Science.gov

Sample records for inorganic salts

  1. Infrared Spectrometry of Inorganic Salts

    ERIC Educational Resources Information Center

    Ackermann, Martin N.

    1970-01-01

    Describes a general chemistry experiment which uses infrared spectroscopy to analyze inorganic ions and thereby serves to introduce an important instrumental method of analysis. Presents a table of eight anions and the ammonium ion with the frequencies of their normal modes, as well as the spectra of three sulfate salts. (RR)

  2. Structural properties of scandium inorganic salts

    SciTech Connect

    Sears, Jeremiah M.; Boyle, Timothy J.

    2016-12-16

    Here, the structural properties of reported inorganic scandium (Sc) salts were reviewed, including the halide (Cl, Br, and I), nitrate, sulfate, and phosphate salts. Additional analytical techniques used for characterization of these complexes (metrical data, FTIR and 45Sc NMR spectroscopy) were tabulated. A structural comparison of Sc to select lanthanide (La, Gd, Lu) salt complexes was briefly evaluated.

  3. Structural properties of scandium inorganic salts

    DOE PAGES

    Sears, Jeremiah M.; Boyle, Timothy J.

    2016-12-16

    Here, the structural properties of reported inorganic scandium (Sc) salts were reviewed, including the halide (Cl, Br, and I), nitrate, sulfate, and phosphate salts. Additional analytical techniques used for characterization of these complexes (metrical data, FTIR and 45Sc NMR spectroscopy) were tabulated. A structural comparison of Sc to select lanthanide (La, Gd, Lu) salt complexes was briefly evaluated.

  4. Molten salt battery having inorganic paper separator

    DOEpatents

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  5. Stable colloids in molten inorganic salts.

    PubMed

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  6. Stable colloids in molten inorganic salts

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-01

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  7. Sol-gel processing with inorganic metal salt precursors

    DOEpatents

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  8. Nanostructured YSZ membranes derived from inorganic salts

    NASA Astrophysics Data System (ADS)

    Zhang, Cunlin; Liao, Yang; He, Shuli; Sun, Defeng; Chen, Wen

    2005-01-01

    The nanostuctured YSZ (Yttria Stabilized Zirconia) membranes on Si(110) substrates are successfully prepared by sol-gel technology derived from inorganic salts ZrOCl2"8H2O, H2C2O4"2H2O and Y(NO3)3"6H2O. By means of controlling the supersaturation and diffusion velocity in solution when the zirconyl oxalate xerogels are repeptized, spherical colloidal paricles with different distributions are obtained. we propose that the peptization of xerogels can be considered as a process of nucleation and growth of colloidal particles. The membranes are preparated by spinning the modified sols on Si(110) substrates. After calcining at 800°C for 1 hour, the membranes are crack-free and mirrorlike. The membranes consist of monodisperse fine spherical crystallines in the range of 20~220nm in diameter, which microstructures are controlled by changing the size and distribution of colloidal particles in sols.

  9. SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS

    DOEpatents

    Katzin, L.I.; Sullivan, J.C.

    1958-06-24

    A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

  10. Inorganic salt mixtures as electrolyte media in fuel cells

    NASA Technical Reports Server (NTRS)

    Angell, Charles Austen (Inventor); Belieres, Jean-Philippe (Inventor); Francis-Gervasio, Dominic (Inventor)

    2012-01-01

    Fuel cell designs and techniques for converting chemical energy into electrical energy uses a fuel cell are disclosed. The designs and techniques include an anode to receive fuel, a cathode to receive oxygen, and an electrolyte chamber in the fuel cell, including an electrolyte medium, where the electrolyte medium includes an inorganic salt mixture in the fuel cell. The salt mixture includes pre-determined quantities of at least two salts chosen from a group consisting of ammonium trifluoromethanesulfonate, ammonium trifluoroacetate, and ammonium nitrate, to conduct charge from the anode to the cathode. The fuel cell includes an electrical circuit operatively coupled to the fuel cell to transport electrons from the cathode.

  11. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and...

  12. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and...

  13. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and...

  14. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and...

  15. Comparison of several ethanol productions using xylanase, inorganic salts, surfactant

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Lu, Jie; Yang, Rui-feng; Song, Wen-jing; Li, Hai-ming; Wang, Hai-song; Zhou, Jing-hui

    2017-03-01

    Liquid hot water (LHW) pretreatment is an effective and environmentally friendly method to produce bioethanol with lignocellulosic materials. Corn stover was pretreated with liquid hot water (LHW) and then subjected to semi-simultaneous saccharification and fermentation (S-SSF) to obtain high ethanol concentration and yield. The present study aimed to confirm the effect of several additives on the fermentation digestibility of unwashed WIS of corn stover pretreated with LHW. So we also investigated the process, such as enzyme addition, inorganic salts, surfactant and different loading Triton. Results show that high ethanol concentration is necessary to add xylanase in the stage of saccharification. The ethanol concentration increased mainly with magnesium ion on fermentation. Comparing with Tween 80, Span 80 and Polyethylene glycol, Triton is the best surfactant. In contrast to using xylanase and Triton respectively, optimization can make up the lack of stamina and improve effect of single inorganic salts.

  16. Revising the hygroscopicity of inorganic sea salt particles

    PubMed Central

    Zieger, P.; Väisänen, O.; Corbin, J. C.; Partridge, D. G.; Bastelberger, S.; Mousavi-Fard, M.; Rosati, B.; Gysel, M.; Krieger, U. K.; Leck, C.; Nenes, A.; Riipinen, I.; Virtanen, A.; Salter, M. E.

    2017-01-01

    Sea spray is one of the largest natural aerosol sources and plays an important role in the Earth’s radiative budget. These particles are inherently hygroscopic, that is, they take-up moisture from the air, which affects the extent to which they interact with solar radiation. We demonstrate that the hygroscopic growth of inorganic sea salt is 8–15% lower than pure sodium chloride, most likely due to the presence of hydrates. We observe an increase in hygroscopic growth with decreasing particle size (for particle diameters <150 nm) that is independent of the particle generation method. We vary the hygroscopic growth of the inorganic sea salt within a general circulation model and show that a reduced hygroscopicity leads to a reduction in aerosol-radiation interactions, manifested by a latitudinal-dependent reduction of the aerosol optical depth by up to 15%, while cloud-related parameters are unaffected. We propose that a value of κs=1.1 (at RH=90%) is used to represent the hygroscopicity of inorganic sea salt particles in numerical models. PMID:28671188

  17. Revising the hygroscopicity of inorganic sea salt particles

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Väisänen, O.; Corbin, J. C.; Partridge, D. G.; Bastelberger, S.; Mousavi-Fard, M.; Rosati, B.; Gysel, M.; Krieger, U. K.; Leck, C.; Nenes, A.; Riipinen, I.; Virtanen, A.; Salter, M. E.

    2017-07-01

    Sea spray is one of the largest natural aerosol sources and plays an important role in the Earth's radiative budget. These particles are inherently hygroscopic, that is, they take-up moisture from the air, which affects the extent to which they interact with solar radiation. We demonstrate that the hygroscopic growth of inorganic sea salt is 8-15% lower than pure sodium chloride, most likely due to the presence of hydrates. We observe an increase in hygroscopic growth with decreasing particle size (for particle diameters <150 nm) that is independent of the particle generation method. We vary the hygroscopic growth of the inorganic sea salt within a general circulation model and show that a reduced hygroscopicity leads to a reduction in aerosol-radiation interactions, manifested by a latitudinal-dependent reduction of the aerosol optical depth by up to 15%, while cloud-related parameters are unaffected. We propose that a value of κs=1.1 (at RH=90%) is used to represent the hygroscopicity of inorganic sea salt particles in numerical models.

  18. Revising the hygroscopicity of inorganic sea salt particles.

    PubMed

    Zieger, P; Väisänen, O; Corbin, J C; Partridge, D G; Bastelberger, S; Mousavi-Fard, M; Rosati, B; Gysel, M; Krieger, U K; Leck, C; Nenes, A; Riipinen, I; Virtanen, A; Salter, M E

    2017-07-03

    Sea spray is one of the largest natural aerosol sources and plays an important role in the Earth's radiative budget. These particles are inherently hygroscopic, that is, they take-up moisture from the air, which affects the extent to which they interact with solar radiation. We demonstrate that the hygroscopic growth of inorganic sea salt is 8-15% lower than pure sodium chloride, most likely due to the presence of hydrates. We observe an increase in hygroscopic growth with decreasing particle size (for particle diameters <150 nm) that is independent of the particle generation method. We vary the hygroscopic growth of the inorganic sea salt within a general circulation model and show that a reduced hygroscopicity leads to a reduction in aerosol-radiation interactions, manifested by a latitudinal-dependent reduction of the aerosol optical depth by up to 15%, while cloud-related parameters are unaffected. We propose that a value of κs=1.1 (at RH=90%) is used to represent the hygroscopicity of inorganic sea salt particles in numerical models.

  19. Low-melting point inorganic nitrate salt heat transfer fluid

    DOEpatents

    Bradshaw, Robert W.; Brosseau, Douglas A.

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  20. Inorganic ammonium salts and carbonate salts are efficient catalysts for aldol condensation in atmospheric aerosols.

    PubMed

    Nozière, Barbara; Dziedzic, Pawel; Córdova, Armando

    2010-04-21

    In natural environments such as atmospheric aerosols, organic compounds coexist with inorganic salts but, until recently, were not thought to interact chemically. We have recently shown that inorganic ammonium ions, NH(4)(+), act as catalysts for acetal formation from glyoxal, a common atmospheric gas. In this work, we report that inorganic ammonium ions, NH(4)(+), and carbonate ions, CO(3)(2-), are also efficient catalysts for the aldol condensation of carbonyl compounds. In the case of NH(4)(+) this was not previously known, and was patented prior to this article. The kinetic results presented in this work show that, for the concentrations of ammonium and carbonate ions present in tropospheric aerosols, the aldol condensation of acetaldehyde and acetone could be as fast as in concentrated sulfuric acid and might compete with their reactions with OH radicals. These catalytic processes could produce significant amounts of polyconjugated, light-absorbing compounds in aerosols, and thus affect their direct forcing on climate. For organic gases with large Henry's law coefficients, these reactions could also result in a significant uptake and in the formation of secondary organic aerosols (SOA). This work reinforces the recent findings that inorganic salts are not inert towards organic compounds in aerosols and shows, in particular, that common ones, such as ammonium and carbonate salts, might even play important roles in their chemical transformations.

  1. Effect of Inorganic Salts on the Volatility of Organic Acids

    PubMed Central

    2014-01-01

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance. PMID:25369247

  2. Effect of inorganic salts on the volatility of organic acids.

    PubMed

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-02

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.

  3. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Metal salts of complex inorganic... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic...

  4. Effect of organo and inorganic lithium salt on human blood plasma glutathione- A comparative study.

    PubMed

    Ullah, Hashmat; Khan, Muhammad Farid; Jan, Syed Umer; Hashmat, Farwa

    2016-03-01

    Investigation of toxicological effect of various metals is the field of interest for toxicological scientists since four to five decades and especially the toxicological effect of those drugs containing metals and there use is common because there is no other choice except to use these metal containing drugs. Inorganic as well as organic salts of lithium are commonly used in prophylaxis and treatments of many psychiatric disorders. The aim of the present study was to see the difference between the effect of organic and inorganic salt of lithium commonly used in psychiatric disorders on the GSH of human blood plasma. It is the scientific fact that ionic dissociation of organic and inorganic salts of any metal is always quite different hence to prove this fact, the effect of lithium citrate (organic salt of lithium) and lithium carbonate (inorganic salt of lithium) was investigated on human blood plasma GSH to find the difference between the effect of two. Ellman's method was used for the quantification of glutathione contents in plasma. It was found that lithium citrate decrease plasma GSH contents less than lithium carbonate indicating that organic salts of lithium are safe than inorganic salts of lithium when are used in psychiatric disorders. Further to analyze the effect of organic and inorganic salt of lithium on blood plasma GSH with the increase in incubation time was also evaluated and was found that both concentration and time dependent effect of organic salt of lithium shows that this salt has decreased plasma GSH contents of human blood less than inorganic salt of lithium either by promoting oxidation of GSH into GSSG or by lithium glutathione complex formation. These results suggest the physicians that the use of organic lithium salts is much safer than inorganic salts of lithium in terms of depletion of blood plasma GSH contents.

  5. Recent Advances in the Application of Inorganic Salt Pretreatment for Transforming Lignocellulosic Biomass into Reducing Sugars.

    PubMed

    Loow, Yu-Loong; Wu, Ta Yeong; Tan, Khang Aik; Lim, Yung Shen; Siow, Lee Fong; Jahim, Jamaliah Md; Mohammad, Abdul Wahab; Teoh, Wen Hui

    2015-09-30

    Currently, the transformation of lignocellulosic biomass into value-added products such as reducing sugars is garnering attention worldwide. However, efficient hydrolysis is usually hindered by the recalcitrant structure of the biomass. Many pretreatment technologies have been developed to overcome the recalcitrance of lignocellulose such that the components can be reutilized more effectively to enhance sugar recovery. Among all of the utilized pretreatment methods, inorganic salt pretreatment represents a more novel method and offers comparable sugar recovery with the potential for reducing costs. The use of inorganic salt also shows improved performance when it is integrated with other pretreatment technologies. Hence, this paper is aimed to provide a detailed overview of the current situation for lignocellulosic biomass and its physicochemical characteristics. Furthermore, this review discusses some recent studies using inorganic salt for pretreating biomass and the mechanisms involved during the process. Finally, some prospects and challenges using inorganic salt are highlighted.

  6. Effect of inorganic salts on crystallization of poly(ethylene glycol) in frozen solutions.

    PubMed

    Izutsu, Ken-ichi; Aoyagi, Nobuo

    2005-01-06

    The effect of inorganic salts on eutectic crystallization of poly(ethylene glycol) (PEG) 1500-20,000 in frozen solution was studied to model the polymer and inorganic salt interaction in freeze-dried formulations. Thermal analysis of an aqueous PEG 3000 solution showed a eutectic PEG crystallization exotherm at approximately -47 degrees C and a subsequent PEG crystal melting endotherm at -14.9 degrees C. Addition of sodium chloride prevented the PEG crystallization in the freeze-concentrated solution surrounding ice crystals. Higher concentration NaCl was required to retain higher molecular weight PEG in the amorphous state. Various inorganic salts prevented the PEG crystallization to varying degrees depending mainly on the position of the anion in the Hofmeister's lyotropic series. Some salting-in and 'intermediate' salts (NaSCN, NaI, NaBr, NaCl, LiCl, KCl, and RbCl) inhibited the crystallization of PEG 7500 in frozen solutions. On the other hand, salting-out salts (NaH2PO4, Na2HPO4, Na2SO4, and NaF) did not show an apparent effect on the PEG crystallization. Some salting-out salts induced PEG crystallization in PEG and sucrose combination frozen solutions. The varying abilities of salts to prevent the PEG crystallization in frozen solutions strongly suggested that the solutes had different degrees of miscibility in the freeze-concentrates.

  7. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries.

    PubMed

    Doe, Robert E; Han, Ruoban; Hwang, Jaehee; Gmitter, Andrew J; Shterenberg, Ivgeni; Yoo, Hyun Deog; Pour, Nir; Aurbach, Doron

    2014-01-07

    Herein the first inorganic magnesium salt solution capable of highly reversible magnesium electrodeposition is presented. Synthesized by acid-base reaction of MgCl2 and Lewis acidic compounds such as AlCl3, this salt class demonstrates upwards of 99% Coulombic efficiency, deposition overpotential of <200 mV, and anodic stability of 3.1 V.

  8. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries

    SciTech Connect

    Doe, RE; Han, R; Hwang, J; Gmitter, AJ; Shterenberg, I; Yoo, HD; Pour, N; Aurbach, D

    2014-01-01

    Herein the first inorganic magnesium salt solution capable of highly reversible magnesium electrodeposition is presented. Synthesized by acid-base reaction of MgCl2 and Lewis acidic compounds such as AlCl3, this salt class demonstrates upwards of 99% Coulombic efficiency, deposition overpotential of <200 mV, and anodic stability of 3.1 V.

  9. [Solubilization of nitrobenzene in micellar solutions of Tween 80 and inorganic salts].

    PubMed

    Li, Sui; Zhao, Yong-sheng; Xu, Wei; Dai, Ning

    2008-04-01

    The solubilization of nitrobenzene by a nonionic surfactant Tween 80 was investigated at 10 degrees C. Experimental results indicated that the solubility of nitrobenzene in water was greatly enhanced by Tween 80 at surfactant concentration above CMC(critical micelle concentration) and a linear relationship was obtained between surfactant concentration and nitrobenzene concentration from the solubility curve. The molar solubilization ratio (MSR) value was 5.093 and IgKm was 3.499. The solubilization was attributed to the ethoxylation group in Tween 80 micellar. Effect of four inorganic salts such as NaCl, KCl, CaCl2 , MgCl2 on water solubilities of nitrobenzene in Tween 80 micellar solutions was also investigated by a matrix of batch experiments. Mix the Tween 80-inorganic salts at the total mass ratios of 2:1, 5:1 and 10:1. The results show that the inorganic salts at a high concentration( > or = 500 mg x L(-1)) can enhance the solubilization capacities of Tween 80 micellar solution and increase the value of MSR and IgKm . Because of the salting-out effect between the micellar of Tween 80 and inorganic salts, the volume of micelle turns bigger, which may provide larger solubility volume for nitrobenzene. The mixture of nonionic surfactant and inorganic salts can be used in subsurface remediation as a flushing solution.

  10. Liquid-liquid phase separation in particles containing secondary organic material free of inorganic salts

    NASA Astrophysics Data System (ADS)

    Song, Mijung; Liu, Pengfei; Martin, Scot T.; Bertram, Allan K.

    2017-09-01

    Particles containing secondary organic material (SOM) are ubiquitous in the atmosphere and play a role in climate and air quality. Recently, research has shown that liquid-liquid phase separation (LLPS) occurs at high relative humidity (RH) (greater than ˜ 95 %) in α-pinene-derived SOM particles free of inorganic salts, while LLPS does not occur in isoprene-derived SOM particles free of inorganic salts. We expand on these findings by investigating LLPS at 290 ± 1 K in SOM particles free of inorganic salts produced from ozonolysis of β-caryophyllene, ozonolysis of limonene, and photo-oxidation of toluene. LLPS was observed at greater than ˜ 95 % RH in the biogenic SOM particles derived from β-caryophyllene and limonene while LLPS was not observed in the anthropogenic SOM particles derived from toluene. This work combined with the earlier work on LLPS in SOM particles free of inorganic salts suggests that the occurrence of LLPS in SOM particles free of inorganic salts is related to the oxygen-to-carbon elemental ratio (O : C) of the organic material. These results help explain the difference between the hygroscopic parameter κ of SOM particles measured above and below water saturation in the laboratory and field, and have implications for predicting the cloud condensation nucleation properties of SOM particles.

  11. Hydraulic conductivity of compacted clay liners permeated with inorganic salt solutions.

    PubMed

    Yilmaz, Gonca; Yetimoglu, Temel; Arasan, Seracettin

    2008-10-01

    Due to their low permeability, geosynthetic clay liners (GCLs) and compacted clay liners (CCLs) are the main materials used in waste disposal landfills. The hydraulic conductivity of GCLs and CCLs is closely related to the chemistry of the permeant fluid. In this study, the effect on the hydraulic conductivity of clays of five different inorganic salt solutions as permeant fluid was experimentally investigated. For this purpose, NaCl, NH(4)Cl, KCl, CaCl(2), and FeCl( 3) inorganic salt solutions were used at concentrations of 0.01, 0.10, 0.25, 0.50, 0.75 and 1 M. Laboratory hydraulic conductivity tests were conducted on low plasticity (CL) and high plasticity (CH) compacted raw clays. The change in electrical conductivity and pH values of the clay samples with inorganic salt solutions were also determined. The experimental test results indicated that the effect of inorganic salt solutions on CL clay was different from that on CH clay. The hydraulic conductivity was found to increase for CH clay when the salt concentrations increased whereas when the salt concentrations were increased, the hydraulic conductivity decreased for the CL clay.

  12. Prediction of heat capacities of solid inorganic salts from group contributions

    SciTech Connect

    Mostafa, A.T.M.G.; Eakman, J.M.; Yarbro, S.L.

    1997-01-01

    A group contribution technique is proposed to predict the coefficients in the heat capacity correlation, C{sub p} = a + bT + c/T{sup 2} + dT{sup 2}, for solid inorganic salts. The results from this work are compared with fits to experimental data from the literature. It is shown to give good predictions for both simple and complex solid inorganic salts. Literature heat capacities for a large number (664) of solid inorganic salts covering a broad range of cations (129), anions (17) and ligands (2) have been used in regressions to obtain group contributions for the parameters in the heat capacity temperature function. A mean error of 3.18% is found when predicted values are compared with literature values for heat capacity at 298{degrees} K. Estimates of the error standard deviation from the regression for each additivity constant are also determined.

  13. Utilisation of inorganic salts in fungal crop disease management in the U.K.

    PubMed

    Deliopoulos, T; Kettlewell, P S; Hare, M C

    2009-01-01

    The overaLl aim of the study described in this communication was to utilise the findings of a global scientific and technical literature survey on the use of inorganic salts against crop fungal diseases in order to assess the potential of using these substances to reduce the reliance of UK growers on conventional fungicides. A summary of the main findings of the Literature survey is provided followed by information on the current commercial use of inorganic salt-based products in fungal disease management. Finally, the scope of potential use of inorganic salts on high disease risk crops in the UK is assessed and specific crop/pathogen combinations are prioritised for further research.

  14. Improvement of HPMC tablet disintegration by the addition of inorganic salts.

    PubMed

    Kajiyama, Atsushi; Takagi, Hirokazu; Moribe, Kunikazu; Yamamoto, Keiji

    2008-04-01

    Effects of inorganic salts on disintegration of hydroxypropylmethylcellulose (HPMC) matrix tablets have been studied. Adding disintegrants, such as Ac-di-sol, Primojel, Kolidon-CL, or low substituted hydroxypropylcellulose (L-HPC) to HPMC matrix tablets had no effect on disintegration property. Disintegration time was improved by adding NaHCO(3), KH(2)PO(4), K(2)SO(4), KCl, or NaCl to the HPMC tablets as tablet components. On the other hand, addition of Na(2)CO(3), or Na(2)SO(4) to the tablets showed no improvement of disintegration. The heat of dissolution of inorganic salts that improved disintegration of tablets was endothermic, while that of inorganic salts that did not improve disintegration of tablets was exothermic. These results suggested that the thermal environment and ionic strength inside the tablet might affect the disintegration of HPMC matrix tablets.

  15. Flotation of coal using micro-bubbles and inorganic salts

    SciTech Connect

    Yoon, R.H.

    1982-12-01

    The results of two research projects supported by the US Department of Energy are reported. In the first, 32 different salts were tested in the flotation of -100 mesh bituminous coal. An arbitrary concentration of 0.07 moles/l was used and no other reagents were present. Results are quoted for sodium salts with various anions and sulphate salts with various cations. The rate of flotation was found to be considerably faster when salts were used rather than kerosene and Dowfroth as collector and frother. The mechanism of the process was investigated. In the second project, the use of micro-bubbles generated in the frother by several different techniques was investigated for the flotation of fine coal. Results are given for tests on -400 mesh coal under various conditions. Yields were found to be higher with conventional flotation, but the ash contents were much lower when using micro-bubbles.

  16. Permeability of Serratia marcescens to Some Inorganic Salts

    PubMed Central

    Zimmerman, Leonard

    1969-01-01

    The physical interactions between Serratia marcescens and solutions of NaCl, CaCl2, CaI2, NaI, and Na2HPO4 plus NaH2PO4 were examined. Dilute (0.017 n) salt solutions did not cause cells to lose water, as evidenced by the unchanged weight of centrifugally packed cells. The cells preferentially adsorbed the cations and repelled the anions of most salts in these solutions. Concentrated (1.71 n) salt solutions markedly reduced the weight and water content of centrifugally packed cells, although these cells took up considerable amounts of salts. More than 90% of the water in the packed-cell pellets was available for the solution of NaCl at 4.2 to 4.4% concentration. The observation that salts apparently penetrated the cells freely and yet caused extensive dehydration was not readily compatible with conventional concepts of solute-induced plasmolysis. Alternative hypotheses to explain the data included the following. First, the cells lost weight and water to concentrated salt solutions through a nonosmotic competitive dehydration, causing a shrinkage of the protoplasmic gel. The shrinkage of the cell wall was limited because of the rigidity of its mucopeptide layer; therefore, a space appeared between the cell wall and the cell membrane. Second, cells may have equilibrated their water activity with that of their environment by two mechanisms: (i) the loss of water by plasmolysis or competitive dehydration, and (ii) alterations in cell permeability that admitted previously excluded solutes to the cell interior. Possibly, the correct explanation of the observations reported here involves elements of all three hypotheses, plasmolysis, competitive dehydration, and permeability alterations. PMID:4886291

  17. Sorption of inorganic salts on carbon nanomaterials and magnetite

    NASA Astrophysics Data System (ADS)

    Lyu, Sh. T.; Troshkina, I. D.; Rakov, E. G.

    2016-11-01

    Magnetic composites based on graphene oxides and functionalized carbon nanotubes containing magnetite nanoparticles are synthesized. The dispersing ability of these composites in water at different pH values is studied. It is shown that the solubility of Fe3O4 composites is constant in the pH range of 3.5-10, though these composites are unstable at both lower and higher pH values. Magnetic sorbents for extracting Ce(NO3)3 and La(NO3)3 from solutions are tested. Dependences of the volume on the sorbent's composition, pH value, and salt concentration in the solution are found. Maximum sorption capacity in relation to Ce3+ and La3+ at pH 7.5 and 8.5 are found to be 1040 and 920 mg/g respectively.

  18. Effect of inorganic salts on bacterial omega-3 PUFA production.

    PubMed

    Abd Elrazak, Ahmed; Ward, Alan C; Glassey, Jarka

    2017-03-16

    The increasing demand of omega-3 in the market and the challenges facing its conventional supplies led to an increasing interest to microbial omega-3 sources. This research concentrates on the statistical role of some metal ions on the biosynthesis and productivity of eicosapentaenoic acid (essential omega-3 element) in bacterial isolate, Shewanella 717. A Plackett-Burman design was applied to screen the main effect of all metal salts entrenched in the artificial sea water medium components. Four salts, in particular, in addition to the interaction among them were highlighted as having a statistically significant effect upon the growth and/or eicosapentaenoic acid production. A subsequent central composite design was performed to determine the exact optimum concentration of each of the chosen variables which was found to be 2.5, 1.8, 1.2, and 23 g/l, for Na2HPO4, MgSO4, KCl, and NaCl, respectively. All the experiments were performed with the minimal amount of carbon and nitrogen to eliminate any potential masking effect. A bioreactor batch run was operated and the ion uptake was monitored, using EDAX® electron microscopy, concluding that the process of microbial omega-3 production could be a phosphate-limited process. Optimizing the concentration of the tested metal ions led to a remarkable increase in the omega-3 productivity resulted in a 30, 9, and 10 times increase in yield, concentration, and percentage to the total fatty acids, respectively, even though the carbon and nitrogen were kept constant all over the research work.

  19. A study on the effect of inorganic salts in transungual drug delivery of terbinafine.

    PubMed

    Nair, Anroop B; Sammeta, Srinivasa M; Vaka, Siva Ram K; Narasimha Murthy, S

    2009-04-01

    The poor success rate of topical therapy in nail disorders is mainly because of the low permeability of keratinized nail plates. This can be overcome by utilizing potent perungual drug penetration enhancers that facilitate the drug permeation across the nail plate. This study evaluated the efficacy of inorganic salts in enhancing the trans-nail permeation using a model potent antifungal agent, terbinafine hydrochloride. Permeation studies were carried out across human cadaver nail in a Franz diffusion cell using terbinafine solution (1 mg/ml; pH 3). Preliminary studies were carried out to assess the effect of salts (0.5 M) on the terbinafine permeation into and through the nail. Further, the influence of salt concentration (0.25-3 M) on permeation, the mechanism for the enhancement and the suitability of developing a formulation were also studied. Terbinafine permeation (3-5 fold) through the nail and drug load (4-7 fold) in the nail were enhanced significantly when salts were used at 0.5 M concentration. Increase in salt concentration up to 1 M increased the permeation, which decreased with further increase in salt concentration (>1 M). Mechanistic studies revealed that the enhanced permeation by salts was mainly due to their ability to increase the nail hydration and also to increase the thermodynamic activity of the drug. The cumulative amount of terbinafine permeated at 24 h from the formulated gel (9.70 +/- 0.93 microg/cm(2)) was comparable with that of a solution (11.45 +/- 1.62 microg/cm(2)). Given the promising results from the permeation and drug load studies, it was concluded that inorganic salts could be used as potent transungual permeation enhancers.

  20. Use of inorganic dryer-salts in the determination of organic contaminants in air

    SciTech Connect

    Simonov, V.A.

    1985-09-01

    This paper presents results of a study of the adsorptive activity of a number of inorganic salts relative to water vapor and to organic vapors in air under the dynamic conditions which are uses in the indicator tube method. Data are also given on the properties of dryer salts having a surface modified with glycerin. It is shown that lithium chloride on porcelain and potassium carbonate having a surface modified with glycerin can be used to dry air in determining contaminants of nonpolar and polar organic substances in it. Anhydrone on porcelain, calcium chloride, and potassium carbonate absorb some substances which are being determined and therefore are less suitable.

  1. Production of furfural from xylose at atmospheric pressure by dilute sulfuric acid and inorganic salts.

    PubMed

    Rong, Chunguang; Ding, Xuefeng; Zhu, Yanchao; Li, Ying; Wang, Lili; Qu, Yuning; Ma, Xiaoyu; Wang, Zichen

    2012-03-01

    In this paper, the dehydration of xylose to furfural was carried out under atmospheric pressure and at the boiling temperature of a biphasic mixture of toluene and an aqueous solution of xylose, with sulfuric acid as catalyst plus an inorganic salt (NaCl or FeCl(3)) as promoter. The best yield of furfural was 83% under the following conditions: 150 mL of toluene and 10 mL of aqueous solution of 10% xylose (w/w), 10% H(2)SO(4) (w/w), 2.4g NaCl , and heating for 5h. FeCl(3) as promoter was found to be more efficient than NaCl. The addition of DMSO to the aqueous phase in the absence of an inorganic salt was shown to improve the yield of furfural.

  2. IR studies of EDTA alkaline salts interaction with the surface of inorganic oxides

    NASA Astrophysics Data System (ADS)

    Ryczkowski, J.

    2005-10-01

    The adsorption of alkaline salts of ethylenediaminetetraacetic acid (EDTA) on inorganic supports characterized by the different value of the isoelectric point of the surface (IEPS) has been investigated by transmission and photoacoustic (PA) FT-IR. The IR spectra in the 1800-1200 cm -1 region of the supported complexones are different from those of the unsupported compounds. The results obtained imply that the observed changes in the properties of adsorbed complexones are mainly due to interaction of the carboxyl groups of chelate molecule with inorganic oxide hydroxyl groups. The models of those interactions have been proposed. The IEPS value has a noticeable influence on the nature of the interactions observed. Based on the experimental data the ability of inorganic oxide interaction with the chelate molecule can be presented as follows: V 2O 5 < SiO 2 < TiO 2 < MgO < Al 2O 3 < ZrO 2-La < ZrO 2.

  3. Joint effect of organic acids and inorganic salts on cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Frosch, M.; Prisle, N. L.; Bilde, M.; Varga, Z.; Kiss, G.

    2011-04-01

    We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid dihydrate, succinic acid, adipic acid, citric acid, cis-pinonic acid, or Nordic reference fulvic acid) and one inorganic salt (sodium chloride or ammonium sulphate). Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves and critical supersaturations, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the aqueous solutions containing cis-pinonic acid and fulvic acid, a depression of surface tension was observed, but for the remaining solutions the effect on surface tension was negligible at concentrations relevant for cloud droplet activation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic salts are predicted to have a smaller Raoult term than the studied organic acids. Increasing the mass ratio of the inorganic salt led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors. The correspondence between measurements and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on measured water activity and surface tension, but not accounting for surface

  4. Mixtures of the 1-ethyl-3-methylimidazolium acetate ionic liquid with different inorganic salts: insights into their interactions.

    PubMed

    Oliveira, Filipe S; Cabrita, Eurico J; Todorovic, Smilja; Bernardes, Carlos E S; Lopes, José N Canongia; Hodgson, Jennifer L; MacFarlane, Douglas R; Rebelo, Luís P N; Marrucho, Isabel M

    2016-01-28

    In this work, we explore the interactions between the ionic liquid 1-ethyl-3-methylimidazolim acetate and different inorganic salts belonging to two different cation families, those based on ammonium and others based on sodium. NMR and Raman spectroscopy are used to screen for changes in the molecular environment of the ions in the ionic liquid + inorganic salt mixtures as compared to pure ionic liquid. The ion self-diffusion coefficients are determined from NMR data, allowing the discussion of the ionicity values of the ionic liquid + inorganic salt mixtures calculated using different methods. Our data reveal that preferential interactions are established between the ionic liquid and ammonium-based salts, as opposed to sodium-based salts. Computational calculations show the formation of aggregates between the ionic liquid and the inorganic salt, which is consistent with the spectroscopic data, and indicate that the acetate anion of the ionic liquid establishes preferential interactions with the ammonium cation of the inorganic salts, leaving the imidazolium cation less engaged in the media.

  5. Common Inorganic Salts Catalyze the Transformations of Organic Compounds in Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Noziere, B.; Dziedzic, P.; Cordova, A.

    2008-12-01

    This presentation reports the discovery that inorganic salts that are ubiquitous in atmospheric aerosols are efficient catalysts for the transformations of organic compounds in these aerosols, by reactions such as aldol condensation or acetal formation.1 For some of these salts, these catalytic properties were not even known in chemistry.2 Kinetic and product studies of these reactions will be presented for carbonyl compounds such as acetaldehyde, acetone, and glyoxal,1,3 and compared with previously known catalysts such as the recently discovered amino acids.4,5 These studies show that these salts make the reactions as fast in typical tropospheric aerosols as in concentrated sulfuric acid. These reactions produce secondary "fulvic" compounds that absorb light in the near UV and visible and would affect the optical properties of aerosols.1,5 They would also account for the depletion of glyoxal recently reported in Mexico city.3 Thus, while acid catalysis is several orders of magnitudes too slow to be significant in tropospheric aerosols, this work identifies new processes that should be ubiquitous in these aerosols and important for atmospheric chemistry. Refs. 1Noziere, B., Dziedzic, P., Cordova, A., Common inorganic ions catalyze chemical reactions of organic compounds in atmospheric aerosols, Submitted, 2008. 2 Noziere, B., Cordova, A., A novel catalyst for aldol condensation reaction, patent pending 02/10/2007. 3Noziere, B., Dziedzic, P., Cordova, A., Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by inorganic ions, Submitted to J. Phys. Chem. A, 2008. 4Noziere, B., and Cordova, A., A Kinetic and Mechanistic Study of the Amino Acid-Catalyzed Aldol Condensation of Acetaldehyde in Aqueous and Salt Solutions, J. Phys. Chem. A, 112, 2827, 2008. 5Noziere, B., Dziedzic, P., and Cordova, A., The Formation of Secondary Light-Absorbing "fulvic-like" Oligomers: A Common Process in Aqueous and Ionic Atmospheric Particles?, Geophys. Res. Lett., 34

  6. Measurements of uptake coefficients for heterogeneous loss of HO2 onto submicron inorganic salt aerosols.

    PubMed

    George, I J; Matthews, P S J; Whalley, L K; Brooks, B; Goddard, A; Baeza-Romero, M T; Heard, D E

    2013-08-21

    Laboratory studies were conducted to investigate the kinetics of HO2 radical uptake onto submicron inorganic salt aerosols. HO2 reactive uptake coefficients were measured at room temperature using an aerosol flow tube and the Fluorescence Assay by Gas Expansion (FAGE) technique that allowed for measurements to be conducted under atmospherically relevant HO2 concentrations ([HO2] = 10(8) to 10(9) molecule cm(-3)). The uptake coefficient for HO2 uptake onto dry inorganic salt aerosols was consistently below the detection limit (γ(HO2) < 0.004). The mass accommodation coefficient of HO2 radicals onto Cu(II)-doped (NH4)2SO4 aerosols was measured to be α(HO2) = 0.4 ± 0.3 representing the kinetic upper limit to γ. For aqueous (NH4)2SO4, NaCl and NH4NO3 aerosols not containing traces of transition metal ions, a range of γ(HO2) = 0.003-0.02 was measured. These values were much lower than γ values previously measured on aqueous (NH4)2SO4 and NaCl aerosols and also those typically used in atmospheric models (γ(HO2) = 0.1-1.0). Evidence is presented showing that the HO2 uptake coefficients onto aqueous salt aerosol particles are dependent both on the exposure time to the aerosol and on the HO2 concentration used.

  7. Elemental and isotopic analysis of inorganic salts by laser desorption ionization mass spectrometry

    SciTech Connect

    Jayasekharan, T.; Sahoo, N. K.

    2013-02-05

    Laser desorption ionization mass spectrometry is applied for the analysis of elements as well as their isotopic composition in different inorganic salts. At very low laser energies the inorganic ions are desorbed and ionized from the thin layer of the sample surface. The naturally occurring isotopes of alkali and silver ions are resolved using time of flight mass spectrometer. Further increase in laser energy shows the appearance of Al, Cr, and Fe ions in the mass spectra. This indicates the penetration laser beam beyond the sample surface leading to the ablation of sample target at higher energies. The simultaneous appearance of atomic ions from the sample target at relatively higher laser energies hampers the unambiguous identification of amino acid residues from the biomolecular ions in MALDI-MS.

  8. Studies of the plasticizing effect of different hydrophilic inorganic salts on starch/poly (vinyl alcohol) films.

    PubMed

    Jiang, Xiancai; Li, Hongmei; Luo, Yong; Zhao, Yulai; Hou, Linxi

    2016-01-01

    The effects of different inorganic salts LiCl, MgCl2·6H2O, CaCl2, and AlCl3·6H2O on the crystalline, thermal, water vapor barrier, and tensile properties of starch/PVA films were studied. The high plasticizing efficiency of all these four inorganic salts for starch/PVA film was confirmed by the obtained results. These four salts all had a good compatibility with starch/PVA within the content of 15 wt% and starch/PVA became completely miscible with the addition of 15 wt% inorganic salts. All these four salts had a strong destroying effect on the crystals of starch and PVA. Among these four salts, AlCl3·6H2O had the largest negative effect on the thermal stability of starch/PVA and LiCl had the largest improving effect on the water sorption rate of starch/PVA film. On the whole MgCl2·6H2O and CaCl2 were the more suitable plasticizer for starch/PVA film among these four inorganic salts. With the addition of 15 wt% MgCl2·6H2O and CaCl2, the elongation at break of starch/PVA film could reach to 418.83% and 434.80%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Joint effect of organic acids and inorganic salts on cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Frosch, M.; Prisle, N. L.; Bilde, M.; Varga, Z.; Kiss, G.

    2010-07-01

    We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid, succinic acid, adipic acid, citric acid, cis-pinonic acid, or nordic reference fulvic acid) and one inorganic salt (sodium chloride or ammonium sulphate). Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the mixtures containing cis-pinonic acid or fulvic acid, a depression of surface tension was observed, but for the remaining mixtures the effect on surface tension was negligle at concentrations relevant for cloud droplet activation, and water activity was the more significant term in the Köhler equation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic compounds had a higher effect on water activity than the studied organic acids, and increasing the mass ratio of the inorganic compound led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors to evaluate the performance of these approaches. The correspondence between measuments and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on

  10. Preparation of Microcrystals of Organic Compounds with Polar Groups and Inorganic Salts by Reprecipitation

    NASA Astrophysics Data System (ADS)

    Zhang, Yongxu; Lv, Chunxu; Liu, Dabin; Guo, Liwei; Fu, Tingming

    2005-07-01

    Reprecipitation is a useful method of preparing organic microcrystals. However, microcrystals of compounds with polar groups are difficult to prepare by this method. A method of preparing microcrystals of organic compounds with polar groups and inorganic salts using isooctane as an organic nonsolvent has been developed. Microcrystals of HMX, NH4NO3 and NH4ClO4 have been successfully prepared. Drop weight impact testing shows that HMX microcrystals of nanoscale size are much less sensitive to impact than HMX bulk crystals.

  11. Inorganic Salt Interference on CO2(+) in Aerodyne AMS and ACSM Organic Aerosol Composition Studies.

    PubMed

    Pieber, Simone M; El Haddad, Imad; Slowik, Jay G; Canagaratna, Manjula R; Jayne, John T; Platt, Stephen M; Bozzetti, Carlo; Daellenbach, Kaspar R; Fröhlich, Roman; Vlachou, Athanasia; Klein, Felix; Dommen, Josef; Miljevic, Branka; Jiménez, José L; Worsnop, Douglas R; Baltensperger, Urs; Prévôt, André S H

    2016-10-04

    Aerodyne aerosol mass spectrometer (AMS) and Aerodyne aerosol chemical speciation monitor (ACSM) mass spectra are widely used to quantify organic aerosol (OA) elemental composition, oxidation state, and major environmental sources. The OA CO2(+) fragment is among the most important measurements for such analyses. Here, we show that a non-OA CO2(+) signal can arise from reactions on the particle vaporizer, ion chamber, or both, induced by thermal decomposition products of inorganic salts. In our tests (eight instruments, n = 29), ammonium nitrate (NH4NO3) causes a median CO2(+) interference signal of +3.4% relative to nitrate. This interference is highly variable between instruments and with measurement history (percentiles P10-90 = +0.4 to +10.2%). Other semi-refractory nitrate salts showed 2-10 times enhanced interference compared to that of NH4NO3, while the ammonium sulfate ((NH4)2SO4) induced interference was 3-10 times lower. Propagation of the CO2(+) interference to other ions during standard AMS and ACSM data analysis affects the calculated OA mass, mass spectra, molecular oxygen-to-carbon ratio (O/C), and f44. The resulting bias may be trivial for most ambient data sets but can be significant for aerosol with higher inorganic fractions (>50%), e.g., for low ambient temperatures, or laboratory experiments. The large variation between instruments makes it imperative to regularly quantify this effect on individual AMS and ACSM systems.

  12. Archaeal Inorganic Pyrophosphatase Displays Robust Activity under High-Salt Conditions and in Organic Solvents.

    PubMed

    McMillan, Lana J; Hepowit, Nathaniel L; Maupin-Furlow, Julie A

    2015-11-06

    Soluble inorganic pyrophosphatases (PPAs) that hydrolyze inorganic pyrophosphate (PPi) to orthophosphate (Pi) are commonly used to accelerate and detect biosynthetic reactions that generate PPi as a by-product. Current PPAs are inactivated by high salt concentrations and organic solvents, which limits the extent of their use. Here we report a class A type PPA of the haloarchaeon Haloferax volcanii (HvPPA) that is thermostable and displays robust PPi-hydrolyzing activity under conditions of 25% (vol/vol) organic solvent and salt concentrations from 25 mM to 3 M. HvPPA was purified to homogeneity as a homohexamer by a rapid two-step method and was found to display non-Michaelis-Menten kinetics with a Vmax of 465 U · mg(-1) for PPi hydrolysis (optimal at 42°C and pH 8.5) and Hill coefficients that indicated cooperative binding to PPi and Mg(2+). Similarly to other class A type PPAs, HvPPA was inhibited by sodium fluoride; however, hierarchical clustering and three-dimensional (3D) homology modeling revealed HvPPA to be distinct in structure from characterized PPAs. In particular, HvPPA was highly negative in surface charge, which explained its extreme resistance to organic solvents. To demonstrate that HvPPA could drive thermodynamically unfavorable reactions to completion under conditions of reduced water activity, a novel coupled assay was developed; HvPPA hydrolyzed the PPi by-product generated in 2 M NaCl by UbaA (a "salt-loving" noncanonical E1 enzyme that adenylates ubiquitin-like proteins in the presence of ATP). Overall, we demonstrate HvPPA to be useful for hydrolyzing PPi under conditions of reduced water activity that are a hurdle to current PPA-based technologies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Archaeal Inorganic Pyrophosphatase Displays Robust Activity under High-Salt Conditions and in Organic Solvents

    PubMed Central

    McMillan, Lana J.; Hepowit, Nathaniel L.

    2015-01-01

    Soluble inorganic pyrophosphatases (PPAs) that hydrolyze inorganic pyrophosphate (PPi) to orthophosphate (Pi) are commonly used to accelerate and detect biosynthetic reactions that generate PPi as a by-product. Current PPAs are inactivated by high salt concentrations and organic solvents, which limits the extent of their use. Here we report a class A type PPA of the haloarchaeon Haloferax volcanii (HvPPA) that is thermostable and displays robust PPi-hydrolyzing activity under conditions of 25% (vol/vol) organic solvent and salt concentrations from 25 mM to 3 M. HvPPA was purified to homogeneity as a homohexamer by a rapid two-step method and was found to display non-Michaelis-Menten kinetics with a Vmax of 465 U · mg−1 for PPi hydrolysis (optimal at 42°C and pH 8.5) and Hill coefficients that indicated cooperative binding to PPi and Mg2+. Similarly to other class A type PPAs, HvPPA was inhibited by sodium fluoride; however, hierarchical clustering and three-dimensional (3D) homology modeling revealed HvPPA to be distinct in structure from characterized PPAs. In particular, HvPPA was highly negative in surface charge, which explained its extreme resistance to organic solvents. To demonstrate that HvPPA could drive thermodynamically unfavorable reactions to completion under conditions of reduced water activity, a novel coupled assay was developed; HvPPA hydrolyzed the PPi by-product generated in 2 M NaCl by UbaA (a “salt-loving” noncanonical E1 enzyme that adenylates ubiquitin-like proteins in the presence of ATP). Overall, we demonstrate HvPPA to be useful for hydrolyzing PPi under conditions of reduced water activity that are a hurdle to current PPA-based technologies. PMID:26546423

  14. Study of fouling and scaling in capacitive deionisation by using dissolved organic and inorganic salts.

    PubMed

    Mossad, Mohamed; Zou, Linda

    2013-01-15

    In this work, fouling, scaling and cleaning of the capacitive deionisation (CDI) with activated carbon electrodes were systematically investigated for the first time. Electrode fouling caused by dissolved organic matter using sodium salt of humic acid as a model foulant (measured by total organic carbon concentration, TOC) and inorganic salt (NaCl, MgCl(2), CaCl(2) and FeCl(3)) in the CDI feed solutions was investigated in a series of controlled fouling experiments. After each CDI experiment, a series of cleaning steps was performed to understand the reversibility of fouling accumulated on the electrode surface by analysing the cleaning solutions. The higher the TOC concentration in the CDI feed solution, the more the reduction of salt removal efficiency, declination in the production rate and energy consumption. Dissolved organic matter is the main cause of electrode fouling, as it blocks the activated carbon pores and reduces their electrosorption capacitance. Ca and Mg have no noticeable effect on the CDI treatment performance. However, Fe seemed to have a greater effect on CDI electrode fouling. Alkaline and acid cleaning solutions were able to restore the recovery of the CDI performance from fouling. Pre-treatment to reduce the dissolved organic matter levels is recommended to achieve sustainable treatment performance. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Influence of inorganic salts on the primary pyrolysis products of cellulose.

    PubMed

    Patwardhan, Pushkaraj R; Satrio, Justinus A; Brown, Robert C; Shanks, Brent H

    2010-06-01

    Processing bio-oil with the help of currently existing petroleum refinery infrastructure has been considered as a promising alternative to produce sustainable fuels in the future. The feasibility of bio-oil production and upgrading processes depend upon its chemical composition which in turn depends on the biomass composition and the process conditions of the fast pyrolysis reactions. The primary goal of this paper was to investigate the effect of mineral salts including mixtures of salts in the form of switchgrass ash on the chemical speciation resulting from primary pyrolysis reactions of cellulose and to gain an insight of the underlying mechanisms. Various concentrations of inorganic salts (NaCl, KCl, MgCl(2), CaCl(2), Ca(OH)(2), Ca(NO(3))(2), CaCO(3) and CaHPO(4)) and switchgrass ash were impregnated on pure cellulose. These samples were pyrolyzed in a micro-pyrolyzer connected to a GC-MS/FID system. Effects of minerals on the formation of (a) low molecular weight species - formic acid, glycolaldehyde and acetol, (b) furan ring derivatives - 2-furaldehyde and 5-hydroxy methyl furfural and (c) anhydro sugar - levoglucosan are reported exclusively. Further, the effect of reaction temperature ranging from 350 to 600 degrees C on the pyrolysis speciation of pure and ash-doped cellulose is also reported. The pyrolysis speciation revealed the competitive nature of the primary reactions. Mineral salts and higher temperatures accelerated the reactions that led to the formation of low molecular weight species from cellulose as compared to those leading to anhydro sugars.

  16. Effects of inorganic salts on denitrifying granular sludge: The acute toxicity and working mechanisms.

    PubMed

    Wang, Ru; Zheng, Ping; Ding, A-qiang; Zhang, Meng; Ghulam, Abbas; Yang, Cheng; Zhao, He-Ping

    2016-03-01

    It is highly significant to investigate the toxicity of inorganic salts to denitrifying granular sludge (DGS) and its mechanism since the application of high-rate denitrification is seriously limited in the treatment of saline nitrogen-rich wastewaters. The batch experiments showed that the IC50 (half inhibition concentration) and LC50 (half lethal concentration) of NaCl, Na2SO4 and Na3PO4 on DGS were 11.46, 21.72, 7.46 g/L and 77.35, 100.58, 67.92 g/L respectively. Based on the analysis of specific denitrifying activity, the live cell percentage, the cell structure, and the DNA leakage, the toxicity of low salinity was ascribed to the inhibition of denitrifying activity and the toxicity of high salinity was ascribed to both the inhibition of denitrifying activity and the lethality of denitrifying cell.

  17. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect

    Mathur, Anoop

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  18. Water uptake of multicomponent organic mixtures and their influence on hygroscopicity of inorganic salts.

    PubMed

    Wang, Yuanyuan; Jing, Bo; Guo, Yucong; Li, Junling; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2016-07-01

    The hygroscopic behaviors of atmospherically relevant multicomponent water soluble organic compounds (WSOCs) and their effects on ammonium sulfate (AS) and sodium chloride were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA) in the relative humidity (RH) range of 5%-90%. The measured hygroscopic growth was compared with predictions from the Extended-Aerosol Inorganics Model (E-AIM) and Zdanovskii-Stokes-Robinson (ZSR) method. The equal mass multicomponent WSOCs mixture containing levoglucosan, succinic acid, phthalic acid and humic acid showed gradual water uptake without obvious phase change over the whole RH range. It was found that the organic content played an important role in the water uptake of mixed particles. When organic content was dominant in the mixture (75%), the measured hygroscopic growth was higher than predictions from the E-AIM or ZSR relation, especially under high RH conditions. For mass fractions of organics not larger than 50%, the hygroscopic growth of mixtures was in good agreement with model predictions. The influence of interactions between inorganic and organic components on the hygroscopicity of mixed particles was related to the salt type and organic content. These results could contribute to understanding of the hygroscopic behaviors of multicomponent aerosol particles. Copyright © 2016. Published by Elsevier B.V.

