Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study
Brownstone, Robert M.
2015-01-01
Sensory inputs from muscle, cutaneous, and joint afferents project to the spinal cord, where they are able to affect ongoing locomotor activity. Activation of sensory input can initiate or prolong bouts of locomotor activity depending on the identity of the sensory afferent activated and the timing of the activation within the locomotor cycle. However, the mechanisms by which afferent activity modifies locomotor rhythm and the distribution of sensory afferents to the spinal locomotor networks have not been determined. Considering the many sources of sensory inputs to the spinal cord, determining this distribution would provide insights into how sensory inputs are integrated to adjust ongoing locomotor activity. We asked whether a sparsely distributed set of sensory inputs could modify ongoing locomotor activity. To address this question, several computational models of locomotor central pattern generators (CPGs) that were mechanistically diverse and generated locomotor-like rhythmic activity were developed. We show that sensory inputs restricted to a small subset of the network neurons can perturb locomotor activity in the same manner as seen experimentally. Furthermore, we show that an architecture with sparse sensory input improves the capacity to gate sensory information by selectively modulating sensory channels. These data demonstrate that sensory input to rhythm-generating networks need not be extensively distributed. PMID:25673740
Farinella, Matteo; Ruedt, Daniel T.; Gleeson, Padraig; Lanore, Frederic; Silver, R. Angus
2014-01-01
In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such ‘background’ synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5) pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a ‘balanced’ background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales. PMID:24763087
Rice, Amber; Fuglevand, Andrew J; Laine, Christopher M; Fregosi, Ralph F
2011-05-01
The respiratory central pattern generator distributes rhythmic excitatory input to phrenic, intercostal, and hypoglossal premotor neurons. The degree to which this input shapes motor neuron activity can vary across respiratory muscles and motor neuron pools. We evaluated the extent to which respiratory drive synchronizes the activation of motor unit pairs in tongue (genioglossus, hyoglossus) and chest-wall (diaphragm, external intercostals) muscles using coherence analysis. This is a frequency domain technique, which characterizes the frequency and relative strength of neural inputs that are common to each of the recorded motor units. We also examined coherence across the two tongue muscles, as our previous work shows that, despite being antagonists, they are strongly coactivated during the inspiratory phase, suggesting that excitatory input from the premotor neurons is distributed broadly throughout the hypoglossal motoneuron pool. All motor unit pairs showed highly correlated activity in the low-frequency range (1-8 Hz), reflecting the fundamental respiratory frequency and its harmonics. Coherence of motor unit pairs recorded either within or across the tongue muscles was similar, consistent with broadly distributed premotor input to the hypoglossal motoneuron pool. Interestingly, motor units from diaphragm and external intercostal muscles showed significantly higher coherence across the 10-20-Hz bandwidth than tongue-muscle units. We propose that the lower coherence in tongue-muscle motor units over this range reflects a larger constellation of presynaptic inputs, which collectively lead to a reduction in the coherence between hypoglossal motoneurons in this frequency band. This, in turn, may reflect the relative simplicity of the respiratory drive to the diaphragm and intercostal muscles, compared with the greater diversity of functions fulfilled by muscles of the tongue.
ElBasiouny, Sherif M.; Rymer, W. Zev; Heckman, C. J.
2012-01-01
Motoneuron discharge patterns reflect the interaction of synaptic inputs with intrinsic conductances. Recent work has focused on the contribution of conductances mediating persistent inward currents (PICs), which amplify and prolong the effects of synaptic inputs on motoneuron discharge. Certain features of human motor unit discharge are thought to reflect a relatively stereotyped activation of PICs by excitatory synaptic inputs; these features include rate saturation and de-recruitment at a lower level of net excitation than that required for recruitment. However, PIC activation is also influenced by the pattern and spatial distribution of inhibitory inputs that are activated concurrently with excitatory inputs. To estimate the potential contributions of PIC activation and synaptic input patterns to motor unit discharge patterns, we examined the responses of a set of cable motoneuron models to different patterns of excitatory and inhibitory inputs. The models were first tuned to approximate the current- and voltage-clamp responses of low- and medium-threshold spinal motoneurons studied in decerebrate cats and then driven with different patterns of excitatory and inhibitory inputs. The responses of the models to excitatory inputs reproduced a number of features of human motor unit discharge. However, the pattern of rate modulation was strongly influenced by the temporal and spatial pattern of concurrent inhibitory inputs. Thus, even though PIC activation is likely to exert a strong influence on firing rate modulation, PIC activation in combination with different patterns of excitatory and inhibitory synaptic inputs can produce a wide variety of motor unit discharge patterns. PMID:22031773
Improved neutron activation prediction code system development
NASA Technical Reports Server (NTRS)
Saqui, R. M.
1971-01-01
Two integrated neutron activation prediction code systems have been developed by modifying and integrating existing computer programs to perform the necessary computations to determine neutron induced activation gamma ray doses and dose rates in complex geometries. Each of the two systems is comprised of three computational modules. The first program module computes the spatial and energy distribution of the neutron flux from an input source and prepares input data for the second program which performs the reaction rate, decay chain and activation gamma source calculations. A third module then accepts input prepared by the second program to compute the cumulative gamma doses and/or dose rates at specified detector locations in complex, three-dimensional geometries.
Chen, Ting Y; Zhang, Die; Dragomir, Andrei; Akay, Yasemin; Akay, Metin
2011-05-01
We investigated the influence of nicotine exposure and prefrontal cortex (PFC) transections on ventral tegmental areas (VTA) dopamine (DA) neurons' firing activities using a time-frequency method based on the continuous wavelet transform (CWT). Extracellular single-unit neural activity was recorded from DA neurons in the VTA area of rats. One group had their PFC inputs to the VTA intact, while the other group had the inputs to VTA bilaterally transected immediate caudal to the PFC. We hypothesized that the systemic nicotine exposure will significantly change the energy distribution in the recorded neural activity. Additionally, we investigated whether the loss of inputs to the VTA caused by the PFC transection resulted in the cancellation of the nicotine' effect on the neurons' firing patterns. The time-frequency representations of VTA DA neurons firing activity were estimated from the reconstructed firing rate histogram. The energy contents were estimated from three frequency bands, which are known to encompass the significant modes of operation of DA neurons. Our results show that systemic nicotine exposure disrupts the energy distribution in PFC-intact rats. Particularly, there is a significant increase in energy contents of the 1-1.5 Hz frequency band. This corresponds to an observed increase in the firing rate of VTA DA neurons following nicotine exposure. Additionally, our results from PFC-transected rats show that there is no change in the energy distribution of the recordings after systemic nicotine exposure. These results indicate that the PFC plays an important role in affecting the activities of VTA DA neurons and that the CWT is a useful method for monitoring the changes in neural activity patterns in both time and frequency domains.
Active subthreshold dendritic conductances shape the local field potential
Ness, Torbjørn V.; Remme, Michiel W. H.
2016-01-01
Key points The local field potential (LFP), the low‐frequency part of extracellular potentials recorded in neural tissue, is often used for probing neural circuit activity. Interpreting the LFP signal is difficult, however.While the cortical LFP is thought mainly to reflect synaptic inputs onto pyramidal neurons, little is known about the role of the various subthreshold active conductances in shaping the LFP.By means of biophysical modelling we obtain a comprehensive qualitative understanding of how the LFP generated by a single pyramidal neuron depends on the type and spatial distribution of active subthreshold currents.For pyramidal neurons, the h‐type channels probably play a key role and can cause a distinct resonance in the LFP power spectrum.Our results show that the LFP signal can give information about the active properties of neurons and imply that preferred frequencies in the LFP can result from those cellular properties instead of, for example, network dynamics. Abstract The main contribution to the local field potential (LFP) is thought to stem from synaptic input to neurons and the ensuing subthreshold dendritic processing. The role of active dendritic conductances in shaping the LFP has received little attention, even though such ion channels are known to affect the subthreshold neuron dynamics. Here we used a modelling approach to investigate the effects of subthreshold dendritic conductances on the LFP. Using a biophysically detailed, experimentally constrained model of a cortical pyramidal neuron, we identified conditions under which subthreshold active conductances are a major factor in shaping the LFP. We found that, in particular, the hyperpolarization‐activated inward current, I h, can have a sizable effect and cause a resonance in the LFP power spectral density. To get a general, qualitative understanding of how any subthreshold active dendritic conductance and its cellular distribution can affect the LFP, we next performed a systematic study with a simplified model. We found that the effect on the LFP is most pronounced when (1) the synaptic drive to the cell is asymmetrically distributed (i.e. either basal or apical), (2) the active conductances are distributed non‐uniformly with the highest channel densities near the synaptic input and (3) when the LFP is measured at the opposite pole of the cell relative to the synaptic input. In summary, we show that subthreshold active conductances can be strongly reflected in LFP signals, opening up the possibility that the LFP can be used to characterize the properties and cellular distributions of active conductances. PMID:27079755
Rudolph, Stephanie; Hull, Court; Regehr, Wade G
2015-11-25
Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The extent of inhibition depends on both spontaneous activity of GoCs and the excitatory synaptic input they receive. In this study, we find that different types of calcium channels are differentially distributed, with dendritic calcium channels being activated by somatic activity, boosting synaptic inputs and enabling bursting, and somatic calcium cannels promoting regular firing. We therefore challenge the current view that GoC dendrites are passive and identify the mechanisms that contribute to GoCs regulating the flow of sensory information in the cerebellar cortex. Copyright © 2015 the authors 0270-6474/15/3515492-13$15.00/0.
Martens, J.S.; Hietala, V.M.; Plut, T.A.
1995-01-03
The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.
Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.
1995-01-01
The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.
ERIC Educational Resources Information Center
Révész, Andrea; Sachs, Rebecca; Hama, Mika
2014-01-01
This investigation examined two techniques that may help learners focus on second language (L2) constructions when recasts are provided during meaning-based communicative activities: altering the cognitive complexity of tasks and manipulating the input frequency distributions of target constructions. We first independently assessed the validity of…
Teaching and Learning Activity Sequencing System using Distributed Genetic Algorithms
NASA Astrophysics Data System (ADS)
Matsui, Tatsunori; Ishikawa, Tomotake; Okamoto, Toshio
The purpose of this study is development of a supporting system for teacher's design of lesson plan. Especially design of lesson plan which relates to the new subject "Information Study" is supported. In this study, we developed a system which generates teaching and learning activity sequences by interlinking lesson's activities corresponding to the various conditions according to the user's input. Because user's input is multiple information, there will be caused contradiction which the system should solve. This multiobjective optimization problem is resolved by Distributed Genetic Algorithms, in which some fitness functions are defined with reference models on lesson, thinking and teaching style. From results of various experiments, effectivity and validity of the proposed methods and reference models were verified; on the other hand, some future works on reference models and evaluation functions were also pointed out.
Hendrickson, Phillip J; Yu, Gene J; Song, Dong; Berger, Theodore W
2016-01-01
This paper describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust nonrandom pattern of spiking best described as a spatiotemporal "clustering." To identify the network property or properties responsible for generating such firing "clusters," we progressively eliminated from the model key mechanisms, such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatiotemporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as "functional units" or "channels" that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics.
Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.
2016-01-01
Goal This manuscript describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. Methods The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust, non-random pattern of spiking best described as spatio-temporal “clustering”. To identify the network property or properties responsible for generating such firing “clusters”, we progressively eliminated from the model key mechanisms such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Conclusion Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatio-temporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as “functional units” or “channels” that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics. PMID:26087482
Lin, Risa J; Jaeger, Dieter
2011-05-01
In previous studies we used the technique of dynamic clamp to study how temporal modulation of inhibitory and excitatory inputs control the frequency and precise timing of spikes in neurons of the deep cerebellar nuclei (DCN). Although this technique is now widely used, it is limited to interpreting conductance inputs as being location independent; i.e., all inputs that are biologically distributed across the dendritic tree are applied to the soma. We used computer simulations of a morphologically realistic model of DCN neurons to compare the effects of purely somatic vs. distributed dendritic inputs in this cell type. We applied the same conductance stimuli used in our published experiments to the model. To simulate variability in neuronal responses to repeated stimuli, we added a somatic white current noise to reproduce subthreshold fluctuations in the membrane potential. We were able to replicate our dynamic clamp results with respect to spike rates and spike precision for different patterns of background synaptic activity. We found only minor differences in the spike pattern generation between focal or distributed input in this cell type even when strong inhibitory or excitatory bursts were applied. However, the location dependence of dynamic clamp stimuli is likely to be different for each cell type examined, and the simulation approach developed in the present study will allow a careful assessment of location dependence in all cell types.
Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold.
Winges, Sara A; Kornatz, Kurt W; Santello, Marco
2008-03-01
Anatomical and physiological evidence suggests that common input to motor neurons of hand muscles is an important neural mechanism for hand control. To gain insight into the synaptic input underlying the coordination of hand muscles, significant effort has been devoted to describing the distribution of common input across motor units of extrinsic muscles. Much less is known, however, about the distribution of common input to motor units belonging to different intrinsic muscles and to intrinsic-extrinsic muscle pairs. To address this void in the literature, we quantified the incidence and strength of near-simultaneous discharges of motor units residing in either the same or different intrinsic hand muscles (m. first dorsal, FDI, and m. first palmar interosseus, FPI) during two-digit object hold. To extend the characterization of common input to pairs of extrinsic muscles (previous work) and pairs of intrinsic muscles (present work), we also recorded electromyographic (EMG) activity from an extrinsic thumb muscle (m. flexor pollicis longus, FPL). Motor-unit synchrony across FDI and FPI was weak (common input strength, CIS, mean +/- SE: 0.17 +/- 0.02). Similarly, motor units from extrinsic-intrinsic muscle pairs were characterized by weak synchrony (FPL-FDI: 0.25 +/- 0.02; FPL-FPI: 0.29 +/- 0.03) although stronger than FDI-FPI. Last, CIS from within FDI and FPI was more than three times stronger (0.70 +/- 0.06 and 0.66 +/- 0.06, respectively) than across these muscles. We discuss present and previous findings within the framework of muscle-pair specific distribution of common input to hand muscles based on their functional role in grasping.
Inputs and spatial distribution patterns of Cr in Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming
2018-03-01
Cr pollution in marine bays has been one of the critical environmental issues, and understanding the input and spatial distribution patterns is essential to pollution control. In according to the source strengths of the major pollution sources, the input patterns of pollutants to marine bay include slight, moderate and heavy, and the spatial distribution are corresponding to three block models respectively. This paper analyzed input patterns and distributions of Cr in Jiaozhou Bay, eastern China based on investigation on Cr in surface waters during 1979-1983. Results showed that the input strengths of Cr in Jiaozhou Bay could be classified as moderate input and slight input, and the input strengths were 32.32-112.30 μg L-1 and 4.17-19.76 μg L-1, respectively. The input patterns of Cr included two patterns of moderate input and slight input, and the horizontal distributions could be defined by means of Block Model 2 and Block Model 3, respectively. In case of moderate input pattern via overland runoff, Cr contents were decreasing from the estuaries to the bay mouth, and the distribution pattern was parallel. In case of moderate input pattern via marine current, Cr contents were decreasing from the bay mouth to the bay, and the distribution pattern was parallel to circular. The Block Models were able to reveal the transferring process of various pollutants, and were helpful to understand the distributions of pollutants in marine bay.
Function, Type, and Distribution of Teacher Questions in Dual-Language Preschool Read Alouds
ERIC Educational Resources Information Center
Gort, Mileidis; Pontier, Ryan W.; Sembiante, Sabrina F.
2012-01-01
This exploratory study investigated the nature and distribution of dual-language preschool teachers' questions across parallel Spanish- and English-medium read-aloud activities. The notions of comprehensible input (Krashen, 1985) and language output (Swain, 1985), along with a reciprocal interaction model of teaching (Cummins, 2000), guided our…
Common inputs in subthreshold membrane potential: The role of quiescent states in neuronal activity
NASA Astrophysics Data System (ADS)
Montangie, Lisandro; Montani, Fernando
2018-06-01
Experiments in certain regions of the cerebral cortex suggest that the spiking activity of neuronal populations is regulated by common non-Gaussian inputs across neurons. We model these deviations from random-walk processes with q -Gaussian distributions into simple threshold neurons, and investigate the scaling properties in large neural populations. We show that deviations from the Gaussian statistics provide a natural framework to regulate population statistics such as sparsity, entropy, and specific heat. This type of description allows us to provide an adequate strategy to explain the information encoding in the case of low neuronal activity and its possible implications on information transmission.
Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity
Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon
2011-01-01
Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800
Zhu, Ying
2016-01-01
Individual neurons in several sensory systems receive synaptic inputs organized according to subcellular topographic maps, yet the fine structure of this topographic organization and its relation to dendritic morphology have not been studied in detail. Subcellular topography is expected to play a role in dendritic integration, particularly when dendrites are extended and active. The lobula giant movement detector (LGMD) neuron in the locust visual system is known to receive topographic excitatory inputs on part of its dendritic tree. The LGMD responds preferentially to objects approaching on a collision course and is thought to implement several interesting dendritic computations. To study the fine retinotopic mapping of visual inputs onto the excitatory dendrites of the LGMD, we designed a custom microscope allowing visual stimulation at the native sampling resolution of the locust compound eye while simultaneously performing two-photon calcium imaging on excitatory dendrites. We show that the LGMD receives a distributed, fine retinotopic projection from the eye facets and that adjacent facets activate overlapping portions of the same dendritic branches. We also demonstrate that adjacent retinal inputs most likely make independent synapses on the excitatory dendrites of the LGMD. Finally, we show that the fine topographic mapping can be studied using dynamic visual stimuli. Our results reveal the detailed structure of the dendritic input originating from individual facets on the eye and their relation to that of adjacent facets. The mapping of visual space onto the LGMD's dendrites is expected to have implications for dendritic computation. PMID:27009157
Improving Project Management with Simulation and Completion Distribution Functions
NASA Technical Reports Server (NTRS)
Cates, Grant R.
2004-01-01
Despite the critical importance of project completion timeliness, management practices in place today remain inadequate for addressing the persistent problem of project completion tardiness. A major culprit in late projects is uncertainty, which most, if not all, projects are inherently subject to. This uncertainty resides in the estimates for activity durations, the occurrence of unplanned and unforeseen events, and the availability of critical resources. In response to this problem, this research developed a comprehensive simulation based methodology for conducting quantitative project completion time risk analysis. It is called the Project Assessment by Simulation Technique (PAST). This new tool enables project stakeholders to visualize uncertainty or risk, i.e. the likelihood of their project completing late and the magnitude of the lateness, by providing them with a completion time distribution function of their projects. Discrete event simulation is used within PAST to determine the completion distribution function for the project of interest. The simulation is populated with both deterministic and stochastic elements. The deterministic inputs include planned project activities, precedence requirements, and resource requirements. The stochastic inputs include activity duration growth distributions, probabilities for events that can impact the project, and other dynamic constraints that may be placed upon project activities and milestones. These stochastic inputs are based upon past data from similar projects. The time for an entity to complete the simulation network, subject to both the deterministic and stochastic factors, represents the time to complete the project. Repeating the simulation hundreds or thousands of times allows one to create the project completion distribution function. The Project Assessment by Simulation Technique was demonstrated to be effective for the on-going NASA project to assemble the International Space Station. Approximately $500 million per month is being spent on this project, which is scheduled to complete by 2010. NASA project stakeholders participated in determining and managing completion distribution functions produced from PAST. The first result was that project stakeholders improved project completion risk awareness. Secondly, using PAST, mitigation options were analyzed to improve project completion performance and reduce total project cost.
Assessing risk based on uncertain avalanche activity patterns
NASA Astrophysics Data System (ADS)
Zeidler, Antonia; Fromm, Reinhard
2015-04-01
Avalanches may affect critical infrastructure and may cause great economic losses. The planning horizon of infrastructures, e.g. hydropower generation facilities, reaches well into the future. Based on the results of previous studies on the effect of changing meteorological parameters (precipitation, temperature) and the effect on avalanche activity we assume that there will be a change of the risk pattern in future. The decision makers need to understand what the future might bring to best formulate their mitigation strategies. Therefore, we explore a commercial risk software to calculate risk for the coming years that might help in decision processes. The software @risk, is known to many larger companies, and therefore we explore its capabilities to include avalanche risk simulations in order to guarantee a comparability of different risks. In a first step, we develop a model for a hydropower generation facility that reflects the problem of changing avalanche activity patterns in future by selecting relevant input parameters and assigning likely probability distributions. The uncertain input variables include the probability of avalanches affecting an object, the vulnerability of an object, the expected costs for repairing the object and the expected cost due to interruption. The crux is to find the distribution that best represents the input variables under changing meteorological conditions. Our focus is on including the uncertain probability of avalanches based on the analysis of past avalanche data and expert knowledge. In order to explore different likely outcomes we base the analysis on three different climate scenarios (likely, worst case, baseline). For some variables, it is possible to fit a distribution to historical data, whereas in cases where the past dataset is insufficient or not available the software allows to select from over 30 different distribution types. The Monte Carlo simulation uses the probability distribution of uncertain variables using all valid combinations of the values of input variables to simulate all possible outcomes. In our case the output is the expected risk (Euro/year) for each object (e.g. water intake) considered and the entire hydropower generation system. The output is again a distribution that is interpreted by the decision makers as the final strategy depends on the needs and requirements of the end-user, which may be driven by personal preferences. In this presentation, we will show a way on how we used the uncertain information on avalanche activity in future to subsequently use it in a commercial risk software and therefore bringing the knowledge of natural hazard experts to decision makers.
Distributed Learning, Recognition, and Prediction by ART and ARTMAP Neural Networks.
Carpenter, Gail A.
1997-11-01
A class of adaptive resonance theory (ART) models for learning, recognition, and prediction with arbitrarily distributed code representations is introduced. Distributed ART neural networks combine the stable fast learning capabilities of winner-take-all ART systems with the noise tolerance and code compression capabilities of multilayer perceptrons. With a winner-take-all code, the unsupervised model dART reduces to fuzzy ART and the supervised model dARTMAP reduces to fuzzy ARTMAP. With a distributed code, these networks automatically apportion learned changes according to the degree of activation of each coding node, which permits fast as well as slow learning without catastrophic forgetting. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Thresholds increase monotonically during learning according to a principle of atrophy due to disuse. However, monotonic change at the synaptic level manifests itself as bidirectional change at the dynamic level, where the result of adaptation resembles long-term potentiation (LTP) for single-pulse or low frequency test inputs but can resemble long-term depression (LTD) for higher frequency test inputs. This paradoxical behavior is traced to dual computational properties of phasic and tonic coding signal components. A parallel distributed match-reset-search process also helps stabilize memory. Without the match-reset-search system, dART becomes a type of distributed competitive learning network.
Burton, Shawn D.
2015-01-01
Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE STATEMENT Inhibitory granule cells are involved critically in shaping odor-evoked principal neuron activity in the mammalian olfactory bulb, yet little is known about how sensory input activates granule cells. Here, we show that sensory input to the olfactory bulb evokes a barrage of asynchronous synaptic excitation and highly reliable, short-latency synaptic inhibition onto granule cells via a disynaptic feedforward inhibitory circuit involving deep short-axon cells. Feedforward inhibition attenuates local depolarization within granule cell dendritic branches, interacts with asynchronous excitation to suppress granule cell spike-timing precision, and scales in strength with excitation across different levels of sensory input to normalize granule cell firing rates. PMID:26490853
Giugliano, Michele; La Camera, Giancarlo; Fusi, Stefano; Senn, Walter
2008-11-01
The response of a population of neurons to time-varying synaptic inputs can show a rich phenomenology, hardly predictable from the dynamical properties of the membrane's inherent time constants. For example, a network of neurons in a state of spontaneous activity can respond significantly more rapidly than each single neuron taken individually. Under the assumption that the statistics of the synaptic input is the same for a population of similarly behaving neurons (mean field approximation), it is possible to greatly simplify the study of neural circuits, both in the case in which the statistics of the input are stationary (reviewed in La Camera et al. in Biol Cybern, 2008) and in the case in which they are time varying and unevenly distributed over the dendritic tree. Here, we review theoretical and experimental results on the single-neuron properties that are relevant for the dynamical collective behavior of a population of neurons. We focus on the response of integrate-and-fire neurons and real cortical neurons to long-lasting, noisy, in vivo-like stationary inputs and show how the theory can predict the observed rhythmic activity of cultures of neurons. We then show how cortical neurons adapt on multiple time scales in response to input with stationary statistics in vitro. Next, we review how it is possible to study the general response properties of a neural circuit to time-varying inputs by estimating the response of single neurons to noisy sinusoidal currents. Finally, we address the dendrite-soma interactions in cortical neurons leading to gain modulation and spike bursts, and show how these effects can be captured by a two-compartment integrate-and-fire neuron. Most of the experimental results reviewed in this article have been successfully reproduced by simple integrate-and-fire model neurons.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
...; Notification of Proposed Production Activity; Brightpoint North America L.P. (Cell Phone Kitting and... for cell phone kitting, warehousing and distribution operations. Production under FTZ procedures could... procedures that apply to cell phone kits (duty free) for the foreign status inputs noted below. Customs...
Layher, Georg; Schrodt, Fabian; Butz, Martin V.; Neumann, Heiko
2014-01-01
The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, both of which are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in computational neuroscience. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of additional (sub-) category representations. We demonstrate the temporal evolution of such learning and show how the proposed combination of an associative memory with a modulatory feedback integration successfully establishes category and subcategory representations. PMID:25538637
Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry
Mowry, Curtis Dale; Thornberg, Steven Michael
1999-01-01
A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.
Analyzing Distributional Learning of Phonemic Categories in Unsupervised Deep Neural Networks
Räsänen, Okko; Nagamine, Tasha; Mesgarani, Nima
2017-01-01
Infants’ speech perception adapts to the phonemic categories of their native language, a process assumed to be driven by the distributional properties of speech. This study investigates whether deep neural networks (DNNs), the current state-of-the-art in distributional feature learning, are capable of learning phoneme-like representations of speech in an unsupervised manner. We trained DNNs with unlabeled and labeled speech and analyzed the activations of each layer with respect to the phones in the input segments. The analyses reveal that the emergence of phonemic invariance in DNNs is dependent on the availability of phonemic labeling of the input during the training. No increased phonemic selectivity of the hidden layers was observed in the purely unsupervised networks despite successful learning of low-dimensional representations for speech. This suggests that additional learning constraints or more sophisticated models are needed to account for the emergence of phone-like categories in distributional learning operating on natural speech. PMID:29359204
Synaptic integration in dendrites: exceptional need for speed
Golding, Nace L; Oertel, Donata
2012-01-01
Some neurons in the mammalian auditory system are able to detect and report the coincident firing of inputs with remarkable temporal precision. A strong, low-voltage-activated potassium conductance (gKL) at the cell body and dendrites gives these neurons sensitivity to the rate of depolarization by EPSPs, allowing neurons to assess the coincidence of the rising slopes of unitary EPSPs. Two groups of neurons in the brain stem, octopus cells in the posteroventral cochlear nucleus and principal cells of the medial superior olive (MSO), extract acoustic information by assessing coincident firing of their inputs over a submillisecond timescale and convey that information at rates of up to 1000 spikes s−1. Octopus cells detect the coincident activation of groups of auditory nerve fibres by broadband transient sounds, compensating for the travelling wave delay by dendritic filtering, while MSO neurons detect coincident activation of similarly tuned neurons from each of the two ears through separate dendritic tufts. Each makes use of filtering that is introduced by the spatial distribution of inputs on dendrites. PMID:22930273
NASA Technical Reports Server (NTRS)
Lu, Yun-Chi; Chang, Hyo Duck; Krupp, Brian; Kumar, Ravindar; Swaroop, Anand
1992-01-01
Volume 3 assists Earth Observing System (EOS) investigators in locating required non-EOS data products by identifying their non-EOS input requirements and providing the information on data sets available at various Distributed Active Archive Centers (DAAC's), including those from Pathfinder Activities and Earth Probes. Volume 3 is intended to complement, not to duplicate, the the EOSDIS Science Data Plan (SDP) by providing detailed data set information which was not presented in the SDP. Section 9 of this volume discusses the algorithm summary tables containing information on retrieval algorithms, expected outputs and required input data. Section 10 describes the non-EOS input requirements of instrument teams and IDS investigators. Also described are the current and future data holdings of the original seven DAACS and data products planned from the future missions and projects including Earth Probes and Pathfinder Activities. Section 11 describes source of information used in compiling data set information presented in this volume. A list of data set attributes used to describe various data sets is presented in section 12 along with their descriptions. Finally, Section 13 presents the SPSO's future plan to improve this report .
Hamaguchi, Kosuke; Mooney, Richard
2012-01-01
Complex brain functions, such as the capacity to learn and modulate vocal sequences, depend on activity propagation in highly distributed neural networks. To explore the synaptic basis of activity propagation in such networks, we made dual in vivo intracellular recordings in anesthetized zebra finches from the input (nucleus HVC) and output (lateral magnocellular nucleus of the anterior nidopallium (LMAN)) neurons of a songbird cortico-basal ganglia (BG) pathway necessary to the learning and modulation of vocal motor sequences. These recordings reveal evidence of bidirectional interactions, rather than only feedforward propagation of activity from HVC to LMAN, as had been previously supposed. A combination of dual and triple recording configurations and pharmacological manipulations was used to map out circuitry by which activity propagates from LMAN to HVC. These experiments indicate that activity travels to HVC through at least two independent ipsilateral pathways, one of which involves fast signaling through a midbrain dopaminergic cell group, reminiscent of recurrent mesocortical loops described in mammals. We then used in vivo pharmacological manipulations to establish that augmented LMAN activity is sufficient to restore high levels of sequence variability in adult birds, suggesting that recurrent interactions through highly distributed forebrain – midbrain pathways can modulate learned vocal sequences. PMID:22915110
NASA Astrophysics Data System (ADS)
Touhidul Mustafa, Syed Md.; Nossent, Jiri; Ghysels, Gert; Huysmans, Marijke
2017-04-01
Transient numerical groundwater flow models have been used to understand and forecast groundwater flow systems under anthropogenic and climatic effects, but the reliability of the predictions is strongly influenced by different sources of uncertainty. Hence, researchers in hydrological sciences are developing and applying methods for uncertainty quantification. Nevertheless, spatially distributed flow models pose significant challenges for parameter and spatially distributed input estimation and uncertainty quantification. In this study, we present a general and flexible approach for input and parameter estimation and uncertainty analysis of groundwater models. The proposed approach combines a fully distributed groundwater flow model (MODFLOW) with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. To avoid over-parameterization, the uncertainty of the spatially distributed model input has been represented by multipliers. The posterior distributions of these multipliers and the regular model parameters were estimated using DREAM. The proposed methodology has been applied in an overexploited aquifer in Bangladesh where groundwater pumping and recharge data are highly uncertain. The results confirm that input uncertainty does have a considerable effect on the model predictions and parameter distributions. Additionally, our approach also provides a new way to optimize the spatially distributed recharge and pumping data along with the parameter values under uncertain input conditions. It can be concluded from our approach that considering model input uncertainty along with parameter uncertainty is important for obtaining realistic model predictions and a correct estimation of the uncertainty bounds.
Dideriksen, Jakob L; Holobar, Ales; Falla, Deborah
2016-08-01
Pain is associated with changes in the neural drive to muscles. For the upper trapezius muscle, surface electromyography (EMG) recordings have indicated that acute noxious stimulation in either the cranial or the caudal region of the muscle leads to a relative decrease in muscle activity in the cranial region. It is, however, not known if this adaption reflects different recruitment thresholds of the upper trapezius motor units in the cranial and caudal region or a nonuniform nociceptive input to the motor units of both regions. This study investigated these potential mechanisms by direct motor unit identification. Motor unit activity was investigated with high-density surface EMG signals recorded from the upper trapezius muscle of 12 healthy volunteers during baseline, control (intramuscular injection of isotonic saline), and painful (hypertonic saline) conditions. The EMG was decomposed into individual motor unit spike trains. Motor unit discharge rates decreased significantly from control to pain conditions by 4.0 ± 3.6 pulses/s (pps) in the cranial region but not in the caudal region (1.4 ± 2.8 pps; not significant). These changes were compatible with variations in the synaptic input to the motoneurons of the two regions. These adjustments were observed, irrespective of the location of noxious stimulation. These results strongly indicate that the nociceptive synaptic input is distributed in a nonuniform way across regions of the upper trapezius muscle. Copyright © 2016 the American Physiological Society.
Dideriksen, Jakob L.; Holobar, Ales
2016-01-01
Pain is associated with changes in the neural drive to muscles. For the upper trapezius muscle, surface electromyography (EMG) recordings have indicated that acute noxious stimulation in either the cranial or the caudal region of the muscle leads to a relative decrease in muscle activity in the cranial region. It is, however, not known if this adaption reflects different recruitment thresholds of the upper trapezius motor units in the cranial and caudal region or a nonuniform nociceptive input to the motor units of both regions. This study investigated these potential mechanisms by direct motor unit identification. Motor unit activity was investigated with high-density surface EMG signals recorded from the upper trapezius muscle of 12 healthy volunteers during baseline, control (intramuscular injection of isotonic saline), and painful (hypertonic saline) conditions. The EMG was decomposed into individual motor unit spike trains. Motor unit discharge rates decreased significantly from control to pain conditions by 4.0 ± 3.6 pulses/s (pps) in the cranial region but not in the caudal region (1.4 ± 2.8 pps; not significant). These changes were compatible with variations in the synaptic input to the motoneurons of the two regions. These adjustments were observed, irrespective of the location of noxious stimulation. These results strongly indicate that the nociceptive synaptic input is distributed in a nonuniform way across regions of the upper trapezius muscle. PMID:27226455
Heinen, De Carlo E.; Anthony, S.S.
2002-01-01
Trace metal concentrations in soils and in stream and estuarine sediments from a subtropical urban watershed in Hawaii are presented. The results are placed in the context of historical studies of environmental quality (water, soils, and sediment) in Hawaii to elucidate sources of trace elements and the processes responsible for their distribution. This work builds on earlier studies on sediments of Ala Wai Canal of urban Honolulu by examining spatial and temporal variations in the trace elements throughout the watershed. Natural processes and anthropogenic activity in urban Honolulu contribute to spatial and temporal variations of trace element concentrations throughout the watershed. Enrichment of trace elements in watershed soils result, in some cases, from contributions attributed to the weathering of volcanic rocks, as well as to a more variable anthropogenic input that reflects changes in land use in Honolulu. Varying concentrations of As, Cd, Cu, Pb and Zn in sediments reflect about 60 a of anthropogenic activity in Honolulu. Land use has a strong impact on the spatial distribution and abundance of selected trace elements in soils and stream sediments. As noted in continental US settings, the phasing out of Pb-alkyl fuel additives has decreased Pb inputs to recently deposited estuarine sediments. Yet, a substantial historical anthropogenic Pb inventory remains in soils of the watershed and erosion of surface soils continues to contribute to its enrichment in estuarine sediments. Concentrations of other elements (e.g., Cu, Zn, Cd), however, have not decreased with time, suggesting continued active inputs. Concentrations of Ba, Co, Cr, Ni, V and U, although elevated in some cases, typically reflect greater proportions attributed to natural sources rather than anthropogenic input. ?? 2002 Elsevier Science Ltd. All rights reserved.
Amis, Gregory P; Carpenter, Gail A
2010-03-01
Computational models of learning typically train on labeled input patterns (supervised learning), unlabeled input patterns (unsupervised learning), or a combination of the two (semi-supervised learning). In each case input patterns have a fixed number of features throughout training and testing. Human and machine learning contexts present additional opportunities for expanding incomplete knowledge from formal training, via self-directed learning that incorporates features not previously experienced. This article defines a new self-supervised learning paradigm to address these richer learning contexts, introducing a neural network called self-supervised ARTMAP. Self-supervised learning integrates knowledge from a teacher (labeled patterns with some features), knowledge from the environment (unlabeled patterns with more features), and knowledge from internal model activation (self-labeled patterns). Self-supervised ARTMAP learns about novel features from unlabeled patterns without destroying partial knowledge previously acquired from labeled patterns. A category selection function bases system predictions on known features, and distributed network activation scales unlabeled learning to prediction confidence. Slow distributed learning on unlabeled patterns focuses on novel features and confident predictions, defining classification boundaries that were ambiguous in the labeled patterns. Self-supervised ARTMAP improves test accuracy on illustrative low-dimensional problems and on high-dimensional benchmarks. Model code and benchmark data are available from: http://techlab.eu.edu/SSART/. Copyright 2009 Elsevier Ltd. All rights reserved.
Ahmed, Abdulwaheed S; Webster, Lynda; Pollard, Pat; Davies, Ian M; Russell, Marie; Walsham, Pam; Packer, Gill; Moffat, Colin F
2006-02-01
The distribution and composition of hydrocarbons in sediment from the Fladen Ground oilfield in the northern North Sea have been investigated. The total PAH concentrations (2- to 6-ring parent and alkylated PAHs, including the 16 US EPA PAHs) in sediments were relatively low (<100 microg kg(-1) dry weight). The PAH, the Forties crude and diesel oil equivalent concentrations were generally higher in sediment of fine grain size and higher organic carbon concentration. PAH distributions and concentration ratios indicated a predominantly pyrolytic input, being dominated by the heavier, more persistent, 5- and 6-ring compounds, and with a high proportion of parent PAHs. The n-alkane profiles of a number of the sediments contained small, high boiling point, UCMs, indicative of weathered oil arising from a limited petrogenic input. The geochemical biomarker profiles of the sediments that contained UCMs showed a small bisnorhopane peak and a high proportion of norhopane relative to hopane, indicating that there was contamination from both Middle Eastern and North Sea oils. Therefore contamination was not directly as a result of oil exploration activity in the area. The most likely source of petrogenic contamination was from general shipping activity.
Kuwawenaruwa, August; Borghi, Josephine; Remme, Michelle; Mtei, Gemini
2017-07-11
There is limited evidence on how health care inputs are distributed from the sub-national level down to health facilities and their potential influence on promoting health equity. To address this gap, this paper assesses equity in the distribution of health care inputs across public primary health facilities at the district level in Tanzania. This is a quantitative assessment of equity in the distribution of health care inputs (staff, drugs, medical supplies and equipment) from district to facility level. The study was carried out in three districts (Kinondoni, Singida Rural and Manyoni district) in Tanzania. These districts were selected because they were implementing primary care reforms. We administered 729 exit surveys with patients seeking out-patient care; and health facility surveys at 69 facilities in early 2014. A total of seventeen indices of input availability were constructed with the collected data. The distribution of inputs was considered in relation to (i) the wealth of patients accessing the facilities, which was taken as a proxy for the wealth of the population in the catchment area; and (ii) facility distance from the district headquarters. We assessed equity in the distribution of inputs through the use of equity ratios, concentration indices and curves. We found a significant pro-rich distribution of clinical staff and nurses per 1000 population. Facilities with the poorest patients (most remote facilities) have fewer staff per 1000 population than those with the least poor patients (least remote facilities): 0.6 staff per 1000 among the poorest, compared to 0.9 among the least poor; 0.7 staff per 1000 among the most remote facilities compared to 0.9 among the least remote. The negative concentration index for support staff suggests a pro-poor distribution of this cadre but the 45 degree dominated the concentration curve. The distribution of vaccines, antibiotics, anti-diarrhoeal, anti-malarials and medical supplies was approximately proportional (non dominance), whereas the distribution of oxytocics, anti-retroviral therapy (ART) and anti-hypertensive drugs was pro-rich, with the 45 degree line dominating the concentration curve for ART. This study has shown there are inequities in the distribution of health care inputs across public primary care facilities. This highlights the need to ensure a better coordinated and equitable distribution of inputs through regular monitoring of the availability of health care inputs and strengthening of reporting systems.
Lü, Changwei; He, Jiang; Wang, Bing
2018-02-01
The chemistry of sedimentary organic phosphorus (OP) and its fraction distribution in sediments are greatly influenced by environmental conditions such as terrestrial inputs and runoffs. The linkage of OP with environmental conditions was analyzed on the basis of OP spatial and historical distributions in lake sediments. The redundancy analysis and OP spatial distribution results suggested that both NaOH-OP (OP extracted by NaOH) and Re-OP (residual OP) in surface sediments from the selected 13 lakes reflected the gradient effects of environmental conditions and the autochthonous and/or allochthonous inputs driven by latitude zonality in China. The lake level and salinity of Lake Hulun and the runoff and precipitation of its drainage basin were reconstructed on the basis of the geochemistry index. This work showed that a gradient in weather conditions presented by the latitude zonality in China impacts the OP accumulation through multiple drivers and in many ways. The drivers are mainly precipitation and temperature, governing organic matter (OM) production, degradation rate and transportation in the watershed. Over a long temporal dimension (4000years), the vertical distributions of Re-OP and NaOH-OP based on a dated sediment profile from HLH were largely regulated by the autochthonous and/or allochthonous inputs, which depended on the environmental and climate conditions and anthropogenic activities in the drainage basin. This work provides useful environmental geochemistry information to understand the inherent linkage of OP fractionation with environmental conditions and lake evolution. Copyright © 2017. Published by Elsevier B.V.
Linguistic Ambiguity in a Connectionist Model for Grammatical Studies.
ERIC Educational Resources Information Center
Angelica, Julia; Ney, James W.
1995-01-01
Discusses the evolution of the connectionist model of language processing, focusing on the parallel distributed processing (PDP) model proposed by Rumelhart and others (1986) that explains the microstructure of cognition in terms of interactive activation between elementary input, output, and intermediate processing units linked by weighted…
NASA Technical Reports Server (NTRS)
Bains, R. W.; Herwig, H. A.; Luedeman, J. K.; Torina, E. M.
1974-01-01
The Shuttle Electric Power System Analysis SEPS computer program which performs detailed load analysis including predicting energy demands and consumables requirements of the shuttle electric power system along with parameteric and special case studies on the shuttle electric power system is described. The functional flow diagram of the SEPS program is presented along with data base requirements and formats, procedure and activity definitions, and mission timeline input formats. Distribution circuit input and fixed data requirements are included. Run procedures and deck setups are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, Peter
2014-01-24
This report describes the sensitivity of predicted nuclear fallout to a variety of model input parameters, including yield, height of burst, particle and activity size distribution parameters, wind speed, wind direction, topography, and precipitation. We investigate sensitivity over a wide but plausible range of model input parameters. In addition, we investigate a specific example with a relatively narrow range to illustrate the potential for evaluating uncertainties in predictions when there are more precise constraints on model parameters.
Development a computer codes to couple PWR-GALE output and PC-CREAM input
NASA Astrophysics Data System (ADS)
Kuntjoro, S.; Budi Setiawan, M.; Nursinta Adi, W.; Deswandri; Sunaryo, G. R.
2018-02-01
Radionuclide dispersion analysis is part of an important reactor safety analysis. From the analysis it can be obtained the amount of doses received by radiation workers and communities around nuclear reactor. The radionuclide dispersion analysis under normal operating conditions is carried out using the PC-CREAM code, and it requires input data such as source term and population distribution. Input data is derived from the output of another program that is PWR-GALE and written Population Distribution data in certain format. Compiling inputs for PC-CREAM programs manually requires high accuracy, as it involves large amounts of data in certain formats and often errors in compiling inputs manually. To minimize errors in input generation, than it is make coupling program for PWR-GALE and PC-CREAM programs and a program for writing population distribution according to the PC-CREAM input format. This work was conducted to create the coupling programming between PWR-GALE output and PC-CREAM input and programming to written population data in the required formats. Programming is done by using Python programming language which has advantages of multiplatform, object-oriented and interactive. The result of this work is software for coupling data of source term and written population distribution data. So that input to PC-CREAM program can be done easily and avoid formatting errors. Programming sourceterm coupling program PWR-GALE and PC-CREAM is completed, so that the creation of PC-CREAM inputs in souceterm and distribution data can be done easily and according to the desired format.
Mesoscale thermospheric wind in response to nightside auroral brightening
NASA Astrophysics Data System (ADS)
Nishimura, T.; Zou, Y.; Gabrielse, C.; Lyons, L. R.; Varney, R. H.; Conde, M.; Hampton, D. L.; Mende, S. B.
2017-12-01
Although high-latitude ionospheric flows and thermospheric winds in the F-region are overall characterized by two-cell patterns over a global scale ( 1000 km), intense energy input from the magnetosphere often occurs in a mesoscale ( 100 km) and transient manner ( 10 min). Intense mesoscale energy input would drive enhanced mesoscale winds, whose properties are closely associated with auroral arcs and associated ionospheric flows. However, how thermospheric winds respond to and distribute around mesoscale magnetospheric input has not been characterized systematically. This presentation addresses how mesoscale winds distribute around quasi-steady arcs, evolve and distribute around transient arcs, and vary with geomagnetic and solar activity. We use Scanning Doppler Imagers (SDIs), all-sky imagers and PFISR over Alaska. A channel of azimuthal neutral wind is often found associated with localized flow channels adjacent to quasi-steady discrete aurora. The wind speed dynamically changes after a short time lag (a few tens of minutes) from auroral brightenings, including auroral streamers and intensifications on preexisting auroral arcs. This is in contrast to a much longer time lag ( 1 hour) reported previously. During a storm main phase, a coherent equatorward motion of the Harang discontinuity was seen in plasma flow, aurora and neutral wind, with a few degrees of equatorward displacement of the neutral wind Harang, which is probably due to the inertia. These results suggest that a tight M-I-T connection exists under the energy input of assorted auroral arcs and that mesoscale coupling processes are important in M-I-T energy transfer.
75 FR 8425 - Agency Information Collection Activity Seeking OMB Approval
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... Transportation (AST) conducts this survey in order to obtain industry input on customer service standards which have been developed and distributed to industry customers. DATES: Please submit comments by March 26... Customer Service Survey. Type of Request: Extension without change of a currently approved collection. OMB...
Population-based human exposure models predict the distribution of personal exposures to pollutants of outdoor origin using a variety of inputs, including: air pollution concentrations; human activity patterns, such as the amount of time spent outdoors vs. indoors, commuting, wal...
Information transmission and signal permutation in active flow networks
NASA Astrophysics Data System (ADS)
Woodhouse, Francis G.; Fawcett, Joanna B.; Dunkel, Jörn
2018-03-01
Recent experiments show that both natural and artificial microswimmers in narrow channel-like geometries will self-organise to form steady, directed flows. This suggests that networks of flowing active matter could function as novel autonomous microfluidic devices. However, little is known about how information propagates through these far-from-equilibrium systems. Through a mathematical analogy with spin-ice vertex models, we investigate here the input–output characteristics of generic incompressible active flow networks (AFNs). Our analysis shows that information transport through an AFN is inherently different from conventional pressure or voltage driven networks. Active flows on hexagonal arrays preserve input information over longer distances than their passive counterparts and are highly sensitive to bulk topological defects, whose presence can be inferred from marginal input–output distributions alone. This sensitivity further allows controlled permutations on parallel inputs, revealing an unexpected link between active matter and group theory that can guide new microfluidic mixing strategies facilitated by active matter and aid the design of generic autonomous information transport networks.
Qi, Yi; Padiath, Ameena; Zhao, Qun; Yu, Lei
2016-10-01
The Motor Vehicle Emission Simulator (MOVES) quantifies emissions as a function of vehicle modal activities. Hence, the vehicle operating mode distribution is the most vital input for running MOVES at the project level. The preparation of operating mode distributions requires significant efforts with respect to data collection and processing. This study is to develop operating mode distributions for both freeway and arterial facilities under different traffic conditions. For this purpose, in this study, we (1) collected/processed geographic information system (GIS) data, (2) developed a model of CO2 emissions and congestion from observations, (3) implemented the model to evaluate potential emission changes from a hypothetical roadway accident scenario. This study presents a framework by which practitioners can assess emission levels in the development of different strategies for traffic management and congestion mitigation. This paper prepared the primary input, that is, the operating mode ID distribution, required for running MOVES and developed models for estimating emissions for different types of roadways under different congestion levels. The results of this study will provide transportation planners or environmental analysts with the methods for qualitatively assessing the air quality impacts of different transportation operation and demand management strategies.
The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model resp...
NASA Astrophysics Data System (ADS)
Balzer, W.
1996-09-01
A 1430 m deep station in the Norwegian Sea (Voering Plateau) was occupied five times between May 1986 and February 1987 to investigate the seasonal variation in sediment mixing rates. Cherbnbyl-derived radiocesium, identified by its high proportion of short-lived 134Cs, was used as a tracer for mixing. Most of the nuclide input arrived at the sediment within a narrow time span in June/early July during the beginning of the seasonal biogenic sedimentation pulse. Measured 137Cs profiles in the sediment over time were compared with modelled distributions calculated with a finite difference scheme. The input function of radiocesium to the sea floor was evaluated from the increase of the total inventory with time. Time-invariant mixing coefficients did not provide reasonable fits to either summer or winter distributions. The best fit was obtained with a rate of mixing proportional to the radiocesium input flux, with an average enhancement factor of 6.6 during the two summer months. It appears that the benthic macrofauna are more active during the food supply season and rapidly ingest/bury freshly sedimented materials.
Western Greenland Subglacial Hydrologic Modeling and Observables: Seismicity and GPS
NASA Astrophysics Data System (ADS)
Carmichael, J. D.; Joughin, I. R.
2010-12-01
I present a hydro-mechanical model of the Western Greenland ice sheet with surface observables for two modes of meltwater input. Using input prescribed from distributed surface data, First, I bound the subglacial carrying capacity for both a distributed and localized system, in a typical summer. I provide observations of the ambient seismic response and its support for an established surface-to-bed connection. Second, I show the ice sheet response to large impulsive hydraulic inputs (lake drainage events) should produce distinct seismic observables that depend upon the localization of the drainage systems. In the former case, the signal propagates as a diffusive wave, while the channelized case, the response is localized. I provide a discussion of how these results are consistent with previous reports (Das et al, 2008, Joughin et al, 2008) of melt-induced speedup along Greenland's Western Flank. Late summer seismicity for a four-receiver array deployed near a supraglacial lake, 68 44.379N, 49 30.064W. Clusters of seismic activity are characterized by dominant shear-wave energy, consistent with basal sliding events.
McLellan, Eileen; Schilling, Keith; Robertson, Dale M.
2015-01-01
We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.
Momentum distributions for H 2 ( e , e ' p )
Ford, William P.; Jeschonnek, Sabine; Van Orden, J. W.
2014-12-29
[Background] A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. [Purpose] We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. [Method] The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and finalmore » state interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. [Results] In order to test the extraction pseudo-data was generated, and the extracted "experimental'' distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. [Conclusions] In the examples we compared the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this process can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.« less
Applications of active adaptive noise control to jet engines
NASA Technical Reports Server (NTRS)
Shoureshi, Rahmat; Brackney, Larry
1993-01-01
During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.
Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.
Li, Xiumin; Small, Michael
2012-06-01
Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.
Distinguishing Representations as Origin and Representations as Input: Roles for Individual Neurons.
Edwards, Jonathan C W
2016-01-01
It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with the issue of meaning, interpretation, or significance (semantic content). It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as a representation it must provide an input to a 'consumer' in the street. The arguments presented draw on two principles - the neuron doctrine and the need for a venue for 'presentation' or 'reception' of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include 'null' elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right - some form of atomic propositional significance - since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming 'scenarios' comprising a molecular combination of 'premises' from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to 'occurrent' representations based on current neural activity.) The concept of representations-as-input emphasizes the need for an internal 'consumer' of a representation and the dependence of meaning on the co-relationships involved in an input interaction between signals and consumer. The acceptance of this necessity provides a basis for resolving the problem that representations appear both as distributed (representation-as-origin) and as local (representation-as-input). The key implications are that representations in the brain are massively multiple both in series and in parallel, and that individual cells play specific semantic roles. These roles are discussed in relation to traditional concepts of 'gnostic' cell types.
Distinguishing Representations as Origin and Representations as Input: Roles for Individual Neurons
Edwards, Jonathan C. W.
2016-01-01
It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with the issue of meaning, interpretation, or significance (semantic content). It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as a representation it must provide an input to a ‘consumer’ in the street. The arguments presented draw on two principles – the neuron doctrine and the need for a venue for ‘presentation’ or ‘reception’ of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include ‘null’ elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right – some form of atomic propositional significance – since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming ‘scenarios’ comprising a molecular combination of ‘premises’ from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to ‘occurrent’ representations based on current neural activity.) The concept of representations-as-input emphasizes the need for an internal ‘consumer’ of a representation and the dependence of meaning on the co-relationships involved in an input interaction between signals and consumer. The acceptance of this necessity provides a basis for resolving the problem that representations appear both as distributed (representation-as-origin) and as local (representation-as-input). The key implications are that representations in the brain are massively multiple both in series and in parallel, and that individual cells play specific semantic roles. These roles are discussed in relation to traditional concepts of ‘gnostic’ cell types. PMID:27746760
Distributed synaptic weights in a LIF neural network and learning rules
NASA Astrophysics Data System (ADS)
Perthame, Benoît; Salort, Delphine; Wainrib, Gilles
2017-09-01
Leaky integrate-and-fire (LIF) models are mean-field limits, with a large number of neurons, used to describe neural networks. We consider inhomogeneous networks structured by a connectivity parameter (strengths of the synaptic weights) with the effect of processing the input current with different intensities. We first study the properties of the network activity depending on the distribution of synaptic weights and in particular its discrimination capacity. Then, we consider simple learning rules and determine the synaptic weight distribution it generates. We outline the role of noise as a selection principle and the capacity to memorize a learned signal.
Cavarretta, Francesco; Marasco, Addolorata; Hines, Michael L; Shepherd, Gordon M; Migliore, Michele
2016-01-01
The olfactory bulb processes inputs from olfactory receptor neurons (ORNs) through two levels: the glomerular layer at the site of input, and the granule cell level at the site of output to the olfactory cortex. The sequence of action of these two levels has not yet been examined. We analyze this issue using a novel computational framework that is scaled up, in three-dimensions (3D), with realistic representations of the interactions between layers, activated by simulated natural odors, and constrained by experimental and theoretical analyses. We suggest that the postulated functions of glomerular circuits have as their primary role transforming a complex and disorganized input into a contrast-enhanced and normalized representation, but cannot provide for synchronization of the distributed glomerular outputs. By contrast, at the granule cell layer, the dendrodendritic interactions mediate temporal decorrelation, which we show is dependent on the preceding contrast enhancement by the glomerular layer. The results provide the first insights into the successive operations in the olfactory bulb, and demonstrate the significance of the modular organization around glomeruli. This layered organization is especially important for natural odor inputs, because they activate many overlapping glomeruli.
Equity and efficiency in health status and health services utilization: a household perspective.
Sirageldin, I; Diop, F
1991-01-01
Health economists examine the existing pattern of disease, the initial distributional structure of public policies, and the behavioral response of households in allocating resources towards health promoting activities to understand the health consequences of public fiscal and income policies. They hope that this analysis will guide health policymakers to minimize differentials in health service utilization and health outcomes. The household production of health serves as the general framework. The analysis reveals that the demand for health and the demand for health services depend on the organization of government fiscal and distribution policies. Further the demand for health services hinges on its own price as well as on the prices of other inputs including nutrition and environmental sanitation. The government basically subsidizes these inputs, but it does not equally distribute the subsidies. For people with the lower subsidy on other health inputs, the health benefit from using health services tend to be lower. Thus the fact that these households have a low demand for health and low use of health services may indicate a rational decision which reveals low perceived productivity of these inputs. Therefore policymakers should include the effect of public subsidies when examining the effect of public policies on health status. These policies may include structural adjustment or cost recovery schemes. In fact, as evidenced in a case study in the Ivory Coast, structural adjustments did not affect the rural poor and urban poor, but instead adversely affected middle class urban households. Hence policymakers should not limit their examinations to traditional income groups.
Decoding thalamic afferent input using microcircuit spiking activity
Sederberg, Audrey J.; Palmer, Stephanie E.
2015-01-01
A behavioral response appropriate to a sensory stimulus depends on the collective activity of thousands of interconnected neurons. The majority of cortical connections arise from neighboring neurons, and thus understanding the cortical code requires characterizing information representation at the scale of the cortical microcircuit. Using two-photon calcium imaging, we densely sampled the thalamically evoked response of hundreds of neurons spanning multiple layers and columns in thalamocortical slices of mouse somatosensory cortex. We then used a biologically plausible decoder to characterize the representation of two distinct thalamic inputs, at the level of the microcircuit, to reveal those aspects of the activity pattern that are likely relevant to downstream neurons. Our data suggest a sparse code, distributed across lamina, in which a small population of cells carries stimulus-relevant information. Furthermore, we find that, within this subset of neurons, decoder performance improves when noise correlations are taken into account. PMID:25695647
Decoding thalamic afferent input using microcircuit spiking activity.
Sederberg, Audrey J; Palmer, Stephanie E; MacLean, Jason N
2015-04-01
A behavioral response appropriate to a sensory stimulus depends on the collective activity of thousands of interconnected neurons. The majority of cortical connections arise from neighboring neurons, and thus understanding the cortical code requires characterizing information representation at the scale of the cortical microcircuit. Using two-photon calcium imaging, we densely sampled the thalamically evoked response of hundreds of neurons spanning multiple layers and columns in thalamocortical slices of mouse somatosensory cortex. We then used a biologically plausible decoder to characterize the representation of two distinct thalamic inputs, at the level of the microcircuit, to reveal those aspects of the activity pattern that are likely relevant to downstream neurons. Our data suggest a sparse code, distributed across lamina, in which a small population of cells carries stimulus-relevant information. Furthermore, we find that, within this subset of neurons, decoder performance improves when noise correlations are taken into account. Copyright © 2015 the American Physiological Society.
Distributed estimation for adaptive sensor selection in wireless sensor networks
NASA Astrophysics Data System (ADS)
Mahmoud, Magdi S.; Hassan Hamid, Matasm M.
2014-05-01
Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.
Observations of the directional distribution of the wind energy input function over swell waves
NASA Astrophysics Data System (ADS)
Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.
2016-02-01
Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.
Kanerva's sparse distributed memory with multiple hamming thresholds
NASA Technical Reports Server (NTRS)
Pohja, Seppo; Kaski, Kimmo
1992-01-01
If the stored input patterns of Kanerva's Sparse Distributed Memory (SDM) are highly correlated, utilization of the storage capacity is very low compared to the case of uniformly distributed random input patterns. We consider a variation of SDM that has a better storage capacity utilization for correlated input patterns. This approach uses a separate selection threshold for each physical storage address or hard location. The selection of the hard locations for reading or writing can be done in parallel of which SDM implementations can benefit.
NASA Technical Reports Server (NTRS)
Deng, Yue
2014-01-01
Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.
Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T
2013-01-01
Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in "intermediate" regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns.
Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T.
