with local water and Eichhornia crassipes root-periphyton samples, using (203)HgCl2 as a tracer. Physico-chemical variables, landscape data (morphological characteristics, land use, and lateral connection type of water bodies) using GIS resources and field data were analyzed with Generalized Additive Models (GAM). The net Me(203)Hg production (as % of total added (203)Hg) was expressive (6.2-25.6%) showing that periphyton is an important matrix in MeHg production. The model that best explained the variation in the net Me(203)Hg production (76%) was built by the variables: connection type, total phosphorus and dissolved organic carbon (DOC) in water (AICc=48.324, p=0.001). Connection type factor was the best factor to model fit (r(2)=0.32; p=0.008) and temporarily connected lakes had higher rates of net mercury methylation. Both DOC and total phosphorus showed positive significant covariation with the net methylation rates (r(2)=0.26; p=0.008 and r(2)=0.21; p=0.012 respectively). Our study suggests a strong relationship between rates of net MeHg production in this tropical area and the type of water body and its hydrological connectivity within the waterscape.

  12. Liquid-liquid extraction, photometric and atomic absorption spectrophotometric determination of mercury

    SciTech Connect

    Agrawal, Y.K.; Desai, T.A.

    1985-01-01

    A selective and sensitive spectrophotometric and atomic absorption spectrophotometric method is developed for the determination of traces of mercury with N-phenylcinnamohydroxamic acid (PCHA) in the environment. Mercury is extracted into a chloroform solution of PCHA at pH 8.5-10.0 and determined by AAS. The mercury hydroxamate binary complex is yellow in color having a maximum absorbance at 390 nm and molar absorptivity 4.3 x 10/sup 3/ l mol/sup -1/ cm/sup -1/, sandell sensitivity 0.0466 ..mu..g/cm/sup 2/. The ternary system using 1-(2-pyridylazo) 2-naphthol has molar absorptivity 8.82 x 10/sup 3/ l mol/sup -1/ cm/sup -1/ at 550 nm, sandell sensitivity 0.0228 ..mu..g/cm/sup 2/. Beer's law is obeyed in the concentration range of 2.37-38.0 ppm and 0.80-19.5 ppm of mercury for binary and ternary system, respectively. The extraction of Hg-PCHA binary system is studied with a liquid cation exchanger, bis-(2-ethyl hexyl) phosphoric acid (HDEHP) and found to have better selectivity than Hg-PCHA-PAN system. The molar absorptivity of the Hg-PCHA-HDEHP system is 8.82 x 10/sup 3/ l mol/sup -1/ cm/sup -1/ at 390 nm and Beer's law is obeyed in the concentration range of 0.47-20 ppm of mercury. The present method is applied to the determination of mercury in eye drops, aurvedic drugs and environmental samples. 24 references, 3 tables.

  13. Determination of mercury in rocks, sediments, and soils by flameless atomic absorption

    SciTech Connect

    White, L.E.; Carter, M.H. Jr.

    1980-05-22

    A simple, relatively fast method for the determination of mercury in rocks, sediments, and soils has been developed to meet the needs of the National Uranium Resources Evaluation Project. One gram of the less than 100 mesh material is placed in a 250-mL reagent bottle and is digested using a mixture of concentrated sulfuric acid and 30% hydrogen peroxide. To prevent the loss of mercury during the digestion procedure, an 18-inch dry reflux tower is employed. After digestion, the sample is treated with 5% potassium permanganate solution, and a sodium chloride-hydroxylamine sulfate reagent. Tin (11) sulfate is then added and the sample immediately attached to an aeration device. The volatilized mercury is swept into an absorption cell by an argon stream and is measured by an atomic absorption spectrophotometer adjusted to 253.7 nanometer wave-length. Absorption is then plotted by a strip chart recorder.

  14. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  15. Single-Walled Carbon Nanotubes (SWCNTs), as a Novel Sorbent for Determination of Mercury in Air

    PubMed Central

    Golbabaei, Farideh; Ebrahimi, Ali; Shirkhanloo, Hamid; Koohpaei, Alireza; Faghihi-Zarandi, Ali

    2016-01-01

    Background: Based on the noticeable toxicity and numerous application of mercury in industries, removal of mercury vapor through sorbent is an important environmental challenge. Purpose of the Study: Due to their highly porous and hollow structure, large specific surface area, light mass density and strong interaction, Single-Walled Carbon Nanotubes (SWCNTs) sorbent were selected for this investigation. Methods: In this study, instrumental conditions, method procedure and different effective parameters such as adsorption efficiency, desorption capacity, time, temperature and repeatability as well as retention time of adsorbed mercury were studied and optimized. Also, mercury vapor was determined by cold vapor atomic absorption spectrometry (CV-AAS). Obtained data were analyzed by Independent T- test, Multivariate linear regression and one way–ANOVA finally. Results: For 80 mg nanotubes, working range of SWCNT were achieved 0.02-0.7 μg with linear range (R2=0.994). Our data revealed that maximum absorption capacity was 0.5 μg g-1 as well as limit of detection (LOD) for studied sorbent was 0.006 μg. Also, optimum time and temperature were reported, 10 min and 250 °C respectively. Retention time of mercury on CNTs for three weeks was over 90%. Results of repeated trials indicated that the CNTs had long life, so that after 30 cycles of experiments, efficiency was determined without performance loss. Conclusion: Results showed that carbon nanotubes have high potential for efficient extraction of mercury from air and can be used for occupational and environmental purposes. The study of adsorption properties of CNTs is recommended. PMID:26925918

  16. Inorganic and organic mercury chloride toxicity to Coturnix: Sensitivity related to age and quantal assessment of physiologic responses

    USGS Publications Warehouse

    Hill, E.F.

    1982-01-01

    The toxicities of mercuric chloride (HgCl(,2)) and methylmercuric chloride (CH(,3)HgCl) were compared for coturnix (Coturnix coturnix japonica) from hatching to adulthood. Comparisons were based on: (1) Median lethal dosages (LD50) derived by administering single peroral and single intramuscular dosages of mercury, (2) median lethal concentrations (LC50) derived by feeding mercury for 5 days, (3) median toxic concentrations (TC50) derived by feeding mercury 9 weeks and measuring plasma enzyme activity, plasma electrolytes, and other blood constituents, and (4) transient changes of various blood chemistries following a single peroral dose of mercury. Acute peroral and intramuscular LD50s for HgCl(,2) and CH(,3)HgCl increased by two- to threefold for coturnix chicks from hatching to 4 weeks of age. Concomitantly, the LC50s also increased, but the important difference between test procedures was that with both single dose routes of exposure the toxicity ratios, i.e., HgCl(,2)/CH(,3)HgCl, at each age were about 2 to 2.5 compared to about 100 for the LC50s. For example, at 2 weeks of age the peroral LD50s for HgCl(,2) and CH(,3)HgCl were 42 and 18 mg/kg; the dietary LC50s were 5086 and 47 ppm for HgCl(,2) and CH(,3)HgCl. The 9 week feeding trial was not associated with gross effects from either HgCl(,2) at 0.5 to 32 ppm or CH(,3)HgCl at 0.125 to 8 ppm. However, subtle responses were detected for the plasma enzymes aspartate aminotransferase, lactate dehydrogenase, and ornithine carbamoyl transferase and could be quantified by probit analysis. This quantal procedure was based on establishment of a normal value for each enzyme and classing outliers as respondents. A 'hazard index' based on the TC50 for an enzyme divided by the LD50 or LC50 was introduced. The single oral dosages of HgCl(,2) and CH(,3)HgCl showed that ratios of alanine aminotransferase, lactate dehydrogenase, and orinthine carbamoyl transferase for the liver and kidneys of adult coturnix were opposite from

  17. Inorganic and organic mercury chloride toxicity to Coturnix: sensitivity related to age and quantal assessment of physiologic responses

    USGS Publications Warehouse

    Hill, E.F.

    1981-01-01

    The toxicities of mercuric chloride (HgCl(,2)) and methylmercuric chloride (CH(,3)HgCl) were compared for coturnix (Coturnix coturnix japonica) from hatching to adulthood. Comparisons were based on: (1) Median lethal dosages (LD50) derived by administering single peroral and single intramuscular dosages of mercury, (2) median lethal concentrations (LC50) derived by feeding mercury for 5 days, (3) median toxic concentrations (TC50) derived by feeding mercury 9 weeks and measuring plasma enzyme activity, plasma electrolytes, and other blood constituents, and (4) transient changes of various blood chemistries following a single peroral dose of mercury. Acute peroral and intramuscular LD50s for HgCl(,2) and CH(,3)HgCl increased by two- to threefold for coturnix chicks from hatching to 4 weeks of age. Concomitantly, the LC50s also increased, but the important difference between test procedures was that with both single dose routes of exposure the toxicity ratios, i.e., HgCl(,2)/CH(,3)HgCl, at each age were about 2 to 2.5 compared to about 100 for the LC50s. For example, at 2 weeks of age the peroral LD50s for HgCl(,2) and CH(,3)HgCl were 42 and 18 mg/kg; the dietary LC50s were 5086 and 47 ppm for HgCl(,2) and CH(,3)HgCl. The 9 week feeding trial was not associated with gross effects from either HgCl(,2) at 0.5 to 32 ppm or CH(,3)HgCl at 0.125 to 8 ppm. However, subtle responses were detected for the plasma enzymes aspartate aminotransferase, lactate dehydrogenase, and ornithine carbamoyl transferase and could be quantified by probit analysis. This quantal procedure was based on establishment of a normal value for each enzyme and classing outliers as respondents. A 'hazard index' based on the TC50 for an enzyme divided by the LD50 or LC50 was introduced. The single oral dosages of HgCl(,2) and CH(,3)HgCl showed that ratios of alanine aminotransferase, lactate dehydrogenase, and orinthine carbamoyl transferase for the liver and kidneys of adult coturnix were opposite from

  18. Determination of mercury by cold-vapor technique in several tissues of treated American red crayfish (Procambarus clarkii)

    SciTech Connect

    Del Ramo, J.; Pastor, A.; Diaz-Mayans, J.; Medina, J.; Torreblanca, A.

    1988-01-01

    Adult intermolt specimens of American red crayfish (Procambarus clarkii) collected from Lake Albufera (Valencia, Spain), were exposed to mercury during 96 h. The Hg-concentrations used were 50, 100, and 250 ..mu..g Hg/l as Cl/sub 2/Hg. The content of mercury in muscle, midgut gland, antennal glands and gills was investigated. Determinations of mercury were made by cold-vapor technique and AAS. The mercury levels in all examined tissues increased significantly with increasing Hg-concentration in the water.

  19. Matrix influences on the determination of common ions by using ion chromatography part 1--determination of inorganic anions.

    PubMed

    Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona

    2012-07-01

    Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.

  20. Applications of organic and inorganic amendments induce changes in the mobility of mercury and macro- and micronutrients of soils.

    PubMed

    García-Sánchez, Mercedes; Sípková, Adéla; Száková, Jiřina; Kaplan, Lukáš; Ochecová, Pavla; Tlustoš, Pavel

    2014-01-01

    Both soil organic matter and sulfur (S) can reduce or even suppress mercury (Hg) mobility and bioavailability in soil. A batch incubation experiment was conducted with a Chernozem and a Luvisol artificially contaminated by 440 mg · kg(-1) Hg showing wide differences in their physicochemical properties and available nutrients. The individual treatments were (i) digestate from the anaerobic fermentation of biowaste; (ii) fly ash from wood chip combustion; and (iii) ammonium sulfate, and every treatment was added with the same amount of S. The mobile Hg portion in Chernozem was highly reduced by adding digestate, even after 1 day of incubation, compared to control. Meanwhile, the outcome of these treatments was a decrease of mobile Hg forms as a function of incubation time whereas the contents of magnesium (Mg), potassium (K), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), and phosphorus (P) were stimulated by the addition of digestate in both soils. The available calcium (Ca) contents were not affected by the digestate addition. The experiment proved digestate application as the efficient measure for fast reduction of mobile Hg at extremely contaminated soils. Moreover, the decrease of the mobile mercury portion was followed by improvement of the nutrient status of the soils. PMID:25401138

  1. Applications of Organic and Inorganic Amendments Induce Changes in the Mobility of Mercury and Macro- and Micronutrients of Soils

    PubMed Central

    García-Sánchez, Mercedes; Šípková, Adéla; Száková, Jiřina; Kaplan, Lukáš; Ochecová, Pavla; Tlustoš, Pavel

    2014-01-01

    Both soil organic matter and sulfur (S) can reduce or even suppress mercury (Hg) mobility and bioavailability in soil. A batch incubation experiment was conducted with a Chernozem and a Luvisol artificially contaminated by 440 mg·kg−1 Hg showing wide differences in their physicochemical properties and available nutrients. The individual treatments were (i) digestate from the anaerobic fermentation of biowaste; (ii) fly ash from wood chip combustion; and (iii) ammonium sulfate, and every treatment was added with the same amount of S. The mobile Hg portion in Chernozem was highly reduced by adding digestate, even after 1 day of incubation, compared to control. Meanwhile, the outcome of these treatments was a decrease of mobile Hg forms as a function of incubation time whereas the contents of magnesium (Mg), potassium (K), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), and phosphorus (P) were stimulated by the addition of digestate in both soils. The available calcium (Ca) contents were not affected by the digestate addition. The experiment proved digestate application as the efficient measure for fast reduction of mobile Hg at extremely contaminated soils. Moreover, the decrease of the mobile mercury portion was followed by improvement of the nutrient status of the soils. PMID:25401138

  2. Use of Ni/NixB Nanoparticles as a Novel Adsorbent for the Preconcentration of Mercury Species prior to Cold Vapor-Atomic Fluorescence Spectrometric Determination.

    PubMed

    Yayayürük, Onur; Henden, Emür

    2016-01-01

    A selective matrix separation/enrichment method, utilizing a simple batch procedure with nickel/nickel boride (Ni/NixB) nanoparticles was proposed for the determination of inorganic mercury(II), Hg(2+) and methyl mercury(I), CH3Hg(+) in waters prior to cold vapor-atomic fluorescence spectrometry (CV-AFS). The Ni/NixB nanoparticles, were synthesized by the chemical reduction of Ni(II) to Ni/NixB. The novel adsorbent was selective to Hg(2+) and CH3Hg(+) species between pH values of 4 - 10. Both of the mercury species were recovered from the adsorbent using 1.0 mol L(-1) hot HNO3 with high efficiency. It was observed that the adsorbent selectively removed Hg(2+) and CH3Hg(+) from the bulk solution in the presence of several competitor ions (As(3+), Sb(3+), Pb(2+), Zn(2+), Cu(2+), Cd(2+) and Fe(3+)) with ≥96% adsorption. The limit of detection (3σ above blank) was found to be 1.8 ng L(-1) with a preconcentration factor of 20. The validation of the method was tested through spike recovery experiments with several water samples (tap and seawater) at μg L(-1) concentration levels, and all recovery values were found to vary between 95 and 105%. PMID:27506713

  3. Use of inorganic dryer-salts in the determination of organic contaminants in air

    SciTech Connect

    Simonov, V.A.

    1985-09-01

    This paper presents results of a study of the adsorptive activity of a number of inorganic salts relative to water vapor and to organic vapors in air under the dynamic conditions which are uses in the indicator tube method. Data are also given on the properties of dryer salts having a surface modified with glycerin. It is shown that lithium chloride on porcelain and potassium carbonate having a surface modified with glycerin can be used to dry air in determining contaminants of nonpolar and polar organic substances in it. Anhydrone on porcelain, calcium chloride, and potassium carbonate absorb some substances which are being determined and therefore are less suitable.

  4. DoE optimization of a mercury isotope ratio determination method for environmental studies.

    PubMed

    Berni, Alex; Baschieri, Carlo; Covelli, Stefano; Emili, Andrea; Marchetti, Andrea; Manzini, Daniela; Berto, Daniela; Rampazzo, Federico

    2016-05-15

    By using the experimental design (DoE) technique, we optimized an analytical method for the determination of mercury isotope ratios by means of cold-vapor multicollector ICP-MS (CV-MC-ICP-MS) to provide absolute Hg isotopic ratio measurements with a suitable internal precision. By running 32 experiments, the influence of mercury and thallium internal standard concentrations, total measuring time and sample flow rate was evaluated. Method was optimized varying Hg concentration between 2 and 20 ng g(-1). The model finds out some correlations within the parameters affect the measurements precision and predicts suitable sample measurement precisions for Hg concentrations from 5 ng g(-1) Hg upwards. The method was successfully applied to samples of Manila clams (Ruditapes philippinarum) coming from the Marano and Grado lagoon (NE Italy), a coastal environment affected by long term mercury contamination mainly due to mining activity. Results show different extents of both mass dependent fractionation (MDF) and mass independent fractionation (MIF) phenomena in clams according to their size and sampling sites in the lagoon. The method is fit for determinations on real samples, allowing for the use of Hg isotopic ratios to study mercury biogeochemical cycles in complex ecosystems. PMID:26992509

  5. Determination of Trace Mercury by Cloud Point Extraction Preconcentration Coupled with Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Sohrabi, Mahmoud Reza; Farokhi, Elham; Adnani, Atena; Ziaian, Mona

    A new micell-mediated phase separation method for preconcentration of ultra-trace quantities of mercury as a prior step to its determination spectrophotometry has been developed. The method is based on the Cloud Point Extraction (CPE) of mercury with Triton X-100 in the absence of chelating agent. Mercury react with sodium diethyldithiocarbamate (DDTC) in a surfactant solution yielding a hydrophobic complex, which then is entrapped in surfactant micelles. Separation of the two phases was accomplished by centrifugation for 10 min at 4000 rpm. Under the optimum conditions i.e., pH 9.0, cloud point temperature 45°C, [DDTC] = 1.6x10-5 mol L-1, [Triton X-114] = 0.032%. Analytical graphs were rectilinear in the concentration range of 4-240 µg L-1 and relative standard deviation for five replicate determinations of Mercury at 8 (μg L-1) concentration level, were 1.9%, respectively (n = 5, c = 8 µg L-1).

  6. Rapid determination of methyl mercury in fish and shellfish: method development.

    PubMed

    Hight, S C; Corcoran, M T

    1987-01-01

    The AOAC official first action method for methyl mercury in fish and shellfish was modified to provide more rapid determination. Methyl mercury is isolated from homogenized, acetone-washed tissue by addition of HCl and extraction by toluene of the methyl mercuric chloride produced. The extract is analyzed by electron capture gas chromatography (GC) on 5% DEGS-PS treated with mercuric chloride solution. The quantitation limit of the method is 0.25 micrograms Hg/g. Swordfish, shark, tuna, shrimp, clams, oysters, and NBS Research Material-50 (tuna) were analyzed for methyl mercury by the AOAC official first action method. All products also were analyzed by the modified method and the AOAC official method for total Hg. In addition, selected extracts obtained with the modified method were analyzed by GC with Hg-selective, microwave-induced helium plasma detection. There was no significant difference between the results for the various methods. Essentially all the Hg present (determined as total Hg) was in the organic form. Coefficients of variation from analyses by the modified method ranged from 1 to 7% for fish and shellfish containing methyl mercury at levels of 0.50-2.30 micrograms Hg/g. The overall average recovery was 100.5%.

  7. Experimental determination of cavitation thresholds in liquid water and mercury

    SciTech Connect

    Taleyarkhan, R.P.; Gulec, K.; West, C.D.; Haines, J.

    1998-09-01

    It is well-known that fluids (like solids) will break apart or form voids when put under sufficient tension. The present study has been motivated by the need to evaluate the impact of fluid cavitation in spallation neutron source target systems, more specifically for the proposed 1-MW Spallation Neutron Source (SNS) project, which is being designed in collaboration between Oak Ridge National Laboratory (ORNL), Los Alamos National Laboratory, Lawrence Berkeley National Laboratory, Brookhaven National Laboratory, and Argonne National Laboratory. Indeed, results of SNS-specific simulations have indicated that the onset of cavitation could play a very significant role in reducing imposed stresses in structural components of the SNS. In general, the cavitation of fluids is target systems is important to consider for a variety of reasons. Its occurrence can have significant impact on heat transfer, pressure pulse generation, fluid jetting on to structures, surface erosion, stresses induced in enclosures, etc. Therefore, it is important to evaluate the threshold pressure under which the fluid in tension will undergo cavitation. Another major aspect concerns the possible onset of cavitation in an oscillating pressure field; i.e., one would need to know if fluids such as mercury and water will cavitate if the imposed tensile pressure in the fluid is of short duration. If indeed it takes sufficiently long for cavitation bubbles to nucleate, then it would be possible to disregard the complexities involved with addressing cavitation-related issues. This paper provides an overview of preliminary work done to date to derive information on cavitation onset in a relatively static and in a high-frequency environment.

  8. Measuring total mercury due to small-scale gold mining activities to determine community vulnerability in Cihonje, Central Java, Indonesia.

    PubMed

    Sari, Mega M; Inoue, Takanobu; Matsumoto, Yoshitaka; Yokota, Kuriko

    2016-01-01

    This research is comparative study of gold mining and non-gold mining areas, using four community vulnerability indicators. Vulnerability indicators are exposure degree, contamination rate, chronic, and acute toxicity. Each indicator used different samples, such as wastewater from gold mining process, river water from Tajum river, human hair samples, and health questionnaire. This research used cold vapor atomic absorption spectrometry to determine total mercury concentration. The result showed that concentration of total mercury was 2,420 times than the maximum content of mercury permitted in wastewater based on the Indonesian regulation. Moreover, the mercury concentration in river water reached 685 ng/l, exceeding the quality threshold standards of the World Health Organization (WHO). The mercury concentration in hair samples obtained from the people living in the research location was considered to identify the health quality level of the people or as a chronic toxicity indicator. The highest mercury concentration--i.e. 17 ng/mg, was found in the gold mining respondents. Therefore, based on the total mercury concentration in the four indicators, the community in the gold mining area were more vulnerable to mercury than communities in non-gold mining areas. It was concluded that the community in gold mining area was more vulnerable to mercury contamination than the community in non-gold mining area. PMID:26819400

  9. Measuring total mercury due to small-scale gold mining activities to determine community vulnerability in Cihonje, Central Java, Indonesia.

    PubMed

    Sari, Mega M; Inoue, Takanobu; Matsumoto, Yoshitaka; Yokota, Kuriko

    2016-01-01

    This research is comparative study of gold mining and non-gold mining areas, using four community vulnerability indicators. Vulnerability indicators are exposure degree, contamination rate, chronic, and acute toxicity. Each indicator used different samples, such as wastewater from gold mining process, river water from Tajum river, human hair samples, and health questionnaire. This research used cold vapor atomic absorption spectrometry to determine total mercury concentration. The result showed that concentration of total mercury was 2,420 times than the maximum content of mercury permitted in wastewater based on the Indonesian regulation. Moreover, the mercury concentration in river water reached 685 ng/l, exceeding the quality threshold standards of the World Health Organization (WHO). The mercury concentration in hair samples obtained from the people living in the research location was considered to identify the health quality level of the people or as a chronic toxicity indicator. The highest mercury concentration--i.e. 17 ng/mg, was found in the gold mining respondents. Therefore, based on the total mercury concentration in the four indicators, the community in the gold mining area were more vulnerable to mercury than communities in non-gold mining areas. It was concluded that the community in gold mining area was more vulnerable to mercury contamination than the community in non-gold mining area.

  10. Sensitive determination method for mercury ion, methyl-, ethyl-, and phenyl-mercury in water and biological samples using high-performance liquid chromatography with chemiluminescence detection.

    PubMed

    Kodamatani, Hitoshi; Matsuyama, Akito; Saito, Keiitsu; Kono, Yuriko; Kanzaki, Ryo; Tomiyasu, Takashi

    2012-01-01

    A sensitive determination method for mercury speciation analysis was developed. Four mercury species, mercury ion, methylmercury, ethylmercury, and phenylmercury, were complexed with emetine-dithiocarbamate (emetine-CS(2)), and then injected onto a HPLC instrument coupled with a tris(2,2'-bipyridine)ruthenium(III) chemiluminescence detection system. The emetine-CS(2) complexing agent was effectively used to measure the concentration in addition to serving as a separation and detection reagent. The calibration curves for these mercury complexes were linear in the range of 0.050 - 10 μg L(-1) (as Hg). The limit of detection for (emetine-CS(2))(2)Hg, emetine-CS(2)-methylmercury, emetine-CS(2)-ethylmercury, and emetine-CS(2)-phenylmercury were 30, 17, 21, and 22 ng L(-1), respectively. The sensitivity of this method enables the determination of mercury species in water samples at sub-ppb levels. Furthermore, the method was applied to biological samples in combination with acid leaching and liquid-liquid extraction using emetine-CS(2) as an extraction reagent. The determination results were in good agreement with the values of the certified reference materials.

  11. Determining mercury levels in anchovy and in individuals with different fish consumption habits, together with their neurological effects.

    PubMed

    Çamur, Derya; Güler, Çağatay; Vaizoğlu, Songül Acar; Özdilek, Betül

    2016-07-01

    An increase in enviromental pollution may lead to mercury toxicity of fish origin due to the accumulative nature of methylmercury in fish. The main sources of human exposure to organic mercury compounds are contaminated fish and other seafoods. This descriptive study was planned to determine mercury levels in anchovy and in hair samples from individuals with different fish consumption habits, and to evaluate those individuals in terms of toxic effects. For that purpose, we analyzed 100 anchovies from the Black Sea and 100 anchovies from the Sea of Marmara, and assessed 25 wholesale workers in fish markets and 25 cleaning firm employees from both Ankara and Istanbul. Mercury levels in samples were measured using a cold vapor atomic absorption spectrophotometer. Participants were examined neurologically and mini mental state examination was applied to evaluate their cognitive functions. Mercury levels in fish were found to be below the national and international permitted levels. There was no statistically significant relation between mercury levels and the sea from which fish were caught. Hair mercury levels for all participants were within permitted ranges. However, hair mercury levels in both cities increased significantly with amount and frequency of fish consumption. A significant correlation was determined at correlation analysis between levels of fish consumption and hair mercury levels in the fishmongers and in the entire group (r = 0.32, p = 0.025; r = 0.23, p = 0.023, respectively). Neurological examination results were normal, except for a decrease in deep tendon reflexes in some participants in both cities. There was no correlation between Standardized Mini Mental State Examination results and hair mercury levels. We conclude that establishing a monitoring system for mercury levels in fish and humans will be useful in terms of evaluating potential neurotoxic effects. PMID:27353298

  12. Simultaneous determination of global topography, tidal Love number and libration amplitude of Mercury by laser altimetry

    NASA Astrophysics Data System (ADS)

    Koch, Christian; Christensen, Ulrich; Kallenbach, Reinald

    2008-07-01

    Solar tidal forces generate elevation changes of Mercury's surface of the order 1 m within one Hermean year, and solar torques on the non-symmetric permanent mass distribution of the planet cause an uneven rotation of Mercury's surface with a libration amplitude of the order of 40 arcsec. Knowledge of the precise reaction of the planet to tidal forcing, expressed by the Love numbers h2 and k2, as well as accurate knowledge of the amplitude of forced libration Φlib, puts constraints on the internal structure, for example the state and the size of the core. The MESSENGER and BepiColombo missions to Mercury carry laser altimeters, whose primary goal is to accurately map the topography. Here we investigate if the Love number h2 and the amplitude of forced libration can be determined together with the static topography of the planet from a global altimetry record. We do this by creating synthetic altimeter data for the nominal orbit of BepiColombo over the nominal mission duration of approximately four Mercury years and inverting them for the static and time-dependent parts of the topography. We assume purely Gaussian noise. We find that it is possible to extract both parameters h2 and Φlib with an accuracy of approximately 10%, while the static topography coefficients of a spherical harmonic expansion can be determined simultaneously with an accuracy at the centimetre level. Extraction of the static topography to higher harmonic degrees improves the precision of the measurement of h2 and Φlib. The simulation results demonstrate that it seems feasible to test current models on Mercury's interior with sufficient precision using BepiColombo Laser Altimeter data.

  13. Mercury pollution in Malaysia.

    PubMed

    Hajeb, Parvaneh; Jinap, S; Ismail, Ahmad; Mahyudin, Nor Ainy

    2012-01-01

    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to

  14. Mercury pollution in Malaysia.

    PubMed

    Hajeb, Parvaneh; Jinap, S; Ismail, Ahmad; Mahyudin, Nor Ainy

    2012-01-01

    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to

  15. Voltammetric trace determination of mercury using plant refuse modified carbon paste electrodes.

    PubMed

    Devnani, Harsha; Satsangee, Soami Piara

    2013-11-01

    Citrus limon peel (kitchen waste) and Leucaena leucocephala seeds (agricultural waste) were used as a modifier for fabrication of modified carbon paste electrode for determination of mercury in aqueous sample using differential pulse anodic stripping voltammetry. Mercury was adsorbed on electrode surface at open circuit and anodic stripping voltammetric scan was run from -0.5 to 0.5 V. Various electrochemical parameters including amount of modifier, supporting electrolyte, accumulating solvent, pH of the accumulating solvent, and accumulation time were investigated. The effect of presence of other metal ions and surfactants was also studied. In comparison C. limon peel proved to be a better modifier than L. leucocephala seed biomass. This was justified by electrode characterization using cyclic voltammetry that indicated decrease in resistance of electrode when C. limon peel was used as modifier and increase when modifier was L. leucocephala seeds. Maximum current response was obtained using 5% C. limon peel biomass, hydrochloric acid as supporting electrolyte, acetate buffer of pH 6 as an accumulating solvent, 10-min accumulation time, and scan rate of 50 mV/s. Linear calibration curves were obtained in the concentration range 100 to 1,000 μg L(-1) of mercury for accumulation time of 10 min with limit of detection of 57.75 μg L(-1) and limit of quantification of 192.48 μg L(-1). This technique does not use mercury as electrode material and, therefore, has a positive environmental benefit. PMID:23709264

  16. Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water.

    PubMed

    Guerrini, Luca; Rodriguez-Loureiro, Ignacio; Correa-Duarte, Miguel A; Lee, Yih Hong; Ling, Xing Yi; García de Abajo, F Javier; Alvarez-Puebla, Ramon A

    2014-07-21

    Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels. Specifically, the inorganic Hg(2+) and the more toxicologically relevant methylmercury (CH₃Hg(+)) are selected as analytical targets. The sensing platform consists of a self-assembled monolayer of 4-mercaptopyridine (MPY) on highly SERS-active and robust hybrid plasmonic materials formed by a dense layer of interacting gold nanoparticles anchored onto polystyrene microbeads. The co-ordination of Hg(2+) and CH₃Hg(+) to the nitrogen atom of the MPY ring yields characteristic changes in the vibrational SERS spectra of the organic chemoreceptor that can be qualitatively and quantitatively correlated to the presence of the two different mercury forms.

  17. Preparation of hybrid organic-inorganic mesoporous silicas applied to mercury removal from aqueous media: Influence of the synthesis route on adsorption capacity and efficiency.

    PubMed

    Pérez-Quintanilla, Damián; Sánchez, Alfredo; Sierra, Isabel

    2016-06-15

    New hybrid organic-inorganic mesoporous silicas were prepared by employing three different synthesis routes and mercury adsorption studies were done in aqueous media using the batch technique. The organic ligands employed for the functionalization were derivatives of 2-mercaptopyrimidine or 2-mercaptothiazoline, and the synthesis pathways used were post-synthesis, post-synthesis with surface ion-imprinting and co-condensation with ion-imprinting. The incorporation of functional groups and the presence of ordered mesopores in the organosilicas was confirmed by XRD, TEM and SEM, nitrogen adsorption-desorption isotherms, (13)C MAS-NMR, (29)Si MAS-NMR, elemental and thermogravimetric analysis. The highest adsorption capacity and selectivity observed was for the material functionalized with 2-mercaptothiazoline ligand by means the co-condensation with ion-imprinting route (1.03 mmol g(-1) at pH 6). The prepared material could be potential sorbent for the extraction of this heavy metal from environmental and drinking waters. PMID:27023632

  18. Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water.

    PubMed

    Guerrini, Luca; Rodriguez-Loureiro, Ignacio; Correa-Duarte, Miguel A; Lee, Yih Hong; Ling, Xing Yi; García de Abajo, F Javier; Alvarez-Puebla, Ramon A

    2014-07-21

    Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels. Specifically, the inorganic Hg(2+) and the more toxicologically relevant methylmercury (CH₃Hg(+)) are selected as analytical targets. The sensing platform consists of a self-assembled monolayer of 4-mercaptopyridine (MPY) on highly SERS-active and robust hybrid plasmonic materials formed by a dense layer of interacting gold nanoparticles anchored onto polystyrene microbeads. The co-ordination of Hg(2+) and CH₃Hg(+) to the nitrogen atom of the MPY ring yields characteristic changes in the vibrational SERS spectra of the organic chemoreceptor that can be qualitatively and quantitatively correlated to the presence of the two different mercury forms. PMID:24938410

  19. Preparation of hybrid organic-inorganic mesoporous silicas applied to mercury removal from aqueous media: Influence of the synthesis route on adsorption capacity and efficiency.

    PubMed

    Pérez-Quintanilla, Damián; Sánchez, Alfredo; Sierra, Isabel

    2016-06-15

    New hybrid organic-inorganic mesoporous silicas were prepared by employing three different synthesis routes and mercury adsorption studies were done in aqueous media using the batch technique. The organic ligands employed for the functionalization were derivatives of 2-mercaptopyrimidine or 2-mercaptothiazoline, and the synthesis pathways used were post-synthesis, post-synthesis with surface ion-imprinting and co-condensation with ion-imprinting. The incorporation of functional groups and the presence of ordered mesopores in the organosilicas was confirmed by XRD, TEM and SEM, nitrogen adsorption-desorption isotherms, (13)C MAS-NMR, (29)Si MAS-NMR, elemental and thermogravimetric analysis. The highest adsorption capacity and selectivity observed was for the material functionalized with 2-mercaptothiazoline ligand by means the co-condensation with ion-imprinting route (1.03 mmol g(-1) at pH 6). The prepared material could be potential sorbent for the extraction of this heavy metal from environmental and drinking waters.

  20. Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots.

    PubMed

    Li, Yunyun; Zhao, Jiating; Li, Yu-Feng; Xu, Xiaohan; Zhang, Bowen; Liu, Yongjie; Cui, Liwei; Li, Bai; Gao, Yuxi; Chai, Zhifang

    2016-07-13

    The toxicity mechanisms of rice roots under inorganic mercury (IHg) or methylmercury (MeHg) stress were investigated using metalloproteomic approaches. Rice seedlings were cultivated in nutrient solutions with IHg or MeHg for three weeks. Proteins were extracted from the roots and separated by two-dimensional electrophoresis (2-DE). Differentially expressed proteins were analyzed using ESI-MS/MS and identified by PMF. 26 and 29 protein spots were differentially expressed in the IHg- and MeHg-exposed roots, respectively. The proteins responsive to Hg exposure are involved in antioxidative defense, sulfur and glutathione metabolism, carbohydrate and energy metabolism, programmed cell death, and pathogen defense. Chitinase and salt stress-induced proteins exhibited a greater differentially expression in response to MeHg stress compared to IHg stress. Hg-binding proteins were detected by the combined use of 1-DE, SRXRF, and ESI-MS/MS. The results showed that Hg was bound to proteins of 15-25 kDa in rice roots under Hg stress. The Hg contents in the band under IHg stress were remarkably higher than those under MeHg. Hg binds to proteins, which leads to irreversible damage of root growth. Rice roots changed the related protein expression levels in response to Hg stress. These results may provide new insights into the mechanism of toxicity of IHg and MeHg in rice.

  1. Inorganic elemental determinations of marine traditional Chinese Medicine Meretricis concha from Jiaozhou Bay: The construction of inorganic elemental fingerprint based on chemometric analysis

    NASA Astrophysics Data System (ADS)

    Shao, Mingying; Li, Xuejie; Zheng, Kang; Jiang, Man; Yan, Cuiwei; Li, Yantuan

    2016-04-01

    The goal of this paper is to explore the relationship between the inorganic elemental fingerprint and the geographical origin identification of Meretricis concha, which is a commonly used marine traditional Chinese medicine (TCM) for the treatment of asthma and scald burns. For that, the inorganic elemental contents of Meretricis concha from five sampling points in Jiaozhou Bay have been determined by means of inductively coupled plasma optical emission spectrometry, and the comparative investigations based on the contents of 14 inorganic elements (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se and Zn) of the samples from Jiaozhou Bay and the previous reported Rushan Bay were performed. It has been found that the samples from the two bays are approximately classified into two kinds using hierarchical cluster analysis, and a four-factor model based on principle component analysis could explain approximately 75% of the detection data, also linear discriminant analysis can be used to develop a prediction model to distinguish the samples from Jiaozhou Bay and Rushan Bay with accuracy of about 93%. The results of the present investigation suggested that the inorganic elemental fingerprint based on the combination of the measured elemental content and chemometric analysis is a promising approach for verifying the geographical origin of Meretricis concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.

  2. Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry.

    PubMed

    Li, Zhenhan; Xia, Shanhong; Wang, Jinfen; Bian, Chao; Tong, Jianhua

    2016-01-15

    A novel method for determination of trace mercury in water is developed. The method is performed by extracting mercury firstly with ionic liquids (ILs) and then detecting the concentration of mercury in organic media with anodic stripping voltammetry. Liquid-liquid extraction of mercury(II) ions by four ionic liquids with N-octylpyridinium cations ([OPy](+)) was studied. N-octylpyridinium tetrafluoroborate and N-octylpyridinium trifluoromethylsulfonate were found to be efficient and selective extractant for mercury. Temperature controlled dispersive liquid phase microextraction (TC-DLPME) technique was utilized to improve the performance of preconcentration. After extraction, precipitated IL was diluted by acetonitrile buffer and mercury was detected by differential pulse stripping voltammetry (DPSV) with gold disc electrode. Mercury was enriched by 17 times while interfering ions were reduced by two orders of magnitude in the organic media under optimum condition. Sensitivity and selectivity for electrochemical determination of mercury were improved by using the proposed method. Tap, pond and waste water samples were analyzed with recoveries ranging from 81% to 107% and detection limit of 0.05 μg/L.

  3. Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection

    NASA Astrophysics Data System (ADS)

    Liu, Qingyang

    2010-07-01

    This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg 0, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL -1 for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury ( n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).

  4. First investigation of an original device dedicated to the determination of gaseous mercury in interstitial air in snow.

    PubMed

    Dommergue, Aurélien; Ferrari, Christophe P; Boutron, Claude F

    2003-01-01

    The GAMAS (gaseous mercury in interstitial air in snow) instrument developed in our laboratory is a new device devoted to sampling and determination of gaseous mercury concentration in interstitial air in snow. Sampling probes inserted in the snowpack, coupled with a Gardis mercury vapour analyser, provide reliable and original data of vertical profiles of both snow temperature and gaseous mercury concentration at several depths in a snow mantle. This instrument has been tested successfully in Station Nord in Greenland in February-March 2002. A description of this instrument, of the sampling area and its setting up is presented with precise details. Illustrations of the first investigations are given showing a rapid decrease of gaseous mercury concentration simultaneously with depth. A concentration of 0.10 ng/m(3) is reached at 120 cm depth. It may be the result of fast oxidation processes occurring within the snowpack. Gaseous mercury behaviour in the snowpack is a central parameter to elucidate the fate of deposited mercury after mercury depletion events in polar regions. With our new device, we have now the opportunity to determine this key parameter.

  5. Method validation for control determination of mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry.

    PubMed

    Torres, Daiane Placido; Martins-Teixeira, Maristela Braga; Cadore, Solange; Queiroz, Helena Müller

    2015-01-01

    A method for the determination of total mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) has been validated following international foodstuff protocols in order to fulfill the Brazilian National Residue Control Plan. The experimental parameters have been previously studied and optimized according to specific legislation on validation and inorganic contaminants in foodstuff. Linearity, sensitivity, specificity, detection and quantification limits, precision (repeatability and within-laboratory reproducibility), robustness as well as accuracy of the method have been evaluated. Linearity of response was satisfactory for the two range concentrations available on the TDA AAS equipment, between approximately 25.0 and 200.0 μg kg(-1) (square regression) and 250.0 and 2000.0 μg kg(-1) (linear regression) of mercury. The residues for both ranges were homoscedastic and independent, with normal distribution. Correlation coefficients obtained for these ranges were higher than 0.995. Limits of quantification (LOQ) and of detection of the method (LDM), based on signal standard deviation (SD) for a low-in-mercury sample, were 3.0 and 1.0 μg kg(-1), respectively. Repeatability of the method was better than 4%. Within-laboratory reproducibility achieved a relative SD better than 6%. Robustness of the current method was evaluated and pointed sample mass as a significant factor. Accuracy (assessed as the analyte recovery) was calculated on basis of the repeatability, and ranged from 89% to 99%. The obtained results showed the suitability of the present method for direct mercury measurement in fresh fish and shrimp samples and the importance of monitoring the analysis conditions for food control purposes. Additionally, the competence of this method was recognized by accreditation under the standard ISO/IEC 17025. PMID:25996815

  6. Orbit determination and gravitational field accuracy for a Mercury transponder satellite

    NASA Technical Reports Server (NTRS)

    Vincent, Mark A.; Bender, Pater L.

    1990-01-01

    Covariance studies were performed to investigate the orbit determination problem for a small transponder satellite in a nearly circular polar orbit with 4-hour period around Mercury. With X band and Ka band Doppler and range measurements, the analysis indicates that the gravitational field through degree and order 10 can be solved for from as few as 40 separate 8-hour arcs of tracking data. In addition, the earth-Mercury distance can be determined during each ranging period with about 6-cm accuracy. The expected geoid accuracy is 10 cm up through degree 5, and 1 m through degree 8. The main error sources were the geocentric range measurement error, the uncertainties in higher degree gravity field terms, which were not solved for, and the solar radiation pressure uncertainty.

  7. High residue levels and the chemical form of mercury in tissues and organs of seabirds

    SciTech Connect

    Kim, E.Y.; Murakami, Toru; Saeki, Kazutoshi; Tatsukawa, Ryo

    1995-12-31

    Total and organic (methyl) mercury in liver, muscle, kidney and feather of 9 species of seabirds were analyzed to determine the levels and their distribution and to clarify the occurrences of high mercury levels and their detoxification process in seabirds. Total mercury levels in liver showed great variations in intra and interspecies, while organic mercury levels were less variable. As compared with species in relatively low mercury levels, the species which accumulated the high concentration of mercury like black-footed albatross exhibited the different distribution of mercury in the body: in total mercury burden, albatross species contained less than 10% in feather and over 50% in liver, while other species contained over 40% in feather and less than 20% in liver. The order of organic mercury concentrations in tissues were as follows: liver > kidney > muscle in seabirds examined, except oldsquaw. The mean percentage of organic mercury in total was 35%, 66%, and 36% in liver, muscle and kidney, respectively, for all the species. The significant negative correlations were found between organic mercury percentage to total mercury and total mercury concentrations in the liver and muscle of black-footed albatross and in the liver of laysan albatross. Furthermore, in liver, muscle, and kidney of all the species, the percentages of organic mercury had a negative trend with an increase of total mercury concentrations. The results suggest that albatross species may be capable for demethylating organic mercury in the tissues (mainly in liver), and for storing the mercury as immobilizable inorganic form in the liver as substitution for delivering organic mercury to other organs. It is noteworthy that the species with high degree of demethylation showed the lower mercury burdens in feather and slow moulting pattern.

  8. Direct determination and speciation of mercury compounds in environmental and biological samples by carbon bed atomic absorption spectroscopy

    SciTech Connect

    Skelly, E.M.

    1982-01-01

    A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine, blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.

  9. Optimization of a GFAAS method for determination of total inorganic arsenic in drinking water.

    PubMed

    Michon, Jérôme; Deluchat, Véronique; Al Shukry, Raad; Dagot, Christophe; Bollinger, Jean-Claude

    2007-01-15

    The new 10mugl(-1) arsenic standard in drinking water has been a spur to the search for reliable routine analytical methods with a limit of detection at the mugl(-1) level. These methods also need to be easy to handle due to the routine analyses that are required in drinking water monitoring. Graphite furnace atomic absorption spectrometry (GFAAS) meets these requirements, but the limit of detection is generally too high except for methods using a pre-concentration or separation step. The use of a high-intensity boosted discharge hollow-cathode lamp decreases the baseline noise level and therefore allows a lower limit of detection. The temperature program, chemical matrix modifier and thermal stabilizer additives were optimized for total inorganic arsenic determination with GFAAS, without preliminary treatment. The optimal furnace program was validated with a proprietary software. The limit of detection was 0.26mugAsl(-1) for a sample volume of 16mul corresponding to 4.2pgAs. This attractive technique is rapid as 20 samples can be analysed per hour. This method was validated with arsenic reference solutions. Its applicability was verified with artificial and natural groundwaters. Recoveries from 91 to 105% with relative standard deviation <5% can be easily achieved. The effect of interfering anions and cations commonly found in groundwater was studied. Only phosphates and silicates (respectively at 4 and 20mgl(-1)) lead to significant interferences in the determination of total inorganic arsenic at 4mugl(-1).