  19. Synthesis and characterization of four organic-inorganic salts: sulfates of 2-aminopyridinium derivatives.

    PubMed

    Bednarchuk, Tamara J; Kinzhybalo, Vasyl; Pietraszko, Adam

    2016-11-01

    Hybrid materials, fabricated by the combination of inorganic and organic components, have potential applications in chemistry and are endowed with the advantages of both building elements. There are several types of intermolecular interactions present in these hybrid compounds, including electrostatic forces, π-π stacking and hydrogen-bonding interactions, the latter playing an important role in the construction of three-dimensional architectures and stabilizing supramolecular crystal structures. Analysis of the intermolecular interactions and their influence on packing modes therefore requires focused scientific attention. Four new organic-inorganic salts, namely 2-amino-4-methyl-3-nitropyridinium hydrogen sulfate, C6H8N3O2(+)·HSO4(-), bis(2-amino-4-methyl-3-nitropyridinium) sulfate, 2C6H8N3O2(+)·SO4(2-), 2-amino-3-methylpyridinium hydrogen sulfate, C6H9N2(+)·HSO4(-), and bis(2-amino-3-methylpyridinium) sulfate monohydrate, 2C6H9N2(+)·SO4(2-)·H2O, have been synthesized and characterized by X-ray diffraction. The crystal structures are stabilized by intra- and intermolecular hydrogen bonds, as well as by weak π-π stacking and lp-π (lp is lone pair) interactions. Hirshfeld surface analysis was employed in order to study intermolecular interactions.

  20. Enhancing the adsorption of ionic liquids onto activated carbon by the addition of inorganic salts.

    PubMed

    Neves, Catarina M S S; Lemus, Jesús; Freire, Mara G; Palomar, Jose; Coutinho, João A P

    2014-09-15

    Most ionic liquids (ILs) are either water soluble or present a non-negligible miscibility with water that may cause some harmful effects upon their release into the environment. Among other methods, adsorption of ILs onto activated carbon (AC) has shown to be an effective technique to remove these compounds from aqueous solutions. However, this method has proved to be viable only for hydrophobic ILs rather than for the hydrophilic that, being water soluble, have a larger tendency for contamination. In this context, an alternative approach using the salting-out ability of inorganic salts is here proposed to enhance the adsorption of hydrophilic ILs onto activated carbon. The effect of the concentrations of Na2SO4 on the adsorption of five ILs onto AC was investigated. A wide range of ILs that allow the inspection of the IL cation family (imidazolium- and pyridinium-based) and the anion nature (accounting for its hydrophilicity and fluorination) through the adsorption onto AC was studied. In general, it is shown that the use of Na2SO4 enhances the adsorption of ILs onto AC. In particular, this effect is highly relevant when dealing with hydrophilic ILs that are those that are actually poorly removed by AC. In addition, the COnductor like Screening MOdel for Real Solvents (COSMO-RS) was used aiming at complementing the experimental data obtained. This work contributes with the development of novel methods to remove ILs from water streams aiming at creating "greener" processes.

  1. Enhancing the adsorption of ionic liquids onto activated carbon by the addition of inorganic salts

    PubMed Central

    Neves, Catarina M. S. S.; Lemus, Jesús; Freire, Mara G.; Palomar, Jose; Coutinho, João A. P.

    2014-01-01

    Most ionic liquids (ILs) are either water soluble or present a non-negligible miscibility with water that may cause some harmful effects upon their release into the environment. Among other methods, adsorption of ILs onto activated carbon (AC) has shown to be an effective technique to remove these compounds from aqueous solutions. However, this method has proved to be viable only for hydrophobic ILs rather than for the hydrophilic that, being water soluble, have a larger tendency for contamination. In this context, an alternative approach using the salting-out ability of inorganic salts is here proposed to enhance the adsorption of hydrophilic ILs onto activated carbon. The effect of the concentrations of Na2SO4 on the adsorption of five ILs onto AC was investigated. A wide range of ILs that allow the inspection of the IL cation family (imidazolium- and pyridinium-based) and the anion nature (accounting for its hydrophilicity and fluorination) through the adsorption onto AC was studied. In general, it is shown that the use of Na2SO4 enhances the adsorption of ILs onto AC. In particular, this effect is highly relevant when dealing with hydrophilic ILs that are those that are actually poorly removed by AC. In addition, the COnductor like Screening MOdel for Real Solvents (COSMO-RS) was used aiming at complementing the experimental data obtained. This work contributes with the development of novel methods to remove ILs from water streams aiming at creating “greener” processes. PMID:25516713

  2. Inorganic and organic sulfur cycling in salt-marsh pore waters

    SciTech Connect

    Luther, G.W. III; Church, T.M.; Scudlark, J.R.; Cosman, M.

    1986-05-09

    Sulfur species in pore waters of the Great Marsh, Delaware, were analyzed seasonally by polarographic methods. The species determined (and their concentrations in micromoles per liter) included inorganic sulfides (less than or equal to3360), polysulfides (less than or equal to326), thiosulfate (less than or equal to104), tetrathionate (less than or equal to302), organic thiols (less than or equal to2411), and organic disulfides (less than or equal to139). Anticipated were bisulfide increases with depth due to sulfate reduction and subsurface sulfate excesses and pH minima, the result of a seasonal redox cycle. Unanticipated was the pervasive presence of thiols (for example, glutathione), particularly during periods of biological production. Salt marshes appear to be unique among marine systems in producing high concentrations of thiols. Polysulfides, thiosulfate, and tetrathionate also exhibited seasonal subsurface maxima. These results suggest a dynamic seasonal cycling of sulfur in salt marshes involving abiological and biological reactions and dissolved and solid sulfur species. The chemosynthetic turnover of pyrite to organic sulfur is a likely pathway for this sulfur cycling. Thus, material, chemical, and energy cycles in wetlands appear to be optimally synergistic.

  3. Speciation of the major inorganic salts in atmospheric aerosols of Beijing, China: Measurements and comparison with model

    NASA Astrophysics Data System (ADS)

    Tang, Xiong; Zhang, Xiaoshan; Ci, Zhijia; Guo, Jia; Wang, Jiaqi

    2016-05-01

    In the winter and summer of 2013-2014, we used a sampling system, which consists of annular denuder, back-up filter and thermal desorption set-up, to measure the speciation of major inorganic salts in aerosols and the associated trace gases in Beijing. This sampling system can separate volatile ammonium salts (NH4NO3 and NH4Cl) from non-volatile ammonium salts ((NH4)2SO4), as well as the non-volatile nitrate and chloride. The measurement data was used as input of a thermodynamic equilibrium model (ISORROPIA II) to investigate the gas-aerosol equilibrium characteristics. Results show that (NH4)2SO4, NH4NO3 and NH4Cl were the major inorganic salts in aerosols and mainly existed in the fine particles. The sulfate, nitrate and chloride associated with crustal ions were also important in Beijing where mineral dust concentrations were high. About 19% of sulfate in winter and 11% of sulfate in summer were associated with crustal ions and originated from heterogeneous reactions or direct emissions. The non-volatile nitrate contributed about 33% and 15% of nitrate in winter and summer, respectively. Theoretical thermodynamic equilibrium calculations for NH4NO3 and NH4Cl suggest that the gaseous precursors were sufficient to form stable volatile ammonium salts in winter, whereas the internal mixing with sulfate and crustal species were important for the formation of volatile ammonium salts in summer. The results of the thermodynamic equilibrium model reasonably agreed with the measurements of aerosols and gases, but large discrepancy existed in predicting the speciation of inorganic ammonium salts. This indicates that the assumption on crustal species in the model was important for obtaining better understanding on gas-aerosol partitioning and improving the model prediction.

  4. Development of Spheroidal Inorganic Sorbents for Treatment of Acidic Salt-Bearing Liquid Waste

    SciTech Connect

    Collins, J.L.

    2001-09-07

    A spheroidal composite inorganic sorbent was developed for U.S. Department of Energy-Efficient Separations and Processing Crosscutting Program (USDOE-ESP) for potential use in removing radioactive cesium isotopes from acidic high-salt waste streams such as those at Idaho National Engineering and Environmental Laboratory (INEEL). The sorbent, zirconium monohydrogen phosphate (ZrHP) embedded with fine powder of ammonium molybdophosphate (AMP), was prepared using a unique internal gelation process which can be used to make porous reproducible microspheres that are structurally strong, have a low tendency for surface erosion, and improve the flow dynamics for column operations. Both ZrHP and AMP are excellent sorbent materials and, being inorganic, are stable in high radiation fields. AMP is a very effective sorbent for removing cesium from salt-bearing waste streams for a wide range of acidity. In the pH range of 2 to 10, ZrHP is also a very effective sorbent for removing Cs, Sr, Th, U(VI), Pu(IV), Am(III), Hg, and Pb from streams of lower ionic concentrations. Crucial to developing the spheroidal AMP-ZrHP sorbent was to determine the ideal weight percentage of AMP that could be embedded in the ZrHP microspheres in order to maintain the structural integrity of the microspheres and also achieve a good cesium separation. A total of 12 preparations were made. The dry weight percentage of AMP ranged from 30 to 60. Overall, the best composite microspheres prepared contained 50% AMP (by dry weight measurement). Another composite microsphere, which was composed of titanium monohydrogen phosphate (TiHP) embedded with 18 wt % (air-dried weight) potassium cobalt hexacyanoferrate (KCoCF) and developed for a different separations application, was also batch tested for comparison. It proved to be as effective in removing,the cesium as the air-dried AMP (50 wt %)-ZrHP. Granular KCoCF was also prepared and was very effective. Large samples of each of these materials were sent to

  5. Efficacy of supplementation of selected medicinal mushrooms with inorganic selenium salts.

    PubMed

    Niedzielski, Przemysław; Mleczek, Mirosław; Siwulski, Marek; Gąsecka, Monika; Kozak, Lidia; Rissmann, Iwona; Mikołajczak, Patrycja

    2014-01-01

    The aim of the study was to evaluate the possibility of supplementation with inorganic forms of selenium (Na2SeO4 and Na2SeO3) in concentrations of 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 and 1.5 mM of three medicinal mushroom species: Agrocybe aegerita, Hericium erinaceus and Ganoderma lucidum. Tested mushroom species grew in Se additions of 0-0.6 mM (A. aegerita and H. erinaceus), while growth of G. lucidum bodies was observed for 0-0.8 mM. For the latter mushroom species, the total Se content was the highest. Content of Seorg was diverse; for control bodies it was the highest for G. lucidum (only organic forms were present), lower for A. aegerita (84% organic forms) and the lowest for H. erinaceus (56% organic forms). Accumulation of Se(IV) was generally significantly higher than Se(VI) for all tested mushroom species. There was no significant decrease of A. aegerita or G. lucidum biomass with the exception of G. lucidum bodies growing under 0.8 mM of Se species addition (15.51 ± 6.53 g). Biomass of H. erinaceus bodies was the highest under 0.2 (197.04 ± 8.73 g), control (191.80 ± 6.06 g) and 0.1 mM (185.04 ± 8.73 g) of both inorganic salts. The addition to the medium of Se salts brought about macroscopic changes in the fruiting bodies of the examined mushrooms. Concentrations exceeding 0.4 mM caused diminution of carpophores or even their total absence. In addition, colour changes of fruiting bodies were also recorded. At Se concentrations of 0.4 and 0.6 mM, A. aegerita fruiting bodies were distinctly lighter and those of H. erinaceus changed colour from purely white to white-pink.

  6. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean

    USGS Publications Warehouse

    Wang, Zhaohui Aleck; Kroeger, Kevin D.; Ganju, Neil K.; Gonneea, Meagan; Chu, Sophie N.

    2016-01-01

    Dynamic tidal export of dissolved inorganic carbon (DIC) to the coastal ocean from highly productive intertidal marshes and its effects on seawater carbonate chemistry are thoroughly evaluated. The study uses a comprehensive approach by combining tidal water sampling of CO2parameters across seasons, continuous in situ measurements of biogeochemically-relevant parameters and water fluxes, with high-resolution modeling in an intertidal salt marsh of the U.S. northeast region. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and total alkalinity (TA). DIC and TA generation may also be decoupled due to differential effects of marsh aerobic and anaerobic respiration on DIC and TA. As marsh DIC is added to tidal water, the buffering capacity first decreases to a minimum and then increases quickly. Large additions of marsh DIC can result in higher buffering capacity in ebbing tide than incoming tide. Alkalization of tidal water, which mostly occurs in the summer due to anaerobic respiration, can further modify buffering capacity. Marsh exports of DIC and alkalinity may have complex implications for the future, more acidified ocean. Marsh DIC export exhibits high variability over tidal and seasonal cycles, which is modulated by both marsh DIC generation and by water fluxes. The marsh DIC export of 414 g C m−2 yr−1, based on high-resolution measurements and modeling, is more than twice the previous estimates. It is a major term in the marsh carbon budget and translates to one of the largest carbon fluxes along the U.S. East Coast.

  7. Peptidoglycan Loss During Hen Egg White Lysozyme-Inorganic Salt Lysis of Streptococcus mutans

    PubMed Central

    Goodman, Hannah; Pollock, Jerry J.; Iacono, Vincent J.; Wong, William; Shockman, Gerald D.

    1981-01-01

    Streptococcus mutans BHT was grown in Todd-Hewitt dialysate medium containing N-acetyl[14C]glucosamine for 6 to 11 generations. After treatment with cold and hot trichloroacetic acid and trypsin, 52 to 65% of the radioactivity remained present in insoluble peptidoglycan-containing residues. Hen egg white lysozyme or mutanolysin treatment of the peptidoglycan residues resulted in the release of 80 and 97%, respectively, of the 14C label to the supernatant fraction. Hydrochloric acid hydrolysates of such supernatants showed that essentially all of the radioactivity present in insoluble peptidoglycan fractions was present in compounds that comigrated on paper chromatography with glucosamine (∼60%) or muramic acid (∼30%). Treatment of whole cells with low and high concentrations of lysozyme alone resulted in losses of 45 and 70% of the insoluble peptidoglycan, respectively, yet release of deoxyribonucleic acid from cells was not detected. Sequential addition of appropriate concentrations of selected inorganic salts after lysozyme treatment did result in the liberation of deoxyribonucleic acid. Deoxyribonucleic acid release was correlated with a further release of peptidoglycan from the insoluble fraction. However, the total amount of peptidoglycan lost effected by the low concentration of lysozyme and NaSCN (lysis) was significantly less than the amount of peptidoglycan hydrolyzed by high concentrations of lysozyme alone (no lysis), suggesting that the overall amount of peptidoglycan lost did not correlate well with cellular lysis. The total amount of insoluble peptidoglycan lost at the highest salt concentrations tested was found to be greater than could be accounted for by lysozyme-sensitive linkages of the peptidoglycan, possibly implicating autolysins. The results obtained suggested that hydrolysis of peptidoglycan bonds in topologically localized, but strategically important, sites was a more significant factor in the sequence that results in loss of cellular

  8. Effects of temperature and inorganic salts on the adsorption of phenol from multicomponent systems onto a decolorizing carbon

    SciTech Connect

    Halhouli, K.A.; Darwish, N.A.; Al-Jahmany, Y.Y.

    1997-12-01

    Experimental investigation of the effect of temperature and two inorganic salts (KCl and NaCl) on the adsorption of phenol from dilute (10-200 mg/dm{sup 3}) multi-component systems onto activated carbon was studied. Focusing on the adsorption of phenol, all combinations of phenol with two other aromatic organic components, (1,4-dihydroxybenzene and 4-amino,1-naphthalene sulfonic acid-sodium salt) in aqueous solutions were considered. Equilibrium isotherms at three different temperatures (30, 40, and 55{degrees}C) were generated. The adsorption of phenol from binary and ternary as well as from single aqueous systems increases with decreasing temperature, as expected of physical adsorption. Effects of KCl and NaCl salts as a concentration of 0.05 M at 30{degrees}C were also investigated. The adsorption of phenol from bisolute and trisolute systems slightly decreases by adding either of the salts.

  9. The use of inorganic salts to improve the dissolution characteristics of tablets containing Soluplus®-based solid dispersions.

    PubMed

    Hughey, Justin R; Keen, Justin M; Miller, Dave A; Kolter, Karl; Langley, Nigel; McGinity, James W

    2013-03-12

    The dissolution enhancement advantages inherent to amorphous solid dispersions systems are often not fully realized once they are formulated into a solid dosage form. The objective of this study was to investigate the ability of inorganic salts to improve the dissolution rate of carbamazepine (CBZ) from tablets containing a high loading of a Soluplus®-based solid dispersion. Cloud point and viscometric studies were conducted on Soluplus® solutions to understand the effect of temperature, salt type and salt concentration on the aqueous solubility and gelling tendencies of Soluplus®, properties that can significantly impact dissolution performance. Studies indicated that Soluplus® exhibited a cloud point that was strongly dependent on the salt type and salt concentration present in the dissolving medium. The presence of kosmotropic salts dehydrated the polymer, effectively lowering the cloud point and facilitating formation of a thermoreversible hydrogel. The ability of ions to impact the cloud point and gel strength generally followed the rank order of the Hofmeister series. Solid dispersions of CBZ and Soluplus® were prepared by KinetiSol® Dispersing, characterized to confirm an amorphous composition was formed and incorporated into tablets at very high levels (70% w/w). Dissolution studies demonstrated the utility of including salts in tablets to improve dissolution properties. Tablets that did not contain a salt or those that included a chaotropic salt hydrated at the tablet surface and did not allow for sufficient moisture ingress into the tablet. Conversely, the inclusion of kosmotropic salts allowed for rapid hydration of the entire tablet and the formation of a gel structure with strength dependent on the type of salt utilized. Studies also showed that, in addition to allowing tablet hydration, potassium bicarbonate and potassium carbonate provided effervescence which effectively destroyed the gel network and allowed for rapid dissolution of CBZ

  10. Clastogenic effects of inorganic arsenic salts on human chromosomes in vitro.

    PubMed

    Chakraborty, Tulika; De, Madhusnata

    2009-01-01

    Arsenic is well documented as a paradoxical human carcinogen. In West Bengal, several million people were found to be arsenic affected who were exposed to this metalloid principally through drinking water. The arsenic-contaminated drinking water contains both trivalent as well as pentavalent arsenic. In this study, the comparative in vitro cytogenetic effects of two inorganic salts of arsenic, trivalent sodium arsenite (NaAsO(2)) and pentavalent sodium arsenate (Na(2)HAsO4) in three different concentrations, were screened for damage to chromosome and cell division following exposure to human lymphocyte culture. The chromosome-breaking activities in cultured lymphocytes were significantly higher for the compounds with trivalent (NaAsO(2)) than with pentavalent arsenic (Na(2)HAsO(4)), as reflected by the higher chromosomal aberration percentage in the similar doses used. It suggests that sodium arsenite was considerably more clastogenic than sodium arsenate. Moreover, increases in chromosomal aberrations were proportional with the increased dose of exposure for both trivalent and pentavalent forms of arsenic.

  11. Synergistic effects of inorganic salt and surfactant on phenanthrene removal from aqueous solution by sediment.

    PubMed

    Zhang, Xiaoyan; Wu, Yaoguo; Hu, Sihai; Lu, Cong

    2014-01-01

    The economic and effective application of surfactant enhanced remediation (SER) technology in a sediment-freshwater/saline water system was investigated by batch method using the combined effects of inorganic salt (sodium chloride, NaCl) and anionic surfactant (sodium dodecylbenzene sulfonate (SDBS)) on phenanthrene (PHE) removal via sorption by sediment. In all cases, PHE sorption followed a linear equation and partition as the main mechanism for PHE removal from aqueous solution. Separate addition of SDBS (2 mmol L(-1)) and NaCl (2-100 mmol L(-1)) moderately enhanced PHE removal, while with their combined addition the enhancement was substantial, and the removal efficiency achieved a peak of 92.8%. The combined effect expressed a synergy, and the sorption enhancement increased by factors of 2.7, 3.2 and 3.4 when compared with the sum of the separate entities at elevated salinity. This was because the sorbed SDBS, with increasing amount and a high packing conformation at elevated salinity, outcompeted aqueous SDBS for PHE partition. Moreover, a combination of 2 mmol L(-1) SDBS and 2 mmol L(-1) NaCl was optimal for PHE removal. Therefore, SER technology appears more effective for PHE removal in saline water than in freshwater, and preliminary water quality monitoring is essential for economic and efficient SER application.

  12. Effect of inorganic salts, soaps and detergents on dissolution and larvicidal activity of alginate formulation of Bacillus sphaericus.

    PubMed

    Vijayan, V; Balaraman, K

    1995-03-01

    Various inorganic salts and commonly used soaps and detergents were tested in the laboratory for their effect on the dissolution and larvicidal residual activity of a slow-release alginate encapsulated granular formation of Bacillus sphaericus. Fluoride, chloride and sulphate salts and a detergent powder affected the residual activity of this formulation drastically by rupturing it but did not effect its larvicidal activity. Nitrates and phosphates of sodium and potassium also had the same effect but to a moderate level. The safest concentration of these water impurities for effective functioning of the alginate encapsulated B. sphaericus formulation have been determined.

  13. Postharvest application of organic and inorganic salts to control potato (Solanum tuberosum L.) storage soft rot: plant tissue-salt physicochemical interactions.

    PubMed

    Yaganza, E S; Tweddell, R J; Arul, J

    2014-09-24

    Soft rot caused by Pectobacterium sp. is a devastating disease affecting stored potato tubers, and there is a lack of effective means of controlling this disease. In this study, 21 organic and inorganic salts were tested for their ability to control soft rot in potato tubers. In the preventive treatment, significant control of soft rot was observed with AlCl3 (≥66%) and Na2S2O3 (≥57%) and to a lesser extent with Al lactate and Na benzoate (≥34%) and K sorbate and Na propionate (≥27%). However, only a moderate control was achieved by curative treatment with AlCl3 and Na2S2O3 (42%) and sodium benzoate (≥33%). Overall, the in vitro inhibitory activity of salts was attenuated in the presence of plant tissue (in vivo) to different degrees. The inhibitory action of the salts in the preventive treatment, whether effective or otherwise, showed an inverse linear relationship with water ionization capacity (pK') of the salt ions, whereas in the curative treatment, only the effective salts showed this inverse linear relationship. Salt-plant tissue interactions appear to play a central role in the attenuated inhibitory activity of salts in potato tuber through reduction in the availability of the inhibitory ions for salt-bacteria interactions. This study demonstrates that AlCl3, Na2S2O3, and Na benzoate have potential in controlling potato tuber soft rot and provides a general basis for understanding of specific salt-tissue interactions.

  14. Inorganic salts and intracellular polyphosphate inclusions play a role in the thermotolerance of the immunobiotic Lactobacillus rhamnosus CRL 1505.

    PubMed

    Correa Deza, María A; Grillo-Puertas, Mariana; Salva, Susana; Rapisarda, Viviana A; Gerez, Carla L; Font de Valdez, Graciela

    2017-01-01

    In this work, the thermotolerance of Lactobacillus rhamnosus CRL1505, an immunobiotic strain, was studied as a way to improve the tolerance of the strain to industrial processes involving heat stress. The strain displayed a high intrinsic thermotolerance (55°C, 20 min); however, after 5 min at 60°C in phosphate buffer a two log units decrease in cell viability was observed. Different heat shock media were tested to improve the cell survival. Best results were obtained in the mediumcontaining inorganic salts (KH2PO4, Na2HPO4, MnSO4, and MgSO4) likely as using 10% skim milk. Flow cytometry analysis evinced 25.0% live cells and a large number of injured cells (59.7%) in the inorganic salts medium after heat stress. The morphological changes caused by temperature were visualized by transmission electronic microscopy (TEM). In addition, TEM observations revealed the presence of polyphosphate (polyP) granules in the cells under no-stress conditions. A DAPI-based fluorescence technique, adjusted to Gram-positive bacteria for the first time, was used to determine intracellular polyP levels. Results obtained suggest that the high initial polyP content in L. rhamnosus CRL 1505 together with the presence of inorganic salts in the heat shock medium improve the tolerance of the cells to heat shock. To our knowledge, this is the first report giving evidence of the relationship between polyP and inorganic salts in thermotolerance of lactic acid bacteria.

  15. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    PubMed

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of inorganic salts on the growth and Cd2+ bioaccumulation of Zygosaccharomyces rouxii cultured under Cd2+ stress.

    PubMed

    Jiang, Wei; Xu, Ying; Li, Chunsheng; Lv, Xin; Wang, Dongfeng

    2013-01-01

    Using living cells to remove heavy metals was limited by the sensitivity of living cells to heavy metal ions. Effect of inorganic salts on the growth and Cd(2+) bioaccumulation of Zygosaccharomyces rouxii (Z. rouxii) was studied. Results showed that NaCl, KCl, CaCl(2) and MgCl(2) could markedly reduce the growth inhibition ratio while NaNO(3), KNO(3), Na(2)SO(4) and K(2)SO(4) significantly increased it. Effect of inorganic salts on the Cd(2+) bioaccumulation of Z. rouxii indicated that different inorganic salts could promote or restrain the growth of Z. rouxii under Cd(2+) stress by weakening or enhancing Cd(2+) bioaccumulation. Although NaCl and KCl lowered the Cd(2+) accumulation per unit weight of Z. rouxii biomass, the total Cd(2+) bioaccumulation and Cd(2+) percentage removal both markedly increased. It suggested that NaCl and KCl could be introduced to enhance the growth and Cd(2+) bioaccumulation of Z. rouxii under Cd(2+) stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Salt-induced modulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.).

    PubMed

    Siddiqi, Ejaz Hussain; Ashraf, Muhammad; Al-Qurainy, Fahad; Akram, Nudrat Aisha

    2011-12-01

    Safflower (Carthamus tinctorius L.) has gained considerable ground as a potential oil-seed crop. However, its yield and oil production are adversely affected under saline conditions. The present study was conducted to appraise the influence of salt (NaCl) stress on yield, accumulation of different inorganic elements, free proline and activities of some key antioxidant enzymes in plant tissues as well as seed oil components in safflower. Two safflower accessions differing in salt tolerance (Safflower-33 (salt sensitive) and Safflower-39 (salt tolerant)) were grown under saline (150 mmol L(-1) ) conditions and salt-induced changes in the earlier-mentioned physiological attributes were determined. Salt stress enhanced leaf and root Na(+) , Cl(-) and proline accumulation and activities of leaf superoxide dismutase, catalase and peroxidase, while it decreased K(+) , Ca(2+) and K(+) /Ca(2+) and Ca(2+) /Na(+) ratios and seed yield, 100-seed weight, number of seeds, as well as capitula, seed oil contents and oil palmitic acid. No significant effect of salt stress was observed on seed oil α-tocopherols, stearic acid, oleic acid or linoleic acid contents. Of the two safflower lines, salt-sensitive Safflower-33 was higher in leaf and root Na(+) and Cl(-) , while Safflower-39 was higher in leaf and root K(+) , K(+) /Ca(2+) and Ca(2+) /Na(+) and seed yield, 100-seed weight, catalase activity, seed oil contents, seed oil α-tocopherol and palmitic acid. Other attributes remained almost unaffected in both accessions. Overall, high salt tolerance of Safflower-39 could be attributed to Na(+) and Cl(-) exclusion, high accumulation of K(+) and free proline, enhanced CAT activity, seed oil α-tocopherols and palmitic acid contents. Copyright © 2011 Society of Chemical Industry.

  18. Empirical correlations between Krafft temperature and tail length for amidosulfobetaine surfactants in the presence of inorganic salt.

    PubMed

    Chu, Zonglin; Feng, Yujun

    2012-01-17

    Long-chain amidosulfobetaine surfactants, 3-(N-fattyamidopropyl-N,N-dimethyl ammonium) propanesulfonates (n-DAS, n > 18), are insoluble in pure water due to their high Krafft temperature (T(K)), while they are soluble when inorganic salt is added to the surfactant solution as the T(K) of these zwitterionic surfactants is decreased. The influence of the salt content and ionic species of the added electrolytes on the T(K) of the series of amidosulfobetaine surfactants was examined by means of UV-vis spectrophometry and visual inspection. It was found that the T(K) of these surfactants depends strongly on not only the hydrophobic alkyl length (n), but also the salinity of the aqueous environment. When the salt concentration is increased from 0 to 100 mM, the T(K) shows a sharp decrease; when the salinity is fixed between 100 and 2000 mM, the T(K) varies linearly with n with a slope of ~7.7 irrespective of the salt species and the salt content. When the salt concentration is further increased above 2000 mM, a linear function is still observed, but the slope increases slightly. © 2011 American Chemical Society

  19. [Synthesis of a nano-antibacterial inorganic filler containing a quaternary ammonium salt with long chain alkyl and its effect on dental resin composites].

    PubMed

    Junling, Wu; Kaiyun, Zhou; Ting, Zhu; Chuanjian, Zhou

    2014-10-01

    This study aimed to synthesize a novel nano-antibacterial inorganic filler that contains a quaternary ammonium salt with long chain alkyl and to report the antibacterial property of dental resin composites. A novel nano-antibacterial inorganic filler that contains a quaternary ammonium salt with long chain alkyl was synthesized based on previous research. The antibacterial property of the filler was measured. The surface of the novel nano-antibacterial inorganic filler was modified by a coupling agent to achieve a good interfacial bonding between the filler and the resin matrix. Infrared spectrum analysis was carried out. The modified novel nano-antibacterial inorganic fillers were then incorporated into the dental resin matrix. The dispersion of the fillers was observed and compared with those incorporated into Tetric N-Ceram, a commercial resin composite, under a scanning electron microscope. Streptococcus mutans was used in testing the antibacterial property of the dental resin composites. A quaternary ammonium salt with a long chain alkyl was successfully grafted onto the surface of nano-silica particles. The novel nano-antibacterial inorganic filler that contains quaternary ammonium salt with a long chain alkyl showed stronger antibacterial efficacy than the antibacterial inorganic filler that contains quaternary ammonium salt with a short chain alkyl. The modified novel antibacterial inorganic fillers displayed a homogeneous dispersion in the resin composite bulk and combined closely with the resin matrix, similar to the Tetric N-Ceram. The resin composites that contain novel antibacterial inorganic fillers showed stronger antibacterial effect on Streptococcus mutans compared with the control group. The novel nano-antibacterial inorganic filler that contains a quaternary ammonium salt with long chain alkyl showed a strong antibacterial property. It also exhibited good compatibility with the dental resin matrix after undergoing coupling treatment.

  20. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: Inferences from the Venice lagoon, Italy

    NASA Astrophysics Data System (ADS)

    Roner, M.; D'Alpaos, A.; Ghinassi, M.; Marani, M.; Silvestri, S.; Franceschinis, E.; Realdon, N.

    2016-07-01

    Salt marshes are ubiquitous features of the tidal landscape governed by mutual feedbacks among processes of physical and biological nature. Improving our understanding of these feedbacks and of their effects on tidal geomorphological and ecological dynamics is a critical step to address issues related to salt-marsh conservation and response to changes in the environmental forcing. In particular, the spatial variation of organic and inorganic soil production processes at the marsh scale, a key piece of information to understand marsh responses to a changing climate, remains virtually unexplored. In order to characterize the relative importance of organic vs. inorganic deposition as a function of space, we collected 33 shallow soil sediment samples along three transects in the San Felice and Rigà salt marshes located in the Venice lagoon, Italy. The amount of organic matter in each sample was evaluated using Loss On Ignition (LOI), a hydrogen peroxide (H2O2) treatment, and a sodium hypochlorite (NaClO) treatment following the H2O2 treatment. The grain size distribution of the inorganic fraction was determined using laser diffraction techniques. Our study marshes exhibit a weakly concave-up profile, with maximum elevations and coarser inorganic grains along their edges. The amount of organic and inorganic matter content in the samples varies with the distance from the marsh edge and is very sensitive to the specific analysis method adopted. The use of a H2O2+NaClO treatment yields an organic matter density value which is more than double the value obtained from LOI. Overall, inorganic contributions to soil formation are greatest near the marsh edges, whereas organic soil production is the main contributor to soil accretion in the inner marsh. We interpret this pattern by considering that while plant biomass productivity is generally lower in the inner part of the marsh, organic soil decomposition rates are highest in the better aerated edge soils. Hence the higher

  1. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress

    PubMed Central

    Zeng, Youling; Li, Ling; Yang, Ruirui; Yi, Xiaoya; Zhang, Baohong

    2015-01-01

    The mechanism by which plants cope with salt stress remains poorly understood. The goal of this study is to systematically investigate the contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment (OA) in the halophyte species Halostachys caspica. The results indicate that 100–200 mM NaCl is optimal for plant growth; the water content and degree of succulence of the assimilating branches are higher in this treatment range than that in other treatments; parenchyma cells are more numerous with 100 mM NaCl treatment than they are in control. Inorganic ions (mainly Na+ and Cl-) may play a more important role than organic compounds in NaCl-induced OA and are the primary contributors in OA in H. caspica. The inorganic ions and organic solutes display a tissue-dependent distribution. Na+ and Cl− are accumulated in the reproductive organs and within assimilating branches, which may represent a mechanism for protecting plant growth by way of salt ion dilution and organ abscission. Additionally, OA via increased accumulation of organic substances also protected plant growth and development. This finding provides additional evidence for plant tolerance to salinity stress which can be used for breeding new cultivars for stress tolerance. PMID:26350977

  2. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress.

    PubMed

    Zeng, Youling; Li, Ling; Yang, Ruirui; Yi, Xiaoya; Zhang, Baohong

    2015-09-09

    The mechanism by which plants cope with salt stress remains poorly understood. The goal of this study is to systematically investigate the contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment (OA) in the halophyte species Halostachys caspica. The results indicate that 100-200 mM NaCl is optimal for plant growth; the water content and degree of succulence of the assimilating branches are higher in this treatment range than that in other treatments; parenchyma cells are more numerous with 100 mM NaCl treatment than they are in control. Inorganic ions (mainly Na+ and Cl-) may play a more important role than organic compounds in NaCl-induced OA and are the primary contributors in OA in H. caspica. The inorganic ions and organic solutes display a tissue-dependent distribution. Na+ and Cl- are accumulated in the reproductive organs and within assimilating branches, which may represent a mechanism for protecting plant growth by way of salt ion dilution and organ abscission. Additionally, OA via increased accumulation of organic substances also protected plant growth and development. This finding provides additional evidence for plant tolerance to salinity stress which can be used for breeding new cultivars for stress tolerance.

  3. A molecular dynamic study on the dissociation mechanism of SI methane hydrate in inorganic salt aqueous solutions.

    PubMed

    Xu, Jiafang; Chen, Zhe; Liu, Jinxiang; Sun, Zening; Wang, Xiaopu; Zhang, Jun

    2017-08-01

    Gas hydrate is not only a potential energy resource, but also almost the biggest challenge in oil/gas flow assurance. Inorganic salts such as NaCl, KCl and CaCl2 are widely used as the thermodynamic inhibitor to reduce the risk caused by hydrate formation. However, the inhibition mechanism is still unclear. Therefore, molecular dynamic (MD) simulation was performed to study the dissociation of structure I (SI) methane hydrate in existence of inorganic salt aqueous solution on a micro-scale. The simulation results showed that, the dissociation became stagnant due to the presence of liquid film formed by the decomposed water molecules, and more inorganic ions could shorten the stagnation-time. The diffusion coefficients of ions and water molecules were the largest in KCl system. The structures of ion/H2O and H2O/H2O were the most compact in hydrate/NaCl system. The ionic ability to decompose hydrate cells followed the sequence of: Ca(2+)>2K(+)>2Cl(-)>2Na(+). Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Establishing the interfacial nano-structure and elemental composition of homeopathic medicines based on inorganic salts: a scientific approach.

    PubMed

    Temgire, Mayur Kiran; Suresh, Akkihebbal Krishnamurthy; Kane, Shantaram Govind; Bellare, Jayesh Ramesh

    2016-05-01

    Extremely dilute systems arise in homeopathy, which uses dilution factors 10(60), 10(400) and also higher. These amounts to potencies of 30c, 200c or more, those are far beyond Avogadro's number. There is extreme skepticism among scientists about the possibility of presence of starting materials due to these high dilutions. This has led modern scientists to believe homeopathy may be at its best a placebo effect. However, our recent studies on 30c and 200c metal based homeopathic medicines clearly revealed the presence of nanoparticles of starting metals, which were found to be retained due to the manufacturing processes involved, as published earlier.(9,10) Here, we use HR-TEM and STEM techniques to study medicines arising from inorganic salts as starting materials. We show that the inorganic starting materials are present as nano-scale particles in the medicines even at 1 M potency (having a large dilution factor of 10(2000)). Thus this study has extended our physicochemical studies of metal based medicines to inorganic based medicines, and also to higher dilution. Further, we show that the particles develop a coat of silica: these particles were seen embedded in a meso-microporous silicate layer through interfacial encapsulation. Similar silicate coatings were also seen in metal based medicines. Thus, metal and inorganic salt based homeopathic medicines retain the starting material as nanoparticles encapsulated within a silicate coating. On the basis of these studies, we propose a universal microstructural hypothesis that all types of homeopathic medicines consist of silicate coated nano-structures dispersed in the solvent. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  5. Effects of pH and inorganic salts on the adsorption of phenol from aqueous systems on activated decolorizing charcoal

    SciTech Connect

    Halhouli, K.A.; Darwish, N.A.; Al-Dhoon, N.M.

    1995-10-01

    An experimental investigation of the effects of pH and three inorganic salts (KCl, KI, and NaCl) on the adsorption isotherms of phenol (from a dilute aqueous solution) on activated charcoal was conducted. Each salt was studied at three different concentrations, i.e., 0.1, 0.01, and 0.005 M. The effect of pH (in the pH range 3 to 11) in the presence of KI, KCl, and NaCl was also investigated. The concentration of phenol in the aqueous systems studied ranged from 10 to 200 ppm. The temperature effect was also studied, and the resulting experimental equilibrium isotherms at 30, 40, and 55{degrees}C are well represented by Freundlich, Langmuir, and Redlich-Paterson isotherms. The relevant parameters for these isotherms are presented.

  6. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors

    SciTech Connect

    Gash, A E; Tillotson, T M; Satcher Jr, J H; Hrubesh, L W; Simpson, R L

    2000-09-12

    We have developed a new sol-gel route to synthesize several transition and main-group metal oxide aerogels. The approach is straightforward, inexpensive, versatile, and it produces monolithic microporous materials with high surface areas. Specifically, we report the use of epoxides as gelation agents for the sol-gel synthesis of chromia aerogels and xerogels from simple Cr(III) inorganic salts. The dependence of both gel formation and its rate was studied by varying the solvent used, the Cr(III) precursor salt, the epoxide/Cr(III) ratio, as well as the type of epoxide employed. All of these variables were shown to affect the rate of gel formation and provide a convenient control of this parameter. Dried chromia aerogels were characterized by high-resolution transmission electron microscopy (HRTEM) and nitrogen adsorption/desorption analyses, results of which will be presented. Our studies have shown that rigid monolithic gels can be prepared from many different metal ions salts, provided the formal oxidation state of the metal ion is greater than or equal to +3. Conversely, when di-valent transition metal salts are used precipitated solids are the products.

  7. Extraction of metal ions in aqueous polyethylene glycol-inorganic salt two-phase systems in the presence of inorganic extractants: correlation between extraction behaviour and stability constants of extracted species.

    PubMed

    Bulgariu, Laura; Bulgariu, Dumitru

    2008-07-04

    The use of aqueous polyethylene glycol-inorganic salt two-phase systems for the extraction of metal ions has a great potential due to their durability, non-toxicity and relative low cost. The aqueous phases can be easily separated by centrifugation, and the operation is possible in a range of experimental conditions. The experimental results have shown that for a given aqueous two-phase system, the extraction behaviour of metal ions in presence of inorganic extractants is mainly dependent on the stability of extracted species. In this paper we review our results obtained at metal ion extraction using inorganic extractants and discuss three major types of extraction behaviours.

  8. Aqueous salting-out effect of inorganic cations and anions on non-electrolytes.

    PubMed

    Görgényi, Miklós; Dewulf, Jo; Van Langenhove, Herman; Héberger, Károly

    2006-10-01

    The salting-out effects of 27 lithium, sodium, potassium, ammonium and magnesium salts and HCl on chloroform, benzene, chlorobenzene and anisole were characterized in aqueous solutions at 303 K by measuring the Henry's law constants. The concentration of the salt solutions was 0.5 mol dm(-3), i.e., similar to the salinity of sea water. The solubility change was described in terms of the Setschenow constant, K(S)(salt,solute). The highest salting-out effects were observed for the solutions of salts involving doubly charged anions, and the smallest for NO(-)(3). The individual ionic Setschenow constants, K(S)(cation,solute) and K(S)(anion,solute), were determined by multilinear regression, using the assumption of additivity for the ions. Cl(-) was selected as the reference ion for calculation of the K(S)(ion,solute) values of the other ions. The estimations resulted systematically in significant positive K(S)(cation,solute) values, ranging from 0.13+/-0.026 (NH(+)(4)) to 0.28+/-0.032 (Mg(2+)), which were hardly affected by the accompanying anion in solution, and only slightly affected by the non-electrolytes present. NO(-)(3) resulted in a slight salting-in effect: K(S)(NO(-)(3),solute)=-0.083+/-0.019; the other anions displayed salting-out effect for all of the non-electrolytes studied, with K(S)(anion,solute) ranging between 0.090+/-0.008 (HCO(-)(3)) and 0.21+/-0.035 (CO(2-)(3)).

  9. Polyamide 6 Nanocomposites with Inorganic Particles Modified with Three Quaternary Ammonium Salts

    PubMed Central

    Araujo, Edcleide Maria; Leite, Amanda Melissa Damião; da Paz, Rene Anisio; Medeiros, Vanessa da Nóbrega; de Melo, Tomas Jeferson Alves; Lira, Hélio de Lucena

    2011-01-01

    The purpose of this study was to obtain polyamide 6 nanocomposites with national organically modified clay with three quaternary ammonium salts. The obtained results confirm the intercalation of molecules of salt in the clay layers, and a good interaction with the polymer, showing the formation of intercalated and/or partially exfoliated structures. The nanocomposites showed similar thermal stability compared to pure polymer, and the mechanical properties presented interesting and promising results. PMID:28824117

  10. Molecular interactions in ternary mixtures tetra- n-butylammonium bromide-inorganic salts-water according to ultrasonic data at T = 293.15-318.15 K

    NASA Astrophysics Data System (ADS)

    Hooshyar, Hossein; Sadeghi, Rahmat; Khezri, Behrooz

    2016-12-01

    The ultrasonic velocity and density for ternary liquid mixtures containing tetrabutylammonium bromide and some inorganic salts in water as a function of electrolyte concentration were measured in the temperature range 293-318 K. These data have been used to estimate the acoustical parameters. The observed variation of these parameters helps in understanding the nature of ion-solvent and ion-ion interactions in the liquid mixtures. The results are discussed in terms of structure-making tendency of additive inorganic salts in the mixtures.

  11. Induction by inorganic metal salts of sister chromatid exchanges and chromosome aberrations in human and Syrian hamster cell strains

    SciTech Connect

    Larramendy, M.L.; Popescu, N.C.; DiPaolo, J.A.

    1981-01-01

    Sister chromatid exchange (SCE) and chromosome aberration induction were determined for several inorganic metal salts. Arsenic, nickel, and beryllium salts at concentrations effective in causing transformation of Syrian hamster cells (HEC) induced SCE and chromosome aberrations of HEC and human lymphocytes, whereas sodium tungstate, a non-transforming chemical, neither induced SCE nor chromosome aberrations. Normal human and hamster cells exhibited equal sensitivity to SCE induction; nontoxic concentrations of sodium arsenite, beryllium sulfate, and nickel sulfate caused an increase of 8-10 SCE/cell over control values. Sodium arsenite, a trivalent arsenic, and sodium arsenate, a pentavalent arsenic, produced increases in SCE but the former was effective at lower concentrations. Both arsenic salts were less efficient in inducing SCE in human whole blood than in purified lymphocyte cultures. Sodium arsenite, sodium arsenate, nickel sulfate, and beryllium sulfate also caused damage consisting primarily of chromatid type of aberrations. In HEC, with doses most effective in SCE induction , all four metals produced aberrations in 16-21% of cells. In human lymphocytes, 34 and 30% of the cells had chromosome damage after sodium arsenite and sodium arsenate, respectively, whereas beryllium sulfate or nickel sulfate caused damage in about 10% of the cells. The induction of SCE and chromosomal aberrations by metals reemphasizes the sensitivity of cytological assays and their importance for detecting genetic damage caused by carcinogens.

  12. Effect of inorganic salts and glucose additives on dose-response, melting point and mass density of genipin gel dosimeters.

    PubMed

    Al-jarrah, A M; Abdul Rahman, Azhar; Shahrim, Iskandar; Razak, Nik Noor Ashikin Nik Ab; Ababneh, Baker; Tousi, Ehsan Taghizadeh

    2016-01-01

    Genipin gel dosimeters are hydrogels infused with a radiation-sensitive material which yield dosimetric information in three dimensions (3D). The effect of inorganic salts and glucose on the visible absorption dose-response, melting points and mass density of genipin gel dosimeters has been experimentally evaluated using 6-MV LINAC photons. As a result, the addition of glucose with optimum concentration of 10% (w/w) was found to improve the thermal stability of the genipin gel and increase its melting point (Tm) by 6 °C accompanied by a slight decrease of dose-response. Furthermore, glucose helps to adjust the gel mass density to obtain the desired tissue-equivalent properties. A drop of Tm was observed when salts were used as additives. As the salt concentration increased, gel Tm decreased. The mass density and melting point of the genipin gel could be adjusted using different amounts of glucose that improved the genipin gel suitability for 3D dose measurements without introducing additional toxicity to the final gel.

  13. Effects of high concentrations of inorganic salts on swarming ability in fluorescent pseudomonas strains.

    PubMed

    Sakai, Masao; Futamata, Hiroyuki; Kanazawa, Shinjiro

    2003-07-01

    We did tests using swarm plates, to examine the effects of various salts and their concentrations on the chemotaxis of fluorescent Pseudomonas strains. As a result, we found that the swarming ability of the Pseudomonas strains was inhibited by high concentrations of Ca2+. The growth of the strains was not affected at the high concentration of Ca2+, but the cells grown in swarm agar under the condition were extended in the filaments. Most of the cells had reached 10 microm to 40 microm in length. Such cell elongation was not observed with salts other than calcium salts. A significant correlation between the cell elongation and the decrease of swarming ability by the high concentration of Ca2+ was observed.

  14. The Effects of Mineral Dust on the Hygroscopic and Optical Properties of Inorganic Salt Aerosols

    NASA Astrophysics Data System (ADS)

    Attwood, A. R.; Greenslade, M. E.

    2011-12-01

    Mineral dust particles are a significant fraction of the total aerosol mass, thus they play an important role in the Earth's radiative budget by direct scattering and absorption of radiation. Assessing this impact is complicated by the variability of optical properties resulting from water uptake and changes in chemical composition due to atmospheric mixing. Internal mixtures of montmorillonite, a clay component of mineral dust, with sodium chloride and ammonium sulfate were studied optically using cavity ring down spectroscopy. The effects of the addition of the clay to the optically observed deliquescence relative humidity (DRH) and water uptake of these salts was considered by investigating a series of different salt mass fractions. In most cases, montmorillonite alters the hygroscopic properties and causes the DRH to occur at a lower relative humidity. For ammonium sulfate, optical properties can be approximated by volume weighted mixing rules with some minor deviations around the DRH. For sodium chloride, this approximation is only accurate below the DRH with enhanced water uptake at higher relative humidities. Our results show that salt particles may transition from solid to liquid at a lower relative humidity than is expected based on the salt alone, as observed with changes in optical properties. Further, they contradict current measurements in the literature that suggest little change in the hygroscopic behavior of salts when insoluble mineral dust components are added and should continue to be investigated. Accurate, direct measurements of the effect of the addition of clays to the optical properties of common aerosol species will allow for improvements in the prediction of the aerosol direct effect.

  15. ENHANCED LETHAL EFFECTS OF X-RAYS ON BACILLUS COLI IN THE PRESENCE OF INORGANIC SALTS

    PubMed Central

    Claus, Walter D.

    1933-01-01

    1. When B. coli are irradiated by x-rays in a series of salt solutions of tenth molar concentration, the synergistic effect does not become appreciable until heavy salts are used. 2. When Pb(NO3)2 or KBr solutions are used in increasing concentrations, the synergistic effect is not appreciable until large concentrations or absorption coefficients are reached, whereupon the effect increases sharply. Thus the number of effective hits per bacterium per minute, α, is a function of the absorption coefficient, µ. 3. The sharp increase in α does not occur at the same concentration, or same µ, for Pb(NO3)2 and for KBr. Thus α is a function of the nature of the salt, or possibly of the penetration of the salt into the cell, some measure of which may be obtained from the initial toxicity of the solution. 4. For a given solution, α increases as the wave length λ of the x-rays decreases, although µ decreases by the same process as the cube of λ. Thus α is a function of λ to some power greater than the cube. 5. A possible mechanism whereby the synergistic effect takes place is discussed briefly, as is the possibility that the heterogeneity of the x-rays accounts for all or part of the increased bactericidal effect of the rays in the presence of heavy metal salts. 6. Results indicate that within the range investigated, short wave lengths of x-rays, in conjunction with sensitizers, are the more efficacious in producing lethal effects. PMID:19870133

  16. [Dental plaque microcosm biofilm behavior on a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt].

    PubMed

    Junling, Wu; Qiang, Zhang; Ruinan, Sun; Ting, Zhu; Jianhua, Ge; Chuanjian, Zhou

    2015-12-01

    To develop a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt, and to measure its effect on human dental plaque microcosm biofilm. A novel nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt was synthesized according to methods introduced in previous research. Samples of the novel nano-antibacterial inorganic fillers were modified by a coupling agent and then added into resin composite at 0%, 5%, 10%, 15% or 20% mass fractions; 0% composite was used as control. A flexural test was used to measure resin composite mechanical properties. Results showed that a dental plaque microcosm biofilm model with human saliva as inoculum was formed. Colony-forming unit (CFU) counts, lactic acid production, and live/dead assay of biofilm on the resin composite were calculated to test the effect of the resin composite on human dental plaque microcosm biofilm. The incorporation of nano-antibacterial inorganic fillers with as much as 15% concentration into the resin composite showed no adverse effect on the mechanical properties of the resin composite (P > 0.05). Resin composite containing 5% or more nano-antibacterial inorganic fillers significantly inhibited the metabolic activity of dental plaque microcosm biofilm, suggesting its strong antibacterial potency (P < 0.05). This novel resin composite exhibited a strong antibacterial property upon the addition of up to 5% nano-antibacterial inorganic fillers, thereby leading to effective caries inhibition in dental application.

  17. Microwave-assisted inorganic salt pretreatment of sugarcane leaf waste: Effect on physiochemical structure and enzymatic saccharification.

    PubMed

    Moodley, Preshanthan; Kana, E B Gueguim

    2017-07-01

    This paper presents a method to pretreat sugarcane leaf waste using microwave-assisted (MA) inorganic salt to enhance enzymatic saccharification. The effects of process parameters of salt concentration, microwave power intensity and pretreatment time on reducing sugar yield from sugarcane leaf waste were investigated. Pretreatment models based on MA-NaCl, MA-ZnCl2 and MA-FeCl3 were developed with high coefficients of determination (R(2) >0.8) and optimized. Maximum reducing sugar yield of 0.406g/g was obtained with 2M FeCl3 at 700W for 3.5min. Scanning electron microscopy (SEM), Fourier Transform Infrared analysis (FTIR) and X-ray diffraction (XRD) showed major changes in lignocellulosic structure after MA-FeCl3 pretreatment with 71.5% hemicellulose solubilization. This regime was further assessed on sorghum leaves and Napier grass under optimal MA-FeCl3 conditions. A 2-fold and 3.1-fold increase in sugar yield respectively were observed compared to previous reports. This pretreatment was highly effective for enhancing enzymatic saccharification of lignocellulosic biomass. Copyright © 2017. Published by Elsevier Ltd.

  18. Thermal Behavior of d-Ribose Adsorbed on Silica: Effect of Inorganic Salt Coadsorption and Significance for Prebiotic Chemistry.