2014-01-01
Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in “intermediate” regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns. PMID:24501591
Mabrouk, Rostom; Dubeau, François; Bentabet, Layachi
2013-01-01
Kinetic modeling of metabolic and physiologic cardiac processes in small animals requires an input function (IF) and a tissue time-activity curves (TACs). In this paper, we present a mathematical method based on independent component analysis (ICA) to extract the IF and the myocardium's TACs directly from dynamic positron emission tomography (PET) images. The method assumes a super-Gaussian distribution model for the blood activity, and a sub-Gaussian distribution model for the tissue activity. Our appreach was applied on 22 PET measurement sets of small animals, which were obtained from the three most frequently used cardiac radiotracers, namely: desoxy-fluoro-glucose ((18)F-FDG), [(13)N]-ammonia, and [(11)C]-acetate. Our study was extended to PET human measurements obtained with the Rubidium-82 ((82) Rb) radiotracer. The resolved mathematical IF values compare favorably to those derived from curves extracted from regions of interest (ROI), suggesting that the procedure presents a reliable alternative to serial blood sampling for small-animal cardiac PET studies.
Coordination of heterogeneous nonlinear multi-agent systems with prescribed behaviours
NASA Astrophysics Data System (ADS)
Tang, Yutao
2017-10-01
In this paper, we consider a coordination problem for a class of heterogeneous nonlinear multi-agent systems with a prescribed input-output behaviour which was represented by another input-driven system. In contrast to most existing multi-agent coordination results with an autonomous (virtual) leader, this formulation takes possible control inputs of the leader into consideration. First, the coordination was achieved by utilising a group of distributed observers based on conventional assumptions of model matching problem. Then, a fully distributed adaptive extension was proposed without using the input of this input-output behaviour. An example was given to verify their effectiveness.
Input related microbial carbon dynamic of soil organic matter in particle size fractions
NASA Astrophysics Data System (ADS)
Gude, A.; Kandeler, E.; Gleixner, G.
2012-04-01
This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input reduced the carbon storage efficiency from 51 % in the low input to 20 %. These findings suggest that microbial community preferentially assimilated fresh carbon sources but also used recycled existing soil carbon. However, the priming rate was drastically reduced under carbon limitation. In consequence at high carbon availability more carbon was respired to activate the existing soil carbon (priming) whereas at low carbon availability new soil carbon was formed at higher efficiencies.
Latin Hypercube Sampling (LHS) UNIX Library/Standalone
DOE Office of Scientific and Technical Information (OSTI.GOV)
2004-05-13
The LHS UNIX Library/Standalone software provides the capability to draw random samples from over 30 distribution types. It performs the sampling by a stratified sampling method called Latin Hypercube Sampling (LHS). Multiple distributions can be sampled simultaneously, with user-specified correlations amongst the input distributions, LHS UNIX Library/ Standalone provides a way to generate multi-variate samples. The LHS samples can be generated either as a callable library (e.g., from within the DAKOTA software framework) or as a standalone capability. LHS UNIX Library/Standalone uses the Latin Hypercube Sampling method (LHS) to generate samples. LHS is a constrained Monte Carlo sampling scheme. Inmore » LHS, the range of each variable is divided into non-overlapping intervals on the basis of equal probability. A sample is selected at random with respect to the probability density in each interval, If multiple variables are sampled simultaneously, then values obtained for each are paired in a random manner with the n values of the other variables. In some cases, the pairing is restricted to obtain specified correlations amongst the input variables. Many simulation codes have input parameters that are uncertain and can be specified by a distribution, To perform uncertainty analysis and sensitivity analysis, random values are drawn from the input parameter distributions, and the simulation is run with these values to obtain output values. If this is done repeatedly, with many input samples drawn, one can build up a distribution of the output as well as examine correlations between input and output variables.« less
Comparing Realistic Subthalamic Nucleus Neuron Models
NASA Astrophysics Data System (ADS)
Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.
2011-06-01
The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.
Qiao, Yangzi; Cao, Hua; Zhang, Shusheng; Yin, Hui; Wan, Mingxi
2013-01-01
Ultrasound contrast agents (UCAs) are frequently added into the focused ultrasound field as cavitation nuclei to enhance the therapeutic efficiency. Since their presence will distort the pressure field and make the process unpredictable, comprehension of their behaviors especially the active zone spatial distribution is an important part of better monitoring and using of UCAs. As shell materials can strongly alter the acoustic behavior of UCAs, two different shells coated UCAs, lipid-shelled and polymer-shelled UCAs, in a 1.2 MHz focused ultrasound field were studied by the Sonochemiluminescence (SCL) method and compared. The SCL spatial distribution of lipid-shelled group differed from that of polymer-shelled group. The shell material and the character of focused ultrasound field work together to the SCL distribution, causing the lipid-shelled group to have a maximum SCL intensity in pre-focal region at lower input power than that of polymer-shelled group, and a brighter SCL intensity in post-focal region at high input power. The SCL inactive area of these two groups both increased with the input power. The general behavior of the UCAs can be studied by both the average SCL intensity and the backscatter signals. As polymer-shelled UCAs are more resistant to acoustic pressure, they had a higher destruction power and showed less reactivation than lipid-shelled ones. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nazneen, Sadaf; Raju, N. Janardhana
2017-02-01
The present study investigated the spatial and vertical distribution of organic carbon (OC), total nitrogen (TN), total phosphorus (TP) and biogenic silica (BSi) in the sedimentary environments of Asia's largest brackish water lagoon. Surface and core sediments were collected from various locations of the Chilika lagoon and were analysed for grain-size distribution and major elements in order to understand their distribution and sources. Sand is the dominant fraction followed by silt + clay. Primary production within the lagoon, terrestrial input from river discharge and anthropogenic activities in the vicinity of the lagoon control the distribution of OC, TN, TP and BSi in the surface as well as in the core sediments. Low C/N ratios in the surface sediments (3.49-3.41) and cores (4-11.86) suggest that phytoplankton and macroalgae may be major contributors of organic matter (OM) in the lagoon. BSi is mainly associated with the mud fraction. Core C5 from Balugaon region shows the highest concentration of OC ranging from 0.58-2.34%, especially in the upper 30 cm, due to direct discharge of large amounts of untreated sewage into the lagoon. The study highlights that Chilika is a dynamic ecosystem with a large contribution of OM by autochthonous sources with some input from anthropogenic sources as well.
Zippo, Antonio G.; Biella, Gabriele E. M.
2015-01-01
Current developments in neuronal physiology are unveiling novel roles for dendrites. Experiments have shown mechanisms of non-linear synaptic NMDA dependent activations, able to discriminate input patterns through the waveforms of the excitatory postsynaptic potentials. Contextually, the synaptic clustering of inputs is the principal cellular strategy to separate groups of common correlated inputs. Dendritic branches appear to work as independent discriminating units of inputs potentially reflecting an extraordinary repertoire of pattern memories. However, it is unclear how these observations could impact our comprehension of the structural correlates of memory at the cellular level. This work investigates the discrimination capabilities of neurons through computational biophysical models to extract a predicting law for the dendritic input discrimination capability (M). By this rule we compared neurons from a neuron reconstruction repository (neuromorpho.org). Comparisons showed that primate neurons were not supported by an equivalent M preeminence and that M is not uniformly distributed among neuron types. Remarkably, neocortical neurons had substantially less memory capacity in comparison to those from non-cortical regions. In conclusion, the proposed rule predicts the inherent neuronal spatial memory gathering potentially relevant anatomical and evolutionary considerations about the brain cytoarchitecture. PMID:26100354
NASA Astrophysics Data System (ADS)
Reckziegel, F.; Bustos, E.; Mingari, L.; Báez, W.; Villarosa, G.; Folch, A.; Collini, E.; Viramonte, J.; Romero, J.; Osores, S.
2016-07-01
Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.
Resonant inelastic scattering by use of geometrical optics.
Schulte, Jörg; Schweiger, Gustav
2003-02-01
We investigate the inelastic scattering on spherical particles that contain one concentric inclusion in the case of input and output resonances, using a geometrical optics method. The excitation of resonances is included in geometrical optics by use of the concept of tunneled rays. To get a quantitative description of optical tunneling on spherical surfaces, we derive appropriate Fresnel-type reflection and transmission coefficients for the tunneled rays. We calculate the inelastic scattering cross section in the case of input and output resonances and investigate the influence of the distribution of the active material in the particle as well as the influence of the inclusion on inelastic scattering.
Relative importance of time, land use and lithology on determining aquifer-scale denitrification
NASA Astrophysics Data System (ADS)
Kolbe, Tamara; de Dreuzy, Jean-Raynald; Abbott, Benjamin W.; Marçais, Jean; Babey, Tristan; Thomas, Zahra; Peiffer, Stefan; Aquilina, Luc; Labasque, Thierry; Laverman, Anniet; Fleckenstein, Jan; Boulvais, Philippe; Pinay, Gilles
2017-04-01
Unconfined shallow aquifers are commonly contaminated by nitrate in agricultural regions, because of excess fertilizer application over the last decades. Watershed studies have indicated that 1) changes in agricultural practices have caused changes in nitrate input over time, 2) denitrification occurs in localized hotspots within the aquifer, and 3) heterogeneous groundwater flow circulation has led to strong nitrate gradients in aquifers that are not yet well understood. In this study we investigated the respective influence of land use, groundwater transit time distribution, and hotspot distribution on groundwater denitrification with a particular interest on how a detailed understanding of transit time distributions could be used to upscale the point denitrification measurements to the aquifer-scale. We measured CFC-based groundwater age, oxygen, nitrate, and dinitrogen gas excess in 16 agricultural wells of an unconfined crystalline aquifer in Brittany, France. Groundwater age data was used to calibrate a mechanistic groundwater flow model of the study site. Historical nitrate inputs were reconstructed by using measured nitrate concentrations, dinitrogen gas excess and transit time distributions of the wells. Field data showed large differences in denitrification activity among wells, strongly associated with differences in transit time distribution. This suggests that knowing groundwater flow dynamics and consequent transit time distributions at the catchment-scale could be used to estimate the overall denitrification capacity of agricultural aquifers.
Yang, Sheng-Sung; Ho, Chia-Lu; Siu, Sammy
2010-12-01
In this paper, we propose an algorithm based on the central limit theorem to compute the sensitivity of the multilayer perceptron (MLP) due to the errors of the inputs and weights. For simplicity and practicality, all inputs and weights studied here are independently identically distributed (i.i.d.). The theoretical results derived from the proposed algorithm show that the sensitivity of the MLP is affected by the number of layers and the number of neurons adopted in each layer. To prove the reliability of the proposed algorithm, some experimental results of the sensitivity are also presented, and they match the theoretical ones. The good agreement between the theoretical results and the experimental results verifies the reliability and feasibility of the proposed algorithm. Furthermore, the proposed algorithm can also be applied to compute precisely the sensitivity of the MLP with any available activation functions and any types of i.i.d. inputs and weights.
Ito, Hiroshi; Yokoi, Takashi; Ikoma, Yoko; Shidahara, Miho; Seki, Chie; Naganawa, Mika; Takahashi, Hidehiko; Takano, Harumasa; Kimura, Yuichi; Ichise, Masanori; Suhara, Tetsuya
2010-01-01
In positron emission tomography (PET) studies with radioligands for neuroreceptors, tracer kinetics have been described by the standard two-tissue compartment model that includes the compartments of nondisplaceable binding and specific binding to receptors. In the present study, we have developed a new graphic plot analysis to determine the total distribution volume (V(T)) and nondisplaceable distribution volume (V(ND)) independently, and therefore the binding potential (BP(ND)). In this plot, Y(t) is the ratio of brain tissue activity to time-integrated arterial input function, and X(t) is the ratio of time-integrated brain tissue activity to time-integrated arterial input function. The x-intercept of linear regression of the plots for early phase represents V(ND), and the x-intercept of linear regression of the plots for delayed phase after the equilibrium time represents V(T). BP(ND) can be calculated by BP(ND)=V(T)/V(ND)-1. Dynamic PET scanning with measurement of arterial input function was performed on six healthy men after intravenous rapid bolus injection of [(11)C]FLB457. The plot yielded a curve in regions with specific binding while it yielded a straight line through all plot data in regions with no specific binding. V(ND), V(T), and BP(ND) values calculated by the present method were in good agreement with those by conventional non-linear least-squares fitting procedure. This method can be used to distinguish graphically whether the radioligand binding includes specific binding or not.
Jovian ultraviolet auroral activity, 1981-1991
NASA Technical Reports Server (NTRS)
Livengood, T. A.; Moos, H. W.; Ballester, G. E.; Prange, R. M.
1992-01-01
IUE observations of H2 UV emissions for the 1981-1991 period are presently used to investigate the auroral brightness distribution on the surface of Jupiter. The brightness, which is diagnostic of energy input to the atmosphere as well as of magnetospheric processes, is determined by comparing model-predicted brightnesses against empirical ones. The north and south aurorae appear to be correlated in brightness and in variations of the longitude of peak brightness. There are strong fluctuations in all the parameters of the brightness distribution on much shorter time scales than those of solar maximum-minimum.
Automated Rocket Propulsion Test Management
NASA Technical Reports Server (NTRS)
Walters, Ian; Nelson, Cheryl; Jones, Helene
2007-01-01
The Rocket Propulsion Test-Automated Management System provides a central location for managing activities associated with Rocket Propulsion Test Management Board, National Rocket Propulsion Test Alliance, and the Senior Steering Group business management activities. A set of authorized users, both on-site and off-site with regard to Stennis Space Center (SSC), can access the system through a Web interface. Web-based forms are used for user input with generation and electronic distribution of reports easily accessible. Major functions managed by this software include meeting agenda management, meeting minutes, action requests, action items, directives, and recommendations. Additional functions include electronic review, approval, and signatures. A repository/library of documents is available for users, and all items are tracked in the system by unique identification numbers and status (open, closed, percent complete, etc.). The system also provides queries and version control for input of all items.
Counting Jobs and Economic Impacts from Distributed Wind in the United States (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegen, S.
This conference poster describes the distributed wind Jobs and Economic Development Imapcts (JEDI) model. The goal of this work is to provide a model that estimates jobs and other economic effects associated with the domestic distributed wind industry. The distributed wind JEDI model is a free input-output model that estimates employment and other impacts resulting from an investment in distributed wind installations. Default inputs are from installers and industry experts and are based on existing projects. User input can be minimal (use defaults) or very detailed for more precise results. JEDI can help evaluate potential scenarios, current or future; informmore » stakeholders and decision-makers; assist businesses in evaluating economic development impacts and estimating jobs; assist government organizations with planning and evaluating and developing communities.« less
Distribution of enzyme activity hotspots induced by earthworms in top- and subsoil
NASA Astrophysics Data System (ADS)
Hoang, D. T. T.
2016-12-01
Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently create important hotspots of microbial mediated carbon and nutrient turnover through their burrowing activity. However, it is still unknown to which extend earthworms change the enzyme distribution and activity inside their burrows in top- and subsoil horizons. We hypothesized that earthworm burrows, which are enriched in available substrates, have higher percentage of enzyme activity hotspots than soil without earthworms, and that enzyme activities decreased with increasing depth because of the increasing recalcitrance of organic matter in subsoil. We visualized enzyme distribution inside and outside of worm burrows (biopores) by in situ soil zymography and measured enzyme kinetics of 6 enzymes - β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) - in pore and bulk soil material up to 105 cm. Zymography showed a heterogeneous distribution of hotspots in worm burrows. The hotspot areas was 2.4 to 14 times larger in the burrows than in soil without earthworms. However, the dispersion index of hotspot distribution showed more aggregated hotspots in soil without earthworms than in soil with earthworms and burrow wall. Enzyme activities decreased with depth, by a factor of 2 to 8 due to fresh C input from the soil surface. Compared to bulk soil, enzyme activities in topsoil biopores were up to 11 times higher for all enzymes, but in the subsoil activities of XYL, NAG and APT were lower in earthworm biopores than bulk soil. In conclusion, hotspots were twice as concentrated close to earthworm burrows as in surrounding soil. Earthworms exerted stronger effects on enzyme activities in biopores in the topsoil than in subsoil. Keywords: Earthworms, hotspots, enzyme activities, enzyme distribution, subsoil
Weber, A J; Stanford, L R
1994-05-15
It has long been known that a number of functionally different types of ganglion cells exist in the cat retina, and that each responds differently to visual stimulation. To determine whether the characteristic response properties of different retinal ganglion cell types might reflect differences in the number and distribution of their bipolar and amacrine cell inputs, we compared the percentages and distributions of the synaptic inputs from bipolar and amacrine cells to the entire dendritic arbors of physiologically characterized retinal X- and Y-cells. Sixty-two percent of the synaptic input to the Y-cell was from amacrine cell terminals, while the X-cells received approximately equal amounts of input from amacrine and bipolar cells. We found no significant difference in the distributions of bipolar or amacrine cell inputs to X- and Y-cells, or ON-center and OFF-center cells, either as a function of dendritic branch order or distance from the origin of the dendritic arbor. While, on the basis of these data, we cannot exclude the possibility that the difference in the proportion of bipolar and amacrine cell input contributes to the functional differences between X- and Y-cells, the magnitude of this difference, and the similarity in the distributions of the input from the two afferent cell types, suggest that mechanisms other than a simple predominance of input from amacrine or bipolar cells underlie the differences in their response properties. More likely, perhaps, is that the specific response features of X- and Y-cells originate in differences in the visual responses of the bipolar and amacrine cells that provide their input, or in the complex synaptic arrangements found among amacrine and bipolar cell terminals and the dendrites of specific types of retinal ganglion cells.
A Neural Network Aero Design System for Advanced Turbo-Engines
NASA Technical Reports Server (NTRS)
Sanz, Jose M.
1999-01-01
An inverse design method calculates the blade shape that produces a prescribed input pressure distribution. By controlling this input pressure distribution the aerodynamic design objectives can easily be met. Because of the intrinsic relationship between pressure distribution and airfoil physical properties, a Neural Network can be trained to choose the optimal pressure distribution that would meet a set of physical requirements. Neural network systems have been attempted in the context of direct design methods. From properties ascribed to a set of blades the neural network is trained to infer the properties of an 'interpolated' blade shape. The problem is that, especially in transonic regimes where we deal with intrinsically non linear and ill posed problems, small perturbations of the blade shape can produce very large variations of the flow parameters. It is very unlikely that, under these circumstances, a neural network will be able to find the proper solution. The unique situation in the present method is that the neural network can be trained to extract the required input pressure distribution from a database of pressure distributions while the inverse method will still compute the exact blade shape that corresponds to this 'interpolated' input pressure distribution. In other words, the interpolation process is transferred to a smoother problem, namely, finding what pressure distribution would produce the required flow conditions and, once this is done, the inverse method will compute the exact solution for this problem. The use of neural network is, in this context, highly related to the use of proper optimization techniques. The optimization is used essentially as an automation procedure to force the input pressure distributions to achieve the required aero and structural design parameters. A multilayered feed forward network with back-propagation is used to train the system for pattern association and classification.
Systems and methods for reconfiguring input devices
NASA Technical Reports Server (NTRS)
Lancaster, Jeff (Inventor); De Mers, Robert E. (Inventor)
2012-01-01
A system includes an input device having first and second input members configured to be activated by a user. The input device is configured to generate activation signals associated with activation of the first and second input members, and each of the first and second input members are associated with an input function. A processor is coupled to the input device and configured to receive the activation signals. A memory coupled to the processor, and includes a reconfiguration module configured to store the input functions assigned to the first and second input members and, upon execution of the processor, to reconfigure the input functions assigned to the input members when the first input member is inoperable.
Gilsenan, M B; Lambe, J; Gibney, M J
2003-11-01
A key component of a food chemical exposure assessment using probabilistic analysis is the selection of the most appropriate input distribution to represent exposure variables. The study explored the type of parametric distribution that could be used to model variability in food consumption data likely to be included in a probabilistic exposure assessment of food additives. The goodness-of-fit of a range of continuous distributions to observed data of 22 food categories expressed as average daily intakes among consumers from the North-South Ireland Food Consumption Survey was assessed using the BestFit distribution fitting program. The lognormal distribution was most commonly accepted as a plausible parametric distribution to represent food consumption data when food intakes were expressed as absolute intakes (16/22 foods) and as intakes per kg body weight (18/22 foods). Results from goodness-of-fit tests were accompanied by lognormal probability plots for a number of food categories. The influence on food additive intake of using a lognormal distribution to model food consumption input data was assessed by comparing modelled intake estimates with observed intakes. Results from the present study advise some level of caution about the use of a lognormal distribution as a mode of input for food consumption data in probabilistic food additive exposure assessments and the results highlight the need for further research in this area.
NASA Technical Reports Server (NTRS)
Benedetto, S.; Divsalar, D.; Montorsi, G.; Pollara, F.
1998-01-01
Soft-input soft-output building blocks (modules) are presented to construct and iteratively decode in a distributed fashion code networks, a new concept that includes, and generalizes, various forms of concatenated coding schemes.
A data fusion approach to indications and warnings of terrorist attacks
NASA Astrophysics Data System (ADS)
McDaniel, David; Schaefer, Gregory
2014-05-01
Indications and Warning (I&W) of terrorist attacks, particularly IED attacks, require detection of networks of agents and patterns of behavior. Social Network Analysis tries to detect a network; activity analysis tries to detect anomalous activities. This work builds on both to detect elements of an activity model of terrorist attack activity - the agents, resources, networks, and behaviors. The activity model is expressed as RDF triples statements where the tuple positions are elements or subsets of a formal ontology for activity models. The advantage of a model is that elements are interdependent and evidence for or against one will influence others so that there is a multiplier effect. The advantage of the formality is that detection could occur hierarchically, that is, at different levels of abstraction. The model matching is expressed as a likelihood ratio between input text and the model triples. The likelihood ratio is designed to be analogous to track correlation likelihood ratios common in JDL fusion level 1. This required development of a semantic distance metric for positive and null hypotheses as well as for complex objects. The metric uses the Web 1Terabype database of one to five gram frequencies for priors. This size requires the use of big data technologies so a Hadoop cluster is used in conjunction with OpenNLP natural language and Mahout clustering software. Distributed data fusion Map Reduce jobs distribute parts of the data fusion problem to the Hadoop nodes. For the purposes of this initial testing, open source models and text inputs of similar complexity to terrorist events were used as surrogates for the intended counter-terrorist application.
Incorporating uncertainty in RADTRAN 6.0 input files.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, Matthew L.; Weiner, Ruth F.; Heames, Terence John
Uncertainty may be introduced into RADTRAN analyses by distributing input parameters. The MELCOR Uncertainty Engine (Gauntt and Erickson, 2004) has been adapted for use in RADTRAN to determine the parameter shape and minimum and maximum of the distribution, to sample on the distribution, and to create an appropriate RADTRAN batch file. Coupling input parameters is not possible in this initial application. It is recommended that the analyst be very familiar with RADTRAN and able to edit or create a RADTRAN input file using a text editor before implementing the RADTRAN Uncertainty Analysis Module. Installation of the MELCOR Uncertainty Engine ismore » required for incorporation of uncertainty into RADTRAN. Gauntt and Erickson (2004) provides installation instructions as well as a description and user guide for the uncertainty engine.« less
Active control of transmission loss with smart foams.
Kundu, Abhishek; Berry, Alain
2011-02-01
Smart foams combine the complimentary advantages of passive foam material and spatially distributed piezoelectric actuator embedded in it for active noise control applications. In this paper, the problem of improving the transmission loss of smart foams using active control strategies has been investigated both numerically and experimentally inside a waveguide under the condition of plane wave propagation. The finite element simulation of a coupled noise control system has been undertaken with three different smart foam designs and their effectiveness in cancelling the transmitted wave downstream of the smart foam have been studied. The simulation results provide insight into the physical phenomenon of active noise cancellation and explain the impact of the smart foam designs on the optimal active control results. Experimental studies aimed at implementing the real-time control for transmission loss optimization have been performed using the classical single input/single output filtered-reference least mean squares algorithm. The active control results with broadband and single frequency primary source inputs demonstrate a good improvement in the transmission loss of the smart foams. The study gives a comparative description of the transmission and absorption control problems in light of the modification of the vibration response of the piezoelectric actuator under active control.
Influential input classification in probabilistic multimedia models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddalena, Randy L.; McKone, Thomas E.; Hsieh, Dennis P.H.
1999-05-01
Monte Carlo analysis is a statistical simulation method that is often used to assess and quantify the outcome variance in complex environmental fate and effects models. Total outcome variance of these models is a function of (1) the uncertainty and/or variability associated with each model input and (2) the sensitivity of the model outcome to changes in the inputs. To propagate variance through a model using Monte Carlo techniques, each variable must be assigned a probability distribution. The validity of these distributions directly influences the accuracy and reliability of the model outcome. To efficiently allocate resources for constructing distributions onemore » should first identify the most influential set of variables in the model. Although existing sensitivity and uncertainty analysis methods can provide a relative ranking of the importance of model inputs, they fail to identify the minimum set of stochastic inputs necessary to sufficiently characterize the outcome variance. In this paper, we describe and demonstrate a novel sensitivity/uncertainty analysis method for assessing the importance of each variable in a multimedia environmental fate model. Our analyses show that for a given scenario, a relatively small number of input variables influence the central tendency of the model and an even smaller set determines the shape of the outcome distribution. For each input, the level of influence depends on the scenario under consideration. This information is useful for developing site specific models and improving our understanding of the processes that have the greatest influence on the variance in outcomes from multimedia models.« less
BOREAS TE-18 GeoSail Canopy Reflectance Model
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Huemmrich, K. Fred
2000-01-01
The SAIL (Scattering from Arbitrarily Inclined Leaves) model was combined with the Jasinski geo metric model to simulate canopy spectral reflectance and absorption of photosynthetically active radiation for discontinuous canopies. This model is called the GeoSail model. Tree shapes are described by cylinders or cones distributed over a plane. Spectral reflectance and transmittance of trees are calculated from the SAIL model to determine the reflectance of the three components used in the geometric model: illuminated canopy, illuminated background, shadowed canopy, and shadowed background. The model code is Fortran. sample input and output data are provided in ASCII text files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).
Statistical learning in songbirds: from self-tutoring to song culture.
Fehér, Olga; Ljubičić, Iva; Suzuki, Kenta; Okanoya, Kazuo; Tchernichovski, Ofer
2017-01-05
At the onset of vocal development, both songbirds and humans produce variable vocal babbling with broadly distributed acoustic features. Over development, these vocalizations differentiate into the well-defined, categorical signals that characterize adult vocal behaviour. A broadly distributed signal is ideal for vocal exploration, that is, for matching vocal production to the statistics of the sensory input. The developmental transition to categorical signals is a gradual process during which the vocal output becomes differentiated and stable. But does it require categorical input? We trained juvenile zebra finches with playbacks of their own developing song, produced just a few moments earlier, updated continuously over development. Although the vocalizations of these self-tutored (ST) birds were initially broadly distributed, birds quickly developed categorical signals, as fast as birds that were trained with a categorical, adult song template. By contrast, siblings of those birds that received no training (isolates) developed phonological categories much more slowly and never reached the same level of category differentiation as their ST brothers. Therefore, instead of simply mirroring the statistical properties of their sensory input, songbirds actively transform it into distinct categories. We suggest that the early self-generation of phonological categories facilitates the establishment of vocal culture by making the song easier to transmit at the micro level, while promoting stability of shared vocabulary at the group level over generations.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Authors.
Activity-dependent control of NMDA receptor subunit composition at hippocampal mossy fibre synapses.
Carta, Mario; Srikumar, Bettadapura N; Gorlewicz, Adam; Rebola, Nelson; Mulle, Christophe
2018-02-15
CA3 pyramidal cells display input-specific differences in the subunit composition of synaptic NMDA receptors (NMDARs). Although at low density, GluN2B contributes significantly to NMDAR-mediated EPSCs at mossy fibre synapses. Long-term potentiation (LTP) of NMDARs triggers a modification in the subunit composition of synaptic NMDARs by insertion of GluN2B. GluN2B subunits are essential for the expression of LTP of NMDARs at mossy fibre synapses. Single neurons express NMDA receptors (NMDARs) with distinct subunit composition and biophysical properties that can be segregated in an input-specific manner. The dynamic control of the heterogeneous distribution of synaptic NMDARs is crucial to control input-dependent synaptic integration and plasticity. In hippocampal CA3 pyramidal cells from mice of both sexes, we found that mossy fibre (MF) synapses display a markedly lower proportion of GluN2B-containing NMDARs than associative/commissural synapses. The mechanism involved in such heterogeneous distribution of GluN2B subunits is not known. Here we show that long-term potentiation (LTP) of NMDARs, which is selectively expressed at MF-CA3 pyramidal cell synapses, triggers a modification in the subunit composition of synaptic NMDARs by insertion of GluN2B. This activity-dependent recruitment of GluN2B at mature MF-CA3 pyramidal cell synapses contrasts with the removal of GluN2B subunits at other glutamatergic synapses during development and in response to activity. Furthermore, although expressed at low levels, GluN2B is necessary for the expression of LTP of NMDARs at MF-CA3 pyramidal cell synapses. Altogether, we reveal a previously unknown activity-dependent regulation and function of GluN2B subunits that may contribute to the heterogeneous plasticity induction rules in CA3 pyramidal cells. © 2017 Centre Nationnal de la Recherche Scientifique. The Journal of Physiology © 2017 The Physiological Society.
NASA Astrophysics Data System (ADS)
Bodergat, Anne-Marie; Oki, Kimihiko; Ishizaki, Kunihiro; Rio, Michel
2002-11-01
The distribution of ostracod populations in Kagoshima Bay (Japan) is analysed with reference to different environmental parameters. The bay is an area of volcanic activity of Sakurajima volcano under the influence of the Kuroshio Current. Most of the Head environment is occupied by an acidic water mass. Numbers of individual and species decrease from the Mouth of the bay towards the Basin and Head environments. In this latter, acidic water mass has a drastic effect on ostracod populations, whereas volcanic ashes and domestic inputs are not hostile. Ostracod distribution is influenced by the quality and structure of water masses. To cite this article: A.-M. Bodergat et al., C. R. Geoscience 334 (2002) 1053-1059.
Pretty, Steven P; Martel, Daniel R; Laing, Andrew C
2017-12-01
Hip fracture incidence rates are influenced by body mass index (BMI) and sex, likely through mechanistic pathways that influence dynamics of the pelvis-femur system during fall-related impacts. The goal of this study was to extend our understanding of these impact dynamics by investigating the effects of BMI, sex, and local muscle activation on pressure distribution over the hip region during lateral impacts. Twenty participants underwent "pelvis-release experiments" (which simulate a lateral fall onto the hip), including muscle-'relaxed' and 'contracted' trials. Males and low-BMI individuals exhibited 44 and 55% greater peak pressure, as well as 66 and 56% lower peripheral hip force, compared to females and high-BMI individuals, respectively. Local muscle activation increased peak force by 10%, contact area by 17%, and peripheral hip force by 11% compared to relaxed trials. In summary, males and low-BMI individuals exhibited more concentrated loading over the greater trochanter. Muscle activation increased peak force, but this force was distributed over a larger area, preventing increased localized loading over the greater trochanter. These findings suggest potential value in incorporating sex, gender, and muscle activation-specific force distributions as inputs into computational tissue-level models, and have implications for the design of personalized protective devices including wearable hip protectors.
Crawford, LaTasha K; Craige, Caryne P; Beck, Sheryl G
2011-12-01
Characterization of glutamatergic input to dorsal raphe (DR) serotonin (5-HT) neurons is crucial for understanding how the glutamate and 5-HT systems interact in psychiatric disorders. Markers of glutamatergic terminals, vGlut1, 2 and 3, reflect inputs from specific forebrain and midbrain regions. Punctate staining of vGlut2 was homogeneous throughout the mouse DR whereas vGlut1 and vGlut3 puncta were less dense in the lateral wing (lwDR) compared with the ventromedial (vmDR) subregion. The distribution of glutamate terminals was consistent with the lower miniature excitatory postsynaptic current frequency found in the lwDR; however, it was not predictive of glutamatergic synaptic input with local activity intact, as spontaneous excitatory postsynaptic current (sEPSC) frequency was higher in the lwDR. We examined the morphology of recorded cells to determine if variations in dendrite structure contributed to differences in synaptic input. Although lwDR neurons had longer, more complex dendrites than vmDR neurons, glutamatergic input was not correlated with dendrite length in the lwDR, suggesting that dendrite length did not contribute to subregional differences in sEPSC frequency. Overall, glutamatergic input in the DR was the result of selective innervation of subpopulations of 5-HT neurons and was rooted in the topography of DR neurons and the activity of glutamate neurons located within the midbrain slice. Increased glutamatergic input to lwDR cells potentially synergizes with previously reported increased intrinsic excitability of lwDR cells to increase 5-HT output in lwDR target regions. Because the vmDR and lwDR are involved in unique circuits, subregional differences in glutamate modulation may result in diverse effects on 5-HT output in stress-related psychopathology. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Happel, Max F K; Jeschke, Marcus; Ohl, Frank W
2010-08-18
Primary sensory cortex integrates sensory information from afferent feedforward thalamocortical projection systems and convergent intracortical microcircuits. Both input systems have been demonstrated to provide different aspects of sensory information. Here we have used high-density recordings of laminar current source density (CSD) distributions in primary auditory cortex of Mongolian gerbils in combination with pharmacological silencing of cortical activity and analysis of the residual CSD, to dissociate the feedforward thalamocortical contribution and the intracortical contribution to spectral integration. We found a temporally highly precise integration of both types of inputs when the stimulation frequency was in close spectral neighborhood of the best frequency of the measurement site, in which the overlap between both inputs is maximal. Local intracortical connections provide both directly feedforward excitatory and modulatory input from adjacent cortical sites, which determine how concurrent afferent inputs are integrated. Through separate excitatory horizontal projections, terminating in cortical layers II/III, information about stimulus energy in greater spectral distance is provided even over long cortical distances. These projections effectively broaden spectral tuning width. Based on these data, we suggest a mechanism of spectral integration in primary auditory cortex that is based on temporally precise interactions of afferent thalamocortical inputs and different short- and long-range intracortical networks. The proposed conceptual framework allows integration of different and partly controversial anatomical and physiological models of spectral integration in the literature.
NASA Technical Reports Server (NTRS)
Lu, Yun-Chi; Chang, Hyo Duck; Krupp, Brian; Kumar, Ravindra; Swaroop, Anand
1992-01-01
Information on Earth Observing System (EOS) output data products and input data requirements that has been compiled by the Science Processing Support Office (SPSO) at GSFC is presented. Since Version 1.0 of the SPSO Report was released in August 1991, there have been significant changes in the EOS program. In anticipation of a likely budget cut for the EOS Project, NASA HQ restructured the EOS program. An initial program consisting of two large platforms was replaced by plans for multiple, smaller platforms, and some EOS instruments were either deselected or descoped. Updated payload information reflecting the restructured EOS program superseding the August 1991 version of the SPSO report is included. This report has been expanded to cover information on non-EOS data products, and consists of three volumes (Volumes 1, 2, and 3). Volume 1 provides information on instrument outputs and input requirements. Volume 2 is devoted to Interdisciplinary Science (IDS) outputs and input requirements, including the 'best' and 'alternative' match analysis. Volume 3 provides information about retrieval algorithms, non-EOS input requirements of instrument teams and IDS investigators, and availability of non-EOS data products at seven primary Distributed Active Archive Centers (DAAC's).
Stars and Stripes in the Cerebellar Cortex: A Voltage Sensitive Dye Study
Rokni, Dan; Llinas, Rodolfo; Yarom, Yosef
2007-01-01
The lattice-like structure of the cerebellar cortex and its anatomical organization in two perpendicular axes provided the foundations for many theories of cerebellar function. However, the functional organization does not always match the anatomical organization. Thus direct measurement of the functional organization is central to our understanding of cerebellar processing. Here we use voltage sensitive dye imaging in the isolated cerebellar preparation to characterize the spatio-temporal organization of the climbing and mossy fiber (MF) inputs to the cerebellar cortex. Spatial and temporal parameters were used to develop reliable criteria to distinguish climbing fiber (CF) responses from MF responses. CF activation excited postsynaptic neurons along a parasagittal cortical band. These responses were composed of slow (∼25 ms), monophasic depolarizing signals. Neither the duration nor the spatial distribution of CF responses were affected by inhibition. Activation of MF generated responses that were organized in radial patches, and were composed of a fast (∼5 ms) depolarizing phase followed by a prolonged (∼100 ms) negative wave. Application of a GABAA blocker eliminated the hyperpolarizing phase and prolonged the depolarizing phase, but did not affect the spatial distribution of the response, thus suggesting that it is not the inhibitory system that is responsible for the inability of the MF input to generate beams of activity that propagate along the parallel fiber system. PMID:18958242
Reconfigurable Integrated Optoelectronics
2011-01-01
state -changing could be done also using thermo-optical, mechano-optical, magneto-optical or opto-optical inputs. The speed of reconfiguration can be fast... quantum computers, is a futuristic activity; however, Jeremy O’Brien believes that the time horizon for OQC suc- cess can be brought closer in by using ...2011 Richard Soref. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use
Population-based human exposure models predict the distribution of personal exposures to pollutants of outdoor origin using a variety of inputs, including air pollution concentrations; human activity patterns, such as the amount of time spent outdoors versus indoors, commuting, w...
NASA Astrophysics Data System (ADS)
Constantine, P. G.; Emory, M.; Larsson, J.; Iaccarino, G.
2015-12-01
We present a computational analysis of the reactive flow in a hypersonic scramjet engine with focus on effects of uncertainties in the operating conditions. We employ a novel methodology based on active subspaces to characterize the effects of the input uncertainty on the scramjet performance. The active subspace identifies one-dimensional structure in the map from simulation inputs to quantity of interest that allows us to reparameterize the operating conditions; instead of seven physical parameters, we can use a single derived active variable. This dimension reduction enables otherwise infeasible uncertainty quantification, considering the simulation cost of roughly 9500 CPU-hours per run. For two values of the fuel injection rate, we use a total of 68 simulations to (i) identify the parameters that contribute the most to the variation in the output quantity of interest, (ii) estimate upper and lower bounds on the quantity of interest, (iii) classify sets of operating conditions as safe or unsafe corresponding to a threshold on the output quantity of interest, and (iv) estimate a cumulative distribution function for the quantity of interest.
Wang, Xiaowei; Xi, Beidou; Huo, Shouliang; Deng, Lin; Pan, Hongwei; Xia, Xunfeng; Zhang, Jingtian; Ren, Yuqing; Liu, Hongliang
2013-11-01
Eight commonly occurring polybrominated diphenyl ethers (PBDEs), including BDE 28, 47, 99, 100, 153, 154, 183, 207, and 209, were investigated in water samples from seven major inflowing rivers of Lake Chaohu to determine the distribution characteristics, potential sources and inputs to the lake. The sum of 8 BDE congeners (Σ8PBDEs) had a concentration varied from 0.31 to 84 ng L(-1), with those of BDE 209, BDE 47, BDE 99, and BDE 153 being 0.31-83, <0.012-0.36, <0.012-1.3, and <0.012-0.77 ng L(-1), respectively. These levels were in the high range of the global PBDEs concentrations in the water environments. The highest concentrations of Σ8PBDEs were detected in the western rivers, of which the main pollution sources were strongly related to human activities in urban centers, such as automobile-derived wastes. A sewage treatment plant was likely an important source of the lower brominated BDEs input to one western river. The correlation analyses (all p<0.05) between PBDEs and DOC, TN, TP, and EC, suggested that the distributions and sources of PBDEs in rivers might also be related with the soil erosion by heave floods. Σ8PBDEs input to Lake Chaohu from the rivers outlets was estimated at 344 kg yr(-1) during the flood season. BDE 209 was the dominant contributor with an input of 340 kg yr(-1), followed by BDE 99 (1.3 kg yr(-1)), BDE 47 (0.83 kg yr(-1)) and BDE 153 (0.60 kg yr(-1)). Copyright © 2013 Elsevier Ltd. All rights reserved.
Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network.
Ponzi, Adam; Wickens, Jeff
2012-01-01
The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior.
Input Dependent Cell Assembly Dynamics in a Model of the Striatal Medium Spiny Neuron Network
Ponzi, Adam; Wickens, Jeff
2012-01-01
The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior. PMID:22438838
NASA Astrophysics Data System (ADS)
Pakyuz-Charrier, Evren; Lindsay, Mark; Ogarko, Vitaliy; Giraud, Jeremie; Jessell, Mark
2018-04-01
Three-dimensional (3-D) geological structural modeling aims to determine geological information in a 3-D space using structural data (foliations and interfaces) and topological rules as inputs. This is necessary in any project in which the properties of the subsurface matters; they express our understanding of geometries in depth. For that reason, 3-D geological models have a wide range of practical applications including but not restricted to civil engineering, the oil and gas industry, the mining industry, and water management. These models, however, are fraught with uncertainties originating from the inherent flaws of the modeling engines (working hypotheses, interpolator's parameterization) and the inherent lack of knowledge in areas where there are no observations combined with input uncertainty (observational, conceptual and technical errors). Because 3-D geological models are often used for impactful decision-making it is critical that all 3-D geological models provide accurate estimates of uncertainty. This paper's focus is set on the effect of structural input data measurement uncertainty propagation in implicit 3-D geological modeling. This aim is achieved using Monte Carlo simulation for uncertainty estimation (MCUE), a stochastic method which samples from predefined disturbance probability distributions that represent the uncertainty of the original input data set. MCUE is used to produce hundreds to thousands of altered unique data sets. The altered data sets are used as inputs to produce a range of plausible 3-D models. The plausible models are then combined into a single probabilistic model as a means to propagate uncertainty from the input data to the final model. In this paper, several improved methods for MCUE are proposed. The methods pertain to distribution selection for input uncertainty, sample analysis and statistical consistency of the sampled distribution. Pole vector sampling is proposed as a more rigorous alternative than dip vector sampling for planar features and the use of a Bayesian approach to disturbance distribution parameterization is suggested. The influence of incorrect disturbance distributions is discussed and propositions are made and evaluated on synthetic and realistic cases to address the sighted issues. The distribution of the errors of the observed data (i.e., scedasticity) is shown to affect the quality of prior distributions for MCUE. Results demonstrate that the proposed workflows improve the reliability of uncertainty estimation and diminish the occurrence of artifacts.
Distributed multisensory integration in a recurrent network model through supervised learning
NASA Astrophysics Data System (ADS)
Wang, He; Wong, K. Y. Michael
Sensory integration between different modalities has been extensively studied. It is suggested that the brain integrates signals from different modalities in a Bayesian optimal way. However, how the Bayesian rule is implemented in a neural network remains under debate. In this work we propose a biologically plausible recurrent network model, which can perform Bayesian multisensory integration after trained by supervised learning. Our model is composed of two modules, each for one modality. We assume that each module is a recurrent network, whose activity represents the posterior distribution of each stimulus. The feedforward input on each module is the likelihood of each modality. Two modules are integrated through cross-links, which are feedforward connections from the other modality, and reciprocal connections, which are recurrent connections between different modules. By stochastic gradient descent, we successfully trained the feedforward and recurrent coupling matrices simultaneously, both of which resembles the Mexican-hat. We also find that there are more than one set of coupling matrices that can approximate the Bayesian theorem well. Specifically, reciprocal connections and cross-links will compensate each other if one of them is removed. Even though trained with two inputs, the network's performance with only one input is in good accordance with what is predicted by the Bayesian theorem.
A two-stage Monte Carlo approach to the expression of uncertainty with finite sample sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowder, Stephen Vernon; Moyer, Robert D.
2005-05-01
Proposed supplement I to the GUM outlines a 'propagation of distributions' approach to deriving the distribution of a measurand for any non-linear function and for any set of random inputs. The supplement's proposed Monte Carlo approach assumes that the distributions of the random inputs are known exactly. This implies that the sample sizes are effectively infinite. In this case, the mean of the measurand can be determined precisely using a large number of Monte Carlo simulations. In practice, however, the distributions of the inputs will rarely be known exactly, but must be estimated using possibly small samples. If these approximatedmore » distributions are treated as exact, the uncertainty in estimating the mean is not properly taken into account. In this paper, we propose a two-stage Monte Carlo procedure that explicitly takes into account the finite sample sizes used to estimate parameters of the input distributions. We will illustrate the approach with a case study involving the efficiency of a thermistor mount power sensor. The performance of the proposed approach will be compared to the standard GUM approach for finite samples using simple non-linear measurement equations. We will investigate performance in terms of coverage probabilities of derived confidence intervals.« less
Drira, Zaher; Kmiha-Megdiche, Salma; Sahnoun, Houda; Hammami, Ahmed; Allouche, Noureddine; Tedetti, Marc; Ayadi, Habib
2016-03-15
The coastal marine area of Sfax (Tunisia), which is well-known for its high productivity and fisheries, is also subjected to anthropogenic inputs from diverse industrial, urban and agriculture activities. We investigated the spatial distribution of physical, chemical and biogeochemical parameters in the surface waters of the southern coastal area of Sfax. Pertinent tracers of anthropogenic inputs were identified. Twenty stations were sampled during March 2013 in the vicinity of the coastal areas reserved for waste discharge. Phosphogypsum wastes dumped close to the beaches were the main source of PO4(3-), Cl(-) and SO4(2-) in seawater. The high content in total polyphenolic compounds was due to the olive oil treatment waste water released from margins. These inorganic and organic inputs in the surface waters were associated with elevated COD. The BOD5/COD (<0.5) and COD/BOD5 (>3) ratios highlighted a chemical pollution with organic load of a low biodegradability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans.
Yavuz, Utku Ş; Negro, Francesco; Diedrichs, Robin; Farina, Dario
2018-05-01
Motor neurons innervating antagonist muscles receive reciprocal inhibitory afferent inputs to facilitate the joint movement in the two directions. The present study investigates the mutual transmission of reciprocal inhibitory afferent inputs between the tibialis anterior (TA) and triceps surae (soleus and medial gastrocnemius) motor units. We assessed this mutual mechanism in large populations of motor units for building a statistical distribution of the inhibition amplitudes during standardized input to the motor neuron pools to minimize the effect of modulatory pathways. Single motor unit activities were identified using high-density surface electromyography (HDsEMG) recorded from the TA, soleus (Sol), and medial gastrocnemius (GM) muscles during isometric dorsi- and plantarflexion. Reciprocal inhibition on the antagonist muscle was elicited by electrical stimulation of the tibial (TN) or common peroneal nerves (CPN). The probability density distributions of reflex strength for each muscle were estimated to examine the strength of mutual transmission of reciprocal inhibitory input. The results showed that the strength of reciprocal inhibition in the TA motor units was fourfold greater than for the GM and the Sol motor units. This suggests an asymmetric transmission of reciprocal inhibition between ankle extensor and flexor muscles. This asymmetry cannot be explained by differences in motor unit type composition between the investigated muscles since we sampled low-threshold motor units in all cases. Therefore, the differences observed for the strength of inhibition are presumably due to a differential reciprocal spindle afferent input and the relative contribution of nonreciprocal inhibitory pathways. NEW & NOTEWORTHY We investigated the mutual transmission of reciprocal inhibition in large samples of motor units using a standardized input (electrical stimulation) to the motor neurons. The results demonstrated that the disynaptic reciprocal inhibition exerted between ankle flexor and extensor muscles is asymmetric. The functional implication of asymmetric transmission may be associated with the neural strategies of postural control.
Localized direction selective responses in the dendrites of visual interneurons of the fly
2010-01-01
Background The various tasks of visual systems, including course control, collision avoidance and the detection of small objects, require at the neuronal level the dendritic integration and subsequent processing of many spatially distributed visual motion inputs. While much is known about the pooled output in these systems, as in the medial superior temporal cortex of monkeys or in the lobula plate of the insect visual system, the motion tuning of the elements that provide the input has yet received little attention. In order to visualize the motion tuning of these inputs we examined the dendritic activation patterns of neurons that are selective for the characteristic patterns of wide-field motion, the lobula-plate tangential cells (LPTCs) of the blowfly. These neurons are known to sample direction-selective motion information from large parts of the visual field and combine these signals into axonal and dendro-dendritic outputs. Results Fluorescence imaging of intracellular calcium concentration allowed us to take a direct look at the local dendritic activity and the resulting local preferred directions in LPTC dendrites during activation by wide-field motion in different directions. These 'calcium response fields' resembled a retinotopic dendritic map of local preferred directions in the receptive field, the layout of which is a distinguishing feature of different LPTCs. Conclusions Our study reveals how neurons acquire selectivity for distinct visual motion patterns by dendritic integration of the local inputs with different preferred directions. With their spatial layout of directional responses, the dendrites of the LPTCs we investigated thus served as matched filters for wide-field motion patterns. PMID:20384983
Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
Letzkus, Johannes J; Kampa, Björn M; Stuart, Greg J
2006-10-11
Previous studies focusing on the temporal rules governing changes in synaptic strength during spike timing-dependent synaptic plasticity (STDP) have paid little attention to the fact that synaptic inputs are distributed across complex dendritic trees. During STDP, propagation of action potentials (APs) back to the site of synaptic input is thought to trigger plasticity. However, in pyramidal neurons, backpropagation of single APs is decremental, whereas high-frequency bursts lead to generation of distal dendritic calcium spikes. This raises the question whether STDP learning rules depend on synapse location and firing mode. Here, we investigate this issue at synapses between layer 2/3 and layer 5 pyramidal neurons in somatosensory cortex. We find that low-frequency pairing of single APs at positive times leads to a distance-dependent shift to long-term depression (LTD) at distal inputs. At proximal sites, this LTD could be converted to long-term potentiation (LTP) by dendritic depolarizations suprathreshold for BAC-firing or by high-frequency AP bursts. During AP bursts, we observed a progressive, distance-dependent shift in the timing requirements for induction of LTP and LTD, such that distal synapses display novel timing rules: they potentiate when inputs are activated after burst onset (negative timing) but depress when activated before burst onset (positive timing). These findings could be explained by distance-dependent differences in the underlying dendritic voltage waveforms driving NMDA receptor activation during STDP induction. Our results suggest that synapse location within the dendritic tree is a crucial determinant of STDP, and that synapses undergo plasticity according to local rather than global learning rules.
Yang, Yongliang; Modares, Hamidreza; Wunsch, Donald C; Yin, Yixin
2018-06-01
This paper develops optimal control protocols for the distributed output synchronization problem of leader-follower multiagent systems with an active leader. Agents are assumed to be heterogeneous with different dynamics and dimensions. The desired trajectory is assumed to be preplanned and is generated by the leader. Other follower agents autonomously synchronize to the leader by interacting with each other using a communication network. The leader is assumed to be active in the sense that it has a nonzero control input so that it can act independently and update its control to keep the followers away from possible danger. A distributed observer is first designed to estimate the leader's state and generate the reference signal for each follower. Then, the output synchronization of leader-follower systems with an active leader is formulated as a distributed optimal tracking problem, and inhomogeneous algebraic Riccati equations (AREs) are derived to solve it. The resulting distributed optimal control protocols not only minimize the steady-state error but also optimize the transient response of the agents. An off-policy reinforcement learning algorithm is developed to solve the inhomogeneous AREs online in real time and without requiring any knowledge of the agents' dynamics. Finally, two simulation examples are conducted to illustrate the effectiveness of the proposed algorithm.
Category Induction via Distributional Analysis: Evidence from a Serial Reaction Time Task
ERIC Educational Resources Information Center
Hunt, Ruskin H.; Aslin, Richard N.
2010-01-01
Category formation lies at the heart of a number of higher-order behaviors, including language. We assessed the ability of human adults to learn, from distributional information alone, categories embedded in a sequence of input stimuli using a serial reaction time task. Artificial grammars generated corpora of input strings containing a…
Rosen, I G; Luczak, Susan E; Weiss, Jordan
2014-03-15
We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.
NASA Astrophysics Data System (ADS)
Belapurkar, Rohit K.
Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.
A Neural Network Aero Design System for Advanced Turbo-Engines
NASA Technical Reports Server (NTRS)
Sanz, Jose M.
1999-01-01
An inverse design method calculates the blade shape that produces a prescribed input pressure distribution. By controlling this input pressure distribution the aerodynamic design objectives can easily be met. Because of the intrinsic relationship between pressure distribution and airfoil physical properties, a neural network can be trained to choose the optimal pressure distribution that would meet a set of physical requirements. The neural network technique works well not only as an interpolating device but also as an extrapolating device to achieve blade designs from a given database. Two validating test cases are discussed.
Instrumentation complex for Langley Research Center's National Transonic Facility
NASA Technical Reports Server (NTRS)
Russell, C. H.; Bryant, C. S.
1977-01-01
The instrumentation discussed in the present paper was developed to ensure reliable operation for a 2.5-meter cryogenic high-Reynolds-number fan-driven transonic wind tunnel. It will incorporate four CPU's and associated analog and digital input/output equipment, necessary for acquiring research data, controlling the tunnel parameters, and monitoring the process conditions. Connected in a multipoint distributed network, the CPU's will support data base management and processing; research measurement data acquisition and display; process monitoring; and communication control. The design will allow essential processes to continue, in the case of major hardware failures, by switching input/output equipment to alternate CPU's and by eliminating nonessential functions. It will also permit software modularization by CPU activity and thereby reduce complexity and development time.
Drivers of the primate thalamus
Rovó, Zita; Ulbert, István; Acsády, László
2012-01-01
The activity of thalamocortical neurons is largely determined by giant excitatory terminals, called drivers. These afferents may arise from neocortex or from subcortical centers; however their exact distribution, segregation or putative absence in given thalamic nuclei are unknown. To unravel the nucleus-specific composition of drivers, we mapped the entire macaque thalamus utilizing vesicular glutamate transporters 1 and 2 to label cortical and subcortical afferents, respectively. Large thalamic territories were innervated exclusively either by giant vGLUT2- or vGLUT1-positive boutons. Co-distribution of drivers with different origin was not abundant. In several thalamic regions, no giant terminals of any type could be detected at light microscopic level. Electron microscopic observation of these territories revealed either the complete absence of large multisynaptic excitatory terminals (basal ganglia-recipient nuclei) or the presence of both vGLUT1- and vGLUT2-positive terminals, which were significantly smaller than their giant counterparts (intralaminar nuclei, medial pulvinar). In the basal ganglia-recipient thalamus, giant inhibitory terminals replaced the excitatory driver inputs. The pulvinar and the mediodorsal nucleus displayed subnuclear heterogeneity in their driver assemblies. These results show that distinct thalamic territories can be under pure subcortical or cortical control; however there is significant variability in the composition of major excitatory inputs in several thalamic regions. Since thalamic information transfer depends on the origin and complexity of the excitatory inputs, this suggests that the computations performed by individual thalamic regions display considerable variability. Finally, the map of driver distribution may help to resolve the morphological basis of human diseases involving different parts of the thalamus. PMID:23223308
Associative memory model with spontaneous neural activity
NASA Astrophysics Data System (ADS)
Kurikawa, Tomoki; Kaneko, Kunihiko
2012-05-01
We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.
NASA Astrophysics Data System (ADS)
Baroni, G.; Gräff, T.; Reinstorf, F.; Oswald, S. E.
2012-04-01
Nowadays uncertainty and sensitivity analysis are considered basic tools for the assessment of hydrological models and the evaluation of the most important sources of uncertainty. In this context, in the last decades several methods have been developed and applied in different hydrological conditions. However, in most of the cases, the studies have been done by investigating mainly the influence of the parameter uncertainty on the simulated outputs and few approaches tried to consider also other sources of uncertainty i.e. input and model structure. Moreover, several constrains arise when spatially distributed parameters are involved. To overcome these limitations a general probabilistic framework based on Monte Carlo simulations and the Sobol method has been proposed. In this study, the general probabilistic framework was applied at field scale using a 1D physical-based hydrological model (SWAP). Furthermore, the framework was extended at catchment scale in combination with a spatially distributed hydrological model (SHETRAN). The models are applied in two different experimental sites in Germany: a relatively flat cropped field close to Potsdam (Brandenburg) and a small mountainous catchment with agricultural land use (Schaefertal, Harz Mountains). For both cases, input and parameters are considered as major sources of uncertainty. Evaluation of the models was based on soil moisture detected at plot scale in different depths and, for the catchment site, also with daily discharge values. The study shows how the framework can take into account all the various sources of uncertainty i.e. input data, parameters (either in scalar or spatially distributed form) and model structures. The framework can be used in a loop in order to optimize further monitoring activities used to improve the performance of the model. In the particular applications, the results show how the sources of uncertainty are specific for each process considered. The influence of the input data as well as the presence of compensating errors become clear by the different processes simulated.
Artificial Intelligence Software for Assessing Postural Stability
NASA Technical Reports Server (NTRS)
Lieberman, Erez; Forth, Katharine; Paloski, William
2013-01-01
A software package reads and analyzes pressure distributions from sensors mounted under a person's feet. Pressure data from sensors mounted in shoes, or in a platform, can be used to provide a description of postural stability (assessing competence to deficiency) and enables the determination of the person's present activity (running, walking, squatting, falling). This package has three parts: a preprocessing algorithm for reading input from pressure sensors; a Hidden Markov Model (HMM), which is used to determine the person's present activity and level of sensing-motor competence; and a suite of graphical algorithms, which allows visual representation of the person's activity and vestibular function over time.
Aluminum and Manganese Distributions in the Solomon Sea: Results from the 2012 PANDORA Cruise
NASA Astrophysics Data System (ADS)
Michael, S. M.; Resing, J. A.; Jeandel, C.; Lacan, F.
2016-02-01
Much is still unknown about the sources of trace nutrients to the Equatorial Undercurrent (EUC), which ultimately contribute to high-nutrient regions in the Eastern Tropical Pacific. One region that is possibly a source of trace nutrients to the EUC is the Solomon Sea, located east of Papua New Guinea. A study during the summer of 2012, PANDORA, was conducted on board the R/V l'Atalante to determine currents and the geochemical makeup within the basin. Water samples were analyzed for aluminum and manganese using Flow Injection Analysis (FIA). At many stations, aluminum distributions exhibit a sub-surface minimum, located at approximately the same depth as a salinity maximum. Additionally, aluminum is enriched along coastal areas, particularly in the outflow of the Vitiaz Strait, which is concurrent with the findings of Slemons et al. 2010. These regions of high aluminum are also likely regions of iron enrichment. Manganese distributions in the Solomon Sea are similar to data collected north of the region by Slemons et al. 2010, and show a scavenged distribution with local inputs in the surface and concentrations decreasing at depth. This region has strong western boundary currents, and input from coastal margins, two large rivers, island mining sites, and hydrothermal activity, making it an important study-site to determine how trace nutrients are transported to the open ocean.
Stargate GTM: Bridging Descriptor and Activity Spaces.
Gaspar, Héléna A; Baskin, Igor I; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre
2015-11-23
Predicting the activity profile of a molecule or discovering structures possessing a specific activity profile are two important goals in chemoinformatics, which could be achieved by bridging activity and molecular descriptor spaces. In this paper, we introduce the "Stargate" version of the Generative Topographic Mapping approach (S-GTM) in which two different multidimensional spaces (e.g., structural descriptor space and activity space) are linked through a common 2D latent space. In the S-GTM algorithm, the manifolds are trained simultaneously in two initial spaces using the probabilities in the 2D latent space calculated as a weighted geometric mean of probability distributions in both spaces. S-GTM has the following interesting features: (1) activities are involved during the training procedure; therefore, the method is supervised, unlike conventional GTM; (2) using molecular descriptors of a given compound as input, the model predicts a whole activity profile, and (3) using an activity profile as input, areas populated by relevant chemical structures can be detected. To assess the performance of S-GTM prediction models, a descriptor space (ISIDA descriptors) of a set of 1325 GPCR ligands was related to a B-dimensional (B = 1 or 8) activity space corresponding to pKi values for eight different targets. S-GTM outperforms conventional GTM for individual activities and performs similarly to the Lasso multitask learning algorithm, although it is still slightly less accurate than the Random Forest method.