  10. Methods for determination of inorganic substances in water and fluvial sediments

    USGS Publications Warehouse

    Fishman, Marvin J.; Friedman, Linda C.

    1989-01-01

    Chapter Al of the laboratory manual contains methods used by the U.S. Geological Survey to analyze samples of water, suspended sediments, and bottom material for their content of inorganic constituents. Included are methods for determining the concentration of dissolved constituents in water, the total recoverable and total of constituents in water-suspended sediment samples, and the recoverable and total concentrations of constituents in samples of bottom material. The introduction to the manual includes essential definitions and a brief discussion of the use of significant figures in calculating and reporting analytical results. Quality control in the water-analysis laboratory is discussed, including the accuracy and precision of analyses, the use of standard-reference water samples, and the operation of an effective quality-assurance program. Methods for sample preparation and pretreatment are given also. A brief discussion of the principles of the analytical techniques involved and their particular application to water and sediment analysis is presented. The analytical methods of these techniques are arranged alphabetically by constituent. For each method, the general topics covered are the application, the principle of the method, the interferences, the apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data, when available. More than 126 methods are given for the determination of 70 inorganic constituents and physical properties of water, suspended sediment, and bottom material.

  11. Gas chromatography coupled with atomic absorption spectrometry — a sensitive instrumentation for mercury speciation

    NASA Astrophysics Data System (ADS)

    Emteborg, Håkan; Sinemus, Hans-Werner; Radziuk, Bernard; Baxter, Douglas C.; Frech, Wolfgang

    1996-07-01

    New instrumentation for the speciation of mercury is described, and is applied to the analysis of natural water samples. The separation of mercury species is effected using gas chromatography of derivatized mercury species on a widebore capillary column. The solvent is vented using a bypass valve and the separated mercury species are pyrolysed on-line at 800°C for production of mercury atoms. These are then detected by atomic absorption spectrometry (AAS) at the 253.7 and 184.9 nm lines simultaneously in a quartz cuvette. The use of the 184.9 nm line provides a more than five-fold increase in sensitivity compared with the conventional 253.7 nm line and an absolute detection limit of 0.5 pg of mercury. The dynamic range of the combined analytical lines provides a linear response over more than three orders of magnitude. A number of organic compounds not containing mercury are also detected following pyrolysis, especially at the 184.9 nm line. These background species must not co-elute at the retention times for methyl- and inorganic mercury, as otherwise a positive interference would result. By maximizing the chromatographic resolution and minimizing the band broadening in the cuvette by use of a make-up gas, the retention times of interest are freed from co-eluting background peaks. The instrumentation has been applied to the determination of ng l -1 concentrations of methyl- and inorganic mercury in Lake Constance, Germany and within the Lake Constance drinking water supply organization, Bodenseewasserversorgung (BWV). The accuracy for the sum of methyl- and inorganic mercury has been assessed by comparison with an independent method for total mercury based on AAS detection implemented at BWV. Relative detection limits using 1 litre water samples and 15 ml injections of the final hexane extract were 0.03 ng l -1 for methylmercury and 0.4 ng l -1 for inorganic mercury based on the 3j criterion.

  12. Stabilizing agents for calibration in the determination of mercury using solid sampling electrothermal atomic absorption spectrometry.

    PubMed

    Zelinková, Hana; Červenka, Rostislav; Komárek, Josef

    2012-01-01

    Tetramethylene dithiocarbamate (TMDTC), diethyldithiocarbamate (DEDTC), and thiourea were investigated as stabilizing agents for calibration purposes in the determination of mercury using solid sampling electrothermal atomic absorption spectrometry (SS-ETAAS). These agents were used for complexation of mercury in calibration solutions and its thermal stabilization in a solid sampling platform. The calibration solutions had the form of methyl isobutyl ketone (MIBK) extracts or MIBK-methanol solutions with the TMDTC and DEDTC chelates and aqueous solutions with thiourea complexes. The best results were obtained for MIBK-methanol solutions in the presence of 2.5 g L(-1) TMDTC. The surface of graphite platforms for solid sampling was modified with palladium or rhenium by using electrodeposition from a drop of solutions. The Re modifier is preferable due to a higher lifetime of platform coating. A new SS-ETAAS procedure using the direct sampling of solid samples into a platform with an Re modified graphite surface and the calibration against MIBK-methanol solutions in the presence of TMDTC is proposed for the determination of mercury content in solid environmental samples, such as soil and plants.

  13. Determination of non-gaseous and gaseous mercury fractions in unused fluorescent lamps: a study of different lamp types.

    PubMed

    Figi, Renato; Nagel, Oliver; Schreiner, Claudia; Hagendorfer, Harald

    2015-03-01

    Since incandescent light bulbs have been phased out in the European Union from 2009, the use of fluorescent lamps has drastically increased as a reliable, more energy-efficient and cost-effective alternative. State-of-the-art fluorescent lamps are dependent on mercury/mercury alloys, posing a risk for the consumer and the environment, and appropriate waste management is challenging. Consequently analytical methods to determine possible mercury species (non-gaseous/gaseous) in these lamps are of need. Here, a straightforward and wet-chemistry-based analytical strategy for the determination of gaseous and non-gaseous mercury in commercially available fluorescent lamps is presented. It can be adapted in any analytical laboratory, without or with only minimum modifications of already installed equipment. The analytical figures of merit, as well as application of the method to a series of commercially available fluorescent lamps, are presented. Out of 14 analysed and commercially available lamp types, results from this study indicate that only one contains a slightly higher amount of mercury than set by the legislative force. In all new lamps the amount of gaseous mercury is negligible compared with the non-gaseous fraction (88%-99% of total mercury). PMID:25698790

  14. Determination of non-gaseous and gaseous mercury fractions in unused fluorescent lamps: a study of different lamp types.

    PubMed

    Figi, Renato; Nagel, Oliver; Schreiner, Claudia; Hagendorfer, Harald

    2015-03-01

    Since incandescent light bulbs have been phased out in the European Union from 2009, the use of fluorescent lamps has drastically increased as a reliable, more energy-efficient and cost-effective alternative. State-of-the-art fluorescent lamps are dependent on mercury/mercury alloys, posing a risk for the consumer and the environment, and appropriate waste management is challenging. Consequently analytical methods to determine possible mercury species (non-gaseous/gaseous) in these lamps are of need. Here, a straightforward and wet-chemistry-based analytical strategy for the determination of gaseous and non-gaseous mercury in commercially available fluorescent lamps is presented. It can be adapted in any analytical laboratory, without or with only minimum modifications of already installed equipment. The analytical figures of merit, as well as application of the method to a series of commercially available fluorescent lamps, are presented. Out of 14 analysed and commercially available lamp types, results from this study indicate that only one contains a slightly higher amount of mercury than set by the legislative force. In all new lamps the amount of gaseous mercury is negligible compared with the non-gaseous fraction (88%-99% of total mercury).

  15. Validation of methodology for determination of the mercury methylation potential in sediments using radiotracers.

    PubMed

    Zizek, Suzana; Ribeiro Guevara, Sergio; Horvat, Milena

    2008-04-01

    Experiments to determine the mercury methylation potential were performed on sediments from two locations on the river Idrijca (Slovenia), differing in ambient mercury concentrations. The tracer used was the radioactive isotope (197)Hg. The benefit of using this tracer is its high specific activity, which enables spikes as low as 0.02 ng Hg(2+) g(-1) of sample to be used. It was therefore possible to compare the efficiency of the methylation potential experiments over a range of spike concentrations from picogram to microgram levels. The first part of the work aimed to validate the experimental blanks and the second part consisted of several series of incubation experiments on two different river sediments using a range of tracer additions. The results showed high variability in the obtained methylation potentials. Increasing Hg(2+) additions gave a decrease in the percentage of the tracer methylated during incubation; in absolute terms, the spikes that spanned four orders of magnitude (0.019-190 pg g(-1) of sediment slurry) resulted in MeHg formation between 0.01 and 0.1 ng MeHg g(-1) in Podroteja and Kozarska Grapa. Higher spikes resulted in slightly elevated MeHg production (up to a maximum of 0.27 ng g(-1)). The values of methylation potential were similar in both sediments. The results imply that the experimental determination of mercury methylation potential strongly depends on the experimental setup itself and the amount of tracer added to the system under study. It is therefore recommended to use different concentrations of tracer and perform the experiments in several replicates. The amount of mercury available for methylation in nature is usually very small. Therefore, adding very low amounts of tracer in the methylation potential studies probably gives results that have a higher environmental relevance. It is also suggested to express the results obtained in absolute amounts of MeHg produced and not just as the percentage of the added tracer.

  16. Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste.

    PubMed

    Delay, Markus; Lager, Tanja; Schulz, Horst D; Frimmel, Fritz H

    2007-01-01

    The changes in waste management policy caused by the massive generation of waste materials (e.g. construction and demolition waste material, municipal waste incineration products) has led to an increase in the reuse and recycling of waste materials. For environmental risk assessment, test procedures are necessary to examine waste materials before they can be reused. In this article, results of column and lysimeter leaching tests having been applied to inorganic compounds in a reference demolition waste material are presented. The results show a good agreement between the leaching behaviour determined with the lysimeter unit and the column units used in the laboratory. In view of less time and system requirements compared to lysimeter systems, laboratory column units can be considered as a practicable instrument to assess the time-dependent release of inorganic compounds under conditions similar to those encountered in a natural environment. The high concentrations of elements in the seepage water at the initial stage of elution are reflected by the laboratory column leaching tests. In particular, authorities or laboratories might benefit and have an easy-to-use, but nevertheless reliable, method to serve as a basis for decision-making.

  17. A highly sensitive method for the determination of mercury using vapor generation gold wire microextraction and electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Hashemi, Payman; Rahimi, Akram

    2007-04-01

    The study introduces a new simple and highly sensitive method for headspace solid phase microextraction (HS-SPME) coupled with electrothermal atomic absorption spectrometric determination of mercury. In the proposed method, a gold wire, mounted in the headspace of a sample solution in a sealed bottle, is used for collection of mercury vapor generated by addition of sodium tetrahydroborate. The gold wire is then simply inserted in the sample introduction hole of a graphite furnace of an electrothermal atomic absorption spectrometry instrument. By applying an atomization temperature of 600 °C, mercury is rapidly desorbed from the wire and determined with high sensitivity. Factorial design and response surface analysis methods were used for optimization of the effect of five different variables in order to maximize the mercury signal. By using a 0.75 mm diameter gold wire, a sample volume of about 8 ml and an extraction time of 11 min, the sensitivity of mercury determination was enhanced up to 10 4 times in comparison to its ordinary ETAAS determination with direct injection of 10 μl sample solutions. A detection limit of 0.006 ng ml - 1 and a precision better than 4.6% (relative standard deviation) were obtained. The method was successfully applied to the determination of mercury in industrial wastewaters and tuna fish samples.

  18. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry.

    PubMed

    Zhang, Yanlin; Adeloju, Samuel B

    2012-04-01

    A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH(4) were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe(3+), Cu(2+) and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu(2+) and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe(3+) gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg(2+). Due to similarity of resulting sensitivity, Hg(2+) was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h(-1).

  19. Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water

    NASA Astrophysics Data System (ADS)

    Guerrini, Luca; Rodriguez-Loureiro, Ignacio; Correa-Duarte, Miguel A.; Lee, Yih Hong; Ling, Xing Yi; García de Abajo, F. Javier; Alvarez-Puebla, Ramon A.

    2014-06-01

    Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels. Specifically, the inorganic Hg2+ and the more toxicologically relevant methylmercury (CH3Hg+) are selected as analytical targets. The sensing platform consists of a self-assembled monolayer of 4-mercaptopyridine (MPY) on highly SERS-active and robust hybrid plasmonic materials formed by a dense layer of interacting gold nanoparticles anchored onto polystyrene microbeads. The co-ordination of Hg2+ and CH3Hg+ to the nitrogen atom of the MPY ring yields characteristic changes in the vibrational SERS spectra of the organic chemoreceptor that can be qualitatively and quantitatively correlated to the presence of the two different mercury forms.Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels

  20. The determination of Mercury's gravity field and rotational state with the mission BepiColombo

    NASA Astrophysics Data System (ADS)

    Iess, L.; Asmar, S. W.; Milani, A.; Tortora, P.; Iafolla, V.

    Gravity field and rotational state provide accurate constraints to geophysical models of planetary interiors and have been therefore a major source of information on the internal structure of solar system bodies. Their determination is particularly important for Mercury, whose interior is the least known among terrestrial planets. Today, planetary gravity fields are best investigated by means of microwave Doppler tracking of orbiting spacecraft. In order to attain precise measurements the radio link (involving a carrier transmitted from ground to the spacecraft and retransmitted back to ground) must preserve the highest phase stability and coherence at each intervening stage. Electronic noise from ground and onboard instrumentation must be minimized and propagation noise (due to plasma and troposphere) must be kept to a minimum. This is especially important for phase instabilities induced by interplanetary plasma and solar corona, which have been the main limitation in past gravity experiments with planetary probes. Both forthcoming space missions to Mercury (NASA's Messenger and ESA's Bepi- Colombo) host radio science investigations devoted to geodesy and geophysics. While Messenger's experiment exploits the onboard telecommunication system, based upon a X-band radio link (7.1-8.4 GHz), the experiment MORE (Mercury Orbiter Radioscience Experiment) of BepiColombo makes use of a Ka-band radio link (32-34 GHz) enabled by dedicated onboard and ground hardware. The use of a Ka-band link in combination with the standard telecommunication system allows a complete cancellation of the plasma noise and two-way range rate measurements as accurate as 3 micron/s over time scales of 1000 s, independently of the solar elongation angle. The radio instrumentation includes also a wide-band ranging system (WBRS, using a 20 MHz tone) with a target two-way accuracy of 20 cm. The ranging system will be used to determine Mercury's orbit in the solar system, carrying out accurate tests

  1. Inorganic mercury accumulation in brain following waterborne exposure elicits a deficit on the number of brain cells and impairs swimming behavior in fish (white seabream-Diplodus sargus).

    PubMed

    Pereira, Patrícia; Puga, Sónia; Cardoso, Vera; Pinto-Ribeiro, Filipa; Raimundo, Joana; Barata, Marisa; Pousão-Ferreira, Pedro; Pacheco, Mário; Almeida, Armando

    2016-01-01

    The current study contributes to fill the knowledge gap on the neurotoxicity of inorganic mercury (iHg) in fish through the implementation of a combined evaluation of brain morphometric alterations (volume and total number of neurons plus glial cells in specific regions of the brain) and swimming behavior (endpoints related with the motor activity and mood/anxiety-like status). White seabream (Diplodus sargus) was exposed to realistic levels of iHg in water (2μgL(-1)) during 7 (E7) and 14 days (E14). After that, fish were allowed to recover for 28 days (PE28) in order to evaluate brain regeneration and reversibility of behavioral syndromes. A significant reduction in the number of cells in hypothalamus, optic tectum and cerebellum was found at E7, accompanied by relevant changes on swimming behavior. Moreover, the decrease in the number of neurons and glia in the molecular layer of the cerebellum was followed by a contraction of its volume. This is the first time that a deficit on the number of cells is reported in fish brain after iHg exposure. Interestingly, a recovery of hypothalamus and cerebellum occurred at E14, as evidenced by the identical number of cells found in exposed and control fish, and volume of cerebellum, which might be associated with an adaptive phenomenon. After 28 days post-exposure, the optic tectum continued to show a decrease in the number of cells, pointing out a higher vulnerability of this region. These morphometric alterations coincided with numerous changes on swimming behavior, related both with fish motor function and mood/anxiety-like status. Overall, current data pointed out the iHg potential to induce brain morphometric alterations, emphasizing a long-lasting neurobehavioral hazard.

  2. Sensitive determination of trace mercury by UV-visible diffuse reflectance spectroscopy after complexation and membrane filtration-enrichment.

    PubMed

    Yin, Changhai; Iqbal, Jibran; Hu, Huilian; Liu, Bingxiang; Zhang, Lei; Zhu, Bilin; Du, Yiping

    2012-09-30

    A simple, sensitive and selective solid phase reflectometry method is proposed for the determination of trace mercury in aqueous samples. The complexation reagent dithizone was firstly injected into the properly buffered solution with vigorous stirring, which started a simultaneous formation of nanoparticles suspension of dithizone and its complexation reaction with the mercury(II) ions to make Hg-dithizone nanoparticles. After a definite time, the mixture was filtered with membrane, and then quantified directly on the surface of the membrane by using integrating sphere accessory of the UV-visible spectrophotometer. The quantitative analysis was carried out at a wavelength of 485 nm since it yielded the largest difference in diffuse reflectance spectra before and after reaction with mercury(II).A good linear correlation in the range of 0.2-4.0 μg/L with a squared correlation coefficient (R(2)) of 0.9944 and a detection limit of 0.12 μg/L were obtained. The accuracy of the method was evaluated by the analysis of spiked mercury(II) concentrations determined using this method along with those determined by the atomic fluorescence mercury vapourmeter and the results obtained were in good agreement. The proposed method was applied to the determination of mercury in tap water and river water samples with the recovery in an acceptable range (95.7-105.3%). PMID:22831998

  3. Determination of Total Mercury in Fillets of Sport Fishes Collected from Folsom and New Melones Reservoirs, California, 2004

    USGS Publications Warehouse

    May, Thomas W.; Brumbaugh, William G.

    2007-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the U.S. Bureau of Reclamation, to determine mercury concentrations in selected sport fishes from Folsom and New Melones Reservoirs in California. Fillets were collected from each fish sample, and after homogenization and lyophilization of fish fillets, mercury concentrations were determined with a direct mercury analyzer utilizing the process of thermal combustion-gold amalgamation atomic absorption spectroscopy. Mercury concentrations in fish fillets from Folsom Reservoir ranged from 0.09 to 1.16 micrograms per gram wet weight, and from New Melones Reservoir ranged from 0.03 to 0.94 microgram per gram wet weight. Most of the fish fillets from Folsom Reservoir (87 percent) and 27 percent of the fillets from New Melones Reservoir exceeded the U.S. Environmental Protection Agency's fish consumption advisory of 0.30 microgram per gram wet weight.

  4. The Determination of the Gravity Field of Mercury from MESSENGER data

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Mazarico, E.; Rowlands, D. D.; Torrence, M. H.; Perry, M. E.; Smith, D. E.; Zuber, M. T.

    2011-12-01

    The MESSENGER spacecraft entered orbit about Mercury in March 2011, becoming the first spacecraft to orbit the innermost planet. The spacecraft is in a highly eccentric, near-polar orbit with an inclination near 82.5 deg., a period of nearly 12 hrs, a periapsis latitude near 60 deg.N, and a periapsis altitude that varies between 200 and 500 km. The spacecraft is tracked by the antennae of the Deep Space Network (DSN), and the X band data have been analyzed to determine spherical harmonic models of the gravity field of Mercury to degree and order 20. The a priori modeling includes the Margot (2010) orientation model for Mercury and the DE421 set of planetary ephemerides. A detailed non-conservative model has been developed to account for the radiation pressure perturbations on the spacecraft, including both the solar radiation pressure and the planetary radiation pressure. This last analysis includes a box-wing model, use of quaternions to model the spacecraft attitude, and a model of the planet's thermal emission. The data have been analyzed primarily in one-day arcs. The data coverage, which now span several Mercury sidereal days, includes direct Doppler observations below 1500 km altitude throughout the northern hemisphere to just south of the equator. In this paper, we discuss the quality of the DSN tracking data and the details of the force and measurement models used in the analyses, and we show how the solutions have been refined as additional data have been obtained. We show the stability of the solutions for the lower-degree harmonics, including C20, C22, S22, and C30.

  5. Migration of components from cork stoppers to food: challenges in determining inorganic elements in food simulants.

    PubMed

    Corona, T; Iglesias, M; Anticó, E

    2014-06-18

    The inorganic elements potentially migrating from cork to a food simulant [a hydroalcoholic solution containing 12 and 20% (v/v) ethanol] have been determined by means of inductively coupled plasma (ICP) with atomic emission and mass spectrometric detection. The experimental instrumental conditions were evaluated in depth, taking into account spectroscopic and nonspectroscopic interference caused by the presence of ethanol and other components in the sample. We report concentrations ranging from 4 μg kg(-1) for Cd to 28000 μg kg(-1) for Al in the food simulant (concentrations given in kilograms of cork). The values found for Ba, Mn, Fe, Cu, and Zn have been compared with the guideline values stated in EU Regulation 10/2011. In all cases, cork met the general safety criteria applicable to food contact material. Finally, we have proposed water as an alternative to the hydroalcoholic solution to simplify quantification of the tested elements using ICP techniques.

  6. Studies on activity recovery in some mercury-exposed freshwater fish by using selected weeds

    SciTech Connect

    Shrivastave, S.; Rao, K.S. )

    1989-06-01

    In spite of worldwide concern about mercury contamination in aquatic environment, relatively little effort has been expended on determining the mechanisms involved in bioaccumulation. It has been found that several species of aquatic plants grow in flowing water of polluted rivers and contain higher mercury levels than the associated water phase. The aquatic weed plants absorb and incorporate the dissolved materials (both inorganic and organic compound) into their own body tissues to rapidly and effectively that they are now considered for use in sewage treatment. The present study evaluated the relative efficiencies of five selected weeds, in mercury toxicity removal suggesting possible methods of mercury removal from contaminated aquatic environments.

  7. [Determination of organic acids and inorganic anions by gradient ion chromatography].

    PubMed

    Liu, Z; Liu, K; Shen, D; Song, Q; Mou, S; Feng, Y

    1997-07-01

    The chromatographic conditions for separation and detection of organic acids and inorganic anions by gradient ion chromatography with suppressed conductivity detection were studied. The optimized gradient programs were established. Ion chromatography were performed with a DX-100 chromatograph (DIONEX). The separation column is IonPac-AS11. Compared with NaHCO3/Na2CO3 and Na2B4O7, NaOH was the optimal eluent. The effect of organic modifier was also studied. Among methanol, 2-propanol and acetonitrile, methanol can make ion pairs such as malate and succinate, malonate and tartrate gaining baseline resolution. By using ion exchange separation, Cl-, NO3-, malate, succinate, malonate, tartrate, SO4(2-), oxalate were eluted between 5 mmol/L NaOH-16% CH3OH and 10 mmol/L NaOH-16% CH3OH in 25 min. A mobile phase composed of 30 mmol/L NaOH, 50% CH3OH and D.I. water was chosen to elute two groups of organic acids and inorganic anions: (1) quinate, formate, Cl-, malate, malonate, oxalate, citrate, isocitrate, aconitate; (2) lactate, Cl-, SO4(2-), tartrate, PO4(3-), citrate, isocitrate, aconitate. The detection limits (S/N = 3) were 0.1625 (quinate), 0.0691 (formate), 0.0115 (Cl-), 0.0886 (malate), 0.0591 (malonate), 0.0263 (oxalate), 0.1147 (citrate), 0.2017 (isocitrate), 0.3656 (cis-aconitate), 0.1045 (trans-aconitate), 0.1950 (lactate), 0.0729 (tartrate), 0.0224 (SO4(2-)) and 0.0692 (PO4(3-)) mg/L. The relative standard deviations were lower than 11.9% (n = 7) and the correlation coefficients ranged from 0.9212 for Cl- to 0.9999 for formate. The method was applied to determine the organic acids and inorganic anions of beverages and citric acids fermenting-medium. The results were satisfactory.

  8. [Determination of inorganic anions and gluconate by two-dimensional ion chromatography].

    PubMed

    Chen, Ailian; Ding, Hui; Fang, Linmei; Shi, Chaoou

    2015-12-01

    A new two-dimensional ion chromatography method was developed to parallelly analyze two different types of samples with the application of valve switching technology-suppressed conductivity and pulsed amperometric analysis system, for concurrent determination of chloride, nitrite, sulfate, nitrate four inorganic anions and gluconate. The first dimensional chromatography was using Ionpac AG18+Ionpac AS18 anion analysis columns with a suppressed conductivity detector for the separation and detection of Cl-, NO2-, SO4(2-) and NO3-. Respectively, the elution was 5 and 20 mmol/L NaOH at an isocratic flow rate of 1.0 mL/min and sample injection volume of 25 μL. The second dimensional chromatography was utilizing two guard columns, CarboPac PA1 and CarboPac PA20, with 90 mmol/L NaOH solution for the isocratic eluent of 0.8 mL/min. Gluconate was enriched by an AG15 column and switched into the pulsed amperometric detector. The results showed that: each inorganic anion in 0. 1-5.0 mg/L and gluconate in 0.085 6-4.282 5 mg/L had a good linear relationship (R2 ≥ 0.994 5). The RSDs of the peak areas were between 1.05%-1.94%. The limits of detection were 0.61-2.17 μg/L for the anions and 24.24 μg/L for the gluconate. The recoveries were between 90.3% - 102.8%. The two detection modes parallelly have good separation efficiency, detection accuracy and the precision of the separation and are suitable for the analysis of complex samples.

  9. [Determination of inorganic anions and gluconate by two-dimensional ion chromatography].

    PubMed

    Chen, Ailian; Ding, Hui; Fang, Linmei; Shi, Chaoou

    2015-12-01

    A new two-dimensional ion chromatography method was developed to parallelly analyze two different types of samples with the application of valve switching technology-suppressed conductivity and pulsed amperometric analysis system, for concurrent determination of chloride, nitrite, sulfate, nitrate four inorganic anions and gluconate. The first dimensional chromatography was using Ionpac AG18+Ionpac AS18 anion analysis columns with a suppressed conductivity detector for the separation and detection of Cl-, NO2-, SO4(2-) and NO3-. Respectively, the elution was 5 and 20 mmol/L NaOH at an isocratic flow rate of 1.0 mL/min and sample injection volume of 25 μL. The second dimensional chromatography was utilizing two guard columns, CarboPac PA1 and CarboPac PA20, with 90 mmol/L NaOH solution for the isocratic eluent of 0.8 mL/min. Gluconate was enriched by an AG15 column and switched into the pulsed amperometric detector. The results showed that: each inorganic anion in 0. 1-5.0 mg/L and gluconate in 0.085 6-4.282 5 mg/L had a good linear relationship (R2 ≥ 0.994 5). The RSDs of the peak areas were between 1.05%-1.94%. The limits of detection were 0.61-2.17 μg/L for the anions and 24.24 μg/L for the gluconate. The recoveries were between 90.3% - 102.8%. The two detection modes parallelly have good separation efficiency, detection accuracy and the precision of the separation and are suitable for the analysis of complex samples. PMID:27097469

  10. Proficiency testing pilot for determination of total mercury in fresh fish

    NASA Astrophysics Data System (ADS)

    de Santana, L. V.; Sarkis, J. E. S.; Ulrich, J. C.; Hortellani, M. A.

    2016-07-01

    A proficiency-testing scheme concerning total mercury determination in fish tissue involved 10 laboratories as participants, who used their regular in-house analytical methods, and the assigned value and the standard deviation used in proficiency testing program was derived from calibration against the certified reference values of the CRMs. The majority of participants obtained satisfactory Z-scores, and laboratories that need to revise their procedures were singled out. The objective these exercises were makes a useful contribution towards the production of proficiency test in Brazil. The uncertainty expanded calculated for the reference material was 22%.

  11. Atlantic mercury emission determined from continuous analysis of the elemental mercury sea-air concentration difference within transects between 50°N and 50°S

    NASA Astrophysics Data System (ADS)

    Kuss, J.; Zülicke, C.; Pohl, C.; Schneider, B.

    2011-09-01

    Mercury in the environment deserves serious concern because of the mobility of volatile elemental mercury (Hg0) in the atmosphere, in combination with the harmful effect of Hg compounds on human health and the ecosystem. A major source of global atmospheric mercury is presumed to be oceanic Hg0 emission. However, available Hg0 surface water data to reliably estimate the ocean's mercury emissions are sparse. In this study, high-resolution surface water and air measurements of Hg0 were carried out between Europe and South Africa in November 2008 and between South America and Europe in April-May 2009. On each cruise a strong enrichment of Hg0 in tropical surface water was determined that apparently followed the seasonal shift of the Intertropical Convergence Zone (ITCZ). A combination of a high Hg0 production rate constant and the actual low wind speeds, which prevented emission, probably caused the accumulation of Hg0 in surface waters of the ITCZ. Hg0 emissions in the tropics were significant only if wind speed variability on a monthly scale was considered, in which case the observed significant decline of total Hg in tropical surface waters during the northern winter could be explained. In the midlatitudes, increased autumn Hg0 emissions were calculated for November in the Northern Hemisphere and for May in the Southern Hemisphere; conversely, emissions were low during both the northern and the southern spring. Mercury removal from surface waters by Hg0 emission and sinking particles was comparable to its supply through wet and dry deposition.

  12. Microwave-enhanced cold vapor generation for speciation analysis of mercury by atomic fluorescence spectrometry.

    PubMed

    Wu, Li; Long, Zhou; Liu, Liwei; Zhou, Qin; Lee, Yong-Ill; Zheng, Chengbin

    2012-05-30

    A new and simple cold vapor generation technique utilizing microwave irradiation coupled with atomic fluorescence spectrometry is developed for the speciation analysis of mercury in biological and geological samples. In the presence of formic acid, inorganic mercury (Hg(2+)) and total mercury (both Hg(2+) and methylmercury (MeHg)) can be converted to mercury cold vapor (Hg(0)) by microwave irradiation without and with H(2)O(2), respectively. The cold vapor was subsequently released from the liquid phase and rapidly transported to an atomic fluorescence spectrometer for the mercury detection. Optimum conditions for vapor generation as well as interferences from concomitant ions were carefully investigated. The conventionally required evaporation of the remnants of acid or oxidants was avoided because no significant interferences from these substances were observed, and thus analyte loss and potential contamination were minimized. A limit of detection of 0.005 ng mL(-1) for total mercury or inorganic mercury was obtained. A precision of less than 3% (RSD) at 2 μg L(-1) of mercury species was typical. The accuracy of the method was validated by determination of mercury in geological and biological certified reference materials. The speciation analysis of Hg(2+) and MeHg was achieved by controlling the conditions of microwave-enhanced cold vapor generation and validated via determination of Certified Reference Materials DORM-2, DORM-3 and a real river water sample.

  13. A novel method for determination of inorganic oxyanions by electrospray ionization mass spectrometry using dehydration reactions.

    PubMed

    Kojima, Hirochika; Kurihara, Shota; Watanabe, Yoshito; Iwamaru, Koki; Sato, Kiichi; Tsunoda, Kin-Ichi; Hotta, Hiroki

    2016-02-01

    Novel methods for the determination of inorganic oxyanions by electrospray (ES) ionization mass spectrometry have been developed using dehydration reactions between oxyanions and carboxylic acids at the ES interface. Twelve oxyanions (VO3 (-) , CrO4 (2-) , MoO4 (2-) , WO4 (2-) , BO3 (3-) , SiO3 (2-) , SiO4 (4-) , AsO4 (4-) , AsO2 (-) , SeO4 (2-) , SeO3 (2-) and NO2 (-) ), out of 16 tested, reacted with at least one of four aminopolycarboxylic acids, i.e. iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid and triethylenetetramine-N,N,N',N″,N'″,N'″-hexaacetic acid, at the ES interface to produce the dehydration products that gave intense mass ion responses, sufficient for trace analysis. As examples, trace determinations of Cr(VI) and silica in water samples were achieved after online ion exchange chromatography, where the dehydration product of CrO4 (2-) and NTA (m/z 290) and that of SiO4 (4-) and IDA (m/z 192) were measured. The limits of detection of the respective methods were 17 nM (0.83 ng Cr/ml) for Cr(VI) and 0.17 μM (4.8 ng Si/mL) for SiO4 (4-) . PMID:26889928

  14. Determination of mercury and vanadium concentration in Johnius belangerii (C) fish in Musa estuary in Persian Gulf.

    PubMed

    Fard, Neamat Jaafarzadeh Haghighi; Ravanbakhsh, Maryam; Ramezani, Zahra; Ahmadi, Mehdi; Angali, Kambiz Ahmadi; Javid, Ahmad Zare

    2015-08-15

    The main aim of this study was to determine the concentrations of mercury and vanadium in Johnius belangerii (C) fish in the Musa estuary. A total of 67 fishes were caught from the Musa estuary during five intervals of 15days in the summer of 2013. After biometric measurements were conducted, the concentrations of mercury and vanadium were measured in the muscle tissue of fish using a direct method analyzer (DMA) and a graphite furnace atomic absorption spectrophotometer, respectively. The mean concentration of mercury and vanadium in the muscle tissue of fish was 3.154±1.981 and 2.921±0.873mg/kg w.w, respectively. The generalized linear model (GLM) analysis showed a significantly positive relationship among mercury concentration, length, and weight (P=0.000). In addition, there was a significantly negative relationship between vanadium concentration and fish length (P=0.000). A reverse association was found between concentrations of mercury and vanadium. Mercury concentration exceeded the allowable standards of the Environmental Protection Agency (EPA), the World Health Organization (WHO), and the Food and Drug Administration (FDA) in J. belangerii (C). PMID:26117818

  15. Determination of mercury and vanadium concentration in Johnius belangerii (C) fish in Musa estuary in Persian Gulf.

    PubMed

    Fard, Neamat Jaafarzadeh Haghighi; Ravanbakhsh, Maryam; Ramezani, Zahra; Ahmadi, Mehdi; Angali, Kambiz Ahmadi; Javid, Ahmad Zare

    2015-08-15

    The main aim of this study was to determine the concentrations of mercury and vanadium in Johnius belangerii (C) fish in the Musa estuary. A total of 67 fishes were caught from the Musa estuary during five intervals of 15days in the summer of 2013. After biometric measurements were conducted, the concentrations of mercury and vanadium were measured in the muscle tissue of fish using a direct method analyzer (DMA) and a graphite furnace atomic absorption spectrophotometer, respectively. The mean concentration of mercury and vanadium in the muscle tissue of fish was 3.154±1.981 and 2.921±0.873mg/kg w.w, respectively. The generalized linear model (GLM) analysis showed a significantly positive relationship among mercury concentration, length, and weight (P=0.000). In addition, there was a significantly negative relationship between vanadium concentration and fish length (P=0.000). A reverse association was found between concentrations of mercury and vanadium. Mercury concentration exceeded the allowable standards of the Environmental Protection Agency (EPA), the World Health Organization (WHO), and the Food and Drug Administration (FDA) in J. belangerii (C).

  16. Sensitive determination of mercury by a miniaturized spectrophotometer after in situ single-drop microextraction.

    PubMed

    Yang, Fangwen; Liu, Rui; Tan, Zhiqiang; Wen, Xiaodong; Zheng, Chengbin; Lv, Yi

    2010-11-15

    An in situ single-drop microextraction (SDME) method was developed for trace mercury determination by a miniaturized spectrophotometer, in which a simple and cheap light-emitting diode (LED) was employed as the light source, and a handheld charge coupled device (CCD) was served as the detector. A droplet of 0.006% dithizone-CCl(4) (m/v) was used as extraction phase and hanged on a rolled PTFE tube. LED light was adjusted carefully to pass through the centre of the droplet and the entrance slit of the CCD detector. The radiation intensities of 475 nm before and after SDME (I(0) and I(i)) were recorded for quantification. Under the optimum conditions, the system provided a linear range of 2-50 μg L(-1), with a correlation coefficient of 0.9983 and a limit of detection (3σ) of 0.2 μg L(-1). The enrichment factor was about 69. The present method showed the merits of high sensitivity, simplicity, rapidity, low reagent consumption and field analysis potential. Finally, this method was successfully applied for the determination of the total mercury in spiked tap water sample, spiked river water sample and certified reference material (GBW (E) 080393, simulated water). PMID:20696521

  17. Surfactant mediated synthesis of poly(acrylic acid) grafted xanthan gum and its efficient role in adsorption of soluble inorganic mercury from water.

    PubMed

    Pal, Abhijit; Majumder, Kunal; Bandyopadhyay, Abhijit

    2016-11-01

    Noble copolymers from xanthan gum (XG) and poly(acrylic acid) (PAA) were synthesised through surfactant mediated graft copolymerization. The copolymers were applied as a biosorbent for inorganic Hg(II) at higher concentration level (300ppm). The copolymers were characterized using different analytical techniques which showed, the grafting principally occurred across the amorphous region of XG. Measurement of zeta potential and hydrodynamic size indicated, the copolymers were strong polyanion and possessed greater hydrodynamic size (almost in all cases) than XG, despite a strong molecular degradation that took place simultaneously during grafting. In the dispersed form, all grades of the copolymer displayed higher adsorption capability than XG, however, the grade with maximum grafting produced the highest efficiency (68.03%). Manipulation produced further improvement in efficiency to 72.17% with the same copolymer after 75min at a pH of 5.0. The allowable biosorbent dose, however, was 1000ppm as determined from the experimental evidences. PMID:27516248

  18. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria.

    PubMed Central

    Silver, S; Walderhaug, M

    1992-01-01

    Regulation of chromosomally determined nutrient cation and anion uptake systems shows important similarities to regulation of plasmid-determined toxic ion resistance systems that mediate the outward transport of deleterious ions. Chromosomally determined transport systems result in accumulation of K+, Mg2+, Fe3+, Mn2+, PO4(3-), SO4(2-), and additional trace nutrients, while bacterial plasmids harbor highly specific resistance systems for AsO2-, AsO4(3-), CrO4(2-), Cd2+, Co2+, Cu2+, Hg2+, Ni2+, SbO2-, TeO3(2-), Zn2+, and other toxic ions. To study the regulation of these systems, we need to define both the trans-acting regulatory proteins and the cis-acting target operator DNA regions for the proteins. The regulation of gene expression for K+ and PO4(3-) transport systems involves two-component sensor-effector pairs of proteins. The first protein responds to an extracellular ionic (or related) signal and then transmits the signal to an intracellular DNA-binding protein. Regulation of Fe3+ transport utilizes the single iron-binding and DNA-binding protein Fur. The MerR regulatory protein for mercury resistance both represses and activates transcription. The ArsR regulatory protein functions as a repressor for the arsenic and antimony(III) efflux system. Although the predicted cadR regulatory gene has not been identified, cadmium, lead, bismuth, zinc, and cobalt induce this system in a carefully regulated manner from a single mRNA start site. The cadA Cd2+ resistance determinant encodes an E1(1)-1E2-class efflux ATPase (consisting of two polypeptides, rather than the one earlier identified). Cadmium resistance is also conferred by the czc system (which confers resistances to zinc and cobalt in Alcaligenes species) via a complex efflux pump consisting of four polypeptides. These two cadmium efflux systems are not otherwise related. For chromate resistance, reduced cellular accumulation is again the resistance mechanism, but the regulatory components are not identified

  19. Determination of the δ13C of dissolved inorganic carbon in water; RSIL lab code 1710

    USGS Publications Warehouse

    Singleton, Glenda L.; Revesz, Kinga; Coplen, Tyler B.

    2012-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1710 is to present a method to determine the δ13C of dissolved inorganic carbon (DIC) of water. The DIC of water is precipitated using ammoniacal strontium chloride (SrCl2) solution to form strontium carbonate (SrCO3). The δ13C is analyzed by reacting SrCO3 with 100-percent phosphoric acid (H3PO4) to liberate carbon quantitatively as carbon dioxide (CO2), which is collected, purified by vacuum sublimation, and analyzed by dual inlet isotope-ratio mass spectrometry (DI-IRMS). The DI-IRMS is a DuPont double-focusing mass spectrometer. One ion beam passes through a slit in a forward collector and is collected in the rear collector. The other measurable ion beams are collected in the front collector. By changing the ion-accelerating voltage under computer control, the instrument is capable of measuring mass/charge (m/z) 45 or 46 in the rear collector and m/z 44 and 46 or 44 and 45, respectively, in the front collector. The ion beams from these m/z values are as follows: m/z 44 = CO2 = 12C16O16O, m/z 45 = CO2 = 13C16O16O primarily, and m/z 46 = CO2 = 12C16O18O primarily. The data acquisition and control software calculates δ13C values.

  20. Determination of inorganic contaminants in polyamide textiles used for manufacturing sport T-shirts.

    PubMed

    Matoso, Erika; Cadore, Solange

    2012-01-15

    An acid microwave closed vessel digestion method was used for the determination of inorganic contaminants (Sb, As, Pb, Cd, Cr, Co, Cu, Ni and Hg) in polyamide raw materials (pellets) and textiles by inductively coupled plasma optical emission spectrometry (ICP OES). The initial tests were carried out with samples of polyamide pellets, which is the main raw material used to manufacture sport textiles. The recovery factors obtained were 94.4-105.7% with relative standard deviation (RSD) of 0.5-2.2%. The proposed method was evaluated by addition and recovery tests and also using certified reference materials (ERM-BCR680 and ERM-BCR681) showing good accuracy. The residual acidity was about 4% HNO(3) (w/w) and the quantification limits were from 0.1 to 6.6 mg kg(-1). After the development of these parameters for the raw material, the method was applied to textile samples from different sport fabrics obtained from three different brands. The residual carbon after sample digestion was 0.2% (w/w) and the most significant result was obtained for chromium, 901 mg kg(-1), in black fabric. Lixiviation tests using synthetic sweat and temperature were carried out on two black samples, showing that only 0.3% of the initial concentration migrated to the solution.

  1. Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy

    SciTech Connect

    Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M.

    2014-10-28

    The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called “intrinsic friction analysis” (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

  2. Determination of mercury in geological materials by continuous-flow, cold-vapor, atomic absorption spectrophotometry

    SciTech Connect

    Kennedy, K.R.; Crock, J.G.

    1987-06-01

    To determine mercury in geological materials, samples are digested with nitric acid and sodium dichromate in a closed teflon vessel. After bringing to a constant weight, the digest is mixed with air and a sodium chloride-hydroxylamine hydrochloride-sulfuric acid solution and then Hg(II) is reduced to Hg/sup 0/ with stannous chloride in a continuous flow manifold. The mercury vapor is then separated and measured using cold vapor atomic absorption spectrophotometry (CV-AAS). For a 100 mg sample the limit of detection is 20 parts-per-billion (ppb) Hg in sample. To obtain a 1% absorption signal, the described method requires 0.21 ppb Hg solution (equal to 16 ppb in sample). Precision is acceptable at less than 1.2% RSD for a 10 ppb Hg aqueous standard. Accuracy is demonstrated by the results of the analysis on standard reference materials. Several elements do interfere but the effect is minimal because either the digestion procedure does not dissolve them (e.g., Au or Pt) or they are normally of low abundance (e.g., Se or Te).

  3. IMEP-115: determination of methylmercury in seafood by elemental mercury analysis: collaborative study.

    PubMed

    Cordeiro, Fernando; Calderón, Josep; Gonçalves, Susana; Lourenço, Maria Helena; Robouch, Piotr; Emteborg, Hakan; Conneely, Patrick; Tumba-Tshilumba, Marie-France; de la Calle, Maria Beatriz

    2014-01-01

    A collaborative study IMEP-115 was organized by the European Union Reference Laboratory for Heavy Metals in Feed and Food (EURL-HM) to validate a method for the determination of methylmercury in seafood. The method was based on a liquid-liquid extraction with an organic solvent and with an aqueous cysteine solution. The final quantitation was done with an elemental mercury analyzer. Fifteen laboratories experienced in elemental mercury analyses, from 10 European countries, took part in the exercise. Five test items were selected to cover the concentration range from 0.013 to 5.12 mg/kg. All test items were reference materials certified for the methylmercury mass fraction: DOLT-4 (dogfish liver), TORT-2 (lobster hepatopancreas), SRM 2974a (mussel), SRM 1566b (oyster), and ERM CE-464 (tuna). Participants also received a bottle of ERM CE-463 (tuna) to test their analytical method before starting the collaborative study. Method validation showed adequate accuracy and acceptable precision for all test items, thus fitting its intended analytical purpose. The repeatability RSD ranged from 3.9 to 12.3%, while the reproducibility RSD ranged from 8.4 to 24.8%. PMID:24830172

  4. Determination of organic mercury species in soils by high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Hempel, M; Hintelmann, H; Wilken, R D

    1992-03-01

    Reversed-phase high-performance liquid chromatography with ultraviolet detection was optimized for the simultaneous separation and quantification of nine organic mercury compounds: methyl-, ethyl-, phenyl-, methoxyethyl-, ethoxyethyl-, benzoic and tolylmercury, mersalylic acid and nitromersol. The nine compounds were successfully separated on octadecylsilane columns (200 x 3 mm i.d.) by gradient elution with a methanol-water mixture ranging from 30 to 50% v/v. The detection limits for the various compounds are in the range 7.0-95.1 micrograms dm-3. For the extraction of five organomercurials from spiked soils, eight different extraction solutions were tested to differentiate between the total content and the available/soluble fraction of the analytes. Ammonium acetate solutions (1 mol dm-3) and water proved to be suitable agents for the estimation of the available and soluble fractions of methyl-, ethyl-, benzoic, methoxyethyl- and ethoxyethylmercury. For the determination of the total content of methyl- and benzoic mercury in soils, solutions of potassium iodide (1 mol dm-3)-ascorbic acid (0.1 mol dm-3) and oxalic acid (1 mol dm-3) provided recoveries in the ranges 53-81%. None of the solutions tested is suitable for the extraction of ethyl-, methoxyethyl- and ethoxyethylmercury.