    PubMed

    Akouche, Mariame; Jaber, Maguy; Zins, Emilie-Laure; Maurel, Marie-Christine; Lambert, Jean-Francois; Georgelin, Thomas

    2016-10-24

    Understanding ribose reactivity is a crucial step in the "RNA world" scenario because this molecule is a component of all extant nucleotides that make up RNA. In solution, ribose is unstable and susceptible to thermal destruction. We examined how ribose behaves upon thermal activation when adsorbed on silica, either alone or with the coadsorption of inorganic salts (MgCl2 , CaCl2 , SrCl2 , CuCl2 , FeCl2 , FeCl3 , ZnCl2 ). A combination of (13) C NMR, in situ IR, and TGA analyses revealed a variety of phenomena. When adsorbed alone, ribose remains stable up to 150 °C, at which point ring opening is observed, together with minor oxidation to a lactone. All the metal salts studied showed specific interactions with ribose after dehydration, resulting in the formation of polydentate metal ion complexes. Anomeric equilibria were affected, generally favoring ribofuranoses. Zn(2+) stabilized ribose up to higher temperatures than bare silica (180 to 200 °C). Most other cations had an adverse effect on ribose stability, with ring opening already upon drying at 70 °C. In addition, alkaline earth cations catalyzed the dehydration of ribose to furfural and, to variable degrees, its further decarbonylation to furan. Transition-metal ions with open d-shells took part in redox reactions with ribose, either as reagents or as catalysts. These results allow the likelihood of prebiotic chemistry scenarios to be evaluated, and may also be of interest for the valorization of biomass-derived carbohydrates by heterogeneous catalysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Deliquescence Relative Humidities of Organic and Inorganic Salts Important in the Atmosphere.

    PubMed

    Schroeder, Jason R; Beyer, Keith D

    2016-12-22

    The deliquescence relative humidities (DRH) as a function of temperature have been determined for several salts of atmospheric importance using humidity controlled thermogravimetric analysis (HTGA): sodium hydrogen oxalate monohydrate (NaHC2O4·H2O), sodium oxalate (Na2C2O4), sodium ammonium sulfate dihydrate (NaNH4SO4·2H2O, lecontite), sodium hydrogen malonate monohydrate (NaHC3H2O4·H2O), sodium malonate monohydrate (Na2C3H2O4·H2O), and ammonium hydrogen malonate (NH4HC3H2O4). The temperature-dependent onset DRH values (where a dry mixture begins to take up water) were also determined for mixtures of ammonium sulfate with malonic acid, and ammonium sulfate with sodium oxalates and sodium malonates, respectively. We demonstrate that the onset DRH is independent of the ratio of solids in the mixture. In general, onset DRH values were always lower than the pure component DRH values.

  20. Structural Peculiarities of Ion-Conductive Organic-Inorganic Polymer Composites Based on Aliphatic Epoxy Resin and Salt of Lithium Perchlorate.

    PubMed

    Matkovska, Liubov; Iurzhenko, Maksym; Mamunya, Yevgen; Tkachenko, Igor; Demchenko, Valeriy; Synyuk, Volodymyr; Shadrin, Andriy; Boiteux, Gisele

    2017-12-01

    The article is concerned with hybrid amorphous polymers synthesized basing on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol that was cured by polyethylene polyamine and lithium perchlorate salt. Structural peculiarities of organic-inorganic polymer composites were studied by differential scanning calorimetry, wide-angle X-ray spectra, infrared spectroscopic, scanning electron microscopy, elemental analysis, and transmission and reflective optical microscopy. On the one hand, the results showed that the introduction of LiClO4 salt into epoxy polymer leads to formation of the coordinative metal-polymer complexes of donor-acceptor type between central Li(+) ion and ligand. On the other hand, the appearance of amorphous microinclusions, probably of inorganic nature, was also found.

  1. Structural Peculiarities of Ion-Conductive Organic-Inorganic Polymer Composites Based on Aliphatic Epoxy Resin and Salt of Lithium Perchlorate

    NASA Astrophysics Data System (ADS)

    Matkovska, Liubov; Iurzhenko, Maksym; Mamunya, Yevgen; Tkachenko, Igor; Demchenko, Valeriy; Synyuk, Volodymyr; Shadrin, Andriy; Boiteux, Gisele

    2017-06-01

    The article is concerned with hybrid amorphous polymers synthesized basing on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol that was cured by polyethylene polyamine and lithium perchlorate salt. Structural peculiarities of organic-inorganic polymer composites were studied by differential scanning calorimetry, wide-angle X-ray spectra, infrared spectroscopic, scanning electron microscopy, elemental analysis, and transmission and reflective optical microscopy. On the one hand, the results showed that the introduction of LiClO4 salt into epoxy polymer leads to formation of the coordinative metal-polymer complexes of donor-acceptor type between central Li+ ion and ligand. On the other hand, the appearance of amorphous microinclusions, probably of inorganic nature, was also found.

  2. Inorganic Contaminant Concentrations and Body Condition in Wintering Waterfowl from Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Vest, J.; Conover, M.; Perschon, C.; Luft, J.

    2006-12-01

    The Great Salt Lake (GSL) is the fourth largest terminal lake in the world and is an important region for migratory and breeding waterbirds. Because the GSL is a closed basin, contaminants associated with industrial and urban development may accumulate in this system. Recently, water and sediment samples from the GSL revealed high concentrations of Hg and Se and methylmercury concentrations in GSL water samples were among the highest ever recorded in surface water by the USGS Mercury Laboratory. Thus, GSL waterbirds are likely exposed to these contaminants and elevated contaminant concentrations may adversely affect survival and reproduction in waterfowl. Our objectives were to 1) estimate mercury (Hg), selenium (Se), cadmium (Cd), copper (Cu), and zinc (Zn) concentrations in wintering waterfowl from GSL and, 2) evaluate relationships between measures of waterfowl body condition and internal organ masses (hereafter body condition) with trace metal concentrations. We collected common goldeneye (COGO), northern shoveler (NSHO), and American green-winged teal (AGWT) from the GSL during early winter. We used ICP-MS to analyze liver and muscle tissue samples for contaminant concentrations. We developed species specific regression models for each of 5 condition indices, including ingesta-free plucked body mass (IFPBM), abdominal fat mass, spleen, liver, and pancreas masses. Independent variables were comprised of Hg, Se, Cd, Cu, and Zn and we included sex and age as covariates in each regression. We used Akaike's Information Criterion adjusted for small sample size to select best and competing models. Subsequently, we used partial correlations to depict inverse relationships identified in competing models. Hg concentrations in COGO and NSHO muscle tissue generally exceeded or approached the 1 ppm wet weight (ww) threshold considered unsafe for human consumption in fish and game. Hg concentrations in liver tissue exceeded or were among the highest reported in published

  3. Organic solvent-induced controllable crystallization of the inorganic salt Na3[Au(SO3)2] into ultralong nanobelts and hierarchical microstructures of nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Sen; Tian, Jingqi; Wang, Lei; Li, Hailong; Sun, Xuping

    2011-04-01

    The present paper reports an organic solvent-induced controllable crystallization of a water-soluble inorganic salt Na3[Au(SO3)2] into ultralong nanobelts and hierarchical microstructures of one-dimensional (1D) nanowires. It was found that the morphology of the resulting crystals can be fine tuned by simply varying the experimental parameters, such as the ratios of water to organic solvent and gold salt to organic solvent, as well as the type of organic solvent.The present paper reports an organic solvent-induced controllable crystallization of a water-soluble inorganic salt Na3[Au(SO3)2] into ultralong nanobelts and hierarchical microstructures of one-dimensional (1D) nanowires. It was found that the morphology of the resulting crystals can be fine tuned by simply varying the experimental parameters, such as the ratios of water to organic solvent and gold salt to organic solvent, as well as the type of organic solvent. Electronic supplementary information (ESI) available: EDS and XRD analysis of nanobelts. See DOI: 10.1039/c0nr00690d

  4. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    NASA Astrophysics Data System (ADS)

    Li, W.

    2016-12-01

    Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces absorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the arctic atmosphere, which need to be incorporated into atmospheric chemical models in the arctic troposphere.

  5. Effect of Temperature and Pressure on Ionic Conductivity of PAN-Based Polymer Electrolytes Containing Inorganic Salts

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Isa, K. B. Md.; Osman, Z.

    2010-07-01

    The conducting polymer electrolyte films consisting polyacrylonitrile (PAN) as the host polymer, ethylene carbonate (EC) as a plasticizer, lithium triflate (LiCF3SO3) and sodium triflate (NaCF3SO3) as inorganic salts were prepared by the solution cast technique. The pure PAN film was prepared as a reference. The ionic conductivity for the films is characterized using impedance spectroscopy. The room temperature conductivity for the PAN+24 wt.%EC film, PAN+26 wt.%LiCF3SO3 film, the PAN+24 wt.%NaCF3SO3 film is 3.43×10-11 S cm-1, 3.04×10-4 S cm-1, and 7.13×10-4 S cm-1, respectively. On addition of plasticizer, the room temperature of PAN+LiCF3SO3 and PAN+NaCF3SO3 films increases by one order of magnitude. The conductivity-temperature and conductivity-pressure dependence studies are then performed on the highest conducting film from the unplasticized and plasticized systems in the temperature and pressure range between 303 K and 373 K and 0.01 MPa and 0.09 MPa, respectively. The conductivity-temperature studies indicate the activation energy, Ea for all system decrease with the increase of the conductivity. The activation volume, ΔV* for each system can be determined from the plot of ln σ versus pressure. It can be observed that the ΔV* is decreased as the conductivity increased. This result can be explained in term of free volume.

  6. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-06-01

    Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N- line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

  7. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-10-01

    Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.

  8. Counter-intuitive enhancement in the dissolution of indomethacin with the incorporation of cohesive poorly water-soluble inorganic salt additives.

    PubMed

    Tay, Tracy; Allahham, Ayman; Morton, David A V; Stewart, Peter J

    2011-11-01

    The objective of this work was to investigate the influence of various micronized poorly water-soluble inorganic materials on the dissolution and de-agglomeration behaviour of a micronized, poorly water-soluble model drug, indomethacin, from lactose interactive mixtures. Dissolution of indomethacin was studied using the USP paddle method and the data were modelled with multi-exponential equations using a nonlinear least squares algorithm in order to obtain key parameter estimates. The dispersion of indomethacin mixtures was measured by laser diffraction. The addition of aluminium hydroxide and calcium phosphate to binary mixtures of indomethacin counter-intuitively improved the dissolution rate of indomethacin due to significant increases in both the estimated initial concentration and dissolution rate constant of dispersed particles of indomethacin. While some enhancement was due to pH changes in the dissolution medium, the presence of these poorly water-soluble inorganic salts caused de-agglomeration. Average particle size distributions indicated that the presence of aluminium hydroxide within the matrix of indomethacin had reduced the agglomerate concentration whilst increasing the dispersed particle concentration. These findings provide the first evidence of the ability of poorly water-soluble inorganic salts to enhance the de-agglomeration and dissolution of micronized powders, potentially translating to improved bioavailability of poorly water-soluble drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. One of the Distinctive Properties of Ionic Liquids over Molecular Solvents and Inorganic Salts: Enhanced Basicity Stemming from the Electrostatic Environment and "Free" Microstructure

    SciTech Connect

    Yang, Qiwei; Xing, Huabin; Bao, Zongbi; Su, Baogen; Zhang, Zhiguo; Yang, Yiwen; Dai, Sheng; Ren, Qilong

    2014-01-01

    The basicity of ionic liquids (ILs) underlies many important IL-based processes including the dissolution and conversion of cellulose, the capture of CO2, and metal catalysis. In this work, we have disclosed the nature of the basicity of ILs, i.e., the difference between the basicity of IL and the basicity of the molecular solvent and inorganic salt, through a quantitative electrostatic and electronic analysis of the molecular surface for the first time. The results reveal one of the distinctive properties of ILs (enhanced basicity over molecular solvents and inorganic salts with the same basic site) stemming from their special electrostatic environment and microstructure. The enhancement is significant, from either the electrostatic aspect or the covalent aspect of basicity. The peculiar electrostatic environment of ILs leads to stronger basicity than similar molecular solvents, and the relatively freer microstructure of ILs contributes to the enhancement of basicity over their inorganic analogues. These results are highly instructive for better understanding the unique value of ILs and designing novel ILs to improve the efficiency of basicity-related processes.

  10. The use of laminar inorganic salts to make organic molecules display new properties at the supramolecular level in the solid state

    NASA Astrophysics Data System (ADS)

    Brunet, E.; Alhendawi, H. M. H.; Alonso, M.; Cerro, C.; Jiménez, L.; Juanes, O.; Mata, M. J.; Salvador, A.; Victoria, M.; Rodríguez-Payán, E.; Rodríguez-Ubis, J. C.

    2010-06-01

    The design of porous solids of controlled molecular geometry for umpteen applications is a challenge of enormous technological and scientific importance. The placing of organic molecules between the layers of certain inorganic salts leads to enduring solid materials where the confinement makes the organic molecules change their properties or even display new ones at the supramolecular level. Past and ongoing results of our research group concerning the chemistry of metal phosphates/phosphonates are reviewed in relation with recognition, chemically-driven porosity changes, chiral memory and supramolecular chirality, luminescence signaling, photoinduced electron-transfer, gas storage and drug confinement.

  11. Fast Pyrolysis of Poplar Using a Captive Sample Reactor: Effects of Inorganic Salts on Primary Pyrolysis Products

    SciTech Connect

    Mukarakate, C.; Robichaud, D.; Donohoe, B.; Jarvis, M.; Mino, K.; Bahng, M. K.; Nimlos, M.

    2012-01-01

    We have constructed a captive sample reactor (CSR) to study fast pyrolysis of biomass. The reactor uses a stainless steel wire mesh to surround biomass materials with an isothermal environment by independent controlling of heating rates and pyrolysis temperatures. The vapors produced during pyrolysis are immediately entrained and transported in He carrier gas to a molecular beam mass spectrometer (MBMS). Formation of secondary products is minimized by rapidly quenching the sample support with liquid nitrogen. A range of alkali and alkaline earth metal (AAEM) and transition metal salts were tested to study their effect on composition of primary pyrolysis products. Multivariate curve resolution (MCR) analysis of the MBMS data shows that transition metal salts enhance pyrolysis of carbohydrates and AAEM salts enhances pyrolysis of lignin. This was supported by performing similar separate studies on cellulose, hemicellulose and extracted lignin. The effect of salts on char formation is also discussed.

  12. Simple theoretical model for ion cooperativity in aqueous solutions of simple inorganic salts and its effect on water surface tension.

    PubMed

    Gao, Yi Qin

    2011-11-03

    Careful analysis of experimental data showed that the salt aqueous solution/air surface tension depends on a rather complicated manner of salt composition and points to the importance of ion cooperativity. In this short article, we include the selective binding of anions over cations at interfaces (as revealed from molecular dynamics simulations, spectroscopic measurements, and Record's analysis of the surface tension data) and the anion-cation association (based on the observation of matching water affinity) in a simple theoretical model to understand salt effects on surface tension. The introduction of the surface effect and ion association provides a qualitative explanation of the experimental data, in particular, the strong anion dependence of the cations' rank according to their ability of increasing water surface tension. We hope that the physical insight provided by this study can be used to point to new directions for more detailed studies.

  13. Effect of inorganic salts on the clouding behavior of hydroxypropyl methyl cellulose in presence of amphiphilic drugs.

    PubMed

    Khan, Iqrar Ahmad; Anjum, Kahkashan; Koya, P Ajmal; Kabir-Ud-Din

    2013-03-01

    In this paper we report the effect of two cationic (imipramine hydrochloride (IMP) and promazine hydrochloride (PMZ)) and one anionic (sodium salt of ibuprofen (IBF)) drugs on the clouding behavior of a nonionic polymer hydroxypropyl methyl cellulose (HPMC). Though all the three drugs increase the cloud point (CP) of HPMC, the effect was found to be minimum in the case of IBF. Further, the effect of adding salts (NaF, NaCl, NaBr, NaNO(3), Na(2)SO(4), Na(3)PO(4), KCl, KBr, KNO(3)) in the presence of amphiphilic drugs (IMP and PMZ) on the CP of HPMC was seen. Almost linear decrease in the CP was observed with the [salt] at fixed concentrations of these drugs whereas in the absence of drugs the decrement in the CP was slight. The energetic parameters (ΔG(c)(0), ΔH(c)(0) and TΔS(c)(0)) were evaluated and it implies that the disruption of water structure becomes significantly prominent at lower concentrations of the drugs at fixed salt concentrations.

  14. Modeling wet deposition of inorganics over Northeast Asia with MRI-PM/c and the effects of super large sea salt droplets at near-the-coast stations

    NASA Astrophysics Data System (ADS)

    Kajino, M.; Deushi, M.; Maki, T.; Oshima, N.; Inomata, Y.; Sato, K.; Ohizumi, T.; Ueda, H.

    2012-06-01

    We conducted a regional-scale simulation (with grid spacing = 60 km) over Northeast Asia for the entire year of 2006 by using an aerosol chemical transport model, the lateral and upper boundary concentrations of which we predicted with a global stratospheric and tropospheric chemistry-climate model, with a horizontal resolution of T42 (grid spacing ~300 km) and a time resolution of 1 h. The present one-way nested global-through-regional-scale model is called the Meteorological Research Institute - Passive-tracers Model system for atmospheric Chemistry (MRI-PM/c). We evaluated the model performance with respect to the major inorganic components in rain and snow measured by stations of the Acid Deposition Monitoring Network in East Asia (EANET). Through statistical analysis, we show that the model successfully reproduced the regional-scale processes of emission, transport, transformation, and wet deposition of major inorganic species derived from anthropogenic and natural sources, including SO42-, NH4+, NO3-, Na+ and Ca2+. Interestingly, the only exception was Na+ in precipitation at near-coastal stations (where the distance from the coast was from 150 to 700 m), concentrations of which were significantly underestimated by the model, by up to a factor of 30. This result suggested that the contribution of short-lived, super-large sea salt droplets (SLSD; D > 10-100 μm) was substantial in precipitation samples at stations near the coast of Japan; thus samples were horizontally representative only within the traveling distances of SLSD (from 1 to 10 km). Nevertheless, the calculated effect of SLSD on precipitation pH was very low, a change of about +0.014 on average, even if the ratio of SLSD to all sea salt in precipitation was assumed to be 90%.

  15. Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Sopajaree, Khajornsak; Chotruksa, Auranee; Wu, Hsin-Ching; Kuo, Su-Ching

    2013-10-01

    PM10 aerosol was collected between February and April 2010 at an urban site (CMU) and an industrial site (TOT) in Chiang Mai, Thailand, and characteristics and provenance of water-soluble inorganic species, carboxylates, anhydrosugars and sugar alcohols were investigated with particular reference to air quality, framed as episodic or non-episodic pollution. Sulfate, a product of secondary photochemical reactions, was the major inorganic salt in PM10, comprising 25.9% and 22.3% of inorganic species at CMU and TOT, respectively. Acetate was the most abundant monocarboxylate, followed by formate. Oxalate was the dominant dicarboxylate. A high acetate/formate mass ratio indicated that primary traffic-related and biomass-burning emissions contributed to Chiang Mai aerosols during episodic and non-episodic pollution. During episodic pollution carboxylate peaks indicated sourcing from photochemical reactions and/or directly from traffic-related and biomass burning processes and concentrations of specific biomarkers of biomass burning including water-soluble potassium, glutarate, oxalate and levoglucosan dramatically increased. Levoglucosan, the dominant anhydrosugar, was highly associated with water-soluble potassium (r = 0.75-0.79) and accounted for 93.4% and 93.7% of anhydrosugars at CMU and TOT, respectively, during episodic pollution. Moreover, levoglucosan during episodic pollution was 14.2-21.8 times non-episodic lows, showing clearly that emissions from biomass burning are the major cause of PM10 episodic pollution in Chiang Mai. Additionally, the average levoglucosan/mannosan mass ratio during episodic pollution was 14.1-14.9, higher than the 5.73-7.69 during non-episodic pollution, indicating that there was more hardwood burning during episodic pollution. Higher concentrations of glycerol and erythritol during episodic pollution further indicate that biomass burning activities released soil biota from forest and farmland soils.

  16. Fractionation of protein, RNA, and plasmid DNA in centrifugal precipitation chromatography using cationic surfactant CTAB containing inorganic salts NaCl and NH(4)Cl.

    PubMed

    Tomanee, Panarat; Hsu, James T; Ito, Yoichiro

    2004-10-05

    Centrifugal precipitation chromatography (CPC) is a separation system that mainly employs a moving concentration gradient of precipitating agent along a channel and solutes of interest undergo repetitive precipitation-dissolution, fractionate at different locations, and elute out from the channel according to their solubility in the precipitating agent solution. We report here for the first time the use of a CPC system for fractionation of protein, RNA, and plasmid DNA in clarified lysate produced from bacterial culture. The cationic surfactant cetyltrimethylammonium bromide (CTAB) was initially used as a precipitating agent; however, all biomolecules showed no differential solubility in the moving concentration gradient of this surfactant and, as a result, no separation of protein, RNA, and plasmid DNA occurred. To overcome this problem, inorganic salts such as NaCl and NH(4)Cl were introduced into solution of CTAB. The protein and RNA were found to have higher solubility with the addition of these salts and separated from the plasmid DNA. Decreasing surface charge density of CTAB upon addition of NaCl and NH(4)Cl was believed to lead to lower surfactant complexation, and therefore caused differential solubility and fractionation of these biomolecules. Addition of CaCl(2) did not improve solubility and separation of RNA from plasmid DNA.

  17. A comparison of the effect of certain inorganic salts on suppression acute skin irritation by human biometric assay: A randomized, double-blind clinical trial

    PubMed Central

    Fatemi, Sayedali; Jafarian-Dehkordi, Abbas; Hajhashemi, Valiollah; Asilian-Mahabadi, Ali; Nasr-Esfahani, Mohammad Hossein

    2016-01-01

    Background: Strontium, zinc, and potassium salts have been demonstrated to inhibit irritation and inflammation when applied topically. Particularly, strontium chloride (SC) and potassium nitrate (KN) are reported to reduce skin and tooth sensitivity. The aim of the present study was to compare the anti-irritant effects of four inorganic salts and assign the ingredient which can suppress skin irritation due to chemical or environmental exposure, more effectively. We compared the anti-inflammatory effects of SC, strontium nitrate (SN), KN, and zinc chloride (ZC). Materials and Methods: This double-blind trial was conducted on 32 healthy volunteers with sensitive skin. Irritation was induced by 24 h exposure with 1.0% sodium lauryl sulfate on arms. Treatments were applied by an ointment of SN, SC hexahydrate, KN, and ZC and their 1%, 3%, and 5% (w/v) concentrations were prepared. The dosage was twice daily for 6 days to the irritated areas. Skin reactions were evaluated instrumentally. Results: SC had a beneficial effect that was significant overall. All other treatments exert a protective effect in skin barrier function but not significantly. With the exception of ZC, all test substances improved skin hydration but the effect of SC was significant. In respect of colorimetric assessment, all treatments, excluding ZC, reduced erythema significantly compared with an untreated control 7 days after treatment start. There was no support for a dose-response effect. Conclusion: Analysis of the biometric measurements revealed that the strontium salts are best, not treating is worst, and there is little difference between the other treatments. Hence, the skin care products containing SC and SN may reduce the signs and symptoms of irritant contact dermatitis. PMID:28250779

  18. Effects of a rainstorm high in sea-salts on labile inorganic aluminium in drainage from the acidified catchments of Lake Terjevann, southernmost Norway

    NASA Astrophysics Data System (ADS)

    Andersen, D. O.; Seip, H. M.

    1999-10-01

    The acidification of many streams and lakes that has occurred in southern Norway during several decades is to a large extent caused by acid deposition. However, in coastal areas deposition events with high loading of sea-salts may result in increased acidity and aluminium concentration in the discharge. Since such episodes are difficult to predict and usually of short duration, the aluminium chemistry during such episodes has so far not been evaluated in detail. In January 1993, during monitoring of streams in the Lake Terjevann catchment, the area was exposed to an extraordinary high sea-salt loading. The Cl - concentration in the stream water more than doubled (reaching about 900 μeq/l), the labile inorganic aluminium (Al i) concentration almost quadrupled (reaching about 33 and 18 μM in the two streams), and the relative increase in the Al 3+ concentration was even higher. It took 3-4 months until the Al i concentration and almost a year until the Cl - concentration returned to pre-event levels. Simple equilibria with minerals such as gibbsite, jurbanite, kaolinite/halloysite or imogolite do not control aluminium concentration in the discharge from these catchments. Retention of Na + more than compensated for the desorption of Al 3+. The results strongly indicate that cation exchange in the organic soil layers was essential in controlling the aluminium chemistry in the stream waters especially during high flow. Similar, but less pronounced, effects of the sea-salt episode were seen at the Birkenes catchment about 37 km inland from Lake Terjevann.

  19. Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts

    USGS Publications Warehouse

    Henneberry, Y.K.; Kraus, T.E.C.; Fleck, J.A.; Krabbenhoft, D.P.; Bachand, P.M.; Horwath, W.R.

    2011-01-01

    The presence of inorganic mercury (IHg) and methylmercury (MeHg) in surface waters is a health concern worldwide. This study assessed the removal potential use of metal-based coagulants as a means to remove both dissolved IHg and MeHg from natural waters and provides information regarding the importance of Hg associations with the dissolved organic matter (DOM) fraction and metal hydroxides. Previous research indicated coagulants were not effective at removing Hg from solution; however these studies used high concentrations of Hg and did not reflect naturally occurring concentrations of Hg. In this study, water collected from an agricultural drain in the Sacramento-San Joaquin Delta was filtered to isolate the dissolved organic matter (DOM) fraction. The DOM was then treated with a range of coagulant doses to determine the efficacy of removing all forms of Hg from solution. Three industrial-grade coagulants were tested: ferric chloride, ferric sulfate, and polyaluminum chloride. Coagulation removed up to 85% of DOM from solution. In the absence of DOM, all three coagulants released IHg into solution, however in the presence of DOM the coagulants removed up to 97% of IHg and 80% of MeHg. Results suggest that the removal of Hg is mediated by DOM-coagulant interactions. There was a preferential association of IHg with the more aromatic, higher molecular weight fraction of DOM but no such relationship was found for MeHg. This study offers new fundamental insights regarding large-scale removal of Hg at environmentally relevant regarding large-scale removal of Hg at environmentally relevant concentrations.

  20. Screening and optimization of some inorganic salts for the production of ergot alkaloids from Penicillium species using surface culture fermentation process.

    PubMed

    Shahid, Memuna Ghafoor; Nadeem, Muhammad; Baig, Shahjehan; Cheema, Tanzeem Akbar; Atta, Saira; Ghafoor, Gul Zareen

    2016-03-01

    The present study deals with the production of ergot alkaloids from Penicillium commune and Penicillium citrinum, using surface culture fermentation process. Impact of various inorganic salts was tested on the production of ergot alkaloids during the optimization studies of fermentation medium such as impact of various concentration levels of succinic acid, ammonium chloride, MgSO4, FeSO4, ZnSO4, pH and the effect of various incubation time periods was also determined on the production of ergot alkaloids from Penicillium commune and Penicillium citrinum. Highest yield of ergot alkaloids was obtained when Penicillium commune and Penicillium citrinum that were grown on optimum levels of ingredients such as 2 g succinic acid, 1.5 and 2 g NH4Cl, 1.5 g MgSO4, 1 g FeSO4, 1 and 1.5 g ZnSO4 after 21 days of incubation time period using pH 5 at 25(°)C incubation temperature in the fermentation medium. Ergot alkaloids were determined using Spectrophotometry and Thin Layer Chromatography (TLC) techniques.

  1. Dissolved inorganic nitrogen pools and surface flux under different brackish marsh vegetation types, common reed (Phragmites australis) and salt hay (Spartina patens)

    USGS Publications Warehouse

    Windham-Myers, L.

    2005-01-01

    The current expansion of Phragmites australis into the high marsh shortgrass (Spartina patens, Distichlis spicata) communities of eastern U.S. salt marshes provided an opportunity to identify the influence of vegetation types on pools and fluxes of dissolved inorganic nitrogen (DIN). Two brackish tidal marshes of the National Estuarine Research Reserve system were examined, Piermont Marsh of the Hudson River NERR in New York and Hog Island in the Jacques Coustaeu NERR of New Jersey. Pools of DIN in porewater and rates of DIN surface flux were compared in replicated pairs of recently-expanded P. australis and neighboring S. patens-dominated patches on the high marsh surface. Both marshes generally imported nitrate (NO3-) and exported ammonium (NH4+), such that overall DIN was exported. No differences in surface exchange of NO3- or NH4+ were observed between vegetation types. Depth-averaged porewater NH4+ concentrations over the entire growing season were 56% lower under P. australis than under S. patens (average 1.4 vs. 3.2 mg NH4+ L-1) with the most profound differences in November. Porewater profiles showed an accumulation of NH4+ at depth in S. patens and constant low concentrations in P. australis from the soil surface to 50 cm depth, with no significant differences in porewater salinity. Despite these profound differences in porewater, NH 4+ diffusion from soils of P. australis and S. patens were not measurably different, were similar to other published rates, and were well below estimated rates based on passive diffusion alone. Rapid adsorption and uptake by litter and microbes in surface soils of both communities may buffer NH4+ loss to flooding tides in both communities, thereby reducing the impact of P. australis invasion on NH4+ flux to flooding waters. ?? Springer 2005.

  2. Year-round records of sea salt, gaseous, and particulate inorganic bromine in the atmospheric boundary layer at coastal (Dumont d'Urville) and central (Concordia) East Antarctic sites

    NASA Astrophysics Data System (ADS)

    Legrand, Michel; Yang, Xin; Preunkert, Susanne; Theys, Nicolas

    2016-01-01

    Multiple year-round records of bulk and size-segregated compositions of aerosol were obtained at the coastal Dumont d'Urville (DDU) and inland Concordia sites located in East Antarctica. They document the sea-salt aerosol load and composition including, for the first time in Antarctica, the bromide depletion of sea-salt aerosol relative to sodium with respect to seawater. In parallel, measurements of bromide trapped in mist chambers and denuder tubes were done to investigate the concentrations of gaseous inorganic bromine species. These data are compared to simulations done with an off-line chemistry transport model, coupled with a full tropospheric bromine chemistry scheme and a process-based sea-salt production module that includes both sea-ice-sourced and open-ocean-sourced aerosol emissions. Observed and simulated sea-salt concentrations sometime differ by up to a factor of 2 to 3, particularly at DDU possibly due to local wind pattern. In spite of these discrepancies, both at coastal and inland Antarctica, the dominance of sea-ice-related processes with respect to open ocean emissions for the sea-salt aerosol load in winter is confirmed. For summer, observations and simulations point out sea salt as the main source of gaseous inorganic bromine species. Investigations of bromide in snow pit samples do not support the importance of snowpack bromine emissions over the Antarctic Plateau. To evaluate the overall importance of the bromine chemistry over East Antarctica, BrO simulations were also discussed with respect data derived from GOME-2 satellite observations over Antarctica.

  3. Physicochemical basis for the inhibitory effects of organic and inorganic salts on the growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum.

    PubMed

    Yaganza, Elian-Simplice; Tweddell, Russell J; Arul, Joseph

    2009-03-01

    Twenty-one salts were tested for their effects on the growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum. In liquid medium, 11 salts (0.2 M) exhibited strong inhibition of bacterial growth. The inhibitory action of salts relates to the water-ionizing capacity and the lipophilicity of their constituent ions.

  4. Physicochemical Basis for the Inhibitory Effects of Organic and Inorganic Salts on the Growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum▿

    PubMed Central

    Yaganza, Elian-Simplice; Tweddell, Russell J.; Arul, Joseph

    2009-01-01

    Twenty-one salts were tested for their effects on the growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum. In liquid medium, 11 salts (0.2 M) exhibited strong inhibition of bacterial growth. The inhibitory action of salts relates to the water-ionizing capacity and the lipophilicity of their constituent ions. PMID:19114504

  5. Observations and implications of liquid-liquid phase separation at high relative humidities in secondary organic material produced by α-pinene ozonolysis without inorganic salts

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Song, Mijung; Marcolli, Claudia; Zhang, Yue; Liu, Pengfei F.; Grayson, James W.; Geiger, Franz M.; Martin, Scot T.; Bertram, Allan K.

    2016-07-01

    Particles consisting of secondary organic material (SOM) are abundant in the atmosphere. To predict the role of these particles in climate, visibility and atmospheric chemistry, information on particle phase state (i.e., single liquid, two liquids and solid) is needed. This paper focuses on the phase state of SOM particles free of inorganic salts produced by the ozonolysis of α-pinene. Phase transitions were investigated in the laboratory using optical microscopy and theoretically using a thermodynamic model at 290 K and for relative humidities ranging from < 0.5 to 100 %. In the laboratory studies, a single phase was observed from 0 to 95 % relative humidity (RH) while two liquid phases were observed above 95 % RH. For increasing RH, the mechanism of liquid-liquid phase separation (LLPS) was spinodal decomposition. The RH range over which two liquid phases were observed did not depend on the direction of RH change. In the modeling studies, the SOM took up very little water and was a single organic-rich phase at low RH values. At high RH, the SOM underwent LLPS to form an organic-rich phase and a water-rich phase, consistent with the laboratory studies. The presence of LLPS at high RH values can have consequences for the cloud condensation nuclei (CCN) activity of SOM particles. In the simulated Köhler curves for SOM particles, two local maxima were observed. Depending on the composition of the SOM, the first or second maximum can determine the critical supersaturation for activation. Recently researchers have observed inconsistencies between measured CCN properties of SOM particles and hygroscopic growth measured below water saturation (i.e., hygroscopic parameters measured below water saturation were inconsistent with hygroscopic parameters measured above water saturation). The work presented here illustrates that such inconsistencies are expected for systems with LLPS when the water uptake at subsaturated conditions represents the hygroscopicity of an organic

  6. Observations and implications of liquid–liquid phase separation at high relative humidities in secondary organic material produced by α-pinene ozonolysis without inorganic salts

    SciTech Connect

    Renbaum-Wolff, Lindsay; Song, Mijung; Marcolli, Claudia; Zhang, Yue; Liu, Pengfei F.; Grayson, James W.; Geiger, Franz M.; Martin, Scot T.; Bertram, Allan K.

    2016-07-01

    Particles consisting of secondary organic material (SOM) are abundant in the atmosphere. In order to predict the role of these particles in climate, visibility and atmospheric chemistry, information on particle phase state (i.e., single liquid, two liquids and solid) is needed. Our paper focuses on the phase state of SOM particles free of inorganic salts produced by the ozonolysis of α-pinene. Phase transitions were investigated in the laboratory using optical microscopy and theoretically using a thermodynamic model at 290 K and for relative humidities ranging from < 0.5 to 100%. In the laboratory studies, a single phase was observed from 0 to 95% relative humidity (RH) while two liquid phases were observed above 95% RH. For increasing RH, the mechanism of liquid–liquid phase separation (LLPS) was spinodal decomposition. The RH range over which two liquid phases were observed did not depend on the direction of RH change. In the modeling studies, the SOM took up very little water and was a single organic-rich phase at low RH values. At high RH, the SOM underwent LLPS to form an organic-rich phase and a water-rich phase, consistent with the laboratory studies. The presence of LLPS at high RH values can have consequences for the cloud condensation nuclei (CCN) activity of SOM particles. In the simulated Köhler curves for SOM particles, two local maxima were observed. Depending on the composition of the SOM, the first or second maximum can determine the critical supersaturation for activation. Recently researchers have observed inconsistencies between measured CCN properties of SOM particles and hygroscopic growth measured below water saturation (i.e., hygroscopic parameters measured below water saturation were inconsistent with hygroscopic parameters measured above water saturation). Furthermore, the work presented here illustrates that such inconsistencies are expected for systems with LLPS when the water uptake at subsaturated conditions represents the

  7. Observations and implications of liquid–liquid phase separation at high relative humidities in secondary organic material produced by α-pinene ozonolysis without inorganic salts

    DOE PAGES

    Renbaum-Wolff, Lindsay; Song, Mijung; Marcolli, Claudia; ...

    2016-07-01

    Particles consisting of secondary organic material (SOM) are abundant in the atmosphere. In order to predict the role of these particles in climate, visibility and atmospheric chemistry, information on particle phase state (i.e., single liquid, two liquids and solid) is needed. Our paper focuses on the phase state of SOM particles free of inorganic salts produced by the ozonolysis of α-pinene. Phase transitions were investigated in the laboratory using optical microscopy and theoretically using a thermodynamic model at 290 K and for relative humidities ranging from < 0.5 to 100%. In the laboratory studies, a single phase was observed frommore » 0 to 95% relative humidity (RH) while two liquid phases were observed above 95% RH. For increasing RH, the mechanism of liquid–liquid phase separation (LLPS) was spinodal decomposition. The RH range over which two liquid phases were observed did not depend on the direction of RH change. In the modeling studies, the SOM took up very little water and was a single organic-rich phase at low RH values. At high RH, the SOM underwent LLPS to form an organic-rich phase and a water-rich phase, consistent with the laboratory studies. The presence of LLPS at high RH values can have consequences for the cloud condensation nuclei (CCN) activity of SOM particles. In the simulated Köhler curves for SOM particles, two local maxima were observed. Depending on the composition of the SOM, the first or second maximum can determine the critical supersaturation for activation. Recently researchers have observed inconsistencies between measured CCN properties of SOM particles and hygroscopic growth measured below water saturation (i.e., hygroscopic parameters measured below water saturation were inconsistent with hygroscopic parameters measured above water saturation). Furthermore, the work presented here illustrates that such inconsistencies are expected for systems with LLPS when the water uptake at subsaturated conditions represents the

  8. Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Kim, H.; Park, G.; Li, X.; Eom, H.-J.; Ro, C.-U.

    2014-12-01

    crystallized NaCl moiety in the center, surrounded either by the eutonic component (for XNaCl > 0.38) or NaNO3 (for XNaCl ≤ 0.38). During the humidifying or dehydration process, the amount of eutonic composed part drives particle/droplet growth or shrinkage at the MDRH or MERH (second ERH), respectively, and the amount of remnant pure salts (NaCl or NaNO3 in NaCl- or NaNO3-rich particles, respectively) drives the second DRHs or first ERHs, respectively. Therefore, their behavior can be a precursor to the optical properties and direct radiative forcing for these atmospherically relevant mixture particles representing the coarse, reacted inorganic SSAs. In addition, the NaCl-NaNO3 mixture aerosol particles can maintain an aqueous phase over a wider RH range than the genuine SSA surrogate (i.e., pure NaCl particles), making their heterogeneous chemistry more probable.

  9. Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Kim, H.; Park, G.; Li, X.; Eom, H.-J.; Ro, C.-U.

    2015-03-01

    crystallized NaCl moiety in the center, surrounded either by the eutonic component (for XNaCl > 0.38) or NaNO3 (for XNaCl ≤ 0.38). During the humidifying or dehydration process, the amount of eutonic composed part drives particle/droplet growth or shrinkage at the MDRH or MERH (second ERH), respectively, and the amount of pure salts (NaCl or NaNO3 in NaCl- or NaNO3-rich particles, respectively) drives the second DRHs or first ERHs, respectively. Therefore, their behavior can be a precursor to the optical properties and direct radiative forcing for these atmospherically relevant mixture particles representing the coarse, reacted inorganic SSAs. In addition, the NaCl-NaNO3 mixture aerosol particles can maintain an aqueous phase over a wider RH range than pure NaCl particles as SSA surrogate, making their heterogeneous chemistry more probable.

  10. Post-Synthetic Modification of Porphyrin-Encapsulating Metal-Organic Materials by Cooperative Addition of Inorganic Salts to Enhance CO2/CH4 Selectivity

    SciTech Connect

    Zhang, Zhenjie; Gao, Wen-Yang; Wojtas, Lukasz; Ma, Shengqian; Eddaoudi, Mohamed; Zaworotko, Michael J

    2012-11-26

    Keeping MOM: Reaction of biphenyl-3,4',5-tricarboxylate and Cd(NO3)2 in the presence of meso-tetra(N-methyl-4-pyridyl)porphine tetratosylate afforded porph@MOM-11, a microporous metal–organic material (MOM) that encapsulates cationic porphyrins and solvent in alternating open channels. Porph@MOM-11 has cation and anion binding sites that facilitate cooperative addition of inorganic salts (such as M+Cl-) in a stoichiometric fashion.

  11. The influence of the amorphous polymer on conductivity, morphologies and thermal properties of polyether-based blends with addition of inorganic salt

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Sim, L. H.; Kammer, H. W.; Tan, W.

    2012-06-01

    Thermodynamic control of the dispersion of lithium (Li) salt in different phases of semicrystalline/amorphous polymer blends is elucidated in this study. Solid polymer electrolytes of poly(ethylene oxide) (PEO), epoxidized natural rubber (ENR), random copolymer of poly(acrylate) (PAc) and as well as polymer blends of PEO with ENR and PAc doped with various concentrations of Li salt were studied. The salt concentrations (CLi) of solid polymer electrolytes vary between CLi = 0.02 and 0.15. The influence of the ENR or PAc on the properties of PEO after addition of Li salt is discussed. Blends of PEO/ENR and PEO/PAc are immiscible by elucidation of the glass transition temperature (Tg) as well as the morphological analyses. PEO, ENR and PAc possess oxygen in their respective chemical structures, which may be able to coordinate with the Li salt added. Non uniformity of Li salt concentration in different phases of the blends is highlighted for both systems. The conductivity of PEO/ENR and PEO/PAc blends doped with Li salt is primarily governed by PEO. The results for Tg suggest that higher solubility of Li salt in PEO as compared to ENR in the former case and restricted ion transport in the glassy PAc (with Tg≈30°C after addition of Li salt in the latter system. These may be the attributing factors for the enhancement of conductivity of the doped-PEO/ENR blends as compared to that of the doped-PEO/PAc blends. This suggests that PEO exhibits greater extent of complexation with LiClO4 as compared to that of the ENR and PAc as supported by Fourier-transform infra-red (FTIR) studies.

  12. Inorganic Halogen Oxidizer Research.

    DTIC Science & Technology

    1982-04-21

    nitrogen from composition of NF 4CIO 4. The FOCIO 3, prepared in this a liquid nitrogen drs ice slush used to cool the reaction cylinder, the manner...as metastable solid, which underwent decotipositiot to the ic rresjstnding 11i0* salts and 02 in the temperature range 20 50 O( t he It (t* salts were...34, Vol. 4. Masson et Cie, Paris, 1975. Trans. 2. 72. 1298 (1976). C -9/c- IC APPENDIX D IReprinted from Inorganic Chemistry, 18, 2572 (1979).1 Copyright

  13. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 1: Organic compounds and water by consideration of short- and long-range effects using X-UNIFAC.1

    NASA Astrophysics Data System (ADS)

    Erdakos, Garnet B.; Asher, William E.; Seinfeld, John H.; Pankow, James F.

    The semi-empirical group contribution method (GCM) of Kikic et al. [Chem. Eng. Sci. 46 (1991) 2775-2780] for estimating activity coefficient ( ζ) values of neutral organic compounds and water in solutions composed of organic compounds, dissolved inorganic salts, and water is adapted for application to atmospheric particulate matter (PM). It is assumed that ζ values are determined by a combination of short- and long-range interactions. The ζ expression involves conventional UNIFAC terms and a Debye-Hückel term, with the former computed using group-group interaction parameters. Organic-organic interaction parameters are assigned the values from the UNIFAC-LLE model of Magnussen et al. [Ind. Eng. Chem. Process Design Develop. 20 (1981) 331-339]. Forty interaction parameters (ion-solvent group and anion-cation) were obtained from Kikic et al. [Chem. Eng. Sci. 46 (1991) 2775-2780], Achard et al. [Fluid Phase Equilibria 98 (1994) 71-89], and Ming and Russell [Am. Inst. Chem. Eng. J. 48 (2002) 1331-1348]. Twenty additional interaction parameters (ion-solvent group) are estimated based on 879 UNIQUAC-fitted ζ values for organic compounds and water. The fitted ζ values are based on liquid-liquid equilibrium (LLE) data for a range of ternary and quaternary organic/inorganic salt/water mixtures at 293-308 K. The UNIQUAC fits are analogous to those described by Fredenslund et al. [Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method, Elsevier Scientific Publishing, New York, 1977]. The LLE mixture compositions range from primarily organic solutions to primarily aqueous solutions with maximum ionic strengths of ˜5 mol kg -1. The groups characteristic of organic compounds found in atmospheric PM considered here include: CH 3-, -CH 2-, -CH|-, -C||-, -OH, -CH 2CO-, and -COOH. These are: single bonded carbon with three, two, one, and zero hydrogens, respectively, hydroxyl, -CH 2-carbonyl, and carboxyl, respectively. The inorganic salts

  14. Two novel organic-inorganic hybrid materials from tetrachloridometallate(II) salts and 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium.

    PubMed

    Campos-Gaxiola, José J; Arredondo Rea, Susana P; Corral Higuera, Ramón; Höpfl, Herbert; Cruz Enríquez, Adriana

    2015-01-01

    Two organic-inorganic hybrid compounds have been prepared by the combination of the 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium cation with perhalometallate anions to give 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4-[(E)-2-(pyridin-1-ium-2-yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single-crystal X-ray diffraction analysis, showing the formation of a three-dimensional network through X-H...ClnM(-) (X = C, N(+); n = 1, 2; M = Co(II), Zn(II)) hydrogen-bonding interactions and π-π stacking interactions. The title compounds were also characterized by FT-IR spectroscopy and thermogravimetric analysis (TGA).

  15. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    NASA Astrophysics Data System (ADS)

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J. B.; Cano, F. J.; Lapeña, N.

    2015-08-01

    Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an oxidation process occurred in the vicinity of the alloy's intermetallic particles. The amount of the Zr deposits at these locations increased with coating's formulations without Ti, which provided the best corrosion resistance. The Cr-free conversion coatings developed in this study for the AA7075-T6 and AA2024-T3 alloys do not meet yet the strict requirements of the aircraft industry. However, they significantly improved the corrosion

  16. Toxicological review of inorganic phosphates.

    PubMed

    Weiner, M L; Salminen, W F; Larson, P R; Barter, R A; Kranetz, J L; Simon, G S

    2001-08-01

    Inorganic phosphate salts are widely used as food ingredients and in a variety of commercial applications. The United States Food and Drug Administration (FDA) considers inorganic phosphates "Generally Recognized As Safe" (GRAS) (FDA, 1973a, 1979) [FDA: Food and Drug Administration 1973a. GRAS (Generally Recognized as Safe) food ingredients-phosphates. NTIS PB-221-224, FDA, Food and Drug Administration, 1979. Phosphates; Proposed Affirmation of and Deletion From GRAS Status as Direct and Human Food Ingredients. Federal Register 44 (244). 74845-74857, 18 December (1979)] and the European Union (EU) allows inorganic phosphates to be added directly to food (EU Directive 95/2/EC as amended by 98/72/EC). In this review, data on the acute, subchronic and chronic toxicity, genotoxicity, teratogenicity and reproductive toxicity from the published literature and from unpublished studies by the manufacturers are reviewed. Based on the toxicity data and similar chemistry, the inorganic phosphates can be separated into four major classes, consisting of monovalent salts, divalent salts, ammonium salts and aluminum salts. The proposed classification scheme supports the use of toxicity data from one compound to assess the toxicity of another compound in the same class. However, in the case of eye and skin irritation, the proposed classification scheme cannot be used because a wide range of responses exists within each class. Therefore, the eye and skin hazards associated with an individual inorganic phosphate should be assessed on a chemical-by-chemical basis. A large amount of toxicity data exists for all four classes of inorganic phosphates. The large and comprehensive database allows an accurate assessment of the toxicity of each class of inorganic phosphate. Overall, all four classes of inorganic phosphates exhibit low oral, inhalation and dermal toxicities. Based on these data, humans are unlikely to experience adverse effects when the daily phosphorus consumption remains

  17. Unprecedented conformational variability in main group inorganic chemistry: the tetraazidoarsenite and -antimonite salts A+ [M(N3)4]- (A = NMe4, PPh4, (Ph3P)2N; M = As, Sb), five similar salts, five different anion structures.

    PubMed

    Haiges, Ralf; Rahm, Martin; Christe, Karl O

    2013-01-07

    A unique example for conformational variability in inorganic main group chemistry has been discovered. The arrangement of the azido ligands in the pseudotrigonal bipyramidal [As(N(3))(4)](-) and [Sb(N(3))(4)](-) anions theoretically can give rise to seven different conformers which have identical MN(4) skeletons but different azido ligand arrangements and very similar energies. We have now synthesized and structurally characterized five of these conformers by subtle variations in the nature of the counterion. Whereas conformational variability is common in organic chemistry, it is rare in inorganic main group chemistry and is usually limited to two. To our best knowledge, the experimental observation of five distinct single conformers for the same type of anion is unprecedented. Theoretical calculations at the M06-2X/cc-pwCVTZ-PP level for all seven possible basic conformers show that (1) the energy differences between the five experimentally observed conformers are about 1 kcal/mol or less, and (2) the free monomeric anions are the energetically favored species in the gas phase and also for [As(N(3))(4)](-) in the solid state, whereas for [Sb(N(3))(4)](-) associated anions are energetically favored in the solid state and possibly in solutions. Raman spectroscopy shows that in the azide antisymmetric stretching region, the solid-state spectra are distinct for the different conformers, and permits their identification. The spectra of solutions are solvent dependent and differ from those of the solids indicating the presence of rapidly exchanging equilibria of different conformers. The only compound for which a solid with a single well-ordered conformer could not be isolated was [N(CH(3))(4)][As(N(3))(4)] which formed a viscous, room-temperature ionic liquid. Its Raman spectrum was identical to that of its CH(3)CN solution indicating the presence of an equilibrium of multiple conformers.

  18. Electrophysical behavior of ion-conductive organic-inorganic polymer system based on aliphatic epoxy resin and salt of lithium perchlorate

    NASA Astrophysics Data System (ADS)

    Matkovska, Liubov; Iurzhenko, Maksym; Mamunya, Yevgen; Matkovska, Olga; Demchenko, Valeriy; Lebedev, Eugene; Boiteux, Gisele; Serghei, Anatoli

    2014-12-01

    In the present work, ion-conductive hybrid organic-inorganic polymers based on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol (DEG) and lithium perchlorate (LiClO4) were synthesized. The effect of LiClO4 content on the electrophysical properties of epoxy polymers has been studied by differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). The effect of LiClO4 content on the structure has been studied by wide-angle X-ray scattering (WAXS). It was found that LiClO4 impacts on the structure of the synthesized hybrid epoxy polymers, probably, by formation of coordinative complexes {ether oxygen-lithium cations-ether oxygen} as evidenced from a significant increase in their glass transition temperatures with increasing LiClO4 concentration and WAXS studies. The presence of ether oxygen in DEG macromolecules provides a transfer mechanism of the lithium cations with the ether oxygen similar to polyethylene oxide (PEO). Thus, the obtained hybrid polymers have high values of ionic conductivity σ' (approximately 10-3 S/cm) and permittivity ɛ' (6 × 105) at elevated temperatures (200°C). On the other hand, DEG has higher heat resistance compared to PEO that makes these systems perspective as solid polymer electrolytes able to operate at high temperature.

  19. Expanding Mg-Zn hybrid chemistry: inorganic salt effects in addition reactions of organozinc reagents to trifluoroacetophenone and the implications for a synergistic lithium-magnesium-zinc activation.