NASA Astrophysics Data System (ADS)
Lander, D. M. P.; McCanty, S. T.; Dimino, T. F.; Christian, A. D.
2016-02-01
The River Continuum Concept (RCC) predicts stream biological communities based on dominant physical structures and energy inputs into streams and predicts how these features and corresponding communities change along the stream continuum. Verifying RCC expectations is important for creating valid points of comparison during stream ecosystem evaluation. These reference expectations are critical for restoration projects, such as the restoration of decommissioned cranberry bogs. Our research compares the physical habitat and freshwater invertebrate functional feeding groups (FWIFFG) of reference, active cranberry farming, and cranberry farm passive restoration sites in Northeastern Coastal Zone streams of Massachusetts to the specific RCC FWIFFG predictions. We characterized stream physical habitat using a semi-quantitative habitat characterization protocol and sampled freshwater invertebrates using the U.S. EPA standard 20-jab multi-habitat protocol. We expected that stream habitat would be most homogeneous at active farming stations, intermediate at restoration stations, and most heterogeneous at reference stations. Furthermore, we expected reference stream FWIFFG would be accurately predicted by the RCC and distributions at restoration and active sites would vary significantly. Habitat data was analyzed using a principle component analysis and results confirmed our predictions showing more homogeneous habitat for the active and reference stations, while showing a more heterogeneous habitat at the reference stations. The FWIFFG chi-squared analysis showed significant deviation from our specific RCC FWIFFG predictions. Because published FWIFFG distributions did not match our empirical values for a least disturbed Northeastern Coastal Zone headwater stream, using our data as a community structure template for current and future restoration projects is not recommend without further considerations.
Dynamics of feature categorization.
Martí, Daniel; Rinzel, John
2013-01-01
In visual and auditory scenes, we are able to identify shared features among sensory objects and group them according to their similarity. This grouping is preattentive and fast and is thought of as an elementary form of categorization by which objects sharing similar features are clustered in some abstract perceptual space. It is unclear what neuronal mechanisms underlie this fast categorization. Here we propose a neuromechanistic model of fast feature categorization based on the framework of continuous attractor networks. The mechanism for category formation does not rely on learning and is based on biologically plausible assumptions, for example, the existence of populations of neurons tuned to feature values, feature-specific interactions, and subthreshold-evoked responses upon the presentation of single objects. When the network is presented with a sequence of stimuli characterized by some feature, the network sums the evoked responses and provides a running estimate of the distribution of features in the input stream. If the distribution of features is structured into different components or peaks (i.e., is multimodal), recurrent excitation amplifies the response of activated neurons, and categories are singled out as emerging localized patterns of elevated neuronal activity (bumps), centered at the centroid of each cluster. The emergence of bump states through sequential, subthreshold activation and the dependence on input statistics is a novel application of attractor networks. We show that the extraction and representation of multiple categories are facilitated by the rich attractor structure of the network, which can sustain multiple stable activity patterns for a robust range of connectivity parameters compatible with cortical physiology.
Arterial input function derived from pairwise correlations between PET-image voxels.
Schain, Martin; Benjaminsson, Simon; Varnäs, Katarina; Forsberg, Anton; Halldin, Christer; Lansner, Anders; Farde, Lars; Varrone, Andrea
2013-07-01
A metabolite corrected arterial input function is a prerequisite for quantification of positron emission tomography (PET) data by compartmental analysis. This quantitative approach is also necessary for radioligands without suitable reference regions in brain. The measurement is laborious and requires cannulation of a peripheral artery, a procedure that can be associated with patient discomfort and potential adverse events. A non invasive procedure for obtaining the arterial input function is thus preferable. In this study, we present a novel method to obtain image-derived input functions (IDIFs). The method is based on calculation of the Pearson correlation coefficient between the time-activity curves of voxel pairs in the PET image to localize voxels displaying blood-like behavior. The method was evaluated using data obtained in human studies with the radioligands [(11)C]flumazenil and [(11)C]AZ10419369, and its performance was compared with three previously published methods. The distribution volumes (VT) obtained using IDIFs were compared with those obtained using traditional arterial measurements. Overall, the agreement in VT was good (∼3% difference) for input functions obtained using the pairwise correlation approach. This approach performed similarly or even better than the other methods, and could be considered in applied clinical studies. Applications to other radioligands are needed for further verification.
Ma, Haotong; Liu, Zejin; Jiang, Pengzhi; Xu, Xiaojun; Du, Shaojun
2011-07-04
We propose and demonstrate the improvement of conventional Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size. Based on the detailed study of the refractive beam shaping system, we found that the conventional Galilean beam shaper can only work well for the magnifying beam shaping. Taking the transformation of input beam with Gaussian irradiance distribution into target beam with high order Fermi-Dirac flattop profile as an example, the shaper can only work well at the condition that the size of input and target beam meets R(0) ≥ 1.3 w(0). For the improvement, the shaper is regarded as the combination of magnifying and demagnifying beam shaping system. The surface and phase distributions of the improved Galilean beam shaping system are derived based on Geometric and Fourier Optics. By using the improved Galilean beam shaper, the accurate transformation of input beam with Gaussian irradiance distribution into target beam with flattop irradiance distribution is realized. The irradiance distribution of the output beam is coincident with that of the target beam and the corresponding phase distribution is maintained. The propagation performance of the output beam is greatly improved. Studies of the influences of beam size and beam order on the improved Galilean beam shaping system show that restriction of beam size has been greatly reduced. This improvement can also be used to redistribute the input beam with complicated irradiance distribution into output beam with complicated irradiance distribution.
Networks within networks: The neuronal control of breathing
Garcia, Alfredo J.; Zanella, Sebastien; Koch, Henner; Doi, Atsushi; Ramirez, Jan-Marino
2013-01-01
Breathing emerges through complex network interactions involving neurons distributed throughout the nervous system. The respiratory rhythm generating network is composed of micro networks functioning within larger networks to generate distinct rhythms and patterns that characterize breathing. The pre-Bötzinger complex, a rhythm generating network located within the ventrolateral medulla assumes a core function without which respiratory rhythm generation and breathing cease altogether. It contains subnetworks with distinct synaptic and intrinsic membrane properties that give rise to different types of respiratory rhythmic activities including eupneic, sigh, and gasping activities. While critical aspects of these rhythmic activities are preserved when isolated in in vitro preparations, the pre-Bötzinger complex functions in the behaving animal as part of a larger network that receives important inputs from areas such as the pons and parafacial nucleus. The respiratory network is also an integrator of modulatory and sensory inputs that imbue the network with the important ability to adapt to changes in the behavioral, metabolic, and developmental conditions of the organism. This review summarizes our current understanding of these interactions and relates the emerging concepts to insights gained in other rhythm generating networks. PMID:21333801
Fornarelli, Francesco; Dadduzio, Ruggiero; Torresi, Marco; Camporeale, Sergio Mario; Fortunato, Bernardo
2018-02-01
A fully 3D unsteady Computational Fluid Dynamics (CFD) approach coupled with heterogeneous reaction chemistry is presented in order to study the behavior of a single square channel as part of a Lean [Formula: see text] Traps. The reliability of the numerical tool has been validated against literature data considering only active BaO site. Even though the input/output performance of such catalyst has been well known, here the spatial distribution within a single channel is investigated in details. The square channel geometry influences the flow field and the catalyst performance being the flow velocity distribution on the cross section non homogeneous. The mutual interaction between the flow and the active catalyst walls influences the spatial distribution of the volumetric species. Low velocity regions near the square corners and transversal secondary flows are shown in several cross-sections along the streamwise direction at different instants. The results shed light on the three-dimensional characteristic of both the flow field and species distribution within a single square channel of the catalyst with respect to 0-1D approaches.
Relation between brain activation and lexical performance.
Booth, James R; Burman, Douglas D; Meyer, Joel R; Gitelman, Darren R; Parrish, Todd B; Mesulam, M Marsel
2003-07-01
Functional magnetic resonance imaging (fMRI) was used to determine whether performance on lexical tasks was correlated with cerebral activation patterns. We found that such relationships did exist and that their anatomical distribution reflected the neurocognitive processing routes required by the task. Better performance on intramodal tasks (determining if visual words were spelled the same or if auditory words rhymed) was correlated with more activation in unimodal regions corresponding to the modality of sensory input, namely the fusiform gyrus (BA 37) for written words and the superior temporal gyrus (BA 22) for spoken words. Better performance in tasks requiring cross-modal conversions (determining if auditory words were spelled the same or if visual words rhymed), on the other hand, was correlated with more activation in posterior heteromodal regions, including the supramarginal gyrus (BA 40) and the angular gyrus (BA 39). Better performance in these cross-modal tasks was also correlated with greater activation in unimodal regions corresponding to the target modality of the conversion process (i.e., fusiform gyrus for auditory spelling and superior temporal gyrus for visual rhyming). In contrast, performance on the auditory spelling task was inversely correlated with activation in the superior temporal gyrus possibly reflecting a greater emphasis on the properties of the perceptual input rather than on the relevant transmodal conversions. Copyright 2003 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Jothiprakash, V.; Magar, R. B.
2012-07-01
SummaryIn this study, artificial intelligent (AI) techniques such as artificial neural network (ANN), Adaptive neuro-fuzzy inference system (ANFIS) and Linear genetic programming (LGP) are used to predict daily and hourly multi-time-step ahead intermittent reservoir inflow. To illustrate the applicability of AI techniques, intermittent Koyna river watershed in Maharashtra, India is chosen as a case study. Based on the observed daily and hourly rainfall and reservoir inflow various types of time-series, cause-effect and combined models are developed with lumped and distributed input data. Further, the model performance was evaluated using various performance criteria. From the results, it is found that the performances of LGP models are found to be superior to ANN and ANFIS models especially in predicting the peak inflows for both daily and hourly time-step. A detailed comparison of the overall performance indicated that the combined input model (combination of rainfall and inflow) performed better in both lumped and distributed input data modelling. It was observed that the lumped input data models performed slightly better because; apart from reducing the noise in the data, the better techniques and their training approach, appropriate selection of network architecture, required inputs, and also training-testing ratios of the data set. The slight poor performance of distributed data is due to large variations and lesser number of observed values.
NASA Astrophysics Data System (ADS)
Pfeil, Thomas; Jordan, Jakob; Tetzlaff, Tom; Grübl, Andreas; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz
2016-04-01
High-level brain function, such as memory, classification, or reasoning, can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy-efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear subthreshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with nonlinear, conductance-based synapses. Emulations of these networks on the analog neuromorphic-hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm that shared-input correlations are actively suppressed by inhibitory feedback also in highly heterogeneous networks exhibiting broad, heavy-tailed firing-rate distributions. In line with former studies, cell heterogeneities reduce shared-input correlations. Overall, however, correlations in the recurrent system can increase with the level of heterogeneity as a consequence of diminished effective negative feedback.
Suen, Jonathan Y; Navlakha, Saket
2017-05-01
Controlling the flow and routing of data is a fundamental problem in many distributed networks, including transportation systems, integrated circuits, and the Internet. In the brain, synaptic plasticity rules have been discovered that regulate network activity in response to environmental inputs, which enable circuits to be stable yet flexible. Here, we develop a new neuro-inspired model for network flow control that depends only on modifying edge weights in an activity-dependent manner. We show how two fundamental plasticity rules, long-term potentiation and long-term depression, can be cast as a distributed gradient descent algorithm for regulating traffic flow in engineered networks. We then characterize, both by simulation and analytically, how different forms of edge-weight-update rules affect network routing efficiency and robustness. We find a close correspondence between certain classes of synaptic weight update rules derived experimentally in the brain and rules commonly used in engineering, suggesting common principles to both.
A review on the sources and spatial-temporal distributions of Pb in Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Yang, Dongfang; Zhang, Jie; Wang, Ming; Zhu, Sixi; Wu, Yunjie
2017-12-01
This paper provided a review on the source, spatial-distribution, temporal variations of Pb in Jiaozhou Bay based on investigation of Pb in surface and waters in different seasons during 1979-1983. The source strengths of Pb sources in Jiaozhou Bay were showing increasing trends, and the pollution level of Pb in this bay was slight or moderate in the early stage of reform and opening-up. Pb contents in the marine bay were mainly determined by the strength and frequency of Pb inputs from human activities, and Pb could be moving from high content areas to low content areas in the ocean interior. Surface waters in the ocean was polluted by human activities, and bottom waters was polluted by means of vertical water’s effect. The process of spatial distribution of Pb in waters was including three steps, i.e., 1), Pb was transferring to surface waters in the bay, 2) Pb was transferring to surface waters, and 3) Pb was transferring to and accumulating in bottom waters.
Takehara-Nishiuchi, Kaori; Insel, Nathan; Hoang, Lan T; Wagner, Zachary; Olson, Kathy; Chawla, Monica K; Burke, Sara N; Barnes, Carol A
2013-09-01
Previous work suggests that activation patterns of neurons in superficial layers of the neocortex are more sensitive to spatial context than activation patterns in deep cortical layers. A possible source of this laminar difference is the distribution of contextual information to the superficial cortical layers carried by hippocampal efferents that travel through the entorhinal cortex and subiculum. To evaluate the role that the hippocampus plays in determining context sensitivity in superficial cortical layers, behavior-induced expression of the immediate early gene Arc was examined in hippocampus-lesioned and control rats after exposing them to 2 distinct contexts. Contrary to expectations, hippocampal lesions had no observable effect on Arc expression in any neocortical layer relative to controls. Furthermore, another group of intact animals was exposed to the same environment twice, to determine the reliability of Arc-expression patterns across identical contextual and behavioral episodes. Although this condition included no difference in external input between 2 epochs, the significant layer differences in Arc expression still remained. Thus, laminar differences in activation or plasticity patterns are not likely to arise from hippocampal sources or differences in external inputs, but are more likely to be an intrinsic property of the neocortex.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1987-01-01
The approximation of optimal discrete-time linear quadratic Gaussian (LQG) compensators for distributed parameter control systems with boundary input and unbounded measurement is considered. The approach applies to a wide range of problems that can be formulated in a state space on which both the discrete-time input and output operators are continuous. Approximating compensators are obtained via application of the LQG theory and associated approximation results for infinite dimensional discrete-time control systems with bounded input and output. Numerical results for spline and modal based approximation schemes used to compute optimal compensators for a one dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise measurement of temperature are presented and discussed.
Stabilization of memory States by stochastic facilitating synapses.
Miller, Paul
2013-12-06
Bistability within a small neural circuit can arise through an appropriate strength of excitatory recurrent feedback. The stability of a state of neural activity, measured by the mean dwelling time before a noise-induced transition to another state, depends on the neural firing-rate curves, the net strength of excitatory feedback, the statistics of spike times, and increases exponentially with the number of equivalent neurons in the circuit. Here, we show that such stability is greatly enhanced by synaptic facilitation and reduced by synaptic depression. We take into account the alteration in times of synaptic vesicle release, by calculating distributions of inter-release intervals of a synapse, which differ from the distribution of its incoming interspike intervals when the synapse is dynamic. In particular, release intervals produced by a Poisson spike train have a coefficient of variation greater than one when synapses are probabilistic and facilitating, whereas the coefficient of variation is less than one when synapses are depressing. However, in spite of the increased variability in postsynaptic input produced by facilitating synapses, their dominant effect is reduced synaptic efficacy at low input rates compared to high rates, which increases the curvature of neural input-output functions, leading to wider regions of bistability in parameter space and enhanced lifetimes of memory states. Our results are based on analytic methods with approximate formulae and bolstered by simulations of both Poisson processes and of circuits of noisy spiking model neurons.
Papanastasiou, Giorgos; Williams, Michelle C; Kershaw, Lucy E; Dweck, Marc R; Alam, Shirjel; Mirsadraee, Saeed; Connell, Martin; Gray, Calum; MacGillivray, Tom; Newby, David E; Semple, Scott Ik
2015-02-17
Mathematical modeling of cardiovascular magnetic resonance perfusion data allows absolute quantification of myocardial blood flow. Saturation of left ventricle signal during standard contrast administration can compromise the input function used when applying these models. This saturation effect is evident during application of standard Fermi models in single bolus perfusion data. Dual bolus injection protocols have been suggested to eliminate saturation but are much less practical in the clinical setting. The distributed parameter model can also be used for absolute quantification but has not been applied in patients with coronary artery disease. We assessed whether distributed parameter modeling might be less dependent on arterial input function saturation than Fermi modeling in healthy volunteers. We validated the accuracy of each model in detecting reduced myocardial blood flow in stenotic vessels versus gold-standard invasive methods. Eight healthy subjects were scanned using a dual bolus cardiac perfusion protocol at 3T. We performed both single and dual bolus analysis of these data using the distributed parameter and Fermi models. For the dual bolus analysis, a scaled pre-bolus arterial input function was used. In single bolus analysis, the arterial input function was extracted from the main bolus. We also performed analysis using both models of single bolus data obtained from five patients with coronary artery disease and findings were compared against independent invasive coronary angiography and fractional flow reserve. Statistical significance was defined as two-sided P value < 0.05. Fermi models overestimated myocardial blood flow in healthy volunteers due to arterial input function saturation in single bolus analysis compared to dual bolus analysis (P < 0.05). No difference was observed in these volunteers when applying distributed parameter-myocardial blood flow between single and dual bolus analysis. In patients, distributed parameter modeling was able to detect reduced myocardial blood flow at stress (<2.5 mL/min/mL of tissue) in all 12 stenotic vessels compared to only 9 for Fermi modeling. Comparison of single bolus versus dual bolus values suggests that distributed parameter modeling is less dependent on arterial input function saturation than Fermi modeling. Distributed parameter modeling showed excellent accuracy in detecting reduced myocardial blood flow in all stenotic vessels.
Inferring Single Neuron Properties in Conductance Based Balanced Networks
Pool, Román Rossi; Mato, Germán
2011-01-01
Balanced states in large networks are a usual hypothesis for explaining the variability of neural activity in cortical systems. In this regime the statistics of the inputs is characterized by static and dynamic fluctuations. The dynamic fluctuations have a Gaussian distribution. Such statistics allows to use reverse correlation methods, by recording synaptic inputs and the spike trains of ongoing spontaneous activity without any additional input. By using this method, properties of the single neuron dynamics that are masked by the balanced state can be quantified. To show the feasibility of this approach we apply it to large networks of conductance based neurons. The networks are classified as Type I or Type II according to the bifurcations which neurons of the different populations undergo near the firing onset. We also analyze mixed networks, in which each population has a mixture of different neuronal types. We determine under which conditions the intrinsic noise generated by the network can be used to apply reverse correlation methods. We find that under realistic conditions we can ascertain with low error the types of neurons present in the network. We also find that data from neurons with similar firing rates can be combined to perform covariance analysis. We compare the results of these methods (that do not requite any external input) to the standard procedure (that requires the injection of Gaussian noise into a single neuron). We find a good agreement between the two procedures. PMID:22016730
Robust DEA under discrete uncertain data: a case study of Iranian electricity distribution companies
NASA Astrophysics Data System (ADS)
Hafezalkotob, Ashkan; Haji-Sami, Elham; Omrani, Hashem
2015-06-01
Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the real-world problems often deal with imprecise or ambiguous data. In this paper, we propose a novel robust data envelopment model (RDEA) to investigate the efficiencies of decision-making units (DMU) when there are discrete uncertain input and output data. The method is based upon the discrete robust optimization approaches proposed by Mulvey et al. (1995) that utilizes probable scenarios to capture the effect of ambiguous data in the case study. Our primary concern in this research is evaluating electricity distribution companies under uncertainty about input/output data. To illustrate the ability of proposed model, a numerical example of 38 Iranian electricity distribution companies is investigated. There are a large amount ambiguous data about these companies. Some electricity distribution companies may not report clear and real statistics to the government. Thus, it is needed to utilize a prominent approach to deal with this uncertainty. The results reveal that the RDEA model is suitable and reliable for target setting based on decision makers (DM's) preferences when there are uncertain input/output data.
Input-output relationship in social communications characterized by spike train analysis
NASA Astrophysics Data System (ADS)
Aoki, Takaaki; Takaguchi, Taro; Kobayashi, Ryota; Lambiotte, Renaud
2016-10-01
We study the dynamical properties of human communication through different channels, i.e., short messages, phone calls, and emails, adopting techniques from neuronal spike train analysis in order to characterize the temporal fluctuations of successive interevent times. We first measure the so-called local variation (LV) of incoming and outgoing event sequences of users and find that these in- and out-LV values are positively correlated for short messages and uncorrelated for phone calls and emails. Second, we analyze the response-time distribution after receiving a message to focus on the input-output relationship in each of these channels. We find that the time scales and amplitudes of response differ between the three channels. To understand the effects of the response-time distribution on the correlations between the LV values, we develop a point process model whose activity rate is modulated by incoming and outgoing events. Numerical simulations of the model indicate that a quick response to incoming events and a refractory effect after outgoing events are key factors to reproduce the positive LV correlations.
A distributed analysis of Human impact on global sediment dynamics
NASA Astrophysics Data System (ADS)
Cohen, S.; Kettner, A.; Syvitski, J. P.
2012-12-01
Understanding riverine sediment dynamics is an important undertaking for both socially-relevant issues such as agriculture, water security and infrastructure management and for scientific analysis of landscapes, river ecology, oceanography and other disciplines. Providing good quantitative and predictive tools in therefore timely particularly in light of predicted climate and landuse changes. Ever increasing human activity during the Anthropocene have affected sediment dynamics in two major ways: (1) an increase is hillslope erosion due to agriculture, deforestation and landscape engineering and (2) trapping of sediment in dams and other man-made reservoirs. The intensity and dynamics between these man-made factors vary widely across the globe and in time and are therefore hard to predict. Using sophisticated numerical models is therefore warranted. Here we use a distributed global riverine sediment flux and water discharge model (WBMsed) to compare a pristine (without human input) and disturbed (with human input) simulations. Using these 50 year simulations we will show and discuss the complex spatial and temporal patterns of human effect on riverine sediment flux and water discharge.
GEM-CEDAR Study of Ionospheric Energy Input and Joule Dissipation
NASA Technical Reports Server (NTRS)
Rastaetter, Lutz; Kuznetsova, Maria M.; Shim, Jasoon
2012-01-01
We are studying ionospheric model performance for six events selected for the GEM-CEDAR modeling challenge. DMSP measurements of electric and magnetic fields are converted into Poynting Flux values that estimate the energy input into the ionosphere. Models generate rates of ionospheric Joule dissipation that are compared to the energy influx. Models include the ionosphere models CTIPe and Weimer and the ionospheric electrodynamic outputs of global magnetosphere models SWMF, LFM, and OpenGGCM. This study evaluates the model performance in terms of overall balance between energy influx and dissipation and tests the assumption that Joule dissipation occurs locally where electromagnetic energy flux enters the ionosphere. We present results in terms of skill scores now commonly used in metrics and validation studies and we can measure the agreement in terms of temporal and spatial distribution of dissipation (i.e, location of auroral activity) along passes of the DMSP satellite with the passes' proximity to the magnetic pole and solar wind activity level.
Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State
NASA Astrophysics Data System (ADS)
Stoop, Ruedi; Gomez, Florian
2016-07-01
The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.
Nonlinear multiplicative dendritic integration in neuron and network models
Zhang, Danke; Li, Yuanqing; Rasch, Malte J.; Wu, Si
2013-01-01
Neurons receive inputs from thousands of synapses distributed across dendritic trees of complex morphology. It is known that dendritic integration of excitatory and inhibitory synapses can be highly non-linear in reality and can heavily depend on the exact location and spatial arrangement of inhibitory and excitatory synapses on the dendrite. Despite this known fact, most neuron models used in artificial neural networks today still only describe the voltage potential of a single somatic compartment and assume a simple linear summation of all individual synaptic inputs. We here suggest a new biophysical motivated derivation of a single compartment model that integrates the non-linear effects of shunting inhibition, where an inhibitory input on the route of an excitatory input to the soma cancels or “shunts” the excitatory potential. In particular, our integration of non-linear dendritic processing into the neuron model follows a simple multiplicative rule, suggested recently by experiments, and allows for strict mathematical treatment of network effects. Using our new formulation, we further devised a spiking network model where inhibitory neurons act as global shunting gates, and show that the network exhibits persistent activity in a low firing regime. PMID:23658543
Barbosa, José Carlos S; Santos, Lukas G G V; Sant'Anna, Mércia V S; Souza, Michel R R; Damasceno, Flaviana C; Alexandre, Marcelo R
2016-03-15
The seasonal assessment of anthropogenic activities in the Vaza Barris estuarine river system, located in the Sergipe state, northeastern Brazil, was performed using the aliphatic hydrocarbon distribution. The aliphatic hydrocarbon and isoprenoid (Pristane and Phytane) concentrations ranged between 0.19 μg g(-1) and 8.5 μg g(-1) of dry weight. Data were analyzed using Kruskal-Wallis test, with significance level set at p<0.05, and no seasonality distribution change was observed. The Carbon Preference Index (CPI), associated with
NASA Astrophysics Data System (ADS)
Finzi, A.
2016-12-01
The rhizosphere is a hot spot and hot moment for biogeochemical cycles. Microbial activity, extracellular enzyme activity and element cycles are greatly enhanced by root derived carbon inputs. As such the rhizosphere may be an important driver of ecosystem responses to global changes such as rising temperatures and atmospheric CO2 concentrations. Empirical research on the rhizosphere is extensive but extrapolation of rhizosphere processes to large spatial and temporal scales is largely uninterrogated. Using a combination of field studies, meta-analysis and numerical models we have found good reason to think that scaling is possible. In this talk I discuss the results of this research and focus on the results of a new modeling effort that explicitly links root distribution and architecture with a model of microbial physiology to assess the extent to which rhizosphere processes may affect ecosystem responses to global change. Results to date suggest that root inputs of C and possibly nutrients (ie, nitrogen) impact the fate of new C inputs to the soil (ie, accumulation or loss) in response to warming and enhanced productivity at elevated CO2. The model also provides qualitative guidance on incorporating the known effects of ectomycorrhizal fungi on decomposition and rates of soil C and N cycling.
NASA Technical Reports Server (NTRS)
Fuller, C. R.; Hansen, C. H.; Snyder, S. D.
1991-01-01
Active control of sound radiation from a rectangular panel by two different methods has been experimentally studied and compared. In the first method a single control force applied directly to the structure is used with a single error microphone located in the radiated acoustic field. Global attenuation of radiated sound was observed to occur by two main mechanisms. For 'on-resonance' excitation, the control force had the effect of increasing the total panel input impedance presented to the nosie source, thus reducing all radiated sound. For 'off-resonance' excitation, the control force tends not significantly to modify the panel total response amplitude but rather to restructure the relative phases of the modes leading to a more complex vibration pattern and a decrease in radiation efficiency. For acoustic control, the second method, the number of acoustic sources required for global reduction was seen to increase with panel modal order. The mechanism in this case was that the acoustic sources tended to create an inverse pressure distribution at the panel surface and thus 'unload' the panel by reducing the panel radiation impedance. In general, control by structural inputs appears more effective than control by acoustic sources for structurally radiated noise.
Low-dimensional, morphologically accurate models of subthreshold membrane potential
Kellems, Anthony R.; Roos, Derrick; Xiao, Nan; Cox, Steven J.
2009-01-01
The accurate simulation of a neuron’s ability to integrate distributed synaptic input typically requires the simultaneous solution of tens of thousands of ordinary differential equations. For, in order to understand how a cell distinguishes between input patterns we apparently need a model that is biophysically accurate down to the space scale of a single spine, i.e., 1 μm. We argue here that one can retain this highly detailed input structure while dramatically reducing the overall system dimension if one is content to accurately reproduce the associated membrane potential at a small number of places, e.g., at the site of action potential initiation, under subthreshold stimulation. The latter hypothesis permits us to approximate the active cell model with an associated quasi-active model, which in turn we reduce by both time-domain (Balanced Truncation) and frequency-domain (ℋ2 approximation of the transfer function) methods. We apply and contrast these methods on a suite of typical cells, achieving up to four orders of magnitude in dimension reduction and an associated speed-up in the simulation of dendritic democratization and resonance. We also append a threshold mechanism and indicate that this reduction has the potential to deliver an accurate quasi-integrate and fire model. PMID:19172386
Ruiz-González, Clara; Archambault, Esther; Laforest-Lapointe, Isabelle; Del Giorgio, Paul A; Kembel, Steven W; Messier, Christian; Nock, Charles A; Beisner, Beatrix E
2018-06-14
Freshwater bacterioplankton communities are influenced by the inputs of material and bacteria from the surrounding landscape, yet few studies have investigated how different terrestrial inputs affect bacterioplankton. We examined whether the addition of soils collected under various tree species combinations differentially influences lake bacterial communities. Lake water was incubated for 6 days following addition of five different soils. We assessed the taxonomic composition (16S rRNA gene sequencing) and metabolic activity (Biolog Ecoplates) of lake bacteria with and without soil addition, and compared these to initial soil communities. Soil bacterial assemblages showed a strong influence of tree composition, but such community differences were not reflected in the structure of lake communities that developed during the experiment. Bacterial taxa showing the largest abundance increases during incubation were initially present in both lake water and across most soils, and were related to Cytophagales, Burkholderiales and Rhizobiales. No clear metabolic profiles based on inoculum source were found, yet soil-amended communities used 60% more substrate than non-inoculated communities. Overall, we show that terrestrial inputs influence aquatic communities by stimulating the growth and activity of certain ubiquitous taxa distributed across the terrestrial-aquatic continuum, yet different forest soils did not cause predictable changes in lake bacterioplankton assemblages.
Using high-resolution HiRISE digital elevation models to study early activity in polar regions
NASA Astrophysics Data System (ADS)
Portyankina, G.; Pommerol, A.; Aye, K.; Thomas, N.; Mattson, S.; Hansen, C. J.
2013-12-01
Martian polar areas are known for their very dynamic seasonal activity. It is believed that many observed seasonal phenomena here (cold CO2 jets, seasonal ice cracks, fan deposits, blotches) are produced by spring sublimation of CO2 slab ice. The Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) has exceptional capabilities to image polar areas at times when surface processes there are most active, i.e. in early local spring. HiRISE data can be also used to create digital elevation models (DEMs) of the martian surface if two images with similar lighting but different observation geometry are available. Polar areas pose some specific problems in this because of the oblique illumination conditions and seasonally changing ice cover. Nevertheless, HiRISE DEMs with spatial resolution up to 1 meter were produced for a few polar locations with active spring sublimation. These DEMs improve our ability to directly compare observations from different local times, sols, seasons and martian years. These observations may now be orthorectified by projecting them onto the well-defined topography thus eliminating the ambiguities of different observational geometries. In addition, the DEM can serve as a link between the observations and models of seasonal activity. Observations of martian polar areas in springs of multiple martian years have led to the hypothesis that meter-scale topography is triggering the activity in early spring. Solar energy input is critical for the timing of spring activity. In this context, variations of surface inclination are important especially in early spring, when orientation towards the sun is one of critical parameters determining the level of solar energy input, the amount of CO2 sublimation, and hence the level of any activity connected to it. In the present study existing DEMs of two polar locations serve as model terrains to test the previously proposed hypothesis of early initialization of CO2 activity by solar illumination. We use the NAIF SPICE system to calculate precise energy input to each surface facet accounting for their slope and aspect orientation and shadowing by neighbor terrains. We show that the energy distribution over the surface is highly heterogeneous and maximized on the sides of the channels and other small topographical features. Our study supports the hypothesis that solar energy input in polar areas in spring is directly related to the activity observed.
Spike Triggered Covariance in Strongly Correlated Gaussian Stimuli
Aljadeff, Johnatan; Segev, Ronen; Berry, Michael J.; Sharpee, Tatyana O.
2013-01-01
Many biological systems perform computations on inputs that have very large dimensionality. Determining the relevant input combinations for a particular computation is often key to understanding its function. A common way to find the relevant input dimensions is to examine the difference in variance between the input distribution and the distribution of inputs associated with certain outputs. In systems neuroscience, the corresponding method is known as spike-triggered covariance (STC). This method has been highly successful in characterizing relevant input dimensions for neurons in a variety of sensory systems. So far, most studies used the STC method with weakly correlated Gaussian inputs. However, it is also important to use this method with inputs that have long range correlations typical of the natural sensory environment. In such cases, the stimulus covariance matrix has one (or more) outstanding eigenvalues that cannot be easily equalized because of sampling variability. Such outstanding modes interfere with analyses of statistical significance of candidate input dimensions that modulate neuronal outputs. In many cases, these modes obscure the significant dimensions. We show that the sensitivity of the STC method in the regime of strongly correlated inputs can be improved by an order of magnitude or more. This can be done by evaluating the significance of dimensions in the subspace orthogonal to the outstanding mode(s). Analyzing the responses of retinal ganglion cells probed with Gaussian noise, we find that taking into account outstanding modes is crucial for recovering relevant input dimensions for these neurons. PMID:24039563
Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea.
Louati, A; Elleuch, B; Kallel, M; Saliot, A; Dagaut, J; Oudot, J
2001-06-01
The coastal area off the city of Sfax (730,000 inhabitants), well-known for fisheries and industrial activities, receives high inputs of organic matter mostly anthropogenic. Eighteen stations were selected in the vicinity of the direct discharge of industrial sewage effluents in the sea in order to study the spatial distribution of the organic contamination. Surface sediments sampled in the shallow shelf were analysed for hydrocarbons by Fourier transform infrared spectroscopy, gas chromatography and gas chromatography/mass spectrometry. Total hydrocarbon distributions revealed high contamination as compared to other coastal Mediterranean sites, with an average concentration of 1865 ppm/dry weight sediment. Gas chromatographic distribution patterns, values of unresolved mixture/n-alkane ratio and distributions of steranes and hopanes confirmed a petroleum contamination of the Arabian light crude oil type. Biogenic compounds were also identified with a series of short-chain carbon-numbered n-alkenes in the carbon range 16-24.
Batterton, M N; Robarts, D; Woodley, S K; Baum, M J
2006-06-12
Previously [S.K. Woodley, M.J. Baum, Differential activation of glomeruli in the ferret's main olfactory bulb by anal scent gland odors from males and females: an early step in mate identification, Eur. J. Neurosci. 20 (2004) 1025-1032], the receipt of intromission from a male activated glomeruli (indexed by Fos immunoreactivity in juxtaglomerular cells) in the main olfactory bulb (MOB) of estrous female ferrets which exceeded the activation seen after exposure to male anal scent gland odorants alone. We asked whether centrifugal inputs (e.g., from the locus coeruleus to the MOB) generated by the receipt of vaginal-cervical stimulation influence odor-induced MOB glomerular activation. We compared the activation of MOB glomeruli in estrous female ferrets which received a unilateral naris occlusion prior to exposure to: unscented air, volatile odorants from an anesthetized male, volatile + non-volatile odorants from direct physical contact with an anesthetized male, or mating stimulation. Little glomerular activation was observed in the MOB ipsilateral to an occluded naris, including females which received intromission. An equivalent distribution of activated glomeruli was observed in the ventral MOB of estrous females which either received mating stimulation or had direct physical contact with an anesthetized male. Considerably less glomerular activation occurred in females exposed only to volatile male odors. The MOB of female ferrets responded to body odorants from the opposite sex; however, there was no evidence that mating-induced centrifugal inputs directly activated MOB glomeruli or modified odor-induced glomerular activation.
NASA's Long-Term Archive (LTA) of ICESat Data at the National Snow and Ice Data Center (NSIDC)
NASA Astrophysics Data System (ADS)
Fowler, D. K.; Moses, J. F.; Dimarzio, J. P.; Webster, D.
2011-12-01
Data Stewardship, preservation, and reproducibility are becoming principal parts of a data manager's work. In an era of distributed data and information systems, where the host location ought to be transparent to the internet user, it is of vital importance that organizations make a commitment to both current and long-term goals of data management and the preservation of scientific data. NASA's EOS Data and Information System (EOSDIS) is a distributed system of discipline-specific archives and mission-specific science data processing facilities. Satellite missions and instruments go through a lifecycle that involves pre-launch calibration, on-orbit data acquisition and product generation, and final reprocessing. Data products and descriptions flow to the archives for distribution on a regular basis during the active part of the mission. However there is additional information from the product generation and science teams needed to ensure the observations will be useful for long term climate studies. Examples include ancillary input datasets, product generation software, and production history as developed by the team during the course of product generation. These data and information will need to be archived after product data processing is completed. Using inputs from the USGCRP Workshop on Long Term Archive Requirements (1998), discussions with EOS instrument teams, and input from the 2011 ESIPS Federation meeting, NASA is developing a set of Earth science data and information content requirements for long term preservation that will ultimately be used for all the EOS missions as they come to completion. Since the ICESat/GLAS mission is one of the first to come to an end, NASA and NSIDC are preparing for long-term support of the ICESat mission data now. For a long-term archive, it is imperative that there is sufficient information about how products were prepared in order to convince future researchers that the scientific results are accurate, understandable, useable, and reproducible. Our experience suggests data centers know what to preserve in most cases, i.e., the processing algorithms along with the Level 0 or Level 1a input and ancillary products used to create the higher-level products will be archived and made available to users. In other cases the data centers must seek guidance from the science team, e.g., for pre-launch, calibration/validation, and test data. All these data are an important part of product provenance, contributing to and helping establish the integrity of the scientific observations for long term climate studies. In this presentation we will describe application of information content requirements, guidance from the ICESat/GLAS Science Team and the flow of additional information from the ICESat Science team and Science Investigator-Led Processing System to the Distributed Active Archive Center.
NASA Astrophysics Data System (ADS)
Behrens, Melanie K.; Pahnke, Katharina; Paffrath, Ronja; Schnetger, Bernhard; Brumsack, Hans-Jürgen
2018-03-01
Recent studies suggest that transport and water mass mixing may play a dominant role in controlling the distribution of dissolved rare earth element concentrations ([REE]) at least in parts of the North and South Atlantic and the Pacific Southern Ocean. Here we report vertically and spatially high-resolution profiles of dissolved REE concentrations ([REE]) along a NW-SE transect in the West Pacific and examine the processes affecting the [REE] distributions in this area. Surface water REE patterns reveal sources of trace element (TE) input near South Korea and in the tropical equatorial West Pacific. Positive europium anomalies and middle REE enrichments in surface and subsurface waters are indicative of TE input from volcanic islands and fingerprint in detail small-scale equatorial zonal eastward transport of TEs to the iron-limited tropical East Pacific. The low [REE] of North and South Pacific Tropical Waters and Antarctic Intermediate Water are a long-range (i.e., preformed) laterally advected signal, whereas increasing [REE] with depth within North Pacific Intermediate Water result from release from particles. Optimum multiparameter analysis of deep to bottom waters indicates a dominant control of lateral transport and mixing on [REE] at the depth of Lower Circumpolar Deep Water (≥3000 m water depth; ∼75-100% explained by water mass mixing), allowing the northward tracing of LCDW to ∼28°N in the Northwest Pacific. In contrast, scavenging in the hydrothermal plumes of the Lau Basin and Tonga-Fiji area at 1500-2000 m water depth leads to [REE] deficits (∼40-60% removal) and marked REE fractionation in the tropical West Pacific. Overall, our data provide evidence for active trace element input both near South Korea and Papua New Guinea, and for a strong lateral transport component in the distribution of dissolved REEs in large parts of the West Pacific.
A Step-Wise Approach to Elicit Triangular Distributions
NASA Technical Reports Server (NTRS)
Greenberg, Marc W.
2013-01-01
Adapt/combine known methods to demonstrate an expert judgment elicitation process that: 1.Models expert's inputs as a triangular distribution, 2.Incorporates techniques to account for expert bias and 3.Is structured in a way to help justify expert's inputs. This paper will show one way of "extracting" expert opinion for estimating purposes. Nevertheless, as with most subjective methods, there are many ways to do this.
The uncertainty of nitrous oxide emissions from grazed grasslands: A New Zealand case study
NASA Astrophysics Data System (ADS)
Kelliher, Francis M.; Henderson, Harold V.; Cox, Neil R.
2017-01-01
Agricultural soils emit nitrous oxide (N2O), a greenhouse gas and the primary source of nitrogen oxides which deplete stratospheric ozone. Agriculture has been estimated to be the largest anthropogenic N2O source. In New Zealand (NZ), pastoral agriculture uses half the land area. To estimate the annual N2O emissions from NZ's agricultural soils, the nitrogen (N) inputs have been determined and multiplied by an emission factor (EF), the mass fraction of N inputs emitted as N2Osbnd N. To estimate the associated uncertainty, we developed an analytical method. For comparison, another estimate was determined by Monte Carlo numerical simulation. For both methods, expert judgement was used to estimate the N input uncertainty. The EF uncertainty was estimated by meta-analysis of the results from 185 NZ field trials. For the analytical method, assuming a normal distribution and independence of the terms used to calculate the emissions (correlation = 0), the estimated 95% confidence limit was ±57%. When there was a normal distribution and an estimated correlation of 0.4 between N input and EF, the latter inferred from experimental data involving six NZ soils, the analytical method estimated a 95% confidence limit of ±61%. The EF data from 185 NZ field trials had a logarithmic normal distribution. For the Monte Carlo method, assuming a logarithmic normal distribution for EF, a normal distribution for the other terms and independence of all terms, the estimated 95% confidence limits were -32% and +88% or ±60% on average. When there were the same distribution assumptions and a correlation of 0.4 between N input and EF, the Monte Carlo method estimated 95% confidence limits were -34% and +94% or ±64% on average. For the analytical and Monte Carlo methods, EF uncertainty accounted for 95% and 83% of the emissions uncertainty when the correlation between N input and EF was 0 and 0.4, respectively. As the first uncertainty analysis of an agricultural soils N2O emissions inventory using "country-specific" field trials to estimate EF uncertainty, this can be a potentially informative case study for the international scientific community.
Tucker, Thomas R; Katz, Lawrence C
2003-01-01
To investigate how neurons in cortical layer 2/3 integrate horizontal inputs arising from widely distributed sites, we combined intracellular recording and voltage-sensitive dye imaging to visualize the spatiotemporal dynamics of neuronal activity evoked by electrical stimulation of multiple sites in visual cortex. Individual stimuli evoked characteristic patterns of optical activity, while delivering stimuli at multiple sites generated interacting patterns in the regions of overlap. We observed that neurons in overlapping regions received convergent horizontal activation that generated nonlinear responses due to the emergence of large inhibitory potentials. The results indicate that co-activation of multiple sets of horizontal connections recruit strong inhibition from local inhibitory networks, causing marked deviations from simple linear integration.
A Methodology and Analysis for Cost-Effective Training in the AN/TSQ-73 Missile Minder
1978-02-01
subsequent users must join the program in progress. 10. Languae Laboratory - Audio, Active - Compare Mode - Al audio presenta- tional device that distributes...initial performanceof the Fystem, change inputs to or elements within the system and 4note changes in the performance of the system. 33. Teaching...Any contest, governed by rules, between teams or individuals, where the contest is a dynamic model of some real system, and a computer is used in
Neuscamman, Stephanie J.; Yu, Kristen L.
2016-05-01
The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorologicalmore » observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3–D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Lastly, changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.« less
Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network
Del Papa, Bruno; Priesemann, Viola
2017-01-01
Many experiments have suggested that the brain operates close to a critical state, based on signatures of criticality such as power-law distributed neuronal avalanches. In neural network models, criticality is a dynamical state that maximizes information processing capacities, e.g. sensitivity to input, dynamical range and storage capacity, which makes it a favorable candidate state for brain function. Although models that self-organize towards a critical state have been proposed, the relation between criticality signatures and learning is still unclear. Here, we investigate signatures of criticality in a self-organizing recurrent neural network (SORN). Investigating criticality in the SORN is of particular interest because it has not been developed to show criticality. Instead, the SORN has been shown to exhibit spatio-temporal pattern learning through a combination of neural plasticity mechanisms and it reproduces a number of biological findings on neural variability and the statistics and fluctuations of synaptic efficacies. We show that, after a transient, the SORN spontaneously self-organizes into a dynamical state that shows criticality signatures comparable to those found in experiments. The plasticity mechanisms are necessary to attain that dynamical state, but not to maintain it. Furthermore, onset of external input transiently changes the slope of the avalanche distributions – matching recent experimental findings. Interestingly, the membrane noise level necessary for the occurrence of the criticality signatures reduces the model’s performance in simple learning tasks. Overall, our work shows that the biologically inspired plasticity and homeostasis mechanisms responsible for the SORN’s spatio-temporal learning abilities can give rise to criticality signatures in its activity when driven by random input, but these break down under the structured input of short repeating sequences. PMID:28552964
NASA Astrophysics Data System (ADS)
Moulds, S.; Djordjevic, S.; Savic, D.
2017-12-01
The Global Change Assessment Model (GCAM), an integrated assessment model, provides insight into the interactions and feedbacks between physical and human systems. The land system component of GCAM, which simulates land use activities and the production of major crops, produces output at the subregional level which must be spatially downscaled in order to use with gridded impact assessment models. However, existing downscaling routines typically consider cropland as a homogeneous class and do not provide information about land use intensity or specific management practices such as irrigation and multiple cropping. This paper presents a spatial allocation procedure to downscale crop production data from GCAM to a spatial grid, producing a time series of maps which show the spatial distribution of specific crops (e.g. rice, wheat, maize) at four input levels (subsistence, low input rainfed, high input rainfed and high input irrigated). The model algorithm is constrained by available cropland at each time point and therefore implicitly balances extensification and intensification processes in order to meet global food demand. It utilises a stochastic approach such that an increase in production of a particular crop is more likely to occur in grid cells with a high biophysical suitability and neighbourhood influence, while a fall in production will occur more often in cells with lower suitability. User-supplied rules define the order in which specific crops are downscaled as well as allowable transitions. A regional case study demonstrates the ability of the model to reproduce historical trends in India by comparing the model output with district-level agricultural inventory data. Lastly, the model is used to predict the spatial distribution of crops globally under various GCAM scenarios.
Kurashige, Hiroki; Câteau, Hideyuki
2011-01-01
Mounting lines of evidence suggest the significant computational ability of a single neuron empowered by active dendritic dynamics. This motivates us to study what functionality can be acquired by a network of such neurons. The present paper studies how such rich single-neuron dendritic dynamics affects the network dynamics, a question which has scarcely been specifically studied to date. We simulate neurons with active dendrites networked locally like cortical pyramidal neurons, and find that naturally arising localized activity – called a bump – can be in two distinct modes, mobile or immobile. The mode can be switched back and forth by transient input to the cortical network. Interestingly, this functionality arises only if each neuron is equipped with the observed slow dendritic dynamics and with in vivo-like noisy background input. If the bump activity is considered to indicate a point of attention in the sensory areas or to indicate a representation of memory in the storage areas of the cortex, this would imply that the flexible mode switching would be of great potential use for the brain as an information processing device. We derive these conclusions using a natural extension of the conventional field model, which is defined by combining two distinct fields, one representing the somatic population and the other representing the dendritic population. With this tool, we analyze the spatial distribution of the degree of after-spike adaptation and explain how we can understand the presence of the two distinct modes and switching between the modes. We also discuss the possible functional impact of this mode-switching ability. PMID:21931635
NASA Astrophysics Data System (ADS)
Mita, Akifumi; Okamoto, Atsushi; Funakoshi, Hisatoshi
2004-06-01
We have proposed an all-optical authentic memory with the two-wave encryption method. In the recording process, the image data are encrypted to a white noise by the random phase masks added on the input beam with the image data and the reference beam. Only reading beam with the phase-conjugated distribution of the reference beam can decrypt the encrypted data. If the encrypted data are read out with an incorrect phase distribution, the output data are transformed into a white noise. Moreover, during read out, reconstructions of the encrypted data interfere destructively resulting in zero intensity. Therefore our memory has a merit that we can detect unlawful accesses easily by measuring the output beam intensity. In our encryption method, the random phase mask on the input plane plays important roles in transforming the input image into a white noise and prohibiting to decrypt a white noise to the input image by the blind deconvolution method. Without this mask, when unauthorized users observe the output beam by using CCD in the readout with the plane wave, the completely same intensity distribution as that of Fourier transform of the input image is obtained. Therefore the encrypted image will be decrypted easily by using the blind deconvolution method. However in using this mask, even if unauthorized users observe the output beam using the same method, the encrypted image cannot be decrypted because the observed intensity distribution is dispersed at random by this mask. Thus it can be said the robustness is increased by this mask. In this report, we compare two correlation coefficients, which represents the degree of a white noise of the output image, between the output image and the input image in using this mask or not. We show that the robustness of this encryption method is increased as the correlation coefficient is improved from 0.3 to 0.1 by using this mask.
Error Assessment of Global Ionosphere Models for the Vertical Electron Content
NASA Astrophysics Data System (ADS)
Dettmering, D.; Schmidt, M.
2012-04-01
The Total Electron Content (TEC) is a key parameter in ionosphere modeling. It has the major impact on the propagation of radio waves in the ionized atmosphere, which is crucial for terrestrial and Earth-space communications including navigation satellite systems such as GNSS. Most existing TEC models assume all free electrons condensed in one thin layer and neglect the vertical distribution (single-layer approach); those called Global Ionosphere Models (GIM) describe the Vertical Electron Content (VTEC) in dependency of latitude, longitude and time. The most common GIMs are computed by the International GNSS Service (IGS) and are based on GNSS measurements mapped from slant TEC to the vertical by simple mapping functions. Five analysis centers compute solutions which are combined to one final IGS product. In addition, global VTEC values from climatology ionosphere models such as IRI2007 and NIC09 are available. All these models have no (ore only sparse) input data over the oceans and show poorer accuracy in these regions. To overcome these disadvantages, the use of measurement data sets distributed uniformly over continents and open oceans is conducive. At DGFI, an approach has been developed using B-spline functions to model the VTEC in three dimensions. In addition to terrestrial GNSS measurements, data from satellite altimetry and radio occultation from Low Earth Orbiters (LEO) are used as input to ensure a more uniform data distribution. The accuracy of the different GIMs depends on the quality and quantity of the input data as well as the quality of the model approach and the actual ionosphere conditions. Most models provide RMS values together with the VTEC; however most of these values are only precisions and not meaningful for realistic error assessment. In order to get an impression on the absolute accuracy of the models in different regions, this contribution compares different GIMs (IGS, CODE, JPL, DGFI, IRI2007, and NIC09) to each other and to actual measurements. To cover different ionosphere conditions, two time periods of about two weeks are used, one in May 2002 with high solar activity and one in December 2008 with moderate activity. This procedure will provide more reasonable error estimates for the GIMs under investigation.
Laxman, Karthik; Myint, Myo Tay Zar; Bourdoucen, Hadj; Dutta, Joydeep
2014-07-09
Electrodes composed of activated carbon cloth (ACC) coated with zinc oxide (ZnO) nanorods are compared with plain ACC electrodes, with respect to their desalination efficiency of a 17 mM NaCl solution at different applied potentials. Polarization of the ZnO nanorods increased the penetration depth and strength of the electric field between the electrodes, leading to an increase in the capacitance and charge efficiency at reduced input charge ratios. Uniform distribution of the electric field lines between two electrodes coated with ZnO nanorods led to faster ion adsorption rates, reduced the electrode saturation time, and increased the average desalination efficiency by ∼45% for all applied potentials. The electrodes were characterized for active surface area, capacitance from cyclic voltammetry, theoretical assessment of surface area utilization, and the magnitude of electric field force acting on an ion of unit charge for each potential.
What Can Quantum Optics Say about Computational Complexity Theory?
NASA Astrophysics Data System (ADS)
Rahimi-Keshari, Saleh; Lund, Austin P.; Ralph, Timothy C.
2015-02-01
Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum theory and the computational complexity theory point of view. We derive a general formula for calculating the output probabilities, and by considering input thermal states, we show that the output probabilities are proportional to permanents of positive-semidefinite Hermitian matrices. It is believed that approximating permanents of complex matrices in general is a #P-hard problem. However, we show that these permanents can be approximated with an algorithm in the BPPNP complexity class, as there exists an efficient classical algorithm for sampling from the output probability distribution. We further consider input squeezed-vacuum states and discuss the complexity of sampling from the probability distribution at the output.
Simulation of speckle patterns with pre-defined correlation distributions.
Song, Lipei; Zhou, Zhen; Wang, Xueyan; Zhao, Xing; Elson, Daniel S
2016-03-01
We put forward a method to easily generate a single or a sequence of fully developed speckle patterns with pre-defined correlation distribution by utilizing the principle of coherent imaging. The few-to-one mapping between the input correlation matrix and the correlation distribution between simulated speckle patterns is realized and there is a simple square relationship between the values of these two correlation coefficient sets. This method is demonstrated both theoretically and experimentally. The square relationship enables easy conversion from any desired correlation distribution. Since the input correlation distribution can be defined by a digital matrix or a gray-scale image acquired experimentally, this method provides a convenient way to simulate real speckle-related experiments and to evaluate data processing techniques.
Simulation of speckle patterns with pre-defined correlation distributions
Song, Lipei; Zhou, Zhen; Wang, Xueyan; Zhao, Xing; Elson, Daniel S.
2016-01-01
We put forward a method to easily generate a single or a sequence of fully developed speckle patterns with pre-defined correlation distribution by utilizing the principle of coherent imaging. The few-to-one mapping between the input correlation matrix and the correlation distribution between simulated speckle patterns is realized and there is a simple square relationship between the values of these two correlation coefficient sets. This method is demonstrated both theoretically and experimentally. The square relationship enables easy conversion from any desired correlation distribution. Since the input correlation distribution can be defined by a digital matrix or a gray-scale image acquired experimentally, this method provides a convenient way to simulate real speckle-related experiments and to evaluate data processing techniques. PMID:27231589
New method for calculating the coupling coefficient in graded index optical fibers
NASA Astrophysics Data System (ADS)
Savović, Svetislav; Djordjevich, Alexandar
2018-05-01
A simple method is proposed for determining the mode coupling coefficient D in graded index multimode optical fibers. It only requires observation of the output modal power distribution P(m, z) for one fiber length z as the Gaussian launching modal power distribution changes, with the Gaussian input light distribution centered along the graded index optical fiber axis (θ0 = 0) without radial offset (r0 = 0). A similar method we previously proposed for calculating the coupling coefficient D in a step-index multimode optical fibers where the output angular power distributions P(θ, z) for one fiber length z with the Gaussian input light distribution launched centrally along the step-index optical fiber axis (θ0 = 0) is needed to be known.
NASA Astrophysics Data System (ADS)
Vipindas, P. V.; Anas, Abdulaziz; Jayalakshmy, K. V.; Lallu, K. R.; Benny, P. Y.; Shanta, Nair
2018-02-01
Estuaries are ecologically important environments, which function as the reception point of nitrogenous inputs of terrestrial and anthropogenic origin. In the present study, we discuss the influence of nutrient characteristics on the distribution and activity of nitrifiers in the water column of Cochin Estuary (CE), a tropical estuary along the southeast Arabian Sea (SEAS). Nitrifying bacteria (i.e. Ammonia- (AOB) and nitrite- (NOB) -oxidizing bacteria), which were enumerated using fluorescent in situ hybridization (FISH), showed marked seasonality while maintaining the abundance within an order of 107 cells L-1. Denaturing Gradient Gel Electrophoresis (DGGE) analysis of AOB exhibited spatio-temporal adaptability without much variation. Nitrification rate in the CE ranged from 2.25 to 426.17 nmol N L-1 h-1 and it was 10-40 fold higher during the pre-monsoon compared with the monsoon. We attributed this increase to high nutrient availability during pre-monsoon due to low flushing rate of the estuary. The study shows that the distribution and activities of nitrifiers in the CE are modulated by the changes in nutrient concentration imparted by the monsoon-driven seasonal variation in river-water discharge and flushing.
Automatic image equalization and contrast enhancement using Gaussian mixture modeling.
Celik, Turgay; Tjahjadi, Tardi
2012-01-01
In this paper, we propose an adaptive image equalization algorithm that automatically enhances the contrast in an input image. The algorithm uses the Gaussian mixture model to model the image gray-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input gray-level intervals. The contrast equalized image is generated by transforming the pixels' gray levels in each input interval to the appropriate output gray-level interval according to the dominant Gaussian component and the cumulative distribution function of the input interval. To take account of the hypothesis that homogeneous regions in the image represent homogeneous silences (or set of Gaussian components) in the image histogram, the Gaussian components with small variances are weighted with smaller values than the Gaussian components with larger variances, and the gray-level distribution is also used to weight the components in the mapping of the input interval to the output interval. Experimental results show that the proposed algorithm produces better or comparable enhanced images than several state-of-the-art algorithms. Unlike the other algorithms, the proposed algorithm is free of parameter setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types.
Probabilistic estimation of residential air exchange rates for ...
Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER measurements. An algorithm for probabilistically estimating AER was developed based on the Lawrence Berkley National Laboratory Infiltration model utilizing housing characteristics and meteorological data with adjustment for window opening behavior. The algorithm was evaluated by comparing modeled and measured AERs in four US cities (Los Angeles, CA; Detroit, MI; Elizabeth, NJ; and Houston, TX) inputting study-specific data. The impact on the modeled AER of using publically available housing data representative of the region for each city was also assessed. Finally, modeled AER based on region-specific inputs was compared with those estimated using literature-based distributions. While modeled AERs were similar in magnitude to the measured AER they were consistently lower for all cities except Houston. AERs estimated using region-specific inputs were lower than those using study-specific inputs due to differences in window opening probabilities. The algorithm produced more spatially and temporally variable AERs compared with literature-based distributions reflecting within- and between-city differences, helping reduce error in estimates of air pollutant exposure. Published in the Journal of
Harnett, Mark T.; Magee, Jeffrey C.
2015-01-01
The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. PMID:25609619
Allken, Vaneeda; Chepkoech, Joy-Loi; Einevoll, Gaute T; Halnes, Geir
2014-01-01
Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca(2+)-spikes and possibly by backpropagating action potentials. Ca(2+)-spikes in INs are predominantly mediated by T-type Ca(2+)-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling.
Allken, Vaneeda; Chepkoech, Joy-Loi; Einevoll, Gaute T.; Halnes, Geir
2014-01-01
Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca2+-spikes and possibly by backpropagating action potentials. Ca2+-spikes in INs are predominantly mediated by T-type Ca2+-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling. PMID:25268996
Capacity of the generalized PPM channel
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Klimesh, Matt; McEliece, Bob; Moision, Bruce
2004-01-01
We show the capacity of a generalized pulse-position-modulation (PPM) channel, where the input vectors may be any set that allows a transitive group of coordinate permutations, is achieved by a uniform input distribution.