  5. Determination of methylmercury in marine biota samples with advanced mercury analyzer: method validation.

    PubMed

    Azemard, Sabine; Vassileva, Emilia

    2015-06-01

    In this paper, we present a simple, fast and cost-effective method for determination of methyl mercury (MeHg) in marine samples. All important parameters influencing the sample preparation process were investigated and optimized. Full validation of the method was performed in accordance to the ISO-17025 (ISO/IEC, 2005) and Eurachem guidelines. Blanks, selectivity, working range (0.09-3.0ng), recovery (92-108%), intermediate precision (1.7-4.5%), traceability, limit of detection (0.009ng), limit of quantification (0.045ng) and expanded uncertainty (15%, k=2) were assessed. Estimation of the uncertainty contribution of each parameter and the demonstration of traceability of measurement results was provided as well. Furthermore, the selectivity of the method was studied by analyzing the same sample extracts by advanced mercury analyzer (AMA) and gas chromatography-atomic fluorescence spectrometry (GC-AFS). Additional validation of the proposed procedure was effectuated by participation in the IAEA-461 worldwide inter-laboratory comparison exercises. PMID:25624245

  6. Optimization of microwave digestion for mercury determination in marine biological samples by cold vapour atomic absorption spectrometry.

    PubMed

    Cardellicchio, Nicola; Di Leo, Antonella; Giandomenico, Santina; Santoro, Stefania

    2006-01-01

    Optimization of acid digestion method for mercury determination in marine biological samples (dolphin liver, fish and mussel tissues) using a closed vessel microwave sample preparation is presented. Five digestion procedures with different acid mixtures were investigated: the best results were obtained when the microwave-assisted digestion was based on sample dissolution with HNO3-H2SO4-K2Cr2O7 mixture. A comparison between microwave digestion and conventional reflux digestion shows there are considerable losses of mercury in the open digestion system. The microwave digestion method has been tested satisfactorily using two certified reference materials. Analytical results show a good agreement with certified values. The microwave digestion proved to be a reliable and rapid method for decomposition of biological samples in mercury determination.

  7. Simultaneous determination of mercury and organic carbon in sediment and soils using a direct mercury analyzer based on thermal decomposition-atomic absorption spectrophotometry.

    PubMed

    Chen, Jingjing; Chakravarty, Pragya; Davidson, Gregg R; Wren, Daniel G; Locke, Martin A; Zhou, Ying; Brown, Garry; Cizdziel, James V

    2015-04-29

    The purpose of this work was to study the feasibility of using a direct mercury analyzer (DMA) to simultaneously determine mercury (Hg) and organic matter content in sediment and soils. Organic carbon was estimated by re-weighing the sample boats post analysis to obtain loss-on-ignition (LOI) data. The DMA-LOI results were statistically similar (p<0.05) to the conventional muffle furnace approach. A regression equation was developed to convert DMA-LOI data to total organic carbon (TOC), which varied between 0.2% and 13.0%. Thus, mercury analyzers based on combustion can provide accurate estimates of organic carbon content in non-calcareous sediment and soils; however, weight gain from moisture (post-analysis), measurement uncertainty, and sample representativeness should all be taken into account. Sediment cores from seasonal wetland and open water areas from six oxbow lakes in the Mississippi River alluvial flood plain were analyzed. Wetland sediments generally had higher levels of Hg than open water areas owing to a greater fraction of fine particles and higher levels of organic matter. Annual loading of Hg in open water areas was estimated at 4.3, 13.4, 19.2, 20.7, 129, and 135 ng cm(-2) yr(-1) for Beasley, Roundaway, Hampton, Washington, Wolf and Sky Lakes, respectively. Generally, the interval with the highest Hg flux was dated to the 1960s and 1970s. PMID:25847156

  8. Remote Monitoring, Inorganic Monitoring

    EPA Science Inventory

    This chapter provides an overview of applicability, amenability, and operating parameter ranges for various inorganic parameters:this chapter will also provide a compilation of existing and new online technologies for determining inorganic compounds in water samples. A wide vari...

  9. Application of inorganic element ratios to chemometrics for determination of the geographic origin of welsh onions.

    PubMed

    Ariyama, Kaoru; Horita, Hiroshi; Yasui, Akemi

    2004-09-22

    The composition of concentration ratios of 19 inorganic elements to Mg (hereinafter referred to as 19-element/Mg composition) was applied to chemometric techniques to determine the geographic origin (Japan or China) of Welsh onions (Allium fistulosum L.). Using a composition of element ratios has the advantage of simplified sample preparation, and it was possible to determine the geographic origin of a Welsh onion within 2 days. The classical technique based on 20 element concentrations was also used along with the new simpler one based on 19 elements/Mg in order to validate the new technique. Twenty elements, Na, P, K, Ca, Mg, Mn, Fe, Cu, Zn, Sr, Ba, Co, Ni, Rb, Mo, Cd, Cs, La, Ce, and Tl, in 244 Welsh onion samples were analyzed by flame atomic absorption spectroscopy, inductively coupled plasma atomic emission spectrometry, and inductively coupled plasma mass spectrometry. Linear discriminant analysis (LDA) on 20-element concentrations and 19-element/Mg composition was applied to these analytical data, and soft independent modeling of class analogy (SIMCA) on 19-element/Mg composition was applied to these analytical data. The results showed that techniques based on 19-element/Mg composition were effective. LDA, based on 19-element/Mg composition for classification of samples from Japan and from Shandong, Shanghai, and Fujian in China, classified 101 samples used for modeling 97% correctly and predicted another 119 samples excluding 24 nonauthentic samples 93% correctly. In discriminations by 10 times of SIMCA based on 19-element/Mg composition modeled using 101 samples, 220 samples from known production areas including samples used for modeling and excluding 24 nonauthentic samples were predicted 92% correctly. PMID:15366824

  10. Mercury and mercury compounds toxicology. March 1978-July 1989 (Citations from the Life Sciences Collection data base). Report for March 1978-July 1989

    SciTech Connect

    Not Available

    1990-01-01

    This bibliography contains citations concerning the toxic effects of mercury and mercury compounds on biological systems. Mercury metal, mercury vapors, organic mercury compounds, mercury halides, and other inorganic mercury compounds are discussed. Citations include acute, chronic, environmental, metabolic, and pathological effects; and clinical biochemistry of mercury exposure. Heavy metal pollution and bioaccumulation are referenced in related published bibliographies. (Contains 340 citations fully indexed and including a title list.)

  11. Methodological considerations regarding the use of inorganic 197Hg(II) radiotracer to assess mercury methylation potential rates in lake sediment.

    PubMed

    Pérez Catán, Soledad; Guevara, Sergio Ribeiro; Marvin-DiPasquale, Mark; Magnavacca, Cecilia; Cohen, Isaac Marcos; Arribere, María

    2007-09-01

    Methodological considerations on the determination of benthic methyl-mercury (CH(3)Hg) production potentials were investigated on lake sediment, using (197)Hg radiotracer. Three methods to arrest bacterial activity were compared: flash freezing, thermal sterilization, and gamma-irradiation. Flash freezing showed similar CH(3)Hg recoveries as thermal sterilization, which was both 50% higher than the recoveries obtained with gamma-ray irradiation. No additional radiolabel was recovered in kill-control samples after an additional 24 or 65 h of incubation, suggesting that all treatments were effective at arresting Hg(II)-methylating bacterial activity, and that the initial recoveries are likely due to non-methylated (197)Hg(II) carry-over in the organic extraction and/or [(197)Hg]CH(3)Hg produced via abiotic reactions. Two CH(3)Hg extraction methods from sediment were compared: (a) direct extraction into toluene after sediment leaching with CuSO(4) and HCl and (b) the same extraction with an additional back-extraction step to thiosulphate. Similar information was obtained with both methods, but the low efficiency observed and the extra work associated with the back-extraction procedure represent significant disadvantages, even tough the direct extraction involves higher Hg(II) carry over.

  12. Methodological considerations regarding the use of inorganic 197Hg(II) radiotracer to assess mercury methylation potential rates in lake sediment

    USGS Publications Warehouse

    Perez, Catan S.; Guevara, S.R.; Marvin-DiPasquale, M.; Magnavacca, C.; Cohen, I.M.; Arribere, M.

    2007-01-01

    Methodological considerations on the determination of benthic methyl-mercury (CH3Hg) production potentials were investigated on lake sediment, using 197Hg radiotracer. Three methods to arrest bacterial activity were compared: flash freezing, thermal sterilization, and ??-irradiation. Flash freezing showed similar CH3Hg recoveries as thermal sterilization, which was both 50% higher than the recoveries obtained with ??-ray irradiation. No additional radiolabel was recovered in kill-control samples after an additional 24 or 65 h of incubation, suggesting that all treatments were effective at arresting Hg(II)-methylating bacterial activity, and that the initial recoveries are likely due to non-methylated 197Hg(II) carry-over in the organic extraction and/or [197Hg]CH3Hg produced via abiotic reactions. Two CH3Hg extraction methods from sediment were compared: (a) direct extraction into toluene after sediment leaching with CuSO4 and HCl and (b) the same extraction with an additional back-extraction step to thiosulphate. Similar information was obtained with both methods, but the low efficiency observed and the extra work associated with the back-extraction procedure represent significant disadvantages, even tough the direct extraction involves higher Hg(II) carry over. ?? 2007 Elsevier Ltd. All rights reserved.

  13. Evidence for the Presence of Colloidal Metacinnabar in Mercury-DOM-Sulfide Systems as Determined by a Chromatographic-EXAFS Method

    NASA Astrophysics Data System (ADS)

    Gerbig, C. A.; Kim, C. S.; Moreau, J. W.; Aiken, G. R.; Krabbenhoft, D. P.; Nagy, K. L.; Ryan, J. N.

    2008-12-01

    Mercury speciation and bioavailability is frequently thought to be controlled by the presence of dissolved organic matter (DOM) and sulfide. However, the speciation of mercury in these systems is poorly understood due to the complex interactions of mercury, DOM, and sulfide. We have developed a combined chromatographic-extended x-ray absorption fine structure (EXAFS) spectroscopy approach to determine the speciation of the hydrophobic fraction of mercury species in both sulfide-free and sulfide-rich (100 μM) experimental systems that also contain dissolved organic matter isolated from several locations, including the Florida Everglades. Chromatographic experiments were carried out with and without sulfide at varied mercury concentrations ranging from 0.1 nM to 1 μM in the presence of 10 mg L-1 DOM. The method consists of equilibrating the mercury-DOM with or without sulfide for 20 h (pH 6.5, I 0.1M) followed by chromatographic fractionation and concentration on a small column of C18 resin. Greater than 80% of the mercury in all solutions was found to be hydrophobic with respect to the resin when the mercury was interacting with the strong-binding DOM sites. The chromatographic behavior of solutions with and without sulfide was distinctly different. Sulfide-free mercury-DOM systems exhibited typical chromatographic behavior exemplified by resin saturation and subsequent breakthrough of mercury species. The sulfide-rich system exhibited very high resin affinity for almost all mercury species in solution and no apparent breakthrough, regardless of the ratio of mercury to DOM. Similar chromatographic experiments were carried out with and without sulfide at mercury concentrations as low as 250 nM and a DOM concentration of 50 mg L-1. EXAFS spectroscopy at the mercury LIII edge clearly showed spectra consistent with metacinnabar (HgS) as the dominant form of mercury adsorbed to the resin under sulfidic conditions despite the fact that no bulk precipitation was observed

  14. Determination of total arsenic, inorganic and organic arsenic species in wine.

    PubMed

    Herce-Pagliai, C; Moreno, I; González, G; Repetto, M; Cameán, A M

    2002-06-01

    Forty-five wine samples from the south of Spain of different alcoholic strength were analysed for total arsenic and its inorganic [As(III), As(V)] and organic (monomethylarsonic acid [MMAA], dimethylarsinic acid [DMAA]) species. The As levels of the wine samples ranged from 2.1 to 14.6 microg l(-1). The possible effect of the alcoholic fermentation process on the levels of the total arsenic and arsenical species was studied. The average total arsenic levels for the different samples were very similar, without significant differences between all types of wines. In table wines and sherry, the percentages of total inorganic arsenic were 18.6 and 15.6%, with DMAA or MMAA being the predominant species, respectively. In most samples, DMAA was the most abundant species, but the total inorganic aresenic fraction was considerable, representing 25.4% of the total concentration of the element. The estimated daily intakes of total arsenic and total inorganic arsenic for average Spanish consumers were 0.78 and 0.15 microg/person day(-1), respectively. The results suggest that the consumption of these types of wines makes no significant contribution to the total and inorganic arsenic intake for normal drinkers. However, wine consumption contributes a higher arsenic intake than through consumption of beers and sherry brandies.

  15. Determination of methyl mercury by aqueous phase Eehylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection

    USGS Publications Warehouse

    De Wild, John F.; Olsen, Mark L.; Olund, Shane D.

    2002-01-01

    A recent national sampling of streams in the United States revealed low methyl mercury concentrations in surface waters. The resulting median and mean concentrations, calculated from 104 samples, were 0.06 nanograms per liter (ng/L) and 0.15 ng/L, respectively. This level of methyl mercury in surface water in the United States has created a need for analytical techniques capable of detecting sub-nanogram per liter concentrations. In an attempt to create a U.S. Geological Survey approved method, the Wisconsin District Mercury Laboratory has adapted a distillation/ethylation/ gas-phase separation method with cold vapor atomic fluorescence spectroscopy detection for the determination of methyl mercury in filtered and unfiltered waters. This method is described in this report. Based on multiple analyses of surface water and ground-water samples, a method detection limit of 0.04 ng/L was established. Precision and accuracy were evaluated for the method using both spiked and unspiked ground-water and surface-water samples. The percent relative standard deviations ranged from 10.2 to 15.6 for all analyses at all concentrations. Average recoveries obtained for the spiked matrices ranged from 88.8 to 117 percent. The precision and accuracy ranges are within the acceptable method-performance limits. Considering the demonstrated detection limit, precision, and accuracy, the method is an effective means to quantify methyl mercury in waters at or below environmentally relevant concentrations

  16. Tracing mercury pathways in Augusta Bay (southern Italy) by total concentration and isotope determination.

    PubMed

    Bonsignore, M; Tamburrino, S; Oliveri, E; Marchetti, A; Durante, C; Berni, A; Quinci, E; Sprovieri, M

    2015-10-01

    The mercury (Hg) pollution of sediments is the main carrier of Hg for the biota and, subsequently, for the local fish consumers in Augusta Bay area (SE Sicily, Italy), a coastal marine system affected by relevant sewage from an important chlor-alkali factory. This relationship was revealed by the determination of Mass Dependent (MDF) and Mass Independent Fractionation (MIF) of Hg isotopes in sediment, fish and human hair samples. Sediments showed MDF but no MIF, while fish showed MIF, possibly due to photochemical reduction in the water column and depending on the feeding habitat of the species. Benthic and demersal fish exhibited MDF similar to that of sediments in which anthropogenic Hg was deposited, while pelagic organisms evidenced higher MDF and MIF due to photoreduction. Human hair showed high values of δ(202)Hg (offset of +2.2‰ with respect to the consumed fish) and Δ(199)Hg, both associated to fish consumption.

  17. Tracing mercury pathways in Augusta Bay (southern Italy) by total concentration and isotope determination.

    PubMed

    Bonsignore, M; Tamburrino, S; Oliveri, E; Marchetti, A; Durante, C; Berni, A; Quinci, E; Sprovieri, M

    2015-10-01

    The mercury (Hg) pollution of sediments is the main carrier of Hg for the biota and, subsequently, for the local fish consumers in Augusta Bay area (SE Sicily, Italy), a coastal marine system affected by relevant sewage from an important chlor-alkali factory. This relationship was revealed by the determination of Mass Dependent (MDF) and Mass Independent Fractionation (MIF) of Hg isotopes in sediment, fish and human hair samples. Sediments showed MDF but no MIF, while fish showed MIF, possibly due to photochemical reduction in the water column and depending on the feeding habitat of the species. Benthic and demersal fish exhibited MDF similar to that of sediments in which anthropogenic Hg was deposited, while pelagic organisms evidenced higher MDF and MIF due to photoreduction. Human hair showed high values of δ(202)Hg (offset of +2.2‰ with respect to the consumed fish) and Δ(199)Hg, both associated to fish consumption. PMID:26074159

  18. Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas

    DOE PAGES

    Alia, Shaun M.; Hurst, Katherine E.; Kocha, Shyam S.; Pivovar, Bryan S.

    2016-06-02

    Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparativemore » studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.« less

  19. An evaluation of a reagentless method for the determination of total mercury in aquatic life

    USGS Publications Warehouse

    Haynes, Sekeenia; Gragg, Richard D.; Johnson, Elijah; Robinson, Larry; Orazio, Carl E.

    2006-01-01

    Multiple treatment (i.e., drying, chemical digestion, and oxidation) steps are often required during preparation of biological matrices for quantitative analysis of mercury; these multiple steps could potentially lead to systematic errors and poor recovery of the analyte. In this study, the Direct Mercury Analyzer (Milestone Inc., Monroe, CT) was utilized to measure total mercury in fish tissue by integrating steps of drying, sample combustion and gold sequestration with successive identification using atomic absorption spectrometry. We also evaluated the differences between the mercury concentrations found in samples that were homogenized and samples with no preparation. These results were confirmed with cold vapor atomic absorbance and fluorescence spectrometric methods of analysis. Finally, total mercury in wild captured largemouth bass (n = 20) were assessed using the Direct Mercury Analyzer to examine internal variability between mercury concentrations in muscle, liver and brain organs. Direct analysis of total mercury measured in muscle tissue was strongly correlated with muscle tissue that was homogenized before analysis (r = 0.81, p < 0.0001). Additionally, results using this integrated method compared favorably (p < 0.05) with conventional cold vapor spectrometry with atomic absorbance and fluorescence detection methods. Mercury concentrations in brain were significantly lower than concentrations in muscle (p < 0.001) and liver (p < 0.05) tissues. This integrated method can measure a wide range of mercury concentrations (0-500 ??g) using small sample sizes. Total mercury measurements in this study are comparative to the methods (cold vapor) commonly used for total mercury analysis and are devoid of laborious sample preparation and expensive hazardous waste. ?? Springer 2006.

  20. Application of capillary electrophoresis for the determination of inorganic ions in trace explosives and explosive residues.

    PubMed

    Kishi, T; Nakamura, J; Arai, H

    1998-01-01

    Capillary electrophoresis was developed for the analysis of low explosive residue, because a significant amount of inorganic anions and cations remain after deflagration. Certain high explosives, such as emulsion explosives, produce a vast quantity of inorganic ions after a blast and can readily be analyzed using capillary electrophoresis. Often, trace amounts of explosive residues may be present on physical evidence submitted in criminal cases. Trace amounts of inorganic ions such as nitrate, chlorate, and ammonium may be detected using capillary electrophoresis owing to the low detection limit of these species. The utility of capillary electrophoresis in the analysis of explosive residues is in its ability to simultaneously analyze trace explosives and ionic products present on physical evidence. PMID:9511855

  1. Application of capillary electrophoresis for the determination of inorganic ions in trace explosives and explosive residues.

    PubMed

    Kishi, T; Nakamura, J; Arai, H

    1998-01-01

    Capillary electrophoresis was developed for the analysis of low explosive residue, because a significant amount of inorganic anions and cations remain after deflagration. Certain high explosives, such as emulsion explosives, produce a vast quantity of inorganic ions after a blast and can readily be analyzed using capillary electrophoresis. Often, trace amounts of explosive residues may be present on physical evidence submitted in criminal cases. Trace amounts of inorganic ions such as nitrate, chlorate, and ammonium may be detected using capillary electrophoresis owing to the low detection limit of these species. The utility of capillary electrophoresis in the analysis of explosive residues is in its ability to simultaneously analyze trace explosives and ionic products present on physical evidence.

  2. Comparative determination of methyl mercury in whole blood samples using GC-ICP-MS and GC-MS techniques.

    PubMed

    Hippler, J; Hoppe, H W; Mosel, F; Rettenmeier, A W; Hirner, A V

    2009-08-15

    Two methods for the determination of methyl mercury (MeHg) in whole blood samples based on different mass spectrometric detection techniques are compared. The methods were employed in two studies in which the internal exposure of a group of mercury-exposed workers to total mercury and MeHg was investigated. Blood samples of these workers were analysed for MeHg independently from each other in two laboratories using similar extraction procedures but different detection techniques, viz. coupled GC-EI-MS/ICP-MS and GC-MS using D(3)-MeHg as internal standard. MeHg was detected in all blood samples in concentrations ranging from 0.3 to 9.0 microg/L. Though different detection techniques were employed, the results obtained by the two laboratories were in relatively good agreement.

  3. Estimate of the uncertainty in measurement for the determination of mercury in seafood by TDA AAS.

    PubMed

    Torres, Daiane Placido; Olivares, Igor R B; Queiroz, Helena Müller

    2015-01-01

    An approach for the estimate of the uncertainty in measurement considering the individual sources related to the different steps of the method under evaluation as well as the uncertainties estimated from the validation data for the determination of mercury in seafood by using thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) is proposed. The considered method has been fully optimized and validated in an official laboratory of the Ministry of Agriculture, Livestock and Food Supply of Brazil, in order to comply with national and international food regulations and quality assurance. The referred method has been accredited under the ISO/IEC 17025 norm since 2010. The approach of the present work in order to reach the aim of estimating of the uncertainty in measurement was based on six sources of uncertainty for mercury determination in seafood by TDA AAS, following the validation process, which were: Linear least square regression, Repeatability, Intermediate precision, Correction factor of the analytical curve, Sample mass, and Standard reference solution. Those that most influenced the uncertainty in measurement were sample weight, repeatability, intermediate precision and calibration curve. The obtained result for the estimate of uncertainty in measurement in the present work reached a value of 13.39%, which complies with the European Regulation EC 836/2011. This figure represents a very realistic estimate of the routine conditions, since it fairly encompasses the dispersion obtained from the value attributed to the sample and the value measured by the laboratory analysts. From this outcome, it is possible to infer that the validation data (based on calibration curve, recovery and precision), together with the variation on sample mass, can offer a proper estimate of uncertainty in measurement. PMID:26065523

  4. Estimate of the uncertainty in measurement for the determination of mercury in seafood by TDA AAS.

    PubMed

    Torres, Daiane Placido; Olivares, Igor R B; Queiroz, Helena Müller

    2015-01-01

    An approach for the estimate of the uncertainty in measurement considering the individual sources related to the different steps of the method under evaluation as well as the uncertainties estimated from the validation data for the determination of mercury in seafood by using thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) is proposed. The considered method has been fully optimized and validated in an official laboratory of the Ministry of Agriculture, Livestock and Food Supply of Brazil, in order to comply with national and international food regulations and quality assurance. The referred method has been accredited under the ISO/IEC 17025 norm since 2010. The approach of the present work in order to reach the aim of estimating of the uncertainty in measurement was based on six sources of uncertainty for mercury determination in seafood by TDA AAS, following the validation process, which were: Linear least square regression, Repeatability, Intermediate precision, Correction factor of the analytical curve, Sample mass, and Standard reference solution. Those that most influenced the uncertainty in measurement were sample weight, repeatability, intermediate precision and calibration curve. The obtained result for the estimate of uncertainty in measurement in the present work reached a value of 13.39%, which complies with the European Regulation EC 836/2011. This figure represents a very realistic estimate of the routine conditions, since it fairly encompasses the dispersion obtained from the value attributed to the sample and the value measured by the laboratory analysts. From this outcome, it is possible to infer that the validation data (based on calibration curve, recovery and precision), together with the variation on sample mass, can offer a proper estimate of uncertainty in measurement.

  5. Field studies using the oyster Crassostrea virginica to determine mercury accumulation and depuration rates

    SciTech Connect

    Palmer, S.J.; Presley, B.J.; Powell, E.N. ); Taylor, R.J. )

    1993-09-01

    Mercury as an environmental hazard, especially with regard to human health, has been of concern since the Minamata disaster. From 1966 to 1970 a chlor-alkali plant in Point Comfort, Texas released mercury-enriched wastewater (up to 29.9 kgHg/day) into Lavaca Bay (TWQB 1977). Since 1970 the Texas Department of Health (TDH) has periodically closed and then re-opened portions of Lavaca Bay to the harvesting of crabs and finfish based on their levels (<>0.5 ppm Hg wet weight) of mercury. A 1988 closure remains in effect as of this writing. Mercury contamination in Lavaca Bay organisms thus continues to be a problem 22 years after the chlor-alkali plant ceased releasing mercury into the bay. The goal of the following research was to better understand the behavior of mercury in Lavaca Bay. Oysters have been widely used as indicator species in metal pollution studies. Most such programs have focused on the concentrations of metals in oysters from different geographic areas. This study, however, investigated the rate and amount of mercury a [open quotes]clean[close quotes] oyster would accumulate when transplanted to a contaminated estuary and the rate of mercury depuration by contaminated oysters placed in a clean environment. The oysters were additionally analyzed for Ba, Cu, Fe, P, and Zn to test for the possible involvement of these metals in mercury accumulation and depuration. 17 refs., 3 figs., 2 tabs.

  6. Dielectric barrier discharge-plasma induced vaporization and its application to the determination of mercury by atomic fluorescence spectrometry.

    PubMed

    Liu, Zhifu; Zhu, Zhenli; Wu, Qingju; Hu, Shenghong; Zheng, Hongtao

    2011-11-01

    This paper describes a low-temperature dielectric barrier discharge (DBD)-plasma induced vaporization technique using mercury as a model analyte. The evaporation and atomization of dissolved mercury species in the sample solution can be achieved rapidly in one step, allowing mercury to be directly detected by atomic fluorescence spectrometry. The DBD plasma was generated concentrically in-between two quartz tube (outer tube: i.d. 5 mm and o.d. 6 mm, inner tube: i.d. 2 mm and o.d. 3 mm). A copper electrode was embedded inside the inner quartz tube and sample solution was applied onto the outer surface of the inner tube. The effects of operating parameters such as plasma power, plasma gas identity, plasma gas flow rate and interferences from concomitant elements have been investigated. The difference in the sensitivities of Hg(2+), methylmercury (MeHg) and ethylmercury (EtHg) was found to be negligible in the presence of formic acid (≥1% v/v). The analytical performance of the present technique was evaluated under optimized conditions. The limits of detection were calculated to be 0.02 ng mL(-1) for Hg(2+), MeHg and EtHg, and repeatability was 6.2%, 4.9% and 4.3% RSD (n = 11) for 1 ng mL(-1) of Hg(2+), MeHg and EtHg, respectively. This provides a simple mercury detection method for small-volume samples with an absolute limit of detection at femtogram level. The accuracy of the system was verified by the determination of mercury in reference materials including freeze-dried urine ZK020-2, simulated water matrix reference material GBW(E) 080392 and tuna fish GBW10029, and the concentration of mercury determined by the present method agreed well with the reference values. PMID:21935545

  7. Mercury fluxes out of glacial and non-glacial streams, as determined by continuous measurements of turbidity and CDOM

    NASA Astrophysics Data System (ADS)

    Vermilyea, A.; Nagorski, S. A.; Lamborg, C. H.; Scott, D.; Hood, E. W.

    2011-12-01

    was associated with particles. TSS in Lemon Creek was consistently greater (4-41 fold) than in Peterson Creek. This study lays the groundwork for accurately determining mercury fluxes out of watersheds that are being impacted by glacial recession. While streams in wetland/temperate forest landscapes may have higher FMHg concentrations, glacial watersheds export a greater mass of total mercury per watershed area, a dynamic that will continue to shift as our climate warms. The mercury exported from these glacial streams is of concern because it has the potential to be incorporated into marine ecosystems through methylation in estuaries.

  8. New method to determine the optical rotatory dispersion of inorganic crystals applied to some samples of Carpathian Quartz.

    PubMed

    Dimitriu, Dan Gheorghe; Dorohoi, Dana Ortansa

    2014-10-15

    A new method to determine the optical rotatory dispersion (ORD) in the visible range, based on a channeled spectrum obtained with a uniax inorganic crystal introduced between two crossed polarizers with its optical axis parallel to the light propagation direction is detailed in this paper. When the studied inorganic crystals are transparent, this method permits the estimation of the optical rotatory dispersion in the visible range, for which the cheap polarizers are available. The speed of the measurements is very high, because the estimations are made from the channeled spectrum obtained for a single arrangement of the optical components. By using a computer, ORD is quickly determined for the visible range. The results obtained by this method for some Carpathian Quartz samples are consistent with those from literature. The proposed method can be also applied in UV and IR spectral ranges, when the anisotropic layers are transparent and the linearly polarized radiations can be obtained.

  9. PATHOLOIGCAL EFFECTS OF DIETARY METHYL MERCURY IN AMERICAN KESTRELS ( FALCO SPARVERIUS)

    EPA Science Inventory

    Methyl mercury in aquatic food webs poses significant health risks to both wildlife and humans. One primary source of mercury contamination for both aquatic and terrestrial systems is atmospheric deposition of inorganic mercury from industrial emissions. Once in the environment, ...

  10. Sensing Mercury for Biomedical and Environmental Monitoring

    PubMed Central

    Selid, Paul D.; Xu, Hanying; Collins, E. Michael; Face-Collins, Marla Striped; Zhao, Julia Xiaojun

    2009-01-01

    Mercury is a very toxic element that is widely spread in the atmosphere, lithosphere, and surface water. Concentrated mercury poses serious problems to human health, as bioaccumulation of mercury within the brain and kidneys ultimately leads to neurological diseases. To control mercury pollution and reduce mercury damage to human health, sensitive determination of mercury is important. This article summarizes some current sensors for the determination of both abiotic and biotic mercury. A wide array of sensors for monitoring mercury is described, including biosensors and chemical sensors, while piezoelectric and microcantilever sensors are also described. Additionally, newly developed nanomaterials offer great potential for fabricating novel mercury sensors. Some of the functional fluorescent nanosensors for the determination of mercury are covered. Afterwards, the in vivo determination of mercury and the characterization of different forms of mercury are discussed. Finally, the future direction for mercury detection is outlined, suggesting that nanomaterials may provide revolutionary tools in biomedical and environmental monitoring of mercury. PMID:22346707

  11. Sensitive determination of total particulate phosphorus and particulate inorganic phosphorus in seawater using liquid waveguide spectrophotometry.

    PubMed

    Ehama, Makoto; Hashihama, Fuminori; Kinouchi, Shinko; Kanda, Jota; Saito, Hiroaki

    2016-06-01

    Determining the total particulate phosphorus (TPP) and particulate inorganic phosphorus (PIP) in oligotrophic oceanic water generally requires the filtration of a large amount of water sample. This paper describes methods that require small filtration volumes for determining the TPP and PIP concentrations. The methods were devised by validating or improving conventional sample processing and by applying highly sensitive liquid waveguide spectrophotometry to the measurements of oxidized or acid-extracted phosphate from TPP and PIP, respectively. The oxidation of TPP was performed by a chemical wet oxidation method using 3% potassium persulfate. The acid extraction of PIP was initially carried out based on the conventional extraction methodology, which requires 1M HCl, followed by the procedure for decreasing acidity. While the conventional procedure for acid removal requires a ten-fold dilution of the 1M HCl extract with purified water, the improved procedure proposed in this study uses 8M NaOH solution for neutralizing 1M HCl extract in order to reduce the dilution effect. An experiment for comparing the absorbances of the phosphate standard dissolved in 0.1M HCl and of that dissolved in a neutralized solution [1M HCl: 8M NaOH=8:1 (v:v)] exhibited a higher absorbance in the neutralized solution. This indicated that the improved procedure completely removed the acid effect, which reduces the sensitivity of the phosphate measurement. Application to an ultraoligotrophic water sample showed that the TPP concentration in a 1075mL-filtered sample was 8.4nM with a coefficient of variation (CV) of 4.3% and the PIP concentration in a 2300mL-filtered sample was 1.3nM with a CV of 6.1%. Based on the detection limit (3nM) of the sensitive phosphate measurement and the ambient TPP and PIP concentrations of the ultraoligotrophic water, the minimum filtration volumes required for the detection of TPP and PIP were estimated to be 15 and 52mL, respectively.

  12. Sensitive determination of total particulate phosphorus and particulate inorganic phosphorus in seawater using liquid waveguide spectrophotometry.

    PubMed

    Ehama, Makoto; Hashihama, Fuminori; Kinouchi, Shinko; Kanda, Jota; Saito, Hiroaki

    2016-06-01

    Determining the total particulate phosphorus (TPP) and particulate inorganic phosphorus (PIP) in oligotrophic oceanic water generally requires the filtration of a large amount of water sample. This paper describes methods that require small filtration volumes for determining the TPP and PIP concentrations. The methods were devised by validating or improving conventional sample processing and by applying highly sensitive liquid waveguide spectrophotometry to the measurements of oxidized or acid-extracted phosphate from TPP and PIP, respectively. The oxidation of TPP was performed by a chemical wet oxidation method using 3% potassium persulfate. The acid extraction of PIP was initially carried out based on the conventional extraction methodology, which requires 1M HCl, followed by the procedure for decreasing acidity. While the conventional procedure for acid removal requires a ten-fold dilution of the 1M HCl extract with purified water, the improved procedure proposed in this study uses 8M NaOH solution for neutralizing 1M HCl extract in order to reduce the dilution effect. An experiment for comparing the absorbances of the phosphate standard dissolved in 0.1M HCl and of that dissolved in a neutralized solution [1M HCl: 8M NaOH=8:1 (v:v)] exhibited a higher absorbance in the neutralized solution. This indicated that the improved procedure completely removed the acid effect, which reduces the sensitivity of the phosphate measurement. Application to an ultraoligotrophic water sample showed that the TPP concentration in a 1075mL-filtered sample was 8.4nM with a coefficient of variation (CV) of 4.3% and the PIP concentration in a 2300mL-filtered sample was 1.3nM with a CV of 6.1%. Based on the detection limit (3nM) of the sensitive phosphate measurement and the ambient TPP and PIP concentrations of the ultraoligotrophic water, the minimum filtration volumes required for the detection of TPP and PIP were estimated to be 15 and 52mL, respectively. PMID:27130091

  13. Determination of dry carbon-based sorbent injection for mercury control in utility ESP and baghouses

    SciTech Connect

    Broderick, T.; Haythornthwaite, S.; Bell, W.; Selegue, T.; Perry, M.

    1998-12-31

    Domestic coal-fired power plants emit approximately 40 to 80 metric tons of mercury to the atmosphere annually. The mercury concentration in utility flue gas is in the dilute range of 0.1 to 1 parts per billion. The EPA is assessing whether such low concentrations of mercury emissions from coal-fired utilities pose any significant health risk and whether mercury regulations would be necessary or appropriate. In anticipation of possible mercury control regulations, ADA Technologies (ADA) and TDA Research, Inc (TDA) were funded by the Department of Energy (DOE) to evaluate carbon-based sorbents for mercury control at utility coal-fired power plants. Past investigations of the use of dry carbon-based sorbent injection for mercury control on pilot-scale utility flue gas applications have shown that these sorbents are capable of removing gas-phase mercury. ADA Technologies field-tested the mercury removal capability of several carbon-based sorbents manufactured by TDA. The test facility was a DOE-owned test facility built and operated by ADA at the Public Service Company of Colorado`s Comanche Station in Pueblo, Colorado. The pilot-scale test fixture is a 600-acfm particulate control module that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse. It extracts a slipstream of flue gas from a coal-fired utility boiler. Sorbent is injected into the flue gas slipstream upstream of the particulate control module and is removed by the module. ADA evaluated the mercury capture efficiency of the sorbents over a range of flue gas temperatures and injection rates. In addition, the effect of flyash on mercury capture was also investigated. The test facility is configured to take flue gas from either upstream or downstream of Comanche Station`s full-scale reverse-gas baghouse, allowing tests to be conducted with normal-ash or low-ash flue gas.

  14. Mercury exposure and children's health.

    PubMed

    Bose-O'Reilly, Stephan; McCarty, Kathleen M; Steckling, Nadine; Lettmeier, Beate

    2010-09-01

    Acute or chronic mercury exposure can cause adverse effects during any period of development. Mercury is a highly toxic element; there is no known safe level of exposure. Ideally, neither children nor adults should have any mercury in their bodies because it provides no physiological benefit. Prenatal and postnatal mercury exposures occur frequently in many different ways. Pediatricians, nurses, and other health care providers should understand the scope of mercury exposures and health problems among children and be prepared to handle mercury exposures in medical practice. Prevention is the key to reducing mercury poisoning. Mercury exists in different chemical forms: elemental (or metallic), inorganic, and organic (methylmercury and ethyl mercury). Mercury exposure can cause acute and chronic intoxication at low levels of exposure. Mercury is neuro-, nephro-, and immunotoxic. The development of the child in utero and early in life is at particular risk. Mercury is ubiquitous and persistent. Mercury is a global pollutant, bio-accumulating, mainly through the aquatic food chain, resulting in a serious health hazard for children. This article provides an extensive review of mercury exposure and children's health.

  15. Analysis for the presence of determinants involved in the transport of mercury across bacterial membrane from polluted water bodies of India.

    PubMed

    Jan, Arif Tasleem; Azam, Mudsser; Choi, Inho; Ali, Arif; Haq, Qazi Mohd Rizwanul

    2016-01-01

    Mercury, which is ubiquitous and recalcitrant to biodegradation processes, threatens human health by escaping to the environment via various natural and anthropogenic activities. Non-biodegradability of mercury pollutants has necessitated the development and implementation of economic alternatives with promising potential to remove metals from the environment. Enhancement of microbial based remediation strategies through genetic engineering approaches provides one such alternative with a promising future. In this study, bacterial isolates inhabiting polluted sites were screened for tolerance to varying concentrations of mercuric chloride. Following identification, several Pseudomonas and Klebsiella species were found to exhibit the highest tolerance to both organic and inorganic mercury. Screened bacterial isolates were examined for their genetic make-up in terms of the presence of genes (merP and merT) involved in the transport of mercury across the membrane either alone or in combination to deal with the toxic mercury. Gene sequence analysis revealed that the merP gene showed 86-99% homology, while the merT gene showed >98% homology with previously reported sequences. By exploring the genes involved in imparting metal resistance to bacteria, this study will serve to highlight the credentials that are particularly advantageous for their practical application to remediation of mercury from the environment.

  16. Analysis for the presence of determinants involved in the transport of mercury across bacterial membrane from polluted water bodies of India

    PubMed Central

    Jan, Arif Tasleem; Azam, Mudsser; Choi, Inho; Ali, Arif; Haq, Qazi Mohd. Rizwanul

    2016-01-01

    Mercury, which is ubiquitous and recalcitrant to biodegradation processes, threatens human health by escaping to the environment via various natural and anthropogenic activities. Non-biodegradability of mercury pollutants has necessitated the development and implementation of economic alternatives with promising potential to remove metals from the environment. Enhancement of microbial based remediation strategies through genetic engineering approaches provides one such alternative with a promising future. In this study, bacterial isolates inhabiting polluted sites were screened for tolerance to varying concentrations of mercuric chloride. Following identification, several Pseudomonas and Klebsiella species were found to exhibit the highest tolerance to both organic and inorganic mercury. Screened bacterial isolates were examined for their genetic make-up in terms of the presence of genes (merP and merT) involved in the transport of mercury across the membrane either alone or in combination to deal with the toxic mercury. Gene sequence analysis revealed that the merP gene showed 86–99% homology, while the merT gene showed >98% homology with previously reported sequences. By exploring the genes involved in imparting metal resistance to bacteria, this study will serve to highlight the credentials that are particularly advantageous for their practical application to remediation of mercury from the environment. PMID:26887227

  17. Reversed-Phase High-Performance Liquid Chromatographic Separation of Inorganic Mercury And Methylmercury Driven By Their Different Coordination Chemistry Towards Thiols

    SciTech Connect

    Percy, A.J.; Korbas, M.; George, G.N.; Gailer, J.

    2009-06-02

    Since mercuric mercury (Hg{sup 2+}) and methylmercury (CH{sub 3}Hg{sup +}) display different toxicological properties in mammals, methods for their quantification in dietary items must be available. Employing Hg-specific detection, we have developed a rapid, isocratic, and affordable RP-HPLC separation of these mercurials using thiol-containing mobile phases. Optimal separation was achieved with a 50 mM phosphate-buffer containing 10 mM L-cysteine at pH 7.5. The separation is driven by the on-column formation of complexes between each mercurial and L-cysteine, which are then separated according to their different hydrophobicities. The developed method is compatible with inductively coupled plasma atomic emission spectrometry and was applied to analyze spiked human urine.

  18. COULOMETRIC DETERMINATION OF TOTAL SULFUR AND REDUCED INORGANIC SULFUR FRACTIONS IN ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    Evaluation of the solid-phase partitioning of sulfur is frequently an important analytical component of risk assessments at hazardous waste sites because minerals containing reduced-sulfur can significantly affect the transport and fate of organic and inorganic contaminants in na...

  19. METABOLISM AS A DETERMINING FACTOR IN ACUTE AND CHRONIC TOXICITY OF INORGANIC ARSENIC

    EPA Science Inventory

    The metabolism of inorganic arsenic (iAs) in humans involves reduction of As(V)-species to trivalency and oxidative methylation of As(III)-species. In this pathway, iAs is converted to methylarsenic (MAs) and dimethyl arsenic (DMAs) metabolites that contain As(III) or As(V). Rec...

  20. Incorporation of inorganic mercury (Hg2+) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: the role of different plankton size fractions and species assemblages

    USGS Publications Warehouse

    Soto Cárdenas, Carolina; Diéguez, Maria C.; Ribeiro Guevara, Sergio; Marvin-DiPasquale, Mark; Queimaliños, Claudia P.

    2014-01-01

    In lake food webs, pelagic basal organisms such as bacteria and phytoplankton incorporate mercury (Hg2+) from the dissolved phase and pass the adsorbed and internalized Hg to higher trophic levels. This experimental investigation addresses the incorporation of dissolved Hg2+ by four plankton fractions (picoplankton: 0.2–2.7 μm; pico + nanoplankton: 0.2–20 μm; microplankton: 20–50 μm; and mesoplankton: 50–200 μm) obtained from four Andean Patagonian lakes, using the radioisotope 197Hg2+. Species composition and abundance were determined in each plankton fraction. In addition, morphometric parameters such as surface and biovolume were calculated using standard geometric models. The incorporation of Hg2+ in each plankton fraction was analyzed through three concentration factors: BCF (bioconcentration factor) as a function of cell or individual abundance, SCF (surface concentration factor) and VCF (volume concentration factor) as functions of individual exposed surface and biovolume, respectively. Overall, this investigation showed that through adsorption and internalization, pico + nanoplankton play a central role leading the incorporation of Hg2+ in pelagic food webs of Andean lakes. Larger planktonic organisms included in the micro- and mesoplankton fractions incorporate Hg2+ by surface adsorption, although at a lesser extent. Mixotrophic bacterivorous organisms dominate the different plankton fractions of the lakes connecting trophic levels through microbial loops (e.g., bacteria–nanoflagellates–crustaceans; bacteria–ciliates–crustaceans; endosymbiotic algae–ciliates). These bacterivorous organisms, which incorporate Hg from the dissolved phase and through their prey, appear to explain the high incorporation of Hg2+ observed in all the plankton fractions.

  1. Incorporation of inorganic mercury (Hg²⁺) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: the role of different plankton size fractions and species assemblages.

    PubMed

    Soto Cárdenas, Carolina; Diéguez, Maria C; Ribeiro Guevara, Sergio; Marvin-DiPasquale, Mark; Queimaliños, Claudia P

    2014-10-01

    In lake food webs, pelagic basal organisms such as bacteria and phytoplankton incorporate mercury (Hg(2+)) from the dissolved phase and pass the adsorbed and internalized Hg to higher trophic levels. This experimental investigation addresses the incorporation of dissolved Hg(2+) by four plankton fractions (picoplankton: 0.2-2.7 μm; pico+nanoplankton: 0.2-20 μm; microplankton: 20-50 μm; and mesoplankton: 50-200 μm) obtained from four Andean Patagonian lakes, using the radioisotope (197)Hg(2+). Species composition and abundance were determined in each plankton fraction. In addition, morphometric parameters such as surface and biovolume were calculated using standard geometric models. The incorporation of Hg(2+) in each plankton fraction was analyzed through three concentration factors: BCF (bioconcentration factor) as a function of cell or individual abundance, SCF (surface concentration factor) and VCF (volume concentration factor) as functions of individual exposed surface and biovolume, respectively. Overall, this investigation showed that through adsorption and internalization, pico+nanoplankton play a central role leading the incorporation of Hg(2+) in pelagic food webs of Andean lakes. Larger planktonic organisms included in the micro- and mesoplankton fractions incorporate Hg(2+) by surface adsorption, although at a lesser extent. Mixotrophic bacterivorous organisms dominate the different plankton fractions of the lakes connecting trophic levels through microbial loops (e.g., bacteria-nanoflagellates-crustaceans; bacteria-ciliates-crustaceans; endosymbiotic algae-ciliates). These bacterivorous organisms, which incorporate Hg from the dissolved phase and through their prey, appear to explain the high incorporation of Hg(2+) observed in all the plankton fractions.