    PubMed

    Armstrong, David R; Clegg, William; García-Álvarez, Pablo; Kennedy, Alan R; McCall, Matthew D; Russo, Luca; Hevia, Eva

    2011-07-18

    Numerous organic transformations rely on organozinc compounds made through salt-metathesis (exchange) reactions from organolithium or Grignard reagents with a suitable zinc precursor. By combining X-ray crystallography, NMR spectroscopy and DFT calculations, this study sheds new light on the constitution of the organometallic species involved in this important synthetic tool. Investigations into the metathesis reactions of equimolar amounts of Grignard reagents (RMgX) and ZnCl(2) in THF led to the isolation of novel magnesium-zinc hybrids, [{(thf)(2)Mg(μ-Cl)(3)ZnR}(2)] (R=Et, tBu, nBu or o-OMe-C(6)H(4)), which exhibit an unprecedented structural motif in mixed magnesium-zinc chemistry. Furthermore, theoretical modelling of the reaction of EtMgCl with ZnCl(2) reveals that formation of the mixed-metal compound is thermodynamically preferred to that of the expected homometallic products, RZnCl and MgCl(2). This study also assesses the alkylating ability of hybrid 3 towards the sensitive ketone trifluoroacetophenone, revealing a dramatic increase in the chemoselectivity of the reaction when LiCl is introduced as an additive. This observation, combined with recent related breakthroughs in synthesis, points towards the existence of a trilateral Li/Mg/Zn synergistic effect.

  20. Comparison of microenvironments of aqueous sodium dodecyl sulfate micelles in the presence of inorganic and organic salts: a time-resolved fluorescence anisotropy approach.

    PubMed

    Dutt, G B

    2005-11-08

    Microenvironments of aqueous sodium dodecyl sulfate (SDS) micelles was examined in the presence of additives such as sodium chloride and p-toluidine hydrochloride (PTHC) by monitoring the fluorescence anisotropy decays of two hydrophobic probes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and coumarin 6 (C6). It has been well-established that SDS micelles undergo a sphere-to-rod transition and that their mean hydrodynamic radius increases from 19 to 100 A upon the addition of 0.0-0.7 M NaCl at 298 K. A similar size and shape transition is induced by PTHC at concentrations that are 20 times lower compared to that of NaCl. This study was undertaken to find out how the microviscosity of the micelles is influenced under these circumstances. It was noticed that the microviscosity of the SDS/NaCl system increased by approximately 45%, whereas there was a less than 10% variation in the microviscosity of the SDS/PTHC system. The large increase in the microviscosity of the former system with salt concentration has been rationalized on the basis of the high concentration of sodium ions in the headgroup region of the micelles and their ability to strongly coordinate with the water present in this region, which decreases the mobility of the probe molecules.

  1. The effectiveness of organic PCM based on lauric acid from coconut oil and inorganic PCM based on salt hydrate CaCl2.6H2o as latent heat energy storage system in Indonesia

    NASA Astrophysics Data System (ADS)

    U, Sri Rahayu A.; Putri, Widya A.; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    A latent heat energy storage system utilizing phase change materials (PCM) is an alternative strategy to reduce the use of Air Conditioning (AC) system in big cities in Indonesia in order for energy conservation in the future. In this research we used two kinds of materials, namely organic PCM based on lauric acid from coconut oil (CO) and inorganic PCM based on salt hydrate CaCl2.6H2O, because they have thermophysical parameters suitable for human's thermal comfort application in the building. The CO which contained more than 50% lauric acid has the melting temperature (Tm ) of about 26 °C and heat entalphy (ΔH) around 103 kJ/kg, while CaCl2.6H2O has the melting point of 29 °C and heat entalphy of 190 kJ/kg. In this paper we report the effectiveness of those two kinds of PCM in reducing the air temperature as one of some criteria for human's thermal comfort. The experiments were performed in a close and adiabatic room and the time-temperature measurements were done automatically using Arduino microcontroller and LM35 temperature sensor connected to the PC.

  2. Free Energetics of Carbon Nanotube Association in Aqueous Inorganic NaI Salt Solutions: Temperature Effects using All-Atom Molecular Dynamics Simulations

    PubMed Central

    Ou, Shu-Ching; Cui, Di; Wezowicz, Matthew; Taufer, Michela; Patel, Sandeep

    2015-01-01

    In this study we examine the temperature dependence of free energetics of nanotube association by using GPU-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intra-tube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation also shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and interpretations of

  3. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all-atom molecular dynamics simulations.

    PubMed

    Ou, Shu-Ching; Cui, Di; Wezowicz, Matthew; Taufer, Michela; Patel, Sandeep

    2015-06-15

    In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and

  4. Arsenic, inorganic

    Integrated Risk Information System (IRIS)

    Arsenic , inorganic ; CASRN 7440 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  5. Bath Salts

    MedlinePlus

    ... Surgery? A Week of Healthy Breakfasts Shyness Bath Salts KidsHealth > For Teens > Bath Salts Print A A ... Someone Quit? Avoiding Bath Salts What Are Bath Salts? The name "bath salts" sounds innocent, but don' ...

  6. Force-controlled inorganic crystallization lithography.

    PubMed

    Cheng, Chao-Min; LeDuc, Philip R

    2006-09-20

    Lithography plays a key role in integrated circuits, optics, information technology, biomedical applications, catalysis, and separation technologies. However, inorganic lithography techniques remain of limited utility for applications outside of the typical foci of integrated circuit manufacturing. In this communication, we have developed a novel stamping method that applies pressure on the upper surface of the stamp to regulate the dewetting process of the inorganic buffer and the evaporation rate of the solvent in this buffer between the substrate and the surface of the stamp. We focused on generating inorganic microstructures with specific locations and also on enabling the ability to pattern gradients during the crystallization of the inorganic salts. This approach utilized a combination of lithography with bottom-up growth and assembly of inorganic crystals. This work has potential applications in a variety of fields, including studying inorganic material patterning and small-scale fabrication technology.

  7. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 2: Consideration of phase separation effects by an X-UNIFAC model

    NASA Astrophysics Data System (ADS)

    Chang, Elsa I.; Pankow, James F.

    A thermodynamic model is presented for predicting the formation of particulate matter (PM) within an aerosol that contains organic compounds, inorganic salts, and water. Neutral components are allowed to partition from the gas phase to the PM, with the latter potentially composed of both a primarily aqueous ( α) liquid phase and a primarily organic ( β) liquid phase. Partitioning is allowed to occur without any artificial restraints: when both α and β PM phases are present, ionic constituents are allowed to partition to both. X-UNIFAC.2, an extended UNIFAC method based on Yan et al. (1999. Prediction of vapor-liquid equilibria in mixed-solvent electrolyte systems using the group contribution concept. Fluid Phase Equilibria 162, 97-113), was developed for activity coefficient estimation. X-UNIFAC.2 utilizes the standard UNIFAC terms, a Debye-Hückel term, and a virial equation term that represents the middle-range (MR) contribution to activity coefficient effects. A large number (234) of MR parameters are already available from Yan et al. (1999). Six additional MR parameters were optimized here to enable X-UNIFAC.2 to account for interactions between the carboxylic acid group and Na +, Cl -, and Ca 2+. Predictions of PM formation were made for a hypothetical sabinene/O 3 system with varying amounts of NaCl in the PM. Predictions were also made for the chamber experiments with α-pinene/O 3 (and CaCl 2 seed) carried out by Cocker et al. (2001. The effect of water on gas-particle partitioning of secondary organic aerosol. Part I. α-pinene/ozone system. Atmospheric Environment 35, 6049-6072); good agreement between the predicted and chamber-measured PM mass concentrations was achieved.

  8. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  9. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  10. Inorganic Electrolytes

    DTIC Science & Technology

    1977-10-01

    thionyl chloride or sulfuryl chloride and the desired salt (anhydrous LiC1, NaCl, CaC1 2 or MgCl2 ) was then added to form the complex. LiAlCl4 was...in MgCl2 ) is less than 1.0 and the trans- ference number for anions is greater than zero.26 Thus on discharge of a Ca anode in SOC1 2 , part of the... BaCl2 solution to the leach. A substance was present which would reduce MnO" at pH - 5 for cells discharged at -20 C, but not at -10°, +120, or 25 C

  11. Molecular biology of cyanobacterial salt acclimation.

    PubMed

    Hagemann, Martin

    2011-01-01

    High and changing salt concentrations represent major abiotic factors limiting the growth of microorganisms. During their long evolution, cyanobacteria have adapted to aquatic habitats with various salt concentrations. High salt concentrations in the medium challenge the cell with reduced water availability and high contents of inorganic ions. The basic mechanism of salt acclimation involves the active extrusion of toxic inorganic ions and the accumulation of compatible solutes, including sucrose, trehalose, glucosylglycerol, and glycine betaine. The kinetics of these physiological processes has been exceptionally well studied in the model Synechocystis 6803, leading to the definition of five subsequent phases in reaching a new salt acclimation steady state. Recent '-omics' technologies using the advanced model Synechocystis 6803 have revealed a comprehensive picture of the dynamic process of salt acclimation involving the differential expression of hundreds of genes. However, the mechanisms involved in sensing specific salt stress signals are not well resolved. In the future, analysis of cyanobacterial salt acclimation will be directed toward defining the functions of the many unknown proteins upregulated in salt-stressed cells, identifying specific salt-sensing mechanisms, using salt-resistant strains of cyanobacteria for the production of bioenergy, and applying cyanobacterial stress genes to improve the salt tolerance of sensitive organisms.

  12. Molten Salt Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Maru, H. C.; Dullea, J. F.; Kardas, A.; Paul, L.; Marianowski, L. G.; Ong, E.; Sampath, V.; Huang, V. M.; Wolak, J. C.

    1978-01-01

    The feasibility of storing thermal energy at temperatures of 450 C to 535 C in the form of latent heat of fusion was examined for over 30 inorganic salts and salt mixtures. Alkali carbonate mixtures were chosen as phase-change storage materials in this temperature range because of their relatively high storage capacity and thermal conductivity, moderate cost, low volumetric expansion upon melting, low corrosivity, and good chemical stability. Means of improving heat conduction through the solid salt were explored.

  13. Aqueous SARA ATRP using Inorganic Sulfites.

    PubMed

    Abreu, Carlos M R; Fu, Liye; Carmali, Sheiliza; Serra, Arménio C; Matyjaszewski, Krzysztof; Coelho, Jorge F J

    2017-01-14

    Aqueous supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) using inorganic sulfites was successfully carried out for the first time. Under optimized conditions, a well-controlled poly[oligo(ethylene oxide) methyl ether acrylate] (POEOA) was obtained with <30 ppm of soluble copper catalyst using tris(2-pyridylmethyl)amine (TPMA) ligand in the presence of an excess of halide salts (e.g. NaCl). Inorganic sulfites (e.g. Na2S2O4) were continuously fed into the reaction mixture. The mechanistic studies proved that these salts can activate alkyl halides directly and regenerate the activator complex. The effects of the feeding rate of the SARA agent (inorganic sulfites), ligand and its concentration, halide salt and its concentration, sulfite used, and copper concentration, were systematically studied to afford fast polymerizations rates while maintaining the control over polymerization. The kinetic data showed linear first-order kinetics, linear evolution of molecular weights with conversion, and polymers with narrow molecular weight distributions (Đ ~1.2) during polymerization even at relatively high monomer conversions (~80%). "One-pot" chain extension and "one-pot" block copolymerization experiments proved the high chain-end functionality. The polymerization could be directly regulated by starting or stopping the continuous feeding of the SARA agent. Under biologically relevant conditions, the aqueous SARA ATRP using inorganic sulfites was used to synthesize a well-defined protein-polymer hybrid by grafting of P(OEOA480) from BSA-O-[iBBr]30.

  14. Remote Monitoring, Inorganic Monitoring

    EPA Science Inventory

    This chapter provides an overview of applicability, amenability, and operating parameter ranges for various inorganic parameters:this chapter will also provide a compilation of existing and new online technologies for determining inorganic compounds in water samples. A wide vari...

  15. Remote Monitoring, Inorganic Monitoring

    EPA Science Inventory

    This chapter provides an overview of applicability, amenability, and operating parameter ranges for various inorganic parameters:this chapter will also provide a compilation of existing and new online technologies for determining inorganic compounds in water samples. A wide vari...

  16. Inorganic nanolayers: structure, preparation, and biomedical applications

    PubMed Central

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  17. Inorganic nanolayers: structure, preparation, and biomedical applications.

    PubMed

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  18. Organic ionic salt draw solutions for osmotic membrane bioreactors.

    PubMed

    Bowden, Katie S; Achilli, Andrea; Childress, Amy E

    2012-10-01

    This investigation evaluates the use of organic ionic salt solutions as draw solutions for specific use in osmotic membrane bioreactors. Also, this investigation presents a simple method for determining the diffusion coefficient of ionic salt solutions using only a characterized membrane. A selection of organic ionic draw solutions underwent a desktop screening process before being tested in the laboratory and evaluated for performance using specific salt flux (reverse salt flux per unit water flux), biodegradation potential, and replenishment cost. Two of the salts were found to have specific salt fluxes three to six times lower than two commonly used inorganic draw solutions, NaCl and MgCl(2). All of the salts tested have organic anions with the potential to degrade in the bioreactor as a carbon source and aid in nutrient removal. Results demonstrate the potential benefits of organic ionic salt draw solutions over currently implemented inorganics in osmotic membrane bioreactor systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. INNER SALTS

    DTIC Science & Technology

    been characterized include: (1) mesomeric phosphonium salts possessing phototropic properties; (2) pentavalent phosphorus compounds; and (3) a...Products that have been characterized include: (1) mesomeric phosphonium salts possessing phototropic properties; (2) pentavalent phosphorus compounds; and (3) a mesomeric inner salt. (Author)

  20. Thermodynamics and Solubilities of Salts of Dipositive Ions.

    ERIC Educational Resources Information Center

    Riley, Gary F.; Eberhardt, William H.

    1979-01-01

    In this general chemistry experiment students calculate changes in free energy of formation of inorganic salts from the free energy of formation of ions. Then they test the conclusions of their calculations by mixing solutions of the ions. (BB)

  1. Thermodynamics and Solubilities of Salts of Dipositive Ions.

    ERIC Educational Resources Information Center

    Riley, Gary F.; Eberhardt, William H.

    1979-01-01

    In this general chemistry experiment students calculate changes in free energy of formation of inorganic salts from the free energy of formation of ions. Then they test the conclusions of their calculations by mixing solutions of the ions. (BB)

  2. Inorganic contents of peats

    SciTech Connect

    Raymond, R. Jr.; Bish, D.L.; Cohen, A.D.

    1988-02-01

    Peat, the precursor of coal, is composed primarily of plant components and secondarily of inorganic matter derived from a variety of sources. The elemental, mineralogic, and petrographic composition of a peat is controlled by a combination of both its botanical and depositional environment. Inorganic contents of peats can vary greatly between geographically separated peat bogs as well as vertially and horizontally within an individual bog. Predicting the form and distribution of inorganic matter in a coal deposit requires understanding the distribution and preservation of inorganic matter in peat-forming environments and diagenetic alterations affecting such material during late-stage peatification and coalification processes. 43 refs., 4 figs., 3 tabs.

  3. Design of a new family of inorganic compounds Ae2F2SnX3 (Ae = Sr, Ba; X = S, Se) using rock salt and fluorite 2D building blocks.

    PubMed

    Kabbour, Houria; Cario, Laurent; Danot, Michel; Meerschaut, Alain

    2006-01-23

    We could predict the structure of a new family of compounds Ae(2)F(2)SnX(3) (Ae = Sr, Ba; X = S, Se) from the stacking of known 2D building blocks of the rock salt and fluorite types. With a high-temperature ceramic method we have then succeeded to synthesize the four compounds Ba(2)F(2)SnS(3), Ba(2)F(2)SnSe(3), Sr(2)F(2)SnS(3), and Sr(2)F(2)SnSe(3). The structure refinements from X-ray powder diffraction patterns have confirmed the structure predictions and showed their good accuracy. The structure of the four compounds results from the alternated stacking of fluorite [Ae(2)F(2)] (Ae = Sr, Ba) and distorted rock salt [SnX(3)] (X = S, Se) 2D building blocks. As shown by band structure calculations, these blocks behave as a charge reservoir and a charge acceptor, respectively. Sr(2)F(2)SnS(3) and Ba(2)F(2)SnS(3) are transparent with optical gaps of 3.06 and 3.21 eV, respectively. However, an attempt to obtain a transparent conductor by substituting Ba per La in Ba(2)F(2)SnS(3) was unsuccessful.

  4. An Equilibrium and Kinetic Investigation of Salt-Cycloamylose Complexes

    DTIC Science & Technology

    1976-12-08

    Coneinut on reverse aide It necessary and identify by blo * number) Equilibrium constants inorganic anions Rate constants Ultrasonic relaxation Inclusion...The equilibrium constants and rate constants for the formation of inclusion complexes of cycloheptaamylose with small inorganic anions were measured by...of cyclo- amylose chemistry. Recently, equilibrium constants for cyclohexaamylose, sometimes denoted by a-CD, with various Tnorganic salts were

  5. Biosynthetic inorganic chemistry.

    PubMed

    Lu, Yi

    2006-08-25

    Inorganic chemistry and biology can benefit greatly from each other. Although synthetic and physical inorganic chemistry have been greatly successful in clarifying the role of metal ions in biological systems, the time may now be right to utilize biological systems to advance coordination chemistry. One such example is the use of small, stable, easy-to-make, and well-characterized proteins as ligands to synthesize novel inorganic compounds. This biosynthetic inorganic chemistry is possible thanks to a number of developments in biology. This review summarizes the progress in the synthesis of close models of complex metalloproteins, followed by a description of recent advances in using the approach for making novel compounds that are unprecedented in either inorganic chemistry or biology. The focus is mainly on synthetic "tricks" learned from biology, as well as novel structures and insights obtained. The advantages and disadvantages of this biosynthetic approach are discussed.

  6. New inorganic materials

    SciTech Connect

    Birchall, J.D.; Kelly, A.

    1983-05-01

    Inorganic chemistry is preparing to contribute to the conservation of energy and of hydrocarbons by manipulating inorganic chemical compounds at low temperature. In this regard cement preparation and qualities are extensively discussed. Related techniques with regard to glasses are mentioned. The manipulation of inorganic compounds at low temperature is being aided by advances in the understanding of material properties such as porosity. Interestingly, the importance of the control of porosity had not emerged from all the previous work on high-temperature methods of fabrication. It may be too early to speak of a new Neolithic age, but its beginnings are clearly with us.

  7. Improved Arene Fluorination Methodology for I(III) Salts

    PubMed Central

    Wang, Bijia; Qin, Linlin; Neumann, Kiel D.; Uppaluri, ShriHarsha; Cerny, Ronald L.; DiMagno, Stephen G.

    2010-01-01

    The use of low polarity aromatic solvents (benzene or toluene) and/or the removal of inorganic salts results in dramatically improved yields of fluorinated arenes from diaryliodonium salts. This methodology is shown to “scale down” to the conditions used typically for radiotracer synthesis. PMID:20617820

  8. Science Update: Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  9. Science Update: Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  10. Estimation of inorganic species aquatic toxicity

    USGS Publications Warehouse

    Hickey, James P.; Ostrander, Gary K.

    2005-01-01

    The acute aquatic toxicities (narcoses) for a range of organism types may be estimated with LSER for a large number of inorganic and organometal species, many with an accuracy at or within an order of magnitude. Optimum estimations make use of a bioavailable metal fraction and a more accurate structure(s) for the toxic solution species. The estimated toxicities for a number of salts were quite different from the observed values, likely due to a dominant specific toxicity mechanism other than baseline narcosis. The tool still requires fine-tuning.

  11. Molecular dynamics simulations of nonpolarizable inorganic salt solution interfaces: NaCl, NaBr, and NaI in transferable intermolecular potential 4-point with charge dependent polarizability (TIP4P-QDP) water

    PubMed Central

    Bauer, Brad A.; Patel, Sandeep

    2010-01-01

    We present molecular dynamics simulations of the liquid-vapor interface of 1M salt solutions of nonpolarizable NaCl, NaBr, and NaI in polarizable transferable intermolecular potential 4-point with charge dependent polarizability water [B. A. Bauer , J. Chem. Theory Comput. 5, 359 (2009)]; this water model accommodates increased solvent polarizability (relative to the condensed phase) in the interfacial and vapor regions. We employ fixed-charge ion models developed in conjunction with the TIP4P-QDP water model to reproduce ab initio ion-water binding energies and ion-water distances for isolated ion-water pairs. The transferability of these ion models to the condensed phase was validated with hydration free energies computed using thermodynamic integration (TI) and appropriate energy corrections. Density profiles of Cl−, Br−, and I− exhibit charge layering in the interfacial region; anions and cation interfacial probabilities show marked localization, with the anions penetrating further toward the vapor than the cations. Importantly, in none of the cases studied do anions favor the outermost regions of the interface; there is always an aqueous region between the anions and vapor phase. Observed interfacial charge layering is independent of the strength of anion-cation interactions as manifest in anion-cation contact ion pair peaks and solvent separated ion pair peaks; by artificially modulating the strength of anion-cation interactions (independent of their interactions with solvent), we find little dependence on charge layering particularly for the larger iodide anion. The present results reiterate the widely held view of the importance of solvent and ion polarizability in mediating specific anion surface segregation effects. Moreover, due to the higher parametrized polarizability of the TIP4P-QDP condensed phase {1.31 Å3 for TIP4P-QDP versus 1.1 Å3 (TIP4P-FQ) and 0.87 Å3 (POL3) [Ponder and Case, Adv. Protein Chem. 66, 27 (2003)]} based on ab initio

  12. Salt, Chlor-Alkali, and Related Heavy Chemicals

    NASA Astrophysics Data System (ADS)

    Bommaraju, Tilak V.

    The chemical category of inorganic salts encompasses many substances that dissociate completely in water, but only one salt, sodium chloride, is referred to by the common name, salt. Sodium chloride is ubiquitous in both its occurrence and its many uses. To date, there are over 14,000 uses for salt.1 Salt is used as a feedstock for many chemicals including chlorine, caustic soda (sodium hydroxide), synthetic soda ash (sodium carbonate), sodium chlorate, sodium sulfate, and metallic sodium. By indirect methods, sodium chloride is also used to produce hydrochloric acid and many other sodium salts. In its natural mineral form, salt may take on some color from some of the trace elements and other salts present, however, pure sodium chloride is a white to colorless crystalline substance, fairly soluble in water.2 Also known as halite, the substance is an essential nutrient to humans and animals for proper bodily functions.

  13. Inorganic separator technology program

    NASA Technical Reports Server (NTRS)

    Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.

    1973-01-01

    Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.

  14. Microfluidics in inorganic chemistry.

    PubMed

    Abou-Hassan, Ali; Sandre, Olivier; Cabuil, Valérie

    2010-08-23

    The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.

  15. Inorganic and Organometallic Polymers

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, Vadapalli

    This textbook is intended to give an understanding of the basic principles that constitute the field of non-conventional polymers containing inorganic and organometalic units as the repeating units. Each chapter will be self-explanatory with a good background so that it can be easily understood at the senior undergraduate level. The principles involved in the preparation of these polymers, their characterisation and their applications will be discussed. Basic inorganic chemistry required for the understanding of each topic is presented so that the content of the chapter is readily understood.

  16. Phosphate salts

    MedlinePlus

    ... taken by mouth or used as enemas. Indigestion. Aluminum phosphate and calcium phosphate are FDA-permitted ingredients ... Phosphate salts containing sodium, potassium, aluminum, or calcium are LIKELY SAFE for most people when taken by mouth short-term, when sodium phosphate is inserted into the ...

  17. Salting-out effects in aqueous ionic liquid solutions: cloud-point temperature shifts.

    PubMed

    Trindade, Joana R; Visak, Zoran P; Blesic, Marijana; Marrucho, Isabel M; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luis P N

    2007-05-10

    The effects of the addition of three inorganic salts, namely, NaCl, Na(2)SO(4), and Na(3)PO(4), on the liquid-liquid (L-L) phase diagram of aqueous solutions containing the model ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF(4)], were investigated. All three inorganic salts trigger salting-out effects, leading to significant upward shifts of the L-L demixing temperatures of the systems. The magnitude of the shifts depends on both the water-structuring nature of the salt and its concentration; that is, the effects are correlated with the ionic strength of the solution and the Gibbs free energy of hydration of the inorganic salt. The pH effect and the occurrence of salt precipitation in concentrated solutions are also discussed.

  18. Lead and compounds (inorganic)

    Integrated Risk Information System (IRIS)

    Lead and compounds ( inorganic ) ; CASRN 7439 - 92 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  19. Geological and Inorganic Materials.

    ERIC Educational Resources Information Center

    Jackson, L. L.; And Others

    1989-01-01

    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…

  20. Inorganic High Energy Oxidisers,

    DTIC Science & Technology

    properties may contribute significantly to the energy of the whole system. A book entitled ’Inorganic High - Energy Oxidisers’ by E.W. Lawless and I.C. Smith is the subject of this Essay Review by W.E. Batty.

  1. Polyhedra in (inorganic) chemistry.

    PubMed

    Alvarez, Santiago

    2005-07-07

    A systematic description of polyhedra with varying degrees of regularity is illustrated with examples of chemical structures, mostly from different fields of Inorganic Chemistry. Also the geometrical relationships between different polyhedra are highlighted and their application to the analysis of complex structures is discussed.

  2. CRYSTALLINE INORGANIC PYROPHOSPHATASE ISOLATED FROM BAKER'S YEAST

    PubMed Central

    Kunitz, M.

    1952-01-01

    Crystalline inorganic pyrophosphatase has been isolated from baker's yeast. The crystalline enzyme is a protein of the albumin type with an isoelectric point near pH 4.8. Its molecular weight is of the order of 100,000. It contains about 5 per cent tyrosine and 3.5 per cent tryptophane. It is most stable at pH 6.8. The new crystalline protein acts as a specific catalyst for the hydrolysis of inorganic pyrophosphate into orthophosphate ions. It does not catalyze the hydrolysis of the pyrophosphate radical of such organic esters as adenosine di- and triphosphate, or thiamine pyrophosphate. Crystalline pyrophosphatase requires the presence of Mg, Co, or Mn ions as activators. These ions are antagonized by calcium ions. Mg is also antagonized by Co or Mn ions. The rate of the enzymatic hydrolysis of inorganic pyrophosphate is proportional to the concentration of enzyme and is a function of pH, temperature, concentration of substrate, and concentration of activating ion. The approximate conditions for optimum rate are: 40°C. and pH 7.0 at a concentration of 3 to 4 x 10–3 M Na4P2O7 and an equivalent concentration of magnesium salt. The enzymatic hydrolysis of Na4P2O7 or K4P2O7 proceeds to completion and is irreversible under the conditions at which hydrolysis is occurring. Details are given of the method of isolation of the crystalline enzyme. PMID:14898026

  3. Chiral Inorganic Nanostructures.

    PubMed

    Ma, Wei; Xu, Liguang; de Moura, André F; Wu, Xiaoling; Kuang, Hua; Xu, Chuanlai; Kotov, Nicholas A

    2017-06-28

    The field of chiral inorganic nanostructures is rapidly expanding. It started from the observation of strong circular dichroism during the synthesis of individual nanoparticles (NPs) and their assemblies and expanded to sophisticated synthetic protocols involving nanostructures from metals, semiconductors, ceramics, and nanocarbons. Besides the well-established chirality transfer from bioorganic molecules, other methods to impart handedness to nanoscale matter specific to inorganic materials were discovered, including three-dimentional lithography, multiphoton chirality transfer, polarization effects in nanoscale assemblies, and others. Multiple chiral geometries were observed with characteristic scales from ångströms to microns. Uniquely high values of chiral anisotropy factors that spurred the development of the field and differentiate it from chiral structures studied before, are now well understood; they originate from strong resonances of incident electromagnetic waves with plasmonic and excitonic states typical for metals and semiconductors. At the same time, distinct similarities with chiral supramolecular and biological systems also emerged. They can be seen in the synthesis and separation methods, chemical properties of individual NPs, geometries of the nanoparticle assemblies, and interactions with biological membranes. Their analysis can help us understand in greater depth the role of chiral asymmetry in nature inclusive of both earth and space. Consideration of both differences and similarities between chiral inorganic, organic, and biological nanostructures will also accelerate the development of technologies based on chiroplasmonic and chiroexcitonic effects. This review will cover both experiment and theory of chiral nanostructures starting with the origin and multiple components of mirror asymmetry of individual NPs and their assemblies. We shall consider four different types of chirality in nanostructures and related physical, chemical, and

  4. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  5. INORGANIC CATIONS IN THE CELL NUCLEUS

    PubMed Central

    Tres, Laura L.; Kierszenbaum, A. L.; Tandler, C. J.

    1972-01-01

    Earlier reports indicated the presence of significant amounts of inorganic salts in the nucleus. In the present study the possibility that this might be related to the transcription process was tested on seminiferous epithelium of the adult mouse, using potassium pyroantimonate as a fixative. The results indicated that a correlation exists between the inorganic cations comprising the pyroantimonate-precipitable fraction and the RNA synthetic activity. During meiotic prophase an accumulation of cation-antimonate precipitates occurs dispersed through the middle pachytene nuclei, the stage in which RNA synthesis reaches a maximum. At other stages (zygotene to diplotene), where RNA synthesis falls to a low level, that pattern is not seen; cation-antimonate deposits are restricted to a few masses in areas apparently free of chromatin. The condensed sex chromosomes, the heterochromatin of the "basal knobs," the axial elements, and the synaptonemal complexes are devoid of antimonate deposits during the meiotic prophase. The Sertoli cells, active in RNA synthesis in both nucleoplasm and nucleolus, show cation-antimonate deposits at these sites. In the nucleoplasm some "patches" of precipitates appear coincident with clusters of interchromatin granules; in the nucleolus the inorganic cations are mainly located in the fibrillar and/or amorphous areas, whereas relatively few are shown by the granular component. The condensed chromatin bodies associated with the nucleolus were always free of antimonate precipitates. It is suggested that the observed sites of inorganic cation accumulation within the nucleus may at least partially indicate the presence of RNA polymerases, the activity of which is dependent on divalent cations. PMID:4112542

  6. Inorganic Chemistry by Gary Wulfsberg

    NASA Astrophysics Data System (ADS)

    Ackermann, Martin N.

    2000-11-01

    Inorganic Chemistry is an interesting new option for teachers of advanced inorganic courses and offers the possibility of serving an introductory course as well. Since PDIC first appeared, more authors have adopted the approach of developing descriptive inorganic chemistry around common principles instead of a group-by-group treatment, which makes this text less of a departure from the traditional than PDIC was. Still, Wulfsberg offers an original and engaging perspective on inorganic chemistry. Even if this text is not adopted for a course, it deserves a place on the shelf of every teacher of inorganic chemistry, where it will be a valuable resource.

  7. Inorganic biomimetic nanostructures.

    PubMed

    Levine, Lauren A; Williams, Mary Elizabeth

    2009-12-01

    Supramolecular structures modeled after biological systems (DNA and enzymes) are being developed to simultaneously mimic natural biological functions including catalysis, information storage, and self-assembly and to engineer novel electronic and magnetic properties. Structural mimics of nucleic acids containing multiple metal-coordinating ligands, and comprising natural and artificial bases or completely synthetic systems, create stable double-stranded structures with new electronic, spectroscopic, and magnetic properties. Supramolecular inorganic mimics of enzymatic function, including metallonucleases and metalloproteases, have begun to be constructed. Alternatively, metal-organic-frameworks have potential as artificial catalysts with substrate-specificity and size-selectivity analogous to biological processes. This review describes some of the recent themes in inorganic supramolecular systems that aim to mimic and exploit nature's ability to self-assemble polyfunctional architectures for new materials and biological applications.

  8. Supported inorganic membranes

    DOEpatents

    Sehgal, Rakesh; Brinker, Charles Jeffrey

    1998-01-01

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  9. Inorganic Graphene Analogs

    NASA Astrophysics Data System (ADS)

    Rao, C. N. R.; Maitra, Urmimala

    2015-07-01

    In the last four to five years, there has been a great resurgence of research on two-dimensional inorganic materials, partly because of the impetus received from graphene research. Unlike graphene, which is a gap-less material, most inorganic layered materials are semiconductors or insulators. Some of them, as exemplified by MoS2, exhibit unexpected properties, not unlike graphene, with possible applications. Thus, layered metal chalcogenides are being explored intensely, and MoS2 is emerging as a wonder material. In this article, we present the synthesis and properties of nanosheets composing single or few layers of these fascinating materials. Besides metal chalcogenides, boron nitride, borocarbonitrides (BxCyNz), metal oxides, and metal-organic frameworks are also discussed.

  10. DENITRIFICATION IN FRINGING SALT MARSHES OF NARRAGANSETT BAY, RHODE ISLAND, USA

    EPA Science Inventory

    In the past century, loading of terrestrial inorganic nitrogen to coastal receiving waters has increased dramatically. Salt marshes, because of their location between upland regions and coastal waters and their recognized role as nutrient transformers, have the potential to ameli...

  11. DENITRIFICATION IN FRINGING SALT MARSHES OF NARRAGANSETT BAY, RHODE ISLAND, USA

    EPA Science Inventory

    In the past century, loading of terrestrial inorganic nitrogen to coastal receiving waters has increased dramatically. Salt marshes, because of their location between upland regions and coastal waters and their recognized role as nutrient transformers, have the potential to ameli...

  12. THE INTRACELLULAR LOCALIZATION OF INORGANIC CATIONS WITH POTASSIUM PYROANTIMONATE

    PubMed Central

    Tandler, Carlos J.; Libanati, César M.; Sanchis, Carlos A.

    1970-01-01

    Potassium pyroantimonate, when used as fixative (saturated or half-saturated, without addition of any conventional fixative) has been demonstrated to produce intracellular precipitates of the insoluble salts of calcium, magnesium, and sodium and to preserve the general cell morphology. In both animal and plant tissues, the electron-opaque antimonate precipitates were found deposited in the nucleus—as well as within the nucleolus—and in the cytoplasm, largely at the site of the ribonucleoprotein particles; the condensed chromatin appeared relatively free of precipitates. The inorganic cations are probably in a loosely bound state since they are not retained by conventional fixatives. The implications of this inorganic cation distribution in the intact cell are discussed in connection with their anionic counterparts, i.e., complexing of cations by fixed anionic charges and the coexistence of a large pool of inorganic orthophosphate anions in the nucleus and nucleolus. PMID:4935442

  13. Estimation of environmental properties for inorganic compounds using LSER

    USGS Publications Warehouse

    Hickey, James P.

    1999-01-01

    The Great Lakes Science Center has devised values for inorganic species for use in the environmental property- predictive quantitative structure-activity relationships (QSAR) Linear Solvation Energy Relationship (LSER). Property estimation has been difficult for inorganic species. In this presentation aqueous solubility, bioconcentration and acute aquatic toxicity are estimated for inorganic compounds using existing LSER equations. The best estimations arise from the most accurate description of predominant solution species, many within an order of magnitude. The toxicities also depend on an estimation of the bioactive amount and configuration. A number of anion/cation combinations (salts) still resist accurate property estimation, and the reasons currently are not understood. These new variable values will greatly extend the application and utility of LSER for the estimation of environmental properties.

  14. Field and laboratory studies of reactions between atmospheric water soluble organic acids and inorganic particles

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel; Shilling, John; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2013-05-01

    Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

  15. Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles

    SciTech Connect

    Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2013-06-25

    Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

  16. Inorganic: the other mercury.

    PubMed

    Risher, John F; De Rosa, Christopher T

    2007-11-01

    There is a broad array of mercury species to which humans may be exposed. While exposure to methylmercury through fish consumption is widely recognized, the public is less aware of the sources and potential toxicity of inorganic forms of mercury. Some oral and laboratory thermometers, barometers, small batteries, thermostats, gas pressure regulators, light switches, dental amalgam fillings, cosmetic products, medications, cultural/religious practices, and gold mining all represent potential sources of exposure to inorganic forms of mercury. The route of exposure, the extent of absorption, the pharmacokinetics, and the effects all vary with the specific form of mercury and the magnitude and duration of exposure. If exposure is suspected, a number of tissue analyses can be conducted to confirm exposure or to determine whether an exposure might reasonably be expected to be biologically significant. By contrast with determination of exposure to methylmercury, for which hair and blood are credible indicators, urine is the preferred biological medium for the determination of exposure to inorganic mercury, including elemental mercury, with blood normally being of value only if exposure is ongoing. Although treatments are available to help rid the body of mercury in cases of extreme exposure, prevention of exposure will make such treatments unnecessary. Knowing the sources of mercury and avoiding unnecessary exposure are the prudent ways of preventing mercury intoxication. When exposure occurs, it should be kept in mind that not all unwanted exposures will result in adverse health consequences. In all cases, elimination of the source of exposure should be the first priority of public health officials.

  17. Sealed Lithium Inorganic Battery

    DTIC Science & Technology

    1976-08-01

    MuWrn , 1,ad iw..am m4 IdM.D to We"L406W) Inorganic Electrolyte lattery Carbon Cathode Evaluation Thionyl Chloride Gas Generation Lithium C ell sign...hardware surface to carry the reductIon of thionyl chloride when in contact with lithium (self discharge) and the corro,’ion of hardware materials... Lithium - Aluminum Chloride 10) AOSTSAC? (Cmawl/e o ade H .m.eewr W MWO, AV 600 nwe w) Stdies were continued of the effects of hardware materials on the

  18. Predicted hygroscopic growth of sea salt aerosol

    NASA Astrophysics Data System (ADS)

    Ming, Yi; Russell, Lynn M.

    2001-11-01

    Organic species in sea salt particles can significantly reduce hygroscopic growth in subsaturated conditions, an important uncertainty in the radiative effect of aerosol particles on the atmosphere. This hygroscopic behavior is predicted with a numerical model of the the organic-water, electrolyte-water, and organicelectrolyte interactions in complex mixtures of organic species and inorganic ions. The results show a 15% decrease in hygroscopic growth above 75% relative humidity for particles that include as little as 30% organic mass. Organic compositions of 50% organic mass reduce hygroscopic growth by 25%. This prediction relies on particle chemical composition estimated from measurements of insoluble organic species in marine-derived particles and of soluble organic species measured in seawater. Twenty insoluble and four soluble organic species are used to represent the behavior of sea salt organic composition. The hygroscopic growth is strongly sensitive to the organic fraction that is soluble or slightly soluble, although variations among different soluble or insoluble species are small above the sodium chloride deliquescence point. Interactions between organic and electrolyte species depend primarily on the "salting out" behavior of NaCl with alkanes, carboxylic acids, and alcohols, although interactions with other inorganic ions in sea salt were estimated to cause small changes in the hygroscopic growth. The predicted growth factors for sea salt with < 30% organic species are consistent with growth factors measured for ambient marine-derived particles by another group [Berg et al., 1998; Swietlicki et al, 2000; Zhou et al, 2001]. This coincidence suggests that the less-hygroscopic particles could indicate the presence of marine organic compounds, although multiple combinations of inorganic and anthropogenic organic species would also satisfy the measured behavior.

  19. Inorganic Crystal Structure Database (ICSD)

    National Institute of Standards and Technology Data Gateway

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  20. Inorganic bromine in the marine boundary layer: a critical review

    NASA Astrophysics Data System (ADS)

    Sander, R.; Keene, W. C.; Pszenny, A. A. P.; Arimoto, R.; Ayers, G. P.; Baboukas, E.; Cainey, J. M.; Crutzen, P. J.; Duce, R. A.; Hönninger, G.; Huebert, B. J.; Maenhaut, W.; Mihalopoulos, N.; Turekian, V. C.; van Dingenen, R.

    2003-06-01

    The cycling of inorganic bromine in the marine boundary layer (mbl) has received increased attention in recent years. Bromide, a constituent of sea water, is injected into the atmosphere in association with sea-salt aerosol by breaking waves on the ocean surface. Measurements reveal that supermicrometer sea-salt aerosol is depleted in bromine by about 50% relative to conservative tracers, whereas marine submicrometer aerosol is often enriched in bromine. Model calculations, laboratory studies, and field observations strongly suggest that these depletions reflect the chemical transformation of particulate bromide to reactive inorganic gases that influence the processing of ozone and other important constituents of marine air. However, currently available techniques cannot reliably quantify many \\chem{Br}-containing compounds at ambient concentrations and, consequently, our understanding of inorganic Br cycling over the oceans and its global significance are uncertain. To provide a more coherent framework for future research, we have reviewed measurements in marine aerosol, the gas phase, and in rain. We also summarize sources and sinks, as well as model and laboratory studies of chemical transformations. The focus is on inorganic bromine over the open oceans, excluding the polar regions. The generation of sea-salt aerosol at the ocean surface is the major tropospheric source producing about 6.2 Tg/a of bromide. The transport of Br from continents (as mineral aerosol, and as products from biomass-burning and fossil-fuel combustion) can be of local importance. Transport of degradation products of long-lived Br-containing compounds from the stratosphere and other sources contribute lesser amounts. Available evidence suggests that, following aerosol acidification, sea-salt bromide reacts to form Br2 and BrCl that volatilize to the gas phase and photolyze in daylight to produce atomic Br and Cl. Subsequent transformations can destroy tropospheric ozone, oxidize

  1. Inorganic bromine in the marine boundary layer: a critical review

    NASA Astrophysics Data System (ADS)

    Sander, R.; Keene, W. C.; Pszenny, A. A. P.; Arimoto, R.; Ayers, G. P.; Baboukas, E.; Cainey, J. M.; Crutzen, P. J.; Duce, R. A.; Hönninger, G.; Huebert, B. J.; Maenhaut, W.; Mihalopoulos, N.; Turekian, V. C.; van Dingenen, R.

    2003-09-01

    The cycling of inorganic bromine in the marine boundary layer (mbl) has received increased attention in recent years. Bromide, a constituent of sea water, is injected into the atmosphere in association with sea-salt aerosol by breaking waves on the ocean surface. Measurements reveal that supermicrometer sea-salt aerosol is substantially depleted in bromine (often exceeding 50%) relative to conservative tracers, whereas marine submicrometer aerosol is often enriched in bromine. Model calculations, laboratory studies, and field observations strongly suggest that the supermicrometer depletions reflect the chemical transformation of particulate bromide to reactive inorganic gases that influence the processing of ozone and other important constituents of marine air. Mechanisms for the submicrometer enrichments are not well understood. Currently available techniques cannot reliably quantify many Br containing compounds at ambient concentrations and, consequently, our understanding of inorganic Br cycling over the oceans and its global significance are uncertain. To provide a more coherent framework for future research, we have reviewed measurements in marine aerosol, the gas phase, and in rain. We also summarize sources and sinks, as well as model and laboratory studies of chemical transformations. The focus is on inorganic bromine over the open oceans outside the polar regions. The generation of sea-salt aerosol at the ocean surface is the major tropospheric source producing about 6.2 Tg/a of bromide. The transport of Br from continents (as mineral aerosol, and as products from biomass-burning and fossil-fuel combustion) can be of local importance. Transport of degradation products of long-lived Br containing compounds from the stratosphere and other sources contribute lesser amounts. Available evidence suggests that, following aerosol acidification, sea-salt bromide reacts to form Br2 and BrCl that volatilize to the gas phase and photolyze in daylight to produce atomic

  2. Ion-binding of glycine zwitterion with inorganic ions in biologically relevant aqueous electrolyte solutions.

    PubMed

    Fedotova, Marina V; Kruchinin, Sergey E

    2014-06-01

    The ion-binding between inorganic ions and charged functional groups of glycine zwitter-ion in NaCl(aq), KCl(aq), MgCl2(aq), and CaCl2(aq) has been investigated over a wide salt concentration range by using integral equation theory in the 3D-RISM approach. These systems mimic biological systems where binding of ions to charged residues at protein surfaces is relevant. It has been found that the stability of ion pairs formed by the carboxylate group and added inorganic cations decreases in the sequence Mg(2+)>Ca(2+)>Na(+)>K(+). However, all formed ion pairs are weak and decrease in stability with increasing salt concentration. On the other hand, at a given salt concentration the stability of (-NH3(+):Cl(-))aq ion pairs is similar in all studied systems. The features of ion-binding and the salt concentration effect on this process are discussed.

  3. Organic-inorganic macroion coacervate complexation.

    PubMed

    Jing, Benxin; Qiu, Jie; Zhu, Yingxi

    2017-07-19

    Coacervate complexes that are liquid-liquid separated complex materials are often formed by stoichiometrically mixing oppositely charged polyelectrolytes in salted aqueous solution. Entropy-driven ion pairing, resulting from the release of counterions near polyelectrolytes, has been identified as the primary driving force for coacervate formation between oppositely charged polyelectrolytes, including proteins and DNA, in aqueous solution. In this work we have examined the complexation between net neutral zwitterionic poly(sulfobetaine methacrylate) (PSBMA) and inorganic polyoxometalate (POM) polyanions in LiCl aqueous solutions. Biphasic liquid-like coacervate complexes can be formed over a much broader range of POM-to-PSBMA molar ratio and LiCl concentration than that for conventional polyelectrolyte coacervate complexation. Composition analysis of the dried supernatant and dense coacervate has confirmed that both PSBMA and POM macroions are primarily present in the dense coacervate as the macroion-rich phase in contrast to the presence of LiCl solely in the supernatant as the macroion-poor phase. The increase of net charge negativity of PSBMA and supernatant conductivity suggests stronger binding of PSBMA with POM anions than monovalent Cl(-), resulting in the release of bound Cl(-) anions to the aqueous solution for the formation of PSBMA-POM coacervates in LiCl solution. All experimental evidence has demonstrated the generality of ion-pairing induced coacervate complexation with net neutral zwitterionic polymers and multivalent inorganic nanomaterials. The complexation between organic and inorganic macroions could give insights into many supramolecular assembly processes in nature and also lead to a new paradigm in developing hybrid macroionic materials for emerging applications from green catalysis to nanomedicine.

  4. Inorganic Halogen Oxidizers.

    DTIC Science & Technology

    1984-02-22

    this series of compounds is needed to verify this effect. The F NMR spectra of these salts were recorded in an- hydrous HF solutions at 29 °C. In...The yield of only 55% for CIF6BF4 can be attributed to the following factors: (i) hang-up of some mother liquor on »he filter cake; (ii) possibly...basis of NF4HF:. With most of ’me Ni4Ili2 * allies losi being due lo hang up of some mother liquor on the CsSbF6 filter cake during the metathc teal

  5. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T.

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  6. Inorganic polymer engineering materials

    SciTech Connect

    Stone, M.L.

    1993-06-01

    Phosphazene-based, inorganic-polymer composites have been produced and evaluated as potential engineering materials. The thermal, chemical, and mechanical properties of several different composites made from one polymer formulation have been measured. Measured properties are very good, and the composites show excellent promise for structural applications in harsh environments. Chopped fiberglass, mineral, cellulose, and woodflour filled composites were tested. Chopped fiberglass filled composites showed the best overall properties. The phosphazene composites are very hard and rigid. They have low dielectric constants and typical linear thermal expansion coefficients for polymers. In most cases, the phosphazene materials performed as well or better than analogous, commercially available, filled phenolic composites. After 3 to 5 weeks of exposure, both the phosphazene and phenolics were degraded to aqueous bases and acids. The glass filled phosphazene samples were least affected.

  7. PATHWAY OF INORGANIC ARSENIC METABOLISM

    EPA Science Inventory

    A remarkable aspect of the metabolism of inorganic arsenic in humans is its conversion to methylated metabolites. These metabolites account for most of the arsenic found in urine after exposure to inorganic arsenic. At least some of the adverse health effects attributed to inor...

  8. Restoration of Descriptive Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Gorman, Mel

    1983-01-01

    The movement to reinstate systematic inorganic reaction (descriptive) chemistry into the curriculum is gaining momentum. Offers suggestions and strategies showing that the change is desirable and easy, even for instructors with little experience with systematic fundamental and industrial inorganic chemistry. (Author/JN)

  9. Modeling the Thermodynamics of Mixed Organic-Inorganic Aerosols to Predict Water Activities and Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B.; Peter, T.

    2008-12-01

    Tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behavior. While the thermodynamics of aqueous inorganic systems at atmospheric temperatures are well established, little is known about the physicochemistry of mixed organic-inorganic particles. Salting-out and salting-in effects result from organic-inorganic interactions and are used to improve industrial separation processes. In the atmosphere, they may influence the aerosol phases. Liquid-liquid phase separations into a mainly polar (aqueous) and a less polar organic phase may considerably influence the gas/particle partitioning of semi-volatile substances compared to a single phase estimation. Moreover, the phases present in the aerosol define the reaction medium for heterogeneous and multiphase chemistry occurring in aerosol particles. A correct description of these phases is needed when gas- or cloud-phase reaction schemes are adapted to aerosols. Non-ideal thermodynamic behavior in mixtures is usually described by an expression for the excess Gibbs energy. We present the group-contribution model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients), which explicitly accounts for molecular interactions between solution constituents, both organic and inorganic, to calculate activities, chemical potentials and the total Gibbs energy of mixed systems. This model allows to compute vapor-liquid (VLE), liquid-liquid (LLE) and solid-liquid (SLE) equilibria within one framework. Focusing on atmospheric applications we considered eight different cations, five anions and a wide range of alcohols/polyols as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are very well represented up to high ionic strength. We show that the semiempirical middle

  10. SEPARATION OF PROTACTINIUM FROM MOLTEN SALT REACTOR FUEL COMPOSITIONS

    DOEpatents

    Shaffer, J.H.; Strain, J.E.; Cuneo, D.R.; Kelly, M.J.

    1963-11-12

    A method for selectively precipitating protactinium from a neutron- irradiated fused fluoride salt composition comprising at least one metal fluoride selected from the group consisting of an alkali metal fluoride and an alkaline earth metal fluoride containing dissolved thorium-232 values is presented. An inorganic metal oxide corresponding to any of the metal fluorides of the composition is also added. (AEC)

  11. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  12. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, N.; Ingersoll, D.

    1995-11-28

    Electrolyte salts are disclosed for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts. 2 figs.

  13. Organic/inorganic hybrid coatings for anticorrosion

    NASA Astrophysics Data System (ADS)

    He, Zhouying

    Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The

  14. Nonlinear responses in salt marsh functioning to increased nitrogen addition.

    PubMed

    Vivanco, Lucía; Irvine, Irina C; Martiny, Jennifer B H

    2015-04-01

    Salt marshes provide storm protection to shorelines, sequester carbon (C), and mitigate coastal eutrophication. These valuable coastal ecosystems are confronted with increasing nitrogen (N) inputs from anthropogenic sources, such as agricultural runoff, wastewater, and atmospheric deposition. To inform predictions of salt marsh functioning and sustainability in the future, we characterized the response of a variety of plant, microbial, and sediment responses to a seven-level gradient of N addition in three Californian salt marshes after 7 and 14 months of N addition. The marshes showed variable responses to the experimental N gradient that can be grouped as neutral (root biomass, sediment respiration, potential carbon mineralization, and potential net nitrification), linear (increasing methane flux, decreasing potential net N mineralization, and increasing sediment inorganic N), and nonlinear (saturating aboveground plant biomass and leaf N content, and exponentially increasing sediment inorganic and organic N). The three salt marshes showed quantitative differences in most ecosystem properties and processes rates; however, the form of the response curves to N addition were generally consistent across the three marshes, indicating that the responses observed may be applicable to other marshes in the region. Only for sediment properties (inorganic and organic N pool) did the shape of the response differ significantly between marshes. Overall, the study suggests salt marshes are limited in their ability to sequester C and N with future increases in N, even without further losses in marsh area.

  15. Influence of Inorganic Ions on Aggregation and Adsorption Behaviors of Human Adenovirus

    EPA Science Inventory

    In this study, we investigated the influence of inorganic ions on the aggregation and deposition (adsorption) behavior of human adenovirus (HAdV). Experiments were conducted to determine the surface charge and size of HAdV and viral adsorption capacity of sand in different salt c...