Spatially Distributed Dendritic Resonance Selectively Filters Synaptic Input
Segev, Idan; Shamma, Shihab
2014-01-01
An important task performed by a neuron is the selection of relevant inputs from among thousands of synapses impinging on the dendritic tree. Synaptic plasticity enables this by strenghtening a subset of synapses that are, presumably, functionally relevant to the neuron. A different selection mechanism exploits the resonance of the dendritic membranes to preferentially filter synaptic inputs based on their temporal rates. A widely held view is that a neuron has one resonant frequency and thus can pass through one rate. Here we demonstrate through mathematical analyses and numerical simulations that dendritic resonance is inevitably a spatially distributed property; and therefore the resonance frequency varies along the dendrites, and thus endows neurons with a powerful spatiotemporal selection mechanism that is sensitive both to the dendritic location and the temporal structure of the incoming synaptic inputs. PMID:25144440
NASA Astrophysics Data System (ADS)
Cartwright, Ian; Hofmann, Harald
2016-09-01
Understanding the location and magnitude of groundwater inflows to rivers is important for the protection of riverine ecosystems and the management of connected groundwater and surface water systems. This study utilizes 222Rn activities and Cl concentrations in the Avon River, southeast Australia, to determine the distribution of groundwater inflows and to understand the importance of parafluvial flow on the 222Rn budget. The distribution of 222Rn activities and Cl concentrations implies that the Avon River contains alternating gaining and losing reaches. The location of groundwater inflows changed as a result of major floods in 2011-2013 that caused significant movement of the floodplain sediments. The floodplain of the Avon River comprises unconsolidated coarse-grained sediments with numerous point bars and sediment banks through which significant parafluvial flow is likely. The 222Rn activities in the Avon River, which are locally up to 3690 Bq m-3, result from a combination of groundwater inflows and the input of water from the parafluvial zone that has high 222Rn activities due to 222Rn emanation from the alluvial sediments. If the high 222Rn activities were ascribed solely to groundwater inflows, the calculated net groundwater inflows would exceed the measured increase in streamflow along the river by up to 490 % at low streamflows. Uncertainties in the 222Rn activities of groundwater, the gas transfer coefficient, and the degree of hyporheic exchange cannot explain a discrepancy of this magnitude. The proposed model of parafluvial flow envisages that water enters the alluvial sediments in reaches where the river is losing and subsequently re-enters the river in the gaining reaches with flow paths of tens to hundreds of metres. Parafluvial flow is likely to be important in rivers with coarse-grained alluvial sediments on their floodplains and failure to quantify the input of 222Rn from parafluvial flow will result in overestimating groundwater inflows to rivers.
The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex
Bajo, Victoria M; Leach, Nicholas D; Cordery, Patricia M; Nodal, Fernando R; King, Andrew J
2014-01-01
Cholinergic inputs to the auditory cortex can modulate sensory processing and regulate stimulus-specific plasticity according to the behavioural state of the subject. In order to understand how acetylcholine achieves this, it is essential to elucidate the circuitry by which cholinergic inputs influence the cortex. In this study, we described the distribution of cholinergic neurons in the basal forebrain and their inputs to the auditory cortex of the ferret, a species used increasingly in studies of auditory learning and plasticity. Cholinergic neurons in the basal forebrain, visualized by choline acetyltransferase and p75 neurotrophin receptor immunocytochemistry, were distributed through the medial septum, diagonal band of Broca, and nucleus basalis magnocellularis. Epipial tracer deposits and injections of the immunotoxin ME20.4-SAP (monoclonal antibody specific for the p75 neurotrophin receptor conjugated to saporin) in the auditory cortex showed that cholinergic inputs originate almost exclusively in the ipsilateral nucleus basalis. Moreover, tracer injections in the nucleus basalis revealed a pattern of labelled fibres and terminal fields that resembled acetylcholinesterase fibre staining in the auditory cortex, with the heaviest labelling in layers II/III and in the infragranular layers. Labelled fibres with small en-passant varicosities and simple terminal swellings were observed throughout all auditory cortical regions. The widespread distribution of cholinergic inputs from the nucleus basalis to both primary and higher level areas of the auditory cortex suggests that acetylcholine is likely to be involved in modulating many aspects of auditory processing. PMID:24945075
Saund, Jasjot; Dautan, Daniel; Rostron, Claire; Urcelay, Gonzalo P; Gerdjikov, Todor V
2017-08-01
Corticostriatal circuits are widely implicated in the top-down control of attention including inhibitory control and behavioural flexibility. However, recent neurophysiological evidence also suggests a role for thalamic inputs to striatum in behaviours related to salient, reward-paired cues. Here, we used designer receptors exclusively activated by designer drugs (DREADDs) to investigate the role of parafascicular (Pf) thalamic inputs to the dorsomedial striatum (DMS) using the five-choice serial reaction time task (5CSRTT) in rats. The 5CSRTT requires sustained attention in order to detect spatially and temporally distributed visual cues and provides measures of inhibitory control related to impulsivity (premature responses) and compulsivity (perseverative responses). Rats underwent bilateral Pf injections of the DREADD vector, AAV2-CaMKIIa-HA-hM4D(Gi)-IRES-mCitrine. The DREADD agonist, clozapine N-oxide (CNO; 1 μl bilateral; 3 μM) or vehicle, was injected into DMS 1 h before behavioural testing. Task parameters were manipulated to increase attention load or reduce stimulus predictability respectively. We found that inhibition of the Pf-DMS projection significantly increased perseverative responses when stimulus predictability was reduced but had no effect on premature responses or response accuracy, even under increased attentional load. Control experiments showed no effects on locomotor activity in an open field. These results complement previous lesion work in which the DMS and orbitofrontal cortex were similarly implicated in perseverative responses and suggest a specific role for thalamostriatal inputs in inhibitory control.
Electric Power Consumption Coefficients for U.S. Industries: Regional Estimation and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boero, Riccardo
Economic activity relies on electric power provided by electrical generation, transmission, and distribution systems. This paper presents a method developed at Los Alamos National Laboratory to estimate electric power consumption by different industries in the United States. Results are validated through comparisons with existing literature and benchmarking data sources. We also discuss the limitations and applications of the presented method, such as estimating indirect electric power consumption and assessing the economic impact of power outages based on input-output economic models.
Hippocampal CA1 Ripples as Inhibitory Transients
Krishnan, Giri P; Fellous, Jean-Marc; Bazhenov, Maxim
2016-01-01
Memories are stored and consolidated as a result of a dialogue between the hippocampus and cortex during sleep. Neurons active during behavior reactivate in both structures during sleep, in conjunction with characteristic brain oscillations that may form the neural substrate of memory consolidation. In the hippocampus, replay occurs within sharp wave-ripples: short bouts of high-frequency activity in area CA1 caused by excitatory activation from area CA3. In this work, we develop a computational model of ripple generation, motivated by in vivo rat data showing that ripples have a broad frequency distribution, exponential inter-arrival times and yet highly non-variable durations. Our study predicts that ripples are not persistent oscillations but result from a transient network behavior, induced by input from CA3, in which the high frequency synchronous firing of perisomatic interneurons does not depend on the time scale of synaptic inhibition. We found that noise-induced loss of synchrony among CA1 interneurons dynamically constrains individual ripple duration. Our study proposes a novel mechanism of hippocampal ripple generation consistent with a broad range of experimental data, and highlights the role of noise in regulating the duration of input-driven oscillatory spiking in an inhibitory network. PMID:27093059
Memory-induced resonancelike suppression of spike generation in a resonate-and-fire neuron model
NASA Astrophysics Data System (ADS)
Mankin, Romi; Paekivi, Sander
2018-01-01
The behavior of a stochastic resonate-and-fire neuron model based on a reduction of a fractional noise-driven generalized Langevin equation (GLE) with a power-law memory kernel is considered. The effect of temporally correlated random activity of synaptic inputs, which arise from other neurons forming local and distant networks, is modeled as an additive fractional Gaussian noise in the GLE. Using a first-passage-time formulation, in certain system parameter domains exact expressions for the output interspike interval (ISI) density and for the survival probability (the probability that a spike is not generated) are derived and their dependence on input parameters, especially on the memory exponent, is analyzed. In the case of external white noise, it is shown that at intermediate values of the memory exponent the survival probability is significantly enhanced in comparison with the cases of strong and weak memory, which causes a resonancelike suppression of the probability of spike generation as a function of the memory exponent. Moreover, an examination of the dependence of multimodality in the ISI distribution on input parameters shows that there exists a critical memory exponent αc≈0.402 , which marks a dynamical transition in the behavior of the system. That phenomenon is illustrated by a phase diagram describing the emergence of three qualitatively different structures of the ISI distribution. Similarities and differences between the behavior of the model at internal and external noises are also discussed.
Fast-axial turbulent flow CO2 laser output characteristics and scaling parameters
NASA Astrophysics Data System (ADS)
Dembovetsky, V. V.; Zavalova, Valentina Y.; Zavalov, Yuri N.
1996-04-01
The paper presents the experimental results of evaluating the output characteristics of TLA- 600 carbon-dioxide laser with axial turbulent gas flow, as well as the results of numerical modeling. The output characteristic and spatial distribution of laser beam were measured with regard to specific energy input, working mixture pressure, active media length and output mirror reflection. The paper presents the results of experimental and theoretical study and design decisions on a succession of similar type industrial carbon-dioxide lasers with fast-axial gas-flow and dc discharge excitation of active medium developed at NICTL RAN. As an illustration, characteristics of the TLA-600 laser are cited.
Dynamic Organization of Hierarchical Memories
Kurikawa, Tomoki; Kaneko, Kunihiko
2016-01-01
In the brain, external objects are categorized in a hierarchical way. Although it is widely accepted that objects are represented as static attractors in neural state space, this view does not take account interaction between intrinsic neural dynamics and external input, which is essential to understand how neural system responds to inputs. Indeed, structured spontaneous neural activity without external inputs is known to exist, and its relationship with evoked activities is discussed. Then, how categorical representation is embedded into the spontaneous and evoked activities has to be uncovered. To address this question, we studied bifurcation process with increasing input after hierarchically clustered associative memories are learned. We found a “dynamic categorization”; neural activity without input wanders globally over the state space including all memories. Then with the increase of input strength, diffuse representation of higher category exhibits transitions to focused ones specific to each object. The hierarchy of memories is embedded in the transition probability from one memory to another during the spontaneous dynamics. With increased input strength, neural activity wanders over a narrower state space including a smaller set of memories, showing more specific category or memory corresponding to the applied input. Moreover, such coarse-to-fine transitions are also observed temporally during transient process under constant input, which agrees with experimental findings in the temporal cortex. These results suggest the hierarchy emerging through interaction with an external input underlies hierarchy during transient process, as well as in the spontaneous activity. PMID:27618549
NASA Technical Reports Server (NTRS)
Boudreau, R. D.
1973-01-01
A numerical model is developed which calculates the atmospheric corrections to infrared radiometric measurements due to absorption and emission by water vapor, carbon dioxide, and ozone. The corrections due to aerosols are not accounted for. The transmissions functions for water vapor, carbon dioxide, and water are given. The model requires as input the vertical distribution of temperature and water vapor as determined by a standard radiosonde. The vertical distribution of carbon dioxide is assumed to be constant. The vertical distribution of ozone is an average of observed values. The model also requires as input the spectral response function of the radiometer and the nadir angle at which the measurements were made. A listing of the FORTRAN program is given with details for its use and examples of input and output listings. Calculations for four model atmospheres are presented.
Optimal allocation of testing resources for statistical simulations
NASA Astrophysics Data System (ADS)
Quintana, Carolina; Millwater, Harry R.; Singh, Gulshan; Golden, Patrick
2015-07-01
Statistical estimates from simulation involve uncertainty caused by the variability in the input random variables due to limited data. Allocating resources to obtain more experimental data of the input variables to better characterize their probability distributions can reduce the variance of statistical estimates. The methodology proposed determines the optimal number of additional experiments required to minimize the variance of the output moments given single or multiple constraints. The method uses multivariate t-distribution and Wishart distribution to generate realizations of the population mean and covariance of the input variables, respectively, given an amount of available data. This method handles independent and correlated random variables. A particle swarm method is used for the optimization. The optimal number of additional experiments per variable depends on the number and variance of the initial data, the influence of the variable in the output function and the cost of each additional experiment. The methodology is demonstrated using a fretting fatigue example.
NASA Astrophysics Data System (ADS)
Zhang, Wangshou; Swaney, Dennis; Hong, Bongghi; Howarth, Robert
2017-04-01
Phosphorus (P) originating from anthropogenic sources as a pollutant of surface waters has been an environmental issue for decades because of the well-known role of P in eutrophication. Human activities, such as food production and rapid urbanization, have been linked to increased P inputs which are often accompanied by corresponding increases in riverine P export. However, uneven distributions of anthropogenic P inputs along watersheds from the headwaters to downstream reaches can result in significantly different contributions to the riverine P fluxes of a receiving water body. So far, there is still very little scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream to downstream continuum. Here, we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China, and developed a simple empirical function to describe the relationship between anthropogenic inputs and riverine TP fluxes. The results indicated that an average of 1.1% of anthropogenic P inputs are exported into rivers, with most of the remainder retained in the watershed landscape over the period studied. Fertilizer application was the main contributor of P loading to the lake (55% of total loads), followed by legacy P stock (30%), food and feed P inputs (12%) and non-food P inputs (4%). From 60% to 89% of the riverine TP loads generated from various locations within this basin were ultimately transported into the receiving lake of the downstream, with an average rate of 1.86 tons P km-1 retaining in the main stem of the inflowing river annually. Our results highlight that in-stream processes can significantly buffer the riverine P loading to the downstream receiving lake. An integrated P management strategy considering the influence of anthropogenic inputs and hydrological interactions is required to assess and optimize P management for protecting fresh waters.
Optimized distributed computing environment for mask data preparation
NASA Astrophysics Data System (ADS)
Ahn, Byoung-Sup; Bang, Ju-Mi; Ji, Min-Kyu; Kang, Sun; Jang, Sung-Hoon; Choi, Yo-Han; Ki, Won-Tai; Choi, Seong-Woon; Han, Woo-Sung
2005-11-01
As the critical dimension (CD) becomes smaller, various resolution enhancement techniques (RET) are widely adopted. In developing sub-100nm devices, the complexity of optical proximity correction (OPC) is severely increased and applied OPC layers are expanded to non-critical layers. The transformation of designed pattern data by OPC operation causes complexity, which cause runtime overheads to following steps such as mask data preparation (MDP), and collapse of existing design hierarchy. Therefore, many mask shops exploit the distributed computing method in order to reduce the runtime of mask data preparation rather than exploit the design hierarchy. Distributed computing uses a cluster of computers that are connected to local network system. However, there are two things to limit the benefit of the distributing computing method in MDP. First, every sequential MDP job, which uses maximum number of available CPUs, is not efficient compared to parallel MDP job execution due to the input data characteristics. Second, the runtime enhancement over input cost is not sufficient enough since the scalability of fracturing tools is limited. In this paper, we will discuss optimum load balancing environment that is useful in increasing the uptime of distributed computing system by assigning appropriate number of CPUs for each input design data. We will also describe the distributed processing (DP) parameter optimization to obtain maximum throughput in MDP job processing.
Zeroth-order phase-contrast technique.
Pizolato, José Carlos; Cirino, Giuseppe Antonio; Gonçalves, Cristhiane; Neto, Luiz Gonçalves
2007-11-01
What we believe to be a new phase-contrast technique is proposed to recover intensity distributions from phase distributions modulated by spatial light modulators (SLMs) and binary diffractive optical elements (DOEs). The phase distribution is directly transformed into intensity distributions using a 4f optical correlator and an iris centered in the frequency plane as a spatial filter. No phase-changing plates or phase dielectric dots are used as a filter. This method allows the use of twisted nematic liquid-crystal televisions (LCTVs) operating in the real-time phase-mostly regime mode between 0 and p to generate high-intensity multiple beams for optical trap applications. It is also possible to use these LCTVs as input SLMs for optical correlators to obtain high-intensity Fourier transform distributions of input amplitude objects.
This EnviroAtlas dataset contains data on the mean synthetic nitrogen (N) fertilizer application to cultivated crop and hay/pasture lands per 12-digit Hydrologic Unit (HUC) in 2006. Synthetic N fertilizer inputs in 2006 were estimated using county-level estimates of farm N fertilizer inputs. We acquired county-level data describing total farm-level inputs (kg N/yr) of synthetic N fertilizer to individual counties in 2006 from the United States Geological Survey (USGS) (http://pubs.usgs.gov/sir/2012/5207/). These data were converted to per area rates (kg N/ha/yr) of synthetic N fertilizer application by dividing the total N input by the land area (ha) of combined cultivated crop and hay/pasture lands within a county as determined from county-level (http://cta.ornl.gov/transnet/Boundaries.html) summarization of the 2006 National Land Cover Database (NLCD; http://www.mrlc.gov/nlcd06_data.php). We distributed county-specific, annual per area N inputs rates (kg N/ha/yr) to cultivated crop and hay/pasture lands (30 x 30 m pixels) within the corresponding county using the raster calculator tool in ArcMap 10.0 (ESRI, Inc., Redlands, CA). Fertilizer data described here represent an average input to a typical agricultural land type within a county, i.e., they are not specific to individual crop types. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the us
Shrestha, Sony Shakya; Bannatyne, B Anne; Jankowska, Elzbieta; Hammar, Ingela; Nilsson, Elin; Maxwell, David J
2012-01-01
The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity. PMID:22371473
Shrestha, Sony Shakya; Bannatyne, B Anne; Jankowska, Elzbieta; Hammar, Ingela; Nilsson, Elin; Maxwell, David J
2012-04-01
The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity.
Enzymatic activity inside and outside of water-stable aggregates in soils under different land use
NASA Astrophysics Data System (ADS)
Garbuz, S. A.; Yaroslavtseva, N. V.; Kholodov, V. A.
2016-03-01
A method is presented for assessing the distribution of enzymatic activity inside and outside of water-stable aggregates. Two samples of water-stable aggregates >1 mm have been isolated from dry aggregates of 1-2 mm. To determine the enzymatic activity, a substrate has been added to one of the samples without disaggregation; the other sample has been preliminarily disaggregated. Enzymatic activity within waterstable aggregates has been assessed from the difference between the obtained results under the supposition that the penetration of substrate within the water-saturated aggregates is hampered, and enzymatic reactions occur only at the periphery. The levels and distributions of enzymatic (peroxidase, polyphenol oxidase, and catalase) activities in water-stable aggregates of soddy-podzolic soils under forest and plowland and typical chernozems of long-term field experiments have been studied. The peroxidase, polyphenol oxidase, and catalase activities of water-stable aggregates vary from 6 to 23, from 7 to 30, and from 5 to 7 mmol/(g h), respectively. The ratio between the enzymatic activities inside and outside of soil aggregates showed a higher dependence on soil type and land use, as well as on the input of organic matter and the structural state, than the general activity level in water-stable aggregates.
Physiological pathways regulating the activity of magnocellular neurosecretory cells.
Leng, G; Brown, C H; Russell, J A
1999-04-01
Magnocellular oxytocin and vasopressin cells are among the most extensively studied neurons in the brain; their large size and high synthetic capacity, their discrete, homogeneous distribution and the anatomical separation of their terminals from their cell bodies, and the ability to determine their neuronal output readily by measurements of hormone concentration in the plasma, combine to make these systems amenable to a wide range of fundamental investigations. While vasopressin cells have intrinsic burst-generating properties, oxytocin cells are organized within local pattern-generating networks. In this review we consider the rôle played by particular afferent pathways in the regulation of the activity of oxytocin and vasopressin cells. For both cell types, the effects of changes in the activity of synaptic input can be complex.
Unitary synaptic connections among substantia nigra pars reticulata neurons
Wilson, Charles J.
2016-01-01
Neurons in substantia nigra pars reticulata (SNr) are synaptically coupled by local axon collaterals, providing a potential mechanism for local signal processing. Because SNr neurons fire spontaneously, these synapses are constantly active. To investigate their properties, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) from SNr neurons in brain slices, in which afferents from upstream nuclei are severed, and the cells fire rhythmically. The sIPSC trains contained a mixture of periodic and aperiodic events. Autocorrelation analysis of sIPSC trains showed that a majority of cells had one to four active unitary inputs. The properties of the unitary IPSCs (uIPSCs) were analyzed for cells with one unitary input, using a model of periodic presynaptic firing and stochastic synaptic transmission. The inferred presynaptic firing rates and coefficient of variation of interspike intervals (ISIs) corresponded well with direct measurements of spiking in SNr neurons. Methods were developed to estimate the success probability, amplitude distributions, and kinetics of the uIPSCs, while removing the contribution from aperiodic sIPSCs. The sIPSC amplitudes were not increased upon release from halorhodopsin silencing, suggesting that most synapses were not depressed at the spontaneous firing rate. Gramicidin perforated-patch recordings indicated that the average reversal potential of spontaneous inhibitory postsynaptic potentials was −64 mV. Because of the change in driving force across the ISI, the unitary inputs are predicted to have a larger postsynaptic impact when they arrive late in the ISI. Simulations of network activity suggest that this very sparse inhibitory coupling may act to desynchronize the activity of SNr neurons while having only a small effect on firing rate. PMID:26961101
NASA Technical Reports Server (NTRS)
Mahan, J. R.; Tira, Nour E.
1991-01-01
An improved dynamic electrothermal model for the Earth Radiation Budget Experiment (ERBE) total, nonscanning channels is formulated. This model is then used to accurately simulate two types of dynamic solar observation: the solar calibration and the so-called pitchover maneuver. Using a second model, the nonscanner active cavity radiometer (ACR) thermal noise is studied. This study reveals that radiative emission and scattering by the surrounding parts of the nonscanner cavity are acceptably small. The dynamic electrothermal model is also used to compute ACR instrument transfer function. Accurate in-flight measurement of this transfer function is shown to depend on the energy distribution over the frequency spectrum of the radiation input function. A new array-type field of view limiter, whose geometry controls the input function, is proposed for in-flight calibration of an ACR and other types of radiometers. The point spread function (PSF) of the ERBE and the Clouds and Earth's Radiant Energy System (CERES) scanning radiometers is computed. The PSF is useful in characterizing the channel optics. It also has potential for recovering the distribution of the radiative flux from Earth by deconvolution.
Life and reliability models for helicopter transmissions
NASA Technical Reports Server (NTRS)
Savage, M.; Knorr, R. J.; Coy, J. J.
1982-01-01
Computer models of life and reliability are presented for planetary gear trains with a fixed ring gear, input applied to the sun gear, and output taken from the planet arm. For this transmission the input and output shafts are co-axial and the input and output torques are assumed to be coaxial with these shafts. Thrust and side loading are neglected. The reliability model is based on the Weibull distributions of the individual reliabilities of the in transmission components. The system model is also a Weibull distribution. The load versus life model for the system is a power relationship as the models for the individual components. The load-life exponent and basic dynamic capacity are developed as functions of the components capacities. The models are used to compare three and four planet, 150 kW (200 hp), 5:1 reduction transmissions with 1500 rpm input speed to illustrate their use.
Garden, Derek L. F.; Rinaldi, Arianna
2016-01-01
Key points We establish experimental preparations for optogenetic investigation of glutamatergic input to the inferior olive.Neurones in the principal olivary nucleus receive monosynaptic extra‐somatic glutamatergic input from the neocortex.Glutamatergic inputs to neurones in the inferior olive generate bidirectional postsynaptic potentials (PSPs), with a fast excitatory component followed by a slower inhibitory component.Small conductance calcium‐activated potassium (SK) channels are required for the slow inhibitory component of glutamatergic PSPs and oppose temporal summation of inputs at intervals ≤ 20 ms.Active integration of synaptic input within the inferior olive may play a central role in control of olivo‐cerebellar climbing fibre signals. Abstract The inferior olive plays a critical role in motor coordination and learning by integrating diverse afferent signals to generate climbing fibre inputs to the cerebellar cortex. While it is well established that climbing fibre signals are important for motor coordination, the mechanisms by which neurones in the inferior olive integrate synaptic inputs and the roles of particular ion channels are unclear. Here, we test the hypothesis that neurones in the inferior olive actively integrate glutamatergic synaptic inputs. We demonstrate that optogenetically activated long‐range synaptic inputs to the inferior olive, including projections from the motor cortex, generate rapid excitatory potentials followed by slower inhibitory potentials. Synaptic projections from the motor cortex preferentially target the principal olivary nucleus. We show that inhibitory and excitatory components of the bidirectional synaptic potentials are dependent upon AMPA (GluA) receptors, are GABAA independent, and originate from the same presynaptic axons. Consistent with models that predict active integration of synaptic inputs by inferior olive neurones, we find that the inhibitory component is reduced by blocking large conductance calcium‐activated potassium channels with iberiotoxin, and is abolished by blocking small conductance calcium‐activated potassium channels with apamin. Summation of excitatory components of synaptic responses to inputs at intervals ≤ 20 ms is increased by apamin, suggesting a role for the inhibitory component of glutamatergic responses in temporal integration. Our results indicate that neurones in the inferior olive implement novel rules for synaptic integration and suggest new principles for the contribution of inferior olive neurones to coordinated motor behaviours. PMID:27767209
Why differentiating between health system support and health system strengthening is needed
Chee, Grace; Pielemeier, Nancy; Lion, Ann; Connor, Catherine
2013-01-01
There is increasing recognition that efforts to improve global health cannot be achieved without stronger health systems. Interpretation of health system strengthening (HSS) has varied widely however, with much of the focus to-date on alleviating input constraints, whereas less attention has been given to other performance drivers. It is important to distinguish activities that support the health system, from ones that strengthen the health system. Supporting the health system can include any activity that improves services, from distributing mosquito nets to procuring medicines. These activities improve outcomes primarily by increasing inputs. Strengthening the health system is accomplished by more comprehensive changes to performance drivers such as policies and regulations, organizational structures, and relationships across the health system to motivate changes in behavior and/or allow more effective use of resources to improve multiple health services. Even organizations that have made significant investments in health systems have not provided guidance on what HSS entails. While both supporting and strengthening are important and necessary, it is nonetheless important to make a distinction. If activities fail to produce improvements in system performance because they were incorrectly labeled as system strengthening, the value of HSS investments could quickly be discredited. Not distinguishing supportive activities from strengthening ones will lead to unmet expectations of stronger health systems, as well as neglect of critical system strengthening activities. Distinguishing between these two types of activities will improve programming impact. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22777839
Sampling Assumptions Affect Use of Indirect Negative Evidence in Language Learning.
Hsu, Anne; Griffiths, Thomas L
2016-01-01
A classic debate in cognitive science revolves around understanding how children learn complex linguistic patterns, such as restrictions on verb alternations and contractions, without negative evidence. Recently, probabilistic models of language learning have been applied to this problem, framing it as a statistical inference from a random sample of sentences. These probabilistic models predict that learners should be sensitive to the way in which sentences are sampled. There are two main types of sampling assumptions that can operate in language learning: strong and weak sampling. Strong sampling, as assumed by probabilistic models, assumes the learning input is drawn from a distribution of grammatical samples from the underlying language and aims to learn this distribution. Thus, under strong sampling, the absence of a sentence construction from the input provides evidence that it has low or zero probability of grammaticality. Weak sampling does not make assumptions about the distribution from which the input is drawn, and thus the absence of a construction from the input as not used as evidence of its ungrammaticality. We demonstrate in a series of artificial language learning experiments that adults can produce behavior consistent with both sets of sampling assumptions, depending on how the learning problem is presented. These results suggest that people use information about the way in which linguistic input is sampled to guide their learning.
Sampling Assumptions Affect Use of Indirect Negative Evidence in Language Learning
2016-01-01
A classic debate in cognitive science revolves around understanding how children learn complex linguistic patterns, such as restrictions on verb alternations and contractions, without negative evidence. Recently, probabilistic models of language learning have been applied to this problem, framing it as a statistical inference from a random sample of sentences. These probabilistic models predict that learners should be sensitive to the way in which sentences are sampled. There are two main types of sampling assumptions that can operate in language learning: strong and weak sampling. Strong sampling, as assumed by probabilistic models, assumes the learning input is drawn from a distribution of grammatical samples from the underlying language and aims to learn this distribution. Thus, under strong sampling, the absence of a sentence construction from the input provides evidence that it has low or zero probability of grammaticality. Weak sampling does not make assumptions about the distribution from which the input is drawn, and thus the absence of a construction from the input as not used as evidence of its ungrammaticality. We demonstrate in a series of artificial language learning experiments that adults can produce behavior consistent with both sets of sampling assumptions, depending on how the learning problem is presented. These results suggest that people use information about the way in which linguistic input is sampled to guide their learning. PMID:27310576
Cabaraban, Maria Theresa I; Kroll, Charles N; Hirabayashi, Satoshi; Nowak, David J
2013-05-01
A distributed adaptation of i-Tree Eco was used to simulate dry deposition in an urban area. This investigation focused on the effects of varying temperature, LAI, and NO2 concentration inputs on estimated NO2 dry deposition to trees in Baltimore, MD. A coupled modeling system is described, wherein WRF provided temperature and LAI fields, and CMAQ provided NO2 concentrations. A base case simulation was conducted using built-in distributed i-Tree Eco tools, and simulations using different inputs were compared against this base case. Differences in land cover classification and tree cover between the distributed i-Tree Eco and WRF resulted in changes in estimated LAI, which in turn resulted in variations in simulated NO2 dry deposition. Estimated NO2 removal decreased when CMAQ-derived concentration was applied to the distributed i-Tree Eco simulation. Discrepancies in temperature inputs did little to affect estimates of NO2 removal by dry deposition to trees in Baltimore. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of task demands on dual coding of pictorial stimuli.
Babbitt, B C
1982-01-01
Recent studies have suggested that verbal labeling of a picture does not occur automatically. Although several experiments using paired-associate tasks produced little evidence indicating the use of a verbal code with picture stimuli, the tasks were probably not sensitive to whether the codes were activated initially. It is possible that verbal labels were activated at input, but not used later in performing the tasks. The present experiment used a color-naming interference task in order to assess, with a more sensitive measure, the amount of verbal coding occurring in response to word or picture input. Subjects named the color of ink in which words were printed following either word or picture input. If verbal labeling of the input occurs, then latency of color naming should increase when the input item and color-naming word are related. The results provided substantial evidence of such verbal activation when the input items were words. However, the presence of verbal activation with picture input was a function of task demands. Activation occurred when a recall memory test was used, but not when a recognition memory test was used. The results support the conclusion that name information (labels) need not be activated during presentation of visual stimuli.
Cao, Ying; Maran, Selva K.; Dhamala, Mukesh; Jaeger, Dieter; Heck, Detlef H.
2012-01-01
Purkinje cells (PCs) in the mammalian cerebellum express high frequency spontaneous activity with average spike rates between 30 and 200 Hz. Cerebellar nuclear (CN) neurons receive converging input from many PCs resulting in a continuous barrage of inhibitory inputs. It has been hypothesized that pauses in PC activity trigger increases in CN spiking activity. A prediction derived from this hypothesis is that pauses in PC simple spike activity represent relevant behavioral or sensory events. Here we asked whether pauses in the simple spike activity of PCs related to either fluid licking or respiration, play a special role in representing information about behavior. Both behaviors are widely represented in cerebellar PC simple spike activity. We recorded PC activity in the vermis and lobus simplex of head fixed mice while monitoring licking and respiratory behavior. Using cross correlation and Granger causality analysis we examined whether short ISIs had a different temporal relation to behavior than long ISIs or pauses. Behavior related simple spike pauses occurred during low-rate simple spike activity in both licking and breathing related PCs. Granger causality analysis revealed causal relationships between simple spike pauses and behavior. However, the same results were obtained from an analysis of surrogate spike trains with gamma ISI distributions constructed to match rate modulations of behavior related Purkinje cells. Our results therefore suggest that the occurrence of pauses in simple spike activity does not represent additional information about behavioral or sensory events that goes beyond the simple spike rate modulations. PMID:22723707
Distributional Language Learning: Mechanisms and Models of ategory Formation.
Aslin, Richard N; Newport, Elissa L
2014-09-01
In the past 15 years, a substantial body of evidence has confirmed that a powerful distributional learning mechanism is present in infants, children, adults and (at least to some degree) in nonhuman animals as well. The present article briefly reviews this literature and then examines some of the fundamental questions that must be addressed for any distributional learning mechanism to operate effectively within the linguistic domain. In particular, how does a naive learner determine the number of categories that are present in a corpus of linguistic input and what distributional cues enable the learner to assign individual lexical items to those categories? Contrary to the hypothesis that distributional learning and category (or rule) learning are separate mechanisms, the present article argues that these two seemingly different processes---acquiring specific structure from linguistic input and generalizing beyond that input to novel exemplars---actually represent a single mechanism. Evidence in support of this single-mechanism hypothesis comes from a series of artificial grammar-learning studies that not only demonstrate that adults can learn grammatical categories from distributional information alone, but that the specific patterning of distributional information among attested utterances in the learning corpus enables adults to generalize to novel utterances or to restrict generalization when unattested utterances are consistently absent from the learning corpus. Finally, a computational model of distributional learning that accounts for the presence or absence of generalization is reviewed and the implications of this model for linguistic-category learning are summarized.
The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex.
Bajo, Victoria M; Leach, Nicholas D; Cordery, Patricia M; Nodal, Fernando R; King, Andrew J
2014-09-01
Cholinergic inputs to the auditory cortex can modulate sensory processing and regulate stimulus-specific plasticity according to the behavioural state of the subject. In order to understand how acetylcholine achieves this, it is essential to elucidate the circuitry by which cholinergic inputs influence the cortex. In this study, we described the distribution of cholinergic neurons in the basal forebrain and their inputs to the auditory cortex of the ferret, a species used increasingly in studies of auditory learning and plasticity. Cholinergic neurons in the basal forebrain, visualized by choline acetyltransferase and p75 neurotrophin receptor immunocytochemistry, were distributed through the medial septum, diagonal band of Broca, and nucleus basalis magnocellularis. Epipial tracer deposits and injections of the immunotoxin ME20.4-SAP (monoclonal antibody specific for the p75 neurotrophin receptor conjugated to saporin) in the auditory cortex showed that cholinergic inputs originate almost exclusively in the ipsilateral nucleus basalis. Moreover, tracer injections in the nucleus basalis revealed a pattern of labelled fibres and terminal fields that resembled acetylcholinesterase fibre staining in the auditory cortex, with the heaviest labelling in layers II/III and in the infragranular layers. Labelled fibres with small en-passant varicosities and simple terminal swellings were observed throughout all auditory cortical regions. The widespread distribution of cholinergic inputs from the nucleus basalis to both primary and higher level areas of the auditory cortex suggests that acetylcholine is likely to be involved in modulating many aspects of auditory processing. © 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Single optical fiber probe for optogenetics
NASA Astrophysics Data System (ADS)
Falk, Ryan; Habibi, Mohammad; Pashaie, Ramin
2012-03-01
With the advent of optogenetics, all optical control and visualization of the activity of specific cell types is possible. We have developed a fiber optic based probe to control/visualize neuronal activity deep in the brain of awake behaving animals. In this design a thin multimode optical fiber serves as the head of the probe to be inserted into the brain. This fiber is used to deliver excitation/stimulation optical pulses and guide a sample of the emission signal back to a detector. The major trade off in the design of such a system is to decrease the size of the fiber and intensity of input light to minimize physical damage and to avoid photobleaching/phototoxicity but to keep the S/N reasonably high. Here the excitation light, and the associated emission signal, are frequency modulated. Then the output of the detector is passed through a time-lens which compresses the distributed energy of the emission signal and maximizes the instantaneous S/N. By measuring the statistics of the noise, the structure of the time lens can be designed to achieve the global optimum of S/N. Theoretically, the temporal resolution of the system is only limited by the time lens diffraction limit. By adding a second detector, we eliminated the effect of input light fluctuations, imperfection of the optical filters, and back-reflection of the excitation light. We have also designed fibers and micro mechanical assemblies for distributed delivery and detection of light.
Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment
Mantilla, Carlos B.; Seven, Yasin B.; Sieck, Gary C.
2014-01-01
Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation, but are also active in other non-ventilatory behaviors, including coughing, sneezing, vomiting, defecation and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely-distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. PMID:24746055
NASA Astrophysics Data System (ADS)
Sano, Kimikazu; Nagatani, Munehiko; Mutoh, Miwa; Murata, Koichi
This paper is a report on a high ESD breakdown-voltage InP HBT transimpedance amplifier IC for optical video distribution systems. To make ESD breakdown-voltage higher, we designed ESD protection circuits integrated in the TIA IC using base-collector/base-emitter diodes of InP HBTs and resistors. These components for ESD protection circuits have already existed in the employed InP HBT IC process, so no process modifications were needed. Furthermore, to meet requirements for use in optical video distribution systems, we studied circuit design techniques to obtain a good input-output linearity and a low-noise characteristic. Fabricated InP HBT TIA IC exhibited high human-body-model ESD breakdown voltages (±1000V for power supply terminals, ±200V for high-speed input/output terminals), good input-output linearity (less than 2.9-% duty-cycle-distortion), and low noise characteristic (10.7pA/√Hz averaged input-referred noise current density) with a -3-dB-down higher frequency of 6.9GHz. To the best of our knowledge, this paper is the first literature describing InP ICs with high ESD-breakdown voltages.
NASA Astrophysics Data System (ADS)
Jang, W.; Engda, T. A.; Neff, J. C.; Herrick, J.
2017-12-01
Many crop models are increasingly used to evaluate crop yields at regional and global scales. However, implementation of these models across large areas using fine-scale grids is limited by computational time requirements. In order to facilitate global gridded crop modeling with various scenarios (i.e., different crop, management schedule, fertilizer, and irrigation) using the Environmental Policy Integrated Climate (EPIC) model, we developed a distributed parallel computing framework in Python. Our local desktop with 14 cores (28 threads) was used to test the distributed parallel computing framework in Iringa, Tanzania which has 406,839 grid cells. High-resolution soil data, SoilGrids (250 x 250 m), and climate data, AgMERRA (0.25 x 0.25 deg) were also used as input data for the gridded EPIC model. The framework includes a master file for parallel computing, input database, input data formatters, EPIC model execution, and output analyzers. Through the master file for parallel computing, the user-defined number of threads of CPU divides the EPIC simulation into jobs. Then, Using EPIC input data formatters, the raw database is formatted for EPIC input data and the formatted data moves into EPIC simulation jobs. Then, 28 EPIC jobs run simultaneously and only interesting results files are parsed and moved into output analyzers. We applied various scenarios with seven different slopes and twenty-four fertilizer ranges. Parallelized input generators create different scenarios as a list for distributed parallel computing. After all simulations are completed, parallelized output analyzers are used to analyze all outputs according to the different scenarios. This saves significant computing time and resources, making it possible to conduct gridded modeling at regional to global scales with high-resolution data. For example, serial processing for the Iringa test case would require 113 hours, while using the framework developed in this study requires only approximately 6 hours, a nearly 95% reduction in computing time.
Spontaneously emerging direction selectivity maps in visual cortex through STDP.
Wenisch, Oliver G; Noll, Joachim; Hemmen, J Leo van
2005-10-01
It is still an open question as to whether, and how, direction-selective neuronal responses in primary visual cortex are generated by feedforward thalamocortical or recurrent intracortical connections, or a combination of both. Here we present an investigation that concentrates on and, only for the sake of simplicity, restricts itself to intracortical circuits, in particular, with respect to the developmental aspects of direction selectivity through spike-timing-dependent synaptic plasticity. We show that directional responses can emerge in a recurrent network model of visual cortex with spiking neurons that integrate inputs mainly from a particular direction, thus giving rise to an asymmetrically shaped receptive field. A moving stimulus that enters the receptive field from this (preferred) direction will activate a neuron most strongly because of the increased number and/or strength of inputs from this direction and since delayed isotropic inhibition will neither overlap with, nor cancel excitation, as would be the case for other stimulus directions. It is demonstrated how direction-selective responses result from spatial asymmetries in the distribution of synaptic contacts or weights of inputs delivered to a neuron by slowly conducting intracortical axonal delay lines. By means of spike-timing-dependent synaptic plasticity with an asymmetric learning window this kind of coupling asymmetry develops naturally in a recurrent network of stochastically spiking neurons in a scenario where the neurons are activated by unidirectionally moving bar stimuli and even when only intrinsic spontaneous activity drives the learning process. We also present simulation results to show the ability of this model to produce direction preference maps similar to experimental findings.
Grande, Giovanbattista; Bui, Tuan V; Rose, P Ken
2007-06-01
In the presence of monoamines, L-type Ca(2+) channels on the dendrites of motoneurons contribute to persistent inward currents (PICs) that can amplify synaptic inputs two- to sixfold. However, the exact location of the L-type Ca(2+) channels is controversial, and the importance of the location as a means of regulating the input-output properties of motoneurons is unknown. In this study, we used a computational strategy developed previously to estimate the dendritic location of the L-type Ca(2+) channels and test the hypothesis that the location of L-type Ca(2+) channels varies as a function of motoneuron size. Compartmental models were constructed based on dendritic trees of five motoneurons that ranged in size from small to large. These models were constrained by known differences in PIC activation reported for low- and high-conductance motoneurons and the relationship between somatic PIC threshold and the presence or absence of tonic excitatory or inhibitory synaptic activity. Our simulations suggest that L-type Ca(2+) channels are concentrated in hotspots whose distance from the soma increases with the size of the dendritic tree. Moving the hotspots away from these sites (e.g., using the hotspot locations from large motoneurons on intermediate-sized motoneurons) fails to replicate the shifts in PIC threshold that occur experimentally during tonic excitatory or inhibitory synaptic activity. In models equipped with a size-dependent distribution of L-type Ca(2+) channels, the amplification of synaptic current by PICs depends on motoneuron size and the location of the synaptic input on the dendritic tree.
Santos-Francés, F; García-Sánchez, A; Alonso-Rojo, P; Contreras, F; Adams, M
2011-04-01
An extensive and remote gold mining region located in the East of Venezuela has been studied with the aim of assessing the distribution and mobility of mercury in soil and the level of Hg pollution at artisanal gold mining sites. To do so, soils and pond sediments were sampled at sites not subject to anthropological influence, as well as in areas affected by gold mining activities. Total Hg in regionally distributed soils ranged between 0.02 mg kg(-1) and 0.40 mg kg(-1), with a median value of 0.11 mg kg(-1), which is slightly higher than soil Hg worldwide, possibly indicating long-term atmospheric input or more recent local atmospheric input, in addition to minor lithogenic sources. A reference Hg concentration of 0.33 mg kg(-1) is proposed for the detection of mining affected soils in this region. Critical total Hg concentrations were found in the surrounding soils of pollutant sources, such as milling-amalgamation sites, where soil Hg contents ranged from 0.16 mg kg(-1) to 542 mg kg(-1) with an average of 26.89 mg kg(-1), which also showed high levels of elemental Hg, but quite low soluble+exchangeable Hg fraction (0.02-4.90 mg kg(-1)), suggesting low Hg soil mobility and bioavailability, as confirmed by soil column leaching tests. The vertical distribution of Hg through the soil profiles, as well as variations in soil Hg contents with distance from the pollution source, and Hg in pond mining sediments were also analysed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Harnett, Mark T; Magee, Jeffrey C; Williams, Stephen R
2015-01-21
The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. Copyright © 2015 the authors 0270-6474/15/351024-14$15.00/0.
Modelling the spatial distribution of ammonia emissions in the UK.
Hellsten, S; Dragosits, U; Place, C J; Vieno, M; Dore, A J; Misselbrook, T H; Tang, Y S; Sutton, M A
2008-08-01
Ammonia emissions (NH3) are characterised by a high spatial variability at a local scale. When modelling the spatial distribution of NH3 emissions, it is important to provide robust emission estimates, since the model output is used to assess potential environmental impacts, e.g. exceedance of critical loads. The aim of this study was to provide a new, updated spatial NH3 emission inventory for the UK for the year 2000, based on an improved modelling approach and the use of updated input datasets. The AENEID model distributes NH3 emissions from a range of agricultural activities, such as grazing and housing of livestock, storage and spreading of manures, and fertilizer application, at a 1-km grid resolution over the most suitable landcover types. The results of the emission calculation for the year 2000 are analysed and the methodology is compared with a previous spatial emission inventory for 1996.
Zhang, Pan; Hu, Rijun; Zhu, Longhai; Wang, Peng; Yin, Dongxiao; Zhang, Lianjie
2017-06-15
Heavy metals (Cu, Pb, Cr, Cd and As) contents in surface sediments from western Laizhou Bay were analysed to evaluate the spatial distribution pattern and their contamination level. As was mainly concentrated in the coastal area near the estuaries and the other metals were mainly concentrated in the central part of the study area. The heavy metals were present at unpolluted levels overall evaluated by the sediment quality guidelines and geoaccumulation index. Principal component analysis suggest that Cu, Pb and Cd were mainly sourced from natural processes and As was mainly derived from anthropogenic inputs. Meanwhile, Cr originated from both natural processes and anthropogenic contributions. Tidal currents, sediments and human activities were important factors affecting the distribution of heavy metals. The heavy metal environment was divided into four subareas to provide a reference for understanding the distribution and pollution of heavy metals in the estuary-bay system. Copyright © 2017 Elsevier Ltd. All rights reserved.
CUMBIN - CUMULATIVE BINOMIAL PROGRAMS
NASA Technical Reports Server (NTRS)
Bowerman, P. N.
1994-01-01
The cumulative binomial program, CUMBIN, is one of a set of three programs which calculate cumulative binomial probability distributions for arbitrary inputs. The three programs, CUMBIN, NEWTONP (NPO-17556), and CROSSER (NPO-17557), can be used independently of one another. CUMBIN can be used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. The program has been used for reliability/availability calculations. CUMBIN calculates the probability that a system of n components has at least k operating if the probability that any one operating is p and the components are independent. Equivalently, this is the reliability of a k-out-of-n system having independent components with common reliability p. CUMBIN can evaluate the incomplete beta distribution for two positive integer arguments. CUMBIN can also evaluate the cumulative F distribution and the negative binomial distribution, and can determine the sample size in a test design. CUMBIN is designed to work well with all integer values 0 < k <= n. To run the program, the user simply runs the executable version and inputs the information requested by the program. The program is not designed to weed out incorrect inputs, so the user must take care to make sure the inputs are correct. Once all input has been entered, the program calculates and lists the result. The CUMBIN program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly with most C compilers. The program format is interactive. It has been implemented under DOS 3.2 and has a memory requirement of 26K. CUMBIN was developed in 1988.
NASA Technical Reports Server (NTRS)
Wang, Ray (Inventor)
2009-01-01
A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.
NASA Technical Reports Server (NTRS)
1973-01-01
This user's manual describes the FORTRAN IV computer program developed to compute the total vertical load, normal concentrated pressure loads, and the center of pressure of typical SRB water impact slapdown pressure distributions specified in the baseline configuration. The program prepares the concentrated pressure load information in punched card format suitable for input to the STAGS computer program. In addition, the program prepares for STAGS input the inertia reacting loads to the slapdown pressure distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Robert N; White, Devin A; Urban, Marie L
2013-01-01
The Population Density Tables (PDT) project at the Oak Ridge National Laboratory (www.ornl.gov) is developing population density estimates for specific human activities under normal patterns of life based largely on information available in open source. Currently, activity based density estimates are based on simple summary data statistics such as range and mean. Researchers are interested in improving activity estimation and uncertainty quantification by adopting a Bayesian framework that considers both data and sociocultural knowledge. Under a Bayesian approach knowledge about population density may be encoded through the process of expert elicitation. Due to the scale of the PDT effort whichmore » considers over 250 countries, spans 40 human activity categories, and includes numerous contributors, an elicitation tool is required that can be operationalized within an enterprise data collection and reporting system. Such a method would ideally require that the contributor have minimal statistical knowledge, require minimal input by a statistician or facilitator, consider human difficulties in expressing qualitative knowledge in a quantitative setting, and provide methods by which the contributor can appraise whether their understanding and associated uncertainty was well captured. This paper introduces an algorithm that transforms answers to simple, non-statistical questions into a bivariate Gaussian distribution as the prior for the Beta distribution. Based on geometric properties of the Beta distribution parameter feasibility space and the bivariate Gaussian distribution, an automated method for encoding is developed that responds to these challenging enterprise requirements. Though created within the context of population density, this approach may be applicable to a wide array of problem domains requiring informative priors for the Beta distribution.« less
A global model of the neutral thermosphere in magnetic coordinates based on AE-C data
NASA Technical Reports Server (NTRS)
Stehle, C. G.
1980-01-01
An empirical model of the global atomic oxygen and helium distributions in the thermosphere is developed in a magnetic coordinate system and compared to similar models which are expanded in geographic coordinates. The advantage of using magnetic coordinates is that fewer terms are needed to make predictions which are nearly identical to those which would be obtained from a geographic model with longitudinal and universal time corrections. Magnetic coordinates are more directly related to the major energy inputs in the polar regions than geographic coordinates and are more convenient to use in studies of high latitude energy deposition processes. This is important for comparison with theoretical models where the number of coordinates is limited. The effect of magnetic activity on the atomic oxygen distribution in the morning sector of the high latitude thermosphere in the auroral zone is also considered. A magnetic activity indicator (ML) based on an auroral electrojet index (AL) and the 3 hour ap index are used to relate the atomic oxygen density variations to magnetic activity in this region.
The distribution of fallout {sup 137}Cs in Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salazar, A.; Mora, P.
1996-08-01
Baseline levels of {sup 137}Cs on different sites throughout the Costa Rican territory are presented in this study from local and undisturbed soils. They are believed to represent the fallout input to the land surface. Seventy samples were collected from September 1991 to December 1993, and analyzed by gamma spectroscopy. The territory was divided in three regions, Caribbean, Pacific, and Central, based on meteorological and geographical conditions to study spatial distribution of cesium. The results show a higher activity in the Caribbean region perhaps due to the wind influence and higher rain precipitation throughout the year. No relevant time variationmore » of the activity levels of reach location was found. The highest value of 17.6 Bq kg{sup {minus}1} of {sup 137}Cs is compared with it generalized derived limit, being only 1.97% of the generalized derived limit value. The mean country activity value ranges from 0.4 to 17.8 Bq kg{sup {minus}1} with an average of 3.7 Bq kg{sup {minus}1}. 10 refs., 4 figs., 1 tab.« less
Emulation for probabilistic weather forecasting
NASA Astrophysics Data System (ADS)
Cornford, Dan; Barillec, Remi
2010-05-01
Numerical weather prediction models are typically very expensive to run due to their complexity and resolution. Characterising the sensitivity of the model to its initial condition and/or to its parameters requires numerous runs of the model, which is impractical for all but the simplest models. To produce probabilistic forecasts requires knowledge of the distribution of the model outputs, given the distribution over the inputs, where the inputs include the initial conditions, boundary conditions and model parameters. Such uncertainty analysis for complex weather prediction models seems a long way off, given current computing power, with ensembles providing only a partial answer. One possible way forward that we develop in this work is the use of statistical emulators. Emulators provide an efficient statistical approximation to the model (or simulator) while quantifying the uncertainty introduced. In the emulator framework, a Gaussian process is fitted to the simulator response as a function of the simulator inputs using some training data. The emulator is essentially an interpolator of the simulator output and the response in unobserved areas is dictated by the choice of covariance structure and parameters in the Gaussian process. Suitable parameters are inferred from the data in a maximum likelihood, or Bayesian framework. Once trained, the emulator allows operations such as sensitivity analysis or uncertainty analysis to be performed at a much lower computational cost. The efficiency of emulators can be further improved by exploiting the redundancy in the simulator output through appropriate dimension reduction techniques. We demonstrate this using both Principal Component Analysis on the model output and a new reduced-rank emulator in which an optimal linear projection operator is estimated jointly with other parameters, in the context of simple low order models, such as the Lorenz 40D system. We present the application of emulators to probabilistic weather forecasting, where the construction of the emulator training set replaces the traditional ensemble model runs. Thus the actual forecast distributions are computed using the emulator conditioned on the ‘ensemble runs' which are chosen to explore the plausible input space using relatively crude experimental design methods. One benefit here is that the ensemble does not need to be a sample from the true distribution of the input space, rather it should cover that input space in some sense. The probabilistic forecasts are computed using Monte Carlo methods sampling from the input distribution and using the emulator to produce the output distribution. Finally we discuss the limitations of this approach and briefly mention how we might use similar methods to learn the model error within a framework that incorporates a data assimilation like aspect, using emulators and learning complex model error representations. We suggest future directions for research in the area that will be necessary to apply the method to more realistic numerical weather prediction models.
Columnar interactions determine horizontal propagation of recurrent network activity in neocortex
Wester, Jason C.; Contreras, Diego
2012-01-01
The cortex is organized in vertical and horizontal circuits that determine the spatiotemporal properties of distributed cortical activity. Despite detailed knowledge of synaptic interactions among individual cells in the neocortex, little is known about the rules governing interactions among local populations. Here we used self-sustained recurrent activity generated in cortex, also known as up-states, in rat thalamocortical slices in vitro to understand interactions among laminar and horizontal circuits. By means of intracellular recordings and fast optical imaging with voltage sensitive dyes, we show that single thalamic inputs activate the cortical column in a preferential L4→L2/3→L5 sequence, followed by horizontal propagation with a leading front in supra and infragranular layers. To understand the laminar and columnar interactions, we used focal injections of TTX to block activity in small local populations, while preserving functional connectivity in the rest of the network. We show that L2/3 alone, without underlying L5, does not generate self-sustained activity and is inefficient propagating activity horizontally. In contrast, L5 sustains activity in the absence of L2/3 and is necessary and sufficient to propagate activity horizontally. However, loss of L2/3 delays horizontal propagation via L5. Finally, L5 amplifies activity in L2/3. Our results show for the first time that columnar interactions between supra and infragranular layers are required for the normal propagation of activity in the neocortex. Our data suggest that supra and infragranular circuits with their specific and complex set of inputs and outputs, work in tandem to determine the patterns of cortical activation observed in vivo. PMID:22514308
Study of indoor radon distribution using measurements and CFD modeling.
Chauhan, Neetika; Chauhan, R P; Joshi, M; Agarwal, T K; Aggarwal, Praveen; Sahoo, B K
2014-10-01
Measurement and/or prediction of indoor radon ((222)Rn) concentration are important due to the impact of radon on indoor air quality and consequent inhalation hazard. In recent times, computational fluid dynamics (CFD) based modeling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement CFD based modeling for studying indoor radon gas distribution. This study focuses on comparison of experimentally measured and CFD modeling predicted spatial distribution of radon concentration for a model test room. The key inputs for simulation viz. radon exhalation rate and ventilation rate were measured as a part of this study. Validation experiments were performed by measuring radon concentration at different locations of test room using active (continuous radon monitor) and passive (pin-hole dosimeters) techniques. Modeling predictions have been found to be reasonably matching with the measurement results. The validated model can be used to understand and study factors affecting indoor radon distribution for more realistic indoor environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Studies of transverse momentum dependent parton distributions and Bessel weighting
Aghasyan, M.; Avakian, H.; De Sanctis, E.; ...
2015-03-01
In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less
Liu, Xiaodong; Lou, Chuangneng; Xu, Liqiang; Sun, Liguang
2012-09-01
Total cadmium (Cd) concentrations in four ornithogenic coral-sand sedimentary profiles displayed a strong positive correlation with guano-derived phosphorus, but had no correlation with plant-originated organic matter in the top sediments. These results indicate that the total Cd distributions were predominantly controlled by guano input. Bioavailable Cd and zinc (Zn) had a greater input rate in the top sediments with respect to total Cd and total Zn, and a positive correlation with total organic carbon (TOC) derived from plant humus. Multi-regression analysis showed that the total Cd and TOC explained over 80% of the variation of bioavailable Cd, suggesting that both guano and plant inputs could significantly influence the distribution of bioavailable Cd, and that plant biocycling processes contribute more to the recent increase of bioavailable Cd. A pollution assessment indicates that the Yongle archipelago is moderately to strongly polluted with guano-derived Cd. Copyright © 2012 Elsevier Ltd. All rights reserved.
Studies of transverse momentum dependent parton distributions and Bessel weighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghasyan, M.; Avakian, H.; De Sanctis, E.
In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less
Gaussian functional regression for output prediction: Model assimilation and experimental design
NASA Astrophysics Data System (ADS)
Nguyen, N. C.; Peraire, J.
2016-03-01
In this paper, we introduce a Gaussian functional regression (GFR) technique that integrates multi-fidelity models with model reduction to efficiently predict the input-output relationship of a high-fidelity model. The GFR method combines the high-fidelity model with a low-fidelity model to provide an estimate of the output of the high-fidelity model in the form of a posterior distribution that can characterize uncertainty in the prediction. A reduced basis approximation is constructed upon the low-fidelity model and incorporated into the GFR method to yield an inexpensive posterior distribution of the output estimate. As this posterior distribution depends crucially on a set of training inputs at which the high-fidelity models are simulated, we develop a greedy sampling algorithm to select the training inputs. Our approach results in an output prediction model that inherits the fidelity of the high-fidelity model and has the computational complexity of the reduced basis approximation. Numerical results are presented to demonstrate the proposed approach.
NASA Astrophysics Data System (ADS)
Baranov, G. A.; Efremov, Yu V.; Smirnov, A. S.; Frolov, K. S.; Shevchenko, Yu I.
1989-02-01
An investigation was made of the distributions of the gain and input energy per unit volume along the discharge chamber length in a CO2-N2-He mixture stream excited by an rf discharge. The dependences of the gain and discharge luminescence intensity on the coordinate x were determined along the direction of the gas flow. The discharge luminescence intensity was shown to characterize the input energy distribution along the X axis. Calculations were made of the small-signal gain in the rf discharge. Experimental data on the distributions of the input energy and of the electric field in the discharge and the average values of the kinetic coefficients were used in the calculations. The efficiency of pumping CO2 lasers with an rf discharge was found to be close to the dc pumping efficiency. The results obtained provide evidence of promising prospects for using an rf discharge in fast-flow industrial lasers.
Preliminary results of 3D dose calculations with MCNP-4B code from a SPECT image.
Rodríguez Gual, M; Lima, F F; Sospedra Alfonso, R; González González, J; Calderón Marín, C
2004-01-01
Interface software was developed to generate the input file to run Monte Carlo MCNP-4B code from medical image in Interfile format version 3.3. The software was tested using a spherical phantom of tomography slides with known cumulated activity distribution in Interfile format generated with IMAGAMMA medical image processing system. The 3D dose calculation obtained with Monte Carlo MCNP-4B code was compared with the voxel S factor method. The results show a relative error between both methods less than 1 %.
Next Generation Transport Phenomenology Model
NASA Technical Reports Server (NTRS)
Strickland, Douglas J.; Knight, Harold; Evans, J. Scott
2004-01-01
This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.