  2. Development and Evaluation of an Analytical Method for the Determination of Total Atmospheric Mercury. Final Report.

    ERIC Educational Resources Information Center

    Chase, D. L.; And Others

    Total mercury in ambient air can be collected in iodine monochloride, but the subsequent analysis is relatively complex and tedious, and contamination from reagents and containers is a problem. A sliver wool collector, preceded by a catalytic pyrolysis furnace, gives good recovery of mercury and simplifies the analytical step. An instrumental…

  3. Determination of inorganic arsenic species by flow injection hydride generation atomic absorption spectrometry with variable sodium tetrahydroborate concentrations*1

    NASA Astrophysics Data System (ADS)

    Sigrist, Mirna E.; Beldoménico, Horacio R.

    2004-07-01

    This work describes a study on the determination of inorganic arsenic species in ground water and synthetic experimental matrices, using a flow injection system with on-line hydride generation device coupled to an atomic absorption spectrometer with flame-heated quartz atomizer (FI HG AAS). Specific trivalent arsenic determination is based on the slow kinetics of As(V) on the hydride generation reaction using sufficiently low concentrations of sodium tetrahydroborate (NaBH 4) as reductant in highly acidic conditions (pH<0). Under these conditions, the efficiency of hydride generation from As(V) is much lower than that from As(III). The pentavalent form is determined by the difference between total inorganic arsenic and As(III). As(V) interferences were studied using As(III) solutions ranging from 0% to 50% of total inorganic As. The optimized NaBH 4 concentration was 0.035% (w/v). The detection limit was 1.4 μg l -1 As(III). As(V) interferences were 6% in the case of water samples with 6 μg l -1 As(III) in the presence of 54 μg l -1 As(V) (i.e. 10% As(III)). Interferences of methylated arsenic species (MMA and DMA) were evaluated. Speciation method was satisfactorily applied to 20 field arsenical water samples from Santa Fe, Argentina, with values ranging from 30 to 308 μg l -1 total As. We found from 0% to 36% As(III) in the 20 field samples. The developed methodology constitutes an economic, simple and reliable way to evaluate inorganic arsenic distribution in underground waters or similar systems with negligible or no content of organoarsenicals.

  4. Modelling of mercury emissions from background soils.

    PubMed

    Scholtz, M T; Van Heyst, B J; Schroeder, W H

    2003-03-20

    Emissions of volatile mercury species from natural soils are believed to be a significant contributor to the atmospheric burden of mercury, but only order-of-magnitude estimates of emissions from these sources are available. The scaling-up of mercury flux measurements to regional or global scales is confounded by a limited understanding of the physical, chemical and biochemical processes that occur in the soil, a complex environmental matrix. This study is a first step toward the development of an air-surface exchange model for mercury (known as the mercury emission model (MEM)). The objective of the study is to model the partitioning and movement of inorganic Hg(II) and Hg(0) in open field soils, and to use MEM to interpret published data on mercury emissions to the atmosphere. MEM is a multi-layered, dynamic finite-element soil and atmospheric surface-layer model that simulates the exchange of heat, moisture and mercury between soils and the atmosphere. The model includes a simple formulation of the reduction of inorganic Hg(II) to Hg(0). Good agreement was found between the meteorological dependence of observed mercury emission fluxes, and hourly modelled fluxes, and it is concluded that MEM is able to simulate well the soil and atmospheric processes influencing the emission of Hg(0) to the atmosphere. The heretofore unexplained close correlation between soil temperature and mercury emission flux is fully modelled by MEM and is attributed to the temperature dependence of the Hg(0) Henry's Law coefficient and the control of the volumetric soil-air fraction on the diffusion of Hg(0) near the surface. The observed correlation between solar radiation intensity and mercury flux, appears in part to be due to the surface-energy balance between radiation, and sensible and latent heat fluxes which determines the soil temperature. The modelled results imply that empirical correlations that are based only on flux chamber data, may not extend to the open atmosphere for all

  5. Mercury speciation in sea food by flow injection cold vapor atomic absorption spectrometry using selective solid phase extraction.

    PubMed

    Vereda Alonso, E; Siles Cordero, M T; García de Torres, A; Cañada Rudner, P; Cano Pavón, J M

    2008-10-19

    An on-line inorganic and organomercury species separation, preconcentration and determination system consisting of cold vapor atomic absorption spectrometry (CV-AAS or CV-ETAAS) coupled to a flow injection (FI) method was studied. The inorganic mercury species was retained on a column (i.d., 3 mm; length 3 cm) packed to a height of 0.7 cm with a chelating resin aminopropyl-controlled pore glass (550 A) functionalized with [1,5-bis (2 pyridyl)-3-sulphophenyl methylene thiocarbonohydrazyde] placed in the injection valve of a simple flow manifold. Methylmercury is not directly determined. Previous oxidation of the organomercurial species permitted the determination of total mercury. The separation of mercury species was obtained by the selective retention of inorganic mercury on the chelating resin. The difference between total and inorganic mercury determined the organomercury content in the sample. The inorganic mercury was removed on-line from the microcolumn with 6% (m/v) thiourea. The mercury cold vapor generation was performed on-line with 0.2% (m/v) sodium tethrahydroborate and 0.05% (m/v) sodium hydroxide as reducing solution. The determination was performed using CV-AAS and CV-ETAAS, both approaches have been used and compared for the speciation of mercury in sea food. A detection limit of 10 and 6 ng l(-1) was achieved for CV-AAS and CV-ETAAS, respectively. The precision for 10 replicate determinations at the 1 microg l(-1) Hg level was 3.5% relative standard deviation (R.S.D.), calculated from the peak heights obtained. Both approaches were validated with the use of two certified reference materials and by spiking experiments. By analyzing the two biological certified materials, it was evident that the difference between the total mercury and inorganic mercury corresponds to methylmercury. The concentrations obtained by both techniques were in agreement with the certified values or with differences of the certified values for total Hg(2+) and CH(3)Hg

  6. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium.

    PubMed

    Shekhar, R

    2012-05-15

    A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels. PMID:22483872

  7. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium.

    PubMed

    Shekhar, R

    2012-05-15

    A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels.

  8. A continuous flow cold vapour procedure for mercury determination by atomic emission using the reverse flow injection approach

    NASA Astrophysics Data System (ADS)

    De Andrade, João Carlos; Bueno, Maria Izabel M. S.

    1994-07-01

    An experimental set-up for on-line Hg 2+ reduction and determination was devised using the reverse flow injection analysis (r-FIA) concept and the cold vapour (CV) technique, injecting an acidic Sn 2+ solution into the mercury sample line. The elemental mercury generated is separated from the reacting mixture by a 100 ml min -1 helium stream, which passes through a gas-liquid separator connected to a permeation cell. This gas stream is used as the plasma medium. The permeated Hg° is then concentrated on a 0.3 g gold foil placed inside a quartz tube connected to an 11 W He de discharge plasma chamber. The mercury retained on the gold surface is released by resistive heating and the emission intensity is observed at the 253.7 nm mercury line. For an injection cycle of 30 s, the calibration graphs are linear up to 50 ng ml -1(itr 2 = 0.999). An injection frequency of 120 h -1 is achieved, with negligible carry-over. The calculated relative standard deviation of the transient peaks is 1.6%. Higher sensitivities can be achieved using longer injection cycles. Samples of Human Hair Certified Reference Material were used to determine the accuracy of the method.

  9. Resonant Rayleigh scattering for the determination of trace amounts of mercury (II) with thiocyanate and basic triphenylmethane dyes

    SciTech Connect

    Liu, S.; Liu, Z.; Zhou, G.

    1998-05-01

    Intense resonance Rayleigh scattering (RRS) appears when mercury (II) reacts with thiocyanate and a basic triphenylmethane dye (BTPMD), such as crystal violet (CV), ethyl violet (EV), brilliant green (BG), malachite green (MG) or indine green (IG), to form an ion-association complex of the type (BTPMD){sub 2}[Hg(SCN){sub 4}]. The characteristics of RRS spectra of the ion-association complexes and suitable conditions for the reactions were investigated. The intensity of RRS is directly proportional to the concentration of mercury (II) in the range of 0--2.0 {micro}g/25 ml. The RRS methods have very high sensitivities for determination of mercury (II); their detection limits are between 1.68 ng/ml and 6.00 ng/ml on different dye systems. The effects of foreign ions and ways to improve the selectivity were studied. The new highly sensitive methods for the determination of trace amounts of mercury based on the RRS of the ion-association complexes have been developed.

  10. A molecular-gap device for specific determination of mercury ions

    NASA Astrophysics Data System (ADS)

    Guo, Zheng; Liu, Zhong-Gang; Yao, Xian-Zhi; Zhang, Kai-Sheng; Chen, Xing; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-11-01

    Specific determination/monitoring of trace mercury ions (Hg2+) in environmental water is of significant importance for drinking safety. Complementarily to conventional inductively coupled plasma mass spectrometry and atomic emission/absorption spectroscopy, several methods, i.e., electrochemical, fluorescent, colorimetric, and surface enhanced Raman scattering approaches, have been developed recently. Despite great success, many inevitably encounter the interferences from other metal ions besides the complicated procedures and sophisticated equipments. Here we present a molecular-gap device for specific determination of trace Hg2+ in both standardized solutions and environmental samples based on conductivity-modulated glutathione dimer. Through a self-assembling technique, a thin film of glutathione monolayer capped Au nanoparticles is introduced into 2.5 μm-gap-electrodes, forming numerous double molecular layer gaps. Notably, the fabricated molecular-gap device shows a specific response toward Hg2+ with a low detection limit actually measured down to 1 nM. Theoretical calculations demonstrate that the specific sensing mechanism greatly depends on the electron transport ability of glutathione dimer bridged by heavy metal ions, which is determined by its frontier molecular orbital, not the binding energy.

  11. A molecular-gap device for specific determination of mercury ions

    PubMed Central

    Guo, Zheng; Liu, Zhong-Gang; Yao, Xian-Zhi; Zhang, Kai-Sheng; Chen, Xing; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-01-01

    Specific determination/monitoring of trace mercury ions (Hg2+) in environmental water is of significant importance for drinking safety. Complementarily to conventional inductively coupled plasma mass spectrometry and atomic emission/absorption spectroscopy, several methods, i.e., electrochemical, fluorescent, colorimetric, and surface enhanced Raman scattering approaches, have been developed recently. Despite great success, many inevitably encounter the interferences from other metal ions besides the complicated procedures and sophisticated equipments. Here we present a molecular-gap device for specific determination of trace Hg2+ in both standardized solutions and environmental samples based on conductivity-modulated glutathione dimer. Through a self-assembling technique, a thin film of glutathione monolayer capped Au nanoparticles is introduced into 2.5 μm-gap-electrodes, forming numerous double molecular layer gaps. Notably, the fabricated molecular-gap device shows a specific response toward Hg2+ with a low detection limit actually measured down to 1 nM. Theoretical calculations demonstrate that the specific sensing mechanism greatly depends on the electron transport ability of glutathione dimer bridged by heavy metal ions, which is determined by its frontier molecular orbital, not the binding energy. PMID:24178058

  12. Determination of trace inorganic anions in weak acids by single-pump column-switching ion chromatography.

    PubMed

    Zhu, Haibao; Chen, Huadong; Zhong, Yingying; Ren, Dandan; Qian, Yaling; Tang, Hongfang; Zhu, Yan

    2010-08-01

    Ion chromatography has been proposed for the determination of three common inorganic anions (chloride, nitrate, and sulfate) in nine weak acids (tartaric acid, citric acid, formic acid, acetic acid, metacetonic acid, butyric acid, butanedioic acid, hexafluorophosphoric acid, and salicylic acid) using a single pump, two valves, a single eluent, and a single conductivity detector. The present system uses ion exclusion, concentrator, and anion-exchange columns connected in series via 6-port and 10-port valves in a Dionex ICS-2100 ion chromatograph. The valves were switched for the determination of three inorganic anions from weak acids in a single chromatographic run. Sample matrices of weak acids with a series of concentrations can be investigated. Complete separations of the previously mentioned anions are demonstrated within 40 min. Under the optimum conditions, the relative standard deviation values ranged from 1.3 to 3.8%. The detection limits of the three inorganic anions (S/N = 3) were in the range of 0.3-1.7 microg/L. The recoveries were in the range of 75.2-117.6%. With this system, automation for routine analysis, short analysis time, and low cost can be achieved.

  13. Mercury Methylation, Demethylation, and Bioavailability in the Hyporheic Sediments of a Northern Wisconsin Wetland

    NASA Astrophysics Data System (ADS)

    Creswell, J. E.; Babiarz, C. L.; Shafer, M. M.; Roden, E. E.; Armstrong, D. E.

    2007-12-01

    It is generally accepted that wetland sediments have a high potential to produce methylmercury, yet the factors controlling the relevant chemical transformations are poorly understood. Previous studies suggest that sulfate- reducing bacteria play an important role in methylation, but iron-reducing bacteria may also participate in this process. Methylation rates are influenced by both the concentration of Hg(II) and its speciation, which affects its bioavailability. Net accumulation depends also on demethylation rates, rates which may be significant in these systems. The objective of this study is to gain a better understanding of the main factors controlling the bioavailability of inorganic mercury for the production of methylmercury in wetland hyporheic zones. Stable isotopes of mercury are being used to investigate potential methylation and demethylation rates in the hyporheic sediments of Allequash Creek, near Boulder Junction, WI. Other techniques that are being applied to examine the chemical and biological drivers of mercury methylation and bioavailability include tin-reducible mercury "titrations" to measure the concentration of strong mercury-binding ligands in porewater, 14C-acetate uptake assays to determine the activity of the native microbial consortia , ion exchange resin experiments to explore the role of dissolved organic carbon in mercury binding, and inhibition studies (e.g. molybdenum amendments) of sulfate-reducing bacteria to assess their role in producing methylmercury. Manipulations of environmental conditions in laboratory microcosms are used to determine the relative importance of physical factors, such as temperature, and biogeochemical factors, such as sulfate, sulfide, dissolved organic carbon (DOC), and iron levels, on the fate of mercury in hyporheic systems. Preliminary results show that while significant levels of inorganic mercury are present in the hyporheic groundwater, strong mercury-binding ligands in the wetland porewaters at a

  14. Mercury and cadmium uptake from seawater and from food by the Norway lobster Nephrops norvegicus

    SciTech Connect

    Canli, M.; Furness, R.W.

    1995-05-01

    Norway lobsters, nephrops norvegicus, were fed on a mercury- and cadmium-rich diet for up to 50 d or were exposed to sublethal concentrations of organic mercury, inorganic mercury, or cadmium in seawater for 30 d. Cadmium taken up from seawater accumulated mainly in the hepatopancreas and gill, while it accumulated mainly in the hepatopancreas after feeding. Both organic and inorganic mercury taken up from seawater accumulated mainly in the gill, while highest concentrations were found in the hepatopancreas after the feeding experiment. Accumulation of organic mercury was higher than that of inorganic mercury. Although all treatments resulted in the accumulation of mercury and cadmium from seawater and food, tissue distribution of metals differed significantly among treatments. Distributions of organic and inorganic mercury also varied among tissues after uptake from seawater, with organic mercury being more evenly distributed among tissues than inorganic mercury, the latter being found predominantly in the gill.

  15. Simultaneous determination of peroxydisulfate and conventional inorganic anions by ion chromatography with the column-switching technique.

    PubMed

    Huang, Zhongping; Ni, Chengzhu; Wang, Fengli; Zhu, Zuoyi; Subhani, Qamar; Wang, Muhua; Zhu, Yan

    2014-02-01

    The application of ion chromatography with the column-switching technique for the simultaneous analysis of peroxydisulfate and conventional inorganic anions in a single run is described. With this method, conventional inorganic anions were separated by consecutive elution through both the guard column and separation column, but peroxydisulfate that only passed through the guard column had a good peak shape and short retention time. A series of standard solutions consisting of target anions of various concentrations from 0.01 to 75 mg/L were analyzed, with a correlation coefficient (r) ≥ 0.9990. The limits of detection were in the range of 0.49-9.84 μg/L based on the S/N of 3 and a 25 μL injection volume. RSDs for retention time, peak area, and peak height were all <1.77%. A spiking study was performed with satisfactory recoveries between 97.6 and 103.4% for all anions. The quantitative determination of peroxydisulfate and conventional inorganic anions in surface waters was accomplished within 18 min by this column-switching technique.

  16. New preconditioning strategy for the determination of inorganic anions with capillary zone electrophoresis using indirect UV detection.

    PubMed

    Raber, G; Greschonig, H

    2000-08-25

    It is widely accepted that preconditioning procedures are indispensable in capillary electrophoresis in order to achieve reproducibility of migration times and peak areas. Several preconditioning strategies have been employed for electrophoretic determinations of inorganic anions using indirect UV detection including simple flushing with buffer or alkaline or acid pre-rinsing followed by flushing with electrolyte. We investigated the influence of various preconditioning strategies on the reproducibility of migration times and peak areas of inorganic anions. The electrolyte systems for indirect UV detection were based on pyromellitic acid and chromic acid respectively as UV absorbing probes and hexamethonium hydroxide as electroosmatic flow modifier. Preconditioning agents under investigation were electrolyte buffer, NaOH, HCl and the free acids of the UV absorbing probes. Investigations showed that reproducibility of migration times and peak areas can be significantly improved by acid pre-rinsing using the corresponding acid of the UV absorbing probes compared to preconditioning by flushing the capillary with buffer. In contrast to acid pre-rinsing using hydrochloric acid no interfering signals within the migration time window of inorganic anions under investigation can be observed. The optimized preconditioning procedure yields relative standard deviations of migration times less than 0.25% (n = 10). Relative standard deviations of corrected peak areas were below 5% applying acid preconditioning using pyromellitic acid.

  17. A new specific polymeric material for mercury speciation: Application to environmental and food samples.

    PubMed

    Zarco-Fernández, S; Mancheño, M J; Muñoz-Olivas, R; Cámara, C

    2015-10-15

    A new polymeric material (Patent: P201400535) highly specific for mercury is presented. Its great capability to pre-concentrate and selectively elute inorganic mercury and methylmercury are the main figures of merit. The polymer can be reused several times. To our knowledge, this is the only polymer proposed in the literature for direct inorganic mercury and methylmercury speciation without need of chromatography or quantification by difference. The polymer formation is based on the reaction of a vinyl derivative of 8-hydroxiquinoline as monomer, and 2-(Methacryloylamino) ethyl 2-Methyl Acrylate (NOBE) as co-monomer. Random radical polymerization by the precipitation method was carried out using Azobisisobutyronitrile (AIBN) as initiator. The polymer was characterized by SEM and FTIR. Adsorption binding isotherms were evaluated using Langmuir and Freundlich models, showing high adsorption capacity for both inorganic and organic mercury species. The polymer was employed to sequentially determine inorganic mercury and methylmercury, using a solid phase extraction (SPE) scheme. Cross reactivity of several ions, as well as matrix effects from a high saline matrix like seawater was irrelevant as the retained fractions mostly eluted during the washing step. The procedure was first validated by analyzing a certified reference material (BCR 464) and finally applied to commercial fish samples. The speciation proposed procedure is cheap, fast, and easy to use and minimizes reagents waste.

  18. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    EPA Science Inventory

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and
    compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  19. A BIOPSY PROCEDURE FOR DETERMINING FILET AND PREDICTING WHOLE-FISH MERCURY CONCENTRATION

    EPA Science Inventory

    Although mercury contamination of fish is a widespread phenomenon, its regional evaluation is hindered by the reluctance of permitting agencies to grant collection permits, securing adequate freezer space, and processing whole, large fish or filets. We evaluated Hg concentration...

  20. Dose-response analysis indicating time-dependent neurotoxicity caused by organic and inorganic mercury-Implications for toxic effects in the developing brain.

    PubMed

    Pletz, Julia; Sánchez-Bayo, Francisco; Tennekes, Henk A

    2016-03-10

    A latency period preceding neurotoxicity is a common characteristic in the dose-response relationship induced by organic mercury. Latency periods have typically been observed with genotoxicants in carcinogenesis, with cancer being manifested a long time after the initiating event. These observations indicate that even a very small dose may cause extensive adverse effects later in life, so the toxicity of the genotoxic compound is dose and time-dependent. In children, methylmercury exposure during pregnancy (in utero) has been associated with delays in reaching developmental milestones (e.g., age at first walking) and decreases in intelligence, increasing in severity with increasing exposure. Ethylmercury exposure from thimerosal in some vaccines has been associated, in some studies, with autism and other neurological disorders in children. In this paper, we have examined whether dose-response data from in vitro and in vivo organic mercury toxicity studies fit the Druckrey-Küpfmüller equation c·t(n)=constant (c=exposure concentration, t=latency period), first established for genotoxic carcinogens, and whether or not irreversible effects are enhanced by time of exposure (n≥1), or else toxic effects are dose-dependent while time has only minor influence on the adverse outcome (n<1). The mode of action underlying time-dependent toxicity is irreversible binding to critical receptors causing adverse and cumulative effects. The results indicate that the Druckrey-Küpfmüller equation describes well the dose-response characteristics of organic mercury induced neurotoxic effects. This amounts to a paradigm shift in chemical risk assessment of mercurial compounds and highlights that it is vital to perform toxicity testing geared to investigate time-dependent effects.

  1. Dose-response analysis indicating time-dependent neurotoxicity caused by organic and inorganic mercury-Implications for toxic effects in the developing brain.

    PubMed

    Pletz, Julia; Sánchez-Bayo, Francisco; Tennekes, Henk A

    2016-03-10

    A latency period preceding neurotoxicity is a common characteristic in the dose-response relationship induced by organic mercury. Latency periods have typically been observed with genotoxicants in carcinogenesis, with cancer being manifested a long time after the initiating event. These observations indicate that even a very small dose may cause extensive adverse effects later in life, so the toxicity of the genotoxic compound is dose and time-dependent. In children, methylmercury exposure during pregnancy (in utero) has been associated with delays in reaching developmental milestones (e.g., age at first walking) and decreases in intelligence, increasing in severity with increasing exposure. Ethylmercury exposure from thimerosal in some vaccines has been associated, in some studies, with autism and other neurological disorders in children. In this paper, we have examined whether dose-response data from in vitro and in vivo organic mercury toxicity studies fit the Druckrey-Küpfmüller equation c·t(n)=constant (c=exposure concentration, t=latency period), first established for genotoxic carcinogens, and whether or not irreversible effects are enhanced by time of exposure (n≥1), or else toxic effects are dose-dependent while time has only minor influence on the adverse outcome (n<1). The mode of action underlying time-dependent toxicity is irreversible binding to critical receptors causing adverse and cumulative effects. The results indicate that the Druckrey-Küpfmüller equation describes well the dose-response characteristics of organic mercury induced neurotoxic effects. This amounts to a paradigm shift in chemical risk assessment of mercurial compounds and highlights that it is vital to perform toxicity testing geared to investigate time-dependent effects. PMID:26945727

  2. Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Murphy, James; Jones, Phil; Hill, Steve J.

    1996-12-01

    A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry. The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g -1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1-3.0 mg kg -1.

  3. Determination of mercury by cold vapor atomic absorption spectrophotometer in Tongkat Ali preparations obtained in Malaysia.

    PubMed

    Ang, Hooi-Hoon; Lee, Ee-Lin; Cheang, Hui-Seong

    2004-01-01

    The DCA (Drug Control Authority), Malaysia, has implemented the phase 3 registration of traditional medicines on 1 January 1992, with special emphasis on the quality, efficacy, and safety (including the presence of heavy metals) in all pharmaceutical dosage forms of traditional medicine preparations. As such, a total of 100 products in various pharmaceutical dosage forms of a herbal preparation, containing Tongkat Ali, were analyzed for mercury content using cold vapor atomic absorption spectrophotometer. Results showed that 36% of the above products possessed 0.52 to 5.30 ppm of mercury and, therefore, do not comply with the quality requirement for traditional medicines in Malaysia. Out of these 36 products, 5 products that possessed 1.05 to 4.41 ppm of mercury were in fact have already registered with the DCA, Malaysia. However, the rest of the products that contain 0.52 to 5.30 ppm of mercury still have not registered with the DCA, Malaysia. Although this study showed that only 64% of the products complied with the quality requirement for traditional medicines in Malaysia pertaining to mercury, they cannot be assumed safe from mercury contamination because of batch-to-batch inconsistency. PMID:15162849

  4. Anodic stripping voltammetric determination of cadmium using a "mercury free" indium film electrode.

    PubMed

    Anandhakumar, Sukeri; Mathiyarasu, Jayaraman; Phani, Kanala Lakshimi Narasimha

    2013-10-01

    In this work, the determination of cadmium has been attempted using an indium film electrode in the presence of bromide ions as an additive, for the first time. The electrode was prepared in situ on a glassy carbon substrate and employed in combination with square wave anodic stripping voltammetry. The purpose of having bromide ions is to enhance the analytical value of cadmium detection. In the absence of bromide ions, cadmium stripping peaks coalesce with indium and it is difficult to resolve for analytical purposes. The addition of bromide ions strongly influences the peak separation, thanks to the complex-forming characteristics of cadmium with bromide ions. Several key operational parameters influencing the electroanalytical response of indium modified electrodes were examined and optimized, such as deposition potential, pH, bromide ion and indium concentration. The indium modified electrode exhibited well-defined, separated stripping signals and revealed good linear behavior in the examined concentration range from 1 to 25 ng ml(-1). The present method shows a low detection limit value of 0.36 ng ml(-1). These results suggest that the proposed electrode contributes to the wider applicability of electrochemical stripping techniques in connection with "mercury-free" electrodes.

  5. Determination of total mercury in seafood and other protein-rich products

    SciTech Connect

    Landi, S.; Fagioli, F.; Locatelli, C.

    1992-11-01

    A previously developed wet-digestion method for the determination of total mercury in plants by cold vapor atomic absorption spectroscopy (CVAAS) was extended to the analysis of seafood and other products rich in proteins. Oxidation of matrixes is accomplished by K{sub 2}Cr{sub 2}O{sub 7} in the presence of diluted H{sub 2}SO{sub 4}; a simple air condenser is used to reflux vapors released from the boiling mixture. The original procedure (A) and 2 modifications (B and C), which differ with respect to the mode of acidification and/or digestion time and the types of condensers used, were compared for precision and accuracy by means of National Institute of Standards and Technology Research Material 50 Albacore Tuna and proved to be reliable (Hg present, 0.95{plus_minus}0.1 {mu}g/g; Hg found, 0.97 {plus_minus} 0.029 {mu}g/g [A], 0.98 {plus_minus} 0.018 {mu}g/g [B], and 0.94 {plus_minus} 0.025 {mu}g/g [C]). The modified procedures were tested further in Hg recovery experiments on a variety of biological matrixes with different spiking substances and again showed good analytical characteristics (overall average recoveries = 98 {plus_minus} 5.1% for seafood and 100 {plus_minus} 3.6 for protein-rich baby foods). 22 refs., 1 fig., 5 tabs.

  6. Allozyme genotype in mosquitofish, Gambusia holbrooki, during mercury exposure: Temporal stability, concentration effects and field verification

    SciTech Connect

    Heagler, M.G. Rutgers, The State Univ. of New Jersey, New Brunswick )

    1993-02-01

    Genotype frequencies at nine enzyme loci were examined in a population of mosquito fish, Gambusia holbrooki, during acute inorganic mercury exposure at three concentration. Genotype at one locus, glucose phosphate isomerase-2 (Gpi-2), was correlated with time to death (TTD) at the low mercury concentration, but genotypes at none of the nine loci were related to TTD at the medium or the high mercury concentration. A survey of mosquitofish from a mercury-contaminated canal was undertaken to determine if the results of laboratory exposures could be used to predict accurately the genetic profile of mercury-contaminated field populations. Mosquitofish collected from the contaminated canal had a significantly lower frequency of the Gpi-2[sup 38] allele than mosquitofish collected from the adjacent noncontaminated river. The Gpi-2 allozymes may be useful as an indicator of pollutant stress if used in conjunction with a thorough understanding of the structure and history of the population.

  7. The application of a bubbling mercury electrode to anodic stripping voltammetry. Determination of zinc, cadium, lead and copper in natural water and industrial waste

    NASA Astrophysics Data System (ADS)

    Cospito, M.; Zanello, P.; Lucarini, L.

    1982-03-01

    A hanging mercury drop electrode characterized by periodic renewal of the diffusion layer is proposed. A thin covering of mercury is deposited on the tip of a platinum wire sealed in a tube coaxial with an external tube. The wire acts as the cathode in an electrolytic cell, containing a concentrated solution of mercury perchlorate in dilute perchloric acid and using a mercury reservoir as the anode. Before each analysis, four drops of mercury are made to adhere to the wire. Test samples are placed in the cell and oxygen is removed by nitrogen bubbling. A negative voltage 0.25V larger than the stripping peak of the metal to be determined is applied across the electrodes. Concentration is proportional to peak current recorded at the anode. Sensitivity, defined as the amount of current per minute and per mole is ten times lower than that of other stripping techniques, but polluting ions in water are detected.

  8. Method and apparatus for sampling atmospheric mercury

    DOEpatents

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  9. Inorganic nitrogen determined by laboratory and field extractions of two forest soils

    SciTech Connect

    Miegroet, H.V.

    1995-03-01

    To assess the effect of a delay in soil processing on inorganic N levels in N-rich soils, field and laboratory extractions were compared at two forested sites with high N mineralization and nitrification potential. At eight sampling dates in 1989 and 1990, five mineral soil cores per site were taken between 0- and 10-cm depth and transported on ice to the laboratory for KCI extraction and NH{sub 4}-N and NO{sub 3}-N analysis. At three sampling dates in 1990, soil extractions were performed in the field immediately following sampling, and inorganic N concentrations were compared between extractions. Nitrate-N increased four- to sevenfold (net release of 2-7 mg NO{sub 3}-N/kg dry soil) due to the transport and relatively short delay (<24 h) in the processing of the soil samples, either coinciding with increased net N mineralization or due to transformation of NH{sub 4}-N into NO{sub 3}-N. This study indicates that if possible, soil samples should be extracted in the field, especially at N-rich sites. The concerns raised by this study may not necessarily apply to N-pour soils characterized by slow N transformation rates. 16 refs., 1 fig., 1 tab.

  10. OPTIMIZATION OF VOLTAMMETRIC METHODS FOR AN IN SITU DETERMINATION OF TOTAL SULFIDE IN ANOXIC POREWATER USING A MERCURY PLATED GOLD ELECTRODE

    EPA Science Inventory

    Voltammetric methods for determination of total sulfide concentrations in anoxic sediments utilizing a previously described [1] gold-based mercury amalgam microelectrode were optimized. Systematic studies in NaCl (supporting electrolyte) and porewater indicate variations in ionic...

  11. Mercury(II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination.

    PubMed

    Tuzen, Mustafa; Karaman, Isa; Citak, Demirhan; Soylak, Mustafa

    2009-07-01

    A method has been developed for mercury(II) and methyl mercury speciation on Staphylococcus aureus loaded Dowex Optipore V-493 micro-column in the presented work, by using cold vapour atomic absorption spectrometry. Selective and sequential elution with 0.1 molL(-1) HCl for methyl mercury and 2 molL(-1) HCl for mercury(II) were performed at the pH range of 2-6. Optimal analytical conditions including pH, amounts of biosorbent, sample volumes were investigated. The detection limits of the analytes were 2.5 ngL(-1) for Hg(II) and 1.7 ngL(-1) for methyl mercury. The capacity of biosorbent for mercury(II) and methyl mercury was 6.5 and 5.4 mgg(-1), respectively. The validation of the presented procedure is performed by the analysis of standard reference material. The speciation procedure established was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and microwave digested fish samples.

  12. Simulated In Situ Determination of Soil Profile Organic and Inorganic Carbon With LIBS and VisNIR

    NASA Astrophysics Data System (ADS)

    Bricklemyer, R. S.; Brown, D. J.; Clegg, S. M.; Barefield, J. E.

    2008-12-01

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laser Induced Breakdown Spectroscopy (LIBS) and Visible and Near Infrared Spectroscopy (VisNIR) are complementary analytical techniques that have the potential to fill that need. The LIBS method provides precise elemental analysis of soils, but generally cannot distinguish between organic C and inorganic C. VisNIR has been established as a viable technique for measuring soil properties including SOC and inorganic carbon (IC). As part of the Big Sky Carbon Sequestration Regional Partnership, 240 intact core samples (3.8 x 50 cm) have been collected from six agricultural fields in north central Montana, USA. Each of these core samples were probed concurrently with LIBS and VisNIR at 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 35 and 45 cm (+/- 1.5 cm) depths. VisNIR measurements were taken using an Analytical Spectral Devices (ASD, Boulder, CO, USA) Agrispec spectrometer to determine the partition of SOC vs. IC in the samples. The LIBS scans were collected with the LANL LIBS Core Scanner Instrument which collected the entire 200 - 900 nm plasma emission including the 247.8 nm carbon emission line. This instrument also collected the emission from the elements typically found in inorganic carbon (Ca and Mg) and organic carbon (H, O, and N). Subsamples of soil (~ 4 g) were taken from interrogation points for laboratory determination of SOC and IC. Using this analytical data, we constructed several full spectrum multivariate VisNIR/LIBS calibration models for SOC and IC. These models were then applied to independent validation cores for model evaluation.

  13. Plasma-based determination of inorganic contaminants in waste of electric and electronic equipment after microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Mello, Paola A.; Diehl, Lisarb O.; Oliveira, Jussiane S. S.; Muller, Edson I.; Mesko, Marcia F.; Flores, Erico M. M.

    2015-03-01

    A systematic study was performed for the determination of inorganic contaminants in polymeric waste from electrical and electronic equipment (EEE) for achieving an efficient digestion to minimize interferences in determination using plasma-based techniques. The determination of As, Br, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn by inductively coupled plasma mass spectrometry (ICP-MS) and also by inductively coupled plasma optical emission spectrometry (ICP OES) was carried out after digestion using microwave-induced combustion (MIC). Arsenic and Hg were determined by flow-injection chemical vapor generation inductively coupled plasma mass spectrometry (FI-CVG-ICP-MS). Dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) with ammonia was also used for Cr determination. The suitability of MIC for digestion of sample masses up to 400 mg was demonstrated using microcrystalline cellulose as aid for combustion of polymers from waste of EEEs that usually contain flame retardants that impair the combustion. The composition and concentration of acid solutions (HNO3 or HNO3 plus HCl) were evaluated for metals and metalloids and NH4OH solutions were investigated for Br absorption. Accuracy was evaluated by comparison of results with those obtained using high pressure microwave-assisted wet digestion (HP-MAWD) and also by the analysis of certified reference material (CRM) of polymer (EC680k-low-density polyethylene). Bromine determination was only feasible using digestion by MIC once losses were observed when HP-MAWD was used. Lower limits of detection were obtained for all analytes using MIC (from 0.005 μg g- 1 for Co by ICP-MS up to 3.120 μg g-1 for Sb by ICP OES) in comparison to HP-MAWD due to the higher sample mass that can be digested (400 mg) and the use of diluted absorbing solutions. The combination of HNO3 and HCl for digestion showed to be crucial for quantitative recovery of some elements, as Cr and Sb. In addition, suitable agreement of Cr to

  14. Flood regime and leaf fall determine soil inorganic nitrogen dynamics in semiarid riparian forests.

    PubMed

    Shah, J J Follstad; Dahm, C N

    2008-04-01

    Flow regulation has reduced the exchange of water, energy, and materials between rivers and floodplains, caused declines in native plant populations, and advanced the spread of nonnative plants. Naturalized flow regimes are regarded as a means to restore degraded riparian areas. We examined the effects of flood regime (short [SIFI] vs. long [LIFI] inter-flood interval) on plant community and soil inorganic nitrogen (N) dynamics in riparian forests dominated by native Populus deltoides var. wislizenii Eckenwalder (Rio Grande cottonwood) and nonnative Tamarix chinensis Lour. (salt cedar) along the regulated middle Rio Grande of New Mexico. The frequency of inundation (every 2-3 years) at SIFI sites better reflected inundation patterns prior to the closure of an upstream dam relative to the frequency of inundation at LIFI sites (> or =10 years). Riparian inundation at SIFI sites varied from 7 to 45 days during the study period (April 2001-July 2004). SIFI vs. LIFI sites had higher soil moisture but greater groundwater table elevation fluctuation in response to flooding and drought. Rates of net N mineralization were consistently higher at LIFI vs. SIFI sites, and soil inorganic N concentrations were greatest at sites with elevated leaf-litter production. Sites with stable depth to ground water (approximately 1.5 m) supported the greatest leaf-litter production. Reduced leaf production at P. deltoides SIFI sites was attributed to drought-induced recession of ground water and prolonged inundation. We recommend that natural resource managers and restoration practitioners (1) utilize naturalized flows that help maintain riparian groundwater elevations between 1 and 3 m in reaches with mature P. deltoides or where P. deltoides revegetation is desired, (2) identify areas that naturally undergo long periods of inundation and consider restoring these areas to seasonal wetlands, and (3) use native xeric-adapted riparian plants to revegetate LIFI and SIFI sites where

  15. Flood regime and leaf fall determine soil inorganic nitrogen dynamics in semiarid riparian forests.

    PubMed

    Shah, J J Follstad; Dahm, C N

    2008-04-01

    Flow regulation has reduced the exchange of water, energy, and materials between rivers and floodplains, caused declines in native plant populations, and advanced the spread of nonnative plants. Naturalized flow regimes are regarded as a means to restore degraded riparian areas. We examined the effects of flood regime (short [SIFI] vs. long [LIFI] inter-flood interval) on plant community and soil inorganic nitrogen (N) dynamics in riparian forests dominated by native Populus deltoides var. wislizenii Eckenwalder (Rio Grande cottonwood) and nonnative Tamarix chinensis Lour. (salt cedar) along the regulated middle Rio Grande of New Mexico. The frequency of inundation (every 2-3 years) at SIFI sites better reflected inundation patterns prior to the closure of an upstream dam relative to the frequency of inundation at LIFI sites (> or =10 years). Riparian inundation at SIFI sites varied from 7 to 45 days during the study period (April 2001-July 2004). SIFI vs. LIFI sites had higher soil moisture but greater groundwater table elevation fluctuation in response to flooding and drought. Rates of net N mineralization were consistently higher at LIFI vs. SIFI sites, and soil inorganic N concentrations were greatest at sites with elevated leaf-litter production. Sites with stable depth to ground water (approximately 1.5 m) supported the greatest leaf-litter production. Reduced leaf production at P. deltoides SIFI sites was attributed to drought-induced recession of ground water and prolonged inundation. We recommend that natural resource managers and restoration practitioners (1) utilize naturalized flows that help maintain riparian groundwater elevations between 1 and 3 m in reaches with mature P. deltoides or where P. deltoides revegetation is desired, (2) identify areas that naturally undergo long periods of inundation and consider restoring these areas to seasonal wetlands, and (3) use native xeric-adapted riparian plants to revegetate LIFI and SIFI sites where

  16. Exploiting the bead injection concept for sequential determination of copper and mercury ions in river-water samples.

    PubMed

    Vidotti, Eliane C; Almeida, Vitor C; Oliveira, Cláudio C

    2004-11-15

    A procedure involving bead-injection concept and sequential determination of copper and mercury ions in river-water samples is proposed. The method is based on the solid-phase extraction of both metal ions on the same beads surface (Chelex 100 resin) and in their subsequent reaction with the colorimetric reagents (APDC and Dithizone for copper and mercury ions, respectively). For this task, a resin mini-column is established in the optical path by the selection, introduction and trapping of a defined volume of the Chelex-100 resin beads suspension in the flow system. The passage of the sample solution through the resin mini-column promotes the sorption of Cu(II) ions and, making the APDC colorimetric reagent flows through the beads, the formation of the coloured complex on the solid phase surface occurs. The absorbance of the formed APDC-Cu complex is then monitored at 436nm and the spent beads are discarded. Packing another resin mini-column in the flow cell and repeating the concentration step it is possible to carried out the mercury determination by using Dithizone as reagent. The absorbance of the Dithizone-Hg complex is monitored at 500nm. After each measurement, the spent beads are wasted and a new portion of fresh one is trapped in the system, letting it ready for the next measurement. The bead injection system is versatile and can be used to concentrate different sample volumes, which permits the determination of a wide range of copper and mercury ions concentrations. When the sample-selected volumes are 100 and 1000mul the analytical ranges were 5.0 up to 500.0mugl(-1) and 2.5 up to 30.0mugl(-1) for Cu(II) and Hg(II) ions, respectively. Under these conditions, the detection limit was estimated as 0.63 and 0.25mugl(-1) for copper and mercury ions determination. The system consumes 2mg of Chelex 100 resin beads, 0.20mg of APDC or 1.25mg of Dithizone per determination and the traditional organic solvent extraction methodology, normally used in connection

  17. A rugged and transferable method for determining blood cadmium, mercury, and lead with inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    McShane, William J.; Pappas, R. Steven; Wilson-McElprang, Veronica; Paschal, Dan

    2008-06-01

    A simple, high-throughput method for determining total cadmium, mercury, and lead in blood in cases of suspected exposure, using inductively coupled plasma-mass spectrometry (ICP-MS), has been developed and validated. One part matrix-matched standards, blanks, or aliquots of blood specimens were diluted with 49 parts of a solution containing 0.25% (w/w) tetramethylammonium hydroxide; 0.05% v/v Triton X-100 (blood cell membranes and protein solubilization); 0.01% (w/v) ammonium pyrolidinedithiocarbamate (mercury memory effect prevention and oxidation state stabilization, solubilization by complexation of all three metals); 1% v/v isopropanol (signal enhancement); and 10 μg/L iridium (internal standard). Thus the final dilution factor is 1 + 49. The method provides the basis for the determination of total cadmium, mercury, and lead for assessment of environmental, occupational, accidental ingestion or elevated exposures from other means. Approximately 80 specimens, including blanks, calibration standards, and quality control materials can be processed in an 8-h day. The method has been evaluated by examining reference materials from the National Institute of Standards and Technology, as well as by participation in six rounds of proficiency testing intercomparisons led by the Wadsworth Center of the New York State Department of Health. This method was developed for the purpose of increasing U.S. emergency response laboratory capacity. To this end, 33 U.S. state, and 1 district health department laboratories have validated this method in their own laboratories.

  18. Spectrophotometric determination of mercury in water samples after cloud point extraction using nonionic surfactant Triton X-114.

    PubMed

    Niazi, Ali; Momeni-Isfahani, Tahereh; Ahmari, Zahra

    2009-06-15

    A cloud point extraction process using the nonionic surfactant Triton X-114 for extracting mercury from aqueous solutions was investigated. The method is based on the complexation reaction of Hg(II) with Thio-Michler's Ketone (TMK) and micelle-mediated extraction of the complex. The optimal extraction and reaction conditions (e.g., pH, reagent concentration, effect of time) were studied, and the analytical characteristics of the method (e.g., limit of detection, linear range) were obtained. Linearity was obeyed in the range of 5.0-80.0 ng mL(-1) of Hg(II) ion. The detection limit of the method was 0.83 ng mL(-1) of Hg(II) ion. The interference effect of some anions and cations was also tested. The method was applied to the determination of mercury in water samples.

  19. Speciation of inorganic selenium in environmental samples after suspended dispersive solid phase microextraction combined with inductively coupled plasma spectrometric determination.

    PubMed

    Nyaba, Luthando; Matong, Joseph M; Dimpe, K Mogolodi; Nomngongo, Philiswa N

    2016-10-01

    A rapid and effective suspended dispersive solid phase microextraction (SDSPME) was developed for the speciation of inorganic selenium using alumina nanoparticles functionalized with Aliquat-336. The target analytes were preconcentrated and determined by inductively coupled plasma optical emission spectrometry. Alumina nanoparticles were characterized using XRD, BET, SEM and EDX while the functionalized nano-Al2O3 was characterized by FTIR. The effect of pH of the solution on speciation Se in water samples was optimized separately. It was observed that when the pH values of sample solution ranged from 2.0 to 7.0, successful separation of inorganic Se species was achieved. The percentage recoveries for Se (IV) and Se (VI) were >90% and 5%, respectively. The two-level fractional factorial design was used to optimize experimental parameters affecting the preconcentration system. Under optimal conditions, the enrichment factor (EF), limit of detection (LOD) and limit of quantification for Se (IV) were found to be 850, 1.4ngL(-1,) and 4.6ngL(-1), respectively. Furthermore, intra-day and inter-day precisions expressed in terms of relative standard deviation (RSD) were found to be 1.9% and 3.3%, respectively. The effect of coexisting ions on the recovery of Se (IV) was investigated. The accuracy of the developed method was checked by analysis of standard reference material (NIST SRM 1643e). The optimized method was applied for the determination of targets in surface water samples. PMID:27474295

  20. Flow injection with in-line reduction column and conductometric detection for determination of total inorganic nitrogen in soil.