  16. Influence of Inorganic Ions on Aggregation and Adsorption Behaviors of Human Adenovirus

    EPA Science Inventory

    In this study, we investigated the influence of inorganic ions on the aggregation and deposition (adsorption) behavior of human adenovirus (HAdV). Experiments were conducted to determine the surface charge and size of HAdV and viral adsorption capacity of sand in different salt c...

  17. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J.

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  18. Cancer risk from inorganics

    SciTech Connect

    Swierenga, S.H.; Gilman, J.P.; McLean, J.R.

    1987-01-01

    Inorganic metals and minerals for which there is evidence of carcinogenicity are identified. The risk of cancer from contact with them in the work place, the general environment, and under conditions of clinical (medical) exposure is discussed. The evidence indicates that minerals and metals most often influence cancer development through their action as cocarcinogens. The relationship between the physical form of mineral fibers, smoking and carcinogenic risk is emphasized. Metals are categorized as established (As, Be, Cr, Ni), suspected (Cd, Pb) and possible carcinogens, based on the existing in vitro, animal experimental and human epidemiological data. Cancer risk and possible modes of action of elements in each class are discussed. Views on mechanisms that may be responsible for the carcinogenicity of metals are updated and analysed. Some specific examples of cancer risks associated with the clinical use of potentially carcinogenic metals and from radioactive pharmaceuticals used in therapy and diagnosis are presented. Questions are raised as to the effectiveness of conventional dosimetry in accurately measuring risk from radiopharmaceuticals. 302 references.

  19. Nanoscale precipitation coating: the deposition of inorganic films through step-by-step spray-assembly.

    PubMed

    Popa, Gabriela; Boulmedais, Fouzia; Zhao, Peng; Hemmerlé, Joseph; Vidal, Loïc; Mathieu, Eric; Félix, Olivier; Schaaf, Pierre; Decher, Gero; Voegel, Jean-Claude

    2010-08-24

    Thin films and surface coatings play an important role in basic and applied research. Here we report on a new, versatile, and simple method ("precipitation coating") for the preparation of inorganic films, based on the alternate spraying of complementary inorganic salt solutions against a receiving surface on which the inorganic deposit forms. The method applies whenever the solubility of the deposited material is smaller than that of the salts in the solutions of the reactants. The film thickness is controlled from nanometers to hundreds of micrometers simply by varying the number of spraying steps; 200 spray cycles, corresponding to less than 15 min deposition time, yield films with thicknesses exceeding one micrometer and reaching tens of micrometers in some cases. The new solution-based process is also compatible with conventional layer-by-layer assembly and permits the fabrication of multimaterial sandwich-like coatings.

  20. Biologically-synthesized inorganic nanomaterials

    NASA Astrophysics Data System (ADS)

    Kramer, Ryan M.; Stone, Morley O.; Naik, Rajesh R.

    2004-06-01

    A hallmark of biological systems is their ability to self-assemble. This self-assembly can occur on the molecular, macromolecular and mesoscale. In this work, we have chosen to exploit biology's ability to self-assemble by incorporating additional functionality within the final structure. Our research efforts have been directed at not only understanding how biological organisms control nucleation and growth of inorganic materials, but also how this activity can be controlled in vitro. In previous work, we have demonstrated how peptides can be selected from a combinatorial library that possesses catalytic activity with respect to inorganic nucleation and deposition. We have engineered some of these peptide sequences into self-assembling protein structures. The goal of the project was to create an organic/inorganic hybrid that retained the "memory" properties of the organic, but possessed the superior optical and electronic properties of the inorganic.

  1. Organic waste processing using molten salt oxidation

    SciTech Connect

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  2. Inorganic metal oxide/organic polymer nanocomposites and method thereof

    DOEpatents

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-03-30

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal inorganic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophillic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite.

  3. Artificially controlled degradable inorganic nanomaterial for cancer theranostics.

    PubMed

    Liu, Yuxin; Zhang, Ge; Guo, Quanwei; Ma, Liyi; Jia, Qi; Liu, Lidong; Zhou, Jing

    2017-01-01

    Multifunctional nanomaterials for cancer diagnosis and therapy have recently prompted widespread concern. To avoid nanotoxicity, the development of novel degradable functional materials must be our main focus. In this study, we firstly developed ethylenediaminetetraacetic acid calcium disodium salt (EDTA)- and bovine serum albumin (BSA)-capped Mn3O4 nanoparticles (MONPs-BSA-EDTA) as a novel inorganic nanomaterials for multifunctional imaging-guided photothermal therapy, which can be degraded in a progress-controlled way by artificially introduced ascorbic acid. The degradation products can also be captured and their excretion accelerated. Careful studies suggested that the toxicity of the MONPs-BSA-EDTA and its degradation products is low. The degradation mechanism also suggests a new method of controlled drug release. The development of artificially controlled degradable inorganic nanomaterials also provides a new way to degrade nanomaterials and minimize ion release, which may have potential applications in cancer theranostics without nanotoxicity.

  4. Salt tectonics on Venus

    SciTech Connect

    Wood, C.A.; Amsbury, D.

    1986-05-01

    The discovery of a surprisingly high deuterium/hydrogen ratio on Venus immediately led to the speculation that Venus may have once had a volume of surface water comparable to that of the terrestrial oceans. The authors propose that the evaporation of this putative ocean may have yielded residual salt deposits that formed various terrain features depicted in Venera 15 and 16 radar images. By analogy with models for the total evaporation of the terrestrial oceans, evaporite deposits on Venus should be at least tens to hundreds of meters thick. From photogeologic evidence and in-situ chemical analyses, it appears that the salt plains were later buried by lava flows. On Earth, salt diapirism leads to the formation of salt domes, anticlines, and elongated salt intrusions - features having dimensions of roughly 1 to 100 km. Due to the rapid erosion of salt by water, surface evaporite landforms are only common in dry regions such as the Zagros Mountains of Iran, where salt plugs and glaciers exist. Venus is far drier than Iran; extruded salt should be preserved, although the high surface temperature (470/sup 0/C) would probably stimulate rapid salt flow. Venus possesses a variety of circular landforms, tens to hundreds of kilometers wide, which could be either megasalt domes or salt intrusions colonizing impact craters. Additionally, arcurate bands seen in the Maxwell area of Venus could be salt intrusions formed in a region of tectonic stress. These large structures may not be salt features; nonetheless, salt features should exist on Venus.

  5. Tetraalkylphosphonium polyoxometalate ionic liquids : novel, organic-inorganic hybrid materials.

    SciTech Connect

    Rickert, P. G.; Antonio, M. P.; Firestone, M. A.; Kubatko, K.-A.; Szreder, T.; Wishart, J. F.; Dietz, M. L.; Chemistry; Univ. of Notre Dame; BNL

    2007-01-01

    Pairing of a Keggin or Lindqvist polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation is shown to yield the first members of a new family of ionic liquids (ILs). Detailed characterization of one of them, an ambient-temperature 'liquid POM' comprising the Lindqvist salt of the trihexyl(tetradecyl) phosphonium cation, by voltammetry, viscometry, conductimetry, and thermal analysis indicates that it exhibits conductivity and viscosity comparable to those of the one previously described inorganic-organic POM-IL hybrid but with substantially improved thermal stability.

  6. Salt splitting using ceramic membranes

    SciTech Connect

    Kurath, D.E.

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  7. Molten salt electrolyte separator

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  8. Retrospective salt tectonics

    SciTech Connect

    Jackson, M.P.A.

    1996-12-31

    The conceptual breakthroughs in understanding salt tectonics can be recognized by reviewing the history of salt tectonics, which divides naturally into three parts: the pioneering era, the fluid era, and the brittle era. The pioneering era (1856-1933) featured the search for a general hypothesis of salt diapirism, initially dominated by bizarre, erroneous notions of igneous activity, residual islands, in situ crystallization, osmotic pressures, and expansive crystallization. Gradually data from oil exploration constrained speculation. The effects of buoyancy versus orogeny were debated, contact relations were characterized, salt glaciers were discovered, and the concepts of downbuilding and differential loading were proposed as diapiric mechanisms. The fluid era (1933-{approximately}1989) was dominated by the view that salt tectonics resulted from Rayleigh-Taylor instabilities in which a dense fluid overburden having negligible yield strength sinks into a less dense fluid salt layer, displacing it upward. Density contrasts, viscosity contrasts, and dominant wavelengths were emphasized, whereas strength and faulting of the overburden were ignored. During this era, palinspastic reconstructions were attempted; salt upwelling below thin overburdens was recognized; internal structures of mined diapirs were discovered; peripheral sinks, turtle structures, and diapir families were comprehended; flow laws for dry salt were formulated; and contractional belts on divergent margins and allochthonous salt sheets were recognized. The 1970s revealed the basic driving force of salt allochthons, intrasalt minibasins, finite strains in diapirs, the possibility of thermal convection in salt, direct measurement of salt glacial flow stimulated by rainfall, and the internal structure of convecting evaporites and salt glaciers. The 1980`s revealed salt rollers, subtle traps, flow laws for damp salt, salt canopies, and mushroom diapirs.

  9. Pesticide Removal from Aqueous Solutions by Adding Salting Out Agents

    PubMed Central

    Moscoso, Fátima; Deive, Francisco J.; Esperança, José M. S. S.; Rodríguez, Ana

    2013-01-01

    Phase segregation in aqueous biphasic systems (ABS) composed of four hydrophilic ionic liquids (ILs): 1-butyl-3-methylimidazolium methylsulfate and 1-ethyl-3-methylimidazolium methylsulfate (CnC1im C1SO4, n = 2 and 4), tributylmethyl phosphonium methylsulfate (P4441 C1SO4) and methylpyridinium methylsulfate (C1Py C1SO4) and two high charge density potassium inorganic salts (K2CO3 and K2HPO4) were determined by the cloud point method at 298.15 K. The influence of the addition of the selected inorganic salts to aqueous mixtures of ILs was discussed in the light of the Hofmeister series and in terms of molar Gibbs free energy of hydration. The effect of the alkyl chain length of the cation on the methylsulfate-based ILs has been investigated. All the solubility data were satisfactorily correlated to several empirical equations. A pesticide (pentachlorophenol, PCP) extraction process based on the inorganic salt providing a greater salting out effect was tackled. The viability of the proposed process was analyzed in terms of partition coefficients and extraction efficiencies. PMID:24145747

  10. Synthesis and electron microscopy of inorganic and hybrid organic-inorganic mesoporous and macroporous materials

    NASA Astrophysics Data System (ADS)

    Blanford, Christopher Francis

    This work describes the creation and analysis of ordered porous inorganic and organic-inorganic hybrid materials with an emphasis on the qualitative and quantitative characterization by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Two major systems were studied: MCM-41-type mesoporous molecular sieves and three-dimensionally ordered macroporous (3DOM) materials. The microanalysis of mesoporous samples is discussed first. Samples of unmodified siliceous MCM-41, MCM-41 with grafted titanium dioxide species, and MCM-41 with incorporated 3-mercaptopropyl groups were examined in the TEM at three accelerating voltages. The beam stability of all the samples increased with increasing accelerating voltage. The particles were significantly more resistant to beam damage with the surfactant template in place, when the samples were synthesized above room temperature, and when the silicate precursor was hydrolyzed in acid. The samples with organic and inorganic groups were more stable than siliceous analogs. The discussion of 3DOM materials begins with their synthesis and characterization: 3DOM materials were created from colloidal crystals of uniform, sub-micrometer diameter polystyrene and poly(methyl methacrylate) spheres. Metal alkoxides, solutions of metal salts, and mixed salt-alkoxide precursors were employed to create 3DOM metal oxides, silicates with incorporated organic groups and polyoxometalate clusters, metals, and metal alloys. SEM and TEM were used extensively to characterize the morphology, crystallinity, grain size, and phase of the 3DOM products. The formation of 3DOM nickel oxide was studied by heating a nickel oxalate-colloidal crystal composite in an environmental SEM. The growth of the grains in 3DOM cobalt metal and 3DOM iron oxide were observed by high-temperature TEM. The arrangement of the pores in 3DOM materials was studied by analyzing diffractograms of TEM images of single particles tilted into different orientations

  11. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  12. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  13. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  14. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  15. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  16. Sea salt particles react with organic acids in atmosphere

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-10-01

    Sea salt, or sodium chloride (NaCl), particles lofted into the atmosphere by the motion of ocean waves affect atmospheric chemistry; these particles can undergo reactions with trace atmospheric gases and internal mixing with anthropogenic pollutants depositing on particle surface. Several studies have found that NaCl particles in the atmosphere are depleted in chloride and have attributed this to reactions with inorganic acids. However, reactions with inorganic acids do not fully account for the observed chloride depletion in some locations; it has been suggested that organic acids, likely of anthropogenic origin, may also play a role in chloride depletion, but results have been uncertain.

  17. Protein-inorganic hybrid nanoflowers

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Lei, Jiandu; Zare, Richard N.

    2012-07-01

    Flower-shaped inorganic nanocrystals have been used for applications in catalysis and analytical science, but so far there have been no reports of `nanoflowers' made of organic components. Here, we report a method for creating hybrid organic-inorganic nanoflowers using copper (II) ions as the inorganic component and various proteins as the organic component. The protein molecules form complexes with the copper ions, and these complexes become nucleation sites for primary crystals of copper phosphate. Interaction between the protein and copper ions then leads to the growth of micrometre-sized particles that have nanoscale features and that are shaped like flower petals. When an enzyme is used as the protein component of the hybrid nanoflower, it exhibits enhanced enzymatic activity and stability compared with the free enzyme. This is attributed to the high surface area and confinement of the enzymes in the nanoflowers.

  18. Principles of Inorganic Materials Design

    NASA Astrophysics Data System (ADS)

    Lalena, John N.; Cleary, David

    2005-04-01

    A unique interdisciplinary approach to inorganic materials design Textbooks intended for the training of chemists in the inorganic materials field often omit many relevant topics. With its interdisciplinary approach, this book fills that gap by presenting concepts from chemistry, physics, materials science, metallurgy, and ceramics in a unified treatment targeted towards the chemistry audience. Semiconductors, metal alloys and intermetallics, as well as ceramic substances are covered. Accordingly, the book should also be useful to students and working professionals in a variety of other disciplines. This book discusses a number of topics that are pertinent to the design of new inorganic materials but are typically not covered in standard solid-state chemistry books. The authors start with an introduction to structure at the mesoscopic level and progress to smaller-length scales. Next, detailed consideration is given to both phenomenological and atomistic-level descriptions of transport properties, the metal-nonmetal transition, magnetic and dielectric properties, optical properties, and mechanical properties. Finally, the authors present introductions to phase equilibria, synthesis, and nanomaterials. Other features include: Worked examples demonstrating concepts unfamiliar to the chemist Extensive references to related literature, leading readers to more in-depth coverage of particular topics Biographies introducing the reader to great contributors to the field of inorganic materials science in the twentieth century With their interdisciplinary approach, the authors have set the groundwork for communication and understanding among professionals in varied disciplines who are involved with inorganic materials engineering. Armed with this publication, students and researchers in inorganic and physical chemistry, physics, materials science, and engineering will be better equipped to face today's complex design challenges. This textbook is appropriate for senior

  19. Inorganic composites for space applications

    NASA Technical Reports Server (NTRS)

    Malmendier, J. W.

    1984-01-01

    The development of inorganic composite materials for space applications is reviewed. The composites do not contain any organic materials, and therefore, are not subject to degradation by ultraviolet radiation, volatilization of constituents, or embrittlement at low temperatures. The composites consist of glass, glass/ceramics or ceramic matrices, reinforced by refractory whiskers or fibers. Such composites have the low thermal expansion, refractories, chemical stability and other desirable properties usually associated with the matrix materials. The composites also have a degree of toughness which is extraordinary for refractory inorganic materials.

  20. Removal of uranium from spent salt from the moltensalt oxidation process

    SciTech Connect

    Summers, L.; Hsu, P. C.; Holtz, E. V.; Hipple, D.; Wang, F.; Adamson, M.

    1997-03-01

    Molten salt oxidation (MSO) is a thermal process that has the capability of destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials. In this process, combustible waste and air are introduced into the molten sodium carbonate salt. The organic constituents of the waste materials are oxidized to carbon dioxide and water, while most of the inorganic constituents, including toxic metals, minerals, and radioisotopes, are retained in the molten salt bath. As these impurities accumulate in the salt, the process efficiency drops and the salt must be replaced. An efficient process is needed to separate these toxic metals, minerals, and radioisotopes from the spent carbonate to avoid generating a large volume of secondary waste. Toxic metals such as cadmium, chromium, lead, and zinc etc. are removed by a method described elsewhere. This paper describes a separation strategy developed for radioisotope removal from the mixed spent salt, as well as experimental results, as part of the spent salt cleanup. As the MSO system operates, inorganic products resulting from the reaction of halides, sulfides, phosphates, metals and radionuclides with carbonate accumulate in the salt bath. These must be removed to prevent complete conversion of the sodium carbonate, which would result in eventual losses of destruction efficiency and acid scrubbing capability. There are two operational modes for salt removal: (1) during reactor operation a slip-stream of molten salt is continuously withdrawn with continuous replacement by carbonate, or (2) the spent salt melt is discharged completely and the reactor then refilled with carbonate in batch mode. Because many of the metals and/or radionuclides captured in the salt are hazardous and/or radioactive, spent salt removed from the reactor would create a large secondary waste stream without further treatment. A spent salt clean up/recovery system is necessary to segregate these materials and minimize the amount of

  1. Investigating hygroscopic behavior and phase separation of organic/inorganic mixed phase aerosol particles with FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Cziczo, D. J.

    2013-12-01

    Atmospheric aerosol particles can be composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have very well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. For example, the deliquescence relative humidity of pure ammonium sulfate is about 80% and its efflorescence point is about 35%. This behavior of ammonium sulfate is important to atmospheric chemistry because some reactions, such as the hydrolysis of nitrogen pentoxide, occur on aqueous but not crystalline surfaces. Deliquescence and efflorescence of simple inorganic salt particles have been investigated by a variety of methods, such as IR spectroscopy, tandem mobility analysis and electrodynamic balance. Field measurements have shown that atmospheric aerosol are not typically a single inorganic salt, instead they often contain organic as well as inorganic species. Mixed inorganic/organic aerosol particles, while abundant in the atmosphere, have not been studied as extensively. Many recent studies have focused on microscopy techniques that require deposition of the aerosol on a glass slide, possibly changing its surface properties. This project investigates the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O:C ratios, including glycerol, 1,2,6-hexanetriol, 1,4-butanediol and 1,5-pentanediol have been investigated. This project aims to study gas-phase exchange in these aerosol systems to determine if exchange is impacted when phase separation occurs.

  2. SALT Science Conference 2015

    NASA Astrophysics Data System (ADS)

    Buckley, David; Schroeder, Anja

    2015-06-01

    The Southern African Large Telescope (SALT) has seen great changes in the last years following the beginning of full time science operations in 2011. The three first generation instruments, namely the SALTICAM imager, the Robert Stobie Spectrograph (RSS) and its multiple modes and finally in 2014, the new High Resolution Spectrograph (HRS), have commissioned it. The SALT community now eagerly anticipate the installation and commissioning of the near-infrared arm of RSS, likely to commence in 2016. The the third "Science with SALT" conference was held at the Stellenbosch Institute of Advanced Study from 1-5 June 2015. The goals of this conference were to: -Present and discuss recent results from SALT observations; -Anticipate scientific programs that will be carried out with new SALT instrumentation such as RSS-NIR; -Provide a scientific environment in which to foster inter-institutional and inter-facility collaborations between scientists at the different SALT partners; -Provide an opportunity for students and postdocs to become more engaged in SALT science and operations; -Encourage the scientific strategic planning that will be necessary to insure an important role for SALT in an era of large astronomical facilities in the southern hemisphere such as MeerKAT, the SKA, LSST, and ALMA; -Consider options for future instrumentation and technical development of SALT; and, -Present, discuss, and engage in the SALT Collateral Benefits program led by SAAO. Conference proceedings editors: David Buckley and Anja Schroeder

  3. Inorganic Fullerenes, Onions, and Tubes

    ERIC Educational Resources Information Center

    York, Andrew P. E.

    2004-01-01

    Buckminsterfullerene, which is in the shape of a soccer-ball was first discovered in 1985, has many applications as a good lubricant, or as a new superconductor. The synthesis of these inorganic fullerenes involves a great deal of interdisciplinary research between physicists, material scientists, engineers and chemists from various fields.

  4. Inorganic Reaction Mechanisms. Part I

    ERIC Educational Resources Information Center

    Cooke, D. O.

    1976-01-01

    Provides a collection of data on the mechanistic aspects of inorganic chemical reactions. Wherever possible includes procedures for classroom demonstration or student project work. The material covered includes gas phase reactions, reactions in solution, mechanisms of electron transfer, the reaction between iron III and iodine, and hydrolysis. (GS)

  5. Inorganic Fullerenes, Onions, and Tubes

    ERIC Educational Resources Information Center

    York, Andrew P. E.

    2004-01-01

    Buckminsterfullerene, which is in the shape of a soccer-ball was first discovered in 1985, has many applications as a good lubricant, or as a new superconductor. The synthesis of these inorganic fullerenes involves a great deal of interdisciplinary research between physicists, material scientists, engineers and chemists from various fields.

  6. Inorganic nanomedicine--part 1.

    PubMed

    Sekhon, Bhupinder S; Kamboj, Seema R

    2010-08-01

    Inorganic nanomedicine refers to the use of inorganic or hybrid nanomaterials and nanosized objects to achieve innovative medical breakthroughs for drug and gene discovery and delivery, discovery of biomarkers, and molecular diagnostics. Potential uses for fluorescent quantum dots include cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. Biocompatible quantum dot conjugates have been used successfully for sentinel lymph node mapping, tumor targeting, tumor angiogenesis imaging, and metastatic cell tracking. Magnetic nanowires applications include biosensing and construction of nucleic acids sensors. Magnetic cell therapy is used for the repair of blood vessels. Magnetic nanoparticles (MNPs) are important for magnetic resonance imaging, drug delivery, cell labeling, and tracking. Superparamagnetic iron oxide nanoparticles are used for hyperthermic treatment of tumors. Multifunctional MNPs applications include drug and gene delivery, medical imaging, and targeted drug delivery. MNPs could have a vital role in developing techniques to simultaneously diagnose, monitor, and treat a wide range of common diseases and injuries. From the clinical editor: This review serves as an update about the current state of inorganic nanomedicine. The use of inorganic/hybrid nanomaterials and nanosized objects has already resulted in innovative medical breakthroughs for drug/gene discovery and delivery, discovery of biomarkers and molecular diagnostics, and is likely to remain one of the most prolific fields of nanomedicine.

  7. Inorganic Reaction Mechanisms. Part I

    ERIC Educational Resources Information Center

    Cooke, D. O.

    1976-01-01

    Provides a collection of data on the mechanistic aspects of inorganic chemical reactions. Wherever possible includes procedures for classroom demonstration or student project work. The material covered includes gas phase reactions, reactions in solution, mechanisms of electron transfer, the reaction between iron III and iodine, and hydrolysis. (GS)

  8. Recent advances in inorganic materials for LDI-MS analysis of small molecules.

    PubMed

    Shi, C Y; Deng, C H

    2016-05-10

    In this review, various inorganic materials were summarized for the analysis of small molecules by laser desorption/ionization mass spectrometry (LDI-MS). Due to its tremendous advantages, such as simplicity, high speed, high throughput, small analyte volumes and tolerance towards salts, LDI-MS has been widely used in various analytes. During the ionization process, a suitable agent is required to assist the ionization, such as an appropriate matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). However, it is normally difficult to analyze small molecules with the MALDI technique because conventional organic matrices may produce matrix-related peaks in the low molecular-weight region, which limits the detection of small molecules (m/z < 700 Da). Therefore, more and more inorganic materials, including carbon-based materials, silicon-based materials and metal-based materials, have been developed to assist the ionization of small molecules. These inorganic materials can transfer energy and improve the ionization efficiency of analytes. In addition, functionalized inorganic materials can act as both an adsorbent and an agent in the enrichment and ionization of small molecules. In this review, we mainly focus on present advances in inorganic materials for the LDI-MS analysis of small molecules in the last five years, which contains the synthetic protocols of novel inorganic materials and the detailed results achieved by inorganic materials. On the other hand, this review also summarizes the application of inorganic materials as adsorbents in the selective enrichment of small molecules, which provides a new field for the application of inorganic materials.

  9. Ion deposition in Wasatch Mountain snow: Influence of Great Salt Lake and Salt Lake City

    NASA Astrophysics Data System (ADS)

    Arens, Seth J. T.

    The Wasatch Mountains are a unique place to study deposition of ions in snow because of proximity to Salt Lake City, UT, home to 1.1 million people, and Great Salt Lake, the world' fourth largest closed-basin saline lake. Prior study at low elevations of the Wasatch Mountains and in Salt Lake City indicates very high deposition (>1 mmol L-1) of chloride nitrate, sulfate, sodium and calcium ions in snow and rime during winter temperature inversions. At peak snowpack, concentrations (mueq L-1) and ecosystem loading (meq m-2) of major ion species (Cl-, NO3 -, SO42-, H+, NH4 +, Na+, Mg2+, K+, and Ca2+) were measured at five sites in 2008 and 16 sites in 2009 in the Wasatch Mountains. Concentrations and loading of these ion species in snow were up to an order of magnitude higher than previously observed and were likely derived from salts that precipitated from Great Salt Lake as its elevation decreased. Great Salt Lake has very high salinity dominated by concentrations of chloride, sulfate, sodium and magnesium. Moderately strong correlations existed between concentrations of these ions in snow and distance from Great Salt Lake, suggesting it as a major source of ion deposition in the Wasatch Mountains. Concentrations and ecosystem loading of nitrate in snow were lower than expected, but total winter inorganic nitrogen deposition (NO3- and NH4+) was similar to observations at Niwot Ridge in the Rocky Mountains of Colorado. In general, concentrations of ions in snow decreased with elevation while ecosystem loading of ions increased with elevation due to greater snow accumulation.

  10. Photochemistry of triarylsulfonium salts

    SciTech Connect

    Dektar, J.L.; Hacker, N.P. )

    1990-08-01

    The photolysis of triphenylsulfonium, tris(4-methylphenyl)sulfonium, tris(4-chlorophenyl)sulfonium, several monosubstituted (4-F, 4-Cl, 4-Me, 4-MeO, 4-PhS, and 4-PhCO), and disubstituted (4,4{prime}-Me{sub 2} and 4,4{prime}-(MeO){sub 2}) triphenylsulfonium salts was examined in solution. It was found that direct irradiation of triphenylsulfonium salts produced new rearrangement products, phenylthiobiphenyls, along with diphenyl sulfide, which had been previously reported. Similarly, the triarylsulfonium salts, with the exception of the (4-(phenylthio)phenyl)diphenylsulfonium salts produced new rearrangement products, phenylthiobiphenyls, along with diphenyl sulfide, which had been previously reported. Similarly, the triarylsulfonium salts, with the exception of the (4-(phenylthio)phenyl)diphenylsulfonium salts, gave the new rearrangement products. The mechanism for direct photolysis is proposed to occur from the singlet excited states to give a predominant heterolytic cleavage along with some homolytic cleavage.

  11. A history of salt.

    PubMed

    Cirillo, M; Capasso, G; Di Leo, V A; De Santo, N G

    1994-01-01

    The medical history of salt begins in ancient times and is closely related to different aspects of human history. Salt may be extracted from sea water, mineral deposits, surface encrustations, saline lakes and brine springs. In many inland areas, wood was used as a fuel source for evaporation of brine and this practice led to major deafforestation in central Europe. Salt played a central role in the economies of many regions, and is often reflected in place names. Salt was also used as a basis for population censuses and taxation, and salt monopolies were practised in many states. Salt was sometimes implicated in the outbreak of conflict, e.g. the French Revolution and the Indian War of Independence. Salt has also been invested with many cultural and religious meanings, from the ancient Egyptians to the Middle Ages. Man's innate appetite for salt may be related to his evolution from predominantly vegetarian anthropoids, and it is noteworthy that those people who live mainly on protein and milk or who drink salty water do not generally salt their food, whereas those who live mainly on vegetables, rice and cereals use much more salt. Medicinal use tended to emphasize the positive aspects of salt, e.g. prevention of putrefaction, reduction of tissue swelling, treatment of diarrhea. Evidence was also available to ancient peoples of its relationship to fertility, particularly in domestic animals. The history of salt thus represents a unique example for studying the impact of a widely used dietary substance on different important aspects of man's life, including medical philosophy.

  12. Molten Salt Electrochemical Systems.

    DTIC Science & Technology

    1983-05-31

    metal tetrafluoroborates were examined for similar behavior. Commercial samples of the lithium, sodium and potassium salts were used, while the...REPORT a PERID C £0 inal, 1 June 1980-31 March Molten Salt Electrochemical Systems 1983 6 PERFORMING OŘG. REPORT NUMBER 7. AUTHOR(a) I CONTRACT OR...dilfferent from Reporl) IS. KEY WORDS (Continue ora ow... side 55 n~cssay and Identify by block number ) Molten Salt , Phase Diagram, Electrolyte 30

  13. Dosimetry using silver salts

    DOEpatents

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  14. Effects of Salt Stress on Three Ecologically Distinct Plantago Species

    PubMed Central

    Al Hassan, Mohamad; Pacurar, Andrea; López-Gresa, María P.; Donat-Torres, María P.; Llinares, Josep V.; Boscaiu, Monica; Vicente, Oscar

    2016-01-01

    Comparative studies on the responses to salt stress of taxonomically related taxa should help to elucidate relevant mechanisms of stress tolerance in plants. We have applied this strategy to three Plantago species adapted to different natural habitats, P. crassifolia and P. coronopus–both halophytes–and P. major, considered as salt-sensitive since it is never found in natural saline habitats. Growth inhibition measurements in controlled salt treatments indicated, however, that P. major is quite resistant to salt stress, although less than its halophytic congeners. The contents of monovalent ions and specific osmolytes were determined in plant leaves after four-week salt treatments. Salt-treated plants of the three taxa accumulated Na+ and Cl- in response to increasing external NaCl concentrations, to a lesser extent in P. major than in the halophytes; the latter species also showed higher ion contents in the non-stressed plants. In the halophytes, K+ concentration decreased at moderate salinity levels, to increase again under high salt conditions, whereas in P. major K+ contents were reduced only above 400 mM NaCl. Sorbitol contents augmented in all plants, roughly in parallel with increasing salinity, but the relative increments and the absolute values reached did not differ much in the three taxa. On the contrary, a strong (relative) accumulation of proline in response to high salt concentrations (600–800 mM NaCl) was observed in the halophytes, but not in P. major. These results indicate that the responses to salt stress triggered specifically in the halophytes, and therefore the most relevant for tolerance in the genus Plantago are: a higher efficiency in the transport of toxic ions to the leaves, the capacity to use inorganic ions as osmotica, even under low salinity conditions, and the activation, in response to very high salt concentrations, of proline accumulation and K+ transport to the leaves of the plants. PMID:27490924

  15. Effects of Salt Stress on Three Ecologically Distinct Plantago Species.

    PubMed

    Al Hassan, Mohamad; Pacurar, Andrea; López-Gresa, María P; Donat-Torres, María P; Llinares, Josep V; Boscaiu, Monica; Vicente, Oscar

    2016-01-01

    Comparative studies on the responses to salt stress of taxonomically related taxa should help to elucidate relevant mechanisms of stress tolerance in plants. We have applied this strategy to three Plantago species adapted to different natural habitats, P. crassifolia and P. coronopus-both halophytes-and P. major, considered as salt-sensitive since it is never found in natural saline habitats. Growth inhibition measurements in controlled salt treatments indicated, however, that P. major is quite resistant to salt stress, although less than its halophytic congeners. The contents of monovalent ions and specific osmolytes were determined in plant leaves after four-week salt treatments. Salt-treated plants of the three taxa accumulated Na+ and Cl- in response to increasing external NaCl concentrations, to a lesser extent in P. major than in the halophytes; the latter species also showed higher ion contents in the non-stressed plants. In the halophytes, K+ concentration decreased at moderate salinity levels, to increase again under high salt conditions, whereas in P. major K+ contents were reduced only above 400 mM NaCl. Sorbitol contents augmented in all plants, roughly in parallel with increasing salinity, but the relative increments and the absolute values reached did not differ much in the three taxa. On the contrary, a strong (relative) accumulation of proline in response to high salt concentrations (600-800 mM NaCl) was observed in the halophytes, but not in P. major. These results indicate that the responses to salt stress triggered specifically in the halophytes, and therefore the most relevant for tolerance in the genus Plantago are: a higher efficiency in the transport of toxic ions to the leaves, the capacity to use inorganic ions as osmotica, even under low salinity conditions, and the activation, in response to very high salt concentrations, of proline accumulation and K+ transport to the leaves of the plants.

  16. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. F.

    2013-01-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as cloud condensation nuclei (CCN) ability. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well-described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling fits and goodness of fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  17. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  18. Salt Weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    2006-12-01

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  19. Inorganic semiconductors for flexible electronics.

    SciTech Connect

    Sun, Y.; Rogers, J. A.; Center for Nanoscale Materials; Univ. of Illinois

    2007-08-03

    This article reviews several classes of inorganic semiconductor materials that can be used to form high-performance thin-film transistors (TFTs) for large area, flexible electronics. Examples ranging from thin films of various forms of silicon to nanoparticles and nanowires of compound semiconductors are presented, with an emphasis on methods of depositing and integrating thin films of these materials into devices. Performance characteristics, including both electrical and mechanical behavior, for isolated transistors as well as circuits with various levels of complexity are reviewed. Collectively, the results suggest that flexible or printable inorganic materials may be attractive for a range of applications not only in flexible but also in large-area electronics, from existing devices such as flat-panel displays to more challenging (in terms of both cost and performance requirements) systems such as large area radiofrequency communication devices, structural health monitors, and conformal X-ray imagers.

  20. Gas separations using inorganic membranes

    SciTech Connect

    Egan, B.Z.; Singh, S.P.N.; Fain, D.E.; Roettger, G.E.; White, D.E.

    1992-04-01

    This report summarizes the results from a research and development program to develop, fabricate, and evaluate inorganic membranes for separating gases at high temperatures and pressures in hostile process environments encountered in fossil energy conversion processes such as coal gasification. The primary emphasis of the research was on the separation and recovery of hydrogen from synthesis gas. Major aspects of the program included assessment of the worldwide research and development activity related to gas separations using inorganic membranes, identification and selection of candidate membrane materials, fabrication and characterization of membranes using porous membrane technology developed at the Oak Ridge K-25 Site, and evaluation of the separations capability of the fabricated membranes in terms of permeabilities and fluxes of gases.

  1. Henry Taube: inorganic chemist extraordinaire.

    PubMed

    Creutz, Carol; Ford, Peter C; Meyer, Thomas J

    2006-09-04

    The numerous innovative contributions of Henry Taube to modern inorganic chemistry are briefly reviewed. Highlights include the determination of solvation numbers and lability, elucidation of substitution mechanisms, discovery and documentation of inner-sphere electron transfer, and discovery of the remarkable coordination chemistry of ruthenium and osmium ammine complexes with unsaturated ligands and mixed-valence complexes and their fundamental relationship to intramolecular electron transfer.

  2. Sealed Lithium Inorganic Electrolyte Cell

    DTIC Science & Technology

    1976-03-01

    revere side it necoeery and idM,1117 "~ bfoh numiber) Inorganic Electrolyte Battery Carbon Cathode Evaluation Thionyl Chloride Gas Generation Lithium ...hardware corrosion in cold rolled steel cans, due to cathodic protection of the cans by the lithium . Recent data 4 showed that thionyl chloride is reduced...very slowly on the surface of nickel and stainless steel, when these materials were in contact with a lithium anode in the thionyl chloride

  3. Selected hydrologic data from the vicinity of Rayburns and Vacherie salt domes, northern Louisiana salt-dome basin

    USGS Publications Warehouse

    Ryals, G.N.; Hosman, R.L.

    1980-01-01

    The U.S. Department of Energy is considering salt domes in northern Louisiana as possible sites for storage of nuclear waste. As part of this National Waste Terminal Storage (NWTS) Program, the U.S. Geological Survey is conducting a regional study of the geohydrology of the northern Louisiana salt-dome basin. Field studies involving the collection of data began in 1977. Data-collection networks were established for both ground- and surface- water sources, primarily in the vicinity of two salt domes, Rayburns and Vacherie. Groundwater data collection involved measuring water levels and sampling existing production wells and test wells drilled by the Louisiana State University for Environmental Studies. Samples were analyzed for one or more of the following categories of chemical constituents: inorganic, trace metal, and radiochemical. A network of surface-water stations was set up for measuring discharge and collecting periodic samples. Initial sampling was for analysis for inorganic chemical constituents and radioactive elements. Subsequent sampling has been for inorganic chemical constituents. (USGS)

  4. Structural characterization of inorganic biomaterials.

    PubMed

    Mavridis, Irene M

    Composite materials with unique architectures are ubiquitous in nature, e.g., marine shells, sponge spicules, bones, and dentine. These structured organic-inorganic systems are generated through self-assembly of organic matter (usually proteins or lipids) into scaffolds, onto which the inorganic component is deposited in organized hierarchical structures of sizes spanning several orders of magnitude. The development of bio-inspired materials is possible through the design of synthetic bottom-up self-assembly methods. Knowledge of the structure is required in order to assess the efficiency of their design and evaluate their properties. This chapter reviews the main methods used for structure determination of natural and synthetic inorganic biomaterials, namely, X-ray diffraction and scattering and electron diffraction and microscopy (TEM, SEM), as well as the AFM and CSLM microscopy methods. Moreover, spectroscopic (IR, NMR, and Raman) and thermal methods are presented. Examples of biomimetic synthetic materials are used to show the contribution of single or multiple techniques in the elucidation of their structure.

  5. Progress in Studying Salt Secretion from the Salt Glands in Recretohalophytes: How Do Plants Secrete Salt?

    PubMed Central

    Yuan, Fang; Leng, Bingying; Wang, Baoshan

    2016-01-01

    To survive in a saline environment, halophytes have evolved many strategies to resist salt stress. The salt glands of recretohalophytes are exceptional features for directly secreting salt out of a plant. Knowledge of the pathway(s) of salt secretion in relation to the function of salt glands may help us to change the salt-tolerance of crops and to cultivate the extensive saline lands that are available. Recently, ultrastructural studies of salt glands and the mechanism of salt secretion, particularly the candidate genes involved in salt secretion, have been illustrated in detail. In this review, we summarize current researches on salt gland structure, salt secretion mechanism and candidate genes involved, and provide an overview of the salt secretion pathway and the asymmetric ion transport of the salt gland. A new model recretohalophyte is also proposed. PMID:27446195

  6. Integrated Salt Studies

    NASA Astrophysics Data System (ADS)

    Urai, Janos L.; Kukla, Peter A.

    2015-04-01

    The growing importance of salt in the energy, subsurface storage, and chemical and food industries also increases the challenges with prediction of geometries, kinematics, stress and transport in salt. This requires an approach, which integrates a broader range of knowledge than is traditionally available in the different scientific and engineering disciplines. We aim to provide a starting point for a more integrated understanding of salt, by presenting an overview of the state of the art in a wide range of salt-related topics, from (i) the formation and metamorphism of evaporites, (ii) rheology and transport properties, (iii) salt tectonics and basin evolution, (iv) internal structure of evaporites, (v) fluid flow through salt, to (vi) salt engineering. With selected case studies we show how integration of these domains of knowledge can bring better predictions of (i) sediment architecture and reservoir distribution, (ii) internal structure of salt for optimized drilling and better cavern design, (iii) reliable long-term predictions of deformations and fluid flow in subsurface storage. A fully integrated workflow is based on geomechanical models, which include all laboratory and natural observations and links macro- and micro-scale studies. We present emerging concepts for (i) the initiation dynamics of halokinesis, (ii) the rheology and deformation of the evaporites by brittle and ductile processes, (iii) the coupling of processes in evaporites and the under- and overburden, and (iv) the impact of the layered evaporite rheology on the structural evolution.

  7. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  8. Utah: Salt Lake Region

    Atmospheric Science Data Center

    2014-05-15

    ... mountains including the Wasatch Range to the east, and the temperature difference between the Great Salt Lake and the overlying atmosphere ... snow cover between the winter and summer views, water color changes in parts of the Great Salt Lake are apparent in these images. The ...

  9. SALT for Language Acquisition.

    ERIC Educational Resources Information Center

    Bancroft, W. Jane

    1996-01-01

    Discusses Schuster's Suggestive-Accelerative Learning Techniques (SALT) Method, which combines Lozanov's Suggestopedia with such American methods as Asher's Total Physical Response and Galyean's Confluent Education. The article argues that students trained with the SALT Method have higher achievement scores and better attitudes than others. (14…

  10. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  11. SALT for Language Acquisition.

    ERIC Educational Resources Information Center

    Bancroft, W. Jane

    1996-01-01

    Discusses Schuster's Suggestive-Accelerative Learning Techniques (SALT) Method, which combines Lozanov's Suggestopedia with such American methods as Asher's Total Physical Response and Galyean's Confluent Education. The article argues that students trained with the SALT Method have higher achievement scores and better attitudes than others. (14…

  12. [Salt and cancer].

    PubMed

    Strnad, Marija

    2010-05-01

    Besides cardiovascular disease, a high salt intake causes other adverse health effects, i.e., gastric and some other cancers, obesity (risk factor for many cancer sites), Meniere's disease, worsening of renal disease, triggering an asthma attack, osteoporosis, exacerbation of fluid retention, renal calculi, etc. Diets containing high amounts of food preserved by salting and pickling are associated with an increased risk of cancers of the stomach, nose and throat. Because gastric cancer is still the most common cancer in some countries (especially in Japan), its prevention is one of the most important aspects of cancer control strategy. Observations among Japanese immigrants in the U.S.A. and Brazil based on the geographic differences, the trend in cancer incidence with time, and change in the incidence patterns indicate that gastric cancer is closely associated with dietary factors such as the intake of salt and salted food. The findings of many epidemiological studies suggest that high dietary salt intake is a significant risk factor for gastric cancer and this association was found to be strong in the presence of Helicobacter (H.) pylori infection with atrophic gastritis. A high-salt intake strips the lining of the stomach and may make infection with H. pylori more likely or may exacerbate the infection. Salting, pickling and smoking are traditionally popular ways of preparing food in Japan and some parts of Asia. In addition to salt intake, cigarette smoking and low consumption of fruit and vegetables increase the risk of stomach cancer. However, it is not known whether it is specifically the salt in these foods or a combination of salt and other chemicals that can cause cancer. One study identified a mutagen in nitrite-treated Japanese salted fish, and chemical structure of this mutagen suggests that it is derived from methionine and that salt and nitrite are precursors for its formation. Working under conditions of heat stress greatly increased the workers

  13. Salt and nephrolithiasis.

    PubMed

    Ticinesi, Andrea; Nouvenne, Antonio; Maalouf, Naim M; Borghi, Loris; Meschi, Tiziana

    2016-01-01

    Dietary sodium chloride intake is nowadays globally known as one of the major threats for cardiovascular health. However, there is also important evidence that it may influence idiopathic calcium nephrolithiasis onset and recurrence. Higher salt intake has been associated with hypercalciuria and hypocitraturia, which are major risk factors for calcium stone formation. Dietary salt restriction can be an effective means for secondary prevention of nephrolithiasis as well. Thus in this paper, we review the complex relationship between salt and nephrolithiasis, pointing out the difference between dietary sodium and salt intake and the best methods to assess them, highlighting the main findings of epidemiologic, laboratory and intervention studies and focusing on open issues such as the role of dietary salt in secondary causes of nephrolithiasis.

  14. Effect of hydrotropic salts on phase relationships involving hydrocarbons, water, and alcohols

    SciTech Connect

    Ho, P. C.; Kraus, K. A.

    1980-01-01

    Hydrotropic salts, which can increase the solubility of organic materials in aqueous solutions, are useful to tertiary oil recovery. We have examined effects on solubility of hydrocarbons in water (with and without alcohols) through addition of inorganic hydrotropic salts, such as perchlorates, thiocyanates, and iodides - high in the usual Hofmeister series - and of organic salts such as short chain alkyl benzene sulfonates and other salts based on substituted benzene derivatives. Although the inorganic salts are relatively ineffective in increasing solubility of hydrocarbons in water, many of the organic salts are excellent hydrotropic agents for hydrocarbons. We have examined the phase relationships for several series of aromatic salts such as sulfonates, carboxylates and hydroxycarboxylates, as a function of alkyl-carbon substitution in three-component (hydrocarbon, salt, water) and in four-component (hydrocarbon, salt, alcohol, water) systems. We have also examined miscibility relationships for a given hydrotropic salt as the chain length of alkanes and alkyl benzenes is systematically varied. While miscibilities decrease with increase in chain length of the hydrocarbon, the hydrotropic properties in these systems increase rapidly with the number of alkyl carbons on the benzene ring of the salts and they are relatively insensitive to the type of charged group (sulfonate vs carboxylate) attached to the benzene ring. However, there were significant increases in hydrotropy as one goes from equally substituted sulfonates or carboxylates to salicylates. A number of salts have been identified which have much greater hydrotropic properties for hydrocarbons than such well-known hydrotropic materials as toluene and xylene sulfonates.

  15. Organic-inorganic nanostructures for luminescent indication in the near-infrared range

    NASA Astrophysics Data System (ADS)

    Kondratenko, T. S.; Ovchinnikov, O. V.; Grevtseva, I. G.; Smirnov, M. S.

    2016-04-01

    Amplifying and quenching of IR luminescence of colloidal Ag2S quantum dots were revealed to take place when they couple to organic dye molecules of 3,3'-di-(γ-sulfopropyl)-9-ethyl-4,5,4',5'-dibenzothiacarbocyanine betaine and erytrosine pyridinium salts, respectively. The observed effects are explained as due to the formation of organic-inorganic heterostructures with different mutual arrangement of electronic states of the dyes and the quantum dots.

  16. Lowering Salt in Your Diet

    MedlinePlus

    ... For Consumers Home For Consumers Consumer Updates Lowering Salt in Your Diet Share Tweet Linkedin Pin it ... mail Consumer Updates RSS Feed Everyone needs some salt to function. Also known as sodium chloride, salt ...

  17. Reference repository design concept for bedded salt

    SciTech Connect

    Carpenter, D.W.; Martin, R.W.

    1980-10-08

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  18. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    SciTech Connect

    Hsu, P.C.

    1997-11-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

  19. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  20. Crushed Salt Constitutive Model

    SciTech Connect

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  1. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Astrophysics Data System (ADS)

    Wilson, Lori J.

    1994-10-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  2. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect

    Baroch, C.J.; Grant, P.J.

    1995-10-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. There is considerable interest in developing processes that remove or destroy the nitrate wastes. Electrodialysis-Ion Exchange (EDIX) is a possible process that should be more cost effective in treating aqueous waste steams. This report describes the EDIX process.

  3. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect

    Baroch, C.J.; Grant, P.J.

    1995-12-31

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. This report describes the process of electrodialysis-ion exchange (EDIX) for treating aqueous wastes streams consisting of nitrates, sodium, organics, heavy metals, and radioactive species.

  4. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Technical Reports Server (NTRS)

    Wilson, Lori J.

    1994-01-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  5. Bath salt intoxication causing acute kidney injury requiring hemodialysis.

    PubMed

    Regunath, Hariharan; Ariyamuthu, Venkatesh Kumar; Dalal, Pranavkumar; Misra, Madhukar

    2012-10-01

    Traditional bath salts contain a combination of inorganic salts like Epsom salts, table salt, baking soda, sodium metaphosphate, and borax that have cleansing properties. Since 2010, there have been rising concerns about a new type of substance abuse in the name of "bath salts." They are beta-ketone amphetamine analogs and are derivates of cathinone, a naturally occurring amphetamine analog found in the "khat" plant (Catha edulis). Effects reported with intake included increased energy, empathy, openness, and increased libido. Serious adverse effects reported with intoxication included cardiac, psychiatric, and neurological signs and symptoms. Not much is known about the toxicology and metabolism of these compounds. They inhibit monoamine reuptake (dopamine, nor epinephrine, etc.) and act as central nervous system stimulants with high additive and abuse potential because of their clinical and biochemical similarities to effects from use of cocaine, amphetamine, and 3,4-methylenedioxy-N-methylamphetamine. Deaths associated with use of these compounds have also been reported. We report a case of acute kidney injury associated with the use of "bath salt" pills that improved with hemodialysis.

  6. Salt weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  7. Inorganic Nanoparticles in Cancer Therapy

    PubMed Central

    Bhattacharyya, Sanjib; Kudgus, Rachel A.; Bhattacharya, Resham; Mukherjee, Priyabrata

    2011-01-01

    Nanotechnology is an evolving field with enormous potential for biomedical applications. The growing interest to use inorganic nanoparticles in medicine is due to the unique size and shape-dependent optoelectronic properties. Herein, we will focus on gold, silver and platinum nanoparticles, discussing recent developments for therapeutic applications with regard to cancer in terms of nanoparticles being used as a delivery vehicle as well as therapeutic agents. We will also discuss some of the key challenges to be addressed in future studies. PMID:21104301

  8. The inorganic constituents of echinoderms

    USGS Publications Warehouse

    Clarke, F.W.; Wheeler, W.C.

    1915-01-01

    In a recent paper on the composition of crinoid skeletons we showed that crinoids contain large quantities of magnesia, and that its proportion varies with the temperature of the water in which the creatures live. This result was so novel and surprising that it seemed desirable to examine other echinoderms and to ascertain whether they showed the same characteristics and regularity. A number of sea urchins and starfishes were therefore studied, their inorganic constituents being analyzed in the same manner as those of the crinoids

  9. Plasma chemistry for inorganic materials

    NASA Technical Reports Server (NTRS)

    Matsumoto, O.

    1980-01-01

    Practical application of plasma chemistry to the development of inorganic materials using both low temperature and warm plasmas are summarized. Topics cover: the surface nitrification and oxidation of metals; chemical vapor deposition; formation of minute oxide particles; the composition of oxides from chloride vapor; the composition of carbides and nitrides; freezing high temperature phases by plasma arc welding and plasma jet; use of plasma in the development of a substitute for petroleum; the production of silicon for use in solar cell batteries; and insulating the inner surface of nuclear fusion reactor walls.

  10. Molten salt pyrolysis of latex. [synthetic hydrocarbon fuel production using the Guayule shrub

    NASA Technical Reports Server (NTRS)

    Bauman, A. J. (Inventor)

    1981-01-01

    Latex-rich plants such as Guayule or extracts thereof are pyrolyzed in an inert nitrogen atmosphere inorganic salt melts such as a LiCl/KCl eutectic at a temperature of about 500 C. The yield is over 60% of a highly aromatic, combustible hydrocarbon oil suitable for use as a synthetic liquid fuel.

  11. Sorption of hydrophobic pesticides on a Mediterranean soil affected by wastewater, dissolved organic matter and salts.

    PubMed

    Rodríguez-Liébana, José A; Mingorance, Ma Dolores; Peña, Aránzazu

    2011-03-01

    Irrigation with treated wastewaters as an alternative in countries with severe water shortage may influence the sorption of pesticides and their environmental effects, as wastewater contains higher concentrations of suspended and dissolved organic matter and inorganic compounds than freshwater. We have examined the sorption behaviour of three highly hydrophobic pesticides (the herbicide pendimethalin and the insecticides α-cypermethrin and deltamethrin) on a Mediterranean agricultural soil using the batch equilibration method. We considered wastewater, extracts from urban sewage sludge with different dissolved organic carbon contents, and inorganic salt solutions, using Milli Q water as a control. All pesticides were strongly retained by soil although some sorption occurred on the walls of the laboratory containers, especially when wastewater and inorganic salt solutions were used. The calculation of distribution constants by measuring pesticide concentrations in soil and solution indicated that pendimethalin sorption was not affected whereas α-cypermethrin and deltamethrin retention were significantly enhanced (ca. 5 and 2 times, respectively) when wastewater or salt solutions were employed. We therefore conclude that the increased sorption of the two pesticides caused by wastewater cannot be only the result of its dissolved organic carbon content, but also of the simultaneous presence of inorganic salts in the solution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. [Development of salt concentrates for mineralization of recycled water aboard the space station].