Dempsey, Bowen; Le, Sheng; Turner, Anita; Bokiniec, Phil; Ramadas, Radhika; Bjaalie, Jan G.; Menuet, Clement; Neve, Rachael; Allen, Andrew M.; Goodchild, Ann K.; McMullan, Simon
2017-01-01
Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88–94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data. PMID:28298886
Van Waes, Vincent; Beverley, Joel A.; Siman, Homayoun; Tseng, Kuei Y.; Steiner, Heinz
2012-01-01
Corticostriatal circuits mediate various aspects of goal-directed behavior and are critically important for basal ganglia-related disorders. Activity in these circuits is regulated by the endocannabinoid system via stimulation of CB1 cannabinoid receptors. CB1 receptors are highly expressed in projection neurons and select interneurons of the striatum, but expression levels vary considerably between different striatal regions (functional domains). We investigated CB1 receptor expression within specific corticostriatal circuits by mapping CB1 mRNA levels in striatal sectors defined by their cortical inputs in rats. We also assessed changes in CB1 expression in the striatum during development. Our results show that CB1 expression is highest in juveniles (P25) and then progressively decreases toward adolescent (P40) and adult (P70) levels. At every age, CB1 receptors are predominantly expressed in sensorimotor striatal sectors, with considerably lower expression in associative and limbic sectors. Moreover, for most corticostriatal circuits there is an inverse relationship between cortical and striatal expression levels. Thus, striatal sectors with high CB1 expression (sensorimotor sectors) tend to receive inputs from cortical areas with low expression, while striatal sectors with low expression (associative/limbic sectors) receive inputs from cortical regions with higher expression (medial prefrontal cortex). In so far as CB1 mRNA levels reflect receptor function, our findings suggest differential CB1 signaling between different developmental stages and between sensorimotor and associative/limbic circuits. The regional distribution of CB1 receptor expression in the striatum further suggests that, in sensorimotor sectors, CB1 receptors mostly regulate GABA inputs from local axon collaterals of projection neurons, whereas in associative/limbic sectors, CB1 regulation of GABA inputs from interneurons and glutamate inputs may be more important. PMID:22416230
Carter, D A; Guo, H; Connelly, A A; Bassi, J K; Fong, A Y; Allen, A M; McDougall, S J
2018-02-01
Homeostatic regulation of visceral organ function requires integrated processing of neural and neurohormonal sensory signals. The nucleus of the solitary tract (NTS) is the primary sensory nucleus for cranial visceral sensory afferents. Angiotensin II (ANG II) is known to modulate peripheral visceral reflexes, in part, by activating ANG II type 1A receptors (AT 1A R) in the NTS. AT 1A R-expressing NTS neurons occur throughout the NTS with a defined subnuclear distribution, and most of these neurons are depolarized by ANG II. In this study we determined whether AT 1A R-expressing NTS neurons receive direct visceral sensory input, and whether this input is modulated by ANG II. Using AT 1A R-GFP mice to make targeted whole cell recordings from AT 1A R-expressing NTS neurons, we demonstrate that two-thirds (37 of 56) of AT 1A R-expressing neurons receive direct excitatory, visceral sensory input. In half of the neurons tested (4 of 8) the excitatory visceral sensory input was significantly reduced by application of the transient receptor potential vallinoid type 1 receptor agonist, capsaicin, indicating AT 1A R-expressing neurons can receive either C- or A-fiber-mediated input. Application of ANG II to a subset of second-order AT 1A R-expressing neurons did not affect spontaneous, evoked, or asynchronous glutamate release from visceral sensory afferents. Thus it is unlikely that AT 1A R-expressing viscerosensory neurons terminate on AT 1A R-expressing NTS neurons. Our data suggest that ANG II is likely to modulate multiple visceral sensory modalities by altering the excitability of second-order AT 1A R-expressing NTS neurons.
Zou, An-Min; Kumar, Krishna Dev
2012-07-01
This brief considers the attitude coordination control problem for spacecraft formation flying when only a subset of the group members has access to the common reference attitude. A quaternion-based distributed attitude coordination control scheme is proposed with consideration of the input saturation and with the aid of the sliding-mode observer, separation principle theorem, Chebyshev neural networks, smooth projection algorithm, and robust control technique. Using graph theory and a Lyapunov-based approach, it is shown that the distributed controller can guarantee the attitude of all spacecraft to converge to a common time-varying reference attitude when the reference attitude is available only to a portion of the group of spacecraft. Numerical simulations are presented to demonstrate the performance of the proposed distributed controller.
Distributed cooperative control of AC microgrids
NASA Astrophysics Data System (ADS)
Bidram, Ali
In this dissertation, the comprehensive secondary control of electric power microgrids is of concern. Microgrid technical challenges are mainly realized through the hierarchical control structure, including primary, secondary, and tertiary control levels. Primary control level is locally implemented at each distributed generator (DG), while the secondary and tertiary control levels are conventionally implemented through a centralized control structure. The centralized structure requires a central controller which increases the reliability concerns by posing the single point of failure. In this dissertation, the distributed control structure using the distributed cooperative control of multi-agent systems is exploited to increase the secondary control reliability. The secondary control objectives are microgrid voltage and frequency, and distributed generators (DGs) active and reactive powers. Fully distributed control protocols are implemented through distributed communication networks. In the distributed control structure, each DG only requires its own information and the information of its neighbors on the communication network. The distributed structure obviates the requirements for a central controller and complex communication network which, in turn, improves the system reliability. Since the DG dynamics are nonlinear and non-identical, input-output feedback linearization is used to transform the nonlinear dynamics of DGs to linear dynamics. Proposed control frameworks cover the control of microgrids containing inverter-based DGs. Typical microgrid test systems are used to verify the effectiveness of the proposed control protocols.
Hierarchical resilience with lightweight threads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Kyle Bruce
2011-10-01
This paper proposes methodology for providing robustness and resilience for a highly threaded distributed- and shared-memory environment based on well-defined inputs and outputs to lightweight tasks. These inputs and outputs form a failure 'barrier', allowing tasks to be restarted or duplicated as necessary. These barriers must be expanded based on task behavior, such as communication between tasks, but do not prohibit any given behavior. One of the trends in high-performance computing codes seems to be a trend toward self-contained functions that mimic functional programming. Software designers are trending toward a model of software design where their core functions are specifiedmore » in side-effect free or low-side-effect ways, wherein the inputs and outputs of the functions are well-defined. This provides the ability to copy the inputs to wherever they need to be - whether that's the other side of the PCI bus or the other side of the network - do work on that input using local memory, and then copy the outputs back (as needed). This design pattern is popular among new distributed threading environment designs. Such designs include the Barcelona STARS system, distributed OpenMP systems, the Habanero-C and Habanero-Java systems from Vivek Sarkar at Rice University, the HPX/ParalleX model from LSU, as well as our own Scalable Parallel Runtime effort (SPR) and the Trilinos stateless kernels. This design pattern is also shared by CUDA and several OpenMP extensions for GPU-type accelerators (e.g. the PGI OpenMP extensions).« less
NASA Technical Reports Server (NTRS)
Haines, Richard F.; Chuang, Sherry L.
1993-01-01
Current plans indicate that there will be a large number of life science experiments carried out during the thirty year-long mission of the Biological Flight Research Laboratory (BFRL) on board Space Station Freedom (SSF). Non-human life science experiments will be performed in the BFRL. Two distinct types of activities have already been identified for this facility: (1) collect, store, distribute, analyze and manage engineering and science data from the Habitats, Glovebox and Centrifuge, (2) perform a broad range of remote science activities in the Glovebox and Habitat chambers in conjunction with the remotely located principal investigator (PI). These activities require extensive video coverage, viewing and/or recording and distribution to video displays on board SSF and to the ground. This paper concentrates mainly on the second type of activity. Each of the two BFRL habitat racks are designed to be configurable for either six rodent habitats per rack, four plant habitats per rack, or a combination of the above. Two video cameras will be installed in each habitat with a spare attachment for a third camera when needed. Therefore, a video system that can accommodate up to 12-18 camera inputs per habitat rack must be considered.
Coates, Kaylynn E; Majot, Adam T; Zhang, Xiaonan; Michael, Cole T; Spitzer, Stacy L; Gaudry, Quentin; Dacks, Andrew M
2017-08-02
Modulatory neurons project widely throughout the brain, dynamically altering network processing based on an animal's physiological state. The connectivity of individual modulatory neurons can be complex, as they often receive input from a variety of sources and are diverse in their physiology, structure, and gene expression profiles. To establish basic principles about the connectivity of individual modulatory neurons, we examined a pair of identified neurons, the "contralaterally projecting, serotonin-immunoreactive deutocerebral neurons" (CSDns), within the olfactory system of Drosophila Specifically, we determined the neuronal classes providing synaptic input to the CSDns within the antennal lobe (AL), an olfactory network targeted by the CSDns, and the degree to which CSDn active zones are uniformly distributed across the AL. Using anatomical techniques, we found that the CSDns received glomerulus-specific input from olfactory receptor neurons (ORNs) and projection neurons (PNs), and networkwide input from local interneurons (LNs). Furthermore, we quantified the number of CSDn active zones in each glomerulus and found that CSDn output is not uniform, but rather heterogeneous, across glomeruli and stereotyped from animal to animal. Finally, we demonstrate that the CSDns synapse broadly onto LNs and PNs throughout the AL but do not synapse upon ORNs. Our results demonstrate that modulatory neurons do not necessarily provide purely top-down input but rather receive neuron class-specific input from the networks that they target, and that even a two cell modulatory network has highly heterogeneous, yet stereotyped, pattern of connectivity. SIGNIFICANCE STATEMENT Modulatory neurons often project broadly throughout the brain to alter processing based on physiological state. However, the connectivity of individual modulatory neurons to their target networks is not well understood, as modulatory neuron populations are heterogeneous in their physiology, morphology, and gene expression. In this study, we use a pair of identified serotonergic neurons within the Drosophila olfactory system as a model to establish a framework for modulatory neuron connectivity. We demonstrate that individual modulatory neurons can integrate neuron class-specific input from their target network, which is often nonreciprocal. Additionally, modulatory neuron output can be stereotyped, yet nonuniform, across network regions. Our results provide new insight into the synaptic relationships that underlie network function of modulatory neurons. Copyright © 2017 the authors 0270-6474/17/377318-14$15.00/0.
Madden, M; Batey Pwj
1983-05-01
Some problems associated with demographic-economic forecasting include finding models appropriate for a declining economy with unemployment, using a multiregional approach in an interregional model, finding a way to show differential consumption while endogenizing unemployment, and avoiding unemployment inconsistencies. The solution to these problems involves the construction of an activity-commodity framework, locating it within a group of forecasting models, and indicating possible ratios towards dynamization of the framework. The authors demonstrate the range of impact multipliers that can be derived from the framework and show how these multipliers relate to Leontief input-output multipliers. It is shown that desired population distribution may be obtained by selecting instruments from the economic sphere to produce, through the constraints vector of an activity-commodity framework, targets selected from demographic activities. The next step in this process, empirical exploitation, was carried out by the authors in the United Kingdom, linking an input-output model with a wide selection of demographic and demographic-economic variables. The generally tenuous control which government has over any variables in systems of this type, especially in market economies, makes application in the policy field of the optimization approach a partly conjectural exercise, although the analytic capacity of the approach can provide clear indications of policy directions.
Dynamics of action potential initiation in the GABAergic thalamic reticular nucleus in vivo.
Muñoz, Fabián; Fuentealba, Pablo
2012-01-01
Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold.
Cove, Joshua; Blinder, Pablo; Abi-Jaoude, Elia; Lafrenière-Roula, Myriam; Devroye, Luc; Baranes, Danny
2006-01-01
The integrative properties of dendrites are determined by several factors, including their morphology and the spatio-temporal patterning of their synaptic inputs. One of the great challenges is to discover the interdependency of these two factors and the mechanisms which sculpt dendrites' fine morphological details. We found a novel form of neurite growth behavior in neuronal cultures of the hippocampus and cortex, when axons and dendrites grew directly toward neurite-neurite contact sites and crossed them, forming multi-neurite intersections (MNIs). MNIs were found at a frequency higher than obtained by computer simulations of randomly distributed dendrites, involved many of the dendrites and were stable for days. They were formed specifically by neurites originating from different neurons and were extremely rare among neurites of individual neurons or among astrocytic processes. Axonal terminals were clustered at MNIs and exhibited higher synaptophysin content and release capability than in those located elsewhere. MNI formation, as well as enhancement of axonal terminal clustering and secretion at MNIs, was disrupted by inhibitors of synaptic activity. Thus, convergence of axons and dendrites to form MNIs is a non-random activity-regulated wiring behavior which shapes dendritic trees and affects the location, clustering level and strength of their presynaptic inputs.
Santos, Fabio N.; Pereira, Celia W.; Sánchez-Pérez, Ana M.; Otero-García, Marcos; Ma, Sherie; Gundlach, Andrew L.; Olucha-Bordonau, Francisco E.
2016-01-01
The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or “hubs”) within these key circuits. One such input arises from the nucleus incertus (NI) in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals) within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin (PV), calretinin (CR) and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST) and in the endopiriform nucleus. In contrast, sparse anterogradely-labeled and relaxin-3-immunoreactive fibers were observed in other amygdala nuclei, including the lateral, central and basal nuclei, while the nucleus accumbens lacked any innervation. Using synaptophysin as a synaptic marker, we identified relaxin-3 positive synaptic terminals in the medial amygdala, BST and endopiriform nucleus of amygdala. Our findings demonstrate the existence of topographic NI and relaxin-3-containing projections to specific nuclei of the extended amygdala, consistent with a likely role for this putative integrative arousal system in the regulation of amygdala-dependent social and emotional behaviors. PMID:27092060
Santos, Fabio N; Pereira, Celia W; Sánchez-Pérez, Ana M; Otero-García, Marcos; Ma, Sherie; Gundlach, Andrew L; Olucha-Bordonau, Francisco E
2016-01-01
The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or "hubs") within these key circuits. One such input arises from the nucleus incertus (NI) in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals) within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin (PV), calretinin (CR) and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST) and in the endopiriform nucleus. In contrast, sparse anterogradely-labeled and relaxin-3-immunoreactive fibers were observed in other amygdala nuclei, including the lateral, central and basal nuclei, while the nucleus accumbens lacked any innervation. Using synaptophysin as a synaptic marker, we identified relaxin-3 positive synaptic terminals in the medial amygdala, BST and endopiriform nucleus of amygdala. Our findings demonstrate the existence of topographic NI and relaxin-3-containing projections to specific nuclei of the extended amygdala, consistent with a likely role for this putative integrative arousal system in the regulation of amygdala-dependent social and emotional behaviors.
Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus
Mindlin, Gabriel B.
2017-01-01
Different neuronal types within brain motor areas contribute to the generation of complex motor behaviors. A widely studied songbird forebrain nucleus (HVC) has been recognized as fundamental in shaping the precise timing characteristics of birdsong. This is based, among other evidence, on the stretching and the “breaking” of song structure when HVC is cooled. However, little is known about the temperature effects that take place in its neurons. To address this, we investigated the dynamics of HVC both experimentally and computationally. We developed a technique where simultaneous electrophysiological recordings were performed during temperature manipulation of HVC. We recorded spontaneous activity and found three effects: widening of the spike shape, decrease of the firing rate and change in the interspike interval distribution. All these effects could be explained with a detailed conductance based model of all the neurons present in HVC. Temperature dependence of the ionic channel time constants explained the first effect, while the second was based in the changes of the maximal conductance using single synaptic excitatory inputs. The last phenomenon, only emerged after introducing a more realistic synaptic input to the inhibitory interneurons. Two timescales were present in the interspike distributions. The behavior of one timescale was reproduced with different input balances received form the excitatory neurons, whereas the other, which disappears with cooling, could not be found assuming poissonian synaptic inputs. Furthermore, the computational model shows that the bursting of the excitatory neurons arises naturally at normal brain temperature and that they have an intrinsic delay at low temperatures. The same effect occurs at single synapses, which may explain song stretching. These findings shed light on the temperature dependence of neuronal dynamics and present a comprehensive framework to study neuronal connectivity. This study, which is based on intrinsic neuronal characteristics, may help to understand emergent behavioral changes. PMID:28829769
Assessment of metal contamination in coastal sediments of Al-Khobar area, Arabian Gulf, Saudi Arabia
NASA Astrophysics Data System (ADS)
Alharbi, Talal; El-Sorogy, Abdelbaset
2017-05-01
An assessment of marine pollution due to heavy metals was made to coastal sediments collected from Al-Khobar coastline, in the Arabian Gulf, Saudi Arabia by analyzing of Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Mo, Sr, Se, As, Fe, Co and Ni using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). The results indicated that the distribution of most metals was largely controlled by inputs of terrigenous material and most strongly associated with distribution of Al in sediments. In general Sr, Cr, Zn, Cu, V, Hg, Mo and Se show severe enrichment factors. Average values of Cu and Hg highly exceed the ERL and the Canadian ISQG values. Average Ni was higher than the ERL and the ERM values. The severe enrichment of some metals in the studied sediment could be partially attributed to anthropogenic activities, notably oil spills from exploration, transportation and from saline water desalination plants in Al-Khobar coast, and other industrial activities in the region.
New activity pattern in human interactive dynamics
NASA Astrophysics Data System (ADS)
Formentin, Marco; Lovison, Alberto; Maritan, Amos; Zanzotto, Giovanni
2015-09-01
We investigate the response function of human agents as demonstrated by written correspondence, uncovering a new pattern for how the reactive dynamics of individuals is distributed across the set of each agent’s contacts. In long-term empirical data on email, we find that the set of response times considered separately for the messages to each different correspondent of a given writer, generate a family of heavy-tailed distributions, which have largely the same features for all agents, and whose characteristic times grow exponentially with the rank of each correspondent. We furthermore show that this new behavioral pattern emerges robustly by considering weighted moving averages of the priority-conditioned response-time probabilities generated by a basic prioritization model. Our findings clarify how the range of priorities in the inputs from one’s environment underpin and shape the dynamics of agents embedded in a net of reactive relations. These newly revealed activity patterns might be universal, being present in other general interactive environments, and constrain future models of communication and interaction networks, affecting their architecture and evolution.
Marine Mammal Habitat in Ecuador: Seasonal Abundance and Environmental Distribution
2010-06-01
derived macronutrients ) is enhanced by iron inputs derived from the island platform. The confluence of the Equatorial Undercurrent and Peru Current...is initiated by the subsurface derived macronutrients ) is enhanced by iron inputs derived from the island platform. The confluence of the Equatorial
Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting
NASA Astrophysics Data System (ADS)
Gamberg, Leonard
2015-04-01
We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.
Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting
NASA Astrophysics Data System (ADS)
Gamberg, Leonard
2015-10-01
We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.
Maximally informative pairwise interactions in networks
Fitzgerald, Jeffrey D.; Sharpee, Tatyana O.
2010-01-01
Several types of biological networks have recently been shown to be accurately described by a maximum entropy model with pairwise interactions, also known as the Ising model. Here we present an approach for finding the optimal mappings between input signals and network states that allow the network to convey the maximal information about input signals drawn from a given distribution. This mapping also produces a set of linear equations for calculating the optimal Ising-model coupling constants, as well as geometric properties that indicate the applicability of the pairwise Ising model. We show that the optimal pairwise interactions are on average zero for Gaussian and uniformly distributed inputs, whereas they are nonzero for inputs approximating those in natural environments. These nonzero network interactions are predicted to increase in strength as the noise in the response functions of each network node increases. This approach also suggests ways for how interactions with unmeasured parts of the network can be inferred from the parameters of response functions for the measured network nodes. PMID:19905153
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.
2014-01-01
Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.
Satellite-derived potential evapotranspiration for distributed hydrologic runoff modeling
NASA Astrophysics Data System (ADS)
Spies, R. R.; Franz, K. J.; Bowman, A.; Hogue, T. S.; Kim, J.
2012-12-01
Distributed models have the ability of incorporating spatially variable data, especially high resolution forcing inputs such as precipitation, temperature and evapotranspiration in hydrologic modeling. Use of distributed hydrologic models for operational streamflow prediction has been partially hindered by a lack of readily available, spatially explicit input observations. Potential evapotranspiration (PET), for example, is currently accounted for through PET input grids that are based on monthly climatological values. The goal of this study is to assess the use of satellite-based PET estimates that represent the temporal and spatial variability, as input to the National Weather Service (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). Daily PET grids are generated for six watersheds in the upper Mississippi River basin using a method that applies only MODIS satellite-based observations and the Priestly Taylor formula (MODIS-PET). The use of MODIS-PET grids will be tested against the use of the current climatological PET grids for simulating basin discharge. Gridded surface temperature forcing data are derived by applying the inverse distance weighting spatial prediction method to point-based station observations from the Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS). Precipitation data are obtained from the Climate Prediction Center's (CPC) Climatology-Calibrated Precipitation Analysis (CCPA). A-priori gridded parameters for the Sacramento Soil Moisture Accounting Model (SAC-SMA), Snow-17 model, and routing model are initially obtained from the Office of Hydrologic Development and further calibrated using an automated approach. The potential of the MODIS-PET to be used in an operational distributed modeling system will be assessed with the long-term goal of promoting research to operations transfers and advancing the science of hydrologic forecasting.
Similarities and Differences in Patterns and Geolocation of SSH Attack Data
2015-09-01
failed inputs. ..................................................................................14 Figure 7. Latest “ passwd ” commands entered by...also has fake file contents to allow an attacker to “cat” files like /etc/ passwd [12]. Kippo saves all downloaded files for later inspection. The...overall post-compromise activity, human activity inside the honeypot, top 10 inputs (overall), top 10 successful inputs, top 10 failed inputs, passwd
NASA Astrophysics Data System (ADS)
Zhang, Yan; Liu, Hong; Chen, Bin; Zheng, Hongmei; Li, Yating
2014-06-01
Discovering ways in which to increase the sustainability of the metabolic processes involved in urbanization has become an urgent task for urban design and management in China. As cities are analogous to living organisms, the disorders of their metabolic processes can be regarded as the cause of "urban disease". Therefore, identification of these causes through metabolic process analysis and ecological element distribution through the urban ecosystem's compartments will be helpful. By using Beijing as an example, we have compiled monetary input-output tables from 1997, 2000, 2002, 2005, and 2007 and calculated the intensities of the embodied ecological elements to compile the corresponding implied physical input-output tables. We then divided Beijing's economy into 32 compartments and analyzed the direct and indirect ecological intensities embodied in the flows of ecological elements through urban metabolic processes. Based on the combination of input-output tables and ecological network analysis, the description of multiple ecological elements transferred among Beijing's industrial compartments and their distribution has been refined. This hybrid approach can provide a more scientific basis for management of urban resource flows. In addition, the data obtained from distribution characteristics of ecological elements may provide a basic data platform for exploring the metabolic mechanism of Beijing.
Trajectory Based Behavior Analysis for User Verification
NASA Astrophysics Data System (ADS)
Pao, Hsing-Kuo; Lin, Hong-Yi; Chen, Kuan-Ta; Fadlil, Junaidillah
Many of our activities on computer need a verification step for authorized access. The goal of verification is to tell apart the true account owner from intruders. We propose a general approach for user verification based on user trajectory inputs. The approach is labor-free for users and is likely to avoid the possible copy or simulation from other non-authorized users or even automatic programs like bots. Our study focuses on finding the hidden patterns embedded in the trajectories produced by account users. We employ a Markov chain model with Gaussian distribution in its transitions to describe the behavior in the trajectory. To distinguish between two trajectories, we propose a novel dissimilarity measure combined with a manifold learnt tuning for catching the pairwise relationship. Based on the pairwise relationship, we plug-in any effective classification or clustering methods for the detection of unauthorized access. The method can also be applied for the task of recognition, predicting the trajectory type without pre-defined identity. Given a trajectory input, the results show that the proposed method can accurately verify the user identity, or suggest whom owns the trajectory if the input identity is not provided.
Riss, Patrick J; Hong, Young T; Williamson, David; Caprioli, Daniele; Sitnikov, Sergey; Ferrari, Valentina; Sawiak, Steve J; Baron, Jean-Claude; Dalley, Jeffrey W; Fryer, Tim D; Aigbirhio, Franklin I
2011-01-01
The 5-hydroxytryptamine type 2a (5-HT2A) selective radiotracer [18F]altanserin has been subjected to a quantitative micro-positron emission tomography study in Lister Hooded rats. Metabolite-corrected plasma input modeling was compared with reference tissue modeling using the cerebellum as reference tissue. [18F]altanserin showed sufficient brain uptake in a distribution pattern consistent with the known distribution of 5-HT2A receptors. Full binding saturation and displacement was documented, and no significant uptake of radioactive metabolites was detected in the brain. Blood input as well as reference tissue models were equally appropriate to describe the radiotracer kinetics. [18F]altanserin is suitable for quantification of 5-HT2A receptor availability in rats. PMID:21750562
Analysis of rainfall distribution in Kelantan river basin, Malaysia
NASA Astrophysics Data System (ADS)
Che Ros, Faizah; Tosaka, Hiroyuki
2018-03-01
Using rainfall gauge on its own as input carries great uncertainties regarding runoff estimation, especially when the area is large and the rainfall is measured and recorded at irregular spaced gauging stations. Hence spatial interpolation is the key to obtain continuous and orderly rainfall distribution at unknown points to be the input to the rainfall runoff processes for distributed and semi-distributed numerical modelling. It is crucial to study and predict the behaviour of rainfall and river runoff to reduce flood damages of the affected area along the Kelantan river. Thus, a good knowledge on rainfall distribution is essential in early flood prediction studies. Forty six rainfall stations and their daily time-series were used to interpolate gridded rainfall surfaces using inverse-distance weighting (IDW), inverse-distance and elevation weighting (IDEW) methods and average rainfall distribution. Sensitivity analysis for distance and elevation parameters were conducted to see the variation produced. The accuracy of these interpolated datasets was examined using cross-validation assessment.
The Influence of Synaptic Weight Distribution on Neuronal Population Dynamics
Buice, Michael; Koch, Christof; Mihalas, Stefan
2013-01-01
The manner in which different distributions of synaptic weights onto cortical neurons shape their spiking activity remains open. To characterize a homogeneous neuronal population, we use the master equation for generalized leaky integrate-and-fire neurons with shot-noise synapses. We develop fast semi-analytic numerical methods to solve this equation for either current or conductance synapses, with and without synaptic depression. We show that its solutions match simulations of equivalent neuronal networks better than those of the Fokker-Planck equation and we compute bounds on the network response to non-instantaneous synapses. We apply these methods to study different synaptic weight distributions in feed-forward networks. We characterize the synaptic amplitude distributions using a set of measures, called tail weight numbers, designed to quantify the preponderance of very strong synapses. Even if synaptic amplitude distributions are equated for both the total current and average synaptic weight, distributions with sparse but strong synapses produce higher responses for small inputs, leading to a larger operating range. Furthermore, despite their small number, such synapses enable the network to respond faster and with more stability in the face of external fluctuations. PMID:24204219
Fixed and Data Adaptive Kernels in Cohen’s Class of Time-Frequency Distributions
1992-09-01
translated into its associated analytic signal by using the techniques discussed in Chapter Four. 1. Wigner - Ville Distribution function PS = wvd (data,winlen...step,begin,theend) % PS = wvd (data,winlen,step,begin,theend) % ’wvd.ml returns the Wigner - Ville time-frequency distribution % for the input data...12 IV. FIXED KERNEL DISTRIBUTIONS .................................................................. 19 A. WIGNER - VILLE DISTRIBUTION
NASA Technical Reports Server (NTRS)
Jian, B. J.; Shintani, T.; Emanuel, B. A.; Yates, B. J.
2002-01-01
The major goal of this study was to determine the patterns of convergence of non-labyrinthine inputs from the limbs and viscera onto vestibular nucleus neurons receiving signals from vertical semicircular canals or otolith organs. A secondary aim was to ascertain whether the effects of non-labyrinthine inputs on the activity of vestibular nucleus neurons is affected by bilateral peripheral vestibular lesions. The majority (72%) of vestibular nucleus neurons in labyrinth-intact animals whose firing was modulated by vertical rotations responded to electrical stimulation of limb and/or visceral nerves. The activity of even more vestibular nucleus neurons (93%) was affected by limb or visceral nerve stimulation in chronically labyrinthectomized preparations. Some neurons received non-labyrinthine inputs from a variety of peripheral sources, including antagonist muscles acting at the same joint, whereas others received inputs from more limited sources. There was no apparent relationship between the spatial and dynamic properties of a neuron's responses to tilts in vertical planes and the non-labyrinthine inputs that it received. These data suggest that non-labyrinthine inputs elicited during movement will modulate the processing of information by the central vestibular system, and may contribute to the recovery of spontaneous activity of vestibular nucleus neurons following peripheral vestibular lesions. Furthermore, some vestibular nucleus neurons with non-labyrinthine inputs may be activated only during particular behaviors that elicit a specific combination of limb and visceral inputs.
Jian, B J; Shintani, T; Emanuel, B A; Yates, B J
2002-05-01
The major goal of this study was to determine the patterns of convergence of non-labyrinthine inputs from the limbs and viscera onto vestibular nucleus neurons receiving signals from vertical semicircular canals or otolith organs. A secondary aim was to ascertain whether the effects of non-labyrinthine inputs on the activity of vestibular nucleus neurons is affected by bilateral peripheral vestibular lesions. The majority (72%) of vestibular nucleus neurons in labyrinth-intact animals whose firing was modulated by vertical rotations responded to electrical stimulation of limb and/or visceral nerves. The activity of even more vestibular nucleus neurons (93%) was affected by limb or visceral nerve stimulation in chronically labyrinthectomized preparations. Some neurons received non-labyrinthine inputs from a variety of peripheral sources, including antagonist muscles acting at the same joint, whereas others received inputs from more limited sources. There was no apparent relationship between the spatial and dynamic properties of a neuron's responses to tilts in vertical planes and the non-labyrinthine inputs that it received. These data suggest that non-labyrinthine inputs elicited during movement will modulate the processing of information by the central vestibular system, and may contribute to the recovery of spontaneous activity of vestibular nucleus neurons following peripheral vestibular lesions. Furthermore, some vestibular nucleus neurons with non-labyrinthine inputs may be activated only during particular behaviors that elicit a specific combination of limb and visceral inputs.
Stimulus-dependent Maximum Entropy Models of Neural Population Codes
Segev, Ronen; Schneidman, Elad
2013-01-01
Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME) model—a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population. PMID:23516339
RNA signal amplifier circuit with integrated fluorescence output.
Akter, Farhima; Yokobayashi, Yohei
2015-05-15
We designed an in vitro signal amplification circuit that takes a short RNA input that catalytically activates the Spinach RNA aptamer to produce a fluorescent output. The circuit consists of three RNA strands: an internally blocked Spinach aptamer, a fuel strand, and an input strand (catalyst), as well as the Spinach aptamer ligand 3,5-difluoro-4-hydroxylbenzylidene imidazolinone (DFHBI). The input strand initially displaces the internal inhibitory strand to activate the fluorescent aptamer while exposing a toehold to which the fuel strand can bind to further displace and recycle the input strand. Under a favorable condition, one input strand was able to activate up to five molecules of the internally blocked Spinach aptamer in 185 min at 30 °C. The simple RNA circuit reported here serves as a model for catalytic activation of arbitrary RNA effectors by chemical triggers.
Theoretical and subjective bit assignments in transform picture
NASA Technical Reports Server (NTRS)
Jones, H. W., Jr.
1977-01-01
It is shown that all combinations of symmetrical input distributions with difference distortion measures give a bit assignment rule identical to the well-known rule for a Gaussian input distribution with mean-square error. Published work is examined to show that the bit assignment rule is useful for transforms of full pictures, but subjective bit assignments for transform picture coding using small block sizes are significantly different from the theoretical bit assignment rule. An intuitive explanation is based on subjective design experience, and a subjectively obtained bit assignment rule is given.
The Partitioning of Triclosan between Aqueous and Particulate Phases in the Hudson River Estuary
The distribution of Triclosan within the Hudson River Estuary can be explained by a balance among the overall effluent inputs from municipal sewage treatment facilities, dilution of Triclosan concentrations in the water column with freshwater and seawater inputs, removal of Tricl...
VERA and VERA-EDU 3.5 Release Notes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sieger, Matt; Salko, Robert K.; Kochunas, Brendan M.
The Virtual Environment for Reactor Applications components included in this distribution include selected computational tools and supporting infrastructure that solve neutronics, thermal-hydraulics, fuel performance, and coupled neutronics-thermal hydraulics problems. The infrastructure components provide a simplified common user input capability and provide for the physics integration with data transfer and coupled-physics iterative solution algorithms. Neutronics analysis can be performed for 2D lattices, 2D core and 3D core problems for pressurized water reactor geometries that can be used to calculate criticality and fission rate distributions by pin for input fuel compositions. MPACT uses the Method of Characteristics transport approach for 2D problems.more » For 3D problems, MPACT uses the 2D/1D method which uses 2D MOC in a radial plane and diffusion or SPn in the axial direction. MPACT includes integrated cross section capabilities that provide problem-specific cross sections generated using the subgroup methodology. The code can be executed both 2D and 3D problems in parallel to reduce overall run time. A thermal-hydraulics capability is provided with CTF (an updated version of COBRA-TF) that allows thermal-hydraulics analyses for single and multiple assemblies using the simplified VERA common input. This distribution also includes coupled neutronics/thermal-hydraulics capabilities to allow calculations using MPACT coupled with CTF. The VERA fuel rod performance component BISON calculates, on a 2D or 3D basis, fuel rod temperature, fuel rod internal pressure, free gas volume, clad integrity and fuel rod waterside diameter. These capabilities allow simulation of power cycling, fuel conditioning and deconditioning, high burnup performance, power uprate scoping studies, and accident performance. Input/Output capabilities include the VERA Common Input (VERAIn) script which converts the ASCII common input file to the intermediate XML used to drive all of the physics codes in the VERA Core Simulator (VERA-CS). VERA component codes either input the VERA XML format directly, or provide a preprocessor which can convert the XML into native input. VERAView is an interactive graphical interface for the visualization and engineering analyses of output data from VERA. The python-based software is easy to install and intuitive to use, and provides instantaneous 2D and 3D images, 1D plots, and alpha-numeric data from VERA multi-physics simulations. Testing within CASL has focused primarily on Westinghouse four-loop reactor geometries and conditions with example problems included in the distribution.« less
Liu, Liang-Ying; Wei, Gao-Ling; Wang, Ji-Zhong; Guan, Yu-Feng; Wong, Charles S; Wu, Feng-Chang; Zeng, Eddy Y
2013-10-15
Sediment has been recognized as a gigantic sink of organic materials and therefore can record temporal input trends. To examine the impact of anthropogenic activities on the marginal seas off China, sediment cores were collected from the Yellow Sea, the inner shelf of the East China Sea (ECS), and the South China Sea (SCS) to investigate the sources and spatial and temporal variations of organic materials, i.e., total organic carbon (TOC) and aliphatic hydrocarbons. The concentration ranges of TOC were 0.5-1.29, 0.63-0.83, and 0.33-0.85%, while those of Σn-C14-35 (sum of n-alkanes with carbon numbers of 14-35) were 0.08-1.5, 0.13-1.97, and 0.35-0.96 μg/g dry weight in sediment cores from the Yellow Sea, ECS inner shelf, and the SCS, respectively. Terrestrial higher plants were an important source of aliphatic hydrocarbons in marine sediments off China. The spatial distribution of Σn-C14-35 concentrations and source diagnostic ratios suggested a greater load of terrestrial organic materials in the Yellow Sea than in the ECS and SCS. Temporally, TOC and Σn-C14-35 concentrations increased with time and peaked at either the surface or immediate subsurface layers. This increase was probably reflective of elevated inputs of organic materials to marginal seas off China in recent years, and attributed partly to the impacts of intensified anthropogenic activities in mainland China. Source diagnostics also suggested that aliphatic hydrocarbons were mainly derived from biogenic sources, with a minority in surface sediment layers from petroleum sources, consistent with the above-mentioned postulation.
Distributed Bandpass Filtering and Signal Demodulation in Cortical Network Models
NASA Astrophysics Data System (ADS)
McDonnell, Mark D.
Experimental recordings of cortical activity often exhibit narrowband oscillations, at various center frequencies ranging in the order of 1-200 Hz. Many neuronal mechanisms are known to give rise to oscillations, but here we focus on a population effect known as sparsely synchronised oscillations. In this effect, individual neurons in a cortical network fire irregularly at slow average spike rates (1-10 Hz), but the population spike rate oscillates at gamma frequencies (greater than 40 Hz) in response to spike bombardment from the thalamus. These cortical networks form recurrent (feedback) synapses. Here we describe a model of sparsely synchronized population oscillations using the language of feedback control engineering, where we treat spiking as noisy feedback. We show, using a biologically realistic model of synaptic current that includes a delayed response to inputs, that the collective behavior of the neurons in the network is like a distributed bandpass filter acting on the network inputs. Consequently, the population response has the character of narrowband random noise, and therefore has an envelope and instantaneous frequency with lowpass characteristics. Given that there exist biologically plausible neuronal mechanisms for demodulating the envelope and instantaneous frequency, we suggest there is potential for similar effects to be exploited in nanoscale electronics implementations of engineered communications receivers.
Sun, Qiyuan; Wang, Chao; Wang, Peifang; Hou, Jun; Ao, Yanhui
2014-03-01
The Yangtze Estuary is heavily influenced by coast-continent geochemical processes and anthropogenic activity; thus, the source and distribution of chromophoric dissolved organic matter (CDOM) in the estuary are strongly impacted by these processes. Here, a series of samples were collected from across the Yangtze Estuary to investigate the source and spatial dynamics of CDOM and its components throughout the system. Three indices (a(355), spectral slope, and fluorescence) were then calculated and interpreted. The results indicated that the distribution of CDOM was dominated by allochthonous input, conservative mixing, and phase transfer. The contribution of biogenic CDOM to total CDOM increased with salinity, and three individual CDOM components were identified upon fluorescence excitation emission matrix spectroscopy and parallel factor analysis of the water samples: C1, corresponding to humic substance-like CDOM, C2, corresponding to tryptophan-like CDOM, and C3, corresponding to tyrosine-like CDOM. C1 primarily originated from a terrestrial source, C2 had widespread origins, none of which played a dominant role, and C3 mainly originated from allochthonous input in the medium salinity area. Unexpectedly, no marine humic-like component was found in the surface water of the Yangtze Estuary, possibly because turbidity decreased the depth of sunlight penetration, limiting production of this component.
Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment.
Mantilla, Carlos B; Seven, Yasin B; Sieck, Gary C
2014-01-01
Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation but are also active in other nonventilatory behaviors, including coughing, sneezing, vomiting, defecation, and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly, properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors, whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing, or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. © 2014 Elsevier B.V. All rights reserved.
iSEDfit: Bayesian spectral energy distribution modeling of galaxies
NASA Astrophysics Data System (ADS)
Moustakas, John
2017-08-01
iSEDfit uses Bayesian inference to extract the physical properties of galaxies from their observed broadband photometric spectral energy distribution (SED). In its default mode, the inputs to iSEDfit are the measured photometry (fluxes and corresponding inverse variances) and a measurement of the galaxy redshift. Alternatively, iSEDfit can be used to estimate photometric redshifts from the input photometry alone. After the priors have been specified, iSEDfit calculates the marginalized posterior probability distributions for the physical parameters of interest, including the stellar mass, star-formation rate, dust content, star formation history, and stellar metallicity. iSEDfit also optionally computes K-corrections and produces multiple "quality assurance" (QA) plots at each stage of the modeling procedure to aid in the interpretation of the prior parameter choices and subsequent fitting results. The software is distributed as part of the impro IDL suite.
Particle identification with neural networks using a rotational invariant moment representation
NASA Astrophysics Data System (ADS)
Sinkus, Ralph; Voss, Thomas
1997-02-01
A feed-forward neural network is used to identify electromagnetic particles based upon their showering properties within a segmented calorimeter. A preprocessing procedure is applied to the spatial energy distribution of the particle shower in order to account for the varying geometry of the calorimeter. The novel feature is the expansion of the energy distribution in terms of moments of the so-called Zernike functions which are invariant under rotation. The distributions of moments exhibit very different scales, thus the multidimensional input distribution for the neural network is transformed via a principal component analysis and rescaled by its respective variances to ensure input values of the order of one. This increases the sensitivity of the network and thus results in better performance in identifying and separating electromagnetic from hadronic particles, especially at low energies.
NASA Astrophysics Data System (ADS)
Lajtha, K.; Strid, A.; Lee, B. S.
2014-12-01
Dissolved organic matter (DOM) production and transport play an important role in regulating organic matter (OM) distribution through a soil profile and ultimately, OM stabilization or export to aquatic systems. The contributions of varying OM inputs to the quality and amount of DOM as it passes through a soil profile remain relatively unknown. The Detrital Input and Removal Treatment (DIRT) site at the H. J. Andrews Experimental Forest in Oregon has undergone 17 years of litter, wood and root input manipulations and allows us to guage shifts in DOM chemistry induced by long-term changes to aboveground and belowground OM additions and exclusions. Using fluorescence and UV spectroscopy to characterize fluorescent properties, extent of decomposition, and sources of DOM in streams and soil solutions collected with lysimeters and soil extractions, we have assessed the importance of fresh OM inputs to DOM chemistry. Soil extracts from DIRT plots had a higher fluorescence index (FI) than lysimeter solutions or stream water. A high FI in surface water is generally interpreted as indicative of a high proportion of microbially-derived DOM. However, we suspect that the high FI in soil extracts is due to a higher proportion of non-aromatic DOM from fresh soil that microorganisms consume in transit through the soil profile to lysimeters or to streams. High redox index (RI) values were observed in lysimeters from the April 2014 sampling compared with the November 2013 sampling. These RI values show evidence of more reducing conditions at the end of the rainy season in the spring compared to the onset of the rainy season in the fall. Lysimeter water collected in No Input, No Litter, and No Root treatments contained high proportions of protein, suggesting the absence of carbon inputs changes activities of the microbial community. Observed variations reflect the viability of using fluorescent properties to explore the terrestrial-aquatic interface.
Kraus, Johanna M.; Pletcher, Leanna T.; Vonesh, James R.
2010-01-01
1. Cross-ecosystem movements of resources, including detritus, nutrients and living prey, can strongly influence food web dynamics in recipient habitats. Variation in resource inputs is thought to be driven by factors external to the recipient habitat (e.g. donor habitat productivity and boundary conditions). However, inputs of or by ‘active’ living resources may be strongly influenced by recipient habitat quality when organisms exhibit behavioural habitat selection when crossing ecosystem boundaries. 2. To examine whether behavioural responses to recipient habitat quality alter the relative inputs of ‘active’ living and ‘passive’ detrital resources to recipient food webs, we manipulated the presence of caged predatory fish and measured biomass, energy and organic content of inputs to outdoor experimental pools of adult aquatic insects, frog eggs, terrestrial plant matter and terrestrial arthropods. 3. Caged fish reduced the biomass, energy and organic matter donated to pools by tree frog eggs by ∼70%, but did not alter insect colonisation or passive allochthonous inputs of terrestrial arthropods and plant material. Terrestrial plant matter and adult aquatic insects provided the most energy and organic matter inputs to the pools (40–50%), while terrestrial arthropods provided the least (7%). Inputs of frog egg were relatively small but varied considerably among pools and over time (3%, range = 0–20%). Absolute and proportional amounts varied by input type. 4. Aquatic predators can strongly affect the magnitude of active, but not passive, inputs and that the effect of recipient habitat quality on active inputs is variable. Furthermore, some active inputs (i.e. aquatic insect colonists) can provide similar amounts of energy and organic matter as passive inputs of terrestrial plant matter, which are well known to be important. Because inputs differ in quality and the trophic level they subsidise, proportional changes in input type could have strong effects on recipient food webs. 5. Cross-ecosystem resource inputs have previously been characterised as donor-controlled. However, control by the recipient food web could lead to greater feedback between resource flow and consumer dynamics than has been appreciated so far.
Population Ecology of Nitrifiers in a Stream Receiving Geothermal Inputs of Ammonium
Cooper, A. Bryce
1983-01-01
The distribution, activity, and generic diversity of nitrifying bacteria in a stream receiving geothermal inputs of ammonium were studied. The high estimated rates of benthic nitrate flux (33 to 75 mg of N · m−2 · h−1) were a result of the activity of nitrifiers located in the sediment. Nitrifying potentials and ammonium oxidizer most probable numbers in the sediments were at least one order of magnitude higher than those in the waters. Nitrifiers in the oxygenated surface (0 to 2 cm) sediments were limited by suboptimal temperature, pH, and substrate level. Nitrifiers in deep (nonsurface) oxygenated sediments did not contribute significantly to the changes measured in the levels of inorganic nitrogen species in the overlying waters and presumably derived their ammonium supply from ammonification within the sediment. Ammonium-oxidizing isolates obtained by a most-probable number nonenrichment procedure were species of either Nitrosospira or Nitrosomonas, whereas all those obtained by an enrichment procedure (i.e., selective culture) were Nitrosomonas spp. The efficiency of the most-probable-number method for enumerating ammonium oxidizers was calculated to be between 0.05 and 2.0%, suggesting that measurements of nitrifying potentials provide a better estimate of nitrifying populations. PMID:16346261
Somatosensory Anticipatory Alpha Activity Increases to Suppress Distracting Input
ERIC Educational Resources Information Center
Haegens, Saskia; Luther, Lisa; Jensen, Ole
2012-01-01
Effective processing of sensory input in daily life requires attentional selection and amplification of relevant input and, just as importantly, attenuation of irrelevant information. It has been proposed that top-down modulation of oscillatory alpha band activity (8-14 Hz) serves to allocate resources to various regions, depending on task…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petitpas, Guillaume; Whitesides, Russel
UQHCCI_2 propagates the uncertainties of mass-average quantities (temperature, heat capacity ratio) and the output performances (IMEP, heat release, CA50 and RI) of a HCCI engine test bench using the pressure trace, and intake and exhaust molar fraction and IVC temperature distributions, as inputs (those inputs may be computed using another code UQHCCI_2, or entered independently).
Distributional Effects and Individual Differences in L2 Morphology Learning
ERIC Educational Resources Information Center
Brooks, Patricia J.; Kwoka, Nicole; Kempe, Vera
2017-01-01
Second language (L2) learning outcomes may depend on the structure of the input and learners' cognitive abilities. This study tested whether less predictable input might facilitate learning and generalization of L2 morphology while evaluating contributions of statistical learning ability, nonverbal intelligence, phonological short-term memory, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, F.T.; Young, M.L.; Miller, L.A.
The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulatedmore » jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the second of a three-volume document describing the project and contains two appendices describing the rationales for the dispersion and deposition data along with short biographies of the 16 experts who participated in the project.« less
The Effect of Input-Based Instruction Type on the Acquisition of Spanish Accusative Clitics
ERIC Educational Resources Information Center
White, Justin
2015-01-01
The purpose of this paper is to compare structured input (SI) with other input-based instructional treatments. The input-based instructional types include: input flood (IF), text enhancement (TE), SI activities, and focused input (FI; SI without implicit negative feedback). Participants included 145 adult learners enrolled in an intermediate…
Feeney, Daniel F; Meyer, François G; Noone, Nicholas; Enoka, Roger M
2017-10-01
Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal transmission. This is the first application of a deterministic state-space model to represent the discharge characteristics of motor units during voluntary contractions. Copyright © 2017 the American Physiological Society.
Wicked problems: a value chain approach from Vietnam's dairy product.
Khoi, Nguyen Viet
2013-12-01
In the past few years, dairy industry has become one of the fastest growing sectors in the packaged food industry of Vietnam. However, the value-added creation among different activities in the value chain of Vietnam dairy sector is distributed unequally. In the production activities, the dairy farmers gain low value-added rate due to high input cost. Whereas the processing activities, which managed by big companies, generates high profitability and Vietnamese consumers seem to have few choices due to the lack of dairy companies in the market. These wicked problems caused an unsustainable development to the dairy value chain of Vietnam. This paper, therefore, will map and analyze the value chain of the dairy industry in Vietnam. It will also assess the value created in each activity in order to imply solutions for a sustainable development of Vietnam's dairy industry. M10, M11.
Weight distributions for turbo codes using random and nonrandom permutations
NASA Technical Reports Server (NTRS)
Dolinar, S.; Divsalar, D.
1995-01-01
This article takes a preliminary look at the weight distributions achievable for turbo codes using random, nonrandom, and semirandom permutations. Due to the recursiveness of the encoders, it is important to distinguish between self-terminating and non-self-terminating input sequences. The non-self-terminating sequences have little effect on decoder performance, because they accumulate high encoded weight until they are artificially terminated at the end of the block. From probabilistic arguments based on selecting the permutations randomly, it is concluded that the self-terminating weight-2 data sequences are the most important consideration in the design of constituent codes; higher-weight self-terminating sequences have successively decreasing importance. Also, increasing the number of codes and, correspondingly, the number of permutations makes it more and more likely that the bad input sequences will be broken up by one or more of the permuters. It is possible to design nonrandom permutations that ensure that the minimum distance due to weight-2 input sequences grows roughly as the square root of (2N), where N is the block length. However, these nonrandom permutations amplify the bad effects of higher-weight inputs, and as a result they are inferior in performance to randomly selected permutations. But there are 'semirandom' permutations that perform nearly as well as the designed nonrandom permutations with respect to weight-2 input sequences and are not as susceptible to being foiled by higher-weight inputs.
Li, Lu; Stefan, Melanie I.; Le Novère, Nicolas
2012-01-01
NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors. PMID:22962589
Outsourcing neural active control to passive composite mechanics: a tissue engineered cyborg ray
NASA Astrophysics Data System (ADS)
Gazzola, Mattia; Park, Sung Jin; Park, Kyung Soo; Park, Shirley; di Santo, Valentina; Deisseroth, Karl; Lauder, George V.; Mahadevan, L.; Parker, Kevin Kit
2016-11-01
Translating the blueprint that stingrays and skates provide, we create a cyborg swimming ray capable of orchestrating adaptive maneuvering and phototactic navigation. The impossibility of replicating the neural system of batoids fish is bypassed by outsourcing algorithmic functionalities to the body composite mechanics, hence casting the active control problem into a design, passive one. We present a first step in engineering multilevel "brain-body-flow" systems that couple sensory information to motor coordination and movement, leading to behavior. This work paves the way for the development of autonomous and adaptive artificial creatures able to process multiple sensory inputs and produce complex behaviors in distributed systems and may represent a path toward soft-robotic "embodied cognition".
Assessment of Hydrologic Response to Variable Precipitation Forcing: Russian River Case Study
NASA Astrophysics Data System (ADS)
Cifelli, R.; Hsu, C.; Johnson, L. E.
2014-12-01
NOAA Hydrometeorology Testbed (HMT) activities in California have involved deployment of advanced sensor networks to better track atmospheric river (AR) dynamics and inland penetration of high water vapor air masses. Numerical weather prediction models and decision support tools have been developed to provide forecasters a better basis for forecasting heavy precipitation and consequent flooding. The HMT also involves a joint project with California Department of Water Resources (CA-DWR) and the Scripps Institute for Oceanography (SIO) as part of CA-DWR's Enhanced Flood Response and Emergency Preparedness (EFREP) program. The HMT activities have included development and calibration of a distributed hydrologic model, the NWS Office of Hydrologic Development's (OHD) Research Distributed Hydrologic Model (RDHM), to prototype the distributed approach for flood and other water resources applications. HMT has applied RDHM to the Russian-Napa watersheds for research assessment of gap-filling weather radars for precipitation and hydrologic forecasting and for establishing a prototype to inform both the NWS Monterey Forecast Office and the California Nevada River Forecast Center (CNRFC) of RDHM capabilities. In this presentation, a variety of precipitation forcings generated with and without gap filling radar and rain gauge data are used as input to RDHM to assess the hydrologic response for selected case study events. Both the precipitation forcing and hydrologic model are run at different spatial and temporal resolution in order to examine the sensitivity of runoff to the precipitation inputs. Based on the timing of the events and the variations of spatial and temporal resolution, the parameters which dominate the hydrologic response are identified. The assessment is implemented at two USGS stations (Ukiah near Russian River and Austin Creek near Cazadero) that are minimally influenced by managed flows and objective evaluation can thus be derived. The results are assessed using statistical metrics, including daily Nash scores, Pearson Correlation, and sub daily timing errors.
NASA Astrophysics Data System (ADS)
Cui, Guozeng; Xu, Shengyuan; Ma, Qian; Li, Yongmin; Zhang, Zhengqiang
2018-05-01
In this paper, the problem of prescribed performance distributed output consensus for higher-order non-affine nonlinear multi-agent systems with unknown dead-zone input is investigated. Fuzzy logical systems are utilised to identify the unknown nonlinearities. By introducing prescribed performance, the transient and steady performance of synchronisation errors are guaranteed. Based on Lyapunov stability theory and the dynamic surface control technique, a new distributed consensus algorithm for non-affine nonlinear multi-agent systems is proposed, which ensures cooperatively uniformly ultimately boundedness of all signals in the closed-loop systems and enables the output of each follower to synchronise with the leader within predefined bounded error. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.
Issues in ATM Support of High-Performance, Geographically Distributed Computing
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Dowd, Patrick W.; Srinidhi, Saragur M.; Blade, Eric D.G
1995-01-01
This report experimentally assesses the effect of the underlying network in a cluster-based computing environment. The assessment is quantified by application-level benchmarking, process-level communication, and network file input/output. Two testbeds were considered, one small cluster of Sun workstations and another large cluster composed of 32 high-end IBM RS/6000 platforms. The clusters had Ethernet, fiber distributed data interface (FDDI), Fibre Channel, and asynchronous transfer mode (ATM) network interface cards installed, providing the same processors and operating system for the entire suite of experiments. The primary goal of this report is to assess the suitability of an ATM-based, local-area network to support interprocess communication and remote file input/output systems for distributed computing.
Formation of propagation invariant laser beams with anamorphic optical systems
NASA Astrophysics Data System (ADS)
Soskind, Y. G.
2015-03-01
Propagation invariant structured laser beams play an important role in several photonics applications. A majority of propagation invariant beams are usually produced in the form of laser modes emanating from stable laser cavities. This work shows that anamorphic optical systems can be effectively employed to transform input propagation invariant laser beams and produce a variety of alternative propagation invariant structured laser beam distributions with different shapes and phase structures. This work also presents several types of anamorphic lens systems suitable for transforming the input laser modes into a variety of structured propagation invariant beams. The transformations are applied to different laser mode types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian field distributions. The influence of the relative azimuthal orientation between the input laser modes and the anamorphic optical systems on the resulting transformed propagation invariant beams is presented as well.
Asynchronous transfer mode distribution network by use of an optoelectronic VLSI switching chip.
Lentine, A L; Reiley, D J; Novotny, R A; Morrison, R L; Sasian, J M; Beckman, M G; Buchholz, D B; Hinterlong, S J; Cloonan, T J; Richards, G W; McCormick, F B
1997-03-10
We describe a new optoelectronic switching system demonstration that implements part of the distribution fabric for a large asynchronous transfer mode (ATM) switch. The system uses a single optoelectronic VLSI modulator-based switching chip with more than 4000 optical input-outputs. The optical system images the input fibers from a two-dimensional fiber bundle onto this chip. A new optomechanical design allows the system to be mounted in a standard electronic equipment frame. A large section of the switch was operated as a 208-Mbits/s time-multiplexed space switch, which can serve as part of an ATM switch by use of an appropriate out-of-band controller. A larger section with 896 input light beams and 256 output beams was operated at 160 Mbits/s as a slowly reconfigurable space switch.
Proprioceptive input patterns elevator activity in the locust flight system.
Wolf, H; Pearson, K G
1988-06-01
1. In the locust, Locusta migratoria, the roles of two groups of wing sense organs, hind wing tegulae and wing-hinge stretch receptors, in the generation of the flight motor pattern were investigated. A preparation was employed that allowed the intracellular recording of neural activity in almost intact tethered flying locusts or after selective manipulations of sensory input. The functions of the two sets of receptors were assessed 1) by studying the phases of their discharges in the wingbeat cycle (Fig. 3), 2) by the selective ablation of input from the receptors (Figs. 4-7), and 3) by the selective stimulation of the receptor afferents (Figs. 8-12). 2. Input from the tegulae was found to be responsible for the initiation of elevator activity (Figs. 9 and 10) and for the generation of a distinct initial rapid depolarization (Figs. 4, 5, and 8) characteristic of elevator motor neuron activity in intact locusts (Figs. 1 and 16). 3. Input from the wing-hinge stretch receptors was found to control the duration of elevator depolarizations by the graded suppression of a second late component of the elevator depolarizations as wingbeat frequency increased (Figs. 6, 7, 11, and 12). The characteristics of this late component of elevator activity suggested that it is generated by the same (central nervous) mechanism that produces the elevator depolarizations recorded in deafferented animals (Fig. 2). Apparently this late component contributes to the intact pattern of elevator depolarizations only at lower wingbeat frequencies and is abolished by the action of stretch-receptor input at frequencies above approximately 15 Hz (Figs. 1, 2, and 4). At these high wingbeat frequencies elevator activity is dominated by the rapid depolarizations generated as a result of tegula input. 4. The present study demonstrates 1) that the timing of elevator motor neuron activity is determined by phasic afferent input from tegulae and stretch receptors and 2) that input from the stretch receptors controls the duration of elevator activity in the wingbeat cycle following the wing movement that was responsible for the generation of the receptor discharge.
NEWTONP - CUMULATIVE BINOMIAL PROGRAMS
NASA Technical Reports Server (NTRS)
Bowerman, P. N.
1994-01-01
The cumulative binomial program, NEWTONP, is one of a set of three programs which calculate cumulative binomial probability distributions for arbitrary inputs. The three programs, NEWTONP, CUMBIN (NPO-17555), and CROSSER (NPO-17557), can be used independently of one another. NEWTONP can be used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. The program has been used for reliability/availability calculations. NEWTONP calculates the probably p required to yield a given system reliability V for a k-out-of-n system. It can also be used to determine the Clopper-Pearson confidence limits (either one-sided or two-sided) for the parameter p of a Bernoulli distribution. NEWTONP can determine Bayesian probability limits for a proportion (if the beta prior has positive integer parameters). It can determine the percentiles of incomplete beta distributions with positive integer parameters. It can also determine the percentiles of F distributions and the midian plotting positions in probability plotting. NEWTONP is designed to work well with all integer values 0 < k <= n. To run the program, the user simply runs the executable version and inputs the information requested by the program. NEWTONP is not designed to weed out incorrect inputs, so the user must take care to make sure the inputs are correct. Once all input has been entered, the program calculates and lists the result. It also lists the number of iterations of Newton's method required to calculate the answer within the given error. The NEWTONP program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly with most C compilers. The program format is interactive. It has been implemented under DOS 3.2 and has a memory requirement of 26K. NEWTONP was developed in 1988.
Radiation environment study of near space in China area
NASA Astrophysics Data System (ADS)
Fan, Dongdong; Chen, Xingfeng; Li, Zhengqiang; Mei, Xiaodong
2015-10-01
Aerospace activity becomes research hotspot for worldwide aviation big countries. Solar radiation study is the prerequisite for aerospace activity to carry out, but lack of observation in near space layer becomes the barrier. Based on reanalysis data, input key parameters are determined and simulation experiments are tried separately to simulate downward solar radiation and ultraviolet radiation transfer process of near space in China area. Results show that atmospheric influence on the solar radiation and ultraviolet radiation transfer process has regional characteristic. As key factors such as ozone are affected by atmospheric action both on its density, horizontal and vertical distribution, meteorological data of stratosphere needs to been considered and near space in China area is divided by its activity feature. Simulated results show that solar and ultraviolet radiation is time, latitude and ozone density-variant and has complicated variation characteristics.