    PubMed

    Yanu, Pattama; Jakmunee, Jaroon

    2015-11-01

    A cost effective flow injection (FI) conductometric system has been developed for determination of total inorganic nitrogen (TIN). The system is aimed for evaluation of nitrogen nutrient in soil for agricultural application. Inorganic nitrogen compounds were extracted from soil according to the standard method by using potassium chloride solution as an extractant, and the extracted solution was then injected into the FI system. Nitrate and nitrite are converted to ammonium ion by an in-line reduction column packed with a Devarda's alloy. A gas diffusion unit was incorporated into the FI system to separate ammonium ion from other ions in a donor stream by forming ammonia gas that can diffuse through a PTFE membrane to re-dissolve in an acceptor stream. Conductance of the acceptor stream was directly proportional to ammonium ion concentration. Various parameters affecting reduction efficiency of the column, e.g., column diameter, column packing procedure, and column length was investigated and optimized. A linear calibration graph in the range of 2.00-60.00 mg L(-1) N-NH4(+) (y=0.123x+0.039, R(2) =0.997) was obtained with a limit of detection of 0.47 mg L(-1). Sample throughput of 20 samples h(-1) was achieved. The result of developed method was correlated with total Kjeldahl nitrogen (TKN) obtained from the Kjeldahl digestion method. The proposed method could be used as an alternative method to the Kjeldahl method for determination of TIN in soil.

  1. Laser-induced breakdown spectroscopy (LIBS) technique for the determination of the chemical composition of complex inorganic materials

    NASA Astrophysics Data System (ADS)

    Łazarek, Łukasz; Antończak, Arkadiusz J.; Wójcik, Michał R.; Kozioł, Paweł E.; Stepak, Bogusz; Abramski, Krzysztof M.

    2014-08-01

    Laser-induced breakdown spectroscopy (LIBS) is a fast, fully optical method, that needs little or no sample preparation. In this technique qualitative and quantitative analysis is based on comparison. The determination of composition is generally based on the construction of a calibration curve namely the LIBS signal versus the concentration of the analyte. Typically, to calibrate the system, certified reference materials with known elemental composition are used. Nevertheless, such samples due to differences in the overall composition with respect to the used complex inorganic materials can influence significantly on the accuracy. There are also some intermediate factors which can cause imprecision in measurements, such as optical absorption, surface structure, thermal conductivity etc. This paper presents the calibration procedure performed with especially prepared pellets from the tested materials, which composition was previously defined. We also proposed methods of post-processing which allowed for mitigation of the matrix effects and for a reliable and accurate analysis. This technique was implemented for determination of trace elements in industrial copper concentrates standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for contents of three elements, that is silver, cobalt and vanadium. It has been shown that the described technique can be used to qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates.

  2. Flow injection with in-line reduction column and conductometric detection for determination of total inorganic nitrogen in soil.

    PubMed

    Yanu, Pattama; Jakmunee, Jaroon

    2015-11-01

    A cost effective flow injection (FI) conductometric system has been developed for determination of total inorganic nitrogen (TIN). The system is aimed for evaluation of nitrogen nutrient in soil for agricultural application. Inorganic nitrogen compounds were extracted from soil according to the standard method by using potassium chloride solution as an extractant, and the extracted solution was then injected into the FI system. Nitrate and nitrite are converted to ammonium ion by an in-line reduction column packed with a Devarda's alloy. A gas diffusion unit was incorporated into the FI system to separate ammonium ion from other ions in a donor stream by forming ammonia gas that can diffuse through a PTFE membrane to re-dissolve in an acceptor stream. Conductance of the acceptor stream was directly proportional to ammonium ion concentration. Various parameters affecting reduction efficiency of the column, e.g., column diameter, column packing procedure, and column length was investigated and optimized. A linear calibration graph in the range of 2.00-60.00 mg L(-1) N-NH4(+) (y=0.123x+0.039, R(2) =0.997) was obtained with a limit of detection of 0.47 mg L(-1). Sample throughput of 20 samples h(-1) was achieved. The result of developed method was correlated with total Kjeldahl nitrogen (TKN) obtained from the Kjeldahl digestion method. The proposed method could be used as an alternative method to the Kjeldahl method for determination of TIN in soil. PMID:26452820

  3. Development of a novel method for determination of mercury based on its inhibitory effect on horseradish peroxidase activity followed by monitoring the surface plasmon resonance peak of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Khodaveisi, Javad; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Moghadam, Masoud Rohani; Hormozi-Nezhad, Mohammad Reza

    2016-01-01

    A highly sensitive and simple indirect spectrophotometric method has been developed for the determination of trace amounts of inorganic mercury (Hg2 +) in aqueous media. The method is based on the inhibitory effect of Hg2 + on the activity of horseradish peroxidase (HRP) in the oxidation of ascorbic acid by hydrogen peroxide followed by the reduction of Au3 + to Au-NPs by unreacted ascorbic acid and the measurement of the absorbance of localized surface plasmon resonance (LSPR) peak of gold nanoparticles (at 530 nm) which is directly proportional to the concentration of Hg2 +. Under the optimum conditions, the calibration curve was linear in the concentration range of 1-220 ng mL- 1. Limits of detection (LOD) and quantification (LOQ) were 0.2 and 0.7 ng mL- 1, respectively and the relative standard deviation at 100 ng mL- 1 level of Hg2 + was 2.6%. The method was successfully applied to the determination of mercury in different water samples.

  4. Simple and accessible analytical methods for the determination of mercury in soil and coal samples.

    PubMed

    Park, Chul Hee; Eom, Yujin; Lee, Lauren Jong-Eun; Lee, Tai Gyu

    2013-09-01

    Simple and accessible analytical methods compared to conventional methods such as US EPA Method 7471B and ASTM-D6414 for the determination of mercury (Hg) in soil and coal samples are proposed. The new methods are consisted of fewer steps without the Hg oxidizing step consequently eliminating a step necessary to reduce excess oxidant. In the proposed methods, a Hg extraction is an inexpensive and accessible step utilizing a disposable test tube and a heating block instead of an expensive autoclave vessel and a specially-designed microwave. Also, a common laboratory vacuum filtration was used for the extracts instead of centrifugation. As for the optimal conditions, first, best acids for extracting Hg from soil and coal samples was investigated using certified reference materials (CRMs). Among common laboratory acids (HCl, HNO3, H2SO4, and aqua regia), aqua regia was most effective for the soil CRM whereas HNO3 was for the coal CRM. Next, the optimal heating temperature and time for Hg extraction were evaluated. The most effective Hg extraction was obtained at 120°C for 30min for soil CRM and at 70°C for 90min for coal CRM. Further tests using selected CRMs showed that all the measured values were within the allowable certification range. Finally, actual soil and coal samples were analyzed using the new methods and the US EPA Method 7473. The relative standard deviation values of 1.71-6.55% for soil and 0.97-12.11% for coal samples were obtained proving that the proposed methods were not only simple and accessible but also accurate.

  5. Direct determination of total mercury in phosphate rock using alkaline fusion digestion.

    PubMed

    D'Agostino, Fabio; Oliveri, Elvira; Bagnato, Emanuela; Falco, Francesca; Mazzola, Salvatore; Sprovieri, Mario

    2014-12-10

    The aim of this work was to develop a new method to determine the mercury (Hg) concentrations in phosphate rock using a dedicated analytical instrument (the DMA80 Tricell by Milestone) that employs an integrated sequence of thermal decomposition followed by catalyst conversion, amalgamation and atomic absorption spectrophotometry. However, this instrument underestimates Hg concentrations when phosphorite and apatite rocks are investigated with a classic thermal decomposition treatment that complies with US EPA method 7473. Therefore, to improve the recovery of total Hg, we performed alkaline fusion digestion (AFD) directly inside the furnace of the instrument, using BCR(32) as a certified reference material (Moroccan phosphate rock--phosphorite). The salts used for the AFD were a mixture of Na2CO3, K2CO3 and Li2CO3, which melt at about 400°C, due to their ability to form a ternary eutectic and to decompose the phosphorite matrices at 700°C. By adopting this analytical approach, the Hg recovery in BCR(32) was about 100%, compared to 40% when the reference material was analysed without using the alkaline fusion salt. We suggest that the AFD allowed the decomposition of the sample matrix and that some Hg compounds linked with other functional groups may be transformed in carbonates that sublimate at lower temperatures than other Hg compounds. This original method was tested on a number of different geological samples to compare the differences between the AFD method and the thermal treatment in order to verify the working range and to check the robustness of the new approach.

  6. Determination of groundwater mercury (II) content using a disposable gold modified screen printed carbon electrode.

    PubMed

    Somé, Issa Touridomon; Sakira, Abdoul Karim; Mertens, Dominique; Ronkart, Sebastien N; Kauffmann, Jean-Michel

    2016-05-15

    Mercury (II) measurements were performed thanks to a newly developed electrochemical method using a disposable gold modified screen printed carbon electrode. The method has a wide dynamic range (1-100 µg/L), a good accuracy and a limit of detection in compliance with WHO standards. The application of the method to several groundwater samples made it possible to identify, for the first time, mercury content higher than the recommended WHO standard value in a gold mining activity area in the northern part of Burkina Faso. The accuracy of the assay was checked by ICP/MS. PMID:26992529

  7. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers.

    PubMed

    Olmedo, P; Pla, A; Hernández, A F; Barbier, F; Ayouni, L; Gil, F

    2013-09-01

    Although fish intake has potential health benefits, the presence of metal contamination in seafood has raised public health concerns. In this study, levels of mercury, cadmium, lead, tin and arsenic have been determined in fresh, canned and frozen fish and shellfish products and compared with the maximum levels currently in force. In a further step, potential human health risks for the consumers were assessed. A total of 485 samples of the 43 most frequently consumed fish and shellfish species in Andalusia (Southern Spain) were analyzed for their toxic elements content. High mercury concentrations were found in some predatory species (blue shark, cat shark, swordfish and tuna), although they were below the regulatory maximum levels. In the case of cadmium, bivalve mollusks such as canned clams and mussels presented higher concentrations than fish, but almost none of the samples analyzed exceeded the maximum levels. Lead concentrations were almost negligible with the exception of frozen common sole, which showed median levels above the legal limit. Tin levels in canned products were far below the maximum regulatory limit, indicating that no significant tin was transferred from the can. Arsenic concentrations were higher in crustaceans such as fresh and frozen shrimps. The risk assessment performed indicated that fish and shellfish products were safe for the average consumer, although a potential risk cannot be dismissed for regular or excessive consumers of particular fish species, such as tuna, swordfish, blue shark and cat shark (for mercury) and common sole (for lead). PMID:23792415

  8. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers.

    PubMed

    Olmedo, P; Pla, A; Hernández, A F; Barbier, F; Ayouni, L; Gil, F

    2013-09-01

    Although fish intake has potential health benefits, the presence of metal contamination in seafood has raised public health concerns. In this study, levels of mercury, cadmium, lead, tin and arsenic have been determined in fresh, canned and frozen fish and shellfish products and compared with the maximum levels currently in force. In a further step, potential human health risks for the consumers were assessed. A total of 485 samples of the 43 most frequently consumed fish and shellfish species in Andalusia (Southern Spain) were analyzed for their toxic elements content. High mercury concentrations were found in some predatory species (blue shark, cat shark, swordfish and tuna), although they were below the regulatory maximum levels. In the case of cadmium, bivalve mollusks such as canned clams and mussels presented higher concentrations than fish, but almost none of the samples analyzed exceeded the maximum levels. Lead concentrations were almost negligible with the exception of frozen common sole, which showed median levels above the legal limit. Tin levels in canned products were far below the maximum regulatory limit, indicating that no significant tin was transferred from the can. Arsenic concentrations were higher in crustaceans such as fresh and frozen shrimps. The risk assessment performed indicated that fish and shellfish products were safe for the average consumer, although a potential risk cannot be dismissed for regular or excessive consumers of particular fish species, such as tuna, swordfish, blue shark and cat shark (for mercury) and common sole (for lead).

  9. Determination of Mercury in Aqueous and Geologic Materials by Continuous Flow-Cold Vapor-Atomic Fluorescence Spectrometry (CVAFS)

    USGS Publications Warehouse

    Hageman, Philip L.

    2007-01-01

    New methods for the determination of total mercury in geologic materials and dissolved mercury in aqueous samples have been developed that will replace the methods currently (2006) in use. The new methods eliminate the use of sodium dichromate (Na2Cr2O7 ?2H2O) as an oxidizer and preservative and significantly lower the detection limit for geologic and aqueous samples. The new methods also update instrumentation from the traditional use of cold vapor-atomic absorption spectrometry to cold vapor-atomic fluorescence spectrometry. At the same time, the new digestion procedures for geologic materials use the same size test tubes, and the same aluminum heating block and hot plate as required by the current methods. New procedures for collecting and processing of aqueous samples use the same procedures that are currently (2006) in use except that the samples are now preserved with concentrated hydrochloric acid/bromine monochloride instead of sodium dichromate/nitric acid. Both the 'old' and new methods have the same analyst productivity rates. These similarities should permit easy migration to the new methods. Analysis of geologic and aqueous reference standards using the new methods show that these procedures provide mercury recoveries that are as good as or better than the previously used methods.

  10. Use of naturally occurring mercury to determine the importance of cutthroat trout to Yellowstone grizzly bears

    USGS Publications Warehouse

    Felicetti, L.A.; Schwartz, C.C.; Rye, R.O.; Gunther, K.A.; Crock, J.G.; Haroldson, M.A.; Waits, L.; Robbins, C.T.

    2004-01-01

    Spawning cutthroat trout (Oncorhynchus clarki (Richardson, 1836)) are a potentially important food resource for grizzly bears (Ursus arctos horribilis Ord, 1815) in the Greater Yellowstone Ecosystem. We developed a method to estimate the amount of cutthroat trout ingested by grizzly bears living in the Yellowstone Lake area. The method utilized (i) the relatively high, naturally occurring concentration of mercury in Yellowstone Lake cutthroat trout (508 ± 93 ppb) and its virtual absence in all other bear foods (6 ppb), (ii) hair snares to remotely collect hair from bears visiting spawning cutthroat trout streams between 1997 and 2000, (iii) DNA analyses to identify the individual and sex of grizzly bears leaving a hair sample, (iv) feeding trials with captive bears to develop relationships between fish and mercury intake and hair mercury concentrations, and (v) mercury analyses of hair collected from wild bears to estimate the amount of trout consumed by each bear. Male grizzly bears consumed an average of 5 times more trout/kg bear than did female grizzly bears. Estimated cutthroat trout intake per year by the grizzly bear population was only a small fraction of that estimated by previous investigators, and males consumed 92% of all trout ingested by grizzly bears.

  11. Sediment Microbial Community Composition and Mercury Methylation at Four California Mercury Mines

    NASA Astrophysics Data System (ADS)

    Batten, K. M.

    2001-12-01

    Mercury contamination is a globally significant problem. An important transformation in the mercury cycle is the conversion of inorganic mercury to methylmercury, a potent neurotoxin and bioaccumulant. This transformation is primarily bacterially-mediated, and sulfate-reducing bacteria (SRB) have been specifically implicated as key mercury methylators in lake and estuarine sediments. This study used Phospholipid Fatty Acid (PLFA) analysis to investigate sediment microbial community structure at four abandoned mercury mine sites in the California Coast Range: the Abbott, Reed, Sulphur Bank, and Mt. Diablo mines. Differences in watershed and hydrology among these sites appear to strongly impact microbial community composition. The Abbott and Sulphur Bank mines were determined to have the highest levels of methylmercury. Floc and sediment samples revealed different environments for microbial growth but did not have statistically different methylmercury concentrations. Two PLFA biomarkers for SRB were examined: 10Me16:0 (Desulfobacter) and i17:1 (Desulfovibrio). Results indicate that Desulfobacter and Desulfovibrio organisms are important contributors to methylmercury production in the Abbott, Reed, and Sulphur Bank mines but are not important in the Mt. Diablo Mine where methylmercury production may be abiotic in origin.

  12. Standardisation of a European measurement method for the determination of total gaseous mercury: results of the field trial campaign and determination of a measurement uncertainty and working range.

    PubMed

    Brown, Richard J C; Pirrone, N; van Hoek, C; Sprovieri, F; Fernandez, R; Toté, K

    2010-03-01

    Working Group 25 of the European Committee for Standardisation's (CEN) Technical Committee 264 'Air Quality' is currently finalising a standard method for the measurement of total gaseous mercury (TGM) in ambient air, in response to the requirements of the European Union's Fourth Air Quality Daughter Directive (4(th) DD). We report the results of a programme of field measurements and the statistical analysis performed to assess the uncertainty of the proposed standard method, define its working range and determine its compliance with the required data quality objectives of the Fourth Air Quality Daughter Directive. The statistical analysis has shown that the maximum relative expanded uncertainty of 50% allowed by the 4(th) DD is met down to a mercury mass concentration of approximately 0.75 ng m(-3), and that the dominant contribution to this uncertainty is systematic bias between instruments, mainly arising from the uncertainty in the calibration of the instruments.

  13. Inorganic Materials

    NASA Astrophysics Data System (ADS)

    Černý, Radovan

    The separation of compounds by inorganic/organic boundary is of less importance for the structure determination by diffraction methods. More important for the diffraction is how the atoms build up larger building units and the crystal itself. A molecular/non-molecular boundary is therefore relevant for the choice of a structure determination method. Non-molecular compounds - also called extended solids - are constructed by bonds that extend "infinitely" in three dimensions through a crystal. These non-molecular crystals usually crystallize with higher symmetries, and atoms often occupy special Wyckoff positions. A review of actual methodology is given first, and then highlights and pitfalls of structure determination from powder diffraction, its problems and their solutions are shown and discussed using selected examples.

  14. Mercury in the ecosystem

    SciTech Connect

    Mitra, S.

    1986-01-01

    This treatise on the environmental dispersion of mercury emphasizes the importance of ''mercury-consciousness'' in the present-day world, where rapidly expanding metallurgical, chemical, and other industrial developments are causing widespread contamination of the atmosphere, soil, and water by this metal and its toxic organic derivatives. Concepts concerning the mechanism of mercury dispersion and methyl-mercury formation in the physico-biological ecosystem are discussed in detail and a substantial body of data on the degree and nature of the mercury contamination of various plants, fish, and land animals by industrial and urban effluents is presented. Various analytical methods for the estimation of mercury in inorganic and organic samples are presented. These serve as a ready guide to the selection of the correct method for analyzing environmental samples. This book is reference work in mercury-related studies. It is written to influence industrial policies of governments in their formulation of control measures to avoid the recurrence of human tragedies such as the well-known Minamata case in Japan, and the lesser known cases in Iraq, Pakistan, and Guatamala.

  15. Localized surface plasmon resonance mercury detection system and methods

    DOEpatents

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  16. Anatomical mercury speciation in bay scallops by thio-bearing chelating resin concentration and GC-electron capture detector determination.

    PubMed

    Zhang, Qihua; Yang, Guipeng

    2014-01-01

    The highly toxic methyl-, ethyl- and phenylmercury species that may exist in the three main anatomical parts - the adductor muscle, the mantle and the visceral mass - of bay scallops (Argopecten irradias) were quantitatively released by cupric chloride, zinc acetate, sodium chloride and hydrochloric acid (HCl) under ultrasonic extraction. After centrifugation, the mercury species in the supernatant were concentrated by thio (SH)-bearing chelating resins, eluted with HClO4 and HCl and extracted with toluene. Separation was achieved by capillary GC equipped with programmed temperatures, a constant nitrogen flow and detected by a micro-electron capture detector (μECD). Under optimised conditions, the LODs for methyl-, ethyl- and phenylmercury in bay scallop samples were 1.1, 0.65 and 0.80 ng g(-1), respectively. The maximum RSD for three replicate determinations of methyl-, ethyl- and phenylmercury in bay scallop samples were 13.7%, 14.0% and 11.2%, respectively. In the concentration range of 4-200 ng g(-1) in bay scallop samples, the calibration graphs were linear with correlation coefficients not less than 0.997. Recoveries for spiked samples were in the range of 92.7-103.5% (methylmercury), 87.5-108.3% (ethylmercury) and 91.6-106.0% (phenylmercury), respectively. The method was verified by the determination of methylmercury in a CRM GBW10029 (Total Mercury and Methyl Mercury in Fish Tissue), with results in good agreement with the certified values. Methylmercury - the only existing species in bay scallops - was successfully determined by the method.

  17. Evaluation of the suitability of application of golden jackal (Canis aureus) hair as a noninvasive technique for determination of body burden mercury.

    PubMed

    Malvandi, Hassan; Ghasempouri, Seyed Mahmoud; Esmaili-Sari, Abbas; Bahramifar, Nader

    2010-08-01

    An evaluation of suitability of applying hair as a noninvasive indicator for determination of the body burden mercury in mammals was carried out by determining the concentration of mercury in hair and liver tissue of the golden jackal, Canis aureus . Nineteen jackals killed on the roads along the Caspian Sea in the central region of Mazandaran Province, Iran were collected. The mercury measurements were carried out by AMA254 LECO and the standard method ASTM-D6722. SPSS and Excel were used for analytical statistics. There was a significant difference in Hg levels between the hair and liver tissue (P < 0.001). The average concentration of mercury was 187.3 + or - 22.7 and 53.3 + or - 7.3 ng/g, respectively. No significant differences were seen either between the sexes or in correlation between the tissues. But a significant and positive relation was seen between the mercury content in hair and body weight and length (P < 0.005). In general, the mercury concentration was less than the deleterious, effective limit on the species. It seems that this is the first study of Hg concentrations in jackals and demonstrates on easy and noninvasive sampling method. PMID:20596768

  18. Evaluation of the suitability of application of golden jackal (Canis aureus) hair as a noninvasive technique for determination of body burden mercury.

    PubMed

    Malvandi, Hassan; Ghasempouri, Seyed Mahmoud; Esmaili-Sari, Abbas; Bahramifar, Nader

    2010-08-01

    An evaluation of suitability of applying hair as a noninvasive indicator for determination of the body burden mercury in mammals was carried out by determining the concentration of mercury in hair and liver tissue of the golden jackal, Canis aureus . Nineteen jackals killed on the roads along the Caspian Sea in the central region of Mazandaran Province, Iran were collected. The mercury measurements were carried out by AMA254 LECO and the standard method ASTM-D6722. SPSS and Excel were used for analytical statistics. There was a significant difference in Hg levels between the hair and liver tissue (P < 0.001). The average concentration of mercury was 187.3 + or - 22.7 and 53.3 + or - 7.3 ng/g, respectively. No significant differences were seen either between the sexes or in correlation between the tissues. But a significant and positive relation was seen between the mercury content in hair and body weight and length (P < 0.005). In general, the mercury concentration was less than the deleterious, effective limit on the species. It seems that this is the first study of Hg concentrations in jackals and demonstrates on easy and noninvasive sampling method.

  19. ICP OES and CV AAS in determination of mercury in an unusual fatal case of long-term exposure to elemental mercury in a teenager.

    PubMed

    Lech, Teresa

    2014-04-01

    In this work, a case of deliberate self-poisoning is presented. A 14-year-old girl suddenly died during one of the several hospitalizations. Abdominal computer tomography showed a large number of metallic particles in the large intestine. Analysis of blood and internal organs for mercury and other toxic metals carried out by inductively coupled plasma optical emission spectrometry (ICP OES) revealed high concentrations of mercury in kidneys and liver (64,200 and 2470ng/g, respectively), less in stomach (90ng/g), and none in blood. Using cold vapor-atomic absorption spectrometry (CV AAS), high levels of mercury were confirmed in all examined materials, including blood (87ng/g), and additionally in hair. The results of analysis obtained by two techniques revealed that the exposure to mercury was considerable (some time later, it was stated that the mercury originated from thermometers that had been broken over the course of about 1 year, because of Münchausen syndrome). CV AAS is a more sensitive technique, particularly for blood samples (negative results using ICP OES), and tissue samples - with LOQ: 0.63ng/g of Hg (CV AAS) vis-à-vis 70ng/g of Hg (ICP OES). However, ICP OES may be used as a screening technique for autopsy material in acute poisoning by a heavy metal, even one as volatile as mercury. PMID:24630410

  20. Hair mercury levels in pregnant women in Mahshahr, Iran: fish consumption as a determinant of exposure.

    PubMed

    Salehi, Zohreh; Esmaili-Sari, Abbas

    2010-09-15

    MeHg is a well-documented neurotoxicant even at low levels of exposure. Developing brain, in particular, is vulnerable to that. Through bioaccumulating to differing degrees in various fish species, it can have serious adverse effects on the development and functioning of the human central nervous system, especially during prenatal exposure. Therefore, the purpose of this study was to investigate mercury concentration in hair samples of pregnant women living in Mahshahr located in Khuzestan province, Iran. It assessed the association between fish consumption and specific characteristics that can influence exposure. From April to June 2008, 149 pregnant women were invited to participate in this study. An interview administered questionnaire was used to collect information about age, body weight, height, fish (fresh, canned and shrimp) consumption, pregnancy stage, residence duration, education level, family income and number of dental amalgam fillings. The obtained results showed that the geometric mean and range for hair total Hg concentration was 3.52 microg/g (0.44-53.56 microg/g). About 5.4% of mothers had hair total Hg levels in excess of 10 microg/g. Maternal hair mercury level was less than threshold level of WHO (5 microg/g). As expected, there was a clear increase in hair Hg with reported fresh marine fish consumption (p=0.04). The highest mean for hair mercury level in a group who consumed fish several times per week, was 4.93 microg/g. Moreover, a significant effect of age and residential time on Hg concentration in the hair of the women was found. Pregnant women in Mahshahr consumed large amounts of fish; consequently, most of their offspring were prenatally exposed to moderately high levels of mercury. The results found suggest that pregnant women should decrease their fish consumption. PMID:20655095

  1. Estimating Mercury-Binding Ligand Concentrations in Freshwater Wetland Porewaters Using the “Tin-Reducible-Mercury” Titration Method

    NASA Astrophysics Data System (ADS)

    Creswell, J. E.; Babiarz, C.; Shafer, M. M.; Armstrong, D. E.

    2009-12-01

    Wetland environments are recognized as active regions of mercury methylation and may represent the primary source of methylmercury to many aquatic systems. Thus understanding the methylation process in these systems is vital to efforts at prediction of methylmercury accumulation at higher trophic levels. Strong mercury-binding ligands in porewaters can limit methylation in wetlands because large ligands and charged Hg-complexes are not bioavailable to methylating bacteria. Following the method developed by Lamborg and colleagues (2003), we used tin(II) chloride, a weak reductant, to reduce and measure labile Hg in porewater samples (i.e. the fraction not bound to strong ligands). We further titrated samples with Hg(II) to determine the Hg concentration at which the naturally occurring ligands were saturated - thus providing a measure of mercury-binding ligand concentrations. To our knowledge, this is the first extensive use of this technique on porewater samples. In an effort to differentiate between inorganic- and organic-complexed Hg, we modeled the inorganic speciation of Hg using MINEQL+, an aqueous speciation modeling program. Measurements of total mercury, methylmercury, sulfide, sulfate, chloride, carbonate, pH, dissolved organic carbon, phosphate, bromide, and major ions in sample porewaters were used as inputs to the model. Using the inorganic speciation calculated by the model, and the ligand concentrations measured in our laboratory experiment, we calculated conditional stability constants for mercury-ligand binding in this system. Although modeling predicts that mercury speciation will be dominated by sulfide at the concentrations present in this system, mercury methylation rate measurements show a stronger correlation with dissolved organic carbon concentrations than with sulfide. This correlation suggests that dissolved organic carbon plays an important role in mercury speciation, even in the presence of sulfide. Porewaters were extracted from

  2. Assessment of Methods for Determining the Impurity Concentration in Mercury Cells

    NASA Astrophysics Data System (ADS)

    Kalemci, M.; Ince, A. T.; Bonnier, G.

    2011-01-01

    The uncertainty arising from chemical impurities is the principle contribution in the uncertainty budget of primary level temperature measurements. Impurities in any substance generally decrease the freezing (or triple) point temperature of a substance, and their influence is governed primarily by their behavior at low concentrations in the host material. The depression in temperature due to impurities is theoretically expressed by Raoult's law which, at final analysis, expresses the linearity between Δ T ( T observed- T pure) and the inverse of the melted fraction (1/ F). Recently, TUBITAK UME carried out a new project on the construction of new reference mercury fixed-point cells. Within the scope of this study, three different sets of mercury cells with different purity values were fabricated. Three methods were employed to assess the impurity concentration in the cells. The first method is known as the mole fraction sum of impurity components, and the chemical assays form the basis for this kind of assessment. The second method of evaluation is based on a 1/ F versus Δ T curve, and the slope values obtained from these curves are important. The final method is to directly compare the new cells with a national (or reference) standard mercury cell. The results obtained from three methods of evaluation showed consistency in terms of qualitative analysis.

  3. A regenerative electrochemical sensor based on oligonucleotide for the selective determination of mercury(II).

    PubMed

    Han, Donghoon; Kim, Yang-Rae; Oh, Jeong-Wook; Kim, Tae Hyun; Mahajan, Rakesh Kumar; Kim, Jong Seung; Kim, Hasuck

    2009-09-01

    We have developed a selective, sensitive, and re-usable electrochemical sensor for Hg2+ ion detection. This sensor is based on the Hg2+-induced conformational change of a single-stranded DNA (ssDNA) which involves an electroactive, ferrocene-labeled DNA hairpin structure and provides strategically the selective binding of a thymine-thymine mismatch for the Hg2+ ion. The ferrocene-labeled DNA is self-assembled through S-Au bonding on a polycrystalline gold electrode surface and the surface blocked with 3-mercapto-1-propanol to form a mixed monolayer. The modified electrode showed a voltammetric signal due to a one-step redox reaction of the surface-confined ferrocenyl moiety. The 'signal-on' upon mercury binding could be attributed to a change in the conformation of ferrocene-labeled DNA from an open structure to a restricted hairpin structure. The differential pulse voltammetry (DPV) of the modified electrode showed a linear response of the ferrocene oxidation signal with increase of Hg2+ concentration in the range between 0.1 and 2 microM with a detection limit of 0.1 microM. The molecular beacon mercury(II) ion sensor was amenable to regeneration by simply unfolding the ferrocene-labeled DNA in 10 microM cysteine, and could be regenerated with no loss in signal gain upon subsequent mercury(II) ion binding.

  4. Determination of labile inorganic and organic species of Al and Cu in river waters using the diffusive gradients in thin films technique.

    PubMed

    Tonello, Paulo Sergio; Goveia, Danielle; Rosa, André Henrique; Fraceto, Leonardo Fernandes; Menegário, Amauri Antonio

    2011-03-01

    The diffusive gradients in thin films (DGT) technique, using a diffusive gel or a restrictive gel, was evaluated for the determination of labile inorganic and organic species of Al and Cu in model synthetic solutions and river water samples. Experiments were performed both in situ and in the laboratory. In the solutions containing Al ions, the major labile fraction consisted of inorganic species. The organic complex fractions were mainly kinetically inert. For the model Cu solutions, the most labile fraction consisted of inorganic species; however, significant amounts of labile organic complexes of Cu were also present. A comparison was made between the results obtained using restrictive gel DGT and tangential flow ultrafiltration (TF-UF). The Cu fraction determined by restrictive gel DGT (corresponding to the "free" ions plus the labile fraction of small molecular size complexes) was larger than that determined by TF-UF (corresponding to all small molecular size ions), suggesting that the techniques exhibited different porosities for discrimination of inorganic species. For the river water samples analyzed in the laboratory, less than 45% of the analytes were present in labile forms, with most being organic species. For the in situ measurements, the labile inorganic and organic fractions were larger than those obtained in the laboratory analyses. These differences could have been due to errors incurred during sample collection and storage. All results were consistent with those found using two different methods, namely, solid-phase extraction and the DGT technique employing the apparent diffusion coefficient.

  5. Determination of inorganic arsenic in marine food samples by hydrochloric acid distillation and flow-injection hydride-generation atomic absorption spectrometry.

    PubMed

    Oygard, J K; Lundebye, A K; Julshamn, K

    1999-01-01

    A simple, rapid, and reliable method was developed for determination of inorganic As in biological samples such as fish fillet. Inorganic AS was distilled from the sample as AsCl3 with HCl. The separated inorganic AS was determined by flow-injection hydride-generation atomic absorption spectrometry after prereduction with KI and HCl. The influences of various concentrations of KI, ascorbic acid, and HCl in the prereduction stage; NaBH4 as the reductant; and HCl as the carrier solution on analytical results were studied. Digestion was performed in a Kjeldahl digestion system for 75 min with 4 mL nitric acid and 1 mL sulfuric acid at 380 degrees C. The concentrations of inorganic As in samples were less than 0.1 mg/kg dry weight for fish fillet and somewhat higher for crustaceans and bivalve molluscs. The total and inorganic As contents of various marine biological samples and certified reference materials were determined.

  6. Determination of methyl mercury in whole blood by ethylation-GC-CVAFS after alkaline digestion-solvent extraction.

    PubMed

    Liang, L; Evens, C; Lazoff, S; Woods, J S; Cernichiari, E; Horvat, M; Martin, M D; DeRouen, T

    2000-01-01

    A method for the determination of methyl mercury in whole blood samples based on ethylation-gas chromatography-cold vapor atomic fluorescence spectrometry after alkaline digestion-solvent extraction is described. The extraction procedure and conditions were optimized, and the matrix interference after extraction was critically investigated. The storage stability of MeHg in blood samples and a series of extracts was determined. The method detection limit was found to be approximately 0.02 ng/g for a 0.5-g blood sample with relative standard deviations of less than 10%. The accuracy and precision were evaluated by summarizing the quality-control (QC) data generated over a one and one half year period. Appropriate procedures for sample collection, transportation, and storage were adapted to the method. Using this method accompanied by explicit QC protocols and procedures, background levels of MeHg and total mercury in blood for 150 8-10-year-old Portuguese children with nonoccupational and nonamalgamal exposure were determined and reported with summarized QC data.

  7. Mercury and selenium content and chemical form in human and animal tissue.

    PubMed

    Cappon, C J; Smith, J C

    1981-01-01

    The content, chemical form, and distribution of mercury and selenium were determined for selected samples of human and animal tissue by gas chromatography. Methylmercury averaged 38.7% of the total mercury content in homogenized human brain. For human heart, spleen, liver, kidney and placenta, methylmercury comprised 40.2%, 57.0%, 39.6%, 6.0% and 57.1% respectively, of the total mercury content. Similar results were obtained for the heart and liver of a whitetail deer. Methylmercury represented 9.1%, 62.9% and 24.1% of the total mercury content in seal liver, seal meat and deer meat, respectively. For all samples, a significant portion of the total selenium content, averaging 27%, was present as selenate (Se VI). Tissue selenium content did not correlate with the corresponding mercury content. In brain, heart and placenta, and in seal liver and meat, 53% to 80% of the total mercury content was water-extractable. For human kidney, liver and spleen, and deer meat, only 15% to 45% of the total mercury was extractable. On a percentage basis, inorganic mercury was more extractable than methylmercury, except for human kidney and liver, and deer meat. For all samples, except kidney, liver and deer meat, 55% to 76% of the total selenium content was water-extractable, Se VI being more extractable on a percentage basis than selenite (Se IV) and selenide (Se-II). PMID:7242026

  8. The Empire Knight: Patterns of mercury contamination in sediment and biota at a marine site

    SciTech Connect

    Hoff, R.Z.

    1995-12-31

    The Empire Knight, a merchant ship carrying approximately 7.3 metric tons of elemental mercury in its cargo, sank in a storm off the Maine coast in 1 944. Unique attributes of the site include the deep water marine conditions (80 m) and mercury originally in elemental form. Recent evaluations of the site were undertaken to determine environmental risk of the remaining mercury and possible remedial actions. Data collected in 1993 for this risk evaluation included sediment core samples, and a variety of biota samples. Biota were analyzed for total and methylmercury, and the following patterns examined: percent methylmercury, variability between species groups, and spatial patterns related to sediment contamination. Sediment contamination was largely confined to the immediate area near the wreck, with levels decreasing to background within 60 m. Invertebrates within this area had elevated levels of mercury in tissue. Most contamination was in an inorganic form, with percentages of methyl to total mercury below 20%, except for crab and lobster. Most of the residual mercury appears to be largely unavailable to biota, with local invertebrates comprising the main biological receptors. Evidence of bioaccumulation of mercury in higher trophic level organisms was not found, thus mercury did not appear to be a source of contamination beyond the immediate area the wreck.

  9. Mercury Exposure and Children’s Health

    PubMed Central

    Bose-O’Reilly, Stephan; McCarty, Kathleen M.; Steckling, Nadine; Lettmeier, Beate

    2011-01-01

    Acute or chronic mercury exposure can cause adverse effects during any period of development. Mercury is a highly toxic element; there is no known safe level of exposure. Ideally, neither children nor adults should have any mercury in their bodies because it provides no physiological benefit. Prenatal and postnatal mercury exposures occur frequently in many different ways. Pediatricians, nurses, and other health care providers should understand the scope of mercury exposures and health problems among children and be prepared to handle mercury exposures in medical practice. Prevention is the key to reducing mercury poisoning. Mercury exists in different chemical forms: elemental (or metallic), inorganic, and organic (methylmercury and ethyl mercury). Mercury exposure can cause acute and chronic intoxication at low levels of exposure. Mercury is neuro-, nephro-, and immunotoxic. The development of the child in utero and early in life is at particular risk. Mercury is ubiquitous and persistent. Mercury is a global pollutant, bio-accumulating, mainly through the aquatic food chain, resulting in a serious health hazard for children. This article provides an extensive review of mercury exposure and children’s health. PMID:20816346

  10. Determination of reference concentrations for inorganic analytes in groundwater at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1996-03-01

    Background (or reference) concentrations for inorganics in Y-12 Plant groundwater were determined using a combination of statistical cluster analysis and conventional cumulative probability graphing. Objective was to develop a methodology for setting groundwater reference concentrations that uses all site groundwater data instead of only results of sampling upgradient of groundwater contamination. Y-12 was selected as prototype because the groundwater data set is very large and the data have been consistently collected since 1986. A conceptual framework of groundwater quality at Y-12 was formulated; as a quality check, data were statistically modeled or clustered. Ten hydrochemical regimes or clusters were identified. Six well clusters closely corresponded to the water quality framework and to observed water quality regimes in groundwater at Y-12. Four clusters were associated with nitrate, an S-3 Site contaminant, or with nonspecific contaminants commonly encountered at shallow depths at industrial sites (e.g., road salt). These four clusters were eliminated from the reference data set. Cumulative probability graphs were used within a cluster or group of clusters to distinguish contaminated wells from wells with ambient water quality. Only median values of unfiltered samples were plotted. Outlying data points (assumed to be contaminated samples) were identified and eliminated from the data set. When all outliers for a given inorganic had been identified and deleted from the data set, the reference concentration was set at the one-sided upper tolerance limit on the 95th percentile with 95% confidence. The methodology proved useful in integrating a large amount of data into the Y-12 plant groundwater conceptual framework and in identifying those wells or groups of wells that have monitoring or sample and analysis problems or that may be monitoring site-related contamination.

  11. Total Water, Phosphorus Relaxation and Inter-Atomic Organic to Inorganic Interface Are New Determinants of Trabecular Bone Integrity

    PubMed Central

    Rai, Ratan Kumar; Barbhuyan, Tarun; Singh, Chandan; Mittal, Monika; Khan, Mohd. Parvez; Sinha, Neeraj; Chattopadhyay, Naibedya

    2013-01-01

    Bone is the living composite biomaterial having unique structural property. Presently, there is a considerable gap in our understanding of bone structure and composition in the native state, particularly with respect to the trabecular bone, which is metabolically more active than cortical bones, and is readily lost in post-menopausal osteoporosis. We used solid-state nuclear magnetic resonance (NMR) to compare trabecular bone structure and composition in the native state between normal, bone loss and bone restoration conditions in rat. Trabecular osteopenia was induced by lactation as well as prolonged estrogen deficiency (bilateral ovariectomy, Ovx). Ovx rats with established osteopenia were administered with PTH (parathyroid hormone, trabecular restoration group), and restoration was allowed to become comparable to sham Ovx (control) group using bone mineral density (BMD) and µCT determinants. We used a technique combining 1H NMR spectroscopy with 31P and 13C to measure various NMR parameters described below. Our results revealed that trabecular bones had diminished total water content, inorganic phosphorus NMR relaxation time (T1) and space between the collagen and inorganic phosphorus in the osteopenic groups compared to control, and these changes were significantly reversed in the bone restoration group. Remarkably, bound water was decreased in both osteopenic and bone restoration groups compared to control. Total water and T1 correlated strongly with trabecular bone density, volume, thickness, connectivity, spacing and resistance to compression. Bound water did not correlate with any of the microarchitectural and compression parameters. We conclude that total water, T1 and atomic space between the crystal and organic surface are altered in the trabecular bones of osteopenic rats, and PTH reverses these parameters. Furthermore, from these data, it appears that total water and T1 could serve as trabecular surrogates of micro-architecture and compression

  12. Total water, phosphorus relaxation and inter-atomic organic to inorganic interface are new determinants of trabecular bone integrity.

    PubMed

    Rai, Ratan Kumar; Barbhuyan, Tarun; Singh, Chandan; Mittal, Monika; Khan, Mohd Parvez; Sinha, Neeraj; Chattopadhyay, Naibedya

    2013-01-01

    Bone is the living composite biomaterial having unique structural property. Presently, there is a considerable gap in our understanding of bone structure and composition in the native state, particularly with respect to the trabecular bone, which is metabolically more active than cortical bones, and is readily lost in post-menopausal osteoporosis. We used solid-state nuclear magnetic resonance (NMR) to compare trabecular bone structure and composition in the native state between normal, bone loss and bone restoration conditions in rat. Trabecular osteopenia was induced by lactation as well as prolonged estrogen deficiency (bilateral ovariectomy, Ovx). Ovx rats with established osteopenia were administered with PTH (parathyroid hormone, trabecular restoration group), and restoration was allowed to become comparable to sham Ovx (control) group using bone mineral density (BMD) and µCT determinants. We used a technique combining (1)H NMR spectroscopy with (31)P and (13)C to measure various NMR parameters described below. Our results revealed that trabecular bones had diminished total water content, inorganic phosphorus NMR relaxation time (T1) and space between the collagen and inorganic phosphorus in the osteopenic groups compared to control, and these changes were significantly reversed in the bone restoration group. Remarkably, bound water was decreased in both osteopenic and bone restoration groups compared to control. Total water and T1 correlated strongly with trabecular bone density, volume, thickness, connectivity, spacing and resistance to compression. Bound water did not correlate with any of the microarchitectural and compression parameters. We conclude that total water, T1 and atomic space between the crystal and organic surface are altered in the trabecular bones of osteopenic rats, and PTH reverses these parameters. Furthermore, from these data, it appears that total water and T1 could serve as trabecular surrogates of micro-architecture and compression

  13. Electrophoretic and densitometric analysis of esterase activity as an indicator of mercury toxicity

    SciTech Connect

    Benton, M.J.; Guttman, S.I.

    1995-12-31

    In an earlier experiment, esterase activity as determined by starch gel electrophoresis was absent in larval caddisflies (Nectopsyche albida) that succumbed to mercury exposure, but was present in control larvae. To test the effects of mercury exposure duration on esterase activity, additional larval N. albida were exposed under conditions identical to those in the earlier experiment, and esterase activity was determined by electrophoresis of several live individuals every 12 hours. To test the effects of mercury concentration on esterase activity, homogenates of unexposed N. albida were electrophoresed, and esterase activity was determined using esterase-specific stains spiked with various concentrations of mercury. Following both experiments, esterase activity was quantified by laser densitometry of stained electrophoresis gels, Results indicate that: (1) inorganic mercury inhibited esterase activity, (2) inhibition increased with exposure time, and (3) inhibition increased with mercury concentration. Esterase inhibition may be a causal factor in mortality related to mercury exposure. Quantification of esterase activity by densitometry of electrophoretic gels may be an alternative method of rapid toxicity assessment.

  14. Methods for determination of inorganic substances in water and fluvial sediments

    USGS Publications Warehouse

    Brown, Eugene; Skougstad, Marvin W.; Fishman, M. J.

    1979-01-01

    Chapter Al of the manual contains methods used by the U.S. Geological Survey to collect, preserve, and analyze water samples for their content of dissolved minerals and gases. Among the topics discussed are selection of sampling sites, frequency of sampling, sampling equipment, sample preservation, laboratory equipment and instrumental techniques, accuracy and precision of analysis, and reporting of results. Seventy-six analytical procedures are given for determining 55 water properties. Listed below are the water properties for which analytical pro- cedures are given, and the principal procedure for the determination of each.