    PubMed

    Skliar, E F; Amiragov, M S; Bobe, L S; Gavrilov, L I; Kurochkin, M G; Solntseva, D P; Krasnov, M S; Skuratov, V M

    2006-01-01

    Recycled water can be brought up to the potable grade by adding minimal quantities of three soluble concentrates with the maximal content of inorganic salts. The authors present results of 3-year storage of potable water mineralized with makeup concentrates and analysis of potable water prepared with the use of the salt concentrates stored over this period of time. A water mineralization unit has been designed based on the principle of cyclic duty to produce physiologically healthy potable water with a preset salt content.

  13. Inorganic compounds for passive solar energy storage: Solid-state dehydration materials and high specific heat materials

    NASA Astrophysics Data System (ADS)

    Struble, L. J.; Brown, P. W.

    1986-04-01

    Two classes of hydrated inorganic salts have been studied to assess their potential as materials for passive solar energy storage. The materials are part of the quaternary system CaO-Al2O3-SO3-H2O and related chemical systems, and the two classes are typified by ettringite, a trisubstituted salt, and Friedel's salt, a monosubstituted salt. The trisubstituted salts were studied for their possible application in latent heat storage, utilizing a low-temperature dehydration reaction, and both classes were studies for their application in sensible heat storage. In order to assess their potential for energy storage, the salts have been synthesized, characterized by several analytical techniques, and thermal properties measured. The dehydration data of that the trisubstituted salts vary somewhat with chemical composition, with the temperature of the onset of dehydration ranging from 6(0)C to 33(0)C, and enthalpy changes on dehydration ranging from 60 to 200 cal/g. Heat capacity is less variable with composition; values for the trisubstituted phases are 30 cal/g/(0)C and for the monosubstituted phases between 0.23 and 0.28 cal/g/(0)C. Preliminary experiments indicate that the dehydration is reversible, and suggest that the materials might have additional potential as solar desiccant materials. These thermal data demonstrate the trisubstituted salts have potential as latent heat storage materials, and that both classes of salts have potential as sensible heat storage materials.

  14. Electrodialysis technology for salt recovery from aluminum salt cake

    SciTech Connect

    Hryn, J. N.; Krumdick, G.; Graziano, D.; Sreenivasarao, K.

    2000-02-02

    Electrodialysis technology for recovering salt from aluminum salt cake is being developed at Argonne National Laboratory. Salt cake, a slag-like aluminum-industry waste stream, contains aluminum metal, salt (NaCl and KCl), and nonmetallics (primarily aluminum oxide). Salt cake can be recycled by digesting with water and filtering to recover the metal and oxide values. A major obstacle to widespread salt cake recycling is the cost of recovering salt from the process brine. Electrodialysis technology developed at Argonne appears to be a cost-effective approach to handling the salt brines, compared to evaporation or disposal. In Argonne's technology, the salt brine is concentrated until salt crystals are precipitated in the electrodialysis stack; the crystals are recovered downstream. The technology is being evaluated on the pilot scale using Eurodia's EUR 40-76-5 stack.

  15. Perfect Strangers: Inorganic Photochemistry and Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Carter, Pamela J.; Ciftan, Suzanne A.; Sistare, Mark F.; Holden Thorp, H.

    1997-06-01

    The applications of inorganic photochemistry to nucleic acid chemistry are discussed. A brief review of nucleic acid structure is given. Methods for probing DNA using emissive inorganic complexes are discussed. Photoreactions that damage DNA by hydrogen atom transfer from sugar or electron abstraction from guanine are presented. The method of photochemical footprinting using a diplatinum photocatalyst is described. The final section discusses advances in combinatorial selection experiments that increase the urgency for rapid screening methods such as those derived from inorganic photochemistry.

  16. Amine salts of nitroazoles

    DOEpatents

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  17. Colloidal inorganic nanocrystals: Nucleation, growth and biological applications

    NASA Astrophysics Data System (ADS)

    Lynch, Jared James

    nanocrystals can be realized. Finally, a novel phase transfer process is demonstrated using inorganic salts, such as sodium arsenite, to make water soluble metal oxide nanocrystals. The water soluble iron oxide nanocrystals are fully characterized by several complementary techniques and then used in cellular studies. The arsenite-coated iron oxide composite nanocrystals (AICN) are shown to be effective cancer therapy agents.

  18. Salt fluoridation: a review.

    PubMed

    Pollick, Howard F

    2013-06-01

    Salt fluoridation is sometimes suggested as a prospect for communities that have a low water fluoride concentration and have no possibility of implementing community water fluoridation. School-based milk fluoridation programs also are practiced in some countries as an alternative. This paper reviews the evidence of effectiveness in dental caries prevention and risks of dental fluorosis in countries where salt or milk fluoridation is practiced.

  19. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    DOEpatents

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  20. Biodegradable and Renal Clearable Inorganic Nanoparticles

    PubMed Central

    Ehlerding, Emily B.

    2015-01-01

    Personalized treatment plans for cancer therapy have been at the forefront of oncology research for many years. With the advent of many novel nanoplatforms, this goal is closer to realization today than ever before. Inorganic nanoparticles hold immense potential in the field of nano‐oncology, but have considerable toxicity concerns that have limited their translation to date. In this review, an overview of emerging biologically safe inorganic nanoplatforms is provided, along with considerations of the challenges that need to be overcome for cancer theranostics with inorganic nanoparticles to become a reality. The clinical and preclinical studies of both biodegradable and renal clearable inorganic nanoparticles are discussed, along with their implications. PMID:27429897

  1. Inorganic Phosphor Materials for Lighting.

    PubMed

    Lin, Yuan-Chih; Karlsson, Maths; Bettinelli, Marco

    2016-04-01

    This chapter addresses the development of inorganic phosphor materials capable of converting the near UV or blue radiation emitted by a light emitting diode to visible radiation that can be suitably combined to yield white light. These materials are at the core of the new generation of solid-state lighting devices that are emerging as a crucial clean and energy saving technology. The chapter introduces the problem of white light generation using inorganic phosphors and the structure-property relationships in the broad class of phosphor materials, normally containing lanthanide or transition metal ions as dopants. Radiative and non-radiative relaxation mechanisms are briefly described. Phosphors emitting light of different colors (yellow, blue, green, and red) are described and reviewed, classifying them in different chemical families of the host (silicates, phosphates, aluminates, borates, and non-oxide hosts). This research field has grown rapidly and is still growing, but the discovery of new phosphor materials with optimized properties (in terms of emission efficiency, chemical and thermal stability, color, purity, and cost of fabrication) would still be of the utmost importance.

  2. Infrared Spectra of Simple Inorganic Ion Pairs in Solid Solution: A Physical Inorganic Chemistry Experiment.

    ERIC Educational Resources Information Center

    Miller, Philip J.; Tong, William G.

    1980-01-01

    Presents a physical inorganic experiment in which large single crystals of the alkali halides doped with divalent ion impurities are prepared easily. Demonstrates the ion pairing of inorganic ions in solid solution. (CS)

  3. Infrared Spectra of Simple Inorganic Ion Pairs in Solid Solution: A Physical Inorganic Chemistry Experiment.

    ERIC Educational Resources Information Center

    Miller, Philip J.; Tong, William G.

    1980-01-01

    Presents a physical inorganic experiment in which large single crystals of the alkali halides doped with divalent ion impurities are prepared easily. Demonstrates the ion pairing of inorganic ions in solid solution. (CS)

  4. Investigations of inorganic and hybrid inorganic-organic nanostructures

    NASA Astrophysics Data System (ADS)

    Kam, Kinson Chihang

    This thesis focuses on the exploratory synthesis and characterization of inorganic and hybrid inorganic-organic nanomaterials. In particular, nanostructures of semiconducting nitrides and oxides, and hybrid systems of nanowire-polymer composites and framework materials, are investigated. These materials are characterized by a variety of techniques for structure, composition, morphology, surface area, optical properties, and electrical properties. In the study of inorganic nanomaterials, gallium nitride (GaN), indium oxide (In2O3), and vanadium dioxide (VO2) nanostructures were synthesized using different strategies and their physical properties were examined. GaN nanostructures were obtained from various synthetic routes. Solid-state ammonolysis of metastable gamma-Ga2O 3 nanoparticles was found to be particularly successful; they achieved high surface areas and photoluminescent study showed a blue shift in emission as a result of surface and size defects. Similarly, In2O3 nanostructures were obtained by carbon-assisted solid-state syntheses. The sub-oxidic species, which are generated via a self-catalyzed vapor-liquid-solid mechanism, resulted in 1D nanostructures including nanowires, nanotrees, and nanobouquets upon oxidation. On the other hand, hydrothermal methods were used to obtain VO2 nanorods. After post-thermal treatment, infrared spectroscopy demonstrated that these nanorods exhibit a thermochromic transition with temperature that is higher by ˜10°C compared to the parent material. The thermochromic behavior indicated a semiconductor-to-metal transition associated with a structural transformation from monoclinic to rutile. The hybrid systems, on the other hand, enabled their properties to be tunable. In nanowire-polymer composites, zinc oxide (ZnO) and silver (Ag) nanowires were synthesized and incorporated into polyaniline (PANI) and polypyrrole (PPy) via in-situ and ex-situ polymerization method. The electrical properties of these composites are

  5. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Salt Lake City, Utah, will host the 2002 Winter Olympic Games. The city is located on the southeastern shore of the Great Salt Lake and sits to the west of the Wasatch Mountains, which rise more than 3,500 meters (10,000 feet) above sea level. The city was first settled in 1847 by pioneers seeking relief from religious persecution. Today Salt Lake City, the capital of Utah, is home to more than 170,000 residents. This true-color image of Salt Lake City was acquired by the Enhanced Thematic Mapper Plus (ETM+), flying aboard Landsat 7, on May 26, 2000. The southeastern tip of the Great Salt Lake is visible in the upper left of the image. The furrowed green and brown landscape running north-south is a portion of the Wasatch Mountains, some of which are snow-capped (white pixels). The greyish pixels in the center of the image show the developed areas of the city. A number of water reservoirs can be seen east of the mountain range. Salt Lake City International Airport is visible on the northwestern edge of the city. About 20 miles south of the airport is the Bingham Canyon Copper Mine (tan pixels), the world's largest open pit excavation. See also this MODIS image of Utah. Image courtesy NASA Landsat7 Science Team and USGS Eros Data Center

  6. Hygroscopic Salts on Mars

    NASA Astrophysics Data System (ADS)

    Melchiorri, R.; Davila, A. F.; Chittenden, J.; Haberle, R. M.

    2008-12-01

    We present preliminary results on the influence of a salt-rich regolith in the water cycle of Mars. Global climate modeling shows that the relative humidity on the Martian surface often reaches values above the deliquescence point of salts that are common components of the regolith. At the deliquescence point, these salts will absorb atmospheric water vapor and form a saturated, transient liquid solution that is stable under a range of temperatures. If atmospheric temperatures fall below the eutectic point of the solution, the later will freeze in the pore space of the regolith, thereby resulting in a net transport of water from the vapor phase in the atmosphere, to the solid state in the regolith. This simple model partially accounts for some the distribution of water on the Martian surface as revealed by Mars Odyssey, in particular, we find that: even though the Cl and surface water distributions detected by HEND/ODYSSEY are highly correlated, salt deliquescence under the the present atmospheric conditions does not explain the overall distribution of water in the near surface regolith. However deliquescence of salt-rich soils could be an important contributor to the distribution of water in the regolith at high obliquity. In that scenario the water in the near-surface regolith would be the remnant of high obliquity conditions salt deliquescence is still active in different regions on Mars today, and it should be introduced as a parameter in the modern GCMs as a new ground/atmosphere interaction

  7. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Salt Lake City, Utah, will host the 2002 Winter Olympic Games. The city is located on the southeastern shore of the Great Salt Lake and sits to the west of the Wasatch Mountains, which rise more than 3,500 meters (10,000 feet) above sea level. The city was first settled in 1847 by pioneers seeking relief from religious persecution. Today Salt Lake City, the capital of Utah, is home to more than 170,000 residents. This true-color image of Salt Lake City was acquired by the Enhanced Thematic Mapper Plus (ETM+), flying aboard Landsat 7, on May 26, 2000. The southeastern tip of the Great Salt Lake is visible in the upper left of the image. The furrowed green and brown landscape running north-south is a portion of the Wasatch Mountains, some of which are snow-capped (white pixels). The greyish pixels in the center of the image show the developed areas of the city. A number of water reservoirs can be seen east of the mountain range. Salt Lake City International Airport is visible on the northwestern edge of the city. About 20 miles south of the airport is the Bingham Canyon Copper Mine (tan pixels), the world's largest open pit excavation. See also this MODIS image of Utah. Image courtesy NASA Landsat7 Science Team and USGS Eros Data Center

  8. Salt and hypertension.

    PubMed

    Joossens, J V; Geboers, J

    1983-01-01

    The salt hypothesis states that salt is a necessary condition for the genesis of essential hypertension; however, it is not a sufficient condition. Other factors---primarily genetics--are necessary for the expression of the disease. The arguments in favor of this still controversial subject originate from pathophysiology, evolution, history, pharmacology, experimental and clinical medicine, and epidemiology. Epidemiologic observations favoring the hypothesis mostly relate to comparisons between populations, and much less to comparisons within populations. The arguments against this hypothesis are related mostly to the well known difficulties of proving a within-population relationship of a relatively homogeneously distributed variable to an age-related variable (blood pressure). Mortality data derived from stomach cancer and stroke, compared within and between populations, provide only circumstantial, but nevertheless important, evidence in favor of the salt hypothesis. The strong, consistent, and independent association between stomach cancer and stroke mortality is best explained by the level of salt intake in the population. The observations made in Belgium over the last years are consistent with the salt hypothesis. A decrease in salt intake at the population level correlated with a marked decrease in stroke and stomach cancer mortality, larger than in any other European country, except Finland.

  9. Not salt taste perception but self-reported salt eating habit predicts actual salt intake.

    PubMed

    Lee, Hajeong; Cho, Hyun-Jeong; Bae, Eunjin; Kim, Yong Chul; Kim, Suhnggwon; Chin, Ho Jun

    2014-09-01

    Excessive dietary salt intake is related to cardiovascular morbidity and mortality. Although dietary salt restriction is essential, it is difficult to achieve because of salt palatability. However, the association between salt perception or salt eating habit and actual salt intake remains uncertain. In this study, we recruited 74 healthy young individuals. We investigated their salt-eating habits by questionnaire and salt taste threshold through a rating scale that used serial dilution of a sodium chloride solution. Predicted 24-hr urinary salt excretions using Kawasaki's and Tanaka's equations estimated dietary salt intake. Participants' mean age was 35 yr, and 59.5% were male. Salt sense threshold did not show any relationship with actual salt intake and a salt-eating habit. However, those eating "salty" foods showed higher blood pressure (P for trend=0.048) and higher body mass index (BMI; P for trend=0.043). Moreover, a salty eating habit was a significant predictor for actual salt intake (regression coefficient [β] for Kawasaki's equation 1.35, 95% confidence interval [CI] 10-2.69, P=0.048; β for Tanaka's equation 0.66, 95% CI 0.01-1.31, P=0.047). In conclusion, a self-reported salt-eating habit, not salt taste threshold predicts actual salt intake.

  10. Water absorption by secondary organic aerosol and its effect on inorganic aerosol behavior

    SciTech Connect

    Ansari, A.S.; Pandis, S.N.

    2000-01-01

    The hygroscopic nature of atmospheric aerosol has generally been associated with its inorganic fraction. In this study, a group contribution method is used to predict the water absorption of secondary organic aerosol (SOA). Compared against growth measurements of mixed inorganic-organic particles, this method appears to provide a first-order approximation in predicting SOA water absorption. The growth of common SOA species is predicted to be significantly less than common atmospheric inorganic salts such as (NH{sub 4}){sub 2}SO{sub 4} and NaCl. Using this group contribution method as a tool in predicting SOA water absorption, an integrated modeling approach is developed combining available SOA and inorganic aerosol models to predict overall aerosol behavior. The effect of SOA on water absorption and nitrate partitioning between the gas and aerosol phases is determined. On average, it appears that SOA accounts for approximately 7% of total aerosol water and increases aerosol nitrate concentrations by approximately 10%. At high relative humidity and low SOA mass fractions, the role of SOA in nitrate partitioning and its contribution to total aerosol water is negligible. However, the water absorption of SOA appears to be less sensitive to changes in relative humidity than that of inorganic species, and thus at low relative humidity and high SOA mass fraction concentrations, SOA is predicted to account for approximately 20% of total aerosol water and a 50% increase in aerosol nitrate concentrations. These findings could improve the results of modeling studies where aerosol nitrate has often been underpredicted.

  11. Inorganic nanosheet liquid crystals and their applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Miyamoto, Nobuyoshi

    2016-09-01

    Liquid crystal (LC) phase of inorganic nanosheets is fascinating system in the field of condensed matter physics and for potential applications in many fields. In this lecture, I present my research on the LC nanosheet colloids derived from clay minerals, layered niobates, layered titnates, and layered perovskites. Structural analyses by small angle X-ray scattering and confocal laser scanning microscopy reveals not only meso-scale lamellar or nematic structures in the LC phase but also fractal-like porous structures. In that structure, the nanosheets show translational and rotational Brownian motions as revealed by fast-scanning confocal microscopy. The structure is tunable by many factors such as nanosheet concentration, nanosheet lateral size, salt concentration, solvent, counter cations, and charge density of the nanosheets. Some optimized systems show variable structural colors which will be useful for color materials and sensor devices. Under ac-electric field, the orientation of the nanosheets and LC domain is easily controllable; the electric field response is applicable for fabrication of electro-optic devices and formation of anisotropic composite materials. Among many future applications, inorganic nanosheet/ polymer composites with precisely controllable hierarchical structure are fascinating. We synthesized a cm-scale mono-domain gel of exfoliated LC clay/polymer composite. The gel is printable with a dye and the colored part shows photo-induced anomalous deformation behavior, which will be applicable as chemical actuators.

  12. Inorganic polyphosphates in extremophiles and their possible functions.

    PubMed

    Orell, Alvaro; Navarro, Claudio A; Rivero, Matías; Aguilar, Juan S; Jerez, Carlos A

    2012-07-01

    Many extremophilic microorganisms are polyextremophiles, being confronted with more than one stress condition. For instance, some thermoacidophilic microorganisms are in addition capable to resist very high metal concentrations. Most likely, they have developed special adaptations to thrive in their living environments. Inorganic polyphosphate (polyP) is a molecule considered to be primitive in its origin and ubiquitous in nature. It has many roles besides being a reservoir for inorganic phosphate and energy. Of special interest are those functions related to survival under stressing conditions in all kinds of cells. PolyP may therefore have a fundamental part in extremophilic microorganism's endurance. Evidence for a role of polyP in the continued existence under acidic conditions, high concentrations of toxic heavy metals and elevated salt concentrations are reviewed in the present work. Actual evidence suggests that polyP may provide mechanistic alternatives in tuning microbial fitness for the adaptation under stressful environmental situations and may be of crucial relevance amongst extremophiles. The enzymes involved in polyP metabolism show structure conservation amongst bacteria and archaea. However, the lack of a canonical polyP synthase in Crenarchaea, which greatly accumulate polyP, strongly suggests that in this phylum a different enzyme may be in charge of its synthesis.

  13. A non-ideal model for predicting the effect of dissolved salt on the flash point of solvent mixtures.

    PubMed

    Liaw, Horng-Jang; Wang, Tzu-Ai

    2007-03-06

    Flash point is one of the major quantities used to characterize the fire and explosion hazard of liquids. Herein, a liquid with dissolved salt is presented in a salt-distillation process for separating close-boiling or azeotropic systems. The addition of salts to a liquid may reduce fire and explosion hazard. In this study, we have modified a previously proposed model for predicting the flash point of miscible mixtures to extend its application to solvent/salt mixtures. This modified model was verified by comparison with the experimental data for organic solvent/salt and aqueous-organic solvent/salt mixtures to confirm its efficacy in terms of prediction of the flash points of these mixtures. The experimental results confirm marked increases in liquid flash point increment with addition of inorganic salts relative to supplementation with equivalent quantities of water. Based on this evidence, it appears reasonable to suggest potential application for the model in assessment of the fire and explosion hazard for solvent/salt mixtures and, further, that addition of inorganic salts may prove useful for hazard reduction in flammable liquids.

  14. Influence of collecting substrates on the characterization of hygroscopic properties of inorganic aerosol particles.

    PubMed

    Eom, Hyo-Jin; Gupta, Dhrubajyoti; Li, Xue; Jung, Hae-Jin; Kim, Hyekyeong; Ro, Chul-Un

    2014-03-04

    The influence of six collecting substrates with different physical properties on the hygroscopicity measurement of inorganic aerosol particle surrogates and the potential applications of these substrates were examined experimentally. Laboratory-generated single salt particles, such as NaCl, KCl, and (NH4)2SO4, 1-5 μm in size, were deposited on transmission electron microscopy grids (TEM grids), parafilm-M, Al foil, Ag foil, silicon wafer, and cover glass. The particle hygroscopic properties were examined by optical microscopy. Contact angle measurements showed that parafilm-M is hydrophobic, and cover glass, silicon wafer, Al foil, and Ag foil substrates are hydrophilic. The observed deliquescence relative humidity (DRH) values for NaCl, KCl, and (NH4)2SO4 on the TEM grids and parafilm-M substrates agreed well with the literature values, whereas the DRHs obtained on the hydrophilic substrates were consistently ∼1-2% lower, compared to those on the hydrophobic substrates. The water layer adsorbed on the salt crystals prior to deliquescence increases the Gibb's free energy of the salt crystal-substrate system compared to the free energy of the salt droplet-substrate system, which in turn reduces the DRHs. The hydrophilic nature of the substrate does not affect the measured efflorescence RH (ERH) values. However, the Cl(-) or SO4(2-) ions in aqueous salt droplets seem to have reacted with Ag foil to form AgCl or Ag2SO4, respectively, which in turn acts as seeds for the heterogeneous nucleation of the original salts, leading to higher ERHs. The TEM grids were found to be most suitable for the hygroscopic measurements of individual inorganic aerosol particles by optical microscopy and when multiple analytical techniques, such as scanning electron microscopy-energy dispersive X-ray spectroscopy, TEM-EDX, and/or Raman microspectrometry, are applied to the same individual particles.

  15. Infrared spectroscopy of aqueous ionic salt solutions at low concentrations

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Gessinger, Véronique; van Driessche, Caroline; Larouche, Pascal; Chapados, Camille

    2007-05-01

    The analysis by infrared spectroscopy of aqueous solutions of the binary inorganic salts NaI and NaCl and the ternary salts CaCl2 and BaCl2 at concentrations from 1000to2mM was carried out to complement a previous study done at higher concentrations on nine binary salts (alkali halides) and one ternary salt (MgCl2) [J.-J. Max and C. Chapados, J. Chem. Phys. 115, 2664 (2001)]. These salts are completely ionized in aqueous solutions, forming monoatomic species that do not absorb IR but that perturb the surrounding water, modifying its spectrum. The factor analysis of the spectra revealed that all these salt solutions were composed of two water types: pure water and salt solvated water. The authors obtained pure salt solvated water spectra for all the salts using an extrapolation technique. The water types obtained are constant for the binary and ternary salts down to 2mM. For the binary salts, we determine that 5.0 and 4.0 water molecules are solvated to the Na +-Cl- and Na+-I- ion pairs, respectively. These numbers are the same as that obtained at higher concentrations. For the new ternary salts, we find that 6.0 and 8.0 water molecules are solvated to Ca++-(Cl-)2 and Ba++-(Cl-)2 ion pairs, respectively. These numbers are higher than the four water molecules solvated to Mg++-(Cl-)2 ion pairs determined previously, but show a progression that follows their atomic numbers. These results constitute new experimental results on "simple" systems whose molecular organization is still a matter of debate. The IR method that probes the system at the molecular level is a method different than the macroscopic ones that give the activity coefficients. The IR gives direct observation at the molecular level of the strong ion-water interactions that are often neglected and its water structure not considered in macroscopic methods. The present results and their analysis together with those obtained by other methods will facilitate the determination of the organization of these

  16. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo transfer...

  17. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo transfer...

  18. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo transfer...

  19. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo transfer...

  20. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo transfer...

  1. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under this...

  2. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are identical...

  3. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are identical...

  4. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under this...

  5. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are identical...

  6. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are identical...

  7. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under this...

  8. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under this...

  9. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under this...

  10. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are identical...

  11. Inorganic dual-layer microporous supported membranes

    DOEpatents

    Brinker, C. Jeffrey; Tsai, Chung-Yi; Lu, Yungfeng

    2003-03-25

    The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

  12. Inorganic nanotubes and fullerene-like materials.

    PubMed

    Tenne, Reshef

    2002-12-02

    Following the discovery of fullerenes and carbon nanotubes, it was shown that nanoparticles of inorganic layered compounds, like MoS2, are unstable in the planar form and they form closed cage structures with polyhedral or nanotubular shapes. Various issues on the structure, synthesis, and properties of such inorganic fullerene-like structures are reviewed, together with some possible applications.

  13. Fetal bile salt metabolism

    PubMed Central

    Smallwood, R. A.; Lester, R.; Piasecki, G. J.; Klein, P. D.; Greco, R.; Jackson, B. T.

    1972-01-01

    Bile salt metabolism was studied in fetal dogs 1 wk before term. The size and distribution of the fetal bile salt pool were measured, and individual bile salts were identified. The hepatic excretion of endogenous bile salts was studied in bile fistula fetuses, and the capacity of this excretory mechanism was investigated by the i.v. infusion of a load of sodium taurocholate-14C up to 20 times the endogenous pool size. The total fetal bile salt pool was 30.9±2.7 μmoles, of which two-thirds was in the fetal gallbladder. Expressed on a body weight basis, this was equal to approximately one-half the estimated pool size in the adult dog (119.2±11.3 vs. 247.5±33.1 μmoles/kg body wt). Measurable quantities of bile salt were found in small bowel (6.0±1.8 μmoles), large bowel (1.1±0.3 μmoles), liver (1.2±0.5 μmoles), and plasma (0.1±0.03 μmoles). Plasma bile salt levels were significantly greater in fetal than in maternal plasma (1.01±0.24 μg/ml vs. 0.36±0.06 μg/ml; P < 0.05). Fetal hepatic bile salt excretion showed a fall over the period of study from 2.04±0.34 to 0.30±0.07 μmoles/hr. The maximal endogenous bile salt concentration in fetal hepatic bile was 18.7±1.5 μmoles/ml. The concentration in fetal gallbladder bile was 73.9±8.6 μmoles/ml; and, in those studies in which hepatic and gallbladder bile could be compared directly, the gallbladder appeared to concentrate bile four- to fivefold. Taurocholate, taurochenodeoxycholate, and taurodeoxycholate were present in fetal bile, but no free bile salts were identified. The presence of deoxycholate was confirmed by thin-layer chromatography and gas liquid chromatography, and the absence of microorganisms in fetal gut suggests that it was probably transferred from the maternal circulation. After infusion of a taurocholate load, fetal hepatic bile salt excretion increased 30-fold, so that 85-95% of the dose was excreted by the fetal liver during the period of observation. Placental transfer accounted

  14. Measured and modeled humidification factors of fresh smoke particles from biomass burning: role of inorganic constituents

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; Day, D. E.; McMeeking, G. M.; Levin, E. J. T.; Carrico, C. M.; Kreidenweis, S. M.; Malm, W. C.; Laskin, A.; Desyaterik, Y.

    2010-02-01

    During the 2006 FLAME study (Fire Laboratory at Missoula Experiment), laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry) and bsp(RH), respectively) in order to explore the role of relative humidity (RH) on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels showed large variability in the humidification factor (f(RH)=bsp(RH)/bsp(dry)). Values of f(RH) at RH=85-90% ranged from 1.02 to 2.15 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic and organic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 85-90% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts.

  15. Measured and modeled humidification factors of fresh smoke particles from biomass burning: role of inorganic constituents

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; Day, D. E.; McMeeking, G. M.; Levin, E. J. T.; Carrico, C. M.; Kreidenweis, S. M.; Malm, W. C.; Laskin, A.; Desyaterik, Y.

    2010-07-01

    During the 2006 FLAME study (Fire Laboratory at Missoula Experiment), laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry) and bsp(RH), respectively) in order to explore the role of relative humidity (RH) on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels from the west and southeast United States showed large variability in the humidification factor (f(RH)=bsp(RH)/bsp(dry)). Values of f(RH) at RH=80-85% ranged from 0.99 to 1.81 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 80-85% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts.

  16. Measured and Modeled Humidification Factors of Fresh Smoke Particles From Biomass Burning: Role of Inorganic Constituents

    SciTech Connect

    Hand, Jenny L.; Day, Derek E.; McMeeking, Gavin M.; Levin, Ezra; Carrico, Christian M.; Kreidenweis, Sonia M.; Malm, William C.; Laskin, Alexander; Desyaterik, Yury

    2010-07-09

    During the 2006 FLAME study (Fire Laboratory at Missoula Experiment), laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry) and bsp(RH), respectively) in order to explore the role of relative humidity (RH) on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels showed large variability in the humidification factor (f(RH) = bsp(RH)/bsp(dry)). Values of f(RH) at RH=85-90% ranged from 1.02 to 2.15 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic and organic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 85-90% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts.

  17. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, T.

    2008-08-01

    Tropospheric aerosols contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behaviour. By means of activity coefficients, non-ideal behaviour can be taken into account. We present here a thermodynamic model named AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) that is able to calculate activity coefficients covering inorganic, organic, and organic-inorganic interactions in aqueous solutions over a wide concentration range. This model is based on the activity coefficient model LIFAC by Yan et al. (1999) that we modified and reparametrised to better describe atmospherically relevant conditions and mixture compositions. Focusing on atmospheric applications we considered H+, Li+, Na+, K+, NH+4, Mg2+, Ca2+, Cl-, Br-, NO-3, HSO-4, and SO2-4 as cations and anions and a wide range of alcohols/polyols composed of the functional groups CHn and OH as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are well represented up to high ionic strength. Most notably, a semi-empirical middle-range parametrisation of direct organic-inorganic interactions in alcohol+water+salt solutions strongly improves the agreement between experimental and modelled activity coefficients. At room temperature, this novel thermodynamic model offers the possibility to compute equilibrium relative humidities, gas/particle partitioning and liquid-liquid phase separations with high accuracy. In further studies, other organic functional groups will be introduced. The model framework is not restricted to specific ions or organic compounds and is therefore also applicable for other research topics.

  18. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, Th.

    2008-03-01

    Tropospheric aerosols contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behaviour. By means of activity coefficients, non-ideal behaviour can be taken into account. We present here a thermodynamic model named AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) that is able to calculate activity coefficients covering inorganic, organic, and organic-inorganic interactions in aqueous solutions over a wide concentration range. This model is based on the activity coefficient model LIFAC by Yan et al. (1999) that we modified and reparametrised to better describe atmospherically relevant conditions and mixture compositions. Focusing on atmospheric applications we considered H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42- as cations and anions and a wide range of alcohols/polyols composed of the functional groups CHn and OH as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are well represented up to high ionic strength. Most notably, a semi-empirical middle-range parametrisation of direct organic-inorganic interactions in alcohol + water + salt solutions strongly improves the agreement between experimental and modelled activity coefficients. At room temperature, this novel thermodynamic model offers the possibility to compute equilibrium relative humidities, gas/particle partitioning and liquid-liquid phase separations with high accuracy. In further studies, other organic functional groups will be introduced. The model framework is not restricted to specific ions or organic compounds and is therefore also applicable for other research topics.

  19. Fundamental Properties of Salts

    SciTech Connect

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  20. Great Salt Lake, Utah

    USGS Publications Warehouse

    Stephens, Doyle W.; Gardner, Joe F.

    1999-01-01

    This document is intended as a source of general information and facts about Great Salt Lake, Utah. This U.S. Geological Survey information sheet answers frequently asked questions about Great Salt Lake. Topics include: History, salinity, brine shrimp, brine flies, migratory birds, and recreation. Great Salt Lake, the shrunken remnant of prehistoric Lake Bonneville, has no outlet. Dissolved salts accumulate in the lake by evaporation. Salinity south of the causeway has ranged from 6 percent to 27 percent over a period of 22 years (2 to 7 times saltier than the ocean). The high salinity supports a mineral industry that extracts about 2 million tons of salt from the lake each year. The aquatic ecosystem consists of more than 30 species of organisms. Harvest of its best-known species, the brine shrimp, annually supplies millions of pounds of food for the aquaculture industry worldwide. The lake is used extensively by millions of migratory and nesting birds and is a place of solitude for people. All this occurs in a lake that is located at the bottom of a 35,000-square-mile drainage basin that has a human population of more than 1.5 million.

  1. Inorganic polyphosphate: a molecule of many functions.

    PubMed

    Kornberg, A; Rao, N N; Ault-Riché, D

    1999-01-01

    Inorganic polyphosphate (poly P) is a chain of tens or many hundreds of phosphate (Pi) residues linked by high-energy phosphoanhydride bonds. Despite inorganic polyphosphate's ubiquity--found in every cell in nature and likely conserved from prebiotic times--this polymer has been given scant attention. Among the reasons for this neglect of poly P have been the lack of sensitive, definitive, and facile analytical methods to assess its concentration in biological sources and the consequent lack of demonstrably important physiological functions. This review focuses on recent advances made possible by the introduction of novel, enzymatically based assays. The isolation and ready availability of Escherichia coli polyphosphate kinase (PPK) that can convert poly P and ADP to ATP and of a yeast exopolyphosphatase that can hydrolyze poly P to Pi, provide highly specific, sensitive, and facile assays adaptable to a high-throughput format. Beyond the reagents afforded by the use of these enzymes, their genes, when identified, mutated, and overexpressed, have offered insights into the physiological functions of poly P. Most notably, studies in E. coli reveal large accumulations of poly P in cellular responses to deficiencies in an amino acid, Pi, or nitrogen or to the stresses of a nutrient downshift or high salt. The ppk mutant, lacking PPK and thus severely deficient in poly P, also fails to express RpoS (a sigma factor for RNA polymerase), the regulatory protein that governs > or = 50 genes responsible for stationary-phase adaptations to resist starvation, heat and oxidant stresses, UV irradiation, etc. Most dramatically, ppk mutants die after only a few days in stationary phase. The high degree of homology of the PPK sequence in many bacteria, including some of the major pathogenic species (e.g. Mycobacterium tuberculosis, Neisseria meningitidis, Helicobacter pylori, Vibrio cholerae, Salmonella typhimurium, Shigella flexneri, Pseudomonas aeruginosa, Bordetella pertussis

  2. On some problems of inorganic supramolecular chemistry.

    PubMed

    Pervov, Vladislav S; Zotova, Anna E

    2013-12-02

    In this study, some features that distinguish inorganic supramolecular host-guest objects from traditional architectures are considered. Crystalline inorganic supramolecular structures are the basis for the development of new functional materials. Here, the possible changes in the mechanism of crystalline inorganic supramolecular structure self-organization at high interaction potentials are discussed. The cases of changes in the host structures and corresponding changes in the charge states under guest intercalation, as well as their impact on phase stability and stoichiometry are considered. It was demonstrated that the deviation from the geometrical and topological complementarity conditions may be due to the additional energy gain from forming inorganic supramolecular structures. It has been assumed that molecular recognition principles can be employed for the development of physicochemical analysis and interpretation of metastable states in inorganic crystalline alloys. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Toxicity of inorganic nanomaterials in biomedical imaging.

    PubMed

    Li, Jinxia; Chang, Xueling; Chen, Xiaoxia; Gu, Zhanjun; Zhao, Feng; Chai, Zhifang; Zhao, Yuliang

    2014-01-01

    Inorganic nanoparticles have shown promising potentials as novel biomedical imaging agents with high sensitivity, high spatial and temporal resolution. To translate the laboratory innovations into clinical applications, their potential toxicities are highly concerned and have to be evaluated comprehensively both in vitro and in vivo before their clinical applications. In this review, we first summarized the in vivo and in vitro toxicities of the representative inorganic nanoparticles used in biomedical imagings. Then we further discuss the origin of nanotoxicity of inorganic nanomaterials, including ROS generation and oxidative stress, chemical instability, chemical composition, the surface modification, dissolution of nanoparticles to release excess free ions of metals, metal redox state, and left-over chemicals from synthesis, etc. We intend to provide the readers a better understanding of the toxicology aspects of inorganic nanomaterials and knowledge for achieving optimized designs of safer inorganic nanomaterials for clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Mineral resource of the month: salt

    USGS Publications Warehouse

    Kostick, Dennis S.

    2010-01-01

    The article presents information on various types of salt. Rock salt is either found from underground halite deposits or near the surface. Other types of salt include solar salt, salt brine, and vacuum pan salt. The different uses of salt are also given including its use as a flavor enhancer, as a road deicing agent, and to manufacture sodium hydroxide.

  5. Clean Salt integrated flowsheet

    SciTech Connect

    Lunsford, T.R.

    1994-09-27

    The Clean Salt Process (CSP) is a novel waste management scheme that removes sodium nitrate and aluminum nitrate nonahydrate as decontaminated (low specific activity) salts from Hanford`s high-level waste (HLW). The full scale process will separate the bulk of the waste that exists as sodium salts from the small portion of the waste that is by definition radioactive and dangerous. This report presents initial conceptual CSP flowsheets and demonstrates the benefit of integrating the process into the Tank Waste Remediation Systems (TWRS) Reference Flowsheet. Total HLW and low-level (LLW) volumes are reported for two different CSP integration options and are compared to the TWRS Reference Flowsheet values. The results for a single glass option eliminating LLW disposal are also reported.

  6. The discrimination of 72 nitrate, chlorate and perchlorate salts using IR and Raman spectroscopy.

    PubMed

    Zapata, Félix; García-Ruiz, Carmen

    2017-08-30

    Inorganic oxidizing energetic salts including nitrates, chlorates and perchlorates are widely used in the manufacture of not only licit pyrotechnic compositions, but also illicit homemade explosive mixtures. Their identification in forensic laboratories is usually accomplished by either capillary electrophoresis or ion chromatography, with the disadvantage of dissociating the salt into its ions. On the contrary, vibrational spectroscopy, including IR and Raman, enables the non-invasive identification of the salt, i.e. avoiding its dissociation. This study focuses on the discrimination of all nitrate, chlorate and perchlorate salts that are commercially available, using both Raman and IR spectroscopy, with the aim of testing whether every salt can be unequivocally identified. Besides the visual spectra comparison by assigning every band with the corresponding molecular vibrational mode, a statistical analysis based on Pearson correlation was performed to ensure an objective identification, either using Raman, IR or both. Positively, 25 salts (out of 72) were unequivocally identified using Raman, 30 salts when using IR and 44 when combining both techniques. Negatively, some salts were undistinguishable even using both techniques demonstrating there are some salts that provide very similar Raman and IR spectra. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Gas releases from salt

    SciTech Connect

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  8. [Salt intake in children].

    PubMed

    Girardet, J-P; Rieu, D; Bocquet, A; Bresson, J-L; Briend, A; Chouraqui, J-P; Darmaun, D; Dupont, C; Frelut, M-L; Hankard, R; Goulet, O; Simeoni, U; Turck, D; Vidailhet, M

    2014-05-01

    Very early in life, sodium intake correlates with blood pressure level. This warrants limiting the consumption of sodium by children. However, evidence regarding exact sodium requirements in that age range is lacking. This article focuses on the desirable sodium intake according to age as suggested by various groups of experts, on the levels of sodium intake recorded in consumption surveys, and on the public health strategies implemented to reduce salt consumption in the pediatric population. Practical recommendations are given by the Committee on nutrition of the French Society of Pediatrics in order to limit salt intake in children.

  9. Mechanism for salt scaling

    NASA Astrophysics Data System (ADS)

    Valenza, John J., II

    Salt scaling is superficial damage caused by freezing a saline solution on the surface of a cementitious body. The damage consists of the removal of small chips or flakes of binder. The discovery of this phenomenon in the early 1950's prompted hundreds of experimental studies, which clearly elucidated the characteristics of this damage. In particular it was shown that a pessimum salt concentration exists, where a moderate salt concentration (˜3%) results in the most damage. Despite the numerous studies, the mechanism responsible for salt scaling has not been identified. In this work it is shown that salt scaling is a result of the large thermal expansion mismatch between ice and the cementitious body, and that the mechanism responsible for damage is analogous to glue-spalling. When ice forms on a cementitious body a bi-material composite is formed. The thermal expansion coefficient of the ice is ˜5 times that of the underlying body, so when the temperature of the composite is lowered below the melting point, the ice goes into tension. Once this stress exceeds the strength of the ice, cracks initiate in the ice and propagate into the surface of the cementitious body, removing a flake of material. The glue-spall mechanism accounts for all of the characteristics of salt scaling. In particular, a theoretical analysis is presented which shows that the pessimum concentration is a consequence of the effect of brine pockets on the mechanical properties of ice, and that the damage morphology is accounted for by fracture mechanics. Finally, empirical evidence is presented that proves that the glue-small mechanism is the primary cause of salt scaling. The primary experimental tool used in this study is a novel warping experiment, where a pool of liquid is formed on top of a thin (˜3 mm) plate of cement paste. Stresses in the plate, including thermal expansion mismatch, result in warping of the plate, which is easily detected. This technique revealed the existence of

  10. Inorganic polymers: morphogenic inorganic biopolymers for rapid prototyping chain.

    PubMed

    Müller, Werner E G; Schröder, Heinz C; Shen, Zhijian; Feng, Qingling; Wang, Xiaohong

    2013-01-01

    In recent years, considerable progress has been achieved towards the development of customized scaffold materials, in particular for bone tissue engineering and repair, by the introduction of rapid prototyping or solid freeform fabrication techniques. These new fabrication techniques allow to overcome many problems associated with conventional bone implants, such as inadequate external morphology and internal architecture, porosity and interconnectivity, and low reproducibility. However, the applicability of these new techniques is still hampered by the fact that high processing temperature or a postsintering is often required to increase the mechanical stability of the generated scaffold, as well as a post-processing, i.e., surface modification/functionalization to enhance the biocompatibility of the scaffold or to bind some bioactive component. A solution might be provided by the introduction of novel inorganic biopolymers, biosilica and polyphosphate, which resist harsh conditions applied in the RP chain and are morphogenetically active and do not need supplementation by growth factors/cytokines to stimulate the growth and the differentiation of bone-forming cells.

  11. Multiyear study of the dependence of sea salt aerosol on wind speed and sea ice conditions in the coastal Arctic

    NASA Astrophysics Data System (ADS)

    May, N. W.; Quinn, P. K.; McNamara, S. M.; Pratt, K. A.

    2016-08-01

    Thinning of Arctic sea ice gives rise to ice fracturing and leads (areas of open water surrounded by sea ice) that are a potential source of sea salt aerosol. Atmospheric particle inorganic ion concentrations, local sea ice conditions, and meteorology at Barrow, AK, from 2006 to 2009, were combined to investigate the dependence of submicron (aerodynamic diameter < 1 µm) and supermicron (aerodynamic diameter 1-10 µm) sea salt mass concentrations on sea ice coverage and wind speed. Consistent with a wind-dependent source, supermicron sea salt mass concentrations increased in the presence of nearby leads and wind speeds greater than 4 m s-1. Increased supermicron and submicron sea salt chloride depletion was observed for periods of low winds or a lack of nearby open water, consistent with transported sea salt influence. Sea salt aerosol produced from leads has the potential to alter cloud formation, as well as the chemical composition of the Arctic atmosphere and snowpack.

  12. Inorganic membranes and solid state sciences

    NASA Astrophysics Data System (ADS)

    Cot, Louis; Ayral, André; Durand, Jean; Guizard, Christian; Hovnanian, Nadine; Julbe, Anne; Larbot, André

    2000-05-01

    The latest developments in inorganic membranes are closely related to recent advances in solid state science. Sol-gel processing, plasma-enhanced chemical vapor deposition and hydrothermal synthesis are methods that can be used for inorganic membrane preparation. Innovative concepts from material science (templating effect, nanophase materials, growing of continuous zeolite layers, hybrid organic-inorganic materials) have been applied by our group to the preparation of inorganic membrane materials. Sol-gel-derived nanophase ceramic membranes are presented with current applications in nanofiltration and catalytic membrane reactors. Silica membranes with an ordered porosity, due to liquid crystal phase templating effect, are described with potential application in pervaporation. Defect-free and thermally stable zeolite membranes can be obtained through an original synthesis method, in which zeolite crystals are grown inside the pores of a support. Hybrid organic-inorganic materials with permselective properties for gas separation and facilitated transport of solutes in liquid media, have been successfully adapted to membrane applications. Potential membrane developments offered by CVD deposition techniques are also illustrated through several examples related to the preparation of purely inorganic and hybrid organic-inorganic membrane materials.

  13. Shape control of inorganic nanoparticles from solution.

    PubMed

    Wu, Zhaohui; Yang, Shuanglei; Wu, Wei

    2016-01-21

    Inorganic materials with controllable shapes have been an intensely studied subject in nanoscience over the past decades. Control over novel and anisotropic shapes of inorganic nanomaterials differing from those of bulk materials leads to unique and tunable properties for widespread applications such as biomedicine, catalysis, fuels or solar cells and magnetic data storage. This review presents a comprehensive overview of shape-controlled inorganic nanomaterials via nucleation and growth theory and the control of experimental conditions (including supersaturation, temperature, surfactants and secondary nucleation), providing a brief account of the shape control of inorganic nanoparticles during wet-chemistry synthetic processes. Subsequently, typical mechanisms for shape-controlled inorganic nanoparticles and the general shape of the nanoparticles formed by each mechanism are also expounded. Furthermore, the differences between similar mechanisms for the shape control of inorganic nanoparticles are also clearly described. The authors envision that this review will provide valuable guidance on experimental conditions and process control for the synthesis of inorganic nanoparticles with tunable shapes in the solution state.

  14. Shape control of inorganic nanoparticles from solution

    NASA Astrophysics Data System (ADS)

    Wu, Zhaohui; Yang, Shuanglei; Wu, Wei

    2016-01-01

    Inorganic materials with controllable shapes have been an intensely studied subject in nanoscience over the past decades. Control over novel and anisotropic shapes of inorganic nanomaterials differing from those of bulk materials leads to unique and tunable properties for widespread applications such as biomedicine, catalysis, fuels or solar cells and magnetic data storage. This review presents a comprehensive overview of shape-controlled inorganic nanomaterials via nucleation and growth theory and the control of experimental conditions (including supersaturation, temperature, surfactants and secondary nucleation), providing a brief account of the shape control of inorganic nanoparticles during wet-chemistry synthetic processes. Subsequently, typical mechanisms for shape-controlled inorganic nanoparticles and the general shape of the nanoparticles formed by each mechanism are also expounded. Furthermore, the differences between similar mechanisms for the shape control of inorganic nanoparticles are also clearly described. The authors envision that this review will provide valuable guidance on experimental conditions and process control for the synthesis of inorganic nanoparticles with tunable shapes in the solution state.

  15. Effect of Sodium Sulfate, Ammonium Chloride, Ammonium Nitrate, and Salt Mixtures on Aqueous Phase Partitioning of Organic Compounds.

    PubMed

    Wang, Chen; Lei, Ying Duan; Wania, Frank

    2016-12-06

    Dissolved inorganic salts influence the partitioning of organic compounds into the aqueous phase. This influence is especially significant in atmospheric aerosol, which usually contains large amounts of ions, including sodium, ammonium, chloride, sulfate, and nitrate. However, empirical data on this salt effect are very sparse. Here, the partitioning of numerous organic compounds into solutions of Na2SO4, NH4Cl, and NH4NO3 was measured and compared with existing data for NaCl and (NH4)2SO4. Salt mixtures were also tested to establish whether the salt effect is additive. In general, the salt effect showed a decreasing trend of Na2SO4 > (NH)2SO4 > NaCl > NH4Cl > NH4NO3 for the studied organic compounds, implying the following relative strength of the salt effect of individual anions: SO4(2-) > Cl(-) > NO3(-) and of cations: Na(+) > NH4(+). The salt effect of different salts is moderately correlated. Predictive models for the salt effect were developed based on the experimental data. The experimental data indicate that the salt effect of mixtures may not be entirely additive. However, the deviation from additivity, if it exists, is small. Data of very high quality are required to establish whether the effect of constituent ions or salts is additive or not.

  16. Unitized paramagnetic salt thermometer

    SciTech Connect

    Abraham, B.M.

    1982-06-01

    The details of construction and assembly of a cerous magnesium nitrate (CMN) paramagnetic thermometer are presented. The thermometer is a small unit consisting of a primary, two secondaries, the salt pill, and thermal links. The thermometer calibration changes very little on successive coolings and is reliable to 35 mK. A typical calibration curve is also presented.

  17. Uranium, soluble salts

    Integrated Risk Information System (IRIS)

    Uranium , soluble salts ; no CASRN Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  18. SALT and Spelling Achievement.

    ERIC Educational Resources Information Center

    Nelson, Joan

    A study investigated the effects of suggestopedic accelerative learning and teaching (SALT) on the spelling achievement, attitudes toward school, and memory skills of fourth-grade students. Subjects were 20 male and 28 female students from two self-contained classrooms at Kennedy Elementary School in Rexburg, Idaho. The control classroom and the…

  19. Dalapon, sodium salt

    Integrated Risk Information System (IRIS)

    Dalapon , sodium salt ; CASRN 75 - 99 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  20. Utah: Salt Lake City

    Atmospheric Science Data Center

    2014-05-15

    ... mountains surrounding Salt Lake City are renowned for the dry, powdery snow that results from the arid climate and location at the ... should be used with the red filter placed over your left eye. The canyons and peaks of the Uinta and Wasatch Mountains are ...

  1. Salt repository design approach

    SciTech Connect

    Matthews, S.C.

    1983-01-01

    This paper presents a summary discussion of the approaches that have been and will be taken in design of repository facilities for use with disposal of radioactive wastes in salt formations. Since specific sites have yet to be identified, the discussion is at a general level, supplemented with illustrative examples where appropriate. 5 references, 1 figure.

  2. Nickel, soluble salts

    Integrated Risk Information System (IRIS)

    Nickel , soluble salts ; CASRN Various Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  3. SALT and Spelling Achievement.

    ERIC Educational Resources Information Center

    Nelson, Joan

    A study investigated the effects of suggestopedic accelerative learning and teaching (SALT) on the spelling achievement, attitudes toward school, and memory skills of fourth-grade students. Subjects were 20 male and 28 female students from two self-contained classrooms at Kennedy Elementary School in Rexburg, Idaho. The control classroom and the…

  4. Photoluminescence of urine salts

    NASA Astrophysics Data System (ADS)

    Bordun, O.; Drobchak, O.

    2008-02-01

    Photoexcitation and luminescence spectra of dried urine sample under laser excitation were studied. Luminescence spectra of urine are determined by luminescence of urea which is the main component of urine. The presence of pathological salts in urine leads to the long-wave shifting of maxima of luminescence and to the decreasing of luminescence intensity.

  5. Nanocomposites Derived from Polymers and Inorganic Nanoparticles

    PubMed Central

    Jeon, In-Yup; Baek, Jong-Beom

    2010-01-01

    Polymers are considered to be good hosting matrices for composite materials because they can easily be tailored to yield a variety of bulk physical properties. Moreover, organic polymers generally have long-term stability and good processability. Inorganic nanoparticles possess outstanding optical, catalytic, electronic and magnetic properties, which are significantly different their bulk states. By combining the attractive functionalities of both components, nanocomposites derived from organic polymers and inorganic nanoparticles are expected to display synergistically improved properties. The potential applications of the resultant nanocomposites are various, e.g. automotive, aerospace, opto-electronics, etc. Here, we review recent progress in polymer-based inorganic nanoparticle composites.