NASA Astrophysics Data System (ADS)
Godsey, S. E.; Kirchner, J. W.
2008-12-01
The mean residence time - the average time that it takes rainfall to reach the stream - is a basic parameter used to characterize catchment processes. Heterogeneities in these processes lead to a distribution of travel times around the mean residence time. By examining this travel time distribution, we can better predict catchment response to contamination events. A catchment system with shorter residence times or narrower distributions will respond quickly to contamination events, whereas systems with longer residence times or longer-tailed distributions will respond more slowly to those same contamination events. The travel time distribution of a catchment is typically inferred from time series of passive tracers (e.g., water isotopes or chloride) in precipitation and streamflow. Variations in the tracer concentration in streamflow are usually damped compared to those in precipitation, because precipitation inputs from different storms (with different tracer signatures) are mixed within the catchment. Mathematically, this mixing process is represented by the convolution of the travel time distribution and the precipitation tracer inputs to generate the stream tracer outputs. Because convolution in the time domain is equivalent to multiplication in the frequency domain, it is relatively straightforward to estimate the parameters of the travel time distribution in either domain. In the time domain, the parameters describing the travel time distribution are typically estimated by maximizing the goodness of fit between the modeled and measured tracer outputs. In the frequency domain, the travel time distribution parameters can be estimated by fitting a power-law curve to the ratio of precipitation spectral power to stream spectral power. Differences between the methods of parameter estimation in the time and frequency domain mean that these two methods may respond differently to variations in data quality, record length and sampling frequency. Here we evaluate how well these two methods of travel time parameter estimation respond to different sources of uncertainty and compare the methods to one another. We do this by generating synthetic tracer input time series of different lengths, and convolve these with specified travel-time distributions to generate synthetic output time series. We then sample both the input and output time series at various sampling intervals and corrupt the time series with realistic error structures. Using these 'corrupted' time series, we infer the apparent travel time distribution, and compare it to the known distribution that was used to generate the synthetic data in the first place. This analysis allows us to quantify how different record lengths, sampling intervals, and error structures in the tracer measurements affect the apparent mean residence time and the apparent shape of the travel time distribution.
Convergent properties of vestibular-related brain stem neurons in the gerbil
NASA Technical Reports Server (NTRS)
Kaufman, G. D.; Shinder, M. E.; Perachio, A. A.
2000-01-01
Three classes of vestibular-related neurons were found in and near the prepositus and medial vestibular nuclei of alert or decerebrate gerbils, those responding to: horizontal translational motion, horizontal head rotation, or both. Their distribution ratios were 1:2:2, respectively. Many cells responsive to translational motion exhibited spatiotemporal characteristics with both response gain and phase varying as a function of the stimulus vector angle. Rotationally sensitive neurons were distributed as Type I, II, or III responses (sensitive to ipsilateral, contralateral, or both directions, respectively) in the ratios of 4:6:1. Four tested factors shaped the response dynamics of the sampled neurons: canal-otolith convergence, oculomotor-related activity, rotational Type (I or II), and the phase of the maximum response. Type I nonconvergent cells displayed increasing gains with increasing rotational stimulus frequency (0.1-2.0 Hz, 60 degrees /s), whereas Type II neurons with convergent inputs had response gains that markedly decreased with increasing translational stimulus frequency (0.25-2.0 Hz, +/-0.1 g). Type I convergent and Type II nonconvergent neurons exhibited essentially flat gains across the stimulus frequency range. Oculomotor-related activity was noted in 30% of the cells across all functional types, appearing as burst/pause discharge patterns related to the fast phase of nystagmus during head rotation. Oculomotor-related activity was correlated with enhanced dynamic range compared with the same category that had no oculomotor-related response. Finally, responses that were in-phase with head velocity during rotation exhibited greater gains with stimulus frequency increments than neurons with out-of-phase responses. In contrast, for translational motion, neurons out of phase with head acceleration exhibited low-pass characteristics, whereas in-phase neurons did not. Data from decerebrate preparations revealed that although similar response types could be detected, the sampled cells generally had lower background discharge rates, on average one-third lower response gains, and convergent properties that differed from those found in the alert animals. On the basis of the dynamic response of identified cell types, we propose a pair of models in which inhibitory input from vestibular-related neurons converges on oculomotor neurons with excitatory inputs from the vestibular nuclei. Simple signal convergence and combinations of different types of vestibular labyrinth information can enrich the dynamic characteristics of the rotational and translational vestibuloocular responses.
van Atteveldt, Nienke M; Blau, Vera C; Blomert, Leo; Goebel, Rainer
2010-02-02
Efficient multisensory integration is of vital importance for adequate interaction with the environment. In addition to basic binding cues like temporal and spatial coherence, meaningful multisensory information is also bound together by content-based associations. Many functional Magnetic Resonance Imaging (fMRI) studies propose the (posterior) superior temporal cortex (STC) as the key structure for integrating meaningful multisensory information. However, a still unanswered question is how superior temporal cortex encodes content-based associations, especially in light of inconsistent results from studies comparing brain activation to semantically matching (congruent) versus nonmatching (incongruent) multisensory inputs. Here, we used fMR-adaptation (fMR-A) in order to circumvent potential problems with standard fMRI approaches, including spatial averaging and amplitude saturation confounds. We presented repetitions of audiovisual stimuli (letter-speech sound pairs) and manipulated the associative relation between the auditory and visual inputs (congruent/incongruent pairs). We predicted that if multisensory neuronal populations exist in STC and encode audiovisual content relatedness, adaptation should be affected by the manipulated audiovisual relation. The results revealed an occipital-temporal network that adapted independently of the audiovisual relation. Interestingly, several smaller clusters distributed over superior temporal cortex within that network, adapted stronger to congruent than to incongruent audiovisual repetitions, indicating sensitivity to content congruency. These results suggest that the revealed clusters contain multisensory neuronal populations that encode content relatedness by selectively responding to congruent audiovisual inputs, since unisensory neuronal populations are assumed to be insensitive to the audiovisual relation. These findings extend our previously revealed mechanism for the integration of letters and speech sounds and demonstrate that fMR-A is sensitive to multisensory congruency effects that may not be revealed in BOLD amplitude per se.
Wrapping Python around MODFLOW/MT3DMS based groundwater models
NASA Astrophysics Data System (ADS)
Post, V.
2008-12-01
Numerical models that simulate groundwater flow and solute transport require a great amount of input data that is often organized into different files. A large proportion of the input data consists of spatially-distributed model parameters. The model output consists of a variety data such as heads, fluxes and concentrations. Typically all files have different formats. Consequently, preparing input and managing output is a complex and error-prone task. Proprietary software tools are available that facilitate the preparation of input files and analysis of model outcomes. The use of such software may be limited if it does not support all the features of the groundwater model or when the costs of such tools are prohibitive. Therefore a Python library was developed that contains routines to generate input files and process output files of MODFLOW/MT3DMS based models. The library is freely available and has an open structure so that the routines can be customized and linked into other scripts and libraries. The current set of functions supports the generation of input files for MODFLOW and MT3DMS, including the capability to read spatially-distributed input parameters (e.g. hydraulic conductivity) from PNG files. Both ASCII and binary output files can be read efficiently allowing for visualization of, for example, solute concentration patterns in contour plots with superimposed flow vectors using matplotlib. Series of contour plots are then easily saved as an animation. The subroutines can also be used within scripts to calculate derived quantities such as the mass of a solute within a particular region of the model domain. Using Python as a wrapper around groundwater models provides an efficient and flexible way of processing input and output data, which is not constrained by limitations of third-party products.
NASA Astrophysics Data System (ADS)
Fauzi, A. F.; Aditianata, A.
2018-02-01
The existence of street as a place to perform various human activities becomes an important issue nowadays. In the last few decades, cars and motorcycles dominate streets in various cities in the world. On the other hand, human activity on the street is the determinant of the city livability. Previous research has pointed out that if there is lots of human activity in the street, then the city will be interesting. Otherwise, if the street has no activity, then the city will be boring. Learning from that statement, now various cities in the world are developing the concept of livable streets. Livable streets shown by diversity of human activities conducted in the streets’ pedestrian space. In Yogyakarta, one of the streets shown diversity of human activities is Jalan Kemasan. This study attempts to determine the physical factors of pedestrian space affecting the livability in Jalan Kemasan Yogyakarta through spatial analysis. Spatial analysis was performed by overlay technique between liveable point (activity diversity) distribution map and variable distribution map. Those physical pedestrian space research variable included element of shading, street vendors, building setback, seat location, divider between street and pedestrian way, and mixed use building function. More diverse the activity of one variable, then those variable are more affected then others. Overlay result then strengthened by field observation to qualitatively ensure the deduction. In the end, this research will provide valuable input for street and pedestrian space planning that is comfortable for human activities.
NASA Astrophysics Data System (ADS)
Ibrahima, Fayadhoi; Meyer, Daniel; Tchelepi, Hamdi
2016-04-01
Because geophysical data are inexorably sparse and incomplete, stochastic treatments of simulated responses are crucial to explore possible scenarios and assess risks in subsurface problems. In particular, nonlinear two-phase flows in porous media are essential, yet challenging, in reservoir simulation and hydrology. Adding highly heterogeneous and uncertain input, such as the permeability and porosity fields, transforms the estimation of the flow response into a tough stochastic problem for which computationally expensive Monte Carlo (MC) simulations remain the preferred option.We propose an alternative approach to evaluate the probability distribution of the (water) saturation for the stochastic Buckley-Leverett problem when the probability distributions of the permeability and porosity fields are available. We give a computationally efficient and numerically accurate method to estimate the one-point probability density (PDF) and cumulative distribution functions (CDF) of the (water) saturation. The distribution method draws inspiration from a Lagrangian approach of the stochastic transport problem and expresses the saturation PDF and CDF essentially in terms of a deterministic mapping and the distribution and statistics of scalar random fields. In a large class of applications these random fields can be estimated at low computational costs (few MC runs), thus making the distribution method attractive. Even though the method relies on a key assumption of fixed streamlines, we show that it performs well for high input variances, which is the case of interest. Once the saturation distribution is determined, any one-point statistics thereof can be obtained, especially the saturation average and standard deviation. Moreover, the probability of rare events and saturation quantiles (e.g. P10, P50 and P90) can be efficiently derived from the distribution method. These statistics can then be used for risk assessment, as well as data assimilation and uncertainty reduction in the prior knowledge of input distributions. We provide various examples and comparisons with MC simulations to illustrate the performance of the method.
SimBA: simulation algorithm to fit extant-population distributions.
Parida, Laxmi; Haiminen, Niina
2015-03-14
Simulation of populations with specified characteristics such as allele frequencies, linkage disequilibrium etc., is an integral component of many studies, including in-silico breeding optimization. Since the accuracy and sensitivity of population simulation is critical to the quality of the output of the applications that use them, accurate algorithms are required to provide a strong foundation to the methods in these studies. In this paper we present SimBA (Simulation using Best-fit Algorithm) a non-generative approach, based on a combination of stochastic techniques and discrete methods. We optimize a hill climbing algorithm and extend the framework to include multiple subpopulation structures. Additionally, we show that SimBA is very sensitive to the input specifications, i.e., very similar but distinct input characteristics result in distinct outputs with high fidelity to the specified distributions. This property of the simulation is not explicitly modeled or studied by previous methods. We show that SimBA outperforms the existing population simulation methods, both in terms of accuracy as well as time-efficiency. Not only does it construct populations that meet the input specifications more stringently than other published methods, SimBA is also easy to use. It does not require explicit parameter adaptations or calibrations. Also, it can work with input specified as distributions, without an exemplar matrix or population as required by some methods. SimBA is available at http://researcher.ibm.com/project/5669 .
Diet shift of lentic dragonfly larvae in response to reduced terrestrial prey subsidies
Kraus, Johanna M.
2010-01-01
Inputs of terrestrial plant detritus and nutrients play an important role in aquatic food webs, but the importance of terrestrial prey inputs in determining aquatic predator distribution and abundance has been appreciated only recently. I examined the numerical, biomass, and diet responses of a common predator, dragonfly larvae, to experimental reduction of terrestrial arthropod input into ponds. I distributed paired enclosures (n = 7), one with a screen between the land and water (reduced subsidy) and one without a screen (ambient subsidy), near the shoreline of 2 small fishless ponds and sampled each month during the growing season in the southern Appalachian Mountains, Virginia (USA). Screens between water and land reduced the number of terrestrial arthropods that fell into screened enclosures relative to the number that fell into unscreened enclosures and open reference plots by 36%. The δ13C isotopic signatures of dragonfly larvae shifted towards those of aquatic prey in reduced-subsidy enclosures, a result suggesting that dragonflies consumed fewer terrestrial prey when fewer were available (ambient subsidy: 30%, reduced subsidy: 19% of diet). Overall abundance and biomass of dragonfly larvae did not change in response to reduced terrestrial arthropod inputs, despite the fact that enclosures permitted immigration/emigration. These results suggest that terrestrial arthropods can provide resources to aquatic predators in lentic systems, but that their effects on abundance and distribution might be subtle and confounded by in situ factors.
Network-State Modulation of Power-Law Frequency-Scaling in Visual Cortical Neurons
Béhuret, Sébastien; Baudot, Pierre; Yger, Pierre; Bal, Thierry; Destexhe, Alain; Frégnac, Yves
2009-01-01
Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of Vm activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the Vm reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the “effective” connectivity responsible for the dynamical signature of the population signals measured at different integration levels, from Vm to LFP, EEG and fMRI. PMID:19779556
Network-state modulation of power-law frequency-scaling in visual cortical neurons.
El Boustani, Sami; Marre, Olivier; Béhuret, Sébastien; Baudot, Pierre; Yger, Pierre; Bal, Thierry; Destexhe, Alain; Frégnac, Yves
2009-09-01
Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m) activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m) reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population signals measured at different integration levels, from Vm to LFP, EEG and fMRI.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-20
...In accordance with the Paperwork Reduction Act of 1995, FAA invites public comments about our intention to request the Office of Management and Budget (OMB) approval to renew an information collection. The Federal Register Notice with a 60-day comment period soliciting comments on the following collection of information was published on August 21, 2013, vol. 78, no. 162, page 51808. The FAA Office of the Associate Administrator for Commercial Space Transportation (AST) conducts this survey in order to obtain industry input on customer service standards which have been developed and distributed to industry customers.
A Method for Evaluating Tuning Functions of Single Neurons based on Mutual Information Maximization
NASA Astrophysics Data System (ADS)
Brostek, Lukas; Eggert, Thomas; Ono, Seiji; Mustari, Michael J.; Büttner, Ulrich; Glasauer, Stefan
2011-03-01
We introduce a novel approach for evaluation of neuronal tuning functions, which can be expressed by the conditional probability of observing a spike given any combination of independent variables. This probability can be estimated out of experimentally available data. By maximizing the mutual information between the probability distribution of the spike occurrence and that of the variables, the dependence of the spike on the input variables is maximized as well. We used this method to analyze the dependence of neuronal activity in cortical area MSTd on signals related to movement of the eye and retinal image movement.
Illuminati, S; Annibaldi, A; Romagnoli, T; Libani, G; Antonucci, M; Scarponi, G; Totti, C; Truzzi, C
2017-10-01
During the austral summer 2011-2012, the metal quotas of Cd, Pb and Cu in the phytoplankton of Terra Nova Bay (TNB, Antarctica) were measured for the first time. Evolution of all the three metal distributions between dissolved and particulate fractions during the season was also evaluated. Metal concentrations were mainly affected by the dynamic of the pack ice melting and phytoplankton activity. In mid-December when TNB area was covered by a thick pack ice layer and phytoplankton activity was very low, all the three metals were present mainly in their dissolved species. When the pack ice started to melt and the water column characteristics became ideal (i.e. moderate stratification, ice free area), the phytoplankton bloom occurred. Cd showed a nutrient-type behaviour with dissolved and particulate fractions mainly influenced by phytoplankton activity. Cd quota showed a mean value of 0.12 ± 0.07 nmol L -1 (30-100% of the total particulate). Also Cu showed a nutrient-type behaviour, with its quota in phytoplankton varying between 0.08 and 2.1 nmol L -1 (20-100% of the total particulate). Pb features the typical distribution of a scavenged element with very low algal content (0.03 ± 0.02 nmol L -1 , representing 20-50% of the total particulate). The vertical distribution of this element was influenced by several factors (e.g. pack ice melting, atmospheric inputs), the phytoplankton activity affecting Pb behaviour only partially. Metal:C ratios provide valuable information on the biological requirements for Cd, Pb and Cu, leading us to better understand their biogeochemical cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Audio distribution and Monitoring Circuit
NASA Technical Reports Server (NTRS)
Kirkland, J. M.
1983-01-01
Versatile circuit accepts and distributes TV audio signals. Three-meter audio distribution and monitoring circuit provides flexibility in monitoring, mixing, and distributing audio inputs and outputs at various signal and impedance levels. Program material is simultaneously monitored on three channels, or single-channel version built to monitor transmitted or received signal levels, drive speakers, interface to building communications, and drive long-line circuits.
Wang, Wei; Wen, Changyun; Huang, Jiangshuai; Fan, Huijin
2017-11-01
In this paper, a backstepping based distributed adaptive control scheme is proposed for multiple uncertain Euler-Lagrange systems under directed graph condition. The common desired trajectory is allowed totally unknown by part of the subsystems and the linearly parameterized trajectory model assumed in currently available results is no longer needed. To compensate the effects due to unknown trajectory information, a smooth function of consensus errors and certain positive integrable functions are introduced in designing virtual control inputs. Besides, to overcome the difficulty of completely counteracting the coupling terms of distributed consensus errors and parameter estimation errors in the presence of asymmetric Laplacian matrix, extra information transmission of local parameter estimates are introduced among linked subsystem and adaptive gain technique is adopted to generate distributed torque inputs. It is shown that with the proposed distributed adaptive control scheme, global uniform boundedness of all the closed-loop signals and asymptotically output consensus tracking can be achieved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
George, Jude (Inventor); Schlecht, Leslie (Inventor); McCabe, James D. (Inventor); LeKashman, John Jr. (Inventor)
1998-01-01
A network management system has SNMP agents distributed at one or more sites, an input output module at each site, and a server module located at a selected site for communicating with input output modules, each of which is configured for both SNMP and HNMP communications. The server module is configured exclusively for HNMP communications, and it communicates with each input output module according to the HNMP. Non-iconified, informationally complete views are provided of network elements to aid in network management.
Loss resilience for two-qubit state transmission using distributed phase sensitive amplification
Dailey, James; Agarwal, Anjali; Toliver, Paul; ...
2015-11-12
We transmit phase-encoded non-orthogonal quantum states through a 5-km long fibre-based distributed optical phase-sensitive amplifier (OPSA) using telecom-wavelength photonic qubit pairs. The gain is set to equal the transmission loss to probabilistically preserve input states during transmission. While neither state is optimally aligned to the OPSA, each input state is equally amplified with no measurable degradation in state quality. These results promise a new approach to reduce the effects of loss by encoding quantum information in a two-qubit Hilbert space which is designed to benefit from transmission through an OPSA.
Particle identification with neural networks using a rotational invariant moment representation
NASA Astrophysics Data System (ADS)
Sinkus, R.; Voss, T.
1997-02-01
A feed-forward neural network is used to identify electromagnetic particles based upon their showering properties within a segmented calorimeter. The novel feature is the expansion of the energy distribution in terms of moments of the so-called Zernike functions which are invariant under rotation. The multidimensional input distribution for the neural network is transformed via a principle component analysis and rescaled by its respective variances to ensure input values of the order of one. This results is a better performance in identifying and separating electromagnetic from hadronic particles, especially at low energies.
Loss resilience for two-qubit state transmission using distributed phase sensitive amplification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dailey, James; Agarwal, Anjali; Toliver, Paul
We transmit phase-encoded non-orthogonal quantum states through a 5-km long fibre-based distributed optical phase-sensitive amplifier (OPSA) using telecom-wavelength photonic qubit pairs. The gain is set to equal the transmission loss to probabilistically preserve input states during transmission. While neither state is optimally aligned to the OPSA, each input state is equally amplified with no measurable degradation in state quality. These results promise a new approach to reduce the effects of loss by encoding quantum information in a two-qubit Hilbert space which is designed to benefit from transmission through an OPSA.
NASA Astrophysics Data System (ADS)
Conan, Pascal; Pujo-Pay, Mireille; Agab, Marina; Calva-Benítez, Laura; Chifflet, Sandrine; Douillet, Pascal; Dussud, Claire; Fichez, Renaud; Grenz, Christian; Gutierrez Mendieta, Francisco; Origel-Moreno, Montserrat; Rodríguez-Blanco, Arturo; Sauret, Caroline; Severin, Tatiana; Tedetti, Marc; Torres Alvarado, Rocío; Ghiglione, Jean-François
2017-03-01
The 2009-2010 period was marked by an episode of intense drought known as the El Niño Modoki event. Sampling of the Términos Lagoon (Mexico) was carried out in November 2009 in order to understand the influence of these particular environmental conditions on organic matter fluxes within the lagoon's pelagic ecosystem and, more specifically, on the relationship between phyto- and bacterioplankton communities. The measurements presented here concern biogeochemical parameters (nutrients, dissolved and particulate organic matter [POM], and dissolved polycyclic aromatic hydrocarbons [PAHs]), phytoplankton (biomass and photosynthesis), and bacteria (diversity and abundance, including PAH degradation bacteria and ectoenzymatic activities). During the studied period, the water column of the Términos Lagoon functioned globally as a sink and, more precisely, as a nitrogen assimilator
. This was due to the high production of particulate and dissolved organic matter (DOM), even though exportation of autochthonous matter to the Gulf of Mexico was weak. We found that bottom-up
control accounted for a large portion of the variability of phytoplankton productivity. Nitrogen and phosphorus stoichiometry mostly accounted for the heterogeneity in phytoplankton and free-living prokaryote distribution in the lagoon. In the eastern part, we found a clear decoupling between areas enriched in dissolved inorganic nitrogen near the Puerto Real coastal inlet and areas enriched in phosphate (PO4) near the Candelaria estuary. Such a decoupling limited the potential for primary production, resulting in an accumulation of dissolved organic carbon and nitrogen (DOC and DON, respectively) near the river mouths. In the western part of the lagoon, maximal phytoplankton development resulted from bacterial activity transforming particulate organic phosphorus (PP) and dissolved organic phosphorus (DOP) to available PO4 and the coupling between Palizada River inputs of nitrate (NO3) and PP. The Chumpan River contributed only marginally to PO4 inputs due to its very low contribution to overall river inputs. The highest dissolved total PAH concentrations were measured in the El Carmen Inlet, suggesting that the anthropogenic pollution of the zone is probably related to the oil-platform exploitation activities in the shallow waters of the southern of the Gulf of Mexico. We also found that a complex array of biogeochemical and phytoplanktonic parameters were the driving force behind the geographical distribution of bacterial community structure and activities. Finally, we showed that nutrients brought by the Palizada River supported an abundant bacterial community of PAH degraders, which are of significance in this important oil-production zone.
Learning Vowel Categories from Maternal Speech in Gurindji Kriol
ERIC Educational Resources Information Center
Jones, Caroline; Meakins, Felicity; Muawiyath, Shujau
2012-01-01
Distributional learning is a proposal for how infants might learn early speech sound categories from acoustic input before they know many words. When categories in the input differ greatly in relative frequency and overlap in acoustic space, research in bilingual development suggests that this affects the course of development. In the present…
A Measure Approximation for Distributionally Robust PDE-Constrained Optimization Problems
Kouri, Drew Philip
2017-12-19
In numerous applications, scientists and engineers acquire varied forms of data that partially characterize the inputs to an underlying physical system. This data is then used to inform decisions such as controls and designs. Consequently, it is critical that the resulting control or design is robust to the inherent uncertainties associated with the unknown probabilistic characterization of the model inputs. Here in this work, we consider optimal control and design problems constrained by partial differential equations with uncertain inputs. We do not assume a known probabilistic model for the inputs, but rather we formulate the problem as a distributionally robustmore » optimization problem where the outer minimization problem determines the control or design, while the inner maximization problem determines the worst-case probability measure that matches desired characteristics of the data. We analyze the inner maximization problem in the space of measures and introduce a novel measure approximation technique, based on the approximation of continuous functions, to discretize the unknown probability measure. Finally, we prove consistency of our approximated min-max problem and conclude with numerical results.« less
A Bayesian approach to model structural error and input variability in groundwater modeling
NASA Astrophysics Data System (ADS)
Xu, T.; Valocchi, A. J.; Lin, Y. F. F.; Liang, F.
2015-12-01
Effective water resource management typically relies on numerical models to analyze groundwater flow and solute transport processes. Model structural error (due to simplification and/or misrepresentation of the "true" environmental system) and input forcing variability (which commonly arises since some inputs are uncontrolled or estimated with high uncertainty) are ubiquitous in groundwater models. Calibration that overlooks errors in model structure and input data can lead to biased parameter estimates and compromised predictions. We present a fully Bayesian approach for a complete assessment of uncertainty for spatially distributed groundwater models. The approach explicitly recognizes stochastic input and uses data-driven error models based on nonparametric kernel methods to account for model structural error. We employ exploratory data analysis to assist in specifying informative prior for error models to improve identifiability. The inference is facilitated by an efficient sampling algorithm based on DREAM-ZS and a parameter subspace multiple-try strategy to reduce the required number of forward simulations of the groundwater model. We demonstrate the Bayesian approach through a synthetic case study of surface-ground water interaction under changing pumping conditions. It is found that explicit treatment of errors in model structure and input data (groundwater pumping rate) has substantial impact on the posterior distribution of groundwater model parameters. Using error models reduces predictive bias caused by parameter compensation. In addition, input variability increases parametric and predictive uncertainty. The Bayesian approach allows for a comparison among the contributions from various error sources, which could inform future model improvement and data collection efforts on how to best direct resources towards reducing predictive uncertainty.
Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George
2010-01-01
Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose nonuniformity in the tumor and a corresponding reduced likelihood of achieving a tumor response. Such analyses are expected to be useful in treatment planning for radionuclide therapy. PMID:17504874
Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch
2014-01-01
Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian--Ordovician, and Carboniferous--Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08-95.30%), Ba (42.45-503.0 ppm), and ΣREE (3.28-19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb) N, and (La/Ce) N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.
Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch.
2014-01-01
Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%), Ba (42.45–503.0 ppm), and ΣREE (3.28–19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb)N, and (La/Ce)N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics. PMID:25140349
Strategies to improve learning of all students in a class
NASA Astrophysics Data System (ADS)
Suraishkumar, G. K.
2018-05-01
The statistical distribution of the student learning abilities in a typical undergraduate engineering class poses a significant challenge to simultaneously improve the learning of all the students in the class. With traditional instruction styles, the students with significantly high learning abilities are not satisfied due to a feeling of unfulfilled potential, and the students with significantly low learning abilities feel lost. To address the challenge in an undergraduate core/required course on 'transport phenomena in biological systems', a combination of learning strategies such as active learning including co-operative group learning, challenge exercises, and others were employed in a pro-advising context. The short-term and long-term impacts were evaluated through student course performances and input, respectively. The results show that it is possible to effectively address the challenge posed by the distribution of student learning abilities in a class.
Precise Hypocenter Determination around Palu Koro Fault: a Preliminary Results
NASA Astrophysics Data System (ADS)
Fawzy Ismullah, M. Muhammad; Nugraha, Andri Dian; Ramdhan, Mohamad; Wandono
2017-04-01
Sulawesi area is located in complex tectonic pattern. High seismicity activity in the middle of Sulawesi is related to Palu Koro fault (PKF). In this study, we determined precise hypocenter around PKF by applying double-difference method. We attempt to investigate of the seismicity rate, geometry of the fault and distribution of focus depth around PKF. We first re-pick P-and S-wave arrival time of the PKF events to determine the initial hypocenter location using Hypoellipse method through updated 1-D seismic velocity. Later on, we relocated the earthquake event using double-difference method. Our preliminary results show the distribution of relocated events are located around PKF and have smaller residual time than the initial location. We will enhance the hypocenter location through updating of arrival time by applying waveform cross correlation method as input for double-difference relocation.
Regional climate model downscaling may improve the prediction of alien plant species distributions
NASA Astrophysics Data System (ADS)
Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.
2014-12-01
Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.
Easy boundary definition for EGUN
NASA Astrophysics Data System (ADS)
Becker, R.
1989-06-01
The relativistic electron optics program EGUN [1] has reached a broad distribution, and many users have asked for an easier way of boundary input. A preprocessor to EGUN has been developed that accepts polygonal input of boundary points, and offers features such as rounding off of corners, shifting and squeezing of electrodes and simple input of slanted Neumann boundaries. This preprocessor can either be used on a PC that is linked to a mainframe using the FORTRAN version of EGUN, or in connection with the version EGNc, which also runs on a PC. In any case, direct graphic response on the PC greatly facilitates the creation of correct input files for EGUN.
High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers
NASA Astrophysics Data System (ADS)
Arun, S.; Choudhury, Vishal; Balaswamy, V.; Prakash, Roopa; Supradeepa, V. R.
2018-04-01
We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power Ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm(>1 octave) from 880-1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.
Distribution Development for STORM Ingestion Input Parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, John
The Sandia-developed Transport of Radioactive Materials (STORM) code suite is used as part of the Radioisotope Power System Launch Safety (RPSLS) program to perform statistical modeling of the consequences due to release of radioactive material given a launch accident. As part of this modeling, STORM samples input parameters from probability distributions with some parameters treated as constants. This report described the work done to convert four of these constant inputs (Consumption Rate, Average Crop Yield, Cropland to Landuse Database Ratio, and Crop Uptake Factor) to sampled values. Consumption rate changed from a constant value of 557.68 kg / yr tomore » a normal distribution with a mean of 102.96 kg / yr and a standard deviation of 2.65 kg / yr. Meanwhile, Average Crop Yield changed from a constant value of 3.783 kg edible / m 2 to a normal distribution with a mean of 3.23 kg edible / m 2 and a standard deviation of 0.442 kg edible / m 2 . The Cropland to Landuse Database ratio changed from a constant value of 0.0996 (9.96%) to a normal distribution with a mean value of 0.0312 (3.12%) and a standard deviation of 0.00292 (0.29%). Finally the crop uptake factor changed from a constant value of 6.37e -4 (Bq crop /kg)/(Bq soil /kg) to a lognormal distribution with a geometric mean value of 3.38e -4 (Bq crop /kg)/(Bq soil /kg) and a standard deviation value of 3.33 (Bq crop /kg)/(Bq soil /kg)« less
Zvereva, Alexandra; Kamp, Florian; Schlattl, Helmut; Zankl, Maria; Parodi, Katia
2018-05-17
Variance-based sensitivity analysis (SA) is described and applied to the radiation dosimetry model proposed by the Committee on Medical Internal Radiation Dose (MIRD) for the organ-level absorbed dose calculations in nuclear medicine. The uncertainties in the dose coefficients thus calculated are also evaluated. A Monte Carlo approach was used to compute first-order and total-effect SA indices, which rank the input factors according to their influence on the uncertainty in the output organ doses. These methods were applied to the radiopharmaceutical (S)-4-(3- 18 F-fluoropropyl)-L-glutamic acid ( 18 F-FSPG) as an example. Since 18 F-FSPG has 11 notable source regions, a 22-dimensional model was considered here, where 11 input factors are the time-integrated activity coefficients (TIACs) in the source regions and 11 input factors correspond to the sets of the specific absorbed fractions (SAFs) employed in the dose calculation. The SA was restricted to the foregoing 22 input factors. The distributions of the input factors were built based on TIACs of five individuals to whom the radiopharmaceutical 18 F-FSPG was administered and six anatomical models, representing two reference, two overweight, and two slim individuals. The self-absorption SAFs were mass-scaled to correspond to the reference organ masses. The estimated relative uncertainties were in the range 10%-30%, with a minimum and a maximum for absorbed dose coefficients for urinary bladder wall and heart wall, respectively. The applied global variance-based SA enabled us to identify the input factors that have the highest influence on the uncertainty in the organ doses. With the applied mass-scaling of the self-absorption SAFs, these factors included the TIACs for absorbed dose coefficients in the source regions and the SAFs from blood as source region for absorbed dose coefficients in highly vascularized target regions. For some combinations of proximal target and source regions, the corresponding cross-fire SAFs were found to have an impact. Global variance-based SA has been for the first time applied to the MIRD schema for internal dose calculation. Our findings suggest that uncertainties in computed organ doses can be substantially reduced by performing an accurate determination of TIACs in the source regions, accompanied by the estimation of individual source region masses along with the usage of an appropriate blood distribution in a patient's body and, in a few cases, the cross-fire SAFs from proximal source regions. © 2018 American Association of Physicists in Medicine.
Pathway-Specific Striatal Substrates for Habitual Behavior.
O'Hare, Justin K; Ade, Kristen K; Sukharnikova, Tatyana; Van Hooser, Stephen D; Palmeri, Mark L; Yin, Henry H; Calakos, Nicole
2016-02-03
The dorsolateral striatum (DLS) is implicated in habit formation. However, the DLS circuit mechanisms underlying habit remain unclear. A key role for DLS is to transform sensorimotor cortical input into firing of output neurons that project to the mutually antagonistic direct and indirect basal ganglia pathways. Here we examine whether habit alters this input-output function. By imaging cortically evoked firing in large populations of pathway-defined striatal projection neurons (SPNs), we identify features that strongly correlate with habitual behavior on a subject-by-subject basis. Habitual behavior correlated with strengthened DLS output to both pathways as well as a tendency for action-promoting direct pathway SPNs to fire before indirect pathway SPNs. In contrast, habit suppression correlated solely with a weakened direct pathway output. Surprisingly, all effects were broadly distributed in space. Together, these findings indicate that the striatum imposes broad, pathway-specific modulations of incoming activity to render learned motor behaviors habitual. Copyright © 2016 Elsevier Inc. All rights reserved.
Godson, Prince S; Magesh, N S; Peter, T Simon; Chandrasekar, N; Krishnakumar, S; Vincent, Salom Gnana Thanga
2018-01-01
Forty two surface sediment samples were collected in order to document baseline elemental concentration along the Southwest coast of Tamil Nadu, India. The elements detected were Manganese (Mn), Zinc (Zn), Iron (Fe), Copper (Cu), Nickel (Ni) and Lead (Pb). The concentration of Fe and Mn was primarily controlled by the riverine input. The source of Pb and Zn is attributed to leaded petrol and anti-biofouling paints. The calculated index (EF, Igeo and CF) suggests that the sediments of the study area are significantly enriched with all elements except Pb. The contamination factor showed the order of Mn>Zn>Fe>Cu>Ni>Pb. The sediment pollution index (SPI) revealed that the sediments belonged to low polluted to dangerous category. The correlation matrix and dendrogram showed that the elemental distribution was chiefly controlled by riverine input as well as anthropogenic activity in the coast. Copyright © 2017 Elsevier Ltd. All rights reserved.
Defined types of cortical interneurone structure space and spike timing in the hippocampus
Somogyi, Peter; Klausberger, Thomas
2005-01-01
The cerebral cortex encodes, stores and combines information about the internal and external environment in rhythmic activity of multiple frequency ranges. Neurones of the cortex can be defined, recognized and compared on the comprehensive application of the following measures: (i) brain area- and cell domain-specific distribution of input and output synapses, (ii) expression of molecules involved in cell signalling, (iii) membrane and synaptic properties reflecting the expression of membrane proteins, (iv) temporal structure of firing in vivo, resulting from (i)–(iii). Spatial and temporal measures of neurones in the network reflect an indivisible unity of evolutionary design, i.e. neurones do not have separate structure or function. The blueprint of this design is most easily accessible in the CA1 area of the hippocampus, where a relatively uniform population of pyramidal cells and their inputs follow an instantly recognizable laminated pattern and act within stereotyped network activity patterns. Reviewing the cell types and their spatio-temporal interactions, we suggest that CA1 pyramidal cells are supported by at least 16 distinct types of GABAergic neurone. During a given behaviour-contingent network oscillation, interneurones of a given type exhibit similar firing patterns. During different network oscillations representing two distinct brain states, interneurones of the same class show different firing patterns modulating their postsynaptic target-domain in a brain-state-dependent manner. These results suggest roles for specific interneurone types in structuring the activity of pyramidal cells via their respective target domains, and accurately timing and synchronizing pyramidal cell discharge, rather than providing generalized inhibition. Finally, interneurones belonging to different classes may fire preferentially at distinct time points during a given oscillation. As different interneurones innervate distinct domains of the pyramidal cells, the different compartments will receive GABAergic input differentiated in time. Such a dynamic, spatio-temporal, GABAergic control, which evolves distinct patterns during different brain states, is ideally suited to regulating the input integration of individual pyramidal cells contributing to the formation of cell assemblies and representations in the hippocampus and, probably, throughout the cerebral cortex. PMID:15539390
Parametric study of fluid flow manipulation with piezoelectric macrofiber composite flaps
NASA Astrophysics Data System (ADS)
Sadeghi, O.; Tarazaga, P.; Stremler, M.; Shahab, S.
2017-04-01
Active Fluid Flow Control (AFFC) has received great research attention due to its significant potential in engineering applications. It is known that drag reduction, turbulence management, flow separation delay and noise suppression through active control can result in significantly increased efficiency of future commercial transport vehicles and gas turbine engines. In microfluidics systems, AFFC has mainly been used to manipulate fluid passing through the microfluidic device. We put forward a conceptual approach for fluid flow manipulation by coupling multiple vibrating structures through flow interactions in an otherwise quiescent fluid. Previous investigations of piezoelectric flaps interacting with a fluid have focused on a single flap. In this work, arrays of closely-spaced, free-standing piezoelectric flaps are attached perpendicular to the bottom surface of a tank. The coupling of vibrating flaps due to their interacting with the surrounding fluid is investigated in air (for calibration) and under water. Actuated flaps are driven with a harmonic input voltage, which results in bending vibration of the flaps that can work with or against the flow-induced bending. The size and spatial distribution of the attached flaps, and the phase and frequency of the input actuation voltage are the key parameters to be investigated in this work. Our analysis will characterize the electrohydroelastic dynamics of active, interacting flaps and the fluid motion induced by the system.
Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo
Muñoz, Fabián; Fuentealba, Pablo
2012-01-01
Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold. PMID:22279567
Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage
Prestori, Francesca; Bonardi, Claudia; Mapelli, Lisa; Lombardo, Paola; Goselink, Rianne; De Stefano, Maria Egle; Gandolfi, Daniela; Mapelli, Jonathan; Bertrand, Daniel; Schonewille, Martijn; De Zeeuw, Chris; D’Angelo, Egidio
2013-01-01
The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation. PMID:23741401
Schuitemaker, Alie; van Berckel, Bart N M; Kropholler, Marc A; Veltman, Dick J; Scheltens, Philip; Jonker, Cees; Lammertsma, Adriaan A; Boellaard, Ronald
2007-05-01
(R)-[11C]PK11195 has been used for quantifying cerebral microglial activation in vivo. In previous studies, both plasma input and reference tissue methods have been used, usually in combination with a region of interest (ROI) approach. Definition of ROIs, however, can be labourious and prone to interobserver variation. In addition, results are only obtained for predefined areas and (unexpected) signals in undefined areas may be missed. On the other hand, standard pharmacokinetic models are too sensitive to noise to calculate (R)-[11C]PK11195 binding on a voxel-by-voxel basis. Linearised versions of both plasma input and reference tissue models have been described, and these are more suitable for parametric imaging. The purpose of this study was to compare the performance of these plasma input and reference tissue parametric methods on the outcome of statistical parametric mapping (SPM) analysis of (R)-[11C]PK11195 binding. Dynamic (R)-[11C]PK11195 PET scans with arterial blood sampling were performed in 7 younger and 11 elderly healthy subjects. Parametric images of volume of distribution (Vd) and binding potential (BP) were generated using linearised versions of plasma input (Logan) and reference tissue (Reference Parametric Mapping) models. Images were compared at the group level using SPM with a two-sample t-test per voxel, both with and without proportional scaling. Parametric BP images without scaling provided the most sensitive framework for determining differences in (R)-[11C]PK11195 binding between younger and elderly subjects. Vd images could only demonstrate differences in (R)-[11C]PK11195 binding when analysed with proportional scaling due to intersubject variation in K1/k2 (blood-brain barrier transport and non-specific binding).
Noise adaptation in integrate-and fire neurons.
Rudd, M E; Brown, L G
1997-07-01
The statistical spiking response of an ensemble of identically prepared stochastic integrate-and-fire neurons to a rectangular input current plus gaussian white noise is analyzed. It is shown that, on average, integrate-and-fire neurons adapt to the root-mean-square noise level of their input. This phenomenon is referred to as noise adaptation. Noise adaptation is characterized by a decrease in the average neural firing rate and an accompanying decrease in the average value of the generator potential, both of which can be attributed to noise-induced resets of the generator potential mediated by the integrate-and-fire mechanism. A quantitative theory of noise adaptation in stochastic integrate-and-fire neurons is developed. It is shown that integrate-and-fire neurons, on average, produce transient spiking activity whenever there is an increase in the level of their input noise. This transient noise response is either reduced or eliminated over time, depending on the parameters of the model neuron. Analytical methods are used to prove that nonleaky integrate-and-fire neurons totally adapt to any constant input noise level, in the sense that their asymptotic spiking rates are independent of the magnitude of their input noise. For leaky integrate-and-fire neurons, the long-run noise adaptation is not total, but the response to noise is partially eliminated. Expressions for the probability density function of the generator potential and the first two moments of the potential distribution are derived for the particular case of a nonleaky neuron driven by gaussian white noise of mean zero and constant variance. The functional significance of noise adaptation for the performance of networks comprising integrate-and-fire neurons is discussed.
Optimization of light quality from color mixing light-emitting diode systems for general lighting
NASA Astrophysics Data System (ADS)
Thorseth, Anders
2012-03-01
Given the problem of metamerisms inherent in color mixing in light-emitting diode (LED) systems with more than three distinct colors, a method for optimizing the spectral output of multicolor LED system with regards to standardized light quality parameters has been developed. The composite spectral power distribution from the LEDs are simulated using spectral radiometric measurements of single commercially available LEDs for varying input power, to account for the efficiency droop and other non-linear effects in electrical power vs. light output. The method uses electrical input powers as input parameters in a randomized steepest decent optimization. The resulting spectral power distributions are evaluated with regard to the light quality using the standard characteristics: CIE color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal boundaries for each system, mapping the capabilities of the simulated lighting systems with regard to the light quality characteristics.
NASA Astrophysics Data System (ADS)
Fröhlich, Dominik; Matzarakis, Andreas
2016-04-01
Human thermal perception is best described through thermal indices. The most popular thermal indices applied in human bioclimatology are the perceived temperature (PT), the Universal Thermal Climate Index (UTCI), and the physiologically equivalent temperature (PET). They are analysed focusing on their sensitivity to single meteorological input parameters under the hot and windy meteorological conditions observed in Doha, Qatar. It can be noted, that the results for the three indices are distributed quite differently. Furthermore, they respond quite differently to modifications in the input conditions. All of them show particular limitations and shortcomings that have to be considered and discussed. While the results for PT are unevenly distributed, UTCI shows limitations concerning the input data accepted. PET seems to respond insufficiently to changes in vapour pressure. The indices should therefore be improved to be valid for several kinds of climates.
Beowulf Distributed Processing and the United States Geological Survey
Maddox, Brian G.
2002-01-01
Introduction In recent years, the United States Geological Survey's (USGS) National Mapping Discipline (NMD) has expanded its scientific and research activities. Work is being conducted in areas such as emergency response research, scientific visualization, urban prediction, and other simulation activities. Custom-produced digital data have become essential for these types of activities. High-resolution, remotely sensed datasets are also seeing increased use. Unfortunately, the NMD is also finding that it lacks the resources required to perform some of these activities. Many of these projects require large amounts of computer processing resources. Complex urban-prediction simulations, for example, involve large amounts of processor-intensive calculations on large amounts of input data. This project was undertaken to learn and understand the concepts of distributed processing. Experience was needed in developing these types of applications. The idea was that this type of technology could significantly aid the needs of the NMD scientific and research programs. Porting a numerically intensive application currently being used by an NMD science program to run in a distributed fashion would demonstrate the usefulness of this technology. There are several benefits that this type of technology can bring to the USGS's research programs. Projects can be performed that were previously impossible due to a lack of computing resources. Other projects can be performed on a larger scale than previously possible. For example, distributed processing can enable urban dynamics research to perform simulations on larger areas without making huge sacrifices in resolution. The processing can also be done in a more reasonable amount of time than with traditional single-threaded methods (a scaled version of Chester County, Pennsylvania, took about fifty days to finish its first calibration phase with a single-threaded program). This paper has several goals regarding distributed processing technology. It will describe the benefits of the technology. Real data about a distributed application will be presented as an example of the benefits that this technology can bring to USGS scientific programs. Finally, some of the issues with distributed processing that relate to USGS work will be discussed.
Projections of Somatosensory Cortex and Frontal Eye Fields onto Incertotectal Neurons in the Cat
Perkins, Eddie; Warren, Susan; Lin, Rick C.-S.; May, Paul J.
2014-01-01
The goal of this study was to determine whether the input-output characteristics of the zona incerta (ZI) are appropriate for it to serve as a conduit for cortical control over saccade-related activity in the superior colliculus. The study utilized the neuronal tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and biotinylated dextran amine (BDA) in the cat. Injections of WGA-HRP into primary somatosensory cortex (SI) revealed sparse, widespread nontopographic projections throughout ZI. In addition, region-specific areas of more intense termination were present in ventral ZI, although strict topography was not observed. In comparison, the frontal eye fields (FEF) also projected sparsely throughout ZI, but terminated more heavily, medially, along the border between the two sublaminae. Furthermore, retrogradely labeled incertocortical neurons were observed in both experiments. The relationship of these two cortical projections to incertotectal cells was also directly examined by retrogradely labeling incertotectal cells with WGA-HRP in animals that had also received cortical BDA injections. Labeled axonal arbors from both SI and FEF had thin, sparsely branched axons with numerous en passant boutons. They formed numerous close associations with the somata and dendrites of WGA-HRP-labeled incertotectal cells. In summary, these results indicate that both sensory and motor cortical inputs to ZI display similar morphologies and distributions. In addition, both display close associations with incertotectal cells, suggesting direct synaptic contact. From these data, we conclude that inputs from somatosensory and FEF cortex both play a role in controlling gaze-related activity in the superior colliculus by way of the inhibitory incertotectal projection. PMID:17083121
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartkiewicz, Karol; Miranowicz, Adam
We find an optimal quantum cloning machine, which clones qubits of arbitrary symmetrical distribution around the Bloch vector with the highest fidelity. The process is referred to as phase-independent cloning in contrast to the standard phase-covariant cloning for which an input qubit state is a priori better known. We assume that the information about the input state is encoded in an arbitrary axisymmetric distribution (phase function) on the Bloch sphere of the cloned qubits. We find analytical expressions describing the optimal cloning transformation and fidelity of the clones. As an illustration, we analyze cloning of qubit state described by themore » von Mises-Fisher and Brosseau distributions. Moreover, we show that the optimal phase-independent cloning machine can be implemented by modifying the mirror phase-covariant cloning machine for which quantum circuits are known.« less
Automated crystallographic system for high-throughput protein structure determination.
Brunzelle, Joseph S; Shafaee, Padram; Yang, Xiaojing; Weigand, Steve; Ren, Zhong; Anderson, Wayne F
2003-07-01
High-throughput structural genomic efforts require software that is highly automated, distributive and requires minimal user intervention to determine protein structures. Preliminary experiments were set up to test whether automated scripts could utilize a minimum set of input parameters and produce a set of initial protein coordinates. From this starting point, a highly distributive system was developed that could determine macromolecular structures at a high throughput rate, warehouse and harvest the associated data. The system uses a web interface to obtain input data and display results. It utilizes a relational database to store the initial data needed to start the structure-determination process as well as generated data. A distributive program interface administers the crystallographic programs which determine protein structures. Using a test set of 19 protein targets, 79% were determined automatically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.
2009-03-01
The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and themore » derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.« less
Deng, Rongkang; Kao, Joseph P Y; Kanold, Patrick O
2017-05-09
GABAergic activity is important in neocortical development and plasticity. Because the maturation of GABAergic interneurons is regulated by neural activity, the source of excitatory inputs to GABAergic interneurons plays a key role in development. We show, by laser-scanning photostimulation, that layer 4 and layer 5 GABAergic interneurons in the auditory cortex in neonatal mice (
Pouplin, Samuel; Roche, Nicolas; Antoine, Jean-Yves; Vaugier, Isabelle; Pottier, Sandra; Figere, Marjorie; Bensmail, Djamel
2017-06-01
To determine whether activation of the frequency of use and automatic learning parameters of word prediction software has an impact on text input speed. Forty-five participants with cervical spinal cord injury between C4 and C8 Asia A or B accepted to participate to this study. Participants were separated in two groups: a high lesion group for participants with lesion level is at or above C5 Asia AIS A or B and a low lesion group for participants with lesion is between C6 and C8 Asia AIS A or B. A single evaluation session was carried out for each participant. Text input speed was evaluated during three copying tasks: • without word prediction software (WITHOUT condition) • with automatic learning of words and frequency of use deactivated (NOT_ACTIV condition) • with automatic learning of words and frequency of use activated (ACTIV condition) Results: Text input speed was significantly higher in the WITHOUT than the NOT_ACTIV (p< 0.001) or ACTIV conditions (p = 0.02) for participants with low lesions. Text input speed was significantly higher in the ACTIV than in the NOT_ACTIV (p = 0.002) or WITHOUT (p < 0.001) conditions for participants with high lesions. Use of word prediction software with the activation of frequency of use and automatic learning increased text input speed in participants with high-level tetraplegia. For participants with low-level tetraplegia, the use of word prediction software with frequency of use and automatic learning activated only decreased the number of errors. Implications in rehabilitation Access to technology can be difficult for persons with disabilities such as cervical spinal cord injury (SCI). Several methods have been developed to increase text input speed such as word prediction software.This study show that parameter of word prediction software (frequency of use) affected text input speed in persons with cervical SCI and differed according to the level of the lesion. • For persons with high-level lesion, our results suggest that this parameter must be activated so that text input speed is increased. • For persons with low lesion group, this parameter must be activated so that the numbers of errors are decreased. • In all cases, the activation of the parameter of frequency of use is essential in order to improve the efficiency of the word prediction software. • Health-related professionals should use these results in their clinical practice for better results and therefore better patients 'satisfaction.
NASA Technical Reports Server (NTRS)
Rasmussen, Robert D. (Inventor); Manning, Robert M. (Inventor); Lewis, Blair F. (Inventor); Bolotin, Gary S. (Inventor); Ward, Richard S. (Inventor)
1990-01-01
This is a distributed computing system providing flexible fault tolerance; ease of software design and concurrency specification; and dynamic balance of the loads. The system comprises a plurality of computers each having a first input/output interface and a second input/output interface for interfacing to communications networks each second input/output interface including a bypass for bypassing the associated computer. A global communications network interconnects the first input/output interfaces for providing each computer the ability to broadcast messages simultaneously to the remainder of the computers. A meshwork communications network interconnects the second input/output interfaces providing each computer with the ability to establish a communications link with another of the computers bypassing the remainder of computers. Each computer is controlled by a resident copy of a common operating system. Communications between respective ones of computers is by means of split tokens each having a moving first portion which is sent from computer to computer and a resident second portion which is disposed in the memory of at least one of computer and wherein the location of the second portion is part of the first portion. The split tokens represent both functions to be executed by the computers and data to be employed in the execution of the functions. The first input/output interfaces each include logic for detecting a collision between messages and for terminating the broadcasting of a message whereby collisions between messages are detected and avoided.
Stochastic Modeling of Radioactive Material Releases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrus, Jason; Pope, Chad
2015-09-01
Nonreactor nuclear facilities operated under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA was developed using the MATLAB coding framework. The software application has a graphical user input. SODA can be installed on both Windows and Mac computers and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC, rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The work was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less
Neuronal ensemble for visual working memory via interplay of slow and fast oscillations.
Mizuhara, Hiroaki; Yamaguchi, Yoko
2011-05-01
The current focus of studies on neural entities for memory maintenance is on the interplay between fast neuronal oscillations in the gamma band and slow oscillations in the theta or delta band. The hierarchical coupling of slow and fast oscillations is crucial for the rehearsal of sensory inputs for short-term storage, as well as for binding sensory inputs that are represented in spatially segregated cortical areas. However, no experimental evidence for the binding of spatially segregated information has yet been presented for memory maintenance in humans. In the present study, we actively manipulated memory maintenance performance with an attentional blink procedure during human scalp electroencephalography (EEG) recordings and identified that slow oscillations are enhanced when memory maintenance is successful. These slow oscillations accompanied fast oscillations in the gamma frequency range that appeared at spatially segregated scalp sites. The amplitude of the gamma oscillation at these scalp sites was simultaneously enhanced at an EEG phase of the slow oscillation. Successful memory maintenance appears to be achieved by a rehearsal of sensory inputs together with a coordination of distributed fast oscillations at a preferred timing of the slow oscillations. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Branch Input Resistance and Steady Attenuation for Input to One Branch of a Dendritic Neuron Model
Rall, Wilfrid; Rinzel, John
1973-01-01
Mathematical solutions and numerical illustrations are presented for the steady-state distribution of membrane potential in an extensively branched neuron model, when steady electric current is injected into only one dendritic branch. Explicit expressions are obtained for input resistance at the branch input site and for voltage attenuation from the input site to the soma; expressions for AC steady-state input impedance and attenuation are also presented. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. Numerical examples illustrate how branch input resistance and steady attenuation depend upon the following: the number of dendritic trees, the orders of dendritic branching, the electrotonic length of the dendritic trees, the location of the dendritic input site, and the input resistance at the soma. The application to cat spinal motoneurons, and to other neuron types, is discussed. The effect of a large dendritic input resistance upon the amount of local membrane depolarization at the synaptic site, and upon the amount of depolarization reaching the soma, is illustrated and discussed; simple proportionality with input resistance does not hold, in general. Also, branch input resistance is shown to exceed the input resistance at the soma by an amount that is always less than the sum of core resistances along the path from the input site to the soma. PMID:4715583
A Highly Linear and Wide Input Range Four-Quadrant CMOS Analog Multiplier Using Active Feedback
NASA Astrophysics Data System (ADS)
Huang, Zhangcai; Jiang, Minglu; Inoue, Yasuaki
Analog multipliers are one of the most important building blocks in analog signal processing circuits. The performance with high linearity and wide input range is usually required for analog four-quadrant multipliers in most applications. Therefore, a highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback is proposed in this paper. Firstly, a novel configuration of four-quadrant multiplier cell is presented. Its input dynamic range and linearity are improved significantly by adding two resistors compared with the conventional structure. Then based on the proposed multiplier cell configuration, a four-quadrant CMOS analog multiplier with active feedback technique is implemented by two operational amplifiers. Because of both the proposed multiplier cell and active feedback technique, the proposed multiplier achieves a much wider input range with higher linearity than conventional structures. The proposed multiplier was fabricated by a 0.6µm CMOS process. Experimental results show that the input range of the proposed multiplier can be up to 5.6Vpp with 0.159% linearity error on VX and 4.8Vpp with 0.51% linearity error on VY for ±2.5V power supply voltages, respectively.
Daly, Kevin C.; Galán, Roberto F.; Peters, Oakland J.; Staudacher, Erich M.
2011-01-01
The transient oscillatory model of odor identity encoding seeks to explain how odorants with spatially overlapped patterns of input into primary olfactory networks can be discriminated. This model provides several testable predictions about the distributed nature of network oscillations and how they control spike timing. To test these predictions, 16 channel electrode arrays were placed within the antennal lobe (AL) of the moth Manduca sexta. Unitary spiking and multi site local field potential (LFP) recordings were made during spontaneous activity and in response to repeated presentations of an odor panel. We quantified oscillatory frequency, cross correlations between LFP recording sites, and spike–LFP phase relationships. We show that odor-driven AL oscillations in Manduca are frequency modulating (FM) from ∼100 to 30 Hz; this was odorant and stimulus duration dependent. FM oscillatory responses were localized to one or two recording sites suggesting a localized (perhaps glomerular) not distributed source. LFP cross correlations further demonstrated that only a small (r < 0.05) distributed and oscillatory component was present. Cross spectral density analysis demonstrated the frequency of these weakly distributed oscillations was state dependent (spontaneous activity = 25–55 Hz; odor-driven = 55–85 Hz). Surprisingly, vector strength analysis indicated that unitary phase locking of spikes to the LFP was strongest during spontaneous activity and dropped significantly during responses. Application of bicuculline, a GABAA receptor antagonist, significantly lowered the frequency content of odor-driven distributed oscillatory activity. Bicuculline significantly reduced spike phase locking generally, but the ubiquitous pattern of increased phase locking during spontaneous activity persisted. Collectively, these results indicate that oscillations perform poorly as a stimulus-mediated spike synchronizing mechanism for Manduca and hence are incongruent with the transient oscillatory model. PMID:22046161
ERIC Educational Resources Information Center
Pons, Ferran; Biesanz, Jeremy C.; Kajikawa, Sachiyo; Fais, Laurel; Narayan, Chandan R.; Amano, Shigeaki; Werker, Janet F.
2012-01-01
Using an artificial language learning manipulation, Maye, Werker, and Gerken (2002) demonstrated that infants' speech sound categories change as a function of the distributional properties of the input. In a recent study, Werker et al. (2007) showed that Infant-directed Speech (IDS) input contains reliable acoustic cues that support distributional…
Input output scaling relations in Italian manufacturing firms
NASA Astrophysics Data System (ADS)
Bottazzi, Giulio; Grazzi, Marco; Secchi, Angelo
2005-09-01
Recent analyses on different database have proposed some regularities with respect to size and growth rates distribution of firms. In this work we explore some basic properties of the dynamics of productivity in Italian manufacturing firms. We investigate relations between different inputs and output examining the impact of productivity in shaping the pattern of corporates evolution.
Study of Automobile Market Dynamics : Volume 2. Analysis.
DOT National Transportation Integrated Search
1977-08-01
Volume II describes the work in providing statistical inputs to a computer model by examining the effects of various options on the number of automobiles sold; the distribution of sales among small, medium and large cars; the distribution between aut...
Analytic uncertainty and sensitivity analysis of models with input correlations
NASA Astrophysics Data System (ADS)
Zhu, Yueying; Wang, Qiuping A.; Li, Wei; Cai, Xu
2018-03-01
Probabilistic uncertainty analysis is a common means of evaluating mathematical models. In mathematical modeling, the uncertainty in input variables is specified through distribution laws. Its contribution to the uncertainty in model response is usually analyzed by assuming that input variables are independent of each other. However, correlated parameters are often happened in practical applications. In the present paper, an analytic method is built for the uncertainty and sensitivity analysis of models in the presence of input correlations. With the method, it is straightforward to identify the importance of the independence and correlations of input variables in determining the model response. This allows one to decide whether or not the input correlations should be considered in practice. Numerical examples suggest the effectiveness and validation of our analytic method in the analysis of general models. A practical application of the method is also proposed to the uncertainty and sensitivity analysis of a deterministic HIV model.