  15. Effects of mercury (II) species on cell suspension cultures of catharanthus roseus

    SciTech Connect

    Zhu, L. ); Cullen, W.R. )

    1994-11-01

    Mercury has received considerable attention because of its high toxicity. Widespread contamination with mercury poses severe environmental problems despite our extensive knowledge of its toxicity in living systems. It is generally accepted that the toxicity of mercury is related to its oxidation states and species, the organic forms being more toxic than the inorganic forms. In the aquatic environment, the toxicity of mercury depends on the aqueous speciation of the mercuric ion (Hg[sup 2+]). Because of the complex coordination chemistry of mercury in aqueous systems, the nature of the Hg[sup 2+] species present in aquatic environments is influenced greatly by water chemistry (e. g, pH, inorganic ion composition, and dissolved organics). Consequently, the influence of environmental factors on the aqueous speciation of mercury has been the focus of much attention. However, there is very little information available regarding the effects of the species and speciation on Hg (II) toxicity in plant-tissue cultures. Catharanthus roseus (C. roseus), commonly called the Madagascar Periwinkle, is a member of the alkaloid rich family Apocynaceae. The present investigation was concerned with the toxicity of mercury on the growth of C. roseus cell suspension cultures as influenced by mercury (II) species and speciation. The specific objectives of the study were to (a) study the effects of mercury species on the growth of C. roseus cultures from the point of view of environmental biology and toxicology; (b) evaluate the effects of selenate, selenite and selected ligands such as chloride, 1-cysteine in the media on the acute toxicity of mercuric oxide; (c) determine the impact of the initial pH of the culture media on the toxicities of mercuric compounds; (d) discuss the dependence of the toxicity on the chemical species and speciation of Hg (II). 11 refs., 7 figs., 2 tabs.

  16. Method development for the control determination of mercury in seafood by solid-sampling thermal decomposition amalgamation atomic absorption spectrometry (TDA AAS).

    PubMed

    Torres, D P; Martins-Teixeira, M B; Silva, E F; Queiroz, H M

    2012-01-01

    A very simple and rapid method for the determination of total mercury in fish samples using the Direct Mercury Analyser DMA-80 was developed. In this system, a previously weighted portion of fresh fish is combusted and the released mercury is selectively trapped in a gold amalgamator. Upon heating, mercury is desorbed from the amalgamator, an atomic absorption measurement is performed and the mercury concentration is calculated. Some experimental parameters have been studied and optimised. In this study the sample mass was about 100.0 mg. The relative standard deviation was lower than 8.0% for all measurements of solid samples. Two calibration curves against aqueous standard solutions were prepared through the low linear range from 2.5 to 20.0 ng of Hg, and the high linear range from 25.0 to 200.0 ng of Hg, for which a correlation coefficient better than 0.997 was achieved, as well as a normal distribution of the residuals. Mercury reference solutions were prepared in 5.0% v/v nitric acid medium. Lyophilised fish tissues were also analysed; however, the additional procedure had no advantage over the direct analysis of the fresh fish, and additionally increased the total analytical process time. A fish tissue reference material, IAEA-407, was analysed and the mercury concentration was in agreement with the certified value, according to the t-test at a 95% confidence level. The limit of quantification (LOQ), based on a mercury-free sample, was 3.0 µg kg(-1). This LOQ is in accordance with performance criteria required by the Commission Regulation No. 333/2007. Simplicity and high efficiency, without the need for any sample preparation procedure, are some of the qualities of the proposed method.

  17. Total mercury determination in different tissues of broiler chicken by using cloud point extraction and cold vapor atomic absorption spectrometry.

    PubMed

    Shah, A Q; Kazi, T G; Baig, J A; Afridi, H I; Kandhro, G A; Arain, M B; Kolachi, N F; Wadhwa, S K

    2010-01-01

    A cloud point extraction (CPE) method has been developed for the determination of total mercury (Hg) in different tissues of broiler chicken by cold vapor atomic absorption spectrometry (CVAAS). The broiler chicken tissues (leg, breast, liver and heart) were subjected to microwave assisted digestion in a mixture of nitric acid and hydrogen peroxide (2:1 ratio), prior to preconcentration by CPE. Various parameters such as the amount of ammonium O,O-diethyldithiophosphate (DDTP), concentrations of Triton X-114, equilibrium temperature, time and centrifugation have been studied in order to find the best conditions for the determination of mercury. For validation of proposed method a certified reference material, DORM-2 was used. No significant difference p>0.05 was observed between the experimental results and the certified values of CRM (paired t-test). The limit of detection and quantitation obtained under the optimal conditions were 0.117 and 0.382 microg/kg, respectively. The accumulation of Hg in different tissues were found in the order of, liver>muscles>heart. The concentration of Hg in chicken tissues were found in the range of 1.57-2.75, 1.40-2.27, 1.55-4.22, and 1.39-2.61 microg/kg in leg, breast, liver and heart, respectively.

  18. Sensitive determination of mercury in tap water by cloud point extraction pre-concentration and flow injection-cold vapor-inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    de Wuilloud, Jorgelina C. A.; Wuilloud, Rodolfo G.; Silva, María. F.; Olsina, Roberto A.; Martinez, Luis D.

    2002-02-01

    A pre-concentration and determination methodology for mercury at trace levels in water samples was developed. Cloud point extraction was successfully employed for the pre-concentration of mercury prior to inductively coupled plasma optical emission spectrometry coupled to a flow injection with cold vapor generation system. The mercury was extracted as mercury-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol [Hg(II)-(5-Br-PADAP)] complex, at pH 9.2 mediated by micelles of the non-ionic surfactant polyethyleneglycolmono- p-nonylphenylether (PONPE 5). Cold vapor generation was developed from 100 μl of the extracted surfactant-rich phase by means of a stannous chloride (SnCl 2) solution as reluctant. An exhaustive study of the variables affecting the cloud point extraction with PONPE 5 and cold vapor mercury generation from the surfactant phase was performed. The 50-ml sample solution pre-concentration allowed us to raise an enrichment factor of 200-fold. The lower limit of detection obtained under the optimal conditions was 4 ng l -1. The precision for 10 replicate determinations at the 0.5-μg l -1 Hg level was 3.4% relative standard deviation (R.S.D.), calculated with the peak heights. The calibration graph using the pre-concentration system for mercury was linear with a correlation coefficient of 0.9998 at levels near the detection limits up to at least 50 μg l -1. The method was successfully applied to the determination of mercury in tap water samples.

  19. Mercury Methylation and Environmental Effects of Inactive Mercury Mines in the Circum-Pacific Region

    NASA Astrophysics Data System (ADS)

    Gray, J. E.

    2001-05-01

    Mercury mines worldwide contain of some the highest concentrations of mercury on earth, and as a result of local mercury contamination, these mines represent areas of environmental concern when mine-drainage enters downstream aquatic systems. The most problematic aspect of mine site mercury contamination is the conversion of inorganic mercury to highly toxic organic mercury compounds, such as methylmercury, and their subsequent uptake by aquatic organisms in surrounding ecosystems. Mercury and methylmercury concentrations were measured in sediment and water samples collected from several inactive mercury mines in Nevada, Alaska, and the Philippines, which are part of the circum-Pacific mineral belt. The mines studied represent different mercury deposit types and sizes, and climatic settings. Geochemical data collected from these mines indicate that areas surrounding hot-springs type mercury deposits generally have lower methylmercury concentrations than silica-carbonate mercury deposits. In hot-springs mercury deposits in Nevada and Alaska, ore is dominantly cinnabar with few acid-water generating minerals such as pyrite, and as a result, mine-water drainage has near neutral pH in which there is low solubility of mercury. Conversely, silica-carbonate deposits, such as Palawan, Philippines, contain abundant cinnabar and pyrite, and the resultant acidic-mine drainage generally has higher concentrations of mercury and methylmercury. Additional factors such as the proximity of mercury mines to wetlands, climatic effects, or mine wastes containing highly soluble mercury compounds potentially enhance mercury methylation. The Palawan mercury mine may be a unique example where several adverse environmental factors produced local mercury contamination, high mercury methylation, fish contamination, and mercury poisoning of humans that consumed these contaminated fish.

  20. Determination of inorganic components in Brazilian medicinal plants by neutron activation analysis.

    PubMed

    Saiki, M; Vasconcellos, M B; Sertié, J A

    1990-01-01

    Instrumental neutron activation analysis (INAA) has been applied to multielemental determinations of medicinal extracts obtained from the plants. Cordia Verbenacea DC, Folidago Microglossa DC, and Petiveria Alliacea. Concentrations of the elements Al, Br, Ca, Cl, Co, Cs, Fe, K, La, Mg, Mn, Na, Rb, Sb, and Zn have been determined in dried extracts of these herbs by short and long irradiations under a thermal neutron flux of 10(11)-10(13) n/cm2s in the IEA-R1 nuclear reactor. The NBS Tea Leaves (1572) and NIES Pepperbush (1) reference materials were analyzed simultaneously with the plant extracts. The results obtained in these analyses have shown a good accuracy and reproducibility of the method. The relative errors and the relative standard deviations were less than 10% for most of the elements analyzed.

  1. Determination of inorganic pollutants in soil after volatilization using microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Picoloto, Rochele S.; Wiltsche, Helmar; Knapp, Günter; Mello, Paola A.; Barin, Juliano S.; Flores, Erico M. M.

    2013-08-01

    Microwave-induced combustion (MIC) was applied for analyte volatilization from soil and subsequent determination of As, Cd and Pb by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES), and Hg by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS). Soil samples (up to 300 mg) were mixed with microcrystalline cellulose, pressed as pellets and combusted in closed quartz vessels pressurized with 20 bar O2. Analytes were volatilized from soil during combustion and quantitatively absorbed in a suitable solution: nitric acid (1, 2, 4 or 6 mol L- 1) or a solution of nitric (2 mol L- 1) and hydrochloric (1, 2 or 4 mol L- 1) acids. Accuracy was evaluated using certified reference materials of soil (NIST 2709, San Joaquin Soil) and sediment (SUD-1, Sudbury sediment for trace elements). Agreement with certified values was better than 95% (t-test, 95% confidence level) for all analytes when 6 mL of a solution of 2 mol L- 1 HNO3 and 2 mol L- 1 HCl was used with a reflux step of 5 min. The limit of detection was 0.010, 0.002, 0.009 and 0.012 μg g- 1 for As, Cd, Hg and Pb, respectively using ICP-MS determination. A clear advantage of the proposed method over classical approaches is that only diluted solution is used. Moreover, a complete separation of the analytes from matrix is achieved minimizing potential interferences in ICP-MS or ICP-OES determination. Up to eight samples can be digested in a single run of only 25 min, resulting in a solution suitable for the determination of all analytes by both techniques.

  2. Workshop on Measurement Needs for Local-Structure Determination in Inorganic Materials

    PubMed Central

    Levin, Igor; Vanderah, Terrell

    2008-01-01

    The functional responses (e.g., dielectric, magnetic, catalytic, etc.) of many industrially-relevant materials are controlled by their local structure—a term that refers to the atomic arrangements on a scale ranging from atomic (sub-nanometer) to several nanometers. Thus, accurate knowledge of local structure is central to understanding the properties of nanostructured materials, thereby placing the problem of determining atomic positions on the nanoscale—the so-called “nanostructure problem”—at the center of modern materials development. Today, multiple experimental techniques exist for probing local atomic arrangements; nonetheless, finding accurate comprehensive, and robust structural solutions for the nanostructured materials still remains a formidable challenge because any one of these methods yields only a partial view of the local structure. The primary goal of this 2-day NIST-sponsored workshop was to bring together experts in the key experimental and theoretical areas relevant to local-structure determination to devise a strategy for the collaborative effort required to develop a comprehensive measurement solution on the local scale. The participants unanimously agreed that solving the nanostructure problem—an ultimate frontier in materials characterization—necessitates a coordinated interdisciplinary effort that transcends the existing capabilities of any single institution, including national laboratories, centers, and user facilities. The discussions converged on an institute dedicated to local structure determination as the most viable organizational platform for successfully addressing the nanostructure problem. The proposed “institute” would provide an intellectual infrastructure for local structure determination by (1) developing and maintaining relevant computer software integrated in an open-source global optimization framework (Fig. 2), (2) connecting industrial and academic users with experts in measurement techniques, (3

  3. Chemometric techniques on inorganic elements composition for the determination of the geographic origin of Welsh onions.

    PubMed

    Ariyama, Kaoru; Horita, Hiroshi; Yasui, Akemi

    2004-05-01

    Techniques to determine the producing country of Welsh onions (Allium fistulosum L.) were developed by using 216 samples from Japan and from Anchu Shandgon, Shanghai and Amoy Fjian in China. Twelve elements (Na, P, K, Ca, Mg. Mn, Fe, Cu, Zn, Sr, Ba, Al, Co, Ni, Rb, Mo, Cd, Cs, La, Ce, Tl and Pb) contained in Welsh onions were determined. In order to determining whether Welsh onions originate in Japan or in China, linear discriminant analysis (LDA) and soft independent modeling of class analogy (SIMCA) were performed, using concentrations of 20 elements excluding Al and Pb in 22 elements. In LDA for two-group discrimination modeled on Welsh onions from Japan and China, 103 samples used for modeling were classified 95% correctly, and 89 other samples were predicted 94% correctly. As the average of predictions by SIMCA modeled on samples selected by 10 times of random selections, 192 samples, including the 103 samples used for modeling, were predicted 96% correctly. In discriminations by combined LDA and SIMCA, all 81 samples produced in Japan were correctly judged to be Japanese ones, and only 8 samples out of 111 samples produced in China were not correctly judged to be Chinese ones. PMID:15171297

  4. Estimation of mercury speciation in soil standard reference materials with different extraction methods by ion chromatography coupled with ICP-MS.

    PubMed

    Park, Misun; Yoon, Hyeon; Yoon, Cheolho; Yu, Jae-Young

    2011-01-01

    Analytical methods for the speciation of mercury, based on microwave extraction and sonication extraction, have been tested to determine the inorganic mercury and methyl mercury contents in two standard soil reference materials: SRM 2710 Montana Soil and BCR 580 estuarine sediment. Prior to applying the speciation extraction methods, the mineral compositions were analyzed via XRD analysis, with SRM 2710 shown to be composed mostly of aluminum silicate minerals, while carbonate minerals were the major constituent in BCR 580. Two extraction methods, microwave and sonication, were tested for the analysis and recovery efficiency of total mercury. The accuracy and efficiency of each extraction method was also compared. In the analysis of total mercury, the microwave extraction method, with using methanol and HCl as extractants, was better for SRM2710, while the application of the sonication extraction method was more efficient for the calcite-based BCR 580. The results showed good separation and recovery efficiencies, with values reaching 100% of those estimated. The sonication method was selected for the speciation of mercury, especially in BCR 580. An extraction solution comprising of a 1:1 mixture of methanol and HCl was used for the sonication extraction of BCR 580, with the resulting extractants analyzed by IC-HG-ICP-MS for methyl mercury and inorganic mercury. As a simple, rapid, sensitive, and accurate method, sonication extraction was found to be satisfactory.

  5. [Determination of inorganic elements in the soil-grass-animal system by sealed microwave digestion ICP-AES].

    PubMed

    Xin, Guo-Sheng; Hu, Zheng; Zhou, Wei; Yang, Zhi-Qiang; Guo, Xu-Sheng; Long, Rui-Jun

    2010-02-01

    The contents of inorganic elements including K, Ca, Na, Mg, P, S, Fe, Cu, Mn, Zn, Mo, and Co in the soil-grass-animal mineral system from Qinghai Tibetan Plateau were determined by ICP-AES using high pressure system-sealed microwave digestion. The sample of soil was digested with HNO3-HF-H2O2 acids system, but others including pasture, animal fur, liver, and serum were digested with HNO3-H2O2 acids system. The operation would be simplified and the blank value would be decreased with the above acids systems. The results were proved to be reliable with the relative standard deviation being 0.271%-2.633% for Ca, 2.971%-4.854% for Co, 0.372%-2.874% for Cu, 0.600%-3.683% for Fe, 0.347%-2.829% for K, 0.626%-2.593% for Mg, 0.705%-4.828% for Mn, 2.946%-4.622% for Mo, 0.689%-3.621% for Na, 0.422%-3.890% for P, and 0.143%-4.622% for S, 0.166%-2.399% for Zn, and all of them were less than 5% for all the elements, and the recovery being 97.1%-101.4% for Ca, 93.5%-112.5% for Co, 95.2%-104.0% for Cu, 96.9%-104.2% for Fe, 96.1%-105.6% for K, 96.2%-102.8% for Mg, 91.5%-108.9% for Mn, 95.0%-113.5% for Mo, 95.2%-101.8% for Na, 94.7%-100.7% for P, 98.3%-108.4% for S, and 97.5%-102.0% for Zn by adding standard recovery experiment. The results of determination were proved that the method of sealed microwave digestion ICP-AES was sensitive, precise, easy to operate and rapid for the determination of inorganic elements in the soil-grass-animal mineral system, and could satisfy the sample examination request. The methods and results were meaningful to research on the soil-pasture-animal mineral system including the contents of mineral elements, the circulation of mineral elements, the interaction, and the application of mineral additive.

  6. Synergic effect of gold mining and damming on mercury contamination in fish.

    PubMed

    Boudou, Alain; Maury-Brachet, Régine; Coquery, Marina; Durrieu, Gilles; Cossa, Daniel

    2005-04-15

    Since the late 1980s, several studies have shown that human populations in the Amazon basin are exposed to high mercury levels in their fish diet. Gold mining, which releases the metal during the amalgamation process and erodes soils naturally rich in mercury, is regarded as the main contamination source. Here, we present the results of a comparative study of mercury distribution in the water and fish of two adjacent rivers in French Guiana, with and without gold mining activities. As a consequence of a marked difference in suspended particulate matter between the two systems, total mercury concentrations in unfiltered water samples were higher in the mined river (25.4-34.9 ng L(-1)) as compared to the reference one (2.1-5.4 ng L(-1)). Surprisingly, no significant differences were observed in mercury concentrations between 13 common fish species at upstream sites. In sharp contrast, mercury concentration of fish caught downstream a hydroelectric reservoir, where the two rivers flow, was up to 8-fold higher than that upstream. Mercury speciation measurements allowed one to relate these differences in fish to the water distribution of monomethylmercury, the mercury chemical species that biomagnifies along aquatic foodwebs. Indeed, mean dissolved monomethylmercury concentrations were low and similar in both rivers (0.03-0.06 ng L(-1)), while they were 10 times higher (up to 0.56 ng L(-1)) in the water outflowing the hydroelectric dam. Dissolved monomethylmercury determinations along a water column profile suggest that methylation of inorganic mercury occurs in the deep anoxic part in reservoir. We conclude that mercury mobilization related to gold mining is not solely sufficient to account for high concentrations in fish and that environmental conditions that favor mercury methylation, such as anoxia, are needed.

  7. Evaluation of methods used from 1965 through 1982 to determine inorganic constituents in water samples

    USGS Publications Warehouse

    Friedman, Linda C.; Fishman, Marvin J.

    1989-01-01

    Since 1962, the U.S. Geological Survey has prepared and distributed Standard Reference Water Samples (SRWS) to participating laboratories in order to alert them to possible analytical deficiencies. This report marks the first time that a concentrated effort has been made to examine and compare the SRWS data for each constituent by the analytical method that was used to obtain the data. Unlike laboratories that participate in interlaboratory studies that are designed to determine the precision and accuracy of a particular analytical method, laboratories that participate in the SRWS program are allowed to select the method used to analyze a reference sample and are requested to report the method used. Data for a particular method could not be compared with a 'true' value because the data were obtained from analyses of reference samples that were prepared using natural waters; however, where possible a comparison was made between the mean concentrations obtained by the various analytical methods that were used to determine each constituent. Where enough information is available, models for predicting the precisions of the methods have been developed, and the precisions have been compared. In addition to the data presented in the reports, this evaluation provides a good indication of methods that were used routinely to analyze water samples during the 18 years of study.

  8. Why mercury prefers soft ligands

    SciTech Connect

    Riccardi, Demian M; Guo, Hao-Bo; Gu, Baohua; Parks, Jerry M; Summers, Anne; Miller, S; Liang, Liyuan; Smith, Jeremy C

    2013-01-01

    Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources. Defining the factors that determine the relative affinities of different ligands for the mercuric ion, Hg2+, is critical to understanding its speciation, transformation, and bioaccumulation in the environment. Here, we use quantum chemistry to dissect the relative binding free energies for a series of inorganic anion complexes of Hg2+. Comparison of Hg2+ ligand interactions in the gaseous and aqueous phases shows that differences in interactions with a few, local water molecules led to a clear periodic trend within the chalcogenide and halide groups and resulted in the well-known experimentally observed preference of Hg2+ for soft ligands such as thiols. Our approach establishes a basis for understanding Hg speciation in the biosphere.

  9. Dental amalgam and urinary mercury concentrations: a descriptive study

    PubMed Central

    2013-01-01

    Background Dental amalgam is a source of elemental and inorganic mercury. The safety of dental amalgam in individuals remains a controversial issue. Urinary mercury concentrations are used to assess chronic exposure to elemental mercury. At present, there are no indications of mercury-associated adverse effects at levels below 5 μg Hg/g creatinine (Cr) or 7 μg Hg/L (urine). The purpose of the present study is to determine the overall urinary mercury level in the Canadian general population in relation to the number of dental amalgam surfaces. Methods Data come from the 2007/09 Canadian Health Measures Survey, which measured urinary mercury concentrations in a nationally representative sample of 5,418 Canadians aged 6–79 years. Urinary mercury concentrations were stratified by sex, age, and number of dental amalgam surfaces. Results The overall mean urinary mercury concentration varied between 0.12 μg Hg/L and 0.31 μg Hg/L or 0.13 μg Hg/g Cr and 0.40 μg Hg/g Cr. In general, females showed slightly higher mean urinary mercury levels than men. The overall 95th percentile was 2.95 μg Hg/L, the 99th percentile was 7.34E μg Hg/L, and the 99.9th percentile was 17.45 μg Hg/L. Expressed as μg Hg/g Cr, the overall 95th percentile was 2.57 μg Hg/g Cr, the 99th percentile was 5.65 μg Hg/g Cr, and the 99.9th percentiles was 12.14 μg Hg/g Cr. Overall, 98.2% of participants had urinary mercury levels below 7 μg Hg/L and 97.7% had urinary mercury levels below 5 μg Hg/g Cr. All data are estimates for the Canadian population. The estimates followed by the letter “E” should be interpreted with caution due to high sampling variability (coefficient of variation 16.6%-33.3%). Conclusions The mean urinary mercury concentrations in the general Canadian population are significantly lower than the values considered to pose any risks for health. PMID:24015978

  10. Determination of rock type on Mercury and the moon through remote sensing in the thermal infrared

    NASA Technical Reports Server (NTRS)

    Tyler, Ann L.; Kozlowski, Richard W. H.; Lebofsky, Larry A.

    1988-01-01

    Thermal infrared emission spectra of the moon and Mercury have been obtained using the Si:As photoconductor and circular variable filter at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. Lunar spectra from 7.2 to 12.2 microns for two different locations in the south polar highlands have Christiansen frequency peaks at 8.1 microns and 7.9 microns, respectively. This indicates different compositions at the two locations; mafic in the first case, more felsic in the second. Emission spectra from Mercury are not as spatially localized,; however, the longitude of maximum contribution to the spectrum can be calculated from thermal models of the earth-facing disk. Results for areas centered at two longitudes have been obtained. Two locations in the intercrater plains were observed. At 40-deg longitude (very near the crater Homer), a peak at 7.9 microns indicates mafic igneous rock type. Spectra emanating from 46-deg longitude have peaks at 7.8 microns, indicating a region borderline between mafic and intermediate composition.

  11. Determination of inorganic and organic priority pollutants in biosolids from meat processing industry

    SciTech Connect

    Sena, Rennio F. de Tambosi, Jose L.; Floriani, Silvia L.; Virmond, Elaine; Schroeder, Horst Fr.; Moreira, Regina F.P.M.; Jose, Humberto J.

    2009-09-15

    The biosolids (BS) generated in the wastewater treatment process of a meat processing plant were monitored and the priority pollutant content was characterized. The trace metal and organic pollutant content - polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) - were determined quantitatively and compared to guideline limits established by the US EPA and EU. PCBs were not detected in the solid samples, while trace metals, PAHs and PCDD/PCDF were detected in concentrations below the limits established by international standards. Toxic equivalent factors were evaluated for the biosolids, and the results proved that these wastes can be safely deposited on land or used in combustion/incineration plants. Since no previous data were found for meat processing waste, comparisons were made using municipal sewage sludge data reported in the literature. Since, this report monitored part of the priority pollutants established by the US EPA for meat and poultry processing wastewater and sludge, the results verified that low pollution loads are generated by the meat processing plant located in the southern part of Brazil. However, the BS generated in the treatment processes are in accordance with the limits established for waste disposal and even for soil fertilizer.

  12. Determination of transport levels of inorganic semiconductors by ultraviolet and inverse photoemission

    NASA Astrophysics Data System (ADS)

    Krause, S.; Schöll, A.; Umbach, E.

    2015-05-01

    A combination of ultraviolet and inverse photoemission is often used to determine the position of the transport levels of semiconductors. Although data from direct methods like photoemission appear advantageous at first glance, large discrepancies between thus-derived band gaps and optically measured band gaps have led to fundamentally different evaluation methods of the data from ultraviolet photoelectron spectroscopy (UPS)/inverse photoelectron spectroscopy (IPS) experiments, the essential alternatives being the maxima or the onsets of the frontier peaks. In this paper, we review published data as well as present new experimental data for a few representative II-VI and III-V compound and element semiconductors. New data from silicon are utilized as examples for evaluating details of such combined UPS and IPS spectra and for answering the question of how surface effects, especially the consequences of surface reconstruction, can adequately be taken into account. The results clearly indicate that, for all three types of semiconductors, only peak onsets represent the correct band positions. Possible reasons for this finding are discussed, and an explanation in the framework of relaxation (i.e., dynamical screening) is suggested.

  13. Determination of Total Mercury in Whole-Body Fish and Fish Muscle Plugs Collected from the South Fork of the Humboldt River, Nevada, September 2005

    USGS Publications Warehouse

    May, Thomas W.; Brumbaugh, William G.

    2007-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the U.S. Bureau of Reclamation, to determine mercury concentrations in whole-body fish and fish muscle plugs from the South Fork of the Humboldt River near Elko in the Te-Moak Indian Reservation. A single muscle plug was collected from beneath the dorsal fin area in each of the three whole-body fish samples. After homogenization and lyophilization of the muscle plugs and whole-body fish samples, mercury concentrations were determined with a direct mercury analyzer utilizing the process of thermal combustion-gold amalgamation atomic absorption spectroscopy. Mercury concentrations in whole-body fish ranged from 0.048 to 0.061 microgram per gram wet weight, and 0.061 to 0.082 microgram per gram wet weight in muscle plugs. All sample mercury concentrations were well below the U.S. Environmental Protection Agency's fish consumption advisory of 0.30 microgram per gram wet weight.

  14. Solution cathode glow discharge induced vapor generation of mercury and its application to mercury speciation by high performance liquid chromatography-atomic fluorescence spectrometry.

    PubMed

    He, Qian; Zhu, Zhenli; Hu, Shenghong; Jin, Lanlan

    2011-07-15

    A novel solution cathode glow discharge (SCGD) induced vapor generation was developed as interface to on-line couple high-performance liquid chromatography (HPLC) with atomic fluorescence spectrometry (AFS) for the speciation of inorganic mercury (Hg(2+)), methyl-mercury (MeHg) and ethyl-mercury (EtHg). The decomposition of organic mercury species and the reduction of Hg(2+) could be completed in one step with this proposed SCGD induced vapor generation system. The vapor generation is extremely rapid and therefore is easy to couple with flow injection (FI) and HPLC. Compared with the conventional HPLC-CV-AFS hyphenated systems, the proposed HPLC-SCGD-AFS system is very simple in operation and eliminates auxiliary redox reagents. Parameters influencing mercury determination were optimized, such as concentration of formic acid, discharge current and argon flow rate. The method detection limits for HPLC-SCGD-AFS system were 0.67 μg L(-1) for Hg(2+), 0.55 μg L(-1) for MeHg and 1.19 μg L(-1) for EtHg, respectively. The developed method was validated by determination of certified reference material (GBW 10029, tuna fish) and was further applied for the determination of mercury in biological samples. PMID:21641599

  15. Copper, lead, mercury and zinc in periphyton from the south Florida ecosystem

    USGS Publications Warehouse

    Cox, T.; Simon, N.S.; Newland, L.

    1999-01-01

    Periphyton samples from the Big Cypress National Preserve were analyzed for concentrations of copper, lead, zinc, mercury, and methylmercury. Concentrations of organic carbon, inorganic carbon, nitrogen, and phosphorus in periphyton samples also were determined. The samples were extracted with sodium acetate solution at a pH of 5.5 to determine exchangeable and carbonate phase metal concentrations in periphyton. Total metal concentrations in the periphyton were directly related to the degree of calcite saturation in the water column. Exchangeable and carbonate phase metal concentrations were directly related to the percent inorganic carbon in the samples. A connection between the geochemistry of trace metals and calcite precipitation and dissolution is suggested.

  16. Mercury speciation analysis in sea water by solid phase microextraction?gas chromatography?inductively coupled plasma mass spectrometry using ethyl and propyl derivatization. Matrix effects evaluation

    NASA Astrophysics Data System (ADS)

    Bravo-Sánchez, Luis R.; Ruiz Encinar, Jorge; Fidalgo Martínez, José I.; Sanz-Medel, Alfredo

    2004-01-01

    An approach to the speciation analysis of mercury in sea-water samples at sub-ppt levels by means of the hyphenation of solid phase microextraction to gas chromatography-inductively coupled plasma mass spectrometry was developed. Blank values turned out to be the limiting factor for lower detection limits of inorganic mercury. Thus, all the reagents were thoroughly cleaned using laboratory made microcolumns packed with 8-hydroxyquinoline on TSK gel. Sodium tetrapropylborate (NaBPr 4) synthesized for the purpose of derivatization of the mercury species resulted in better analytical performances of the method, probably due to lower mercury contamination, than commercial sodium tetraethylborate (NaBEt 4). Detection limits down to a few picogram per liter for both mercury and methylmercury were obtained using NaBPr 4. The high salt content of sea-water samples was responsible for strong matrix effects, which were overcome by using standards additions to the samples. The validation of the methodology was carried out by direct comparison of the results for inorganic mercury with those obtained using a flow injection system followed by preconcentration/trapping of the species and its detection by atomic absorption spectrometry. The proposed method was applied to the determination of mercury and methylmercury in coastal sea-water samples from Gijón (Asturias, Spain) and results obtained are discussed in the light of the butyltin levels previously determined in the same area.

  17. Colorimetric detection of mercury species based on functionalized gold nanoparticles.

    PubMed

    Chen, Ling; Li, Jinhua; Chen, Lingxin

    2014-09-24

    The speciation analysis of heavy metal pollutants is very important because different species induce different toxicological effects. Nanomaterial-assisted optical sensors have achieved rapid developments, displaying wide applications to heavy metal ions but few to metal speciation analysis. In this work, a novel colorimetric nanosensor strategy for mercury speciation was proposed for the first time, based on the analyte-induced aggregation of gold nanoparticles (Au NPs) with the assistance of a thiol-containing ligand of diethyldithiocarbamate (DDTC). Upon the addition of mercury species, because Hg-DDTC was more stable than Cu-DDTC, a place-displacement between Hg species and Cu(2+) would occur, and thereby the functionalized Au NPs would aggregate, resulting in a color change. Moreover, by virtue of the masking effect of ethylenediaminetetraacetic acid (EDTA), the nanosensor could readily discriminate organic mercury and inorganic mercury (Hg(2+)), and it is thus anticipated to shed some light on the colorimetric sensing of organic mercury. So, a direct, simple colorimetric assay for selective determination of Hg species was obtained, presenting high detectability, such as up to 10 nM for Hg(2+) and 15 nM for methylmercury. Meanwhile, the strategy offered excellent selectivity toward mercury species against other metal ions. The simple, rapid, and sensitive label-free colorimetric sensor for the determination of Hg species provided an attractive alternative to conventional methods, which usually involve sophisticated instruments, complicated processes, and long periods of time. More importantly, by using mercury as a model, an excellent nanomaterial-based optical sensing platform can be developed for speciation analysis of trace heavy metals, which can lead to nanomaterials stability change through smart functionalization and reasonable interactions.

  18. A review of Model Production Function age determinations on the Mercury surface

    NASA Astrophysics Data System (ADS)

    Massironi, Matteo; Cremonese, Gabriele; Marchi, Simone; Martellato, Elena; Giacomini, Lorenza; Ferrari, Sabrina

    The Model Production Function (MPF) chronology relies on the estimate of the crater size-frequency distribution for a specific planet on the basis of theoretical prediction of the impactor flux (Marchi et al., 2009). Hence it is a readily and flexible method to infer ages on any planets also considering a variable impact flux through time. In addition the methodology derive crater size distribution function from the distribution of impactors applying only once the Holsapple and Housen (2007) scaling law; this allows a consistent control of the function itself and an improved fit of the crater statistics, which, on its own, may give even some insights for the uppermost layering and rheology of the investigated crusts (Massironi et al. 2009). During the here proposed presentation, we will discuss all the applications of MPF method realized on the hermean surface so far. This will give us the opportunity to explain the importance of the geological interpretation required to correctly apply this methodology as well as to illustrate strength and weakness of such an approach. References Holsapple, K. A., and Housen K. R. (2007). A crater and its ejecta: An interpreta-tion of Deep Impact, ICARUS, 187, 345 -356. Marchi S, Mottola S, Cremonese G, Massironi M., Martellato E (2009). A New Chronology for the Moon and Mercury. THE ASTRONOM-ICAL JOURNAL, vol. 137; p. 4936-4948. Massironi M., Cremonese G, Marchi S, Martellato E, Mottola S, Wagner RJ (2009). Mercury's geochronology revised by applying Model Pro-duction Function to Mariner 10 data: Geological implications. GEOPHYSICAL RESEARCH LETTERS, vol. 36; L21204.

  19. Optimization and validation of a rapid method to determine citrate and inorganic phosphate in milk by capillary electrophoresis.

    PubMed

    Izco, J M; Tormo, M; Harris, A; Tong, P S; Jimenez-Flores, R

    2003-01-01

    Quantification of phosphate and citrate compounds is very important because their distribution between soluble and colloidal phases of milk and their interactions with milk proteins influence the stability and some functional properties of dairy products. The aim of this work was to optimize and validate a capillary electrophoresis method for the rapid determination of these compounds in milk. Various parameters affecting analysis have been optimized, including type, composition, and pH of the electrolyte, and sample extraction. Ethanol, acetonitrile, sulfuric acid, water at 50 degrees C or at room temperature were tested as sample buffers (SB). Water at room temperature yielded the best overall results and was chosen for further validation. The extraction time was checked and could be shortened to less than 1 min. Also, sample preparation was simplified to pipet 12 microl of milk into 1 ml of water containing 20 ppm of tartaric acid as an internal standard. The linearity of the method was excellent (R2 > 0.999) with CV values of response factors <3%. The detection limits for phosphate and citrate were 5.1 and 2.4 nM, respectively. The accuracy of the method was calculated for each compound (103.2 and 100.3%). In addition, citrate and phosphate content of several commercial milk samples were analyzed by this method, and the results deviated less than 5% from values obtained when analyzing the samples by official methods. To study the versatility of the technique, other dairy productssuch as cream cheese, yogurt, or Cheddar cheese were analyzed and accuracy was similar to milk in all products tested. The procedure is rapid and offers a very fast and simple sample preparation. Once the sample has arrived at the laboratory, less than 5 min (including handling, preparation, running, integration, and quantification) are necessary to determine the concentration of citric acid and inorganic phosphate. Because of the speed and accuracy of this method, it is promising as an

  20. Organomercury determination in biological reference materials: application to a study on mercury speciation in marine mammals off the Faröe Islands.

    PubMed

    Schintu, M; Jean-Caurant, F; Amiard, J C

    1992-08-01

    The potential use of graphite furnace atomic absorption spectrometry (GF-AAS) for the organic mercury determination in marine biological tissues was evaluated. Following its isolation by acid extraction in toluene, organic mercury was recovered in aqueous thiosulfate and measured by GF-AAS. The detection limit was 0.01 microgram Hg/g (as methyl mercury). Analyses were conducted on three reference standard materials certified for their methyl mercury content, DOLT-1, DORM-1, and TORT-1, provided by the National Research Council of Canada. The method resulted in very good recovery and reproducibility, indicating that GF-AAS can provide results comparable to those obtained by using more expensive and time consuming analytical techniques. The method was applied to the analysis of liver tissues of pilot whale specimens (Globicephala melas) from the drive fishery of the Faröe Islands (northeast Atlantic). The results provided useful information on the proportion of different mercury forms in the liver of these marine mammals.

  1. Evaluation of mercury mediated in vitro cytotoxicity among cell lines established from green sea turtles.

    PubMed

    Wang, Hong; Tong, Jing; Bi, Yongyi; Wang, Chunhong; Guo, Liqiao; Lu, Yuanan

    2013-04-01

    In vitro cell cultures are currently tested for their application as a biological tool for enhanced monitoring and field evaluation of environmental toxic chemical pollution. Here cell lines established from green sea turtles (GSTs) were comparatively tested for their cytotoxic responses to mercury chloride (HgCl2) exposure and also their potential use as a biological tool for effective monitoring and screening of mercury contamination in environmental waters. Following a 24-h exposure to different concentrations of mercury solution, marine turtle cells were evaluated for their cytotoxic responses using three different endpoint bioassays: tetrazolium salt reduction (MTT), neutral red uptake (NR), and Coomassie blue (CB) methods. Cytotoxic sensitivities of GST cell lines to HgCl2 were determined and compared basing on their 50% inhibition concentration (IC50) values calculated from these tests. These marine turtle cells share a very different pattern of cytotoxic sensitivities and reactions to inorganic Mercury. Among these nine turtle cell lines, turtle liver cells (GST-LV) appear to be the most tolerant one to mercury exposure while turtle lung cells (GST-LG) exhibit to be the most sensitive one. Results from this in vitro study correlate well with in vivo examination of mercury concentration in the tissues of marine turtles and are also validated and ascertained by calculated regression equations showing a significant correlation (P<0.01) between these test methods. This study also reveals the cytotoxic effect of inorganic mercury on in vitro green turtle cells and also shows GST-LG to be a cell line with potential application in field monitoring and assessing mercury contamination as a bioindicator.

  2. Stripping voltammetric and polarographic techniques for the determination of anti-fungal ketoconazole on the mercury electrode.

    PubMed

    Arranz, Pablo; Arranz, Adela; Moreda, José María; Cid, Adolfo; Arranz, Juan Francisco

    2003-11-24

    The electroanalytical behaviour of ketoconazole in Britton-Robinson buffer is described. The reduction process on the hanging mercury drop electrode (HMDE) gives rise to one peak over -1.6 V (vs. Ag/AgCl/sat.KCl), within the pH range studied (4.7-9.6). The results showed that the reduction of ketoconazole is irreversible and the limiting current is adsorption controlled. The dependence of the peak current on the concentration was studied by means of different polarographic and voltammetric techniques. Using adsorptive stripping differential pulse voltammetry (AdS-DPV), the detection limit (DL) reached was 5.3 x 10(-11) mol l(-1). Two procedures, based on differential pulse polarography (DPP) and AdS-DPV in aqueous medium were developed for the determination of ketoconazole in a gel formulation and spiked urine samples, respectively.

  3. Ecosystem conceptual model- Mercury

    USGS Publications Warehouse

    Alpers, Charles N.; Eagles-Smith, Collin A.; Foe, Chris; Klasing, Susan; Marvin-DiPasquale, Mark C.; Slotton, Darell G.; Windham-Myers, Lisamarie

    2008-01-01

    Mercury has been identified as an important contaminant in the Delta, based on elevated concentrations of methylmercury (a toxic, organic form that readily bioaccumulates) in fish and wildlife. There are health risks associated with human exposure to methylmercury by consumption of sport fish, particularly top predators such as bass species. Original mercury sources were upstream tributaries where historical mining of mercury in the Coast Ranges and gold in the Sierra Nevada and Klamath-Trinity Mountains caused contamination of water and sediment on a regional scale. Remediation of abandoned mine sites may reduce local sources in these watersheds, but much of the mercury contamination occurs in sediments stored in the riverbeds, floodplains, and the Bay- Delta, where scouring of Gold-Rush-era sediment represents an ongoing source.Conversion of inorganic mercury to toxic methylmercury occurs in anaerobic environments including some wetlands. Wetland restoration managers must be cognizant of potential effects on mercury cycling so that the problem is not exacerbated. Recent research suggests that wettingdrying cycles can contribute to mercury methylation. For example, high marshes (inundated only during the highest tides for several days per month) tend to have higher methylmercury concentrations in water, sediment, and biota compared with low marshes, which do not dry out completely during the tidal cycle. Seasonally inundated flood plains are another environment experiencing wetting and drying where methylmercury concentrations are typically elevated. Stream restoration efforts using gravel injection or other reworking of coarse sediment in most watersheds of the Central Valley involve tailings from historical gold mining that are likely to contain elevated mercury in associated fines. Habitat restoration projects, particularly those involving wetlands, may cause increases in methylmercury exposure in the watershed. This possibility should be evaluated.The DRERIP

  4. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    PubMed

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  5. THE DETERMINATION OF MERCURY SPECIES AND MULTIPLE METALS IN COAL COMBUSTION EMISSIONS USING IODINE-BASED IMPINGERS AND DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    EPA Science Inventory

    Mercury (Hg) emissions from coal utilities are difficult to control. Hg eludes capture by most air pollution control devices (APCDs). To determine the gaseous Hg species in stack gases, U.S. EPA Method 5 type sampling is used. In this type of sampling a hole is drilled into th...

  6. Laboratory-scale evaluation of various sampling and analytical methods for determining mercury emissions from coal-fired power plants

    SciTech Connect

    Agbede, R.O.; Bochan, A.J.; Clements, J.L.

    1995-11-01

    Comparative bench-scale mercury sampling method tests were performed at the Advanced Technology Systems, Inc. (ATS) laboratories for EPA Method 101A, EPA Method 29 and the Ontario Hydro Method. Both blank and impinger spiking experiments were performed. The experimental results show that the ambient level of mercury in the ATS laboratory is at or below the detection limit (10 ng Hg) as measured by a cold vapor atomic absorption spectrophotometer (CVAAS) which was used to analyze the mercury samples. From the mercury spike studies, the following observations and findings were made. (a) The recovery of mercury spikes using EPA Method 101A was 104%. (b) The Ontario Hydro Method retains about 90% of mercury spikes in the first absorbing solution but has a total spike retention of 106%. As a result, the test data shows possible migration of spiked mercury from the first impinger solution (KCI) to the permanganate impingers. (c) For the EPA Method 29 solutions, when only the peroxide impingers were spiked, mercury recoveries were 65.6% for the peroxide impingers, 0.1% for the knockout impinger and 32.8% for the permanganate impingers with an average total mercury recovery of 98.4%. At press time, data was still being obtained for both the peroxide and permanganate impinger solution spikes. This and other data will be available at the presentation.

  7. Mercury Induces the Externalization of Phosphatidyl-Serine in Human Renal Proximal Tubule (HK-2) Cells

    PubMed Central

    Sutton, Dwayne J.; Tchounwou, Paul B.

    2007-01-01

    The underlying mechanism for the biological activity of inorganic mercury is believed to be the high affinity binding of divalent mercuric cations to thiols of sulfhydryl groups of proteins. A comprehensive analysis of published data indicates that inorganic mercury is one of the most environmentally abundant toxic metals, is a potent and selective nephrotoxicant that preferentially accumulates in the kidneys, and is known to produce cellular injury in the kidneys. Binding sites are present in the proximal tubules, and it is in the epithelial cells of these tubules that toxicants such as inorganic mercury are reabsorbed. This can affect the enzymatic activity and the structure of various proteins. Mercury may alter protein and membrane structure and function in the epithelial cells and this alteration may result in long term residual effects. This research was therefore designed to evaluate the dose-response relationship in human renal proximal tubule (HK-2) cells following exposure to inorganic mercury. Cytotoxicity was evaluated using the MTT assay for cell viability. The Annexin-V assay was performed by flow cytometry to determine the extent of phosphatidylserine externalization. Cells were exposed to mercury for 24 hours at doses of 0, 1, 2, 3, 4, 5, and 6 μg/mL. Cytotoxicity experiments yielded a LD50 value of 4.65 ± 0.6 μg/mL indicating that mercury is highly toxic. The percentages of cells undergoing early apoptosis were 0.70 ± 0.03%, 10.0 ± 0.02%, 11.70 ± 0.03%, 15.20 ± 0.02%, 16.70 ± 0.03%, 24.20 ±0.02%, and 25.60 ± 0.04% at treatments of 0, 1, 2, 3, 4, 5, and 6 μg/mL of mercury respectively. This indicates a dose-response relationship with regard to mercury-induced cytotoxicity and the externalization of phosphatidylserine in HK-2 cells. PMID:17617677

  8. Elemental mercury exposure in early pregnancy

    SciTech Connect

    Thorp, J.M. Jr.; Boyette, D.D.; Watson, W.J.; Cefalo, R.C. )

    1992-05-01

    We present a case of first-trimester elemental mercury exposure and review the literature to demonstrate that the reproductive toxicity of mercury varies depending on the form of mercury to which one is exposed. It appears that elemental mercury exposure poses less of a reproductive threat than the well-known hazards of exposure to organic mercurials. It is critical to determine the form of exposure when counseling patients at risk.15 references.