  6. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  7. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  8. Bile salts and calcium absorption.

    PubMed

    Webling, D D; Holdsworth, E S

    1966-09-01

    1. The study of the effect of bile salts on enhancing calcium absorption in the rachitic chick has been extended to bile salts not present in chick bile, e.g. glycine conjugates and bile alcohol sulphates. 2. Bile and bile salts cause an increase in calcium absorption from sparingly soluble calcium hydrogen phosphate when compared with a suspension of calcium hydrogen phosphate in saline. 3. If the bile ducts of normal rats are tied the absorption of calcium from calcium hydrogen phosphate decreases but can be restored by giving bile salts with the calcium salt. 4. Bile salts increase solubility in water of the sparingly soluble calcium salts, phytate and phosphate at pH values between 6 and 8. 5. Bile salts increase the solubility in lipid solvents of calcium in approximately the same proportion as they increase the absorption of calcium from the gut. 6. The physiological role of bile in calcium absorption and its mode of action are discussed.

  9. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.

    PubMed

    Zhu, Zhu; Chen, Juan; Zheng, Hai-Lei

    2012-11-01

    Salinity is a major abiotic stress that is responsible for growth reduction in most higher plants. Bruguiera gymnorrhiza (L.) Lam., a mangrove plant, is a halophyte and is one of the most salt-tolerant plant species. Physiological and proteomic characteristics of B. gymnorrhiza were investigated under three NaCl concentrations (0, 200 and 500 mM) in this study. Maximum seedling growth occurred at 200 mM NaCl. Leaf osmotic potential was more negative as salt levels increased further. Physiological results revealed that inorganic ions (especially Na(+) and Cl(-)) played a key role in osmotic adjustment of B. gymnorrhiza leaves under salinity treatments. Comparative proteomic analysis revealed 23 salt-responsive proteins in B. gymnorrhiza leaves, which were differentially expressed under salt treatment compared with control. Ten protein spots were analyzed by liquid chromatography-tandem mass spectrometry, leading to identification of proteins involved in photosynthesis, antioxidation, protein folding, cell organization and metabolism. Salt-responsive mechanism was different between 200 and 500 mM NaCl-treated plants on the basis of the physiological and proteomic analyses. Salt tolerance under 200 mM NaCl treatment was due to effective osmotic adjustment, accumulation of inorganic ions (especially Na(+) and Cl(-)) as well as increased expression of photosynthesis-related proteins and antioxidant enzymes, which improved the salt tolerance of B. gymnorrhiza, and furthermore promoted plant growth. On the other hand, 500 mM NaCl reduced the growth of B. gymnorrhiza, which appears to have been caused by the accumulation of NaCl (ionic effect) and energy consumption by organic solute synthesis. Moreover, the repressed expression of photosynthesis-related proteins and antioxidant enzymes led to the reduction of growth. Protein folding and degradation-related proteins and cell organization-related protein were up-regulated and played important roles in salt tolerance of B

  10. What Can We Learn From Laboratory Studies of Inorganic Sea Spray Aerosol?

    NASA Astrophysics Data System (ADS)

    Salter, M. E.; Zieger, P.; Acosta Navarro, J. C.; Grythe, H.; Kirkevag, A.; Rosati, B.; Riipinen, I.; Nilsson, E. D.

    2015-12-01

    Since 2013 we have been operating a temperature-controlled plunging-jet sea spray aerosol chamber at Stockholm University using inorganic artificial seawater. Using size-resolved measurements of the foam bubbles responsible for the aerosol production we were able to show that it is changes to these foam bubbles which drive the observed changes in aerosol production and size distribution as water temperature changes (Salter et al., 2014). Further, by combining size-resolved measurements of aerosol production as a function of water temperature with measurements of air entrainment by the plunging-jet we have developed a temperature-dependent sea spray source function for deployment in large-scale models (Salter et al., 2015). We have also studied the hygroscopicity, morphology, and chemical composition of the inorganic sea spray aerosol produced in the chamber. The sea spray aerosol generated from artificial seawater exhibited lower hygroscopic growth than both pure NaCl and output from the E-AIM aerosol thermodynamics model when all relevant inorganic ions in the sea salt were included. Results from sensitivity tests using a large-scale earth system model suggest that the lower hygroscopicity observed in our laboratory measurements has important implications for calculations of the radiative balance of the Earth. In addition, size-dependent chemical fractionation of several inorganic ions was observed relative to the artificial seawater with potentially important implications for the chemistry of the marine boundary layer. Each of these studies suggest that there is still much to be learned from rigorous experiments using inorganic seawater proxies. Salter et al., (2014), On the seawater temperature dependence of the sea spray aerosol generated by a continuous plunging jet. J. Geophys. Res. Atmos., 119, 9052-9072, doi: 10.1002/2013JD021376 Salter et al., (2015), An empirically derived inorganic sea spray source function incorporating sea surface temperature. Atmos

  11. Inorganic Nanoparticles for Photodynamic Therapy.

    PubMed

    Colombeau, L; Acherar, S; Baros, F; Arnoux, P; Gazzali, A Mohd; Zaghdoudi, K; Toussaint, M; Vanderesse, R; Frochot, C

    2016-01-01

    Photodynamic therapy (PDT) is a well-established technique employed to treat aged macular degeneration and certain types of cancer, or to kill microbes by using a photoactivatable molecule (a photosensitizer, PS) combined with light of an appropriate wavelength and oxygen. Many PSs are used against cancer but none of them are highly specific. Moreover, most are hydrophobic, so are poorly soluble in aqueous media. To improve both the transportation of the compounds and the selectivity of the treatment, nanoparticles (NPs) have been designed. Thanks to their small size, these can accumulate in a tumor because of the well-known enhanced permeability effect. By changing the composition of the nanoparticles it is also possible to achieve other goals, such as (1) targeting receptors that are over-expressed on tumoral cells or neovessels, (2) making them able to absorb two photons (upconversion or biphoton), and (3) improving singlet oxygen generation by the surface plasmon resonance effect (gold nanoparticles). In this chapter we describe recent developments with inorganic NPs in the PDT domain. Pertinent examples selected from the literature are used to illustrate advances in the field. We do not consider either polymeric nanoparticles or quantum dots, as these are developed in other chapters.

  12. The quest for inorganic fullerenes

    DOE PAGES

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; ...

    2015-10-02

    Experimental results of the search for inorganic fullerenes are presented. Mo nSm - and WnSm - clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. Moreover, the species in the first maximum at low mass are known to be platelets. The structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy.more » All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Likewise, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.« less

  13. The quest for inorganic fullerenes

    SciTech Connect

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd E-mail: ydkim91@skku.edu; Park, Eun Ji; Kim, Young Dok E-mail: ydkim91@skku.edu; Seo, Hyun Ook; Pennycook, Stephen J.

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  14. The quest for inorganic fullerenes

    SciTech Connect

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Park, Eun Ji; Ganteför, Gerd; Seo, Hyun Ook; Kim, Young Dok; Idrobo, Juan-Carlos; Pennycook, Stephen J.

    2015-10-02

    Experimental results of the search for inorganic fullerenes are presented. Mo nSm - and WnSm - clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. Moreover, the species in the first maximum at low mass are known to be platelets. The structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Likewise, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  15. Inorganic constituents in American lignites

    SciTech Connect

    Morgan, M. E.; Jenkins, R. G.; Walker, P. L.

    1980-04-01

    Both the discrete mineral phases and the ion-exchangeable inorganic components of lignites from Texas, North Dakota, and Montana have been studied. The ion-exchangeable cations and the carboxyl groups with which they are associated were characterized by ion exchange methods utilizing ammonium acetate and barium acetate, respectively. Na, K, Mg, Ca, Sr, and Ba were found to be present in all three coals. It was found that Ca and Mg were the most abundant cations and that 40 to 60% of the carboxyl groups in the raw coals were exchanged with cations. Also, significant variations in the relative and absolute concentrations of all the cations were observed. The discrete mineral phases in these lignites were studied by semiquantitative x-ray diffraction and infrared spectroscopy. The importance of the cations in this analysis was shown when the mineralogical analyses of the low temperature ash of the coals with the cations removed and the raw coals were compared. Results show that up to 50% of the low temperature ash of these raw coals can be attributed to the existence of metal cations and that fixation of sulfur, carbon, and oxygen to form sulfates and carbonates is the major reason for this contribution.

  16. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  17. Inorganic chemistry. Synthesis and characterization of P₂N₃⁻: an aromatic ion composed of phosphorus and nitrogen.

    PubMed

    Velian, Alexandra; Cummins, Christopher C

    2015-05-29

    Aromaticity is predominantly associated with carbon-rich compounds but can also occur in all-inorganic ones. We report the synthesis of the diphosphatriazolate anion, a rare example of a planar aromatic inorganic species. Treatment of azide (N3(-)) in tetrahydrofuran solution with P2A2 (A = C14H10), a source of P2, produced P2N3(-), which we isolated as its [Na-kryptofix-221](+) salt in 22% yield and characterized by single-crystal x-ray diffraction. Salts [Na-kryptofix-221] [P2N3] and [Na-kryptofix-221] [P2(15)NN2] were analyzed by infrared and Raman spectroscopy, (15)N and (31)P nuclear magnetic resonance spectroscopy, and mass spectrometry. The formation of the P2N3(-) anion was investigated using density functional theory, and its aromatic character was confirmed by NICS (nucleus-independent chemical shift) and QTAIM (quantum theory of atoms in molecules) methods.

  18. Inorganic fouling control in reverse osmosis wastewater reclamation by purging carbon dioxide.

    PubMed

    Shahid, Muhammad Kashif; Pyo, Minsu; Choi, Young-Gyun

    2017-04-21

    Inorganic fouling on the membrane surface is one of the major prevalent issues affecting the performance and cost of reverse osmosis system. Chemical dosage is a widely adopted method for the inhibition of inorganic scale on the membrane surface. In this study, CO2 was used to control inorganic scale formation on surface of reverse osmosis (RO) membrane in wastewater reclamation. The pH of influent could be lowered by purging CO2. It caused an increase in solubility of inorganic salts in water resulting in discharge of principle ions in concentrate stream. A pilot plant study was conducted with four different RO modules including control, with dosage of antiscalant, with purging CO2 and with co-addition of antiscalant and CO2. The effectiveness of CO2 purging was assessed on the basis of operational analysis, in-line analysis and morphological results. Ryznar stability index was used to determine the scaling potential of system. The examined data indicated that CO2 purging was successful to inhibit scale formation on the membrane surface. Moreover, CO2 was found more eco-friendly than antiscalant, as no by-products were generated in concentrate stream.

  19. Medicinal exploitation of inorganic substances in the Levant in the Medieval and early Ottoman periods.

    PubMed

    Lev, Efraim

    2002-11-01

    Various minerals, metals, clays, and rocks were among the natural medicinal substances used by physicians and pharmacists in early times in different cultures, for example, the ancient civilizations of Egypt and Mesopotamia. Classical physicians such as Hippocrates and Dioscorides mention tens of inorganic medicinal substances in their writings. Many references to minerals and chemicals are also found in the Muslim medical literature of the Eastern and Western Caliphates. The historical research presented in this article focuses on the inorganic substances applied as remedies by the medieval and early Ottoman (7th-17th) inhabitants of the Levant. The article is based upon a literature review covering tens of different historical sources, from the medieval and early Ottoman periods. Relevant information was found in the works of physicians such as al-Tamimi, Benevenutus, Ibn al-Baytar, Daud al-Antaki, and Hayyim Vital. The research revealed evidences of the medicinal uses of fifteen inorganic substances: Alum, Arsenic, Sulphide, Asphalt, Jew's stone, Earth sp., Galena, Haematite, iron, Lead, Pyrite, Salt, Sulphur, Thermal water, Green Vitriol, and Zinc. Inorganic materials comprise 5.2% of the list of medicinal substances. The geographic origin of most of these substances is the Levant, in which two geo-historical centers have been recorded: the Rift Valley and the northern region of the Levant, including upper Galilee, Mount Lebanon and Mount Hermon. A notable tendency to use these substances for treating diseases of the skin, the eyes, the sexual organs, and haemorrhoids was detected.

  20. Inorganic Nanomaterials as Carriers for Drug Delivery.

    PubMed

    Chen, Shizhu; Hao, Xiaohong; Liang, Xingjie; Zhang, Qun; Zhang, Cuimiao; Zhou, Guoqiang; Shen, Shigang; Jia, Guang; Zhang, Jinchao

    2016-01-01

    For safe and effective therapy, drugs must be delivered efficiently and with minimal systemic side effects. Nanostructured drug carriers enable the delivery of small-molecule drugs as well as nucleic acids and proteins. Inorganic nanomaterials are ideal for drug delivery platforms due to their unique physicochemical properties, such as facile preparation, good storage stability and biocompatibility. Many inorganic nanostructure-based drug delivery platforms have been prepared. Although there are still many obstacles to overcome, significant advances have been made in recent years. This review focuses on the status and development of inorganic nanostructures, including silica, quantum dots, gold, carbon-based and magnetic iron oxide-based nanostructures, as carriers for chemical and biological drugs. We specifically highlight the extensive use of these inorganic drug carriers for cancer therapy. Finally, we discuss the most important areas in the field that urgently require further study.

  1. Making Pure Fine-Grained Inorganic Powder

    NASA Technical Reports Server (NTRS)

    Wood, C.

    1985-01-01

    Sustained arc plasma chemical reactor fabricates very-fine-grained inorganic solids having low thermal conductivity. Powder fabrication method, based on plasma tube technique produces pure solids without contamination commonly produced by grinding.

  2. How Much Inorganic Spectroscopy and Photochemistry?

    ERIC Educational Resources Information Center

    Gray, Harry B.

    1980-01-01

    Describes three levels of courses to treat adequately the ground state electronic structures, the spectroscopy, and the photochemistry of inorganic molecules. Suggests sequences for the courses without repeating material taught in previous courses. (Author/JN)

  3. How Much Inorganic Spectroscopy and Photochemistry?

    ERIC Educational Resources Information Center

    Gray, Harry B.

    1980-01-01

    Describes three levels of courses to treat adequately the ground state electronic structures, the spectroscopy, and the photochemistry of inorganic molecules. Suggests sequences for the courses without repeating material taught in previous courses. (Author/JN)

  4. Improving crop salt tolerance.

    PubMed

    Flowers, T J

    2004-02-01

    Salinity is an ever-present threat to crop yields, especially in countries where irrigation is an essential aid to agriculture. Although the tolerance of saline conditions by plants is variable, crop species are generally intolerant of one-third of the concentration of salts found in seawater. Attempts to improve the salt tolerance of crops through conventional breeding programmes have met with very limited success, due to the complexity of the trait: salt tolerance is complex genetically and physiologically. Tolerance often shows the characteristics of a multigenic trait, with quantitative trait loci (QTLs) associated with tolerance identified in barley, citrus, rice, and tomato and with ion transport under saline conditions in barley, citrus and rice. Physiologically salt tolerance is also complex, with halophytes and less tolerant plants showing a wide range of adaptations. Attempts to enhance tolerance have involved conventional breeding programmes, the use of in vitro selection, pooling physiological traits, interspecific hybridization, using halophytes as alternative crops, the use of marker-aided selection, and the use of transgenic plants. It is surprising that, in spite of the complexity of salt tolerance, there are commonly claims in the literature that the transfer of a single or a few genes can increase the tolerance of plants to saline conditions. Evaluation of such claims reveals that, of the 68 papers produced between 1993 and early 2003, only 19 report quantitative estimates of plant growth. Of these, four papers contain quantitative data on the response of transformants and wild-type of six species without and with salinity applied in an appropriate manner. About half of all the papers report data on experiments conducted under conditions where there is little or no transpiration: such experiments may provide insights into components of tolerance, but are not grounds for claims of enhanced tolerance at the whole plant level. Whether enhanced

  5. (Inorganic carbon surveys of oceanic basins)

    SciTech Connect

    Wilke, R.J.

    1991-04-25

    Measurements were made aboard the F. S. Meteor, along the 19 degree South cruise track of the following chemical parameters: total dissolved inorganic carbon, pH, pCO2, CFC-12, CFC-11, CFC-113, CC14. This was the first cruise of OASD's newly formed CO2 group. The purpose was to survey World Ocean Circulation Experiment (WOCE) line A9 for inorganic carbon for the Department of Energy's Office of CO2 Research. 1 fig.

  6. Natural and artificial chitosan-inorganic composites.

    PubMed

    Muzzarelli, Corrado; Muzzarelli, Riccardo A A

    2002-11-11

    Taking inspiration from many chitin-inorganic composites in nature, a number of recent articles throw light on the manufacture of such composites based on calcium carbonate, calcium phosphate and silica. These novel materials are important in the field of blood-compatible materials, bone substitutes, and cements for bone repair and reconstruction. This approach provides an attractive alternative to the processing of inorganic thin films, especially in applications where substrates cannot be exposed to high temperatures.

  7. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    SciTech Connect

    Liang, Yangang; Zhang, Xiaohang; Gong, Yunhui; Shin, Jongmoon; Wachsman, Eric D.; Takeuchi, Ichiro; Yao, Yangyi; Hsu, Wei-Lun; Dagenais, Mario

    2016-01-15

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  8. Tailoring the properties of magnetite nanoparticles clusters by coating with double inorganic layers

    NASA Astrophysics Data System (ADS)

    Petran, Anca; Radu, Teodora; Culic, Bogdan; Turcu, Rodica

    2016-12-01

    New magnetic nanoparticles based on Fe3O4 clusters covered with a double layer of inorganic salts/oxides with high magnetization for incorporation in security materials such as security paper were synthesized. For the inorganic layers ZnO, SiO2 and BaSO4 were used. The microstructure and composition of the products were determined by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS). Magnetization measurements on the obtained samples show a straightforward correlation between the saturation magnetization (Ms) and morphology of the samples. The results obtained from color parameter assessment are discussed in relation with the morphology and microstructure of the prepared samples.

  9. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liang, Yangang; Yao, Yangyi; Zhang, Xiaohang; Hsu, Wei-Lun; Gong, Yunhui; Shin, Jongmoon; Wachsman, Eric D.; Dagenais, Mario; Takeuchi, Ichiro

    2016-01-01

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH3NH3PbI3 thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  10. Estimating the environmental behavior of inorganic and organometal contaminants: Solubilities, bioaccumulation, and acute aquatic toxicities

    USGS Publications Warehouse

    Hickey, James P.

    1999-01-01

    The estimation of environmental properties of inorganic species has been difficult. In this presentation aqueous solubility, bioconcentration and acute aquatic toxicity are estimated for inorganic compounds using existing Linear Solvation Energy Relationship (LSER) equations. Many estimations fall within an order of magnitude of the measured property. For complex solution chemistry, the accuracy of the estimations improve with the more complete description of the solution species present. The toxicities also depend on an estimation of the bioactive amount and configuration. A number of anion/cation combinations (salts) still resist accurate property estimation, and the reasons currently are not understood. These new variable values will greatly extend the application and utility of LSER for the estimation of environmental properties.

  11. Interactions between inorganic trace gases and supermicrometer particles at a coastal site

    NASA Astrophysics Data System (ADS)

    Kerminen, Veli-Matti; Pakkanen, Tuomo A.; Hillamo, Risto E.

    Interactions between inorganic trace gases and supermicrometer aerosol particles were studied at a coastal site of Finland. The measurements revealed two supermicron mass modes for both nitrate and non-sea-salt sulfate. The lower-size modes were likely formed when sulfate and nitrate, or their precursor vapors, reacted with sea-salt particles. The upper-size modes were primarily due to accumulation of sulfate and nitrate into particles of continental origin. Chloride displayed only one supermicron mode centered at somewhat larger size than the sea-salt particle mode due to the more efficient evaporation of hydrochloric acid from smaller sea-salt particles. The average chloride losses were calculated to vary from over 95% for 1 μm particles to about 30% for particles greater than 10 μm in diameter. Supermicrometer particles were a net source o f gaseous hydrochloric acid at our site, even though some indications of the reactions between HCl(g) and continental particles could be identified. The estimated chloride loss from sea-salt particles was balanced quite accurately by the additional sulfate and nitrate formed on these particles. It was hypothesized that sea-salt particles collected mostly sulfate in marine air masses, with nitrate collection becoming more important as the particles interact with polluted air. The dry deposition of supermicron particulate nitrate accounted for a significant fraction of total nitrate flux (NO 3- + HNO 3(g)) into the ground, and dominated the overall particulate nitrate flux. Both sea-salt and continental particles were important contributors to this flux. The role of supermicron particles in overall nitrogen and sulfur budgets was of less importance when one considers the relatively large deposition fluxes of NO 2 and SO 2 at the site.

  12. Inorganic Arsenic and Human Prostate Cancer

    PubMed Central

    Benbrahim-Tallaa, Lamia; Waalkes, Michael P.

    2008-01-01

    Objective We critically evaluated the etiologic role of inorganic arsenic in human prostate cancer. Data sources We assessed data from relevant epidemiologic studies concerning environmental inorganic arsenic exposure. Whole animal studies were evaluated as were in vitro model systems of inorganic arsenic carcinogenesis in the prostate. Data synthesis Multiple studies in humans reveal an association between environmental inorganic arsenic exposure and prostate cancer mortality or incidence. Many of these human studies provide clear evidence of a dose–response relationship. Relevant whole animal models showing a relationship between inorganic arsenic and prostate cancer are not available. However, cellular model systems indicate arsenic can induce malignant transformation of human prostate epithelial cells in vitro. Arsenic also appears to impact prostate cancer cell progression by precipitating events leading to androgen independence in vitro. Conclusion Available evidence in human populations and human cells in vitro indicates that the prostate is a target for inorganic arsenic carcinogenesis. A role for this common environmental contaminant in human prostate cancer initiation and/or progression would be very important. PMID:18288312

  13. Organic-Inorganic Composites Toward Biomaterial Application.

    PubMed

    Miyazaki, Toshiki; Sugawara-Narutaki, Ayae; Ohtsuki, Chikara

    2015-01-01

    Bioactive ceramics are known to exhibit specific biological affinities and are able to show direct integration with surrounding bone when implanted in bony defects. However, their inadequate mechanical properties, such as low fracture toughness and high Young's modulus in comparison to natural bone, limit their clinical application. Bone is a kind of organic-inorganic composite where apatite nanocrystals are precipitated onto collagen fibre networks. Thus, one way to address these problems is to mimic the natural composition of bone by using bioactive ceramics via material designs based on organic-inorganic composites. In this chapter, the current research on the development of the various organic-inorganic composites designed for biomaterial applications has been reviewed. Various compounds such as calcium phosphate, calcium sulphate and calcium carbonate can be used for the inorganic phases to design composites with the desired mechanical and biological properties of bone. Not only classical mechanical mixing but also coating of the inorganic phase in aqueous conditions is available for the fabrication of such composites. Organic modifications using various polymers enable the control of the crystalline structure of the calcium carbonate in the composites. These approaches on the fabrication of organic-inorganic composites provide important options for biomedical materials with novel functions. © 2015 S. Karger AG, Basel.

  14. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  15. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  16. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  17. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  18. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  19. Frost formation with salt

    NASA Astrophysics Data System (ADS)

    Guadarrama-Cetina, J.; Mongruel, A.; González-Viñas, W.; Beysens, D.

    2015-06-01

    The formation of frost in presence of salt (NaCl) crystal is experimentally investigated on a hydrophobic surface. It presents several remarkable features due to the interplay of salty-water saturation pressure evolution, initially lower than the saturation pressure of ice and water, and the percolating propagation of ice dendrites from defects throughout the supercooled water droplet pattern. In particular, it is remarkable that nucleation of supercooled water and/or ice is prevented around the salty drop in a region of inhibited condensation where the substrate remains dry. As condensation proceeds, salt concentration decreases to eventually become lower than ice's, allowing ice dendrites to hit the salty drop. Salty water then melts ice but eventually freezes as an effect of dilution.

  20. Salt Lake City, Utah

    NASA Image and Video Library

    2002-02-07

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a late spring view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake. This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03464

  1. INORGANIC CATIONS IN RAT KIDNEY

    PubMed Central

    Tandler, C. J.; Kierszenbaum, A. L.

    1971-01-01

    For localization of pyroantimonate-precipitable cations, rat kidney was fixed by perfusion with a saturated aqueous solution of potassium pyroantimonate (pH about 9.2, without addition of any conventional fixative). A remarkably good preservation of the tissue and cell morphology was obtained as well as a consistent and reproducible localization of the insoluble antimonate salts of magnesium, calcium, and sodium. All proximal and distal tubules and glomeruli were delimited by massive electron-opaque precipitates localized in the basement membrane and, to a lesser extent, in adjacent connective tissue. In the intraglomerular capillaries the antimonate precipitate was encountered in the basement membranes and also between the foot processes. In addition to a more or less uniform distribution in the cytoplasm and between the microvilli of the brush border, antimonate precipitates were found in all cell nuclei, mainly between the masses of condensed chromatin. The mitochondria usually contained a few large antimonate deposits which probably correspond to the so-called "dense granules" observed after conventional fixations. PMID:4106544

  2. SALT IN AYURVEDA I

    PubMed Central

    Mooss, N S

    1987-01-01

    In basic Ayurveda texts, Susruta, Caraka and Vagbhata, some quite specific Salts (Lavanam) have been described and their properties and actions are enumerated. By comparing those accounts with the present methods of preparation, conclusions have been made and evidently spurious methods are pointed out. The reported properties of Saindhava, Samudra, Vida, Sauvarcha, Romaka, Audbhida, Gutika, the Katu Group, Krsna and Pamsuja Lavanas are discussed in terms of their chemical constituents here and, thus, the authors establish its inter-connections. PMID:22557573

  3. Is Salt at Fault

    DTIC Science & Technology

    1989-02-28

    because the kidney requires 3 - 5 days (and sweat glands Ve - : re -Q L0 dar ., to adant to full sal t-cc, nservino C. a r- a.CE i _"/ It h-so cEhoLLld -,e...TITLE: Estimating Salt Losses During Exercise 1. Measure your sweat rate (qt/hr) by weighing yourself nude on an accurate scale , before and after

  4. A Trail of Salts

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the relative abundances of sulfur (in the form of sulfur tri-oxide) and chlorine at three Meridiani Planum sites: soil measured in the small crater where Opportunity landed; the rock dubbed 'McKittrick' in the outcrop lining the inner edge of the crater; and the rock nicknamed 'Guadalupe,' also in the outcrop. The 'McKittrick' data shown here were taken both before and after the rover finished grinding the rock with its rock abrasion tool to expose fresh rock underneath. The 'Guadalupe' data were taken after the rover grounded the rock. After grinding both rocks, the sulfur abundance rose to high levels, nearly five times higher than that of the soil. This very high sulfur concentration reflects the heavy presence of sulfate salts (approximately 30 percent by weight) in the rocks. Chloride and bromide salts are also indicated. Such high levels of salts strongly suggest the rocks contain evaporite deposits, which form when water evaporates or ice sublimes into the atmosphere.

  5. A Trail of Salts

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the relative abundances of sulfur (in the form of sulfur tri-oxide) and chlorine at three Meridiani Planum sites: soil measured in the small crater where Opportunity landed; the rock dubbed 'McKittrick' in the outcrop lining the inner edge of the crater; and the rock nicknamed 'Guadalupe,' also in the outcrop. The 'McKittrick' data shown here were taken both before and after the rover finished grinding the rock with its rock abrasion tool to expose fresh rock underneath. The 'Guadalupe' data were taken after the rover grounded the rock. After grinding both rocks, the sulfur abundance rose to high levels, nearly five times higher than that of the soil. This very high sulfur concentration reflects the heavy presence of sulfate salts (approximately 30 percent by weight) in the rocks. Chloride and bromide salts are also indicated. Such high levels of salts strongly suggest the rocks contain evaporite deposits, which form when water evaporates or ice sublimes into the atmosphere.

  6. Uptake of HNO3 to deliquescent sea-salt particles

    NASA Astrophysics Data System (ADS)

    Guimbaud, C.; Arens, F.; Gutzwiller, L.; Gäggeler, H. W.; Ammann, M.

    2002-06-01

    The uptake of HNO3 to deliquescent airborne sea-salt particles (RH = 55%, P = 760 torr, T = 300 K) at concentrations from 2 to 575 ppbv is measured in an aerosol flow tube using 13N as a tracer. Small particles (~ 70 nm diameter) are used in order to minimize the effect of diffusion in the gas phase on the mass transfer. Below 100 ppbv, an uptake coefficient (gupt) of 0.50 ± 0.20 is derived. At higher concentrations, the uptake coefficient decreases along with the consumption of aerosol chloride. Data interpretation is further supported by using the North American Aerosol Inorganics Model (AIM), which predicts the aqueous phase activities of ions and the gas-phase partial pressures of H2O, HNO3, and HCl at equilibrium for the NaCl/HNO3/H2O system. These simulations show that the low concentration data are obtained far from equilibrium, which implies that the uptake coefficient derived is equal to the mass accommodation coefficient under these conditions. The observed uptake coefficient can serve as input to modeling studies of atmospheric sea-salt aerosol chemistry. The main sea-salt aerosol burden in the marine atmosphere is represented by coarse mode particles (> 1 mm diameter). This implies that diffusion in the gas-phase is the limiting step to HNO3 uptake until the sea-salt has been completely processed.

  7. Salt Marshes as Sources and Sinks of Silica

    NASA Astrophysics Data System (ADS)

    Carey, J.; Fulweiler, R. W.

    2014-12-01

    The role of salt marshes in controlling silica exchange between terrestrial and marine environments is unclear. In some studies, large quantities of dissolved silica (DSi) appear to be exported from marshes via tidal exchange, potentially fueling future diatom production in adjacent waters. In contrast, other studies report insignificant DSi export and found instead that salt marshes appeared to be Si sinks. Further, few studies examine salt marsh Si export in relation to inorganic nitrogen (DIN) and phosphorus (DIP). We address these uncertainties by quantifying net fluxes of DSi and biogenic Si (BSi), as well as DIN and DIP during the spring and summer in a relatively undisturbed southern New England salt marsh (Narragansett Bay, USA). Our data demonstrates that during the spring, when estuarine waters are deplete in DSi, the marsh serves as a net sink of BSi (132 mol h-1) and a source of DSi (31 mol h-1) to the estuary. The spring DIN:DSi ratios of ebbing water were more than five times lower than flood waters. Most importantly, the DSi export rates (6.5 x103 mol d-1 km-2) are an order of magnitude larger than the export by rivers in the region (115 mol d-1 km-2), indicating the marsh tidal exchange is vital in supplying the Si necessary for spring diatom blooms in the estuary. Conversely, during the summer the marsh served as a net Si sink, importing on average 59 mol DSi h-1 and 39 mol BSi h-1. These data highlight that the role of salt marshes in silica cycling appears to have a strong seasonality. We hypothesize that net import of Si increases the residence time of Si in estuarine systems, providing an important and previously over-looked ecosystem service. In the absence of salt marshes, ~5.1 x 104 kmol of Si would be exported from this system during the growing season, possibly decreasing Si availability and altering phytoplankton species composition in the estuary.

  8. Borate in mummification salts and bones from Pharaonic Egypt.

    PubMed

    Kaup, Yoka; Schmid, Mirjam; Middleton, Andrew; Weser, Ulrich

    2003-03-01

    Mummification processes in Pharaonic Egypt were successful using sodium salts. Quite frequently sodium concentrations in mummified bones ranged from 300 to 4000 micromol/g. In the search for an effective inorganic conservation compound our choice fell on boric acid. The possible presence of borate in mummification salts used in Pharaonic Egypt was of special interest both historically and biochemically. In two salt samples, one from the embalming material of Tutankhamen (18th dynasty, 1336-1327 BC) and the second from Deir el-Bahari (25th dynasty, 700-600 BC) borate was found, amounting to 2.1+/-0.2 and 3.9+/-0.1 micromol/g, respectively. In five of the examined bone fragments from the Junker excavation at Giza (Old Kingdom) similar borate concentrations i.e., 1.2 micromol borate/g bone were seen. It must be emphasized that the usual borate content of contemporary autopsy is far below the detection limit. The elevated borate content in both mummification salt and ancient bone samples support the suggestion that borate-containing salt had been used. There is a striking correlation of both borate concentration and alkaline phosphatase activity. When both sodium salts and borate were essentially absent no activity at all was detectable. With increasing borate concentrations the enzyme activity rises significantly. Attributable to the distinct biochemistry of the tetrahydroxyborate anion it was of interest whether or not borate may stabilize alkaline phosphatase, an important and richly abundant bone enzyme. This enzyme was chosen, as it is known to survive more than 4000 years of mummification. In the presence of borate oligomeric species of this zinc-magnesium-glycoprotein at 400,000 Da became detectable. Attributable to this borate-dependent stabilization of the enzyme molecule a significant temperature resistant increase of the enzymic activity was measured in the presence of up to 2.5 mM borate. Copyright 2003 Elsevier Science Inc.

  9. Investigating primary marine aerosol properties: CCN activity of sea salt and mixed particles

    NASA Astrophysics Data System (ADS)

    King, S. M.; Butcher, A. C.; Rosenoern, T.; Coz, E.; Lieke, K. I.; de Leeuw, G.; Nilsson, E. D.; Bilde, M.

    2012-04-01

    Sea salt particles ejected as a result of bubbles bursting from artificial seawater in a closed stainless steel tank were sampled for size distribution, morphology, and cloud condensation nucleus (CCN) activity. The two-component artificial seawater consisted of salt, either NaCl or sea salt, and one organic compound in deionized water. Several organic molecules representative of oceanic organic matter were investigated. Bubbles were generated either by aeration through a porous diffuser or by water jet impingement on the surface of the artificial seawater. The effect of bubble lifetime, which was controlled by varying the depth of the diffuser in the water column, on particle size and CCN activity was investigated and was found to be insignificant for the organic compounds studied. The CCN activities of particles produced from diffuser-generated bubbles were generally governed by the high hygroscopicity of salt, such that activation was indistinguishable from that of salt, except in the case of very low mass ratio of salt to organic matter in the seawater solution. There was, however, a considerable decrease in CCN activity for particles produced from jet impingement on seawater that had a salinity of 10‰ and contained 0.45 mM of sodium laurate, an organic surfactant. The production of a thick foam layer from impingement may explain the difference in activation and supports hypotheses that particle production from the two methods of generating bubbles is not similar. Accurate conclusions from observed CCN activities of particles from artificial seawater containing organic matter require knowledge of the CCN activity of the inorganic component, especially as a small amount of the inorganic can heavily influence activation. Therefore, the CCN activity of both artificial sea salt and NaCl were measured and compared. Part of the discrepancy observed between the CCN activities of the two salts may be due to morphological differences, which were investigated using

  10. Tidal day organic and inorganic material flux of ponds in the Liberty Island freshwater tidal wetland.

    PubMed

    Lehman, Peggy W; Mayr, Shawn; Liu, Leji; Tang, Alison

    2015-01-01

    The loss of inorganic and organic material export and habitat produced by freshwater tidal wetlands is hypothesized to be an important contributing factor to the long-term decline in fishery production in San Francisco Estuary. However, due to the absence of freshwater tidal wetlands in the estuary, there is little information on the export of inorganic and organic carbon, nutrient or phytoplankton community biomass and the associated mechanisms. A single-day study was conducted to assess the potential contribution of two small vegetated ponds and one large open-water pond to the inorganic and organic material flux within the freshwater tidal wetland Liberty Island in San Francisco Estuary. The study consisted of an intensive tidal day (25.5 h) sampling program that measured the flux of inorganic and organic material at three ponds using continuous monitoring of flow, chlorophyll a, turbidity and salt combined with discrete measurements of phytoplankton community carbon, total and dissolved organic carbon and nutrient concentration at 1.5 h intervals. Vegetated ponds had greater material concentrations than the open water pond and, despite their small area, contributed up to 81% of the organic and 61% of the inorganic material flux of the wetland. Exchange between ponds was important to wetland flux. The small vegetated pond in the interior of the wetland contributed as much as 72-87% of the total organic carbon and chlorophyll a and 10% of the diatom flux of the wetland. Export of inorganic and organic material from the small vegetated ponds was facilitated by small-scale topography and tidal asymmetry that produced a 40% greater material export on ebb tide. The small vegetated ponds contrasted with the large open water pond, which imported 29-96% of the inorganic and 4-81% of the organic material into the wetland from the adjacent river. This study identified small vegetated ponds as an important source of inorganic and organic material to the wetland and the

  11. Salt effects on the conformational stability of the visual G-protein-coupled receptor rhodopsin.

    PubMed

    Reyes-Alcaraz, Arfaxad; Martínez-Archundia, Marlet; Ramon, Eva; Garriga, Pere

    2011-12-07

    Membrane protein stability is a key parameter with important physiological and practical implications. Inorganic salts affect protein stability, but the mechanisms of their interactions with membrane proteins are not completely understood. We have undertaken the study of a prototypical G-protein-coupled receptor, the α-helical membrane protein rhodopsin from vertebrate retina, and explored the effects of inorganic salts on the thermal decay properties of both its inactive and photoactivated states. Under high salt concentrations, rhodopsin significantly increased its activation enthalpy change for thermal bleaching, whereas acid denaturation affected the formation of a denatured loose-bundle state for both the active and inactive conformations. This behavior seems to correlate with changes in protonated Schiff-base hydrolysis. However, chromophore regeneration with the 11-cis-retinal chromophore and MetarhodopsinII decay kinetics were slower only in the presence of sodium chloride, suggesting that in this case, the underlying phenomenon may be linked to the activation of rhodopsin and the retinal release processes. Furthermore, the melting temperature, determined by means of circular dichroism and differential scanning calorimetry measurements, was increased in the presence of high salt concentrations. The observed effects on rhodopsin could indicate that salts favor electrostatic interactions in the retinal binding pocket and indirectly favor hydrophobic interactions at the membrane protein receptor core. These effects can be exploited in applications where the stability of membrane proteins in solution is highly desirable. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Recovery of nitrotoluenes from wastewater by solvent extraction enhanced with salting-out effect.

    PubMed

    Chen, Wen-Shing; Chiang, Wen-Chih; Wei, Kuo-Ming

    2007-08-17

    Toluene extraction enhanced by salting-out effect was employed to recover dinitrotoluene isomers and 2,4,6-trinitrotoluene (2,4,6-TNT) from wastewater of toluene nitration processes (e.g. dinitration or trinitration). The batchwise experiments were conducted to elucidate the influence of various operating variables on the extracting performance, including concentrations and species of inorganic salts, such as NaCl, KCl, Na(2)SO(4), K(2)SO(4) and MgSO4, acidity of wastewater, volume ratios of solvent versus wastewater and extraction stages in existence of inorganic salts. It was found that recovery of total organic compounds (TOC) was significantly elevated with increasing concentrations of salts, whose promoting effects were in the following order: NaCl>Na(2)SO(4)>K(2)SO(4)>MgSO4>KCl on the weight basis of wastewater. Besides, high volume ratio of toluene/wastewater (ca. 2.0) was more suitable for recovery of TOC from wastewater with or without addition of NaCl, of which extractable priority was as follows: 2,6-DNT>2,4-DNT>2,4,6-TNT. It is remarkable that TOC in wastewater would be almost completely recovered by sequential four stages toluene extraction, promoted continuously by salting-out effect.

  13. Salt Requirement for Crassulacean Acid Metabolism in the Annual Succulent, Mesembryanthemum crystallinum1

    PubMed Central

    Bloom, Arnold J.

    1979-01-01

    In experiments with the facultative Crassulacean acid metabolism (CAM) species, Mesembryanthemum crystallinum, only plants which received high levels of inorganic salts fixed substantial amounts of CO2 by the CAM pathway. Equivalent osmolarities of polyethylene glycol 6000 did not yield any CAM fixation. Plant water potential and turgor pressure had no detectable influence on the amount of CAM fixation. These observations rule out the possibility that the inorganic ions were acting as osmotic agents. Carbon dioxide and water exchange analysis showed that when water supply was not limiting, salt-deprived plants sustained higher reductive pentose phosphate cycle carbon fixation rates than salt-treated plants. Under water stress conditions, salt-deprived plants using only the reductive pentose phosphate cycle pathway assimilated less carbon and were less efficient in their water use than salt-treated plants using predominately the CAM pathway. These results support the hypothesis that the ability to use the CAM pathway reduces the capacity for reductive pentose phosphate cycle fixation but permits higher productivity in water-limited environments. PMID:16660805

  14. Corrosion resistance properties of organic inorganic hybrid coatings on 2024 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Sun, Dezhi; You, Hong; Chung, Jong Shik

    2005-06-01

    Three kinds of organic-inorganic hybrid coatings modified by tetraethoxysilane (TEOS) were prepared using precursors of vinyltrimethoxysilane (VMS), [3-(methacryloxy)propyl] trimethoxysilane (MPMS) and (3-glycidoxyproyl) trimethoxysilane (GPMS). Properties of corrosion resistance were tested by potentiodynamic polarization curves. Salt spray test and SEM images were also employed to examine the ablitity of coatings to resist long-time corrosion. The results show that hybrid coatings are effective for inhibiting corrosion reaction. Corrosion currents of VMS coating and MPMS coating were 300 times smaller than that of bare sample. The corrosion current of hybrid coatings is smallest when TEOS content reaches 15-20%. It was found that VMS coatings have the strongest ability to resist salt spray corrosion.

  15. Performing organic chemistry with inorganic compounds: electrophilic reactivity of selected nitrosyl complexes.

    PubMed

    Doctorovich, Fabio; Di Salvo, Florencia

    2007-10-01

    The inorganic nitrosyl (NO(+)) complexes [Fe(CN) 5NO](2-), [Ru(bpy)2(NO)Cl](2+), and [IrCl 5(NO)](-) are useful reagents for the nitrosation of a variety of organic compounds, ranging from amines to the relatively inert alkenes. Regarding [IrCl 5(NO)](-), its high electrophilicity and inertness define it as a unique reagent and provide a powerful synthetic route for the isolation and stabilization of coordinated nitroso compounds that are unstable in free form, such as S-nitrosothiols and primary nitrosamines. Related to the high electrophilicity of [IrCl 5(NO)](-), an unusual behavior is described for its PPh 4(+) salt in the solid state, showing an electronic distribution represented by Ir(IV)-NO(*) instead of Ir (III)-NO(+) (as for the K(+) and Na(+) salts).

  16. Inorganic-organic composite nanoengineered films using self-assembled monolayers for directed zeolite film growth

    SciTech Connect

    Dye, R.C.; Hermes, R.E.; Martinez, M.G.; Peachey, N.M.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Zeolites, or molecular sieves, are aluminosilicate cage structures that are typically grown from a heterogeneous mixture of organic template molecules, inorganic salts of alumina and silica, and water. These zeolites are used in industry for catalytic cracking of hydrocarbons (gasoline manufacture from oil), and contaminant removal from chemical production processes. Within one year, we developed a viable method for the deposition of a quaternary ammonium salt amphiphile onto silicon wafer substrates. Using a biomimetic growth process, we were also able to demonstrate the first thin-film formation of a zeolite structure from such an organic template. Additionally, we synthesized the precursor to another amphiphile which was to be for further studies.

  17. Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.

    2015-01-01

    A national survey of inorganic chemists explored the self-reported topics covered in foundation-level courses in inorganic chemistry at the postsecondary level; the American Chemical Society's Committee on Professional Training defines a foundation course as one at the conclusion of which, "a student should have mastered the vocabulary,…

  18. Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.

    2015-01-01

    A national survey of inorganic chemists explored the self-reported topics covered in foundation-level courses in inorganic chemistry at the postsecondary level; the American Chemical Society's Committee on Professional Training defines a foundation course as one at the conclusion of which, "a student should have mastered the vocabulary,…

  19. Thermodynamic Modeling of Organic-Inorganic Aerosols with the Group-Contribution Model AIOMFAC

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, T.

    2009-04-01

    Liquid aerosol particles are - from a physicochemical viewpoint - mixtures of inorganic salts, acids, water and a large variety of organic compounds (Rogge et al., 1993; Zhang et al., 2007). Molecular interactions between these aerosol components lead to deviations from ideal thermodynamic behavior. Strong non-ideality between organics and dissolved ions may influence the aerosol phases at equilibrium by means of liquid-liquid phase separations into a mainly polar (aqueous) and a less polar (organic) phase. A number of activity models exists to successfully describe the thermodynamic equilibrium of aqueous electrolyte solutions. However, the large number of different, often multi-functional, organic compounds in mixed organic-inorganic particles is a challenging problem for the development of thermodynamic models. The group-contribution concept as introduced in the UNIFAC model by Fredenslund et al. (1975), is a practical method to handle this difficulty and to add a certain predictability for unknown organic substances. We present the group-contribution model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients), which explicitly accounts for molecular interactions between solution constituents, both organic and inorganic, to calculate activities, chemical potentials and the total Gibbs energy of mixed systems (Zuend et al., 2008). This model enables the computation of vapor-liquid (VLE), liquid-liquid (LLE) and solid-liquid (SLE) equilibria within one framework. Focusing on atmospheric applications we considered eight different cations, five anions and a wide range of alcohols/polyols as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are very well represented up to high ionic strength. We show that the semi-empirical middle-range parametrization of direct organic-inorganic interactions in alcohol-water-salt solutions enables accurate computations of vapor-liquid and liquid

  20. YAG:Ce3+ Nanophosphor Synthesized with the Salted Sol-Gel Method

    SciTech Connect

    D. Jia; C. V. Shaffer; J. E. Weyant; A. Goonewardene; X. Guo; Y. Wang; X. Z. Guo; K. K. Li; Y. K. Zou; W. Jia

    2006-05-01

    Nano-phosphors of Y3Al5O12:Ce3+ (YAG:Ce) were synthesized with a novel salted sol-gel method, in which aqueous solution of inorganic salts (yttrium/cerium nitrates) were used along with the metal alkoxide precursor, aluminum sec-butoxide, Al(OC4H9)3. YAG single phase was formed at temperature as low as 800 C. Luminescence of YAG:Ce reached the maximum intensity when calcined above 1350C. The SEM image reveals that the grain sizes of the nano-phosphors calcined at 1100 C are in a range of 50-150 nm.

  1. Inorganic Janus particles for biomedical applications

    PubMed Central

    Schick, Isabel; Lorenz, Steffen; Gehrig, Dominik; Tenzer, Stefan; Storck, Wiebke; Fischer, Karl; Strand, Dennis; Laquai, Frédéric

    2014-01-01

    Summary Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic–inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial properties emerge in inorganic Janus particles from their dimensions and unique morphology at the nanoscale. As a result, inorganic Janus nanoparticles are highly versatile nanomaterials with great potential in different scientific and technological fields. In this paper, we highlight some advances in the synthesis of inorganic Janus nanoparticles, focusing on the heterogeneous nucleation technique and characteristics of the resulting high quality nanoparticles. The properties emphasized in this review range from the monodispersity and size-tunability and, therefore, precise control over size-dependent features, to the biomedical application as theranostic agents. Hence, we show their optical properties based on plasmonic resonance, the two-photon activity, the magnetic properties, as well as their biocompatibility and interaction with human blood serum. PMID:25551063

  2. Effect of Ammonia on Glyoxal SOA in Inorganic Aqueous Seed Particles

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Volkamer, R. M.; Laskin, A.; Laskin, J.; Koenig, T. K.; Baltensperger, U.; Dommen, J.; Prevot, A. S.; Slowik, J.; Maxut, A.; Noziere, B.; Wang, S.; Yu, J.

    2014-12-01

    Glyoxal (C2H2O2) is a ubiquitous small molecule that is observed in the terrestrial biogenic, urban, marine and arctic atmosphere. It forms secondary organic aerosol (SOA) as a result of multiphase chemical reactions in water. The rate of these reactions is controlled by the effective Henry's law partitioning coefficient (Heff) which is enhanced in the presence of inorganic salts by up to 3 orders of magnitude (Kampf et al., 2013, ES&T). Aerosol particles are among the most concentrated salt solutions on Earth and the SOA formation rate in aerosol water is strongly modified by this 'salting-in' mechanism. We have studied the effect of gas-phase ammonia on the rate of SOA formation in real particles composed of different inorganic salts (sulfate, nitrate, chloride). A series of simulation chamber experiments were conducted at the Paul Scherrer Institut in Switzerland during Summer 2013. The SOA formation rate in experiments with added gas-phase ammonia (NH3) was found to be greatly accelerated compared to experiments without added NH3. Product analysis of particles included online HR-ToF-AMS and offline nano-DESI and LC-MS. We find that imidazole-like oligomer compounds dominate the observed products, rather than high-O/C oligomers containing solely C, H, and O. We further employed isotopically labelled di-substituted 13C glyoxal experiments in order to unambiguously link product formation to glyoxal (and separate it from chamber wall contamination). We present a molecular perspective on the reaction pathways and evaluate the effect of environmental parameters (RH, particle pH, seed chemical composition) on the formation of these imidazole-like oligomer compounds. The implications for SOA formation from photosensitized oxidation chemistry is discussed.

  3. Osmotic membrane bioreactor for wastewater treatment and the effect of salt accumulation on system performance and microbial community dynamics.

    PubMed

    Qiu, Guanglei; Ting, Yen-Peng

    2013-12-01

    An osmotic membrane bioreactor was developed for wastewater treatment. The effects of salt accumulation on system performance and microbial community dynamics were investigated. Evident deterioration of biological activity, especially nitrification, was observed, which resulted in significant accumulation of organic matter and NH4(+)-N within the bioreactor. Arising from the elevation of salinity, almost all the dominant species was taken over by high salt-tolerant species. Significant succession among different species of Nitromonas was observed for ammonia-oxidizing bacteria. For nitrite-oxidizing bacteria, Nitrospira was not evidently affected, whereas Nitrobacter was eliminated from the system. Salt accumulation also caused significant shifts in denitrifying bacterial community from α- to γ-Proteobacteria members. Overall, the microbial community adapted to the elevated salinity conditions and brought about a rapid recovery of the biological activity. Membrane fouling occurred but was insignificant. Biofouling and inorganic scaling coexisted, with magnesium/calcium phosphate/carbonate compounds identified as the inorganic foulants.

  4. Biogeochemical drivers of phosphatase activity in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Freitas, Joana; Duarte, Bernardo; Caçador, Isabel

    2014-10-01

    Although nitrogen has become a major concern for wetlands scientists dealing with eutrophication problems, phosphorous represents another key element, and consequently its biogeochemical cycling has a crucial role in eutrophication processes. Microbial communities are a central component in trophic dynamics and biogeochemical processes on coastal systems, since most of the processes in sediments are microbial-mediated due to enzymatic action, including the mineralization of organic phosphorus carried out by acid phosphatase activity. In the present work, the authors investigate the biogeochemical sediment drivers that control phosphatase activities. Authors also aim to assess biogeochemical factors' influence on the enzyme-mediated phosphorous cycling processes in salt marshes. Plant rhizosediments and bare sediments were collected and biogeochemical features, including phosphatase activities, inorganic and organic phosphorus contents, humic acids content and pH, were assessed. Acid phosphatase was found to give the highest contribution for total phosphatase activity among the three pH-isoforms present in salt marsh sediments, favored by acid pH in colonized sediments. Humic acids also appear to have an important role inhibiting phosphatase activity. A clear relation of phosphatase activity and inorganic phosphorous was also found. The data presented reinforces the role of phosphatase in phosphorous cycling.