Factors Controlling Nitrogen Loadings in Major River Basins Across the United States
NASA Astrophysics Data System (ADS)
Boyer, E. W.; Alexander, R. B.; Galloway, J. N.; Golden, H. E.; Moore, R. B.; Schwarz, G. E.; Harvey, J. W.; Gomez-Velez, J. D.; Scott, D.; Clune, J.
2017-12-01
Inputs of reactive nitrogen (all N species except for N2) have been increasing worldwide, largely due to human activities associated with food production and energy consumption via the combustion of fossil fuels and biofuels. Despite the obvious essential benefits of a plentiful supply of food and energy, the adverse consequences associated with the accumulation of N in the environment are large. Most of the N created by human activities is released to the environment, often with unintended negative consequences. The greater the inputs of N to the landscape, the greater the potential for negative effects - caused by greenhouse gas production, ground level ozone, acid deposition, and N overload; which in turn can contribute to climate change, degradation of soils and vegetation, acidification of surface waters, coastal eutrophication, hypoxia, habitat loss, and loss of stratospheric ozone. Here we present a contemporary inventory of reactive N inputs to major water regions in the United States, and discuss accounting methods for quantifying N sources and transport. Furthermore, we quantify loadings of N from terrestrial headwaters downstream to coastal estuaries and embayments. N delivery to downstream waters is influenced by nutrient sources as well as coupled hydrological and biogeochemical processes occurring along the river corridor (e.g., travel time distributions, denitrification, and storage) that scale with stream size and are affected by impoundments such as lakes and reservoirs. This underscores the need to account for the nonlinear interactions of aquatic transport processes with watershed nutrient sources, as well as cumulative effects, in developing efficient nutrient reduction strategies. Our work is useful as a benchmark of the current N situation against which future progress can be assessed in varying water regions of the country; amidst changing N inputs, policies, and management strategies. Our results stem from the EPA Integrated Nitrogen Advisory Committee, the EPA Center for Integrated Multi-Scale Nutrient Pollution Solutions, and the John Wesley Powell Center River Corridor Working Group.
Li, Chunyan; Tripathi, Pradeep K; Armstrong, William E
2007-01-01
The firing pattern of magnocellular neurosecretory neurons is intimately related to hormone release, but the relative contribution of synaptic versus intrinsic factors to the temporal dispersion of spikes is unknown. In the present study, we examined the firing patterns of vasopressin (VP) and oxytocin (OT) supraoptic neurons in coronal slices from virgin female rats, with and without blockade of inhibitory and excitatory synaptic currents. Inhibitory postsynaptic currents (IPSCs) were twice as prevalent as their excitatory counterparts (EPSCs), and both were more prevalent in OT compared with VP neurons. Oxytocin neurons fired more slowly and irregularly than VP neurons near threshold. Blockade of Cl− currents (including tonic and synaptic currents) with picrotoxin reduced interspike interval (ISI) variability of continuously firing OT and VP neurons without altering input resistance or firing rate. Blockade of EPSCs did not affect firing pattern. Phasic bursting neurons (putative VP neurons) were inconsistently affected by broad synaptic blockade, suggesting that intrinsic factors may dominate the ISI distribution during this mode in the slice. Specific blockade of synaptic IPSCs with gabazine also reduced ISI variability, but only in OT neurons. In all cases, the effect of inhibitory blockade on firing pattern was independent of any consistent change in input resistance or firing rate. Since the great majority of IPSCs are randomly distributed, miniature events (mIPSCs) in the coronal slice, these findings imply that even mIPSCs can impart irregularity to the firing pattern of OT neurons in particular, and could be important in regulating spike patterning in vivo. For example, the increased firing variability that precedes bursting in OT neurons during lactation could be related to significant changes in synaptic activity. PMID:17332000
NASA Astrophysics Data System (ADS)
Tagliabue, Alessandro; Hawco, Nicholas J.; Bundy, Randelle M.; Landing, William M.; Milne, Angela; Morton, Peter L.; Saito, Mak A.
2018-04-01
Cobalt is an important micronutrient for ocean microbes as it is present in vitamin B12 and is a co-factor in various metalloenzymes that catalyze cellular processes. Moreover, when seawater availability of cobalt is compared to biological demands, cobalt emerges as being depleted in seawater, pointing to a potentially important limiting role. To properly account for the potential biological role for cobalt, there is therefore a need to understand the processes driving the biogeochemical cycling of cobalt and, in particular, the balance between external inputs and internal cycling. To do so, we developed the first cobalt model within a state-of-the-art three-dimensional global ocean biogeochemical model. Overall, our model does a good job in reproducing measurements with a correlation coefficient of >0.7 in the surface and >0.5 at depth. We find that continental margins are the dominant source of cobalt, with a crucial role played by supply under low bottom-water oxygen conditions. The basin-scale distribution of cobalt supplied from margins is facilitated by the activity of manganese-oxidizing bacteria being suppressed under low oxygen and low temperatures, which extends the residence time of cobalt. Overall, we find a residence time of 7 and 250 years in the upper 250 m and global ocean, respectively. Importantly, we find that the dominant internal resupply process switches from regeneration and recycling of particulate cobalt to dissolution of scavenged cobalt between the upper ocean and the ocean interior. Our model highlights key regions of the ocean where biological activity may be most sensitive to cobalt availability.
An active antenna for ELF magnetic fields
NASA Technical Reports Server (NTRS)
Sutton, John F.; Spaniol, Craig
1994-01-01
The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.
Position-sensitive proportional counter with low-resistance metal-wire anode
Kopp, Manfred K.
1980-01-01
A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).
Loh, Miranda M; Houseman, E Andres; Levy, Jonathan I; Spengler, John D; Bennett, Deborah H
2009-11-01
Many people spend time in stores and restaurants, yet there has been little investigation of the influence of these microenvironments on personal exposure. Relative to the outdoors, transportation, and the home, these microenvironments have high concentrations of several volatile organic compounds (VOCs). We developed a stochastic model to examine the effect of VOC concentrations in these microenvironments on total personal exposure for (1) non-smoking adults working in offices who spend time in stores and restaurants or bars and (2) non-smoking adults who work in these establishments. We also compared the effect of working in a smoking versus non-smoking restaurant or bar. Input concentrations for each microenvironment were developed from the literature whereas time activity inputs were taken from the National Human Activity Patterns Survey. Time-averaged exposures were simulated for 5000 individuals over a weeklong period for each analysis. Mean contributions to personal exposure from non-working time spent in stores and restaurants or bars range from <5% to 20%, depending on the VOC and time-activity patterns. At the 95th percentile of the distribution of the proportion of personal exposure attributable to time spent in stores and restaurants or bars, these microenvironments can be responsible for over half of a person's total exposure to certain VOCs. People working in restaurants or bars where smoking is allowed had the highest fraction of exposure attributable to their workplace. At the median, people who worked in stores or restaurants tended to have 20-60% of their total exposures from time spent at work. These results indicate that stores and restaurants can be large contributors to personal exposure to VOCs for both workers in those establishments and for a subset of people who visit these places, and that incorporation of these non-residential microenvironments can improve models of personal exposure distributions.
Single-Trial Analysis of V1 Responses Suggests Two Transmission States
NASA Technical Reports Server (NTRS)
Shah, A. S.; Knuth, K. H.; Truccolo, W. A.; Mehta, A. D.; McGinnis, T.; OConnell, N.; Ding, M.; Bressler, S. L.; Schroeder, C. E.
2002-01-01
Sensory processing in the visual, auditory, and somatosensory systems is often studied by recording electrical activity in response to a stimulus of interest. Typically, multiple trial responses to the stimulus are averaged to isolate the stereotypic response from noise. However, averaging ignores dynamic variability in the neuronal response, which is potentially critical to understanding stimulus-processing schemes. Thus, we developed the multiple component, Event-Related Potential (mcERP) model. This model asserts that multiple components, defined as stereotypic waveforms, comprise the stimulus-evoked response and that these components may vary in amplitude and latency from trial to trial. Application of this model to data recorded simultaneously from all six laminae of V1 in an awake, behaving monkey performing a visual discrimination yielded three components. The first component localized to granular V1, the second was located in supragranular V1, and the final component displayed a multi-laminar distribution. These modeling results, which take into account single-trial response dynamics, illustrated that the initial activation of VI occurs in the granular layer followed by activation in the supragranular layers. This finding is expected because the average response in those layers demonstrates the same progression and because anatomical evidence suggests that the feedforward input in V1 enters the granular layer and progresses to supragranular layers. In addition to these findings, the granular component of the model displayed several interesting trial-to-trial characteristics including (1) a bimodal latency distribution, (2) a latency-related variation in response amplitude, (3) a latency correlation with the supragranular component, and (4) an amplitude and latency association with the multi-laminar component. Direct analyses of the single-trial data were consistent with these model predictions. These findings suggest that V1 has at least 2 transmission states, which may be modulated by various effects such as attention, dynamics in local EEG rhythm, or variation in sensory inputs.
Families of miocene monterey crude oil, seep, and tarball samples, coastal California
Peters, K.E.; Hostettler, F.D.; Lorenson, T.D.; Rosenbauer, R.J.
2008-01-01
Biomarker and stable carbon isotope ratios were used to infer the age, lithology, organic matter input, and depositional environment of the source rocks for 388 samples of produced crude oil, seep oil, and tarballs to better assess their origins and distributions in coastal California. These samples were used to construct a chemometric (multivariate statistical) decision tree to classify 288 additional samples. The results identify three tribes of 13C-rich oil samples inferred to originate from thermally mature equivalents of the clayey-siliceous, carbonaceous marl and lower calcareous-siliceous members of the Monterey Formation at Naples Beach near Santa Barbara. An attempt to correlate these families to rock extracts from these members in the nearby COST (continental offshore stratigraphic test) (OCS-Cal 78-164) well failed, at least in part because the rocks are thermally immature. Geochemical similarities among the oil tribes and their widespread distribution support the prograding margin model or the banktop-slope-basin model instead of the ridge-and-basin model for the deposition of the Monterey Formation. Tribe 1 contains four oil families having geochemical traits of clay-rich marine shale source rock deposited under suboxic conditions with substantial higher plant input. Tribe 2 contains four oil families with traits intermediate between tribes 1 and 3, except for abundant 28,30-bisnorhopane, indicating suboxic to anoxic marine marl source rock with hemipelagic input. Tribe 3 contains five oil families with traits of distal marine carbonate source rock deposited under anoxic conditions with pelagic but little or no higher plant input. Tribes 1 and 2 occur mainly south of Point Conception in paleogeographic settings where deep burial of the Monterey source rock favored petroleum generation from all three members or their equivalents. In this area, oil from the clayey-siliceous and carbonaceous marl members (tribes 1 and 2) may overwhelm that from the lower calcareous-siliceous member (tribe 3) because the latter is thinner and less oil-prone than the overlying members. Tribe 3 occurs mainly north of Point Conception where shallow burial caused preferential generation from the underlying lower calcareous-siliceous member or another unit with similar characteristics. In a test of the decision tree, 10 tarball samples collected from beaches in Monterey and San Mateo counties in early 2007 were found to originate from natural seeps representing different organofacies of Monterey Formation source rock instead from one anthropogenic pollution event. The seeps apparently became more active because of increased storm activity. Copyright ?? 2008. The American Association of Petroleum Geologists. All rights reserved.
Abbott, Rebecca A; Smith, Anne J; Howie, Erin K; Pollock, Clare; Straker, Leon
2014-08-01
Active-input videogames could provide a useful conduit for increasing physical activity by improving a child's self-confidence, physical activity enjoyment, and reducing anxiety. Therefore this study evaluated the impact of (a) the removal of home access to traditional electronic games or (b) their replacement with active-input videogames, on child self-perception, enjoyment of physical activity, and electronic game use anxiety. This was a crossover, randomized controlled trial, conducted over a 6-month period in participants' family homes in metropolitan Perth, Australia, from 2007 to 2010. Children 10-12 years old were recruited through school and community media. Of 210 children who were eligible, 74 met inclusion criteria, and 8 withdrew, leaving 66 children (33 girls) for analysis. A counterbalanced randomized order of three conditions sustained for 8 weeks each: No home access to electronic games, home access to traditional electronic games, and home access to active-input electronic games. Perception of self-esteem (Harter's Self Perception Profile for Children), enjoyment of physical activity (Physical Activity Enjoyment Scale questionnaire), and anxiety toward electronic game use (modified Loyd and Gressard Computer Anxiety Subscale) were assessed. Compared with home access to traditional electronic games, neither removal of all electronic games nor replacement with active-input games resulted in any significant change to child self-esteem, enjoyment of physical activity, or anxiety related to electronic games. Although active-input videogames have been shown to be enjoyable in the short term, their ability to impact on psychological outcomes is yet to be established.
NASA Astrophysics Data System (ADS)
Powley, Helen R.; Krom, Michael D.; Van Cappellen, Philippe
2018-03-01
Human activities have significantly modified the inputs of land-derived phosphorus (P) and nitrogen (N) to the Mediterranean Sea (MS). Here, we reconstruct the external inputs of reactive P and N to the Western Mediterranean Sea (WMS) and Eastern Mediterranean Sea (EMS) over the period 1950-2030. We estimate that during this period the land derived P and N loads increased by factors of 3 and 2 to the WMS and EMS, respectively, with reactive P inputs peaking in the 1980s but reactive N inputs increasing continuously from 1950 to 2030. The temporal variations in reactive P and N inputs are imposed in a coupled P and N mass balance model of the MS to simulate the accompanying changes in water column nutrient distributions and primary production with time. The key question we address is whether these changes are large enough to be distinguishable from variations caused by confounding factors, specifically the relatively large inter-annual variability in thermohaline circulation (THC) of the MS. Our analysis indicates that for the intermediate and deep water masses of the MS the magnitudes of changes in reactive P concentrations due to changes in anthropogenic inputs are relatively small and likely difficult to diagnose because of the noise created by the natural circulation variability. Anthropogenic N enrichment should be more readily detectable in time series concentration data for dissolved organic N (DON) after the 1970s, and for nitrate (NO3) after the 1990s. The DON concentrations in the EMS are predicted to exhibit the largest anthropogenic enrichment signature. Temporal variations in annual primary production over the 1950-2030 period are dominated by variations in deep-water formation rates, followed by changes in riverine P inputs for the WMS and atmospheric P deposition for the EMS. Overall, our analysis indicates that the detection of basin-wide anthropogenic nutrient concentration trends in the MS is rendered difficult due to: (1) the Atlantic Ocean contributing the largest reactive P and N inputs to the MS, hence diluting the anthropogenic nutrient signatures, (2) the anti-estuarine circulation removing at least 45% of the anthropogenic nutrients inputs added to both basins of the MS between 1950 and 2030, and (3) variations in intermediate and deep water formation rates that add high natural noise to the P and N concentration trajectories.
Applications of self-organizing neural networks in virtual screening and diversity selection.
Selzer, Paul; Ertl, Peter
2006-01-01
Artificial neural networks provide a powerful technique for the analysis and modeling of nonlinear relationships between molecular structures and pharmacological activity. Many network types, including Kohonen and counterpropagation, also provide an intuitive method for the visual assessment of correspondence between the input and output data. This work shows how a combination of neural networks and radial distribution function molecular descriptors can be applied in various areas of industrial pharmaceutical research. These applications include the prediction of biological activity, the selection of screening candidates (cherry picking), and the extraction of representative subsets from large compound collections such as combinatorial libraries. The methods described have also been implemented as an easy-to-use Web tool, allowing chemists to perform interactive neural network experiments on the Novartis intranet.
Just-in-time classifiers for recurrent concepts.
Alippi, Cesare; Boracchi, Giacomo; Roveri, Manuel
2013-04-01
Just-in-time (JIT) classifiers operate in evolving environments by classifying instances and reacting to concept drift. In stationary conditions, a JIT classifier improves its accuracy over time by exploiting additional supervised information coming from the field. In nonstationary conditions, however, the classifier reacts as soon as concept drift is detected; the current classification setup is discarded and a suitable one activated to keep the accuracy high. We present a novel generation of JIT classifiers able to deal with recurrent concept drift by means of a practical formalization of the concept representation and the definition of a set of operators working on such representations. The concept-drift detection activity, which is crucial in promptly reacting to changes exactly when needed, is advanced by considering change-detection tests monitoring both inputs and classes distributions.
Development of a distributed air pollutant dry deposition modeling framework
Satoshi Hirabayashi; Charles N. Kroll; David J. Nowak
2012-01-01
A distributed air pollutant dry deposition modeling systemwas developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry...
Sedimentary evolution and ecosystem change in Ahémé lake, south-west Benin
NASA Astrophysics Data System (ADS)
Amoussou, Ernest; Totin Vodounon, Henri S.; Vissin, Expédit W.; Mahé, Gil; Oyédé, Marc Lucien
2018-04-01
Tropical moist ecosystems, such as Ahémé lake, south-west Benin, are increasingly marked by water degradation, linked with the activities of increasing riparian populations. The objective of this study is to analyze sedimentary dynamics and its influence on the changing ecosystem of Ahémé lake from 1961-2010. Data used to carry out the study are records of precipitation, flows, turbidity, suspended sediment, mineral elements and bathymetry. Grain size data from the sieving of sediment samples were used to interpret suspended solids distribution in the lake. Linear correlation coefficients were used to assess the degree of dependence between rainfall and runoff inputs to the lake. Lake depth measurements in some areas of the lake serve to determine the rate of infilling. The sorting index was used to highlight the distribution and origin of sediments in the lake. The results show a degradation of the lake Ahémé ecosystem characterized by infilling of its bed, a high correlation (r = 0.90) between rainfall and runoff, seasonal change in physicochemical parameters (total suspended sediment decrease by -91 %) and decrease in fish production by 135.8 t yr-1. The highest mean suspended sediment concentrations in lake inputs occur during high water periods (123 mg L-1) compared to low water periods (11.2 mg L-1).
An Advanced Buffet Load Alleviation System
NASA Technical Reports Server (NTRS)
Burnham, Jay K.; Pitt, Dale M.; White, Edward V.; Henderson, Douglas A.; Moses, Robert W.
2001-01-01
This paper describes the development of an advanced buffet load alleviation (BLA) system that utilizes distributed piezoelectric actuators in conjunction with an active rudder to reduce the structural dynamic response of the F/A-18 aircraft vertical tails to buffet loads. The BLA system was defined analytically with a detailed finite-element-model of the tail structure and piezoelectric actuators. Oscillatory aerodynamics were included along with a buffet forcing function to complete the aeroservoelastic model of the tail with rudder control surface. Two single-input-single-output (SISO) controllers were designed, one for the active rudder and one for the active piezoelectric actuators. The results from the analytical open and closed loop simulations were used to predict the system performance. The objective of this BLA system is to extend the life of vertical tail structures and decrease their life-cycle costs. This system can be applied to other aircraft designs to address suppression of structural vibrations on military and commercial aircraft.
A Bayesian Active Learning Experimental Design for Inferring Signaling Networks.
Ness, Robert O; Sachs, Karen; Mallick, Parag; Vitek, Olga
2018-06-21
Machine learning methods for learning network structure are applied to quantitative proteomics experiments and reverse-engineer intracellular signal transduction networks. They provide insight into the rewiring of signaling within the context of a disease or a phenotype. To learn the causal patterns of influence between proteins in the network, the methods require experiments that include targeted interventions that fix the activity of specific proteins. However, the interventions are costly and add experimental complexity. We describe an active learning strategy for selecting optimal interventions. Our approach takes as inputs pathway databases and historic data sets, expresses them in form of prior probability distributions on network structures, and selects interventions that maximize their expected contribution to structure learning. Evaluations on simulated and real data show that the strategy reduces the detection error of validated edges as compared with an unguided choice of interventions and avoids redundant interventions, thereby increasing the effectiveness of the experiment.
Temporal Processing in the Olfactory System: Can We See a Smell?
Gire, David H.; Restrepo, Diego; Sejnowski, Terrence J.; Greer, Charles; De Carlos, Juan A.; Lopez-Mascaraque, Laura
2013-01-01
Sensory processing circuits in the visual and olfactory systems receive input from complex, rapidly changing environments. Although patterns of light and plumes of odor create different distributions of activity in the retina and olfactory bulb, both structures use what appears on the surface similar temporal coding strategies to convey information to higher areas in the brain. We compare temporal coding in the early stages of the olfactory and visual systems, highlighting recent progress in understanding the role of time in olfactory coding during active sensing by behaving animals. We also examine studies that address the divergent circuit mechanisms that generate temporal codes in the two systems, and find that they provide physiological information directly related to functional questions raised by neuroanatomical studies of Ramon y Cajal over a century ago. Consideration of differences in neural activity in sensory systems contributes to generating new approaches to understand signal processing. PMID:23664611
The relevance of network micro-structure for neural dynamics.
Pernice, Volker; Deger, Moritz; Cardanobile, Stefano; Rotter, Stefan
2013-01-01
The activity of cortical neurons is determined by the input they receive from presynaptic neurons. Many previous studies have investigated how specific aspects of the statistics of the input affect the spike trains of single neurons and neurons in recurrent networks. However, typically very simple random network models are considered in such studies. Here we use a recently developed algorithm to construct networks based on a quasi-fractal probability measure which are much more variable than commonly used network models, and which therefore promise to sample the space of recurrent networks in a more exhaustive fashion than previously possible. We use the generated graphs as the underlying network topology in simulations of networks of integrate-and-fire neurons in an asynchronous and irregular state. Based on an extensive dataset of networks and neuronal simulations we assess statistical relations between features of the network structure and the spiking activity. Our results highlight the strong influence that some details of the network structure have on the activity dynamics of both single neurons and populations, even if some global network parameters are kept fixed. We observe specific and consistent relations between activity characteristics like spike-train irregularity or correlations and network properties, for example the distributions of the numbers of in- and outgoing connections or clustering. Exploiting these relations, we demonstrate that it is possible to estimate structural characteristics of the network from activity data. We also assess higher order correlations of spiking activity in the various networks considered here, and find that their occurrence strongly depends on the network structure. These results provide directions for further theoretical studies on recurrent networks, as well as new ways to interpret spike train recordings from neural circuits.
Robustness of a distributed neural network controller for locomotion in a hexapod robot
NASA Technical Reports Server (NTRS)
Chiel, Hillel J.; Beer, Randall D.; Quinn, Roger D.; Espenschied, Kenneth S.
1992-01-01
A distributed neural-network controller for locomotion, based on insect neurobiology, has been used to control a hexapod robot. How robust is this controller? Disabling any single sensor, effector, or central component did not prevent the robot from walking. Furthermore, statically stable gaits could be established using either sensor input or central connections. Thus, a complex interplay between central neural elements and sensor inputs is responsible for the robustness of the controller and its ability to generate a continuous range of gaits. These results suggest that biologically inspired neural-network controllers may be a robust method for robotic control.
Theory of optimal information transmission in E. coli chemotaxis pathway
NASA Astrophysics Data System (ADS)
Micali, Gabriele; Endres, Robert G.
Bacteria live in complex microenvironments where they need to make critical decisions fast and reliably. These decisions are inherently affected by noise at all levels of the signaling pathway, and cells are often modeled as an input-output device that transmits extracellular stimuli (input) to internal proteins (channel), which determine the final behavior (output). Increasing the amount of transmitted information between input and output allows cells to better infer extracellular stimuli and respond accordingly. However, in contrast to electronic devices, the separation into input, channel, and output is not always clear in biological systems. Output might feed back into the input, and the channel, made by proteins, normally interacts with the input. Furthermore, a biological channel is affected by mutations and can change under evolutionary pressure. Here, we present a novel approach to maximize information transmission: given cell-external and internal noise, we analytically identify both input distributions and input-output relations that optimally transmit information. Using E. coli chemotaxis as an example, we conclude that its pathway is compatible with an optimal information transmission device despite the ultrasensitive rotary motors.
Arun, S; Choudhury, Vishal; Balaswamy, V; Prakash, Roopa; Supradeepa, V R
2018-04-02
We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm (>1 octave) from 880 to 1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.
2012-09-30
Estimation Methods for Underwater OFDM 5) Two Iterative Receivers for Distributed MIMO - OFDM with Large Doppler Deviations. 6) Asynchronous Multiuser...multi-input multi-output ( MIMO ) OFDM is also pursued, where it is shown that the proposed hybrid initialization enables drastically improved receiver...are investigated. 5) Two Iterative Receivers for Distributed MIMO - OFDM with Large Doppler Deviations. This work studies a distributed system with
Siniscalchi, Michael J.; Jing, Jian; Weiss, Klaudiusz R.
2016-01-01
Repetition priming is characterized by increased performance as a behavior is repeated. Although this phenomenon is ubiquitous, mediating mechanisms are poorly understood. We address this issue in a model system, the feeding network of Aplysia. This network generates both ingestive and egestive motor programs. Previous data suggest a chemical coding model: ingestive and egestive inputs to the feeding central pattern generator (CPG) release different modulators, which act via different second messengers to prime motor activity in different ways. The ingestive input to the CPG (neuron CBI-2) releases the peptides feeding circuit activating peptide and cerebral peptide 2, which produce an ingestive pattern of activity. The egestive input to the CPG (the esophageal nerve) releases the peptide small cardioactive peptide. This model is based on research that focused on a single aspect of motor control (radula opening). Here we ask whether repetition priming is observed if activity is triggered with a neuron within the core CPG itself and demonstrate that it is not. Moreover, previous studies demonstrated that effects of modulatory neurotransmitters that induce repetition priming persist. This suggests that it should be possible to “prime” motor programs triggered from within the CPG by first stimulating extrinsic modulatory inputs. We demonstrate that programs triggered after ingestive input activation are ingestive and programs triggered after egestive input activation are egestive. We ask where this priming occurs and demonstrate modifications within the CPG itself. This arrangement is likely to have important consequences for “task” switching, i.e., the cessation of one type of motor activity and the initiation of another. PMID:27466134
Novel Models of Visual Topographic Map Alignment in the Superior Colliculus
El-Ghazawi, Tarek A.; Triplett, Jason W.
2016-01-01
The establishment of precise neuronal connectivity during development is critical for sensing the external environment and informing appropriate behavioral responses. In the visual system, many connections are organized topographically, which preserves the spatial order of the visual scene. The superior colliculus (SC) is a midbrain nucleus that integrates visual inputs from the retina and primary visual cortex (V1) to regulate goal-directed eye movements. In the SC, topographically organized inputs from the retina and V1 must be aligned to facilitate integration. Previously, we showed that retinal input instructs the alignment of V1 inputs in the SC in a manner dependent on spontaneous neuronal activity; however, the mechanism of activity-dependent instruction remains unclear. To begin to address this gap, we developed two novel computational models of visual map alignment in the SC that incorporate distinct activity-dependent components. First, a Correlational Model assumes that V1 inputs achieve alignment with established retinal inputs through simple correlative firing mechanisms. A second Integrational Model assumes that V1 inputs contribute to the firing of SC neurons during alignment. Both models accurately replicate in vivo findings in wild type, transgenic and combination mutant mouse models, suggesting either activity-dependent mechanism is plausible. In silico experiments reveal distinct behaviors in response to weakening retinal drive, providing insight into the nature of the system governing map alignment depending on the activity-dependent strategy utilized. Overall, we describe novel computational frameworks of visual map alignment that accurately model many aspects of the in vivo process and propose experiments to test them. PMID:28027309
Sellers, Kristin K; Bennett, Davis V; Fröhlich, Flavio
2015-02-19
Neuronal firing responses in visual cortex reflect the statistics of visual input and emerge from the interaction with endogenous network dynamics. Artificial visual stimuli presented to animals in which the network dynamics were constrained by anesthetic agents or trained behavioral tasks have provided fundamental understanding of how individual neurons in primary visual cortex respond to input. In contrast, very little is known about the mesoscale network dynamics and their relationship to microscopic spiking activity in the awake animal during free viewing of naturalistic visual input. To address this gap in knowledge, we recorded local field potential (LFP) and multiunit activity (MUA) simultaneously in all layers of primary visual cortex (V1) of awake, freely viewing ferrets presented with naturalistic visual input (nature movie clips). We found that naturalistic visual stimuli modulated the entire oscillation spectrum; low frequency oscillations were mostly suppressed whereas higher frequency oscillations were enhanced. In average across all cortical layers, stimulus-induced change in delta and alpha power negatively correlated with the MUA responses, whereas sensory-evoked increases in gamma power positively correlated with MUA responses. The time-course of the band-limited power in these frequency bands provided evidence for a model in which naturalistic visual input switched V1 between two distinct, endogenously present activity states defined by the power of low (delta, alpha) and high (gamma) frequency oscillatory activity. Therefore, the two mesoscale activity states delineated in this study may define the degree of engagement of the circuit with the processing of sensory input. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhou, Qian-qian; Su, Rong-guo; Bai, Ying; Zhang, Chuan-song; Shi, Xiao-yong
2015-01-01
The composition, distribution characteristics and sources of chromophoric dissolved organic matter(CDOM) in Zhoushan Fishery in spring were evaluated by fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (EEMs-PARAFAC). Three humic-like components [C1 (330/420 nm)], C2 [(290) 365/440 nm] and C3 [(260) 370/490 nm)] and two protein-like components [C4(285/340 nm) and C5 (270/310 nm)] were identified by EEMs-PARAFAC. The horizontal distribution patterns of the five components were almost the same with only slight differences, showing decreasing trends with increasing distance from shore. In the surface and middle layers, the high value areas were located in the north of Hangzhou Bay estuary and the outlet of Xiazhimen channel, and the former's was higher in the surface layer while the latter's was higher in the middle layer. In the bottom layer, CDOM decreased gradiently from the inshore to offshore, with higher CDOM near Zhoushan Island. The distributions of fluorescence components showed an opposite trend with salinity, and no significant linear relationship with Chl-a concentration was found, which indicated that CDOM in the surface and middle layers were dominated by terrestrial input and human activities of Zhoushan Island and that of the bottom layer was attribute to human activities of Zhoushan Island. The vertical distribution of five fluorescent components along 30.5 degrees N transect showed a decreasing trend from the surface and middle layers to bottom layer with high values in inshore and offshore areas, which were correlated with the lower salinity and higher Chl-a concentration, respectively. On this transect, CDOM was mainly affected by Yangtze River input in coastal area but by bioactivities in offshore waters. Along the 30 degrees N transect, the vertical distribution patterns of CDOM were similar to those of 30.5 degrees N transect but there was a high value area in the bottom layer near the shore, attributing to the CDOM release from the marine sediment pore water to the water body because of physical force role like tidal, the underlying upwelling and so on. A strong correlation occurred between C1 and C3, C4, indicating that they had similar sources; a weak correlation was found between C1 and C2, C5, reflecting some differences among their sources. CDOM in Zhoushan Fishery in spring had low humification index (HIX) values, which reflected a low degree of humification, poor stability and a short resident time in the environment. For biological index (BIX), its higher values appeared in the offshore waters and the lower values occurred in the inshore area, reflecting a greater influence of human and biological activities, respectively.
Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex
McGarry, Laura M.
2016-01-01
Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. SIGNIFICANCE STATEMENT The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared with nearby corticostriatal neurons. However, these inputs are even more powerful at parvalbumin and somatostatin expressing interneurons. BLA inputs thus activate two parallel inhibitory networks, whose contributions change during repetitive activity. Finally, connections from these interneurons are also more powerful at corticoamygdala neurons compared with corticostriatal neurons. Together, our results demonstrate how the BLA predominantly inhibits the PFC via a complex sequence involving multiple cell-type and input-specific connections. PMID:27605614
Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.
McGarry, Laura M; Carter, Adam G
2016-09-07
Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared with nearby corticostriatal neurons. However, these inputs are even more powerful at parvalbumin and somatostatin expressing interneurons. BLA inputs thus activate two parallel inhibitory networks, whose contributions change during repetitive activity. Finally, connections from these interneurons are also more powerful at corticoamygdala neurons compared with corticostriatal neurons. Together, our results demonstrate how the BLA predominantly inhibits the PFC via a complex sequence involving multiple cell-type and input-specific connections. Copyright © 2016 the authors 0270-6474/16/369391-16$15.00/0.
Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Wörgötter, Florentin
2011-01-01
Synaptic scaling is a slow process that modifies synapses, keeping the firing rate of neural circuits in specific regimes. Together with other processes, such as conventional synaptic plasticity in the form of long term depression and potentiation, synaptic scaling changes the synaptic patterns in a network, ensuring diverse, functionally relevant, stable, and input-dependent connectivity. How synaptic patterns are generated and stabilized, however, is largely unknown. Here we formally describe and analyze synaptic scaling based on results from experimental studies and demonstrate that the combination of different conventional plasticity mechanisms and synaptic scaling provides a powerful general framework for regulating network connectivity. In addition, we design several simple models that reproduce experimentally observed synaptic distributions as well as the observed synaptic modifications during sustained activity changes. These models predict that the combination of plasticity with scaling generates globally stable, input-controlled synaptic patterns, also in recurrent networks. Thus, in combination with other forms of plasticity, synaptic scaling can robustly yield neuronal circuits with high synaptic diversity, which potentially enables robust dynamic storage of complex activation patterns. This mechanism is even more pronounced when considering networks with a realistic degree of inhibition. Synaptic scaling combined with plasticity could thus be the basis for learning structured behavior even in initially random networks. PMID:22203799
Ozaki, Mitsunori; Sano, Hiromi; Sato, Shigeki; Ogura, Mitsuhiro; Mushiake, Hajime; Chiken, Satomi; Nakao, Naoyuki; Nambu, Atsushi
2017-12-01
To understand how information from different cortical areas is integrated and processed through the cortico-basal ganglia pathways, we used optogenetics to systematically stimulate the sensorimotor cortex and examined basal ganglia activity. We utilized Thy1-ChR2-YFP transgenic mice, in which channelrhodopsin 2 is robustly expressed in layer V pyramidal neurons. We applied light spots to the sensorimotor cortex in a grid pattern and examined neuronal responses in the globus pallidus (GP) and entopeduncular nucleus (EPN), which are the relay and output nuclei of the basal ganglia, respectively. Light stimulation typically induced a triphasic response composed of early excitation, inhibition, and late excitation in GP/EPN neurons. Other response patterns lacking 1 or 2 of the components were also observed. The distribution of the cortical sites whose stimulation induced a triphasic response was confined, whereas stimulation of the large surrounding areas induced early and late excitation without inhibition. Our results suggest that cortical inputs to the GP/EPN are organized in a "local inhibitory and global excitatory" manner. Such organization seems to be the neuronal basis for information processing through the cortico-basal ganglia pathways, that is, releasing and terminating necessary information at an appropriate timing, while simultaneously suppressing other unnecessary information. © The Author 2017. Published by Oxford University Press.
Lusher, Amy L.; Tirelli, Valentina; O’Connor, Ian; Officer, Rick
2015-01-01
Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment. PMID:26446348
NASA Astrophysics Data System (ADS)
Lusher, Amy L.; Tirelli, Valentina; O'Connor, Ian; Officer, Rick
2015-10-01
Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.
Honeywell optical investigations on FLASH program
NASA Astrophysics Data System (ADS)
O'Rourke, Ken; Peterson, Eric; Yount, Larry
1995-05-01
The increasing performance and reduction of life cycle cost requirements placed on commercial and military transport aircraft are resulting in more complex, highly integrated aircraft control and management systems. The use of fiber optic data transmission media can make significant contributions in achieving these performance and cost goals. The Honeywell portion of Task 2A on the Fly-by-Light Advanced System Hardware (FLASH) program is evaluating a Primary Flight Control System (PFCS) using pilot and copilot inputs from Active Hand Controllers (AHC) which are optically linked to the primary flight Control Computers (PFCC). Customer involvement is an important element of the Task 2A activity. Establishing customer requirements and perspectives on productization of systems developed under FLASH are key to future product success. The Honeywell elements of the PFCS demonstrator provide a command path that is optically interfaced from crew inputs to commands of distributed, smart actuation subsystems commands. Optical communication architectures are implemented using several protocols including the new AS-1773A 20 Mbps data bus standard. The interconnecting fiber optic cable plant is provided by our Task 1A teammate McDonnell Douglas Aerospace (West). Fiber optic cable plant fabrication uses processed, tools and materials reflecting necessary advances in manufacturing required to make fly-by-light avionics systems marketable.
Lusher, Amy L; Tirelli, Valentina; O'Connor, Ian; Officer, Rick
2015-10-08
Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.
Sustained Assessment, Version n.0: Efforts of the Sustained Assessment Working Group
NASA Astrophysics Data System (ADS)
Leidner, A. K.; Barrie, D.; Reidmiller, D.; Lewis, K.
2017-12-01
In parallel with the development of the Third National Climate Assessment (NCA3, 2014), the U.S. Global Change Research Program, with inputs from the non-federal climate assessment community, sought to define a sustained assessment process. Although many elements of a sustained process were initiated during NCA3 and continued into the NCA4 era, progress is still needed. To address this need, a new Federal Interagency working group of the U.S. Global Change Research Program (USGCRP) - the Sustained Assessment Working Group (SAWG) - was established in summer 2017. Its formation was motivated by a desire to avoid the sharp peaks in effort that accompanies production of the Congressionally-mandated quadrennial Assessment, followed by the dips in activity after a report is completed. With a goal of distributing and flattening effort, and providing a way to sustain engagement and better connect assessment-relevant activities, the SAWG is using inputs from the thirteen USGCRP agencies, federal advisory groups, and other sources to make recommendations to the agencies of the U.S. Global Change Research Program. The group will work with the agencies to implement these recommendations and monitor progress toward creating a sustained - and sustainable - assessment process. This presentation will detail the efforts and goals of SAWG and report on recent milestones.
Engbers, Jordan D T; Anderson, Dustin; Asmara, Hadhimulya; Rehak, Renata; Mehaffey, W Hamish; Hameed, Shahid; McKay, Bruce E; Kruskic, Mirna; Zamponi, Gerald W; Turner, Ray W
2012-02-14
Encoding sensory input requires the expression of postsynaptic ion channels to transform key features of afferent input to an appropriate pattern of spike output. Although Ca(2+)-activated K(+) channels are known to control spike frequency in central neurons, Ca(2+)-activated K(+) channels of intermediate conductance (KCa3.1) are believed to be restricted to peripheral neurons. We now report that cerebellar Purkinje cells express KCa3.1 channels, as evidenced through single-cell RT-PCR, immunocytochemistry, pharmacology, and single-channel recordings. Furthermore, KCa3.1 channels coimmunoprecipitate and interact with low voltage-activated Cav3.2 Ca(2+) channels at the nanodomain level to support a previously undescribed transient voltage- and Ca(2+)-dependent current. As a result, subthreshold parallel fiber excitatory postsynaptic potentials (EPSPs) activate Cav3 Ca(2+) influx to trigger a KCa3.1-mediated regulation of the EPSP and subsequent after-hyperpolarization. The Cav3-KCa3.1 complex provides powerful control over temporal summation of EPSPs, effectively suppressing low frequencies of parallel fiber input. KCa3.1 channels thus contribute to a high-pass filter that allows Purkinje cells to respond preferentially to high-frequency parallel fiber bursts characteristic of sensory input.
Data-driven process decomposition and robust online distributed modelling for large-scale processes
NASA Astrophysics Data System (ADS)
Shu, Zhang; Lijuan, Li; Lijuan, Yao; Shipin, Yang; Tao, Zou
2018-02-01
With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.
Fernández-Alfonso, Tomás; Nadella, K.M. Naga Srinivas; Iacaruso, M. Florencia; Pichler, Bruno; Roš, Hana; Kirkby, Paul A.; Silver, R. Angus
2014-01-01
Background Two-photon microscopy is widely used to study brain function, but conventional microscopes are too slow to capture the timing of neuronal signalling and imaging is restricted to one plane. Recent development of acousto-optic-deflector-based random access functional imaging has improved the temporal resolution, but the utility of these technologies for mapping 3D synaptic activity patterns and their performance at the excitation wavelengths required to image genetically encoded indicators have not been investigated. New method Here, we have used a compact acousto-optic lens (AOL) two-photon microscope to make high speed [Ca2+] measurements from spines and dendrites distributed in 3D with different excitation wavelengths (800–920 nm). Results We show simultaneous monitoring of activity from many synaptic inputs distributed over the 3D arborisation of a neuronal dendrite using both synthetic as well as genetically encoded indicators. We confirm the utility of AOL-based imaging for fast in vivo recordings by measuring, simultaneously, visually evoked responses in 100 neurons distributed over a 150 μm focal depth range. Moreover, we explore ways to improve the measurement of timing of neuronal activation by choosing specific regions within the cell soma. Comparison with existing methods These results establish that AOL-based 3D random access two-photon microscopy has a wider range of neuroscience applications than previously shown. Conclusions Our findings show that the compact AOL microscope design has the speed, spatial resolution, sensitivity and wavelength flexibility to measure 3D patterns of synaptic and neuronal activity on individual trials. PMID:24200507
Optical signal processing of spatially distributed sensor data in smart structures
NASA Technical Reports Server (NTRS)
Bennett, K. D.; Claus, R. O.; Murphy, K. A.; Goette, A. M.
1989-01-01
Smart structures which contain dense two- or three-dimensional arrays of attached or embedded sensor elements inherently require signal multiplexing and processing capabilities to permit good spatial data resolution as well as the adequately short calculation times demanded by real time active feedback actuator drive circuitry. This paper reports the implementation of an in-line optical signal processor and its application in a structural sensing system which incorporates multiple discrete optical fiber sensor elements. The signal processor consists of an array of optical fiber couplers having tailored s-parameters and arranged to allow gray code amplitude scaling of sensor inputs. The use of this signal processor in systems designed to indicate the location of distributed strain and damage in composite materials, as well as to quantitatively characterize that damage, is described. Extension of similar signal processing methods to more complicated smart materials and structures applications are discussed.
Benthic plastic debris in marine and fresh water environments.
Corcoran, Patricia L
2015-08-01
This review provides a discussion of the published literature concerning benthic plastic debris in ocean, sea, lake, estuary and river bottoms throughout the world. Although numerous investigations of shoreline, surface and near-surface plastic debris provide important information on plastic types, distribution, accumulation, and degradation, studies of submerged plastic debris have been sporadic in the past and have become more prominent only recently. The distribution of benthic debris is controlled mainly by combinations of urban proximity and its association with fishing-related activities, geomorphology, hydrological conditions, and river input. High density plastics, biofouled products, polymers with mineral fillers or adsorbed minerals, and plastic-metal composites all have the potential to sink. Once deposited on the bottoms of water basins and channels, plastics are shielded from UV light, thus slowing the degradation process significantly. Investigations of the interactions between benthic plastic debris and bottom-dwelling organisms will help shed light on the potential dangers of submerged plastic litter.
Harrison, Jolie; Ferguson, Megan; Gedamke, Jason; Hatch, Leila; Southall, Brandon; Van Parijs, Sofie
2016-01-01
To help manage chronic and cumulative impacts of human activities on marine mammals, the National Oceanic and Atmospheric Administration (NOAA) convened two working groups, the Underwater Sound Field Mapping Working Group (SoundMap) and the Cetacean Density and Distribution Mapping Working Group (CetMap), with overarching effort of both groups referred to as CetSound, which (1) mapped the predicted contribution of human sound sources to ocean noise and (2) provided region/time/species-specific cetacean density and distribution maps. Mapping products were presented at a symposium where future priorities were identified, including institutionalization/integration of the CetSound effort within NOAA-wide goals and programs, creation of forums and mechanisms for external input and funding, and expanded outreach/education. NOAA is subsequently developing an ocean noise strategy to articulate noise conservation goals and further identify science and management actions needed to support them.
User Manual for SAHM package for VisTrails
Talbert, C.B.; Talbert, M.K.
2012-01-01
The Software for Assisted Habitat I\\•1odeling (SAHM) has been created to both expedite habitat modeling and help maintain a record of the various input data, pre-and post-processing steps and modeling options incorporated in the construction of a species distribution model. The four main advantages to using the combined VisTrail: SAHM package for species distribution modeling are: 1. formalization and tractable recording of the entire modeling process 2. easier collaboration through a common modeling framework 3. a user-friendly graphical interface to manage file input, model runs, and output 4. extensibility to incorporate future and additional modeling routines and tools. This user manual provides detailed information on each module within the SAHM package, their input, output, common connections, optional arguments, and default settings. This information can also be accessed for individual modules by right clicking on the documentation button for any module in VisTrail or by right clicking on any input or output for a module and selecting view documentation. This user manual is intended to accompany the user guide which provides detailed instructions on how to install the SAHM package within VisTrails and then presents information on the use of the package.
Distributed Optimal Consensus Control for Multiagent Systems With Input Delay.
Zhang, Huaipin; Yue, Dong; Zhao, Wei; Hu, Songlin; Dou, Chunxia; Huaipin Zhang; Dong Yue; Wei Zhao; Songlin Hu; Chunxia Dou; Hu, Songlin; Zhang, Huaipin; Dou, Chunxia; Yue, Dong; Zhao, Wei
2018-06-01
This paper addresses the problem of distributed optimal consensus control for a continuous-time heterogeneous linear multiagent system subject to time varying input delays. First, by discretization and model transformation, the continuous-time input-delayed system is converted into a discrete-time delay-free system. Two delicate performance index functions are defined for these two systems. It is shown that the performance index functions are equivalent and the optimal consensus control problem of the input-delayed system can be cast into that of the delay-free system. Second, by virtue of the Hamilton-Jacobi-Bellman (HJB) equations, an optimal control policy for each agent is designed based on the delay-free system and a novel value iteration algorithm is proposed to learn the solutions to the HJB equations online. The proposed adaptive dynamic programming algorithm is implemented on the basis of a critic-action neural network (NN) structure. Third, it is proved that local consensus errors of the two systems and weight estimation errors of the critic-action NNs are uniformly ultimately bounded while the approximated control policies converge to their target values. Finally, two simulation examples are presented to illustrate the effectiveness of the developed method.
Weisleder, Adriana; Waxman, Sandra R.
2010-01-01
Recent analyses have revealed that child-directed speech contains distributional regularities that could, in principle, support young children's discovery of distinct grammatical categories (noun, verb, adjective). In particular, a distributional unit known as the frequent frame appears to be especially informative (Mintz, 2003). However, analyses have focused almost exclusively on the distributional information available in English. Because languages differ considerably in how the grammatical forms are marked within utterances, the scarcity of cross-linguistic evidence represents an unfortunate gap. We therefore advance the developmental evidence by analyzing the distributional information available in frequent frames across two languages (Spanish and English), across sentence positions (phrase medial and phrase final), and across grammatical forms (noun, verb, adjective). We selected six parent-child corpora from the CHILDES database (3 English; 3 Spanish), and analyzed the input when children were 2;6 years or younger. In each language, frequent frames did indeed offer systematic cues to grammatical category assignment. We also identify differences in the accuracy of these frames across languages, sentences positions, and grammatical classes. PMID:19698207
Weisleder, Adriana; Waxman, Sandra R
2010-11-01
Recent analyses have revealed that child-directed speech contains distributional regularities that could, in principle, support young children's discovery of distinct grammatical categories (noun, verb, adjective). In particular, a distributional unit known as the frequent frame appears to be especially informative (Mintz, 2003). However, analyses have focused almost exclusively on the distributional information available in English. Because languages differ considerably in how the grammatical forms are marked within utterances, the scarcity of cross-linguistic evidence represents an unfortunate gap. We therefore advance the developmental evidence by analyzing the distributional information available in frequent frames across two languages (Spanish and English), across sentence positions (phrase medial and phrase final), and across grammatical forms (noun, verb, adjective). We selected six parent-child corpora from the CHILDES database (three English; three Spanish), and analyzed the input when children were aged 2 ; 6 or younger. In each language, frequent frames did indeed offer systematic cues to grammatical category assignment. We also identify differences in the accuracy of these frames across languages, sentences positions and grammatical classes.
2017-01-01
In this study, we present a theoretical framework combining experimental characterizations and analytical calculus to capture the firing rate input-output properties of single neurons in the fluctuation-driven regime. Our framework consists of a two-step procedure to treat independently how the dendritic input translates into somatic fluctuation variables, and how the latter determine action potential firing. We use this framework to investigate the functional impact of the heterogeneity in firing responses found experimentally in young mice layer V pyramidal cells. We first design and calibrate in vitro a simplified morphological model of layer V pyramidal neurons with a dendritic tree following Rall's branching rule. Then, we propose an analytical derivation for the membrane potential fluctuations at the soma as a function of the properties of the synaptic input in dendrites. This mathematical description allows us to easily emulate various forms of synaptic input: either balanced, unbalanced, synchronized, purely proximal or purely distal synaptic activity. We find that those different forms of dendritic input activity lead to various impact on the somatic membrane potential fluctuations properties, thus raising the possibility that individual neurons will differentially couple to specific forms of activity as a result of their different firing response. We indeed found such a heterogeneous coupling between synaptic input and firing response for all types of presynaptic activity. This heterogeneity can be explained by different levels of cellular excitability in the case of the balanced, unbalanced, synchronized and purely distal activity. A notable exception appears for proximal dendritic inputs: increasing the input level can either promote firing response in some cells, or suppress it in some other cells whatever their individual excitability. This behavior can be explained by different sensitivities to the speed of the fluctuations, which was previously associated to different levels of sodium channel inactivation and density. Because local network connectivity rather targets proximal dendrites, our results suggest that this aspect of biophysical heterogeneity might be relevant to neocortical processing by controlling how individual neurons couple to local network activity. PMID:28410418
Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification.
Liu, Zhiyong; Zheng, Jian; Pan, Shaoming; Dong, Wei; Yamada, Masatoshi; Aono, Tatsuo; Guo, Qiuju
2011-03-01
Pu isotopes and (137)Cs were analyzed using sector field ICP-MS and γ spectrometry, respectively, in surface sediment and core sediment samples from the Yangtze River estuary. (239+240)Pu activity and (240)Pu/(239)Pu atom ratios (>0.18) shows a generally increasing trend from land to sea and from north to south in the estuary. This spatial distribution pattern indicates that the Pacific Proving Grounds (PPG) source Pu transported by ocean currents was intensively scavenged into the suspended sediment under favorable conditions, and mixed with riverine sediment as the water circulated in the estuary. This process is the main control for the distribution of Pu in the estuary. Moreover, Pu is also an important indicator for monitoring the changes of environmental radioactivity in the estuary as the river basin is currently the site of extensive human activities and the sea level is rising because of global climate changes. For core sediment samples the maximum peak of (239+240)Pu activity was observed at a depth of 172 cm. The sedimentation rate was estimated on the basis of the Pu maximum deposition peak in 1963-1964 to be 4.1 cm/a. The contributions of the PPG close-in fallout Pu (44%) and the riverine Pu (45%) in Yangtze River estuary sediments are equally important for the total Pu deposition in the estuary, which challenges the current hypothesis that the riverine Pu input was the major source of Pu budget in this area.
De Cicco, Vincenzo; Tramonti Fantozzi, Maria P.; Cataldo, Enrico; Barresi, Massimo; Bruschini, Luca; Faraguna, Ugo; Manzoni, Diego
2018-01-01
It is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS) which includes the noradrenergic locus coeruleus (LC) neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action. On the other hand, an imbalance of the same input on the two sides may lead to an asymmetric hemispheric excitability, leading to an impairment in cognitive functions. Among the inputs that may drive LC neurons and ARAS, those arising from the trigeminal region, from visceral organs and, possibly, from the vestibular system seem to be particularly relevant in regulating their activity. The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals: (1) affect sensorimotor and cognitive functions which are not directly related to their specific informational content; and (2) are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders. PMID:29358907
Extensional rheology of active suspensions
NASA Astrophysics Data System (ADS)
Saintillan, David
2010-05-01
A simple model is presented for the effective extensional rheology of a dilute suspension of active particles, such as self-propelled microswimmers, extending previous classical studies on suspensions of passive rodlike particles. Neglecting particle-particle hydrodynamic interactions, we characterize the configuration of the suspension by an orientation distribution, which satisfies a Fokker-Planck equation including the effects of an external flow field and of rotary diffusion. Knowledge of this orientation distribution then allows the determination of the particle extra stress as a configurational average of the force dipoles exerted by the particles on the fluid, which involve contributions from the imposed flow, rotary diffusion, and the permanent dipoles resulting from activity. Analytical expressions are obtained for the stress tensor in uniaxial extensional and compressional flows, as well as in planar extensional flow. In all types of flows, the effective viscosity is found to increase as a result of activity in suspensions of head-actuated swimmers (pullers) and to decrease in suspensions of tail-actuated swimmers (pushers). In the latter case, a negative particle viscosity is found to occur in weak flows. In planar extensional flow, we also characterize normal stresses, which are enhanced by activity in suspensions of pullers but reduced in suspensions of pushers. Finally, an energetic interpretation of the seemingly unphysical decrease in viscosity predicted in suspensions of pushers is proposed, where the decrease is explained as a consequence of the active power input generated by the swimming particles and is shown not to be directly related to viscous dissipative processes.
Assessment of space sensors for ocean pollution monitoring
NASA Technical Reports Server (NTRS)
Alvarado, U. R.; Tomiyasu, K.; Gulatsi, R. L.
1980-01-01
Several passive and active microwave, as well as passive optical remote sensors, applicable to the monitoring of oil spills and waste discharges at sea, are considered. The discussed types of measurements relate to: (1) spatial distribution and properties of the pollutant, and (2) oceanic parameters needed to predict the movement of the pollutants and their impact upon land. The sensors, operating from satellite platforms at 700-900 km altitudes, are found to be useful in mapping the spread of oil in major oil spills and in addition, can be effective in producing wind and ocean parameters as inputs to oil trajectory and dispersion models. These capabilities can be used in countermeasures.
MacGregor, Duncan J.; Leng, Gareth
2012-01-01
Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP) generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response. These findings show large differences in information coding between the populations, and apparent functional advantages of asynchronous phasic firing. PMID:23093929
Nurses’ Role in the Joint Theater Trauma System
2008-12-01
elevation, etc) and input for ventilator-associated pneumonia and infection control CPGs. In addition, a methicillin - resistant Staphylococcus aureus and...Standard Form 298 (Rev. 8-98) Prescribed by ANSI-Std Z39-18 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden...MONITORING AGENCY REPORT NUMBER 12. DISTRIBUTION AVAILABILITY STATEMENT Distribution A: Approved for public release; distribution is
Light coupling and distribution for Si3N4/SiO2 integrated multichannel single-mode sensing system
NASA Astrophysics Data System (ADS)
Kaźmierczak, Andrzej; Dortu, Fabian; Schrevens, Olivier; Giannone, Domenico; Bouville, David; Cassan, Eric; Gylfason, Kristinn B.; Sohlström, Hans; Sanchez, Benito; Griol, Amadeu; Hill, Daniel
2009-01-01
We present an efficient and highly alignment-tolerant light coupling and distribution system for a multichannel Si3N4/SiO2 single-mode photonics sensing chip. The design of the input and output couplers and the distribution splitters is discussed. Examples of multichannel data obtained with the system are given.
Lopez-Haro, S. A.; Leija, L.
2016-01-01
Objectives. To present a quantitative comparison of thermal patterns produced by the piston-in-a-baffle approach with those generated by a physiotherapy ultrasonic device and to show the dependency among thermal patterns and acoustic intensity distributions. Methods. The finite element (FE) method was used to model an ideal acoustic field and the produced thermal pattern to be compared with the experimental acoustic and temperature distributions produced by a real ultrasonic applicator. A thermal model using the measured acoustic profile as input is also presented for comparison. Temperature measurements were carried out with thermocouples inserted in muscle phantom. The insertion place of thermocouples was monitored with ultrasound imaging. Results. Modeled and measured thermal profiles were compared within the first 10 cm of depth. The ideal acoustic field did not adequately represent the measured field having different temperature profiles (errors 10% to 20%). Experimental field was concentrated near the transducer producing a region with higher temperatures, while the modeled ideal temperature was linearly distributed along the depth. The error was reduced to 7% when introducing the measured acoustic field as the input variable in the FE temperature modeling. Conclusions. Temperature distributions are strongly related to the acoustic field distributions. PMID:27999801
Ensemble Forecasting of Coronal Mass Ejections Using the WSA-ENLIL with CONED Model
NASA Technical Reports Server (NTRS)
Emmons, D.; Acebal, A.; Pulkkinen, A.; Taktakishvili, A.; MacNeice, P.; Odstricil, D.
2013-01-01
The combination of the Wang-Sheeley-Arge (WSA) coronal model, ENLIL heliospherical model version 2.7, and CONED Model version 1.3 (WSA-ENLIL with CONED Model) was employed to form ensemble forecasts for 15 halo coronal mass ejections (halo CMEs). The input parameter distributions were formed from 100 sets of CME cone parameters derived from the CONED Model. The CONED Model used image processing along with the bootstrap approach to automatically calculate cone parameter distributions from SOHO/LASCO imagery based on techniques described by Pulkkinen et al. (2010). The input parameter distributions were used as input to WSA-ENLIL to calculate the temporal evolution of the CMEs, which were analyzed to determine the propagation times to the L1 Lagrangian point and the maximum Kp indices due to the impact of the CMEs on the Earth's magnetosphere. The Newell et al. (2007) Kp index formula was employed to calculate the maximum Kp indices based on the predicted solar wind parameters near Earth assuming two magnetic field orientations: a completely southward magnetic field and a uniformly distributed clock-angle in the Newell et al. (2007) Kp index formula. The forecasts for 5 of the 15 events had accuracy such that the actual propagation time was within the ensemble average plus or minus one standard deviation. Using the completely southward magnetic field assumption, 10 of the 15 events contained the actual maximum Kp index within the range of the ensemble forecast, compared to 9 of the 15 events when using a uniformly distributed clock angle.
Distribution and activity of microorganisms in coastal waters off the Netherlands and Germany
NASA Astrophysics Data System (ADS)
Vosjan, J. H.; Gunkel, W.; Tijssen, S. B.; Pauptit, E.; Klings, K. W.; Bruns, K.; Poremba, K.; Hagmeier, E.