  9. Mercury: Determining Minerals And Their Abundances With Mid-IR Spectral Deconvolution III

    NASA Astrophysics Data System (ADS)

    Sprague, Ann L.; Donaldson Hanna, K.; Kozlowski, R. W.; Helbert, J.; Maturilli, A.; Grosse, F. A.; Boop, T. S.; Boccafola, K.

    2007-10-01

    We identify mineral types and approximate abundances on Mercury's surface from 196° to 270°W longitude from five slit observations at regions in north-mid and north latitudes. The subtending slit sectors have central coordinates as follows: (1) 11 April 2006#89; 203°W, 13°N 205°W, 47°N (2) 7 April 2006#77; 210°W, 8°N 230°W, 25°N (3) 11 April 2006#96; 212°W, 15°N 219°W, 45°N (4) 11 April 2006#93; 225°W, 13°N 237°W, 45°N (5) 11 April 2006#109; 262°W, 8°N, 267°W, 25°N. Our results are obtained by modeling spectra obtained with the Mid-Infrared Spectrometer and Imager (MIRSI) at the Infrared Telescope Facility (IRTF) using an established spectral deconvolution algorithm (Ramsey 1996, Ph.D. Dissertation, ASU; Ramsey and Christiansen 1998, JGR). We have assembled several mineral libraries (JHU, Salisbury et al. 1991; JPL, http://speclib.jpl.nasa.gov; RELAB, http://www.planetary brown.edu/relab; ASU, http://speclib.asu.edu; BED, Maturilli et al. 2007, LPSC XXXVIII Abs.) consisting of a wide range of known mineral compositions with grain sizes ranging from the finest separates, 0 - 45 µm, incrementally increasing to 250 - 400 µm. Surface mineral deconvolutions are suggestive of albite, enstatite, clinopyroxene, labradorite, and sodalite, mineral phases that have been previously observed in the mid-infrared at Mercury (Sprague et al. 1994, 1998, Icarus). The deconvolution also identified pigeonite at more than one location. The same techniques and computer program have correctly fit the known compositions of the HED samples, and given a plausible fit to spectra from the Moon (both also presented at this meeting). This work was funded by NSF AST0406796.

  10. Mercury and Your Health

    MedlinePlus

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  11. Preliminary Study: Application of Off-Axis ICOS to Determine Stable Carbon Isotope in Dissolved Inorganic Carbon

    NASA Astrophysics Data System (ADS)

    Kim, Y. T.; Lee, J. M.; Hwang, J. H.; Piao, J.; Woo, N. C.

    2015-12-01

    CO2 is one of the major causes for global climate change. Because stable carbon isotope ratio is used to trace carbon source, several analytical techniques likes IRMS (Isotope Ratio Mass Spectrometry) and LAS (Laser Absorption Spectrometry) were extensively used. Off-axis ICOS, a kind of LAS, has merits on long-term stability and field application, therefore it is widely being used in CCS (Carbon Capture and Storage) field. The aim of this study is to extend the application scope of OA-ICOS to determine dissolved inorganic carbon (DIC). Because OA-ICOS showed dependence of δ13C on CO2 concentration, data processing is required. We tested CO2 Carbon Isotope Analyzer (CCIA-36-EP, Los Gatos Research) with both reference gas (δ13C= -28.28‰) and aqueous solutions prepared by dissolving sodium bicarbonate standards (δ13C= -12.26‰ and +3.96‰). The differences of δ13C between reference and measurement values are plotted by CO2 concentrations, then compared. At first, we checked the similarity between our curve pattern for reference gas and Guillon's research (δ13C= -43.99‰) by other Analyzer. To analyze aqueous samples, more errors can be caused than gas analysis. The carbon isotope fractionation occurs during dissolving standard reagents and extracting DIC as CO2 gas form. This effect is mixed with CO2 concentration dependence effect, therefore the curve patterns are different with that for reference gas. Our experiments are done for various δ13C values. It could be an important point to use OA-ICOS to analyze DIC, too.

  12. Use of stable isotope signatures to determine mercury sources in the Great Lakes

    USGS Publications Warehouse

    Lepak, Ryan F.; Yin, Runsheng; Krabbenhoft, David P.; Ogorek, Jacob M.; DeWild, John F.; Holsen, Thomas M.; Hurley, James P.

    2015-01-01

    Sources of mercury (Hg) in Great Lakes sediments were assessed with stable Hg isotope ratios using multicollector inductively coupled plasma mass spectrometry. An isotopic mixing model based on mass-dependent (MDF) and mass-independent fractionation (MIF) (δ202Hg and Δ199Hg) identified three primary Hg sources for sediments: atmospheric, industrial, and watershed-derived. Results indicate atmospheric sources dominate in Lakes Huron, Superior, and Michigan sediments while watershed-derived and industrial sources dominate in Lakes Erie and Ontario sediments. Anomalous Δ200Hg signatures, also apparent in sediments, provided independent validation of the model. Comparison of Δ200Hg signatures in predatory fish from three lakes reveals that bioaccumulated Hg is more isotopically similar to atmospherically derived Hg than a lake’s sediment. Previous research suggests Δ200Hg is conserved during biogeochemical processing and odd mass-independent fractionation (MIF) is conserved during metabolic processing, so it is suspected even is similarly conserved. Given these assumptions, our data suggest that in some cases, atmospherically derived Hg may be a more important source of MeHg to higher trophic levels than legacy sediments in the Great Lakes.

  13. Distribution of total mercury and methyl mercury in water, sediment, and fish from South Florida estuaries

    USGS Publications Warehouse

    Kannan, K.; Smith, R.G., Jr.; Lee, R.F.; Windom, H.L.; Heitmuller, P.T.; Macauley, J.M.; Summers, J.K.

    1998-01-01

    Concentrations of total mercury and methyl mercury were determined in sediment and fish collected from estuarine waters of Florida to understand their distribution and partitioning. Total mercury concentrations in sediments ranged from 1 to 219 ng/g dry wt. Methyl mercury accounted for, on average, 0.77% of total mercury in sediment. Methyl mercury concentrations were not correlated with total mercury or organic carbon content in sediments. The concentrations of total mercury in fish muscle were between 0.03 and 2.22 (mean: 0.31) ??g/g, wet wt, with methyl mercury contributing 83% of total mercury. Methyl mercury concentrations in fish muscle were directly proportional to total mercury concentrations. The relationship of total and methyl mercury concentrations in fish to those of sediments from corresponding locations was fish-species dependent, in addition to several abiotic factors. Among fish species analyzed, hardhead catfish, gafftopsail catfish, and sand seatrout contained the highest concentrations of mercury. Filtered water samples from canals and creeks that discharge into the Florida Bay showed mercury concentrations of 3-7.4 ng/L, with methyl mercury accounting for <0.03-52% of the total mercury. Consumption of fish containing 0.31 ??g mercury/g wet wt, the mean concentration found in this study, at rates greater than 70 g/day, was estimated to be hazardous to human health.

  14. Mercury in the Pelagic Food Web of Lake Champlain

    PubMed Central

    Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2013-01-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25 to 75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 µg g−1 in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury. PMID:22193540

  15. Mercury in the pelagic food web of Lake Champlain.

    PubMed

    Miller, Eric K; Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2012-04-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25-75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 μg g(-1) in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury.

  16. Chromatic analysis by monitoring unmodified silver nanoparticles reduction on double layer microfluidic paper-based analytical devices for selective and sensitive determination of mercury(II).

    PubMed

    Meelapsom, Rattapol; Jarujamrus, Purim; Amatatongchai, Maliwan; Chairam, Sanoe; Kulsing, Chadin; Shen, Wei

    2016-08-01

    This study demonstrates chromatic analysis based on a simple red green blue (RGB) color model for sensitive and selective determination of mercury(II). The analysis was performed by monitoring the color change of a microfluidic Paper-based Analytical Device (µPAD). The device was fabricated by using alkyl ketene dimer (AKD)-inkjet printing and doped with unmodified silver nanoparticles (AgNPs) which were disintegrated when being exposed to mercury(II). The color intensity was detected by using an apparatus consisting of a digital camera and a homemade light box generating constant light intensity. A progressive increase in color intensity of the tested area on the µPAD (3.0mm) was observed with increasing mercury(II) concentration. The developed system enabled quantification of mercury(II) at low concentration with the detection limit of 0.001mgL(-1) (3 SD blank/slope of the calibration curve) and small sample volume uptake (2µL). The linearity range of the calibration curve in this technique was demonstrated from 0.05 to 7mgL(-1) (r(2)=0.998) with good precision (RSD less than 4.1%). Greater selectivity towards mercury(II) compared with potential interference ions was also observed. Furthermore, the percentage recoveries of spiked water samples were in an acceptable range which was in agreement with the values obtained from the conventional method utilizing cold vapor atomic absorption spectrometer (CVAAS). The proposed technique allows a rapid, simple, sensitive and selective analysis of trace mercury(II) in water samples.

  17. Mercury: Aspects of its ecology and environmental toxicity. [physiological effects of mercury compound contamination of environment

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.

    1973-01-01

    A study was conducted to determine the effects of mercury pollution on the environment. The possible sources of mercury contamination in sea water are identified. The effects of mercury on food sources, as represented by swordfish, are analyzed. The physiological effects of varying concentrations of mercury are reported. Emphasis is placed on the situation existing in the Hawaiian Islands.

  18. FINAL REPORT ON THE AQUATIC MERCURY ASSESSMENT STUDY

    SciTech Connect

    Halverson, N

    2008-09-30

    In February 2000, the United States Environmental Protection Agency (EPA) Region 4 issued a proposed Total Maximum Daily Load (TMDL) for total mercury in the middle and lower Savannah River. The initial TMDL, which would have imposed a 1 ng/l mercury limit for discharges to the middle/lower Savannah River, was revised to 2.8 ng/l in the final TMDL released in February 2001. The TMDL was intended to protect people from the consumption of contaminated fish, which is the major route of mercury exposure to humans. The most bioaccumulative form of mercury is methylmercury, which is produced in aquatic environments by the action of microorganisms on inorganic mercury. Because of the environmental and economic significance of the mercury discharge limits that would have been imposed by the TMDL, the Savannah River Site (SRS) initiated several studies concerning: (1) mercury in SRS discharges, SRS streams and the Savannah River, (2) mercury bioaccumulation factors for Savannah River fish, (3) the use of clams to monitor the influence of mercury from tributary streams on biota in the Savannah River, and (4) mercury in rainwater falling on the SRS. The results of these studies are presented in detail in this report. The first study documented the occurrence, distribution and variation of total and methylmercury at SRS industrial outfalls, principal SRS streams and the Savannah River where it forms the border with the SRS. All of the analyses were performed using the EPA Method 1630/31 ultra low-level and contaminant-free techniques for measuring total and methylmercury. Total mercury at National Pollutant Discharge Elimination System (NPDES) outfalls ranged from 0.31-604 ng/l with a mean of 8.71 ng/l. Mercury-contaminated groundwater was the source for outfalls with significantly elevated mercury concentrations. Total mercury in SRS streams ranged from 0.95-15.7 ng/l. Mean total mercury levels in the streams varied from 2.39 ng/l in Pen Branch to 5.26 ng/l in Tims Branch

  19. Clean conditions for the determination of ultra-low levels of mercury in ice and snow samples.

    PubMed

    Ferrari, C P; Moreau, A L; Boutron, C F

    2000-03-01

    Laboratory facilities and methods are presented for the determination of ultra-low levels of mercury (Hg) in ice and snow samples originating from polar ice caps or temperate regions. Special emphasis will be given to the presentation of the clean laboratory and the cleaning procedures. The laboratory is pressurized with air filtered through high efficiency particle filters. This first filtration is not enough to get rid of contamination by Hg in air. Experiments are conducted in a clean bench, especially built for Hg analysis, equipped with both particle filter and activated charcoal filter. It allows to obtain very low levels of atmospheric Hg contamination. Ultrapure water is produced for cleaning all the plastic containers that will be used for ice and snow samples and also for the dilution of the standards. Hg content in laboratory water is about 0.08+/-0.02 pg/g. A Teflon system has been developed for the determination of Hg in ice and snow samples based on Hg(II) reduction to Hg(0) with a SnCl2/HNO3 solution followed by the measurement of gaseous Hg(0) with a Hg analyzer GARDIS 1A+ based on the Cold Vapor Atomic Absorption Spectroscopy method. Blank determination is discussed.

  20. Mercury speciation during in situ thermal desorption in soil.

    PubMed

    Park, Chang Min; Katz, Lynn E; Liljestrand, Howard M

    2015-12-30

    Metallic mercury (Hg(0)) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury. PMID:26275352

  1. Aqueous and Gas Phase Sorption Properties of Mercury in Burned Soils

    NASA Astrophysics Data System (ADS)

    Jay, J.; Ferreira, M.; Burke, M.; Hogue, T.

    2008-12-01

    Wildfires are a common occurrence in the Mediterranean climate of Southern California. Many studies have focused on the post-fire physical impacts however; there is a lack of studies on the potential for post-fire metal transport, in particular mercury (Hg). Inorganic Hg contamination is present even in pristine areas due to atmospheric deposition, which can be microbially transformed to methylmercury (a bioaccumulative neurotoxin) in aquatic systems. In order to model the transport of mercury in burned soils, we need to understand the sorption properties of mercury in soils exposed to fire. To test the hypothesis that burned soils have different sorption properties than unburned ones, we have collected samples of unburned soils, and burned them in a controlled setting at different temperatures to simulate several fire intensities. Then, we applied traditional aqueous sorption techniques to determine the binding properties of mercury to each burned soil. Experimental data were fitted with FITEQL to derive constants for sorption reactions, which were in agreement with values observed in literature. Since Southern California does not receive much rain, most of the atmospheric mercury deposition is in form of dry deposition. Thus, we have designed and applied a novel sorption technique to determine the binding of mercury in the gas phase to the burned soils. Trends in sorption affinity and capacity with burning temperature are discussed, as well as a comparison between aqueous and gas phase sorption properties is made.

  2. Mercury toxicity and neurodegenerative effects.

    PubMed

    Carocci, Alessia; Rovito, Nicola; Sinicropi, Maria Stefania; Genchi, Giuseppe

    2014-01-01

    Mercury is among the most toxic heavy metals and has no known physiological role in humans. Three forms of mercury exist: elemental, inorganic and organic. Mercury has been used by man since ancient times. Among the earliest were the Chinese and Romans, who employed cinnabar (mercury sulfide) as a red dye in ink (Clarkson et al. 2007). Mercury has also been used to purify gold and silver minerals by forming amalgams. This is a hazardous practice, but is still widespread in Brazil's Amazon basin, in Laos and in Venezuela, where tens of thousands of miners are engaged in local mining activities to find and purify gold or silver. Mercury compounds were long used to treat syphilis and the element is still used as an antiseptic,as a medicinal preservative and as a fungicide. Dental amalgams, which contain about 50% mercury, have been used to repair dental caries in the U.S. since 1856.Mercury still exists in many common household products around the world.Examples are: thermometers, barometers, batteries, and light bulbs (Swain et al.2007). In small amounts, some organo mercury-compounds (e.g., ethylmercury tiosalicylate(thimerosal) and phenylmercury nitrate) are used as preservatives in some medicines and vaccines (Ballet al. 2001).Each mercury form has its own toxicity profile. Exposure to Hg0 vapor and MeHg produce symptoms in CNS, whereas, the kidney is the target organ when exposures to the mono- and di-valent salts of mercury (Hg+ and Hg++, respectively)occur. Chronic exposure to inorganic mercury produces stomatitis, erethism and tremors. Chronic MeHg exposure induced symptoms similar to those observed in ALS, such as the early onset of hind limb weakness (Johnson and Atchison 2009).Among the organic mercury compounds, MeHg is the most biologically available and toxic (Scheuhammer et a!. 2007). MeHg is neurotoxic, reaching high levels of accumulation in the CNS; it can impair physiological function by disrupting endocrine glands (Tan et a!. 2009).The most

  3. Mercury toxicity and neurodegenerative effects.

    PubMed

    Carocci, Alessia; Rovito, Nicola; Sinicropi, Maria Stefania; Genchi, Giuseppe

    2014-01-01

    Mercury is among the most toxic heavy metals and has no known physiological role in humans. Three forms of mercury exist: elemental, inorganic and organic. Mercury has been used by man since ancient times. Among the earliest were the Chinese and Romans, who employed cinnabar (mercury sulfide) as a red dye in ink (Clarkson et al. 2007). Mercury has also been used to purify gold and silver minerals by forming amalgams. This is a hazardous practice, but is still widespread in Brazil's Amazon basin, in Laos and in Venezuela, where tens of thousands of miners are engaged in local mining activities to find and purify gold or silver. Mercury compounds were long used to treat syphilis and the element is still used as an antiseptic,as a medicinal preservative and as a fungicide. Dental amalgams, which contain about 50% mercury, have been used to repair dental caries in the U.S. since 1856.Mercury still exists in many common household products around the world.Examples are: thermometers, barometers, batteries, and light bulbs (Swain et al.2007). In small amounts, some organo mercury-compounds (e.g., ethylmercury tiosalicylate(thimerosal) and phenylmercury nitrate) are used as preservatives in some medicines and vaccines (Ballet al. 2001).Each mercury form has its own toxicity profile. Exposure to Hg0 vapor and MeHg produce symptoms in CNS, whereas, the kidney is the target organ when exposures to the mono- and di-valent salts of mercury (Hg+ and Hg++, respectively)occur. Chronic exposure to inorganic mercury produces stomatitis, erethism and tremors. Chronic MeHg exposure induced symptoms similar to those observed in ALS, such as the early onset of hind limb weakness (Johnson and Atchison 2009).Among the organic mercury compounds, MeHg is the most biologically available and toxic (Scheuhammer et a!. 2007). MeHg is neurotoxic, reaching high levels of accumulation in the CNS; it can impair physiological function by disrupting endocrine glands (Tan et a!. 2009).The most

  4. Atomic-absorption determination of mercury in geological materials by flame and carbon-rod atomisation after solvent extraction and using co-extracted silver as a matrix modifier

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1983-01-01

    Based on modifications and expansion of the original Tindall's solvent extraction flame atomic-absorption procedure, an atomic-absorption spectrophotometric method has been developed for the determination of mercury in geological materials. The sample is digested with nitric and hydrochloric acids in a boiling water-bath. The solution is made ammoniacal and potassium iodide and silver nitrate are added. The mercury is extracted into isobutyl methyl ketone as the tetraiodomercurate(ll). Added silver is co-extracted with mercury and serves as a matrix modifier in the carbon-rod atomiser. The mercury in the isobutyl methyl ketone extract may be determined by either the flame- or the carbon-rod atomisation method, depending on the concentration level. The limits of determination are 0.05-10 p.p.m. of mercury for the carbon-rod atomisation and 1 -200 p.p.m. of mercury for the flame atomisation. Mercury values for reference samples obtained by replicate analyses are in good agreement with those reported by other workers, with relative standard deviations ranging from 2.3 to 0.9%. Recoveries of mercury spiked at two levels were 93-106%. Major and trace elements commonly found in geological materials do not interfere.

  5. The distribution and cycling of mercury species in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Cossa, Daniel; Martin, Jean-Marie; Takayanagi, Kazufumi; Sanjuan, Jane

    Total mercury concentrations were determined in water samples from ten vertical profiles in the western Mediterranean. Most Hg concentrations ranged from 0.5 to 4 pM, with a geometric mean of 2.26 pM. Such concentrations are in the same range as those measured in the North Atlantic and equatorial Pacific waters. There is no indication that the presence of geothermal activity or cinnabar deposits around the Mediterranean basin induces higher mercury concentrations in waters. Vertical concentration profiles were characterized by a maximum just below the thermocline, which is mainly developed in regions with relatively high primary production in the overlying waters. These observations support the remobilization model according to which, the mercury, associated with degradable organic matter, is solubilized from the particles accumulated in the thermocline layer. Additional measurements of certain mercury species, including reactive mercury (HgR) and gaseous species [elemental mercury (Hg°) and dimethylmercury (DMHg)], were performed on three profiles in the Alboran Sea and the Strait of Gibraltar. While 50% of the total mercury consisted of unidentified organic association, a maximum of the three determined species were observed below the thermocline: up to 0.71 pM, 0.43 pM and 0.30 pM for HgR, Hg° and DMHg, respectively. DMHg and Hg° appear to be formed in the low oxygen zone. A specific methylation rate of 3 × 10-9 s-1 can be estimated, which is six times higher than the values proposed for the North Atlantic waters (Mason et al., 1995a, Water, Air and Soil Pollution, 80, 665-677). The mass balance budget in the western Mediterranean shows that, while the total mercury exchanges at the straits are not unbalanced, mercury enters the Mediterranean as inorganic mercury and is exported to the Atlantic Ocean partially as methylated species. Riverine input is mainly composed by particulate mercury which is readily accumulated in coastal sediments. The dissolved

  6. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  7. Determination of moderately polar arsenolipids and mercury speciation in freshwater fish of the River Elbe (Saxony, Germany).

    PubMed

    Arroyo-Abad, Uriel; Pfeifer, Matthias; Mothes, Sibylle; Stärk, Hans-Joachim; Piechotta, Christian; Mattusch, Jürgen; Reemtsma, Thorsten

    2016-01-01

    Arsenic and mercury are frequent contaminants in the environment and care must be taken to limit their entrance into the food chain. The toxicity of both elements strongly depends upon their speciation. Total amounts of As and Hg as well as their species were analyzed in muscle and liver of 26 fishes of seven freshwater fish species caught in the River Elbe. The median concentrations of As were 162 μg kg(-1) w.w. in liver and 92 μg kg(-1) w.w. in muscle. The median concentrations of total Hg were 241 μg kg(-1) w.w. in liver and 256 μg kg(-1) w.w. in muscle. While this level of Hg contamination of the freshwater fish in the River Elbe is significantly lower than 20 years ago, it exceeds the recommended environmental quality standard of 20 μg Hg kg(-1) w.w. by a factor of 5-50. However, the European maximum level of 500 μg Hg kg(-1) for fish for human consumption is rarely exceeded. Arsenic-containing fatty acids and hydrocarbons were determined and partially identified in methanolic extracts of the fish by HPLC coupled in parallel to ICP-MS (element specific detection) and ESI-Q-TOF-MS (molecular structure detection). While arsenobetaine was the dominant As species in the fish, six arsenolipids were detected and identified in the extracts of liver tissue in common bream (Abramis brama), ide (Leuciscus idus), asp (Aspius aspius) and northern pike (Esox lucius). Four arsenic-containing fatty acids (AsFA) and two arsenic-containing hydrocarbons (AsHC) are reported in freshwater fish for the first time. With respect to mercury the more toxic MeHg(+) was the major species in muscle tissue (>90% of total Hg) while in liver Hg(2+) and MeHg(+) were of equal importance. The results show the high relevance of element speciation in addition to the determination of total element concentrations to correctly assess the burden of these two elements in fish.

  8. Determination of moderately polar arsenolipids and mercury speciation in freshwater fish of the River Elbe (Saxony, Germany).

    PubMed

    Arroyo-Abad, Uriel; Pfeifer, Matthias; Mothes, Sibylle; Stärk, Hans-Joachim; Piechotta, Christian; Mattusch, Jürgen; Reemtsma, Thorsten

    2016-01-01

    Arsenic and mercury are frequent contaminants in the environment and care must be taken to limit their entrance into the food chain. The toxicity of both elements strongly depends upon their speciation. Total amounts of As and Hg as well as their species were analyzed in muscle and liver of 26 fishes of seven freshwater fish species caught in the River Elbe. The median concentrations of As were 162 μg kg(-1) w.w. in liver and 92 μg kg(-1) w.w. in muscle. The median concentrations of total Hg were 241 μg kg(-1) w.w. in liver and 256 μg kg(-1) w.w. in muscle. While this level of Hg contamination of the freshwater fish in the River Elbe is significantly lower than 20 years ago, it exceeds the recommended environmental quality standard of 20 μg Hg kg(-1) w.w. by a factor of 5-50. However, the European maximum level of 500 μg Hg kg(-1) for fish for human consumption is rarely exceeded. Arsenic-containing fatty acids and hydrocarbons were determined and partially identified in methanolic extracts of the fish by HPLC coupled in parallel to ICP-MS (element specific detection) and ESI-Q-TOF-MS (molecular structure detection). While arsenobetaine was the dominant As species in the fish, six arsenolipids were detected and identified in the extracts of liver tissue in common bream (Abramis brama), ide (Leuciscus idus), asp (Aspius aspius) and northern pike (Esox lucius). Four arsenic-containing fatty acids (AsFA) and two arsenic-containing hydrocarbons (AsHC) are reported in freshwater fish for the first time. With respect to mercury the more toxic MeHg(+) was the major species in muscle tissue (>90% of total Hg) while in liver Hg(2+) and MeHg(+) were of equal importance. The results show the high relevance of element speciation in addition to the determination of total element concentrations to correctly assess the burden of these two elements in fish. PMID:26552521

  9. Development of a method for the determination of ultra-trace level mercury in adipose tissue by cold vapour atomic fluorescence spectrometry

    PubMed Central

    Levine, Keith E.; Fernando, Reshan A.; Lang, M.; Essader, Amal; Handy, Robert W.; Collins, Bradley J.

    2000-01-01

    A method for the determination of total mercury in rat adipose tissue by cold vapour atomic fluorescence spectrometry (CVAFS) has been developed. Adipose samples were initially subjected to a lyophilization procedure in order to facilitate the homogenization and accurate weighing of small tissue aliquots (~50 mg). A closed vessel microwave digestion procedure using a mixture of sulphuric and nitric acids was used to liberate mercury from the adipose matrix. All mercury species were quantitatively oxidized to Hg(II) by a potassium bromate/bromide oxidation, then reduced to Hg(0) vapour by stannous chloride prior to fluorescence detection. The CVAFS exhibited a linear range of 10 pg Hg/ml to 120 pg Hg/ml. The method detection limit in solution was 2 pg Hg/ml, or 1 ng Hg/g adipose tissue, based on a nominal 50 mg sample and a final volume of 25 ml. A reference material from the National Research Council of Canada (DOLT-2, trace metals in dogfish liver) was prepared in quadruplicate in order to assess the accuracy and precision of the method. Mercury in this material was recovered at 2.22 ± 0.08 μ g/g, which is 104% of the certified level (2.14 ± 0.10 μ g/g). PMID:18924864

  10. On the use of capillary electrophoresis for the determination of inorganic anions and cations, and carbohydrates in residues collected after a simulated suicide bombing attack.

    PubMed

    Sarazin, Cédric; Delaunay, Nathalie; Costanza, Christine; Eudes, Véronique; Gareil, Pierre

    2013-01-15

    In order to train scientist field investigators after terrorist attacks, the laboratory of the Prefecture de Police of Paris simulated a suicide bombing attack in a bus. After collection of the residues, analyses were carried out to determine the composition of the original explosive charge. This article focuses on the combined use, for the first time, of three new capillary electrophoresis methods for the determination of inorganic anions and cations, and carbohydrates in two representative extracts. Capillary electrophoresis appears as an effective tool to identify and quantify the compounds in real extracts and is fully complementary to chromatographic methods. PMID:23200391

  11. MERCURY IN AN INSECTIVOROUS BIRD SPECIES

    EPA Science Inventory

    Mercury distributions within ecosystems must be examined to determine exposure and risk to wildlife in specific areas. In the current study, we examined exposure and uptake of mercury in nestling prothonotary warblers (protonitaria citrea) inhabiting two National Priority List (...

  12. Predicting mercury in mallard ducklings from mercury in chorioallantoic membranes

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    2003-01-01

    Methylmercury has been suspected as a cause of impaired reproduction in wild birds, but the confounding effects of other environmental stressors has made it difficult to determine how much mercury in the eggs of these wild species is harmful. Even when a sample egg can be collected from the nest of a wild bird and the mercury concentration in that egg compared to the laboratory-derived thresholds for reproductive impairment, additional information on the mercury levels in other eggs from that nest would be helpful in determining whether harmful levels of mercury were present in the clutch. The measurement of mercury levels in chorioallantoic membranes offers a possible way to estimate how much mercury was in a chick that hatched from an egg, and also in the whole fresh egg itself. While an embryo is developing, wastes are collected in a sac called the chorioallantoic membranes, which often remain inside the eggshell and can be collected for contaminant analysis. We fed methylmercury to captive mallards to generate a broad range of mercury levels in eggs, allowed the eggs to hatch normally, and then compared mercury concentrations in the hatchling versus the chorioallantoic membranes left behind in the eggshell. When the data from eggs laid by mercury- treated females were expressed as common logarithms, a linear equation was created by which the concentration of mercury in a duckling could be predicted from the concentration of mercury in the chorioallantoic membranes from the same egg. Therefore, if it were not possible to collect a sample egg from a clutch of wild bird eggs, the collection of the chorioallantoic membranes could be substituted, and the mercury predicted to be in the chick or whole egg could be compared to the thresholds of mercury that have been shown to cause harm in controlled feeding studies with pheasants, chickens, and mallards.

  13. The interaction rainfall vs. weight as determinant of total mercury concentration in fish from a tropical estuary.

    PubMed

    Barletta, M; Lucena, L R R; Costa, M F; Barbosa-Cintra, S C T; Cysneiros, F J A

    2012-08-01

    Mercury loads in tropical estuaries are largely controlled by the rainfall regime that may cause biodilution due to increased amounts of organic matter (both live and non-living) in the system. Top predators, as Trichiurus lepturus, reflect the changing mercury bioavailability situations in their muscle tissues. In this work two variables [fish weight (g) and monthly total rainfall (mm)] are presented as being important predictors of total mercury concentration (T-Hg) in fish muscle. These important explanatory variables were identified by a Weibull Regression model, which best fit the dataset. A predictive model using readily available variables as rainfall is important, and can be applied for human and ecological health assessments and decisions. The main contribution will be to further protect vulnerable groups as pregnant women and children. Nature conservation directives could also improve by considering monitoring sample designs that include this hypothesis, helping to establish complete and detailed mercury contamination scenarios.

  14. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    PubMed

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-01

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby. PMID:18599778

  15. Validation of a hydride generation atomic absorption spectrometry methodology for determination of mercury in fish designed for application in the Brazilian national residue control plan.

    PubMed

    Damin, Isabel C F; Santo, Maria A E; Hennigen, Rosmari; Vargas, Denise M

    2013-01-01

    In the present study, a method for the determination of mercury (Hg) in fish was validated according to ISO/IEC 17025, INMETRO (Brazil), and more recent European recommendations (Commission Decision 2007/333/EC and 2002/657/EC) for implementation in the Brazilian Residue Control Plan (NRCP) in routine applications. The parameters evaluated in the validation were investigated in detail. The results obtained for limit of detection and quantification were respectively, 2.36 and 7.88 μg kg(-1) of Hg. While the recovery varies between 90-96%. The coefficient of variation was of 4.06-8.94% for the repeatability. Furthermore, a comparison using an external proficiency testing scheme was realized. The results of method validated for the determination of the mercury in fish by Hydride generation atomic absorption spectrometry were considered suitable for implementation in routine analysis. PMID:24007488

  16. Content and chemical form of mercury and selenium in Lake Ontario salmon and trout

    SciTech Connect

    Cappon, C.J.

    1984-01-01

    The content and chemical form of mercury and selenium were determined in the edible tissue of salmon (coho, chinook) and trout (lake, brown) taken offshore from Lake Ontario near Rochester, New York. For all species, total mercury content ranged from 0.3 to 0.8 micro g/g (fresh-weight), which is similar to concentrations commonly found in canned tuna. Most of the total mercury (63 to 79%) was present as methylmercury, the remainder being divalent inorganic mercury. For all species, 6 to 45% of the total selenium content was present as selenate (SeVI), the remainder being selenite (SeIV) and selenide (SEII). On a molar basis, total selenium content usually exceeded that of total mercury. Samples of smoked and unsmoked brown trout fillets were also examined. Based on the results of this study there is no immediate human health hazard from mercury and selenium. However, there is a need to report specific forms of these metals in Lake Ontario salmonid fish so that elevated concentrations can be better evaluated. 42 references, 1 figure, 4 tables.

  17. Chronic effects of low-level mercury and cadmium to goldfish (Carassius Auratus)

    SciTech Connect

    Westerman, A.G.

    1984-01-01

    During this five and one half year investigation, experiments were performed to determine the effects of nanogram levels of cadmium and mercury on reproductive performance, growth, and tissue residues of goldfish. In addition, embryo-larval bioassays were conducted on these metals to compare the effects of a short-term exposure to a sensitive life-cycle stage (i.e., eggs and larvae) with a sustained exposure to a relatively insensitive life-cycle period (i.e., adult). Reproduction was blocked by the long-term exposure to 0.25 ..mu..g/l mercury and 0.27 ..mu..g/l cadmium. Over the 1972 days, the control fish spawned on eleven occasions, but the experimentals failed to spawn. The metal-induced reproductive impairment continued in the experimentals even after six months in clean water. Growth of the populations exposed to mercury and cadmium was significantly less than that of the control population (P < 0.001). The mercury, cadmium and control populations grew by 229%, 232% and 353%, respectively. Mercury and cadmium continuously accumulated in fish tissues over the entire 1789 days of whole body exposure. Despite exposure to mercury as inorganic metal, organomercury also accumula

  18. Determination of the Antiretroviral Drug Acyclovir in Diluted Alkaline Electrolyte by Adsorptive Stripping Voltammetry at the Mercury Film Electrode

    PubMed Central

    Castro, Arnaldo Aguiar; Cordoves, Ana Isa Perez; Farias, Percio Augusto Mardini

    2013-01-01

    This paper describes a stripping method for the determination of acyclovir at the submicromolar concentration level. This method is based on controlled adsorptive accumulation of acyclovir at thin-film mercury electrode, followed by a linear cyclic scan voltammetry measurement of the surface species. Optimal experimental conditions include a NaOH solution of 2.0 × 10−3 mol L−1 (supporting electrolyte), an accumulation potential of −0.40 V, and a scan rate of 100 mV s−1. The response of acyclovir is linear over the concentration range 0.02 to 0.12 ppm. For an accumulation time of 4 minutes, the detection limit was found to be 0.42 ppb (1.0 × 10−9 mol L−1). More convenient methods to measure the acyclovir in presence of the didanosine, efavirenz, nevirapine, nelfinavir, lamivudine, and zidovudine were also investigated. The utility of this method is demonstrated by the presence of acyclovir together with Adenosine triphosphate (ATP) or DNA. PMID:23761958

  19. Determination of Xanthine in the Presence of Hypoxanthine by Adsorptive Stripping Voltammetry at the Mercury Film Electrode

    PubMed Central

    Farias, Percio Augusto Mardini; Castro, Arnaldo Aguiar

    2014-01-01

    A stripping method for the determination of xanthine in the presence of hypoxanthine at the submicromolar concentration levels is described. The method is based on controlled adsorptive accumulation at the thin-film mercury electrode followed by a fast linear scan voltammetric measurement of the surface species. Optimum experimental conditions were found to be the use of 1.0 × 10−3 mol L−1 NaOH solution as supporting electrolyte, an accumulation potential of 0.00 V for xanthine and −0.50 V for hypoxanthine–copper, and a linear scan rate of 200 mV second−1. The response of xanthine is linear over the concentration ranges of 20–140 ppb. For an accumulation time of 30 minutes, the detection limit was found to be 36 ppt (2.3 × 10−10 mol L−1). Adequate conditions for measuring the xanthine in the presence of hypoxanthine, copper and other metals, uric acid, and other nitrogenated bases were also investigated. The utility of the method is demonstrated by the presence of xanthine associated with hypoxanthine, uric acid, nitrogenated bases, ATP, and ssDNA. PMID:24940040

  20. [Determination of mercury and copper in water samples by activation analysis using preconcentration on emission spectroscopic carbon powder (author's transl)].

    PubMed

    Nagatsuka, S; Tanizaki, Y

    1978-07-01

    A simple preconcentration procedure for mercury and copper was examined in the activation analysis of water samples. The preconcentration using pure activated carbon has been reported in several papers. The authors found that the carbon powder for emission spectroscopic analysis showed the high purity equivalent to pure activated carbon. The influence of various parameters in adsorption conditions was studied by radioactive tracers 197Hg and 64Cu. It was confirmed that 100% of these elements were adsorbed on carbon powders as pyrrolidine dithiocarbonate complexes at an acidity of pH 6--8, the temperature of 50 degrees C and the stirring time of 30 minutes. This method was applied to the activation analysis of the river water samples taken from the upper stream area of the Arakawa river and the ground water samples taken from the upper stream area of the Arakawa river and the ground water samples taken from the wells of the environs of Tokyo Megapolis. The carbon powders which adsorbed these elements were filtered, dried and analyzed by instrumental neutron activation analysis. The Hg concentrations of 0.01--0.1 ppb in river water and 0.03--1.4 ppb in ground water were obtained as well as the Cu concentrations of 0.3--3.0 ppb in ground water. The limits of determination of this method are 0.01 ppb Hg and 0.2 ppb Cu in the case of 11 sample of fresh water. PMID:704956

  1. Determination of cytochrome c and other heme proteins using the reduction wave of mercury protoporphyrin IX groups generated by a hydroxylamine induced replacement reaction.

    PubMed

    Luo, Dengbai; Huang, Jinxiang

    2009-03-01

    We have found that in the presence of hydroxylamine, the heme prosthetic group of the heme protein adsorbed at the mercury electrode surface reacts with mercury ion produced by the electrochemical oxidation of mercury and is quantitatively converted into the mercury protoporphyrin IX group using single-sweep polarography. As a result, the small redox peak P(0) of the heme prosthetic group at about -0.46 V (vs SCE) disappears and a large new reduction peak P of mercury protoporphyrin IX group at -0.89 V comes out in a pH 9.6 NaHCO(3)-Na(2)CO(3) solution. Peak P is extremely sensitive to heme protein concentration. On the basis of the reduction peak P, a unique electrochemical method for heme protein assays is constructed. For the cytochrome c determination, the peak height is linearly proportional to the concentration in the range of 0.005-15 mg L(-1) (correlation coefficient 0.999). The detection limit is 0.003 mg L(-1). In contrast with peak P(0), the detection limit of cytochrome c is only 0.6 mg L(-1). The voltammograms of heme proteins in the absence and presence of hydroxylamine can serve as a reliable qualitative analytical method. The chemical reaction is peculiar to the heme prosthetic group. Without hydroxylamine it cannot occur. Thereby the method is highly specific and free from interference. The performance takes only a few minutes. These advantages make the method attractive for heme protein detecting.

  2. Arsenic, inorganic

    Integrated Risk Information System (IRIS)

    Arsenic , inorganic ; CASRN 7440 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  3. Determination of Mercury Content in a Shallow Firn Core from Summit, Greenland by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mann, Jacqueline L.; Long, Stephen E.; Shuman, Christopher A.; Kelly, W. Robert

    2003-01-01

    The total mercury Hg content was determined in 6 cm sections of a near-surface 7 m firn core and in surrounding surface snow from Summit, Greenland (elevation: 3238 m, 72.58 N, 38.53 W) in May 2001 by isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICP-MS). The focus of this research was to evaluate the capability of the ID-CV-ICPMS technique for measuring trace levels of Hg typical of polar snow and firn. Highly enriched Hg-201 isotopic spike is added to approximately 10 ml melted core and thoroughly mixed. The Hg(+2) in the sample is reduced on line with tin (II) chloride (SnCl2) and the elemental Hg (Hg(0)) vapor pre-concentrated on to gold gauze using a commercial amalgam system. The Hg is then thermally desorbed and introduced into a quadrupole ICP-MS. The blank corrected Hg concentrations determined for all samples ranged from 0.25 ng/L to 1.74 ng/L (ppt) (average 0.59 ng/L plus or minus 0.28 ng/L) and fall within the range of those previously determined by Boutron et al., 1998 (less than or equal to 0.05 ng/L to 2.0 ng/L) for the Summit site. The average blank value was 0.19 ng/L plus or minus 0.045 ng/L (n=6). The Hg values specifically for the firn core range from 0.25 ng/L to 0.87 ng/L (average 0.51 ng/L plus or minus 0.13 ng/L) and show both values declining with time and larger variability in concentration in the top 1.8 m.

  4. Distributions and Determinants of Mercury Concentrations in Toenails among American Young Adults: the CARDIA Trace Element Study

    PubMed Central

    Xun, Pengcheng; Liu, Kiang; Morris, J. Steve; Jordan, Joanne M.; He, Ka

    2012-01-01

    Background Since data on mercury (Hg) levels in Caucasians and African Americans (AAs) of both genders are lacking, this study aims to present toenail Hg distributions and explore the potential determinants using data from the Coronary Artery Risk Development in Young Adults Trace Element Study. Methods Data from 4344 Americans, aged 20–32 in 1987, recruited from Oakland, Chicago, Minneapolis and Birmingham were used to measure toenail Hg levels by instrumental neutron-activation method. The Hg distribution was described with selected percentiles and geometric means. Multivariable linear regression (MLR) was used to examine potential determinants of Hg levels within ethnicity-gender subgroups. Results The geometric mean of toenail Hg was 0.212 (95% CI: 0.207–0.218) μg/g. Hg levels varied geographically with Oakland the highest [0.381 (0.367–0.395) μg/g] and Minneapolis the lowest [0.140 (0.134–0.147) μg/g]. MLR analyses showed that male gender and AA ethnicity were negatively associated with toenail Hg levels; and that age, living in Oakland city, education level, alcohol consumption and total fish intake were positively associated with toenail Hg concentrations within each ethnicity-gender subgroup. Current smokers were found to have higher Hg only in AA men. Conclusions This study suggested age, gender, ethnicity, study center, alcohol, education level and fish consumption consistently predict toenail Hg levels. As fish consumption was the key determinant, avoiding certain types of fish that have relatively high Hg levels may be crucial in reducing Hg intake. PMID:22926255

  5. Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry.

    PubMed

    Shoaee, Hamta; Roshdi, Mina; Khanlarzadeh, Nasibeh; Beiraghi, Asadollah

    2012-12-01

    A cloud-point extraction process coupled to ICP-OES by using 3-nitro benzaldehyde thiosemicarbazone (3-NBT) as complexing agent was developed for the simultaneous preconcentration and determination of copper and mercury in water samples. The variables affecting the complexation and extraction steps were optimized. Under the optimum conditions (i.e. 1.5×10(-5) mol L(-1) ligand, 0.3% (v/v) Triton X-114, 55 °C equilibrium temperature, incubation time of 30 min) the calibration graphs were linear in the range of 5-120 and 10-100 ng mL(-1) with enhancement factor of 82.7 and 51.3 for Cu(2+) and Hg(2+), respectively. The preconcentration factors were 28.6 in both cases and detection limits were obtained 0.48 for Cu and 1.1 ng mL(-1) for Hg. The precisions (R.S.D.%) for five replicate determinations at 50 ng mL(-1) of copper and mercury were better than 1.8% and 3.2%, respectively. The accuracy of the proposed method is validated by analyzing a certified reference material of water (RTC-QCI-049) with satisfactory results. Finally, the proposed method was utilized successfully for the determination of copper and mercury in surface water (river), tap water and bottled mineral water samples.

  6. Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Shoaee, Hamta; Roshdi, Mina; Khanlarzadeh, Nasibeh; Beiraghi, Asadollah

    2012-12-01

    A cloud-point extraction process coupled to ICP-OES by using 3-nitro benzaldehyde thiosemicarbazone (3-NBT) as complexing agent was developed for the simultaneous preconcentration and determination of copper and mercury in water samples. The variables affecting the complexation and extraction steps were optimized. Under the optimum conditions (i.e. 1.5 × 10-5 mol L-1 ligand, 0.3% (v/v) Triton X-114, 55 °C equilibrium temperature, incubation time of 30 min) the calibration graphs were linear in the range of 5-120 and 10-100 ng mL-1 with enhancement factor of 82.7 and 51.3 for Cu2+ and Hg2+, respectively. The preconcentration factors were 28.6 in both cases and detection limits were obtained 0.48 for Cu and 1.1 ng mL-1 for Hg. The precisions (R.S.D.%) for five replicate determinations at 50 ng mL-1 of copper and mercury were better than 1.8% and 3.2%, respectively. The accuracy of the proposed method is validated by analyzing a certified reference material of water (RTC-QCI-049) with satisfactory results. Finally, the proposed method was utilized successfully for the determination of copper and mercury in surface water (river), tap water and bottled mineral water samples.