  5. Carbon cycling in salt marsh dominated estuaries along the US Atlantic coast

    NASA Astrophysics Data System (ADS)

    Forbrich, Inke; Nahrawi, Hafsah B.; Wang, Shiyu; Leclerc, Monique; Hopkinson, Charles S.; Giblin, Anne E.; Alber, Merryl; Cai, Wei-Jun

    2016-04-01

    Salt marshes are effective carbon sinks, because they rely on vertical accretion of organic and inorganic matter to keep their relative position to sea level. They are also described as 'carbon pumps' that fix atmospheric carbon but deliver organic and inorganic carbon to estuarine and coastal waters. These fluxes are still highly uncertain due to their temporal and spatial variability. Here, we present observations on atmospheric CO2 exchange and lateral DIC exchange measured at two salt marsh dominated estuaries along the US Atlantic coast. Atmospheric exchange was measured with the eddy covariance method supplemented by measurements of DIC concentrations and discharge in tidal creeks during selected tidal cycles. Together with estimates of long-term carbon burial, this allows us to constrain their export potential. Since the Plum Island Ecosystems LTER and Georgia Coastal Ecosystems LTER are located along a temperature gradient, we will use the data to assess the temperature effect on ecosystem productivity and respiration.

  6. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    DOEpatents

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  7. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  8. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  9. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  10. Electrolyte salts for nonaqueous electrolytes

    DOEpatents

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  11. Benthic Primary Production in a Saltmarsh Pond: Insights from Fluxes of Dissolved Inorganic Carbon and Oxygen

    NASA Astrophysics Data System (ADS)

    Karolewski, J. S.; Stanley, R. H.; Howard, E. M.; Spivak, A. C.

    2014-12-01

    Salt marshes are important carbon sinks that exist at continental margins and act as mediators in the exchange of nutrients and carbon between terrestrial and marine environments. Within salt marshes, 10-20% of total surface area is covered by marshtop ponds. The fractional area of marshtop ponds is predicted to increase as sea level rises. Despite their potential importance, the balance between autotrophic and heterotrophic processes within such ponds remain poorly understood. To quantify the balance of metabolic fluxes within salt marsh ponds, chemical fluxes of dissolved inorganic carbon (DIC) and dissolved oxygen (DO) were measured in July, 2014 in benthic flux chambers inserted into a salt marsh pond in the Plum Island Estuary Long-Term Ecosystem Research (PIE-LTER) site. Light and dark chambers were used to enable separation of rates of photosynthesis and respiration. Separate chambers were used to enclose sediment covered by primarily benthic microalgae and primarily benthic macroalgae. Net ecosystem metabolism in the microalgae was ~10 and in the macroalgae ~15 mmol C/m2/hour. Respiration rates were ~10 mmol C/m2/ hour for both microalgae and macroalgae. The resulting fluxes of net ecosystem production in the ponds will be compared with overall marsh net ecosystem flux as measured by an eddy flux tower that was located 100 meters from the pond. Additionally, concurrent measurements of DIC and DO allow quantification of the C:O ratio during respiration (i.e. respiratory quotient) in this system.

  12. Salt acclimation processes in wheat.

    PubMed

    Janda, Tibor; Darko, Éva; Shehata, Sami; Kovács, Viktória; Pál, Magda; Szalai, Gabriella

    2016-04-01

    Young wheat plants (Triticum aestivum L. cv. Mv Béres) were exposed to 0 or 25 mM NaCl for 11 days (salt acclimation). Thereafter the plants were irrigated with 500 mM NaCl for 5 days (salt stress). Irrigating the plants with a low concentration of NaCl successfully led to a reduction in chlorotic symptoms and in the impairment of the photosynthetic processes when the plants were exposed to subsequent high-dose salt treatment. After exposure to a high concentration of NaCl there was no difference in leaf Na content between the salt-acclimated and non-acclimated plants, indicating that salt acclimation did not significantly modify Na transport to the shoots. While the polyamine level was lower in salt-treated plants than in the control, salt acclimation led to increased osmotic potential in the leaves. Similarly, the activities of certain antioxidant enzymes, namely glutathione reductase, catalase and ascorbate peroxidase, were significantly higher in salt-acclimated plants. The results also suggest that while SOS1, SOS2 or NHX2 do not play a decisive role in the salt acclimation processes in young wheat plants; another stress-related gene, WALI6, may contribute to the success of the salt acclimation processes. The present study suggested that the responses of wheat plants to acclimation with low level of salt and to treatment with high doses of salt may be fundamentally different. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  14. Salt fluoridation and oral health.

    PubMed

    Marthaler, Thomas M

    2013-11-01

    The aim of this paper is to make known the potential of fluoridated salt in community oral health programs, particularly in South Eastern Europe. Since 1922, the addition of iodine to salt has been successful in Switzerland. Goiter is virtually extinct. By 1945, the caries-protective effect of fluorides was well established. Based on the success of water fluoridation, a gynecologist started adding of fluoride to salt. The sale of fluoridated salt began in 1956 in the Swiss Canton of Zurich, and several other cantons followed suit. Studies initiated in the early seventies showed that fluoride, when added to salt, inhibits dental caries. The addition of fluoride to salt for human consumption was officially authorized in 1980-82. In Switzerland 85% of domestic salt consumed is fluoridated and 67% in Germany. Salt fluoridation schemes are reaching more than one hundred million in Mexico, Colombia, Peru and Cuba. The cost of salt fluoridation is very low, within 0.02 and 0.05 € per year and capita. Children and adults of the low socio-economic strata tend to have substantially more untreated caries than higher strata. Salt fluoridation is by far the cheapest method for improving oral health. Salt fluoridation has cariostatic potential like water fluoridation (caries reductions up to 50%). In Europe, meaningful percentages of users have been attained only in Germany (67%) and Switzerland (85%). In Latin America, there are more than 100 million users, and several countries have arrived at coverage of 90 to 99%. Salt fluoridation is by far the cheapest method of caries prevention, and billions of people throughout the world could benefit from this method. Copyright © 2013 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  15. Electrochromic Salts, Solutions, and Devices

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  16. Electrochromic Salts, Solutions, and Devices

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  17. Electrochromic salts, solutions, and devices

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky,7,064,212 T. Mark

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  18. Salt appetite in the elderly.

    PubMed

    Hendi, Khadeja; Leshem, Micah

    2014-11-28

    The present study investigated whether salt appetite in the elderly is impaired similar to thirst because of the commonality of their physiological substrates and whether alterations in salt appetite are related to mood. Elderly (65-85 years, n 30) and middle-aged (45-58 years, n 30) men and women were compared in two test sessions. Thirst, psychophysical ratings of taste solutions, dietary Na and energy intakes, seasoning with salt and sugar, number of salty and sweet snacks consumed, preferred amounts of salt in soup and sugar in tea, and an overall measure of salt appetite and its relationship with mood, nocturia and sleep were measured. Elderly participants were found to be less thirsty and respond less to thirst. In contrast, no impairment of salt appetite was found in them, and although they had a reduced dietary Na intake, it dissipated when corrected for their reduced dietary energy intake. Diet composition and Na intake were found to be similar in middle-aged and elderly participants, despite the lesser intake in elderly participants. There were no age-related differences in the intensity of taste or hedonic profile of Na, in salting habits, in tests of salting soup, or number of salty snacks consumed. No relationship of any measure of salt appetite with mood measured by the Positive and Negative Affect Schedule, frequency of nocturia, or sleep duration was observed. The age-related impairment of the physiology of mineralofluid regulation, while compromising thirst and fluid intake, spares salt appetite, suggesting that salt appetite in humans is not regulated physiologically. Intact salt appetite in the elderly might be utilised judiciously to prevent hyponatraemia, increase thirst and improve appetite.

  19. IRIS Toxicological Review of Inorganic Arsenic (Cancer) ...

    EPA Pesticide Factsheets

    On February 19, 2010, the draft IRIS Toxicological Review of Inorganic Arsenic (Cancer) external review draft document and the charge to external peer reviewers were released for public review and comment. The draft document and the charge to external peer reviewers were reviewed internally by EPA and by other federal agencies and White House Offices before public release. In the new IRIS process, introduced by the EPA Administrator, all written comments on IRIS assessments submitted by other federal agencies and White House Offices will be made publicly available. Accordingly, interagency comments and the interagency science consultation draft of the Toxicological Review of Inorganic Arsenic and the charge to external peer reviewers are posted on this site. This draft IRIS health assessment addresses only cancer human health effects that may result from chronic exposure to this chemical. An assessment of noncancer health effects of inorganic arsenic will be released for external peer review and public comment at a later date.

  20. Inorganic polymers for environmental protection applications

    NASA Astrophysics Data System (ADS)

    MacKenzie, K. J. D.

    2011-10-01

    Aluminosilicate inorganic polymers have been proposed as low-energy cements since, unlike Portland cement, their production does not require high temperatures or generate large quantities of greenhouse gases. Other environmental protection applications for inorganic polymers are to encapsulate hazardous mining or radioactive wastes for safe long-term storage and as fireproof components for buildings and vehicles. However, newly developed methods for synthesising these materials have opened up the possibility of other novel environmental protection applications. These include porous cladding material for passive cooling of buildings, cost-effective exchange materials for removing heavy metals from wastewater, bacteriocidal materials for purifying polluted drinking water and materials for photodegrading hazardous organic environmental pollutants. The nature and synthesis of inorganic polymers for these environmental applications will be discussed here.

  1. Combining piracetam and lithium salts: ionic co-crystals and co-drugs?

    PubMed

    Braga, Dario; Grepioni, Fabrizia; Maini, Lucia; Capucci, Davide; Nanna, Saverio; Wouters, Johan; Aerts, Luc; Quéré, Luc

    2012-08-25

    Mechanochemical reaction of solid piracetam with the inorganic salts LiCl and LiBr yields ionic co-crystals which are also co-drugs, characterized by markedly different thermal properties with respect to pure components, also depending on the method for preparation and/or conditions of measurements; single crystal and powder X-ray diffraction at variable temperatures, DSC, TGA, hot stage microscopy (HSM) and intrinsic dissolution rate have been used to fully characterize the solid products.

  2. Methods for predicting properties and tailoring salt solutions for industrial processes

    NASA Technical Reports Server (NTRS)

    Ally, Moonis R.

    1993-01-01

    An algorithm developed at Oak Ridge National Laboratory accurately and quickly predicts thermodynamic properties of concentrated aqueous salt solutions. This algorithm is much simpler and much faster than other modeling schemes and is unique because it can predict solution behavior at very high concentrations and under varying conditions. Typical industrial applications of this algorithm would be in manufacture of inorganic chemicals by crystallization, thermal storage, refrigeration and cooling, extraction of metals, emissions controls, etc.

  3. Methods for predicting properties and tailoring salt solutions for industrial processes

    SciTech Connect

    Ally, M.R.

    1992-01-01

    An algorithm developed at Oak Ridge National Laboratory accurately and quickly predicts thermodynamic properties of concentrated aqueous salt solutions. This algorithm is much simpler and much faster than other modeling schemes and is unique because it can predict solution behavior at very high concentrations and under varying conditions. Typical industrial applications of this algorithm would be in manufacture of inorganic chemicals by crystallization, thermal storage, refrigeration and cooling, extraction of metals, emissions control, etc. 3 figs, 2 tabs, 1 ref.

  4. Dietary Salt Intake and Hypertension

    PubMed Central

    2014-01-01

    Over the past century, salt has been the subject of intense scientific research related to blood pressure elevation and cardiovascular mortalities. Moderate reduction of dietary salt intake is generally an effective measure to reduce blood pressure. However, recently some in the academic society and lay media dispute the benefits of salt restriction, pointing to inconsistent outcomes noted in some observational studies. A reduction in dietary salt from the current intake of 9-12 g/day to the recommended level of less than 5-6 g/day will have major beneficial effects on cardiovascular health along with major healthcare cost savings around the world. The World Health Organization (WHO) strongly recommended to reduce dietary salt intake as one of the top priority actions to tackle the global non-communicable disease crisis and has urged member nations to take action to reduce population wide dietary salt intake to decrease the number of deaths from hypertension, cardiovascular disease and stroke. However, some scientists still advocate the possibility of increased risk of CVD morbidity and mortality at extremes of low salt intake. Future research may inform the optimal sodium reduction strategies and intake targets for general populations. Until then, we have to continue to build consensus around the greatest benefits of salt reduction for CVD prevention, and dietary salt intake reduction strategies must remain at the top of the public health agenda. PMID:25061468

  5. Should we eat less salt?

    PubMed

    Delahaye, François

    2013-05-01

    High blood pressure is a major cardiovascular risk factor. There is overwhelming evidence that high salt consumption is a major cause of increased blood pressure. There is also a link between high salt consumption and risk of stroke, left ventricular hypertrophy, renal disease, obesity, renal stones and stomach cancer. Reducing salt consumption leads to a decrease in blood pressure and the incidence of cardiovascular disease. There are no deleterious effects associated with reducing salt consumption and it is also very cost-effective. Many organizations and state governments have issued recommendations regarding the suitable amount of salt consumption. In France, the objective is a salt consumption<8g/day in men and<6.5g/day in women and children. As 80% of consumed salt comes from manufactured products in developed countries, reduction of salt consumption requires the participation of the food industry. The other tool is consumer information and education. Salt consumption has already decreased in France in recent years, but efforts must continue.

  6. Pathophysiology of salt sensitivity hypertension.

    PubMed

    Ando, Katsuyuki; Fujita, Toshiro

    2012-06-01

    Dietary salt intake is the most important factor contributing to hypertension, but the salt susceptibility of blood pressure (BP) is different in individual subjects. Although the pathogenesis of salt-sensitive hypertension is heterogeneous, it is mainly attributable to an impaired renal capacity to excrete sodium (Na(+) ). We recently identified two novel mechanisms that impair renal Na(+) -excreting function and result in an increase in BP. First, mineralocorticoid receptor (MR) activation in the kidney, which facilitates distal Na(+) reabsorption through epithelial Na(+) channel activation, causes salt-sensitive hypertension. This mechanism exists not only in models of high-aldosterone hypertension as seen in conditions of obesity or metabolic syndrome, but also in normal- or low-aldosterone type of salt-sensitive hypertension. In the latter, Rac1 activation by salt excess causes MR stimulation. Second, renospecific sympathoactivation may cause an increase in BP under conditions of salt excess. Renal beta2 adrenoceptor stimulation in the kidney leads to decreased transcription of the gene encoding WNK4, a negative regulator of Na(+) reabsorption through Na(+) -Cl (-) cotransporter in the distal convoluted tubules, resulting in salt-dependent hypertension. Abnormalities identified in these two pathways of Na(+) reabsorption in the distal nephron may present therapeutic targets for the treatment of salt-sensitive hypertension.

  7. Conjunctive and mineralization impact of municipal solid waste compost and inorganic fertilizer on lysimeter and pot studies.

    PubMed

    Khalid, Iqbal; Nadeem, Amana; Ahmed, Rauf; Husnain, Anwer

    2014-01-01

    Objectives of the present study were to investigate the physico-chemical properties of municipal solid waste (MSW)-enriched compost and its effect on nutrient mineralization and subsequent plant growth. The enrichment of MSW compost by inorganic salts enhanced the humification rate and reduced the carbon nitrogen (C/N) ratio in less time than control compost. The chemical properties of compost, C/N ratio, humic acid, fulvic acid, degree of polymerization and humification index revealed the significant correlation amid properties. A laboratory-scale experiment evaluated the conjunctive effect of MSW compost and inorganic fertilizer on tomato plants in a pot experiment. In the pot experiment five treatments, Inorganic fertilizer (T1), enriched compost (T2), enriched compost 80% + 20% inorganic fertilizer (T3), enriched compost 60% + 40% inorganic fertilizer (T4) were defined including control (Ts), applied at the rate of 110 kg-N/ha and results revealed that all treatments significantly enhanced horticultural production of tomato plant; however T4 was most effectual as compared with control, T1, T2 and T3. Augmentation in organic matter and available phosphorus (P) potassium (K) and nitrogen (N) were also observed in compost treatments. The leachability and phytoavailability of phosphorus (P), potassium (K) and nitrogen (N) from sandy soil, amended with enriched, control compost and inorganic fertilizer at rates of 200, 400 and 600 kg-N/ha were evaluated in a lysimeter study. Results illustrated that concentration of mineral nitrogen was elevated in the leachate of inorganic fertilizer than enriched and control composts; therefore compost fortifies soil with utmost nutrients for plants' growth.

  8. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  9. Inorganic-organic hybrid white light phosphors.

    PubMed

    Wang, Ming-Sheng; Guo, Guo-Cong

    2016-11-03

    Light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) have brought about a revolution in lighting and display. A very hot field in recent years has been to develop white-light phosphors, aiming to achieve better colour stability, better reproducibility, and a simpler fabrication process for LEDs and OLEDs. This feature article reviews the development of inorganic-organic hybrid white-light phosphors, including coordination compounds of small organic molecules, organically templated inorganic compounds (phosphates, borates, sulfides, halides), metal-functionalized organic polymers, and organically coated nanoparticles.

  10. Torsional Resonators Based on Inorganic Nanotubes.

    PubMed

    Divon, Yiftach; Levi, Roi; Garel, Jonathan; Golberg, Dmitri; Tenne, Reshef; Ya'akobovitz, Assaf; Joselevich, Ernesto

    2017-01-11

    We study for the first time the resonant torsional behaviors of inorganic nanotubes, specifically tungsten disulfide (WS2) and boron nitride (BN) nanotubes, and compare them to that of carbon nanotubes. We have found WS2 nanotubes to have the highest quality factor (Q) and torsional resonance frequency, followed by BN nanotubes and carbon nanotubes. Dynamic and static torsional spring constants of the various nanotubes were found to be different, especially in the case of WS2, possibly due to a velocity-dependent intershell friction. These results indicate that inorganic nanotubes are promising building blocks for high-Q nanoelectromechanical systems (NEMS).

  11. SAXS in inorganic and bioinspired research.

    PubMed

    Stawski, Tomasz M; Benning, Liane G

    2013-01-01

    In situ and time-resolved structural information about emergent microstructures that progressively develop during the formation of inorganic or biologically mediated solid phases from solution is fundamental for understanding of the mechanisms driving complex precipitation reactions, for example, during biomineralization. In this brief chapter, we present the use of small- and wide-angle X-ray scattering (SAXS and WAXS) techniques and show how SAXS can be used to gather structural information on the nanoscale properties of the de novo-forming entities. We base the discussion on several worked examples of inorganic materials such as calcium carbonate, silica, and perovskite-type titanates.

  12. Phosphate-Dependent Root System Architecture Responses to Salt Stress1[OPEN

    PubMed Central

    Sommerfeld, Hector Montero; ter Horst, Anneliek; Haring, Michel A.

    2016-01-01

    Nutrient availability and salinity of the soil affect the growth and development of plant roots. Here, we describe how inorganic phosphate (Pi) availability affects the root system architecture (RSA) of Arabidopsis (Arabidopsis thaliana) and how Pi levels modulate responses of the root to salt stress. Pi starvation reduced main root length and increased the number of lateral roots of Arabidopsis Columbia-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75 mm) on all measured RSA components. At higher salt concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid signaling compared with the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general, lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied, and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By genome-wide association mapping, 12 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses. PMID:27208277

  13. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  14. THE DISTRIBUTION OF INORGANIC CATIONS IN MOUSE TESTIS

    PubMed Central

    Kierszenbaum, Abraham L.; Libanati, Cesar M.; Tandler, Carlos J.

    1971-01-01

    For localization of pyroantimonate-precipitable cations, mouse testes were fixed with a saturated aqueous solution of potassium pyroantimonate (pH about 9.2, without addition of any conventional fixative), hardened with formaldehyde, and postosmicated. A good preservation of the cell membranes and over-all cell morphology is obtained as well as a consistent and reproducible localization of the insoluble antimonate salts of magnesium, calcium, and sodium. Four sites of prominent antimonate deposits are revealed, besides a more or less uniform distribution of the precipitates. These sites are: (a) In the walls of the seminiferous tubules, localized in two concentric layers corresponding to the inner and outer layers of the tubular wall; (b) Around the blood vessels and adjacent connective tissue; (c) At the area of contact between the Sertoli cell and spermatids, where a double line of precipitate surrounds the head of the mature spermatids; and (d) In the cell nuclei, disposed between regions of the condensed chromatin. The nucleus of mature spermatids did not show any sign of antimonate precipitation. The implications of this inorganic cation distribution are discussed with relation to their anionic counterparts, their localization in other animal and plant tissues, and the possibility that those sites may represent barriers to the free passage of ions. PMID:4101521

  15. Tropospheric Chemistry of Internally Mixed Sea Salt and Organic Particles: Surprising Reactivity of NaCl with Weak Organic Acids

    SciTech Connect

    Laskin, Alexander; Moffet, Ryan C.; Gilles, Marry K.; Fast, Jerome D.; Zaveri, Rahul A.; Wang, Bingbing; Nigge, P.; Shutthanandan, Janani I.

    2012-08-03

    Chemical imaging analysis of internally mixed sea salt/organic particles collected on board the Department of Energy (DOE) G-1 aircraft during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) was performed using electron microscopy and X-ray spectro-microscopy techniques. Substantial chloride depletion in aged sea salt particles was observed, which could not be explained by the known atmospheric reactivity of sea salt with inorganic nitric and sulfuric acids. We present field evidence that chloride components in sea salt particles may effectively react with organic acids releasing HCl gas to the atmosphere, leaving behind particles depleted in chloride and enriched in the corresponding organic salts. While formation of the organic salts products is not thermodynamically favored for bulk aqueous chemistry, these reactions in aerosol are driven by high volatility and irreversible evaporation of the HCl product from drying particles. These field observations were corroborated in a set of laboratory experiments where NaCl particles mixed with organic acids were found to be depleted in chloride. Combined together, the results indicate substantial chemical reactivity of sea salt particles with secondary organics that has been largely overlooked in the atmospheric aerosol chemistry. Atmospheric aging, and especially hydration-dehydration cycles of mixed sea salt/organic particles may result in formation of organic salts that will modify acidity, hygroscopic and optical properties of aged particles.

  16. Tropospheric chemistry of internally mixed sea salt and organic particles: Surprising reactivity of NaCl with weak organic acids

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.; Fast, Jerome D.; Zaveri, Rahul A.; Wang, Bingbing; Nigge, Pascal; Shutthanandan, Janani

    2012-08-01

    Chemical imaging analysis of internally mixed sea salt/organic particles collected onboard the Department of Energy (DOE) G-1 aircraft during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) was performed using electron microscopy and X-ray spectro-microscopy. Substantial chloride depletion in aged sea salt particles was observed, which could not be explained by the known atmospheric reactivity of sea salt with inorganic nitric and sulfuric acids. We present field evidence that chloride components in sea salt particles may effectively react with organic acids releasing HCl gas to the atmosphere, leaving behind particles depleted in chloride and enriched in the corresponding organic salts. While formation of the organic salts products is not thermodynamically favored for bulk aqueous chemistry, these reactions in aerosol are driven by high volatility and evaporation of the HCl product from drying particles. These field observations were corroborated in a set of laboratory experiments where NaCl particles mixed with organic acids were found to be depleted in chloride. Combined together, the results indicate substantial chemical reactivity of sea salt particles with secondary organics that has been largely overlooked in the atmospheric aerosol chemistry. Atmospheric aging, and in particular hydration-dehydration cycles of mixed sea salt/organic particles, may result in formation of organic salts that will modify the acidity, hygroscopic, and optical properties of aged particles.

  17. Sodium: How to Tame Your Salt Habit

    MedlinePlus

    ... same amount of sodium as table salt. Use salt substitutes wisely. Some salt substitutes or light salts contain a mixture of table ... substitute — and get too much sodium. Also, many salt substitutes contain potassium chloride. Although potassium can lessen some ...

  18. Theory Of Salt Effects On Protein Solubility

    NASA Astrophysics Data System (ADS)

    Dahal, Yuba; Schmit, Jeremy

    Salt is one of the major factors that effects protein solubility. Often, at low salt concentration regime, protein solubility increases with the salt concentration(salting in) whereas at high salt concentration regime, solubility decreases with the increase in salt concentration(salting out). There are no quantitative theories to explain salting in and salting out. We have developed a model to describe the salting in and salting out. Our model accounts for the electrostatic Coulomb energy, salt entropy and non-electrostatic interaction between proteins. We analytically solve the linearized Poisson Boltzmann equation modelling the protein charge by a first order multipole expansion. In our model, protein charges are modulated by the anion binding. Consideration of only the zeroth order term in protein charge doesn't help to describe salting in phenomenon because of the repulsive interaction. To capture the salting in behaviour, it requires an attractive electrostatic interaction in low salt regime. Our work shows that at low salt concentration, dipole interaction is the cause for salting in and at high salt concentration a salt-dependent depletion interaction dominates and gives the salting out. Our theoretical result is consistent with the experimental result for Chymosin protein NIH Grant No R01GM107487.

  19. Molar conductivity behavior of ionic liquid compare to inorganic salt in electrolyte solution at ambien temperature

    NASA Astrophysics Data System (ADS)

    Hanibah, H.; Hashim, N. Z. Nor; Shamsudin, I. J.

    2017-09-01

    Molar Conductivity (Λ) behaviour of 1-butyl-3-methylimidazolium (Bmin) acetate and Bmin chloride (Bmin Cl) ionic liquids compared to lithium perchlorate (LiClO4) has been studied in aqueous and acetonitrile (ACN) solution at ambient temperature. The limiting molar conductivity (Λ0) was obtained using the Kohlrausch's and Ostwald's equation for the investigated systems. The results show that the Λ0 value for LiClO4 in both aqueous or acetonitrile (ACN) electrolyte system with a highest value as compare to ionic liquid electrolyte systems. This might as a result of ions association of LiClO4 in aqueous medium as the concentration of the solute increases in the solvent. In addition, the partial dissociation behaviour of LiClO4 in less polar solvent such as ACN also significantly affects the Λ0 value for this electrolyte system. However, for Bmin acetate and Bmin Cl in the aqueous or ACN medium show a much lower Λ0 value as compare to LiClO4 electrolyte system, 45.64, 74.63 and 107.32 S cm2 mol-1 respectively. This as a result of the nature behaviour of ionic liquid itself that present as free moving ions at room temperature before any dissolution into the solvent. In addition, a vice versa trend of Λ0 value is noted for Bmin acetate and Bmin Cl, 21.34 and 14.56 S cm2 mol-1 respectively in ACN electrolyte system. This indicated the solvent and the size of the anion play an important role in the estimation of limiting molar conductivity values which significantly affect the present of total free moving ions in an electrolyte system.

  20. Inorganic/organic hybrid salts derived from polyoxovanadates and macrocyclic (OxN2) cations

    NASA Astrophysics Data System (ADS)

    Wang, Dongren; Zhang, Wenjian; Grüning, Kerstin; Rehder, Dieter

    2003-08-01

    The crystal and molecular structures of the following compounds have been determined: [{Na(H2O)4}2(μ-H2O)2][H3O]2[H2V10O28] 1a, [C211H2]2[H3O]2[V10O28]·7H2O 1b·7H2O, [C23H2]2[H2V10O28]·6H2O 1c·6H2O, [C22H2]2[Et4N][H4V14O38(PO4)]·8H2O 2a·8H2O, [C221H2]2[H5V14O38(PO4)]·8H2O 2b·8H2O, and [C22H2]2.5[V2W10O36(PO4)]·11H2O 3·11H2O. C211 and C221 are cryptands, C22 and C23 are monocylic ligands with two amine nitrogens bridged by two bis(glycols) (C22) or one bis-plus one tris(glycol) (C23). 1b and 1c have been obtained by conventional mixing of aqueous solutions of the macrocyclic compound and decavanadate, 2a and 2b by gel diffusion, 3 by multi-layer freeze diffusion. 1a formed accidentally in acetate-buffered solutions containing vanadyl sulfate and Schiff base components. Supramolecular arrangement of the polyoxometalate cations and macrocyclic ammonium anions in the crystal lattice comes about by electrostatic interaction and hydrogen bonds.

  1. Enhanced thermal and combustion resistance of cotton linked to natural inorganic salt components

    USDA-ARS?s Scientific Manuscript database

    Cotton is most commonly scoured or scoured and bleached before being used for commercial purposes, but, due to its propensity to burn, cotton's use is limited and protective chemistry is needed in applications where resistance to heat and flame is required. A comparison of the thermal decomposition ...

  2. CHARACTERISTICS OF POROUS CELLULOSE ACETATE MEMBRANES FOR THE SEPARATION OF SOME INORGANIC SALTS IN AQUEOUS SOLUTION,

    DTIC Science & Technology

    Experimental results are presented to illustrate the effect of operating variables on the separation and flow characteristics of porous cellulose ... acetate membranes. The results are discussed from the point of view of the preferential sorption and capillary flow mechanism, together with the concept

  3. Preconceptual design of a salt splitting process using ceramic membranes

    SciTech Connect

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R.; Balagopal, S.; Landro, T.; Sutija, D.P.

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

  4. Ion homeostasis in a salt-secreting halophytic grass

    PubMed Central

    Sanadhya, Payal; Agarwal, Parinita; Agarwal, Pradeep K.

    2015-01-01

    Salinity adversely affects plant growth and development, and disturbs intracellular ion homeostasis, resulting in cellular toxicity. Plants that tolerate salinity, halophytes, do so by manifesting numerous physiological and biochemical processes in coordination to alleviate cellular ionic imbalance. The present study was undertaken to analyse the salt tolerance mechanism in Aeluropus lagopoides (L.) trin. Ex Thw. (Poaceae) at both physiological and molecular levels. Plants secreted salt from glands, which eventually produced pristine salt crystals on leaves and leaf sheaths. The rate of salt secretion increased with increasing salt concentration in the growth medium. Osmotic adjustment was mainly achieved by inorganic osmolytes (Na+) and at 100 mM NaCl no change was observed in organic osmolytes in comparison to control plants. At 300 mM NaCl and with 150 mM NaCl + 150 mM KCl, the concentration of proline, soluble sugars and amino acids was significantly increased. Transcript profiling of transporter genes revealed differential spatial and temporal expressions in both shoot and root tissues in a manner synchronized towards maintaining ion homeostasis. In shoots, AlHKT2;1 transcript up-regulation was observed at 12 and 24 h in all the treatments, whereas in roots, maximum induction was observed at 48 h with K+ starvation. The HAK transcript was relatively abundant in shoot tissue with all the treatments. The plasma membrane Na+/H+ antiporter, SOS1, and tonoplast Na+/H+ antiporter, NHX1, were found to be significantly up-regulated in shoot tissue. Our data demonstrate that AlHKT2;1, HAK, SOS1, NHX1 and V-ATPase genes play a pivotal role in regulating the ion homeostasis in A. lagopoides. PMID:25990364

  5. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  6. Effect of altitude on brain intracellular pH and inorganic phosphate levels.

    PubMed

    Shi, Xian-Feng; Carlson, Paul J; Kim, Tae-Suk; Sung, Young-Hoon; Hellem, Tracy L; Fiedler, Kristen K; Kim, Seong-Eun; Glaeser, Breanna; Wang, Kristina; Zuo, Chun S; Jeong, Eun-Kee; Renshaw, Perry F; Kondo, Douglas G

    2014-06-30

    Normal brain activity is associated with task-related pH changes. Although central nervous system syndromes associated with significant acidosis and alkalosis are well understood, the effects of less dramatic and chronic changes in brain pH are uncertain. One environmental factor known to alter brain pH is the extreme, acute change in altitude encountered by mountaineers. However, the effect of long-term exposure to moderate altitude has not been studied. The aim of this two-site study was to measure brain intracellular pH and phosphate-bearing metabolite levels at two altitudes in healthy volunteers, using phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS). Increased brain pH and reduced inorganic phosphate (Pi) levels were found in healthy subjects who were long-term residents of Salt Lake City, UT (4720ft/1438m), compared with residents of Belmont, MA (20ft/6m). Brain intracellular pH at the altitude of 4720ft was more alkaline than that observed near sea level. In addition, the ratio of inorganic phosphate to total phosphate signal also shifted toward lower values in the Salt Lake City region compared with the Belmont area. These results suggest that long-term residence at moderate altitude is associated with brain chemical changes.

  7. Effect of altitude on brain intracellular pH and inorganic phosphate levels

    PubMed Central

    Shi, Xian-Feng; Carlson, Paul J.; Kim, Tae-Suk; Sung, Young-Hoon; Hellem, Tracy L.; Fiedler, Kristen K.; Kim, Seong-Eun; Glaeser, Breanna; Wang, Kristina; Zuo, Chun S.; Jeong, Eun-Kee; Renshaw, Perry F.; Kondo, Douglas G.

    2015-01-01

    Normal brain activity is associated with task-related pH changes. Although central nervous system syndromes associated with significant acidosis and alkalosis are well understood, the effects of less dramatic and chronic changes in brain pH are uncertain. One environmental factor known to alter brain pH is the extreme, acute change in altitude encountered by mountaineers. However, the effect of long-term exposure to moderate altitude has not been studied. The aim of this two-site study was to measure brain intracellular pH and phosphate-bearing metabolite levels at two altitudes in healthy volunteers, using phosphorus-31 magnetic resonance spectroscopy (31P-MRS). Increased brain pH and reduced inorganic phosphate (Pi) levels were found in healthy subjects who were long-term residents of Salt Lake City, UT (4720 ft/1438 m), compared with residents of Belmont, MA (20 ft/6 m). Brain intracellular pH at the altitude of 4720 ft was more alkaline than that observed near sea level. In addition, the ratio of inorganic phosphate to total phosphate signal also shifted toward lower values in the Salt Lake City region compared with the Belmont area. These results suggest that long-term residence at moderate altitude is associated with brain chemical changes. PMID:24768210

  8. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China.

    PubMed

    Cao, Fang; Zhang, Shi-Chun; Kawamura, Kimitaka; Zhang, Yan-Lin

    2016-12-01

    To better characterize the chemical compositions and sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions as well as stable carbon isotopic composition (δ(13)C) were measured in this study. Intensively open biomass burning episodes are identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass-burning episode, concentrations of PM2.5, OC, EC, and WSOC are increased by a factor of 4-12 compared to those during the non-biomass-burning period. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, demonstrating an important contribution from biomass-burning emissions. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, suggesting that biomass-burning aerosols in Sanjiang Plain are mostly fresh and less aged. In addition, the WSOC-to-OC ratio is lower than that reported in biomass-burning aerosols in tropical regions, further supporting that biomass-burning aerosols in Sanjiang Plain are mostly primary and secondary organic aerosols may be not significant. A lower average δ(13)C value (-26.2‰) is observed during the biomass-burning period, indicating a dominant contribution from combustion of C3 plants in the studied region.

  9. CHED Events: Salt Lake City

    NASA Astrophysics Data System (ADS)

    Wink, Donald J.

    2009-03-01

    The Division of Chemical Education (CHED) Committee meetings planned for the Spring 2009 ACS Meeting in Salt Lake City will be in the Marriott City Center Hotel. Check the location of other CHED events, the CHED Social Event, the Undergraduate Program, Sci-Mix, etc. because many will be in the Salt Palace Convention Center.

  10. Bile salts and calcium absorption

    PubMed Central

    Webling, D. D'A.; Holdsworth, E. S.

    1966-01-01

    1. The study of the effect of bile salts on enhancing calcium absorption in the rachitic chick has been extended to bile salts not present in chick bile, e.g. glycine conjugates and bile alcohol sulphates. 2. Bile and bile salts cause an increase in calcium absorption from sparingly soluble calcium hydrogen phosphate when compared with a suspension of calcium hydrogen phosphate in saline. 3. If the bile ducts of normal rats are tied the absorption of calcium from calcium hydrogen phosphate decreases but can be restored by giving bile salts with the calcium salt. 4. Bile salts increase solubility in water of the sparingly soluble calcium salts, phytate and phosphate at pH values between 6 and 8. 5. Bile salts increase the solubility in lipid solvents of calcium in approximately the same proportion as they increase the absorption of calcium from the gut. 6. The physiological role of bile in calcium absorption and its mode of action are discussed. PMID:4291037

  11. Studies of Absorption in Salt

    DTIC Science & Technology

    1983-02-01

    Pressed Salt ........................................... 9 2.5.2 Natural Salt ........................................... 14 3.0 EXPERIMENTAL METHODS ...micrographs with sufficient contrast could not be obtained. 2.3 Crack Decoration We found that the most effective method to enhance the grain boundaries and...corrections based on the methods developed by Johnson (1946), Saltikov (1958) and more recently discussed by Underwood (1968). Corrected values for grain

  12. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  13. Electron Microscopy of Tungsten Disulphide Inorganic Nanomaterials

    DTIC Science & Technology

    2009-09-01

    cylindrical molecule similar to a carbon nanotube. Inorganic nanotubes have been observed in some mineral deposits. Linus Pauling suggested the...diffraction pattern was due to the carbon coating. Figure 6 SAED taken from the single nanotube shown in figure 5 REFERENCES 1. Pauling , L; "The

  14. Removing dissolved inorganic contaminants from water

    SciTech Connect

    Clifford, D.; Subramonian, S.; Sorg, T.J.

    1986-11-01

    This article describes the physicochemical treatment processes typically used to remove the more common inorganic contaminants from water and wastewater. These are precipitation, coprecipitation, adsorption, ion exchange, membrane separations by reverse osmosis and electrodialysis, and combinations of these processes. The general criteria for process selection are discussed, and the processes and their typical applications are described.

  15. All inorganic ambient temperature rechargeable lithium battery

    NASA Astrophysics Data System (ADS)

    Kuo, H. C.; Dey, A. N.; Schlaikjer, C.; Foster, D.; Kallianidis, M.

    Research and development was carried out on ambient-temperature rechargeable lithium batteries with inorganic SO2 electrolytes. The following solutes in SO2 were studied: tetrachloroaluminates, LiAlCl4, Li2B10Cl10, and LiGaCl4. Copper chloride (CuCl2) was used as one of the electrode materials.

  16. FRAMEWORK FOR INORGANIC METALS RISK ASSESSMENT

    EPA Science Inventory

    The EPA has prepared a framework to guide risk assessors in assessing human and ecological risks of inorganic metals. Metals and metal compounds have properties not generally encountered with organic chemicals. For example, metals are neither created nor destroyed by biological a...

  17. INORGANIC ELEMENTS AND DISTRIBUTION OF EASTERN OYSTERS.

    EPA Science Inventory

    Fisher, William S. In press. Inorganic Elements and Distribution of Eastern Oysters (Abstract). To be presented at the 96th Annual Meeting (Aquaculture 2004) of the National Shellfisheries Association, 1-5 March 2004, Honolulu, HI. 1 p. (ERL,GB R962).

    For over a century w...

  18. Plasmonic sensors for identification of inorganic microcrystals

    NASA Astrophysics Data System (ADS)

    Shabunya-Klyachkovskaya, E. V.; Korza, E. V.; Trotsiuk, L. L.; Matsukovich, A. S.; Kulakovich, O. S.

    2017-01-01

    A method of applying giant stimulated electronic Raman scattering (SERS) by plasmonic gold nanoparticles for identification of inorganic microcrystals in the structure of works of art is presented. The high signal-to-noise ratio in the SERS spectra, along with the low luminescent background, makes the method promising for implementation in practice of technical expertise of objects of cultural heritage.

  19. INORGANIC ELEMENTS AND DISTRIBUTION OF EASTERN OYSTERS.

    EPA Science Inventory

    Fisher, William S. In press. Inorganic Elements and Distribution of Eastern Oysters (Abstract). To be presented at the 96th Annual Meeting (Aquaculture 2004) of the National Shellfisheries Association, 1-5 March 2004, Honolulu, HI. 1 p. (ERL,GB R962).

    For over a century w...

  20. Hybrid organic-inorganic polariton laser.

    PubMed

    Paschos, G G; Somaschi, N; Tsintzos, S I; Coles, D; Bricks, J L; Hatzopoulos, Z; Lidzey, D G; Lagoudakis, P G; Savvidis, P G

    2017-09-12

    Organic materials exhibit exceptional room temperature light emitting characteristics and enormous exciton oscillator strength, however, their low charge carrier mobility prevent their use in high-performance applications such as electrically pumped lasers. In this context, ultralow threshold polariton lasers, whose operation relies on Bose-Einstein condensation of polaritons - part-light part-matter quasiparticles, are highly advantageous since the requirement for high carrier injection no longer holds. Polariton lasers have been successfully implemented using inorganic materials owing to their excellent electrical properties, however, in most cases their relatively small exciton binding energies limit their operation temperature. It has been suggested that combining organic and inorganic semiconductors in a hybrid microcavity, exploiting resonant interactions between these materials would permit to dramatically enhance optical nonlinearities and operation temperature. Here, we obtain cavity mediated hybridization of GaAs and J-aggregate excitons in the strong coupling regime under electrical injection of carriers as well as polariton lasing up to 200 K under non-resonant optical pumping. Our demonstration paves the way towards realization of hybrid organic-inorganic microcavities which utilise the organic component for sustaining high temperature polariton condensation and efficient electrical injection through inorganic structure.

  1. Total and inorganic arsenic in Antarctic macroalgae.

    PubMed

    Farías, Silvia; Smichowski, Patricia; Vélez, Dinoraz; Montoro, Rosa; Curtosi, Antonio; Vodopívez, Cristian

    2007-10-01

    The Antarctic region offers unparalleled possibilities of investigating the natural distribution of metals and metalloids, such as arsenic. Total and inorganic As were analysed in nine species of Antarctic macroalgae collected during the 2002 summer season in the Potter Cove area at Jubany-Dallmann Station (South Shetland Islands, Argentinian Base). Total As was determined by inductively coupled plasma-optical emission spectrometry after microwave-assisted acid digestion. Inorganic As was determined by acid digestion, solvent extraction, flow injection-hydride generation-atomic absorption spectrometry. Total As ranged from 5.8 microg g(-1) dry weight (dw) (Myriogramme sp.) to 152 microg g(-1)dw (Himantothallus grandifolius). Total As concentrations were higher in Phaeophytes (mean+/-SD: 71+/-44 microg g(-1)dw) than in Rhodophytes (mean+/-SD: 15+/-11 microg g(-1)dw). Inorganic As ranged from 0.12 microg g(-1) (Myriogramme sp.) to 0.84 microg g(-1)dw (Phaeurus antarcticus). The percentage of inorganic As with respect to total As was 0.7 for Phaeophytes, but almost 4 times higher for Rhodophytes (2.6). The work discusses possible causes for the presence of As in marine organisms in that pristine environment.

  2. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  3. 29 CFR 1910.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protective equipment. Employee rotation is not required as a control strategy before respiratory protection...) Engineering plans and studies used to determine methods selected for controlling exposure to inorganic arsenic... study among employees at a copper-ore smelting works including investigations of skin reactions to...

  4. 29 CFR 1910.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protective equipment. Employee rotation is not required as a control strategy before respiratory protection...) Engineering plans and studies used to determine methods selected for controlling exposure to inorganic arsenic... study among employees at a copper-ore smelting works including investigations of skin reactions to...

  5. 29 CFR 1910.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protective equipment. Employee rotation is not required as a control strategy before respiratory protection...) Engineering plans and studies used to determine methods selected for controlling exposure to inorganic arsenic... study among employees at a copper-ore smelting works including investigations of skin reactions to...

  6. 29 CFR 1910.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protective equipment. Employee rotation is not required as a control strategy before respiratory protection...) Engineering plans and studies used to determine methods selected for controlling exposure to inorganic arsenic... study among employees at a copper-ore smelting works including investigations of skin reactions to...

  7. Inorganic bonding of semiconductor strain gages

    NASA Technical Reports Server (NTRS)

    Woodruff, N. L.

    1970-01-01

    Inorganic bonding materials minimize outgassing and improve electrical and mechanical properties of semiconductor strain-gage transducers in high-vacuum and high-temperature operations. The two basic methods described are ceramic-glass-bonding and metallic bond formation between the strain gage and the substrate.

  8. Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts

    NASA Astrophysics Data System (ADS)

    Behzadi, Shahed; Rosenauer, Christine; Kappl, Michael; Mohr, Kristin; Landfester, Katharina; Crespy, Daniel

    2016-06-01

    The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials.The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01882c

  9. The inorganic speciation of tin(II) in aqueous solution

    NASA Astrophysics Data System (ADS)

    Cigala, Rosalia Maria; Crea, Francesco; De Stefano, Concetta; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2012-06-01

    This paper reports new voltammetric measurements on the interactions between tin(II) and the most important natural inorganic ligands, OH-, Cl-, F-, CO32-, SO42- and PO43-. For a better understanding of tin(II) speciation, an analysis is also given of prior data on the same systems from the literature. The formation constants were determined at t = 25 °C in different ionic media and at different ionic strengths, specifically the following: Sn(OH)q (0.1 ⩽ I/mol L-1 ⩽ 1.0 in NaNO3), SnClr and Sn(OH)Cl (0.1 ⩽ I/mol L-1 ⩽ 2.3 in Na(NO3, Cl)), Sn(SO4)r (0.1 ⩽ I/mol L-1 ⩽ 1.6 in Na(NO3, SO4)), SnHqCO3 and SnHqPO4 (0.15 ⩽ I/mol L-1 ⩽ 1.0 in NaNO3), where the subscripts r and q represent the stoichiometric coefficients. Concerning the SnFr species, reliable literature values were considered (0.15 ⩽ I/mol L-1 ⩽ 1.0 in NaClO4). Fifteen voltammetric measurements were performed in synthetic seawater; the total seawater binding ability was evaluated by a model in which synthetic seawater is expressed as a single salt, BA. The formation of species between tin(II) and the anion of the marine salt (A) was also proposed, and the corresponding stability constants at different salinities (5 ⩽ S ⩽ 50) were reported. In addition, studies on the solubility of Sn(OH)2(s) were carried out using voltammetry and light scattering measurements. The "extra-stability" of the mixed species with respect to the parent species was evaluated, in particular for Sn(OH)Cl and the corresponding species involving the anion of the marine salt (A). The dependence of the formation constants on ionic strength was analysed using extended Debye-Hückel and Specific ion Interaction Theory (SIT) type equations. Tin(II) speciation was also evaluated in different natural fluid conditions, where, in all cases, carbonate complexation was predominant, hampering the formation of hydrolytic species throughout the investigated pH range. Moreover, some formation enthalpy changes were calculated

  10. History Leaves Salts Behind

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These plots, or spectra, show that a rock dubbed 'McKittrick' near the Mars Exploration Rover Opportunity's landing site at Meridiani Planum, Mars, has higher concentrations of sulfur and bromine than a nearby patch of soil nicknamed 'Tarmac.' These data were taken by Opportunity's alpha particle X-ray spectrometer, which uses curium-244 to assess the elemental composition of rocks and soil. Only portions of the targets' full spectra are shown to highlight the significant differences in elemental concentrations between 'McKittrick' and 'Tarmac.' Intensities are plotted on a logarithmic scale.

    A nearby rock named Guadalupe similarly has extremely high concentrations of sulfur, but very little bromine. This 'element fractionation' typically occurs when a watery brine slowly evaporates and various salt compounds are precipitated in sequence.

  11. Ammoniated salt heat pump

    NASA Astrophysics Data System (ADS)

    Haas, W. R.; Jaeger, F. J.; Giordano, T. J.

    A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat. Several liquid ammoniates are identified and the critical properties of three of the most promising are presented. Results of small scale (5000 Btu) system tests are discussed and a design concept for a prototype system is given. This system represents a significant improvement over the system using solid ammoniates investigated previously because of the increase in heat transfer rates (5 to 60 Btu/hr sq ft F) and the resulting reduction in heat exchanger size. As a result the concept shows promise of being cost competitive with conventional systems.

  12. Salt resistant crop plants.

    PubMed

    Roy, Stuart J; Negrão, Sónia; Tester, Mark

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker-assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Molten nitrate salt technology development

    NASA Astrophysics Data System (ADS)

    Carling, R. W.; Kramer, C. M.; Bradshaw, R. W.; Nissen, D. A.; Goods, S. H.; Mar, R. W.; Munford, J. W.; Karnowsky, M. M.; Biefeld, R. N.; Norem, N. J.

    1981-03-01

    Of the fluids proposed for heat transfer and energy storage, molten nitrate salts offer significant economic advantages. The nitrate salt of most interest is a binary mixture of NaNO3 and KNO3. Although nitrate/nitrite mixtures were used for decades as heat transfer and heat treatment fluids the use was at temperatures of about 4500 C and lower. In solar thermal power systems the salts will experience a temperature range of 350 to 6000 C. Because central receiver applications place more rigorous demands and higher temperatures on nitrate salts a comprehensive experimental program was developed to examine what effects, if any, the new demands and temperatures have on the salts. The experiments include corrosion testing, environmental cracking of containment materials, and determinations of physical properties and decomposition mechanisms.

  14. Plant salt-tolerance mechanisms

    PubMed Central

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-01-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components may play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made toward engineering salt tolerance in crops, including marker assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future. PMID:24630845

  15. Plant salt-tolerance mechanisms

    SciTech Connect

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  16. Plant salt-tolerance mechanisms.

    PubMed

    Deinlein, Ulrich; Stephan, Aaron B; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  17. Plant salt-tolerance mechanisms

    DOE PAGES

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; ...

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  18. "Rinse and trickle": a protocol for TEM preparation and investigation of inorganic fibers from biological material.

    PubMed

    Vigliaturo, Ruggero; Capella, Silvana; Rinaudo, Caterina; Belluso, Elena

    2016-07-01

    The purpose of this work is to define a sample preparation protocol that allows inorganic fibers and particulate matter extracted from different biological samples to be characterized morphologically, crystallographically and chemically by transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The method does not damage or create artifacts through chemical attacks of the target material. A fairly rapid specimen preparation is applied with the aim of performing as few steps as possible to transfer the withdrawn inorganic matter onto the TEM grid. The biological sample is previously digested chemically by NaClO. The salt is then removed through a series of centrifugation and rinse cycles in deionized water, thus drastically reducing the digestive power of the NaClO and concentrating the fibers for TEM analysis. The concept of equivalent hydrodynamic diameter is introduced to calculate the settling velocity during the centrifugation cycles. This technique is applicable to lung tissues and can be extended to a wide range of organic materials. The procedure does not appear to cause morphological damage to the fibers or modify their chemistry or degree of crystallinity. The extrapolated data can be used in interdisciplinary studies to understand the pathological effects caused by inorganic materials.

  19. Speciation of inorganic arsenic and selenium in leachates from landfills in relation to water quality assessment.

    PubMed

    Yusof, A M; Salleh, S; Wood, A K

    1999-01-01

    Speciation of arsenic and selenium was carried out on water samples taken from rivers used as water intake points in the vicinity of landfill areas used for land-based waste disposal system. Leachates from these landfill areas may contaminate the river water through underground seepage or overflowing, especially after a heavy downpour. Preconcentration of the chemical species was done using a mixture of ammonium pyrrolidinethiocarbamate-chloroform (APDTC-CHCl3). Because only the reduced forms of both arsenic and selenium species could be extracted by the preconcentrating mixture, suitable reducing agents such as 25% sodium thiosulfate for As(III) and 6M HCl for Se(IV) were used throughout the studies. Care was taken to exclude the interfering elements such as the alkali and alkali earth metals from the inorganic arsenic and selenium species by introducing 12% EDTA solution as the masking agent. The extracted mixture was irradiated in a thermal neutron flux of 4 x 10(12)/cm/s from a TRIGA Mk.II reactor at the Malaysia Institute of Nuclear Technology Research (MINT). Gamma rays of 559 keV and 297 keV from 76As and 75Se, respectively, were used in the quantitative determination of the inorganic species. Mixed standards of As(III) and Se(IV) used in the percentage efficiency procedure were prepared from salts of Analar grade. The water quality evaluation was viewed from the ratio of the inorganic species present.

  20. Striking a Balance: Experiment and Concept in Undergraduate Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Frey, John E.

    1990-01-01

    Described is an inorganic chemistry course based on the premise that a balanced understanding of inorganic chemistry requires knowledge of the experimental, theoretical, and technological aspects of the subject. A detailed description of lectures and laboratories is included. (KR)