  7. Mercury in the national parks

    USGS Publications Warehouse

    Pritz, Colleen Flanagan; Eagles-Smith, Collin; Krabbenhoft, David

    2014-01-01

    One thing is certain: Even for trained researchers, predicting mercury’s behavior in the environment is challenging. Fundamentally it is one of 98 naturally occurring elements, with natural sources, such as volcanoes, and concentrated ore deposits, such as cinnabar. Yet there are also human-caused sources, such as emissions from both coal-burning power plants and mining operations for gold and silver. There are elemental forms, inorganic or organic forms, reactive and unreactive species. Mercury is emitted, then deposited, then re-emitted—thus earning its mercurial reputation. Most importantly, however, it is ultimately transferred into food chains through processes fueled by tiny microscopic creatures: bacteria.

  8. Mercury speciation and selenium in toothed-whale muscles.

    PubMed

    Sakamoto, Mineshi; Itai, Takaaki; Yasutake, Akira; Iwasaki, Toshihide; Yasunaga, Genta; Fujise, Yoshihiro; Nakamura, Masaaki; Murata, Katsuyuki; Chan, Hing Man; Domingo, José L; Marumoto, Masumi

    2015-11-01

    Mercury accumulates at high levels in marine mammal tissues. However, its speciation is poorly understood. The main goal of this investigation was to establish the relationships among mercury species and selenium (Se) concentrations in toothed-whale muscles at different mercury levels. The concentrations of total mercury (T-Hg), methylmercury (MeHg), inorganic mercury (I-Hg) and Se were determined in the muscles of four toothed-whale species: bottlenose dolphins (n=31), Risso's dolphins (n=30), striped dolphins (n=29), and short-finned pilot whales (n=30). In each species, the MeHg concentration increased with increasing T-Hg concentration, tending to reach a plateau. In contrast, the proportion of MeHg in T-Hg decreased from 90-100% to 20-40%. The levels of T-Hg and Se showed strong positive correlations. Se/I-Hg molar ratios rapidly decreased with the increase of I-Hg and reached almost 1 in all species. These results suggested that the demethylated MeHg immediately formed Se/I-Hg equimolar complex of mercury selenide (HgSe) in their muscles. In addition, an X-ray absorption fine structure analysis (XAFS) of a bottlenose dolphin muscle confirmed that the dominant chemical form of the Se/I-Hg equimolar complex was HgSe. HgSe was mainly localized in cells near the endomysium using electron probe microanalysis (EPMA). These results suggested that the demethylated MeHg finally deposits within muscle cells of bottlenose dolphin as an inert HgSe.

  9. Mercury in traditional medicines: Is cinnabar toxicologically similar to common mercurials?

    PubMed Central

    Liu, Jie; Shi, Jing-Zheng; Yu, Li-Mei; Goyer, Robert A.; Waalkes, Michael P.

    2009-01-01

    Mercury is a major toxic metal ranking top in the Toxic Substances List. Cinnabar (contains mercury sulfide) has been used in traditional medicines for thousands years as an ingredient in various remedies, and 40 cinnabar-containing traditional medicines are still used today. Little is known about toxicology profiles or toxicokinetics of cinnabar and cinnabar-containing traditional medicines, and the high mercury content in these Chinese medicines raises justifiably escalations of public concern. This minireview searched the available database of cinnabar, compared cinnabar with common mercurials, such as mercury vapor, inorganic mercury, and organic mercury, and discusses differences in their bioavailability, disposition, and toxicity. The analysis showed that cinnabar is insoluble and poorly absorbed from the gastrointestinal tract. Absorbed mercury from cinnabar is mainly accumulated in kidney, resembling the disposition pattern of inorganic mercury. Heating cinnabar results in release of mercury vapor, which in turn can produce toxicity similar to inhalation of these vapors. The doses of cinnabar required to produce neurotoxicity are thousands 1000 times higher than methyl mercury. Following long-term use of cinnabar, renal dysfunction may occur. Dimercaprol and succimer are effective chelation therapies for general mercury intoxication including cinnabar. Pharmacology studies of cinnabar suggest sedative and hypnotic effects, but the therapeutic basis of cinnabar is still not clear. In summary, cinnabar is chemically inert with a relatively low toxic potential when taken orally. In risk assessment, cinnabar is less toxic than many other forms of mercury, but the rationale for its inclusion in traditional Chinese medicines remains to be fully justified. PMID:18445765

  10. Got Mercury?

    NASA Astrophysics Data System (ADS)

    Meyers, Valerie E.; McCoy, Torin J.; Garcia, Hector D.; James, John T.

    2010-09-01

    Many lamps used in various spacecraft contain elemental mercury, which is efficiently absorbed by the lungs as a vapor. The liquid metal vaporizes slowly at room temperature, but may vaporize completely when lamps are operating. Because current spacecraft environmental control systems are unable to remove mercury vapors, we considered short-term and long-term exposures. We estimated mercury vapor releases from stowed lamps during missions lasting ≤ 30 days, whereas we conservatively assumed complete vaporization from stowed lamps during missions lasting > 30 days and from operating lamps regardless of mission duration. The toxicity of mercury and its lack of removal have led Johnson Space Center’s Toxicology Group to recommend stringent safety controls and verifications for hardware containing elemental mercury that could yield airborne mercury vapor concentrations > 0.1 mg/m3 in the total spacecraft atmosphere for exposures lasting ≤ 30 days, or concentrations > 0.01 mg/m3 for exposures lasting > 30 days.

  11. Fate of mercury in flue gas desulfurization gypsum determined by Temperature Programmed Decomposition and Sequential Chemical Extraction.

    PubMed

    Zhu, Zhenwu; Zhuo, Yuqun; Fan, Yaming; Wang, Zhipeng

    2016-05-01

    A considerable amount of Hg is retained in flue gas desulfurization (FGD) gypsum from Wet Flue Gas Desulfurization (WFGD) systems. For this reason, it is important to determine the species of Hg in FGD gypsum not only to understand the mechanism of Hg removal by WFGD systems but also to determine the final fate of Hg when FGD gypsum is disposed. In this study, Temperature Programmed Decomposition (TPD) and Sequential Chemical Extraction (SCE) were applied to FGD gypsum to identify the Hg species in it. The FGD gypsum samples were collected from seven coal-fired power plants in China, with Hg concentrations ranging from 0.19 to 3.27μg/g. A series of pure Hg compounds were used as reference materials in TPD experiments and the results revealed that the decomposition temperatures of different Hg compounds increase in the order of Hg2Cl2mercury sulfides were the primary compounds. The results of SCE indicated that Hg was mainly distributed in the strongly complexed phase. The low Hg content in FGD gypsum increases the ambiguity of assigning extraction fractions to certain Hg species by SCE. The fact that the primary compounds in FGD gypsum are HgS phases leads the leaching of Hg in the natural environment to be quite low, but a considerable amount of Hg may be released during the industrial heating process. PMID:27155422

  12. Exposure and impact assessment of emissions from mercury recycling using domestic rabbits.

    PubMed

    Reichrtová, E; Bencko, V

    1995-02-01

    A biomonitoring study using domestic rabbits (Chinchilla) aimed at the exposure and impact risks assessment of emissions released into the ambient air from a mercury-recycling plant has been carried out. Groups of rabbits were exposed to the emissions during 6 months at biomonitoring stations built up in two localities (Rudnany and Matejovce) in the distance of about 3 and 6 km around and downwind from the mercury-producing plant. The aim of the biomonitoring was to trace the translocation of inhaled inorganic Hg in body tissues and the immunotoxic impact of the emissions in the exposed mammalian organism in comparison to a non-exposed animals living outside the polluted area. The content of mercury (as a major pollutant in the ambient air in that area) in body tissues was done spectrometrically using a Trace Mercury Analyser TMA-254. Content of mercury and the other metals in the rabbits' hairs was determined by neutron activation analysis. A statistically significant increase of the inorganic Hg content in the specimens of kidneys, lungs, liver, thigh bone, heart muscle and brain was observed. Concerning the hairs, a statistically significant elevation of Hg and other elements (As, Cd, La, Zn, Na, K, W, Sr) has been found. The body tissue reaction to the increased accumulation of mercury has been investigated by a direct immunofluorescent method to search for body tissue immune complexes. The significant increase of Hg content determined in the organs (especially in kidneys and liver) of the exposed animals was also traced by the presence of immunofluorescent antibodies. In addition, the immunofluorescent antibodies in the myocardium have been proved.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Determination of trace mercury in environmental and foods samples by online coupling of flow injection displacement sorption preconcentration to electrothermal atomic absorption spectrometry.

    PubMed

    Li, Yan; Jiang, Yan; Yan, Xiu-Ping; Ni, Zhe-Ming

    2002-11-15

    The toxic effects of mercury are well-known. To establish sources of mercury contamination and to evaluate levels of mercury pollution, sensitive, selective, and accurate analytical methods with excellent reproducibility are required. We have developed a novel methodology for the determination of trace mercury in environmental and foods samples by online coupling of flow injection (FI) displacement sorption preconcentration in a knotted reactor (KR) to electrothermal atomic absorption spectrometry (ETAAS). The developed methodology involved the online formation of copper pyrrolidine dithiocarbamate (Cu-PDC), presorption of the resulting Cu-PDC onto the inner walls of the KR, and selective retention of the analyte Hg(ll) onto the inner walls of the KR through online displacement reaction between Hg(ll) and the presorbed Cu-PDC. The retained analyte was subsequently eluted by 50 microL of ethanol and online detected by ETAAS. Interferences from coexisting heavy metal ions with lower stability of their APDC complexes relative to Cu- PDC were minimized without the need of any masking reagents. The tolerable concentrations of Cu(II), Cd(II), Fe(III), Ni(III), and Zn(II) were up to 12, 20, 16, 20, and 60 mg L(-1), respectively. No additional chemical modifiers for the stabilization of mercury were required in the present system owing to the stability of Hg-PDC at the drying stage, and no pyrolysis stage was necessary due to the effective removal of the matrices. With consumption of 2.5 mL of sample solution, an enhancement factor of 91 was obtained in comparison with direct injection of 50 microL of aqueous solution. The relative detection limit (3s) was 6.2 ng L(-1), corresponding to an absolute detection limit of 15.5 pg. The precision (RSD, n = 13) was 1.1% at the 2 microg L(-1) level. The method was successfully applied to the determination of mercury in several certified environmental and foods reference materials and locally collected water samples.

  14. Determination of trace mercury in environmental and foods samples by online coupling of flow injection displacement sorption preconcentration to electrothermal atomic absorption spectrometry.

    PubMed

    Li, Yan; Jiang, Yan; Yan, Xiu-Ping; Ni, Zhe-Ming

    2002-11-15

    The toxic effects of mercury are well-known. To establish sources of mercury contamination and to evaluate levels of mercury pollution, sensitive, selective, and accurate analytical methods with excellent reproducibility are required. We have developed a novel methodology for the determination of trace mercury in environmental and foods samples by online coupling of flow injection (FI) displacement sorption preconcentration in a knotted reactor (KR) to electrothermal atomic absorption spectrometry (ETAAS). The developed methodology involved the online formation of copper pyrrolidine dithiocarbamate (Cu-PDC), presorption of the resulting Cu-PDC onto the inner walls of the KR, and selective retention of the analyte Hg(ll) onto the inner walls of the KR through online displacement reaction between Hg(ll) and the presorbed Cu-PDC. The retained analyte was subsequently eluted by 50 microL of ethanol and online detected by ETAAS. Interferences from coexisting heavy metal ions with lower stability of their APDC complexes relative to Cu- PDC were minimized without the need of any masking reagents. The tolerable concentrations of Cu(II), Cd(II), Fe(III), Ni(III), and Zn(II) were up to 12, 20, 16, 20, and 60 mg L(-1), respectively. No additional chemical modifiers for the stabilization of mercury were required in the present system owing to the stability of Hg-PDC at the drying stage, and no pyrolysis stage was necessary due to the effective removal of the matrices. With consumption of 2.5 mL of sample solution, an enhancement factor of 91 was obtained in comparison with direct injection of 50 microL of aqueous solution. The relative detection limit (3s) was 6.2 ng L(-1), corresponding to an absolute detection limit of 15.5 pg. The precision (RSD, n = 13) was 1.1% at the 2 microg L(-1) level. The method was successfully applied to the determination of mercury in several certified environmental and foods reference materials and locally collected water samples. PMID:12487313

  15. Determination of inorganic elements in poppy straw by scanning electron microscopy with energy dispersive spectrometry as a means of ascertaining origin.

    PubMed

    Copur, E; Göger, N G; Orbey, T; Sener, B

    2005-01-01

    Cultivation of poppy as a source of opium alkaloids for legitimate medical purposes has a long tradition in Turkey. The main products are poppy straw and concentrate of poppy straw, obtained from dried poppy capsules. The aims of the study reported in the present article were to establish inorganic element profiles for the poppy-growing provinces of Turkey by means of x-ray analysis by scanning electron microscopy with energy dispersive spectrometry (SEM/EDS) and to explore the potential of the technique for determination of origin. Ten elements (sodium, magnesium, silicon, phosphorus, sulphur, chlorine, potassium, calcium, copper and zinc) were analysed in poppy straw samples from 67 towns in nine provinces. As regards the determination of origin, the most significant finding was the presence of copper and zinc in the poppy straw samples from 8 of the 15 towns in Afyon Province. Since those elements are not normally found in soil, it is assumed that their presence is the result of environmental (industrial) contamination. Differences in the samples from the other eight provinces were less significant, possibly a result of their geographical proximity. Nevertheless, differences in the samples were apparent. Because the findings are relative rather than absolute in terms of presence or absence of individual inorganic elements, further research is required to convert them into operationally usable results. The inorganic element profiles generated in the study have been used to form the basis for the development of a comprehensive database on poppy straw samples, which may be used in comparing samples and determining their origin.

  16. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of inorganic and organic constituents in water and fluvial sediments

    USGS Publications Warehouse

    Fishman, M. J., (Edited By)

    1993-01-01

    Methods to be used to analyze samples of water, suspended sediment and bottom material for their content of inorganic and organic constituents are presented. Technology continually changes, and so this laboratory manual includes new and revised methods for determining the concentration of dissolved constituents in water, whole water recoverable constituents in water-suspended sediment samples, and recoverable concentration of constit- uents in bottom material. For each method, the general topics covered are the application, the principle of the method, interferences, the apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data. Included in this manual are 30 methods.

  17. Photo-induced cold vapor generation with low molecular weight alcohol, aldehyde, or carboxylic acid for atomic fluorescence spectrometric determination of mercury.

    PubMed

    Han, Chunfang; Zheng, Chengbin; Wang, Jun; Cheng, Guanglei; Lv, Yi; Hou, Xiandeng

    2007-06-01

    With UV irradiation, Hg(2+) in aqueous solution can be converted into Hg(0) cold vapor by low molecular weight alcohols, aldehydes, or carboxylic acids, e.g., methanol, formaldehyde, acetaldehyde, glycol, 1,2-propanediol, glycerol, acetic acid, oxalic acid, or malonic acid. It was found that the presence of nano-TiO(2) more or less improved the efficiency of the photo-induced chemical/cold vapor generation (photo-CVG) with most of the organic reductants. The nano-TiO(2)-enhanced photo-CVG systems can be coupled to various analytical atomic spectrometric techniques for the determination of ultratrace mercury. In this work, we evaluated the application of this method to the atomic fluorescence spectrometric (AFS) determination of mercury in cold vapor mode. Under the optimized experimental conditions, the instrumental limits of detection (based on three times the standard deviation of 11 measurements of a blank solution) were around 0.02-0.04 microg L(-1), with linear dynamic ranges up to 15 microg L(-1). The interference of transition metals and the mechanism of the photo-CVG are briefly discussed. Real sample analysis using the photo-CVG-AFS method revealed that it was promising for water and geological analysis of ultralow levels of mercury.

  18. Simple method of determination of copper, mercury and lead in potable water with preliminary pre-concentration by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Hołyńska, B.; Ostachowicz, B.; Wȩgrzynek, D.

    1996-06-01

    Total reflection X-ray fluorescence spectrometry and chemical pre-concentration procedures have been applied for the analysis of trace concentrations of copper, mercury, and lead in drinking water samples. A simple total reflection module has been used in X-ray measurements. The elements under investigation were pre-concentrated by complexation using a mixture of carbamates followed by solvent extraction with methyl isobutyl ketone. The preconcentration procedure was tested with the use of twice-distilled water samples and samples of mineral and tap water spiked with known additions of copper, mercury, and lead. The obtained recovery and precision values are presented. The minimum detection limits for the determination of these elements in mineral and tap water samples were found to be 40 ng l -1, 60 ng l -1, and 60 ng l -1, respectively.

  19. PATHOLOGICAL EFFECTS OF DIETARY METHYL MERCURY IN AMERICAN KESTRELS (FALCO SPARVERIIUS)

    EPA Science Inventory

    Methyl mercury in the aquatic food web poses significant health risks to both wildlife and humans. One primary source of mercury contamination for both the aquatic and terrestrial systems is atmospheric deposition of inorganic mercury from industrial emissions. Once in the enviro...

  20. GASEOUS ELEMENTAL MERCURY IN THE MARINE BOUNDARY LAYER: EVIDENCE FOR RAPID REMOVAL IN ANTHROPOGENIC POLLUTION

    EPA Science Inventory

    In this study, gas-phase elemental mercury (Hg0) and related species (including inorganic reactive gaseous mercury (RGM) and particulate mercury (PHg)) were measured at Cheeka Peak Observatory (CPO), Washington State, in the marine boundary layer (MBL) during 2001-2002. Air of...

  1. THE EFFECT OF MERCURY CONTROLS ON WALLBOARD MANUFACTURE

    SciTech Connect

    Sandra Meischen

    2004-07-01

    Pending EPA regulations may mandate 70 to 90% mercury removal efficiency from utility flue gas. A mercury control option is the trapping of oxidized mercury in wet flue gas desulfurization systems (FGD). The potential doubling of mercury in the FGD material and its effect on mercury volatility at temperatures common to wallboard manufacture is a concern that could limit the growing byproduct use of FGD material. Prediction of mercury fate is limited by lack of information on the mercury form in the FGD material. The parts per billion mercury concentrations prevent the identification of mercury compounds by common analytical methods. A sensitive analytical method, cold vapor atomic fluorescence, coupled with leaching and thermodecomposition methods were evaluated for their potential to identify mercury compounds in FGD material. The results of the study suggest that the mercury form is dominated by the calcium sulfate matrix and is probably associated with the sulfate form in the FGD material. Additionally, to determine the effect of high mercury concentration FGD material on wallboard manufacture, a laboratory FGD unit was built to trap the oxidized mercury generated in a simulated flue gas. Although the laboratory prepared FGD material did not contain the mercury concentrations anticipated, further thermal tests determined that mercury begins to evolve from FGD material at 380 to 390 F, consequently dropping the drying temperature should mitigate mercury evolution if necessary. Mercury evolution is also diminished as the weight of the wallboard sample increased. Consequently, mercury evolution may not be a significant problem in wallboard manufacture.

  2. Determination of mercury in sewage sludge by direct slurry sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Baralkiewicz, Danuta; Gramowska, Hanka; Kózka, Małgorzata; Kanecka, Anetta

    2005-03-01

    Ultrasonic slurry sampling electrothermal atomic absorption spectrometry (ETAAS) method was elaborated to the determination of Hg in sewage sludge samples with the use of KMnO 4+Pd modifier. The minimum sample amount required for slurry preparation with respect to sample homogeneity was evaluated by weighting masses between 3 and 30 mg directly into the autosampler cups. Validation of the proposed method was performed with the use of Certified Reference Materials of sewage sludge, CRM 007-040 and CRM 144R. Two sewage sludge samples from Poznañ (Poland) city were analysed using the present direct method and a method with sample digestion, resulting in no difference within statistical error.

  3. Mercury determination in urine samples by gold nanostructured screen-printed carbon electrodes after vortex-assisted ionic liquid dispersive liquid-liquid microextraction.

    PubMed

    Fernández, Elena; Vidal, Lorena; Costa-García, Agustín; Canals, Antonio

    2016-04-01

    A novel approach is presented to determine mercury in urine samples, employing vortex-assisted ionic liquid dispersive liquid-liquid microextraction and microvolume back-extraction to prepare samples, and screen-printed electrodes modified with gold nanoparticles for voltammetric analysis. Mercury was extracted directly from non-digested urine samples in a water-immiscible ionic liquid, being back-extracted into an acidic aqueous solution. Subsequently, it was determined using gold nanoparticle-modified screen-printed electrodes. Under optimized microextraction conditions, standard addition calibration was applied to urine samples containing 5, 10 and 15 μg L(-1) of mercury. Standard addition calibration curves using standards between 0 and 20 μg L(-1) gave a high level of linearity with correlation coefficients ranging from 0.990 to 0.999 (N = 5). The limit of detection was empirical and statistically evaluated, obtaining values that ranged from 0.5 to 1.5 μg L(-1), and from 1.1 to 1.3 μg L(-1), respectively, which are significantly lower than the threshold level established by the World Health Organization for normal mercury content in urine (i.e., 10-20 μg L(-1)). A certified reference material (REC-8848/Level II) was analyzed to assess method accuracy finding 87% and 3 μg L(-1) as the recovery (trueness) and standard deviation values, respectively. Finally, the method was used to analyze spiked urine samples, obtaining good agreement between spiked and found concentrations (recovery ranged from 97 to 100%).

  4. Total mercury levels in hair, toenail, and urine among women free from occupational exposure and their relations to renal tubular function

    SciTech Connect

    Ohno, Tomoko; Sakamoto, Mineshi; Kurosawa, Tomoko; Dakeishi, Miwako; Iwata, Toyoto; Murata, Katsuyuki . E-mail: winestem@med.akita-u.ac.jp

    2007-02-15

    To investigate the relations among total mercury levels in hair, toenail, and urine, together with potential effects of methylmercury intake on renal tubular function, we determined their levels, and urinary N-acetyl-{beta}-d-glucosaminidase activity (NAG) and {alpha}{sub 1}-microglobulin (AMG) in 59 women free from occupational exposures, and estimated daily mercury intakes from fish and other seafood using a food frequency questionnaire. Mercury levels (mean+/-SD) in the women were 1.51+/-0.91{mu}g/g in hair, 0.59+/-0.32{mu}g/g in toenail, and 0.86+/-0.66{mu}g/g creatinine in urine; and, there were positive correlations among them (P<0.001). The daily mercury intake of 9.15+/-7.84{mu}g/day was significantly correlated with total mercury levels in hair, toenail, and urine (r=0.551, 0.537, and 0.604, P<0.001). Among the women, the NAG and AMG were positively correlated with both the daily mercury intake and mercury levels in hair, toenail, and urine (P<0.01); and, these relations were almost similar when using multiple regression analysis to adjust for possible confounders such as urinary cadmium (0.47+/-0.28{mu}g/g creatinine) and smoking status. In conclusion, mercury resulting from fish consumption can explain total mercury levels in hair, toenail, and urine to some degree (about 30%), partly through the degradation into the inorganic form, and it may confound the renal tubular effect of other nephrotoxic agents. Also, the following equation may be applicable to the population neither with dental amalgam fillings nor with occupational exposures: [hair mercury ({mu}g/g)]=2.44x[toenail mercury ({mu}g/g)].

  5. Highly sensitive determination of mercury using copper enhancer by diamond electrode coupled with sequential injection-anodic stripping voltammetry.

    PubMed

    Chaiyo, Sudkate; Chailapakul, Orawon; Siangproh, Weena

    2014-12-10

    A highly sensitive determination of mercury in the presence of Cu(II) using a boron-doped diamond (BDD) thin film electrode coupled with sequential injection-anodic stripping voltammetry (SI-ASV) was proposed. The Cu(II) was simultaneously deposited with Hg(II) in a 0.5 M HCl supporting electrolyte by electrodeposition. In presence of an excess of Cu(II), the sensitivity for the determination of Hg(II) was remarkably enhanced. Cu(II) and Hg(II) were on-line deposited onto the BDD electrode surface at -1.0 V (vs. Ag/AgCl, 3 M KCl) for 150 s with a flow rate of 14 μL s(-1). An anodic stripping voltammogram was recorded from -0.4 V to 0.25 V using a frequency of 60 Hz, an amplitude of 50 mV, and a step potential of 10 mV at a stopped flow. Under the optimal conditions, well-defined peaks of Cu(II) and Hg(II) were found at -0.25 V and +0.05 V (vs. Ag/AgCl, 3 M KCl), respectively. The detection of Hg(II) showed two linear dynamic ranges (0.1-30.0 ng mL(-1) and 5.0-60.0 ng mL(-1)). The limit of detection (S/N=3) obtained from the experiment was found to be 0.04 ng mL(-1). The precision values for 10 replicate determinations were 1.1, 2.1 and 2.9% RSD for 0.5, 10 and 20 ng mL(-1), respectively. The proposed method has been successfully applied for the determination of Hg(II) in seawater, salmon, squid, cockle and seaweed samples. A comparison between the proposed method and an inductively coupled plasma optical emission spectrometry (ICP-OES) standard method was performed on the samples, and the concentrations obtained via both methods were in agreement with the certified values of Hg(II), according to the paired t-test at a 95% confidence level. PMID:25441879

  6. Advances in understanding the renal transport and toxicity of mercury

    SciTech Connect

    Zalups, R.K. ); Lash, L.H. )

    1994-01-01

    As a result of industrialization and changes in the environment during the twentieth century, humans and animals are exposed to numerous chemical forms of mercury, including elemental mercury vapor (Hg[sup 0]), inorganic mercurous (Hg[sup +]) and mercuric (Hg[sup 2+]) compounds, and organic mercuric (R-Hg[sup +] or R-Hg-R; where R represents any organic ligand) compounds. The risk of exposure and subsequent intoxication is of increasing concern because of the steadily increasing deposition of mercury in the environment (Fitzgerald Clarkson, 1991). All forms of mercury have nephrotoxic effects, although disposition and toxicity of mercury in tissues can vary depending on the chemical form of mercury. For example, the initial toxic effects of both elemental mercury and organic forms of mercury are observed in the nervous system. This is due to their lipophilicity, which allows them to cross the blood-brain barrier. At later times, hepatotoxicity and nephrotoxicity can develop. With inorganic mercurous or mercuric salts, the most prominent effect is nephrotoxicity. Until recently, little was known about the mechanisms involved in the nephropathy induced by mercury. The purpose of this article is to review recent data on the intrarenal accumulation and disposition, nephrotoxicity, and target site specificity of mercury, and factors that modify or alter renal injury induced by mercury. 170 refs., 7 figs.

  7. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Jin, Yan; Han, Weiying; Miao, Qiang; Bi, Shuping

    2006-07-01

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH 4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h - 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l - 1 for Hg 2+ and 2.0 ng l - 1 for CH 3Hg +. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l - 1 of Hg 2+ and CH 3Hg + were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.

  8. Improvement of an enzyme immunoassay for the determination of mercury (II)

    SciTech Connect

    Marx, A.; Kroetz, E.; Hock, B.

    1998-07-01

    Three systems were tested for the optimization of a heterogeneous noncompetitive enzyme immunoassay (EIA) for the determination of Hg (II). The sensitivity of the nonoptimized Hg-EIA with a detection limit of 2.1 {micro}g/L Hg (II) was improved by an avidin-biotin-complex (ABC) amplification system to a 2-fold lower detection limit (1.1 {micro}g/L Hg (II)). A conventional competitive EIA with the competition reaction between bound and free Hg (II) for antibody (ab) binding sites yielded a detection limit of 1.0 {micro}g/L Hg (II). Further improvement of sensitivity could be achieved by a competitive displacement EIA. In this case ab molecules bound to immobilized haptens are displaced in the next step by free Hg (II). The detection limit of the displacement approach is 0.4 {micro}g/L Hg (II).

  9. Mercury volatilization by R factor systems in Escherichia coli isolated from aquatic environments of India.

    PubMed

    Gupta, Neerja; Ali, Arif

    2004-02-01

    Ten Escherichia coli strains isolated from five different aquatic environments representing three distinct geographical regions of India showed significantly high levels of tolerance to the inorganic form of mercury, i.e., mercuric chloride (HgCl(2)). MRD14 isolated from the Dal Lake (Kashmir) could tolerate the highest concentration of HgCl(2), i.e., 55 microg/mL, and MRF1 from the flood water of the Yamuna River (Delhi) tolerated the lowest concentration, i.e., 25 microg/mL. All ten strains revealed the presence of a plasmid of approximately 24 kb, and transformation of the isolated plasmids into the mercury-sensitive competent cells of E. coli DH5alpha rendered the transformants resistant to the same concentration of mercury as the wild-type strains. Mating experiments were performed to assess the self-transmissible nature of these promiscuous plasmids. The transfer of mercury resistance from these wild-type strains to the mercury-sensitive, naladixic acid-resistant E. coli K12 (F(-) lac(+)) strain used as a recipient was observed in six of the nine strains tested. Transconjugants revealed the presence of a plasmid of approximately 24 kb. An evaluation of the mechanism of mercury resistance in the three most efficient strains (MRG12, MRD11, and MRD14) encountered in our study was determined by cold vapor atomic absorption spectroscopy (CV-AAS), and it was noted that resistance to HgCl(2) was conferred by conversion of the toxic ionic form of mercury (Hg(++)) to the nontoxic elemental form (Hg(0)) in all three strains. MRD14 volatilized mercury most efficiently. PMID:15057474

  10. Mercury volatilization by R factor systems in Escherichia coli isolated from aquatic environments of India.

    PubMed

    Gupta, Neerja; Ali, Arif

    2004-02-01

    Ten Escherichia coli strains isolated from five different aquatic environments representing three distinct geographical regions of India showed significantly high levels of tolerance to the inorganic form of mercury, i.e., mercuric chloride (HgCl(2)). MRD14 isolated from the Dal Lake (Kashmir) could tolerate the highest concentration of HgCl(2), i.e., 55 microg/mL, and MRF1 from the flood water of the Yamuna River (Delhi) tolerated the lowest concentration, i.e., 25 microg/mL. All ten strains revealed the presence of a plasmid of approximately 24 kb, and transformation of the isolated plasmids into the mercury-sensitive competent cells of E. coli DH5alpha rendered the transformants resistant to the same concentration of mercury as the wild-type strains. Mating experiments were performed to assess the self-transmissible nature of these promiscuous plasmids. The transfer of mercury resistance from these wild-type strains to the mercury-sensitive, naladixic acid-resistant E. coli K12 (F(-) lac(+)) strain used as a recipient was observed in six of the nine strains tested. Transconjugants revealed the presence of a plasmid of approximately 24 kb. An evaluation of the mechanism of mercury resistance in the three most efficient strains (MRG12, MRD11, and MRD14) encountered in our study was determined by cold vapor atomic absorption spectroscopy (CV-AAS), and it was noted that resistance to HgCl(2) was conferred by conversion of the toxic ionic form of mercury (Hg(++)) to the nontoxic elemental form (Hg(0)) in all three strains. MRD14 volatilized mercury most efficiently.

  11. Identification and determination of inorganic anions in real extracts from pre- and post-blast residues by capillary electrophoresis.

    PubMed

    Sarazin, Cédric; Delaunay, Nathalie; Varenne, Anne; Vial, Jérôme; Costanza, Christine; Eudes, Véronique; Minet, Jean-Jacques; Gareil, Pierre

    2010-10-29

    Fast, selective, and sensitive analysis of inorganic anions is compulsory for the identification of explosives in post-blast or environmental samples. For the last twenty years, capillary electrophoresis (CE) has become a valuable alternative to ion chromatography (IC) for the analysis of inorganic-based explosives because of its low running costs and its simplicity of use. This article focuses on the development and validation of a CE method for the simultaneous analysis of 10 anions (chloride, nitrite, nitrate, thiosulphate, perchlorate, chlorate, thiocyanate, carbonate, sulphate, and phosphate) which can be found in post-blast residues, plus for the first time azide anion, possibly present in the composition of detonators, and the internal standard (formate) in 20 min total runtime. Intermediate precisions were 2.11% for normalized areas and 0.72% for normalized migration times. Limits of detection close to 0.5 ppm for all anions were obtained with the use of preconcentration techniques, thanks to a fast and simple sample preparation allowing the analysis of a large variety of matrices with the developed generic CE method. The matrix effects were statistically studied for the first time in the explosive field for different matrices, containing interfering anions and cations, sometimes at high levels. In fact, no significant matrix effect occurred (tests with blank matrix extracts of soil, cloth, glass, plastic, paper, cotton, and metal). Finally, analyses of real post-blast residues and real detonator extracts were performed. The CE results were compared with those obtained with the IC method used routinely and showed excellent correlation.

  12. To Mercury dynamics

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    frequencies of free oscillations of core-mantle system of Mercury. Based on the mentioned data about Mercury (Barkin, 1976) we have been obtained the following model values of moments of inertia of the Mercury and for its core:A=0.3499534, B=0.3499667, C=0.35; A_c =B_c =0.1749767, C_c =0.175000 (1quad unit=mR^2, m and R is a mass and a mean radius of the Mercury). Here we used model values for moments of inertia of the core using also some analogy with axysimmetrical model of the core of the Moon from paper Williams et al. (2003). Corresponding periods of free oscillations were determined on the base specially constructed equations of developed theory. They are equal: T_1 =260543\\cdot Trot years and T_2 =0.999468\\cdot Trot (Trot =58.6462 days is a period of Mercury rotation). Last period determines long period of relative oscillation of the core and mantleT_r . The mentioned periods are equal: T_1 =713years and T_r =302years. Barkin's work was accepted by grant SAB2000-0235 of Ministry of Education of Spain and partially by grants AYA2001-0787 and ESP2001-4533 is also aknowledged. References Anderson J.D., Colombo G., Esposito P.B., Lau E.L., Trager G.B.: 1987. The mass, gravity field and ephemeris of Mercury. Icarus, pp. 337-349. Anselmi A., Scoon G.E.N.: 2001. BepiColombo, ESA's Mercury Cornerstone mission. Planetary and Space Science, 49, pp. 1409-1420. Barkin Yu.V.: 1976. About plane periodic motions of a rigid body in gravitational field of a sphere. Astron. J., v. 53, pp. 1110-1119. In Russian. Barkin Yu.V.: 1987. An analytical theory of the lunar rotational motion. Proc. Int. Symp. ``Figure and Dynamics of Earth, Moon and Planets'' (September 1986, Prague). Monograph series of VUGTK. Prague. Pp. 657-677. Beletskij V.V.: 1972. Resonance rotation of celestial bodies and Cassini's laws. Celestial Mechanics, v.6, N3, pp. 356-378. Colombo G.: 1966. Cassini's second and third laws, Astron. J., 71, p. 891. Esposito P.B., Anderson J.D., Ng A.T.Y.: 1977. Experimental

  13. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6-4.3%), repeatability (4-9%), reproducibility (9-11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as straightforward

  14. Effect of salinity on methylation of mercury

    SciTech Connect

    Blum, J.E.; Bartha, R.

    1980-09-01

    Monomethyl and dimethylmercury are potent neurotoxins subject to biomagnification in food webs. This fact was tragically demonstrated by the Minamata and Niigata poisoning incidents in Japan in which 168 persons who ate seafood from mercury polluted waters were poisoned, 52 fatally. Shortly after these two incidents, work conducted in freshwater environments demonstrated the microbial conversion of inorganic and phenylmercury compounds to mono- and di-methylmercury. Consideration of some fragmentary evidence from the literature, however, indicates that the rate and the significance of microbial methylation of mercury in freshwater and saltwater environments may not be the same. A demonstrated relationship between mercury methylation rates and water salinity would greatly influence our thinking about mercury pollution effects in marine versus freshwater environments. Since we were unable to locate published reports on this subject, we are investigating the influence of salinity on the rate of mercury methylation in an estuarine sediment.

  15. Development of new reference materials for the determination of cadmium, chromium, mercury and lead in polycarbonate.

    PubMed

    Lee, Kil Jae; Lee, Yeo Jin; Choi, Young Rak; Kim, Jeong Sook; Kim, Youn Sung; Heo, Soo Bong

    2013-01-01

    Reference materials for quantitative determination of Cd, Cr, Hg and Pb in polycarbonate were developed. Reference materials with two concentration level of elements were prepared by adding appropriate amounts of chemicals to a blank polycarbonate base material. It was shown that ten bottles with triplicate analysis are enough to demonstrate the homogeneity of these candidate reference materials. The statistical results also showed no significant trends in both short-term stability test for four weeks and long-term stability test for twelve months. The certification of the four elements was carried out by isotope-dilution-inductively coupled plasma mass spectrometry (ID-ICP-MS) with microwave-assisted digestion. Certification of candidate reference materials in a single laboratory was confirmed with interlaboratory comparison participated by a certain number of well-recognized testing laboratories in Korea. The certified values and expanded uncertainties (k=2) for the candidate reference material with low level and the one with high level were (51.7±2.1)mgkg(-1) Cd, (103.8±2.9)mgkg(-1) Cd, (98.8±4.5)mgkg(-1) Cr, (1004±49.8)mgkg(-1) Cr, (107.4±4.6)mgkg(-1) Hg, (1133±50.7)mgkg(-1) Hg, (94.8±3.7)mgkg(-1) Pb and (988.4±53.6)mgkg(-1) Pb, respectively. The reference materials developed in this study demonstrated their suitability for the quality assurance in Cd, Cr, Hg and Pb analysis for the implementation of RoHS Directive. PMID:23245892

  16. Determination of mercury in biological samples by cold vapor atomic absorption spectrometry following cloud point extraction with salt-induced phase separation.

    PubMed

    Dittert, Ingrid M; Maranhão, Tatiane A; Borges, Daniel L G; Vieira, Mariana A; Welz, Bernhard; Curtius, Adilson J

    2007-07-31

    Method development for the pre-concentration of mercury in human hair, dogfish liver and dogfish muscle samples using cloud-point extraction and cold vapor atomic absorption spectrometry is demonstrated. Before the extraction, the samples were submitted to microwave-assisted digestion in a mixture of H(2)O(2) and HNO(3). Cloud point extraction was carried out using 0.5% (m/v) ammonium O,O-diethyldithiophosphate (DDTP) as the chelating agent and 0.3% (m/v) Triton X-114 as the non-ionic surfactant. Phase separation was induced after the addition of Na(2)SO(4) to a final concentration of 0.2 mol L(-1). Aliquots of the final extract were transferred to PTFE tubes and NaBH(4) and HCl were added. The mercury vapor was driven to a non-heated quartz tube for measuring the absorbance. The results obtained with salt-induced phase separation were in good agreement with the certified values at a 95% confidence level. An enrichment factor of 10 allowed a detection limit of 0.4 ng g(-1) to be obtained, which demonstrates the high sensitivity of the proposed procedure for the determination of mercury at trace levels.

  17. Determination of mercury(II) in aquatic plants using quinoline-thiourea conjugates as a fluorescent probe.

    PubMed

    Feng, Guodong; Ding, Yuanyuan; Gong, Zhiyong; Dai, Yanna; Fei, Qiang

    2013-01-01

    In this study, a quinoline-thiourea conjugate (1-phenyl-3-(quinoline-8-yl) thiourea, PQT) was synthesized and used as a fluorescence sensor to detect mercury ion. The observation is coincident with the well-documented phenomenon that a thiocarbonyl-containing group on a fluorochrome quenches the fluorescence due to the heavy atom effect of the S atom. The large fluorescence enhancement of PQT in the buffered MeCN-water mixture (1/1 v/v; HEPES 100 mM; pH 8.0) was caused by the Hg(2+) induced transformation of the thiourea function into a urea group. As such, protic solvents can be ascribed to hydrogen bond formation on the carbonyl oxygen to reduce the internal conversion rate. The fluorescence intensity of PQT was enhanced quantitatively with an increase in the concentration of mercury ion. The limit of detection of Hg(2+) was 7.5 nM. The coexistence of other metal ions with mercury had no obvious influence on the detection of mercury. A quinolone-thiourea conjugate was used as a fluorescent probe to detect Hg(2+) in aquatic plants and the experimental results were satisfactory. PMID:23842417

  18. DEVELOPMENT OF AN ECOLOGICAL RISK ASSESSMENT METHODOLOGY FOR ASSESSING WILDLIFE EXPOSURE RISK ASSOCIATED WITH MERCURY-CONTAMINATED SEDIMENTS IN LAKE AND RIVER SYSTEMS

    EPA Science Inventory

    Mercury is an important environmental contaminant with a complex chemistry cycle. The form of mercury entering an ecosystem from anthropogenic and natural sources is generally inorganic, while the environmentally relevant form is in the organic form, methylmercury. Therefore, the...

  19. Amperometric determination of cadmium, lead, and mercury metal ions using a novel polymer immobilised horseradish peroxidase biosensor system.

    PubMed

    Silwana, Bongiwe; Van Der Horst, Charlton; Iwuoha, Emmanuel; Somerset, Vernon

    2014-01-01

    This work was undertaken to develop a novel Pt/PANI-co-PDTDA/HRP biosensor system for environmental applications to investigate the inhibition studies by specific heavy metals, to provide data suitable for kinetic studies and further application of the biosensor to environmental samples. The newly constructed biosensor was compared to the data of the well-researched Pt/PANI/HRP biosensor. Optimised experimental conditions, such as the working pH for the biosensor was evaluated. The functionality of the amperometric enzyme sensor system was demonstrated by measuring the oxidation current of hydrogen peroxide followed by the development of an assay for determination of metal concentration in the presence of selected metal ions of Cd(2+), Pb(2+) and Hg(2+). The detection limits were found to be 8 × 10(-4) μg L(-1) for cadmium, 9.38 × 10(-4) μg L(-1) for lead and 7.89 × 10(-4) μg L(-1) for mercury. The World Health Organisation recommended that the maximum safety level of these metals should not exceed 0.005 mg L(-1) of Cd(2+), 0.01 mg L(-1) of Pb(2+) and 0.001 mg L(-1) of Hg(2+.), respectively. The analytical and detection data for the metals investigated were observed to be lower than concentrations recommended by several bodies including World Health Organisation and Environmental Protection Agencies. Therefore the biosensors developed in this study can be used to screen the presence of these metals in water samples because of its low detection limit. The modes of inhibition of horseradish peroxidase by Pb(2+), Cd(2+) and Hg(2+) as analysed using the double reciprocal plots of the Michaelis-Menten equation was found to be reversible and uncompetitive inhibition. Based on the Km(app) and Imax values for both biosensors the results have shown smaller values. These results also proved that the enzyme modified electrode is valuable and can be deployed for the determination or screening of heavy metals.

  20. Amperometric determination of cadmium, lead, and mercury metal ions using a novel polymer immobilised horseradish peroxidase biosensor system.

    PubMed

    Silwana, Bongiwe; Van Der Horst, Charlton; Iwuoha, Emmanuel; Somerset, Vernon

    2014-01-01

    This work was undertaken to develop a novel Pt/PANI-co-PDTDA/HRP biosensor system for environmental applications to investigate the inhibition studies by specific heavy metals, to provide data suitable for kinetic studies and further application of the biosensor to environmental samples. The newly constructed biosensor was compared to the data of the well-researched Pt/PANI/HRP biosensor. Optimised experimental conditions, such as the working pH for the biosensor was evaluated. The functionality of the amperometric enzyme sensor system was demonstrated by measuring the oxidation current of hydrogen peroxide followed by the development of an assay for determination of metal concentration in the presence of selected metal ions of Cd(2+), Pb(2+) and Hg(2+). The detection limits were found to be 8 × 10(-4) μg L(-1) for cadmium, 9.38 × 10(-4) μg L(-1) for lead and 7.89 × 10(-4) μg L(-1) for mercury. The World Health Organisation recommended that the maximum safety level of these metals should not exceed 0.005 mg L(-1) of Cd(2+), 0.01 mg L(-1) of Pb(2+) and 0.001 mg L(-1) of Hg(2+.), respectively. The analytical and detection data for the metals investigated were observed to be lower than concentrations recommended by several bodies including World Health Organisation and Environmental Protection Agencies. Therefore the biosensors developed in this study can be used to screen the presence of these metals in water samples because of its low detection limit. The modes of inhibition of horseradish peroxidase by Pb(2+), Cd(2+) and Hg(2+) as analysed using the double reciprocal plots of the Michaelis-Menten equation was found to be reversible and uncompetitive inhibition. Based on the Km(app) and Imax values for both biosensors the results have shown smaller values. These results also proved that the enzyme modified electrode is valuable and can be deployed for the determination or screening of heavy metals. PMID:25137538

  1. The Planet Mercury Surface Spectroscopy and Analysis from the Kuiper Airborne Observatory and Analysis and Modeling to Determine Surface Composition

    NASA Technical Reports Server (NTRS)

    Sprague, Ann

    1997-01-01

    We had two successful flights to observe Mercury from the Kuiper Airborne Observatory (KAO) using High-efficiency Infrared Faint-Object Grating Spectrograph (HIFOGS). Flights were May 8, 1995 (eastern elongation) and July 6, 1995 (western elongation) For the observations one half of the primary mirror was covered to prevent sunlight from entering the telescope. All equipment and the airplane and its crew performed well. These flights were historical firsts for the KAO and for spectroscopy of Mercury in that it was the first time any spectroscopic observations of Mercury from above the Earth's atmosphere had been made. It was the first time the KAO had been used to @bserve an object less than 30 degrees fro