Coastal waters up to 90 km off the coast of the Netherlands and Germany were investigated with the RV 'Friedrich Heincke' at 21 stations in July 1987. Hydrographic, chemical and biological parameters were measured simultaneously, such as temperature, salinity, oxygen saturation, adenosine triphosphate (ATP) concentrations and electron transport system (ETS) activities. The mean surface temperature was 16°C, salinity distribution showed a tongue of high salinity in the Southern Bight and coastal areas of low values by river input from the Rhine and Elbe. The mean oxygen concentration was 102.4%, with the highest percentages northwest of Helgoland and the lowest near Scheveningen and Cuxhaven. The ecosystem parameters of ATP-biomass and respiratory ETS-activity showed a distribution pattern corresponding to the inflow of clear Channel water and nutrient-rich river water. Highest biomass values and respiratory activities were found near Texel and northwest of Helgoland. The distribution patterns of microplankton species were more patchy. Distribution patterns are shown of phytoplankton species such as Ceratium fusus, Phaeocystis spec., Rhizosolenia shrubsolei, and Mesodinium rubrum and various groups of microplankton. The highest numbers of Ceratium were found near Helgoland, of Phaeocystis near Terschelling and Cuxhaven, of Rhizosolenia near Texel and Langeoog and of Mesodinium near the Dutch coast and north of Borkum. Concentrations of bacteria were determined both by cultivation and epifluorescence microscopy methods. The numbers obtained by the pour-plate method varied much more than those determined by the direct-count method. At all stations, oil-degrading bacteria were found. The numbers of bacteria able to degrade mineral oil were higher than the numbers of bacteria able to degrade a tetradecane-pentadecane mixture. Biological oxygen demand (BOD) was measured with and without oil additions after incubation of 5, 10 and 15 days and a potency to degrade oil was shown. Beside the mapping of respiratory activity by the ETS-method, the real oxygen uptake at in situ temperatures was measured in a few samples with short incubation. An ETS/R ratio of 4.1 was estimated.
NASA Astrophysics Data System (ADS)
Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.
2013-06-01
In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less smoothing at early time points post-radiopharmaceutical administration but more smoothing and fewer iterations at later time points when the total organ activity was lower. The results of this study demonstrate the importance of using optimal reconstruction and regularization parameters. Optimal results were obtained with different parameters at each time point, but using a single set of parameters for all time points produced near-optimal dose-volume histograms.
Effects of Meteorological Data Quality on Snowpack Modeling
NASA Astrophysics Data System (ADS)
Havens, S.; Marks, D. G.; Robertson, M.; Hedrick, A. R.; Johnson, M.
2017-12-01
Detailed quality control of meteorological inputs is the most time-intensive component of running the distributed, physically-based iSnobal snow model, and the effect of data quality of the inputs on the model is unknown. The iSnobal model has been run operationally since WY2013, and is currently run in several basins in Idaho and California. The largest amount of user input during modeling is for the quality control of precipitation, temperature, relative humidity, solar radiation, wind speed and wind direction inputs. Precipitation inputs require detailed user input and are crucial to correctly model the snowpack mass. This research applies a range of quality control methods to meteorological input, from raw input with minimal cleaning, to complete user-applied quality control. The meteorological input cleaning generally falls into two categories. The first is global minimum/maximum and missing value correction that could be corrected and/or interpolated with automated processing. The second category is quality control for inputs that are not globally erroneous, yet are still unreasonable and generally indicate malfunctioning measurement equipment, such as temperature or relative humidity that remains constant, or does not correlate with daily trends observed at nearby stations. This research will determine how sensitive model outputs are to different levels of quality control and guide future operational applications.
Nitrogen Balance and Use Efficiency in the Calapooia River ...
Reducing nitrogen (N) release into the environment through greater N use efficiencies (NUE) is a current challenge in watershed management. Examining N sources and sinks at local scales allows for better watershed-scale N use, for example when considering the tradeoffs between the uses of animal waste from Concentrated Animal Feeding Operations (CAFOs) as a resource compared with the use of synthetic fertilizers. We use data on land-use, CAFOs, N deposition, stream chemistry, and crop-level and county-level fertilizer use to assess the N inputs, exports and retention in the Calapooia River Watershed (CRW). The CRW is influenced by intensive agricultural activities, mostly in grass seed crops. We determined that at the CRW scale, annual TN export is 25% of the inputs. Nearly 48% of the total area has a net TN input of 100-200 kg N ha-1 yr-1, dominated by agricultural land. About 41% has an input of 200 kg N ha-1 yr-1. Almost 50% of the annual hydrologic N yield occurs during wet winter and reaches 50 kg ha-1. The minimum TN yield as low as <1 kg ha-1 happens in dry summer. The effect of crop type on NUE is estimated based on N retention calculation and land use data. A manure-distribution model will be built to help improve manure NUE and prevent excess fertilizer application. Information on N balances will also be combined with local groundwater and drinking water nitrate level to assess the implications of N release for water quality an
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolery, T.J.
1992-09-14
EQ3NR is an aqueous solution speciation-solubility modeling code. It is part of the EQ3/6 software package for geochemical modeling. It computes the thermodynamic state of an aqueous solution by determining the distribution of chemical species, including simple ions, ion pairs, and complexes, using standard state thermodynamic data and various equations which describe the thermodynamic activity coefficients of these species. The input to the code describes the aqueous solution in terms of analytical data, including total (analytical) concentrations of dissolved components and such other parameters as the pH, pHCl, Eh, pe, and oxygen fugacity. The input may also include a desiredmore » electrical balancing adjustment and various constraints which impose equilibrium with special pure minerals, solid solution end-member components (of specified mole fractions), and gases (of specified fugacities). The code evaluates the degree of disequilibrium in terms of the saturation index (SI = 1og Q/K) and the thermodynamic affinity (A = {minus}2.303 RT log Q/K) for various reactions, such as mineral dissolution or oxidation-reduction in the aqueous solution itself. Individual values of Eh, pe, oxygen fugacity, and Ah (redox affinity) are computed for aqueous redox couples. Equilibrium fugacities are computed for gas species. The code is highly flexible in dealing with various parameters as either model inputs or outputs. The user can specify modification or substitution of equilibrium constants at run time by using options on the input file.« less
Critical Fluctuations in Cortical Models Near Instability
Aburn, Matthew J.; Holmes, C. A.; Roberts, James A.; Boonstra, Tjeerd W.; Breakspear, Michael
2012-01-01
Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human electroencephalography (EEG), however, have shown significant autocorrelation at time lags on the scale of minutes, indicating the need to consider regimes where non-linearities influence the dynamics. Statistical properties such as increased autocorrelation length, increased variance, power law scaling, and bistable switching have been suggested as generic indicators of the approach to bifurcation in non-linear dynamical systems. We study temporal fluctuations in a widely-employed computational model (the Jansen–Rit model) of cortical activity, examining the statistical signatures that accompany bifurcations. Approaching supercritical Hopf bifurcations through tuning of the background excitatory input, we find a dramatic increase in the autocorrelation length that depends sensitively on the direction in phase space of the input fluctuations and hence on which neuronal subpopulation is stochastically perturbed. Similar dependence on the input direction is found in the distribution of fluctuation size and duration, which show power law scaling that extends over four orders of magnitude at the Hopf bifurcation. We conjecture that the alignment in phase space between the input noise vector and the center manifold of the Hopf bifurcation is directly linked to these changes. These results are consistent with the possibility of statistical indicators of linear instability being detectable in real EEG time series. However, even in a simple cortical model, we find that these indicators may not necessarily be visible even when bifurcations are present because their expression can depend sensitively on the neuronal pathway of incoming fluctuations. PMID:22952464
ERIC Educational Resources Information Center
Marsden, Emma; Chen, Hsin-Ying
2011-01-01
This study aimed to isolate the effects of the two input activities in Processing Instruction: referential activities, which force learners to focus on a form and its meaning, and affective activities, which contain exemplars of the target form and require learners to process sentence meaning. One hundred and twenty 12-year-old Taiwanese learners…
Handschuh, Juliane
2014-01-01
Dopaminergic neurotransmission in primary auditory cortex (AI) has been shown to be involved in learning and memory functions. Moreover, dopaminergic projections and D1/D5 receptor distributions display a layer-dependent organization, suggesting specific functions in the cortical circuitry. However, the circuit effects of dopaminergic neurotransmission in sensory cortex and their possible roles in perception, learning, and memory are largely unknown. Here, we investigated layer-specific circuit effects of dopaminergic neuromodulation using current source density (CSD) analysis in AI of Mongolian gerbils. Pharmacological stimulation of D1/D5 receptors increased auditory-evoked synaptic currents in infragranular layers, prolonging local thalamocortical input via positive feedback between infragranular output and granular input. Subsequently, dopamine promoted sustained cortical activation by prolonged recruitment of long-range corticocortical networks. A detailed circuit analysis combining layer-specific intracortical microstimulation (ICMS), CSD analysis, and pharmacological cortical silencing revealed that cross-laminar feedback enhanced by dopamine relied on a positive, fast-acting recurrent corticoefferent loop, most likely relayed via local thalamic circuits. Behavioral signal detection analysis further showed that activation of corticoefferent output by infragranular ICMS, which mimicked auditory activation under dopaminergic influence, was most effective in eliciting a behaviorally detectable signal. Our results show that D1/D5-mediated dopaminergic modulation in sensory cortex regulates positive recurrent corticoefferent feedback, which enhances states of high, persistent activity in sensory cortex evoked by behaviorally relevant stimuli. In boosting horizontal network interactions, this potentially promotes the readout of task-related information from cortical synapses and improves behavioral stimulus detection. PMID:24453315
Doyon, Nicolas; Prescott, Steven A.; Castonguay, Annie; Godin, Antoine G.; Kröger, Helmut; De Koninck, Yves
2011-01-01
Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention. PMID:21931544
Discharge properties of upper airway motor units during wakefulness and sleep.
Trinder, John; Jordan, Amy S; Nicholas, Christian L
2014-01-01
Upper airway muscle motoneurons, as assessed at the level of the motor unit, have a range of different discharge patterns, varying as to whether their activity is modulated in phase with the respiratory cycle, are predominantly inspiratory or expiratory, or are phasic as opposed to tonic. Two fundamental questions raised by this observation are: how are synaptic inputs from premotor neurons distributed over motoneurons to achieve these different discharge patterns; and how do different discharge patterns contribute to muscle function? We and others have studied the behavior of genioglossus (GG) and tensor palatini (TP) single motor units at transitions from wakefulness to sleep (sleep onset), from sleep to wakefulness (arousal from sleep), and during hypercapnia. Results indicate that decreases or increases in GG and TP muscle activity occur as a consequence of derecruitment or recruitment, respectively, of phasic and tonic inspiratory-modulated motoneurons, with only minor changes in rate coding. Further, sleep-wake state and chemical inputs to this "inspiratory system" appear to be mediated through the respiratory pattern generator. In contrast, phasic and tonic expiratory units and units with a purely tonic pattern, the "tonic system," are largely unaffected by sleep-wake state, and are only weakly influenced by chemical stimuli and the respiratory cycle. We speculate that the "inspiratory system" produces gross changes in upper airway muscle activity in response to changes in respiratory drive, while the "tonic system" fine tunes airway configuration with activity in this system being determined by local mechanical conditions. © 2014 Elsevier B.V. All rights reserved.
Butz, Markus; Steenbuck, Ines D; van Ooyen, Arjen
2014-01-01
After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity-a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when neuronal activity is too high and by providing new synaptic contacts when activity is too low. Using our Model of Structural Plasticity, we explored how local changes in connectivity induced by a focal loss of input affected global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, deafferentated neurons increased their global but decreased their local efficiency and got longer tailed degree distributions, indicating the emergence of hub neurons. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization and that the increase in betweenness centrality of deafferentated areas may hold as a biomarker for brain repair.
Ward, B Douglas; Mazaheri, Yousef
2006-12-15
The blood oxygenation level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments in response to input stimuli is temporally delayed and distorted due to the blurring effect of the voxel hemodynamic impulse response function (IRF). Knowledge of the IRF, obtained during the same experiment, or as the result of a separate experiment, can be used to dynamically obtain an estimate of the input stimulus function. Reconstruction of the input stimulus function allows the fMRI experiment to be evaluated as a communication system. The input stimulus function may be considered as a "message" which is being transmitted over a noisy "channel", where the "channel" is characterized by the voxel IRF. Following reconstruction of the input stimulus function, the received message is compared with the transmitted message on a voxel-by-voxel basis to determine the transmission error rate. Reconstruction of the input stimulus function provides insight into actual brain activity during task activation with less temporal blurring, and may be considered as a first step toward estimation of the true neuronal input function.
A Computer Program to Evaluate Timber Production Investments Under Uncertainty
Dennis L. Schweitzer
1968-01-01
A computer program has been written in Fortran IV to calculate probability distributions of present worths of investments in timber production. Inputs can include both point and probabilistic estimates of future costs, prices, and yields. Distributions of rates of return can also be constructed.
DOT National Transportation Integrated Search
2014-06-01
In June 2012, the Environmental Protection Agency (EPA) released the Operating Mode : Distribution Generator (OMDG) a tool for developing an operating mode distribution as an input : to the Motor Vehicle Emissions Simulator model (MOVES). The t...
Aaboud, M.; Aad, G.; Abbott, B.; ...
2017-03-29
We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV, in low-luminosity Large Hadron Collider fills corresponding to an integrated luminosity of 1.6 nb –1. The distributions were constructed using charged particles with absolute pseudorapidity less than 2.5 and with transverse momentum greater than 500 MeV, in events with at least one such charged particle with transverse momentum above 1 GeV. These distributions characterise the angular distribution of energy and particle flows with respect to the charged particle with highest transverse momentum, as a function ofmore » both that momentum and of charged-particle multiplicity. The results have been corrected for detector effects and are compared to the predictions of various Monte Carlo event generators, experimentally establishing the level of underlying-event activity at LHC Run 2 energies and providing inputs for the development of event generator modelling. The current models in use for UE modelling typically describe this data to 5% accuracy, compared with data uncertainties of less than 1%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV, in low-luminosity Large Hadron Collider fills corresponding to an integrated luminosity of 1.6 nb –1. The distributions were constructed using charged particles with absolute pseudorapidity less than 2.5 and with transverse momentum greater than 500 MeV, in events with at least one such charged particle with transverse momentum above 1 GeV. These distributions characterise the angular distribution of energy and particle flows with respect to the charged particle with highest transverse momentum, as a function ofmore » both that momentum and of charged-particle multiplicity. The results have been corrected for detector effects and are compared to the predictions of various Monte Carlo event generators, experimentally establishing the level of underlying-event activity at LHC Run 2 energies and providing inputs for the development of event generator modelling. The current models in use for UE modelling typically describe this data to 5% accuracy, compared with data uncertainties of less than 1%.« less
Distribution-Preserving Stratified Sampling for Learning Problems.
Cervellera, Cristiano; Maccio, Danilo
2017-06-09
The need for extracting a small sample from a large amount of real data, possibly streaming, arises routinely in learning problems, e.g., for storage, to cope with computational limitations, obtain good training/test/validation sets, and select minibatches for stochastic gradient neural network training. Unless we have reasons to select the samples in an active way dictated by the specific task and/or model at hand, it is important that the distribution of the selected points is as similar as possible to the original data. This is obvious for unsupervised learning problems, where the goal is to gain insights on the distribution of the data, but it is also relevant for supervised problems, where the theory explains how the training set distribution influences the generalization error. In this paper, we analyze the technique of stratified sampling from the point of view of distances between probabilities. This allows us to introduce an algorithm, based on recursive binary partition of the input space, aimed at obtaining samples that are distributed as much as possible as the original data. A theoretical analysis is proposed, proving the (greedy) optimality of the procedure together with explicit error bounds. An adaptive version of the algorithm is also introduced to cope with streaming data. Simulation tests on various data sets and different learning tasks are also provided.
Closing the gate in the limbic striatum: prefrontal suppression of hippocampal and thalamic inputs
Calhoon, Gwendolyn G.; O’Donnell, Patricio
2013-01-01
SUMMARY Many brain circuits control behavior by integrating information arising from separate inputs onto a common target neuron. Neurons in the ventral striatum (VS) receive converging excitatory afferents from the prefrontal cortex (PFC), hippocampus (HP), and thalamus, among other structures, and the integration of these inputs is critical for shaping goal-directed behaviors. Although HP inputs have been described as gating PFC throughput in the VS, recent data reveal that the VS desynchronizes from the HP during epochs of burst-like PFC activity related to decision-making. It is therefore possible that PFC inputs locally attenuate responses to other glutamatergic inputs to the VS. Here, we found that delivering trains of stimuli to the PFC suppresses HP- and thalamus-evoked synaptic responses in the VS, in part through activation of inhibitory processes. This interaction may enable the PFC to exert influence on basal ganglia loops during decision-making instances with minimal disturbance from ongoing contextual inputs. PMID:23583113
NASA Astrophysics Data System (ADS)
Mitterer-Hoinkes, Susanna; Lehning, Michael; Phillips, Marcia; Sailer, Rudolf
2013-04-01
The area-wide distribution of permafrost is sparsely known in mountainous terrain (e.g. Alps). Permafrost monitoring can only be based on point or small scale measurements such as boreholes, active rock glaciers, BTS measurements or geophysical measurements. To get a better understanding of permafrost distribution, it is necessary to focus on modeling permafrost temperatures and permafrost distribution patterns. A lot of effort on these topics has been already expended using different kinds of models. In this study, the evolution of subsurface temperatures over successive years has been modeled at the location Ritigraben borehole (Mattertal, Switzerland) by using the one-dimensional snow cover model SNOWPACK. The model needs meteorological input and in our case information on subsurface properties. We used meteorological input variables of the automatic weather station Ritigraben (2630 m) in combination with the automatic weather station Saas Seetal (2480 m). Meteorological data between 2006 and 2011 on an hourly basis were used to drive the model. As former studies showed, the snow amount and the snow cover duration have a great influence on the thermal regime. Low snow heights allow for deeper penetration of low winter temperatures into the ground, strong winters with a high amount of snow attenuate this effect. In addition, variations in subsurface conditions highly influence the temperature regime. Therefore, we conducted sensitivity runs by defining a series of different subsurface properties. The modeled subsurface temperature profiles of Ritigraben were then compared to the measured temperatures in the Ritigraben borehole. This allows a validation of the influence of subsurface properties on the temperature regime. As expected, the influence of the snow cover is stronger than the influence of sub-surface material properties, which are significant, however. The validation presented here serves to prepare a larger spatial simulation with the complex hydro-meteorological 3-dimensional model Alpine 3D, which is based on a distributed application of SNOWPACK.
Andersen, Julie B; Henning, William S; Lindberg, Ulrich; Ladefoged, Claes N; Højgaard, Liselotte; Greisen, Gorm; Law, Ian
2015-01-01
Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic–ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous 15O-water positron emission tomography (PET) and single TI pulsed arterial spin labeling (ASL) magnetic resonance imaging (MR) on a hybrid PET/MR in seven newborn piglets. Positron emission tomography was performed with IV injections of 20 MBq and 100 MBq 15O-water to confirm CBF reliability at low activity. Cerebral blood flow was quantified using a one-tissue-compartment-model using two input functions: an arterial input function (AIF) or an image-derived input function (IDIF). The mean global CBF (95% CI) PET-AIF, PET-IDIF, and ASL at baseline were 27 (23; 32), 34 (31; 37), and 27 (22; 32) mL/100 g per minute, respectively. At acetazolamide stimulus, PET-AIF, PET-IDIF, and ASL were 64 (55; 74), 76 (70; 83) and 79 (67; 92) mL/100 g per minute, respectively. At baseline, differences between PET-AIF, PET-IDIF, and ASL were 22% (P<0.0001) and −0.7% (P=0.9). At acetazolamide, differences between PET-AIF, PET-IDIF, and ASL were 19% (P=0.001) and 24% (P=0.0003). In conclusion, PET-IDIF overestimated CBF. Injected activity of 20 MBq 15O-water had acceptable concordance with 100 MBq, without compromising image quality. Single TI ASL was questionable for regional CBF measurements. Global ASL CBF and PET CBF were congruent during baseline but not during hyperperfusion. PMID:26058699
Self-tuning multivariable pole placement control of a multizone crystal growth furnace
NASA Technical Reports Server (NTRS)
Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.
1992-01-01
This paper presents the design and implementation of a multivariable self-tuning temperature controller for the control of lead bromide crystal growth. The crystal grows inside a multizone transparent furnace. There are eight interacting heating zones shaping the axial temperature distribution inside the furnace. A multi-input, multi-output furnace model is identified on-line by a recursive least squares estimation algorithm. A multivariable pole placement controller based on this model is derived and implemented. Comparison between single-input, single-output and multi-input, multi-output self-tuning controllers demonstrates that the zone-to-zone interactions can be minimized better by a multi-input, multi-output controller design. This directly affects the quality of crystal grown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFarge, R.A.
1990-05-01
MCPRAM (Monte Carlo PReprocessor for AMEER), a computer program that uses Monte Carlo techniques to create an input file for the AMEER trajectory code, has been developed for the Sandia National Laboratories VAX and Cray computers. Users can select the number of trajectories to compute, which AMEER variables to investigate, and the type of probability distribution for each variable. Any legal AMEER input variable can be investigated anywhere in the input run stream with either a normal, uniform, or Rayleigh distribution. Users also have the option to use covariance matrices for the investigation of certain correlated variables such as boostermore » pre-reentry errors and wind, axial force, and atmospheric models. In conjunction with MCPRAM, AMEER was modified to include the variables introduced by the covariance matrices and to include provisions for six types of fuze models. The new fuze models and the new AMEER variables are described in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Jonathan Charles; Halse, Chris; Crowther, Ashley
2010-06-01
Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed in the context of multiple sensors and active control devices (such as flaps) distributed over the length of the blade, most work to date has been limited to consideration of a single control device per blade with very basic Proportional Derivative controllers, due to limitations in the aeroservoelastic codes used to performmore » turbine simulations. This work utilizes a new aeroservoelastic code developed at Delft University of Technology to model the NREL/Upwind 5 MW wind turbine to investigate the relative advantage of utilizing multiple-device AALC. System identification techniques are used to identify the frequencies and shapes of turbine vibration modes, and these are used with modern control techniques to develop both Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) LQR flap controllers. Comparison of simulation results with these controllers shows that the MIMO controller does yield some improvement over the SISO controller in fatigue load reduction, but additional improvement is possible with further refinement. In addition, a preliminary investigation shows that AALC has the potential to reduce off-axis gearbox loads, leading to reduced gearbox bearing fatigue damage and improved lifetimes.« less
Biologically Inspired Model for Inference of 3D Shape from Texture
Gomez, Olman; Neumann, Heiko
2016-01-01
A biologically inspired model architecture for inferring 3D shape from texture is proposed. The model is hierarchically organized into modules roughly corresponding to visual cortical areas in the ventral stream. Initial orientation selective filtering decomposes the input into low-level orientation and spatial frequency representations. Grouping of spatially anisotropic orientation responses builds sketch-like representations of surface shape. Gradients in orientation fields and subsequent integration infers local surface geometry and globally consistent 3D depth. From the distributions in orientation responses summed in frequency, an estimate of the tilt and slant of the local surface can be obtained. The model suggests how 3D shape can be inferred from texture patterns and their image appearance in a hierarchically organized processing cascade along the cortical ventral stream. The proposed model integrates oriented texture gradient information that is encoded in distributed maps of orientation-frequency representations. The texture energy gradient information is defined by changes in the grouped summed normalized orientation-frequency response activity extracted from the textured object image. This activity is integrated by directed fields to generate a 3D shape representation of a complex object with depth ordering proportional to the fields output, with higher activity denoting larger distance in relative depth away from the viewer. PMID:27649387
Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains
Litwin-Kumar, Ashok; Oswald, Anne-Marie M.; Urban, Nathaniel N.; Doiron, Brent
2011-01-01
Stimulus properties, attention, and behavioral context influence correlations between the spike times produced by a pair of neurons. However, the biophysical mechanisms that modulate these correlations are poorly understood. With a combined theoretical and experimental approach, we show that the rate of balanced excitatory and inhibitory synaptic input modulates the magnitude and timescale of pairwise spike train correlation. High rate synaptic inputs promote spike time synchrony rather than long timescale spike rate correlations, while low rate synaptic inputs produce opposite results. This correlation shaping is due to a combination of enhanced high frequency input transfer and reduced firing rate gain in the high input rate state compared to the low state. Our study extends neural modulation from single neuron responses to population activity, a necessary step in understanding how the dynamics and processing of neural activity change across distinct brain states. PMID:22215995
A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds
Goldberg, Jesse H.
2012-01-01
The pallido-recipient thalamus transmits information from the basal ganglia (BG) to the cortex and plays a critical role motor initiation and learning. Thalamic activity is strongly inhibited by pallidal inputs from the BG, but the role of non-pallidal inputs, such as excitatory inputs from cortex, is unclear. We have recorded simultaneously from presynaptic pallidal axon terminals and postsynaptic thalamocortical neurons in a BG-recipient thalamic nucleus necessary for vocal variability and learning in zebra finches. We found that song-locked rate modulations in the thalamus could not be explained by pallidal inputs alone, and persisted following pallidal lesion. Instead, thalamic activity was likely driven by inputs from a motor ‘cortical’ nucleus also necessary for singing. These findings suggest a role for cortical inputs to the pallido-recipient thalamus in driving premotor signals important for exploratory behavior and learning. PMID:22327474
A high-speed GaAs MESFET optical controller
NASA Technical Reports Server (NTRS)
Claspy, P. C.; Bhasin, K. B.; Richard, M.; Bendett, M.; Gustafson, G.
1989-01-01
Optical interconnects are being considered for control signal distribution in phased array antennas. A packaged hybrid GaAs optical controller with a 1:16 demultiplexed output that is suitable for this application is described. The controller, which was fabricated using enhancement/depletion mode MESFET technology, operates at demultiplexer-limited input data rates up to 305 Mb/s and requires less than 200 microW optical input power.
Nearest private query based on quantum oblivious key distribution
NASA Astrophysics Data System (ADS)
Xu, Min; Shi, Run-hua; Luo, Zhen-yu; Peng, Zhen-wan
2017-12-01
Nearest private query is a special private query which involves two parties, a user and a data owner, where the user has a private input (e.g., an integer) and the data owner has a private data set, and the user wants to query which element in the owner's private data set is the nearest to his input without revealing their respective private information. In this paper, we first present a quantum protocol for nearest private query, which is based on quantum oblivious key distribution (QOKD). Compared to the classical related protocols, our protocol has the advantages of the higher security and the better feasibility, so it has a better prospect of applications.
NASA Astrophysics Data System (ADS)
Ellis-Gibbings, L.; Krupa, K.; Colmenares, R.; Blanco, F.; Muńoz, A.; Mendes, M.; Ferreira da Silva, F.; Limá Vieira, P.; Jones, D. B.; Brunger, M. J.; García, G.
2016-09-01
Recent theoretical and experimental studies have provided a complete set of differential and integral electron scattering cross section data from furfural over a broad energy range. The energy loss distribution functions have been determined in this study by averaging electron energy loss spectra for different incident energies and scattering angles. All these data have been used as input parameters for an event by event Monte Carlo simulation procedure to obtain the electron energy deposition patterns and electron ranges in liquid furfural. The dependence of these results on the input cross sections is then analysed to determine the uncertainty of the simulated values.
Real-Time Ensemble Forecasting of Coronal Mass Ejections Using the Wsa-Enlil+Cone Model
NASA Astrophysics Data System (ADS)
Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; Odstrcil, D.; MacNeice, P. J.; Rastaetter, L.; LaSota, J. A.
2014-12-01
Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions. Real-time ensemble modeling of CME propagation is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL+cone model available at the Community Coordinated Modeling Center (CCMC). To estimate the effect of uncertainties in determining CME input parameters on arrival time predictions, a distribution of n (routinely n=48) CME input parameter sets are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest, including a probability distribution of CME arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). We present the results of ensemble simulations for a total of 38 CME events in 2013-2014. For 28 of the ensemble runs containing hits, the observed CME arrival was within the range of ensemble arrival time predictions for 14 runs (half). The average arrival time prediction was computed for each of the 28 ensembles predicting hits and using the actual arrival time, an average absolute error of 10.0 hours (RMSE=11.4 hours) was found for all 28 ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this still allows the ruling out of prediction errors caused by tested CME input parameters. Prediction errors can also arise from ambient model parameters such as the accuracy of the solar wind background, and other limitations. Additionally the ensemble modeling sysem was used to complete a parametric event case study of the sensitivity of the CME arrival time prediction to free parameters for ambient solar wind model and CME. The parameter sensitivity study suggests future directions for the system, such as running ensembles using various magnetogram inputs to the WSA model.
Atmospheric Nitrogen Inputs to the Ocean and their Impact
NASA Astrophysics Data System (ADS)
Jickells, Tim D.
2016-04-01
Atmospheric Nitrogen Inputs to the Ocean and their Impact T Jickells (1), K. Altieri (2), D. Capone (3), E. Buitenhuis (1), R. Duce (4), F. Dentener (5), K. Fennel (6), J. Galloway (7), M. Kanakidou (8), J. LaRoche (9), K. Lee (10), P. Liss (1), J. Middleburg (11), K. Moore (12), S. Nickovic (13), G. Okin (14), A. Oschilies (15), J. Prospero (16), M. Sarin (17), S. Seitzinger (18), J. Scharples (19), P. Suntharalingram (1), M. Uematsu (20), L. Zamora (21) Atmospheric nitrogen inputs to the ocean have been identified as an important source of nitrogen to the oceans which has increased greatly as a result of human activity. The significance of atmospheric inputs for ocean biogeochemistry were evaluated in a seminal paper by Duce et al., 2008 (Science 320, 893-7). In this presentation we will update the Duce et al 2008 study estimating the impact of atmospheric deposition on the oceans. We will summarise the latest model estimates of total atmospheric nitrogen deposition to the ocean, their chemical form (nitrate, ammonium and organic nitrogen) and spatial distribution from the TM4 model. The model estimates are somewhat smaller than the Duce et al estimate, but with similar spatial distributions. We will compare these flux estimates with a new estimate of the impact of fluvial nitrogen inputs on the open ocean (Sharples submitted) which estimates some transfer of fluvial nitrogen to the open ocean, particularly at low latitudes, compared to the complete trapping of fluvial inputs on the continental shelf assumed by Duce et al. We will then estimate the impact of atmospheric deposition on ocean primary productivity and N2O emissions from the oceans using the PlankTOM10 model. The impacts of atmospheric deposition we estimate on ocean productivity here are smaller than those predicted by Duce et al impacts, consistent with the smaller atmospheric deposition estimates. However, the atmospheric input is still larger than the estimated fluvial inputs to the open ocean, even with the increased transport across shelf to the open ocean from low latitude fluvial systems identified. 1. School of Environmental Science University of East Anglia UK 2. Energy Research Centre University of Cape Town SA 3. Department of Biological Sciences University of S California USA 4. Departments of Oceanography and Atmospheric Sciences Texas A&M University USA 5. JRC Ispra Italy 6. Department of Oceanography Dalhousie University Canada 7. Department of Environmental Sciences U. Virginia USA 8. Department of Chemistry, University of Crete, Greece 9. Department of Biology Dalhousie University, Canada 10. School of Environmental Science and Engineering Pohang University S Korea. 11. Faculty of Geosciences University of Utrecht Netherlands 12. Department of Earth System Science University of California at Irvine USA 13. WMO Geneva 14. Department of Geography University of California USA 15. GEOMAR Keil Germany 16. Department of Atmospheric Sciences, University of Miami, USA 17. Geosciences Division at Physical Research Laboratory, Ahmedabad, India 18. Department of Environmental Studies, University of Victoria, Canada 19. School of Environmentak Sciences, U Liverpool UK 20. Center for International Collaboration, Atmosphere and Ocean Research Institute, The University of Tokyo Japan 21. Oak Ridge Associated Universities USA
Putyrskaya, Victoria; Klemt, Eckehard; Röllin, Stefan
2009-01-01
This paper describes the behaviour of 137Cs in Lago Maggiore and other pre-alpine lakes as a consequence of atmospheric nuclear weapons testing fallout and the fallout from the nuclear accident in Chernobyl. It presents data on the 137Cs distribution in tributaries, lake water, bottom sediments and reveals the role of (137)Cs as a marker of the sedimentation processes. The run-off of 137Cs from the watershed to the lake is described with a simple compartment model. Measurements of the activity concentration of (137)Cs in sediments are compared with the output of a model (diffusion-convection type) which describes the input of 137Cs into and its vertical distribution within the sediment. Varying sedimentation rates (0.05-0.90g(cm2y)(-1)) in Lago Maggiore are compared with data of other authors. Sedimentation rates and total distribution coefficients (of about 10(5) Lkg(-1)) in Lago Maggiore are discussed and compared with those of Lago di Lugano, Lake Constance, and Lake Vorsee.
Effects of topologies on signal propagation in feedforward networks
NASA Astrophysics Data System (ADS)
Zhao, Jia; Qin, Ying-Mei; Che, Yan-Qiu
2018-01-01
We systematically investigate the effects of topologies on signal propagation in feedforward networks (FFNs) based on the FitzHugh-Nagumo neuron model. FFNs with different topological structures are constructed with same number of both in-degrees and out-degrees in each layer and given the same input signal. The propagation of firing patterns and firing rates are found to be affected by the distribution of neuron connections in the FFNs. Synchronous firing patterns emerge in the later layers of FFNs with identical, uniform, and exponential degree distributions, but the number of synchronous spike trains in the output layers of the three topologies obviously differs from one another. The firing rates in the output layers of the three FFNs can be ordered from high to low according to their topological structures as exponential, uniform, and identical distributions, respectively. Interestingly, the sequence of spiking regularity in the output layers of the three FFNs is consistent with the firing rates, but their firing synchronization is in the opposite order. In summary, the node degree is an important factor that can dramatically influence the neuronal network activity.
Effects of topologies on signal propagation in feedforward networks.
Zhao, Jia; Qin, Ying-Mei; Che, Yan-Qiu
2018-01-01
We systematically investigate the effects of topologies on signal propagation in feedforward networks (FFNs) based on the FitzHugh-Nagumo neuron model. FFNs with different topological structures are constructed with same number of both in-degrees and out-degrees in each layer and given the same input signal. The propagation of firing patterns and firing rates are found to be affected by the distribution of neuron connections in the FFNs. Synchronous firing patterns emerge in the later layers of FFNs with identical, uniform, and exponential degree distributions, but the number of synchronous spike trains in the output layers of the three topologies obviously differs from one another. The firing rates in the output layers of the three FFNs can be ordered from high to low according to their topological structures as exponential, uniform, and identical distributions, respectively. Interestingly, the sequence of spiking regularity in the output layers of the three FFNs is consistent with the firing rates, but their firing synchronization is in the opposite order. In summary, the node degree is an important factor that can dramatically influence the neuronal network activity.
Mathematical modelling of Bit-Level Architecture using Reciprocal Quantum Logic
NASA Astrophysics Data System (ADS)
Narendran, S.; Selvakumar, J.
2018-04-01
Efficiency of high-performance computing is on high demand with both speed and energy efficiency. Reciprocal Quantum Logic (RQL) is one of the technology which will produce high speed and zero static power dissipation. RQL uses AC power supply as input rather than DC input. RQL has three set of basic gates. Series of reciprocal transmission lines are placed in between each gate to avoid loss of power and to achieve high speed. Analytical model of Bit-Level Architecture are done through RQL. Major drawback of reciprocal Quantum Logic is area, because of lack in proper power supply. To achieve proper power supply we need to use splitters which will occupy large area. Distributed arithmetic uses vector- vector multiplication one is constant and other is signed variable and each word performs as a binary number, they rearranged and mixed to form distributed system. Distributed arithmetic is widely used in convolution and high performance computational devices.
Cho, Ming-Yuan; Hoang, Thi Thom
2017-01-01
Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.
A modified Monte Carlo model for the ionospheric heating rates
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Fontheim, E. G.; Robertson, S. C.
1972-01-01
A Monte Carlo method is adopted as a basis for the derivation of the photoelectron heat input into the ionospheric plasma. This approach is modified in an attempt to minimize the computation time. The heat input distributions are computed for arbitrarily small source elements that are spaced at distances apart corresponding to the photoelectron dissipation range. By means of a nonlinear interpolation procedure their individual heating rate distributions are utilized to produce synthetic ones that fill the gaps between the Monte Carlo generated distributions. By varying these gaps and the corresponding number of Monte Carlo runs the accuracy of the results is tested to verify the validity of this procedure. It is concluded that this model can reduce the computation time by more than a factor of three, thus improving the feasibility of including Monte Carlo calculations in self-consistent ionosphere models.
NASA Astrophysics Data System (ADS)
Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping
2017-11-01
A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.
Storage filters upland suspended sediment signals delivered from watersheds
Pizzuto, James E.; Keeler, Jeremy; Skalak, Katherine; Karwan, Diana
2017-01-01
Climate change, tectonics, and humans create long- and short-term temporal variations in the supply of suspended sediment to rivers. These signals, generated in upland erosional areas, are filtered by alluvial storage before reaching the basin outlet. We quantified this filter using a random walk model driven by sediment budget data, a power-law distributed probability density function (PDF) to determine how long sediment remains stored, and a constant downstream drift velocity during transport of 157 km/yr. For 25 km of transport, few particles are stored, and the median travel time is 0.2 yr. For 1000 km of transport, nearly all particles are stored, and the median travel time is 2.5 m.y. Both travel-time distributions are power laws. The 1000 km travel-time distribution was then used to filter sinusoidal input signals with periods of 10 yr and 104 yr. The 10 yr signal is delayed by 12.5 times its input period, damped by a factor of 380, and is output as a power law. The 104 yr signal is delayed by 0.15 times its input period, damped by a factor of 3, and the output signal retains its sinusoidal input form (but with a power-law “tail”). Delivery time scales for these two signals are controlled by storage; in-channel transport time is insignificant, and low-frequency signals are transmitted with greater fidelity than high-frequency signals. These signal modifications are essential to consider when evaluating watershed restoration schemes designed to control sediment loading, and where source-area geomorphic processes are inferred from the geologic record.
Electrical and Optical Activation of Mesoscale Neural Circuits with Implications for Coding.
Millard, Daniel C; Whitmire, Clarissa J; Gollnick, Clare A; Rozell, Christopher J; Stanley, Garrett B
2015-11-25
Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery of circuit function and for engineered approaches to alleviate various disorders of the nervous system. However, evidence suggests that neural activity generated by artificial stimuli differs dramatically from normal circuit function, in terms of both the local neuronal population activity at the site of activation and the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. Here, we used voltage-sensitive dye imaging of primary somatosensory cortex in the anesthetized rat in response to deflections of the facial vibrissae and electrical or optogenetic stimulation of thalamic neurons that project directly to the somatosensory cortex. Although the different inputs produced responses that were similar in terms of the average cortical activation, the variability of the cortical response was strikingly different for artificial versus sensory inputs. Furthermore, electrical microstimulation resulted in highly unnatural spatial activation of cortex, whereas optical input resulted in spatial cortical activation that was similar to that induced by sensory inputs. A thalamocortical network model suggested that observed differences could be explained by differences in the way in which artificial and natural inputs modulate the magnitude and synchrony of population activity. Finally, the variability structure in the response for each case strongly influenced the optimal inputs for driving the pathway from the perspective of an ideal observer of cortical activation when considered in the context of information transmission. Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery and clinical translation. However, neural activity generated by these artificial means differs dramatically from normal circuit function, both locally and in the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. The significance of this work is in quantifying the differences, elucidating likely mechanisms underlying the differences, and determining the implications for information processing. Copyright © 2015 the authors 0270-6474/15/3515702-14$15.00/0.
Counterfactual distribution of Schrödinger cat states
NASA Astrophysics Data System (ADS)
Shenoy-Hejamadi, Akshata; Srikanth, R.
2015-12-01
In the counterfactual cryptography scheme proposed by Noh, the sender Alice probabilistically transmits classical information to the receiver Bob without the physical travel of a particle. Here we generalize this idea to the distribution of quantum entanglement. The key insight is to replace their classical input choices with quantum superpositions. We further show that the scheme can be generalized to counterfactually distribute multipartite cat states.
Surface dynamics of voltage-gated ion channels.
Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur
2016-07-03
Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks.
Population equations for degree-heterogenous neural networks
NASA Astrophysics Data System (ADS)
Kähne, M.; Sokolov, I. M.; Rüdiger, S.
2017-11-01
We develop a statistical framework for studying recurrent networks with broad distributions of the number of synaptic links per neuron. We treat each group of neurons with equal input degree as one population and derive a system of equations determining the population-averaged firing rates. The derivation rests on an assumption of a large number of neurons and, additionally, an assumption of a large number of synapses per neuron. For the case of binary neurons, analytical solutions can be constructed, which correspond to steps in the activity versus degree space. We apply this theory to networks with degree-correlated topology and show that complex, multi-stable regimes can result for increasing correlations. Our work is motivated by the recent finding of subnetworks of highly active neurons and the fact that these neurons tend to be connected to each other with higher probability.
Surface dynamics of voltage-gated ion channels
Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur
2016-01-01
ABSTRACT Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks. PMID:26891382
Linking Infants' Distributional Learning Abilities to Natural Language Acquisition
ERIC Educational Resources Information Center
van Heugten, Marieke; Johnson, Elizabeth K.
2010-01-01
This study examines the link between distributional patterns in the input and infants' acquisition of non-adjacent dependencies. In two Headturn Preference experiments, Dutch-learning 24-month-olds (but not 17-month-olds) were found to track the remote dependency between the definite article "het" and the diminutive suffix…
Demographic Mapping via Computer Graphics.
ERIC Educational Resources Information Center
Banghart, Frank W.; And Others
A computerized system, developed at Florida State University, is designed to locate students and resources on a geographic network. Using addresses of resources and students as input, the system quickly and accurately locates the addresses on a grid and creates a map showing their distribution. This geographical distribution serves as an…
Scaling of global input-output networks
NASA Astrophysics Data System (ADS)
Liang, Sai; Qi, Zhengling; Qu, Shen; Zhu, Ji; Chiu, Anthony S. F.; Jia, Xiaoping; Xu, Ming
2016-06-01
Examining scaling patterns of networks can help understand how structural features relate to the behavior of the networks. Input-output networks consist of industries as nodes and inter-industrial exchanges of products as links. Previous studies consider limited measures for node strengths and link weights, and also ignore the impact of dataset choice. We consider a comprehensive set of indicators in this study that are important in economic analysis, and also examine the impact of dataset choice, by studying input-output networks in individual countries and the entire world. Results show that Burr, Log-Logistic, Log-normal, and Weibull distributions can better describe scaling patterns of global input-output networks. We also find that dataset choice has limited impacts on the observed scaling patterns. Our findings can help examine the quality of economic statistics, estimate missing data in economic statistics, and identify key nodes and links in input-output networks to support economic policymaking.
NASA Astrophysics Data System (ADS)
Erazo, Kalil; Nagarajaiah, Satish
2017-06-01
In this paper an offline approach for output-only Bayesian identification of stochastic nonlinear systems is presented. The approach is based on a re-parameterization of the joint posterior distribution of the parameters that define a postulated state-space stochastic model class. In the re-parameterization the state predictive distribution is included, marginalized, and estimated recursively in a state estimation step using an unscented Kalman filter, bypassing state augmentation as required by existing online methods. In applications expectations of functions of the parameters are of interest, which requires the evaluation of potentially high-dimensional integrals; Markov chain Monte Carlo is adopted to sample the posterior distribution and estimate the expectations. The proposed approach is suitable for nonlinear systems subjected to non-stationary inputs whose realization is unknown, and that are modeled as stochastic processes. Numerical verification and experimental validation examples illustrate the effectiveness and advantages of the approach, including: (i) an increased numerical stability with respect to augmented-state unscented Kalman filtering, avoiding divergence of the estimates when the forcing input is unmeasured; (ii) the ability to handle arbitrary prior and posterior distributions. The experimental validation of the approach is conducted using data from a large-scale structure tested on a shake table. It is shown that the approach is robust to inherent modeling errors in the description of the system and forcing input, providing accurate prediction of the dynamic response when the excitation history is unknown.
Viguri, J; Verde, J; Irabien, A
2002-07-01
Samples of intertidal surface sediments (0-2 cm) were collected in 17 stations of the Santander Bay, Cantabric Sea, Northern Spain. The concentrations of polycyclic aromatic hydrocarbons (PAHs), 16, were analysed by HPLC and MS detection. Surface sediments show a good linear correlation among the parameters of the experimental organic matter evaluation, where total carbon (TC) and loss on ignition (LOI) are approximately 2.5 and 5 times total organic carbon (TOC). A wide range of TOC from 0.08% to 4.1%, and a broad distribution of the sum of sigma16PAHs, from 0.02 to 344.6 microg/g d.w., which can be correlated by an exponential equation to the TOC, has been identified. A qualitative relationship may be established between the industrial input along the rivers and the concentration of sigma6PAHs in the sediments of the estuaries: Boo estuary (8404-4631 microg/g OC), Solia-San Salvador estuaries (305-113 microg/g OC) and Cubas estuary (31-32 microg/g OC). This work shows a dramatic change in the spatial distribution in the concentration of PAHs of intertidal surface sediments. The left edge of the Bay has the main traffic around the city and the major source of PAHs is from combustion processes and estuarine inputs, leading to medium values of PAHs in the sediments; the right edge of the Bay has much lesser anthropogenic activities leading to lower values of PAHs in sediments. The distribution of individual PAHs in sediments varies widely depending on their structure and molecular weight; the 4-6 ring aromatics predominate in polluted sediments due to their higher persistence. The isomer ratio does not allow any clear identification of the PAHs origin. Environmental evaluation according to Dutch guidelines and consensus sediment quality guidelines based on ecotoxicological data leads to the same conclusion, sediments in the Santander Bay show a very different environmental quality depending on the spatial position from heavily polluted/medium effects to non-polluted/below threshold effects. These results indicate that local sources of PAHs, especially estuary discharges, lead to very different qualities of sediments in coastal zones, where traffic and industrial activities take place.
Team Electronic Gameplay Combining Different Means of Control
NASA Technical Reports Server (NTRS)
Palsson, Olafur S. (Inventor); Pope, Alan T. (Inventor)
2014-01-01
Disclosed are methods and apparatuses provided for modifying the effect of an operator controlled input device on an interactive device to encourage the self-regulation of at least one physiological activity by a person different than the operator. The interactive device comprises a display area which depicts images and apparatus for receiving at least one input from the operator controlled input device to thus permit the operator to control and interact with at least some of the depicted images. One effect modification comprises measurement of the physiological activity of a person different from the operator, while modifying the ability of the operator to control and interact with at least some of the depicted images by modifying the input from the operator controlled input device in response to changes in the measured physiological signal.
Guo, Xueshi; Li, Xiaoying; Liu, Nannan; Ou, Z Y
2016-07-26
One of the important functions in a communication network is the distribution of information. It is not a problem to accomplish this in a classical system since classical information can be copied at will. However, challenges arise in quantum system because extra quantum noise is often added when the information content of a quantum state is distributed to various users. Here, we experimentally demonstrate a quantum information tap by using a fiber optical parametric amplifier (FOPA) with correlated inputs, whose noise is reduced by the destructive quantum interference through quantum entanglement between the signal and the idler input fields. By measuring the noise figure of the FOPA and comparing with a regular FOPA, we observe an improvement of 0.7 ± 0.1 dB and 0.84 ± 0.09 dB from the signal and idler outputs, respectively. When the low noise FOPA functions as an information splitter, the device has a total information transfer coefficient of Ts+Ti = 1.5 ± 0.2, which is greater than the classical limit of 1. Moreover, this fiber based device works at the 1550 nm telecom band, so it is compatible with the current fiber-optical network for quantum information distribution.
Relevance of ammonium oxidation within biological soil crust communities
Johnson, S.L.; Budinoff, C.R.; Belnap, J.; Garcia-Pichel, F.
2005-01-01
Thin, vertically structured topsoil communities that become ecologically important in arid regions (biological soil crusts or BSCs) are responsible for much of the nitrogen inputs into pristine arid lands. We studied N2 fixation and ammonium oxidation (AO) at subcentimetre resolution within BSCs from the Colorado Plateau. Pools of dissolved porewater nitrate/ nitrite, ammonium and organic nitrogen in wetted BSCs were high in comparison with those typical of aridosoils. They remained stable during incubations, indicating that input and output processes were of similar magnitude. Areal N2 fixation rates (6.5-48 ??mol C2H2 m-2 h -1) were high, the vertical distribution of N2 fixation peaking close to the surface if populations of heterocystous cyanobacteria were present, but in the subsurface if they were absent. Areal AO rates (19-46 ??mol N m-2 h-1) were commensurate with N2 fixation inputs. When considering oxygen availability, AO activity invariably peaked 2-3 mm deep and was limited by oxygen (not ammonium) supply. Most probable number (MPN)-enumerated ammonia-oxidizing bacteria (6.7-7.9 ?? 103 cells g-1 on average) clearly peaked at 2-3 mm depth. Thus, AO (hence nitrification) is a spatially restricted but important process in the nitrogen cycling of BSC, turning much of the biologically fixed nitrogen into oxidized forms, the fate of which remains to be determined.
NASA Astrophysics Data System (ADS)
Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.
2017-07-01
Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.
Functional transformations of odor inputs in the mouse olfactory bulb.
Adam, Yoav; Livneh, Yoav; Miyamichi, Kazunari; Groysman, Maya; Luo, Liqun; Mizrahi, Adi
2014-01-01
Sensory inputs from the nasal epithelium to the olfactory bulb (OB) are organized as a discrete map in the glomerular layer (GL). This map is then modulated by distinct types of local neurons and transmitted to higher brain areas via mitral and tufted cells. Little is known about the functional organization of the circuits downstream of glomeruli. We used in vivo two-photon calcium imaging for large scale functional mapping of distinct neuronal populations in the mouse OB, at single cell resolution. Specifically, we imaged odor responses of mitral cells (MCs), tufted cells (TCs) and glomerular interneurons (GL-INs). Mitral cells population activity was heterogeneous and only mildly correlated with the olfactory receptor neuron (ORN) inputs, supporting the view that discrete input maps undergo significant transformations at the output level of the OB. In contrast, population activity profiles of TCs were dense, and highly correlated with the odor inputs in both space and time. Glomerular interneurons were also highly correlated with the ORN inputs, but showed higher activation thresholds suggesting that these neurons are driven by strongly activated glomeruli. Temporally, upon persistent odor exposure, TCs quickly adapted. In contrast, both MCs and GL-INs showed diverse temporal response patterns, suggesting that GL-INs could contribute to the transformations MCs undergo at slow time scales. Our data suggest that sensory odor maps are transformed by TCs and MCs in different ways forming two distinct and parallel information streams.
Gronberg, Jo Ann M.; Spahr, Norman E.
2012-01-01
The U.S. Geological Survey’s National Water-Quality Assessment program requires nutrient input for analysis of the national and regional assessment of water quality. Detailed information on nutrient inputs to the environment are needed to understand and address the many serious problems that arise from excess nutrients in the streams and groundwater of the Nation. This report updates estimated county-level farm and nonfarm nitrogen and phosphorus input from commercial fertilizer sales for the conterminous United States for 1987 through 2006. Estimates were calculated from the Association of American Plant Food Control Officials fertilizer sales data, Census of Agriculture fertilizer expenditures, and U.S. Census Bureau county population. A previous national approach for deriving farm and nonfarm fertilizer nutrient estimates was evaluated, and a revised method for selecting representative states to calculate national farm and nonfarm proportions was developed. A national approach was used to estimate farm and nonfarm fertilizer inputs because not all states distinguish between farm and nonfarm use, and the quality of fertilizer reporting varies from year to year. For states that distinguish between farm and nonfarm use, the spatial distribution of the ratios of nonfarm-to-total fertilizer estimates for nitrogen and phosphorus calculated using the national-based farm and nonfarm proportions were similar to the spatial distribution of the ratios generated using state-based farm and nonfarm proportions. In addition, the relative highs and lows in the temporal distribution of farm and nonfarm nitrogen and phosphorus input at the state level were maintained—the periods of high and low usage coincide between national- and state-based values. With a few exceptions, nonfarm nitrogen estimates were found to be reasonable when compared to the amounts that would result if the lawn application rates recommended by state and university agricultural agencies were used. Also, states with higher nonfarm-to-total fertilizer ratios for nitrogen and phosphorus tended to have higher urban land-use percentages.
Implementation of input command shaping to reduce vibration in flexible space structures
NASA Technical Reports Server (NTRS)
Chang, Kenneth W.; Seering, Warren P.; Rappole, B. Whitney
1992-01-01
Viewgraphs on implementation of input command shaping to reduce vibration in flexible space structures are presented. Goals of the research are to explore theory of input command shaping to find an efficient algorithm for flexible space structures; to characterize Middeck Active Control Experiment (MACE) test article; and to implement input shaper on the MACE structure and interpret results. Background on input shaping, simulation results, experimental results, and future work are included.
Query-based learning for aerospace applications.
Saad, E W; Choi, J J; Vian, J L; Wunsch, D C Ii
2003-01-01
Models of real-world applications often include a large number of parameters with a wide dynamic range, which contributes to the difficulties of neural network training. Creating the training data set for such applications becomes costly, if not impossible. In order to overcome the challenge, one can employ an active learning technique known as query-based learning (QBL) to add performance-critical data to the training set during the learning phase, thereby efficiently improving the overall learning/generalization. The performance-critical data can be obtained using an inverse mapping called network inversion (discrete network inversion and continuous network inversion) followed by oracle query. This paper investigates the use of both inversion techniques for QBL learning, and introduces an original heuristic to select the inversion target values for continuous network inversion method. Efficiency and generalization was further enhanced by employing node decoupled extended Kalman filter (NDEKF) training and a causality index (CI) as a means to reduce the input search dimensionality. The benefits of the overall QBL approach are experimentally demonstrated in two aerospace applications: a classification problem with large input space and a control distribution problem.
A Sensitivity Analysis of fMRI Balloon Model.
Zayane, Chadia; Laleg-Kirati, Taous Meriem
2015-01-01
Functional magnetic resonance imaging (fMRI) allows the mapping of the brain activation through measurements of the Blood Oxygenation Level Dependent (BOLD) contrast. The characterization of the pathway from the input stimulus to the output BOLD signal requires the selection of an adequate hemodynamic model and the satisfaction of some specific conditions while conducting the experiment and calibrating the model. This paper, focuses on the identifiability of the Balloon hemodynamic model. By identifiability, we mean the ability to estimate accurately the model parameters given the input and the output measurement. Previous studies of the Balloon model have somehow added knowledge either by choosing prior distributions for the parameters, freezing some of them, or looking for the solution as a projection on a natural basis of some vector space. In these studies, the identification was generally assessed using event-related paradigms. This paper justifies the reasons behind the need of adding knowledge, choosing certain paradigms, and completing the few existing identifiability studies through a global sensitivity analysis of the Balloon model in the case of blocked design experiment.
Multi-criteria evaluation of wastewater treatment plant control strategies under uncertainty.
Flores-Alsina, Xavier; Rodríguez-Roda, Ignasi; Sin, Gürkan; Gernaey, Krist V
2008-11-01
The evaluation of activated sludge control strategies in wastewater treatment plants (WWTP) via mathematical modelling is a complex activity because several objectives; e.g. economic, environmental, technical and legal; must be taken into account at the same time, i.e. the evaluation of the alternatives is a multi-criteria problem. Activated sludge models are not well characterized and some of the parameters can present uncertainty, e.g. the influent fractions arriving to the facility and the effect of either temperature or toxic compounds on the kinetic parameters, having a strong influence in the model predictions used during the evaluation of the alternatives and affecting the resulting rank of preferences. Using a simplified version of the IWA Benchmark Simulation Model No. 2 as a case study, this article shows the variations in the decision making when the uncertainty in activated sludge model (ASM) parameters is either included or not during the evaluation of WWTP control strategies. This paper comprises two main sections. Firstly, there is the evaluation of six WWTP control strategies using multi-criteria decision analysis setting the ASM parameters at their default value. In the following section, the uncertainty is introduced, i.e. input uncertainty, which is characterized by probability distribution functions based on the available process knowledge. Next, Monte Carlo simulations are run to propagate input through the model and affect the different outcomes. Thus (i) the variation in the overall degree of satisfaction of the control objectives for the generated WWTP control strategies is quantified, (ii) the contributions of environmental, legal, technical and economic objectives to the existing variance are identified and finally (iii) the influence of the relative importance of the control objectives during the selection of alternatives is analyzed. The results show that the control strategies with an external carbon source reduce the output uncertainty in the criteria used to quantify the degree of satisfaction of environmental, technical and legal objectives, but increasing the economical costs and their variability as a trade-off. Also, it is shown how a preliminary selected alternative with cascade ammonium controller becomes less desirable when input uncertainty is included, having simpler alternatives more chance of success.
Anomalous neuronal responses to fluctuated inputs
NASA Astrophysics Data System (ADS)
Hosaka, Ryosuke; Sakai, Yutaka
2015-10-01
The irregular firing of a cortical neuron is thought to result from a highly fluctuating drive that is generated by the balance of excitatory and inhibitory synaptic inputs. A previous study reported anomalous responses of the Hodgkin-Huxley neuron to the fluctuated inputs where an irregularity of spike trains is inversely proportional to an input irregularity. In the current study, we investigated the origin of these anomalous responses with the Hindmarsh-Rose neuron model, map-based models, and a simple mixture of interspike interval distributions. First, we specified the parameter regions for the bifurcations in the Hindmarsh-Rose model, and we confirmed that the model reproduced the anomalous responses in the dynamics of the saddle-node and subcritical Hopf bifurcations. For both bifurcations, the Hindmarsh-Rose model shows bistability in the resting state and the repetitive firing state, which indicated that the bistability was the origin of the anomalous input-output relationship. Similarly, the map-based model that contained bistability reproduced the anomalous responses, while the model without bistability did not. These results were supported by additional findings that the anomalous responses were reproduced by mimicking the bistable firing with a mixture of two different interspike interval distributions. Decorrelation of spike trains is important for neural information processing. For such spike train decorrelation, irregular firing is key. Our results indicated that irregular firing can emerge from fluctuating drives, even weak ones, under conditions involving bistability. The anomalous responses, therefore, contribute to efficient processing in the brain.
Tools to Develop or Convert MOVES Inputs
The following tools are designed to help users develop inputs to MOVES and post-process the output. With the release of MOVES2014, EPA strongly encourages state and local agencies to develop local inputs based on MOVES fleet and activity categories.
Changes in the soil C cycle at the arid-hyperarid transition in the Atacama Desert
Ewing, S.A.; Macalady, J.L.; Warren-Rhodes, K.; McKay, C.P.; Amundson, Ronald
2008-01-01
We examined soil organic C (OC) turnover and transport across the rainfall transition from a biotic, arid site to a largely abiotic, hyperarid site. With this transition, OC concentrations decrease, and C cycling slows precipitously, both in surface horizons and below ground. The concentration and isotopic character of soil OC across this transition reflect decreasing rates of inputs, decomposition, and downward transport. OC concentrations in the arid soil increase slightly with depth in the upper meter, but are generally low and variable (???0.05%; total inventory of 1.82 kg m-2); OC-??14C values decrease from modern (+7???) to very 14C-depleted (-966???) with depth; and OC-??13C values are variable (-23.7??? to -14.1???). Using a transport model, we show that these trends reflect relatively rapid cycling in the upper few centimeters, and spatially variable preservation of belowground OC from root inputs, possibly during a previous, wetter climate supporting higher soil OC concentrations. In the driest soil, the OC inventory is the lowest among the sites (0.19 kg m-2), and radiocarbon values are 14C-depleted (-365??? to -696???) but show no trend with depth, indicating belowground OC inputs and long OC residence times throughout the upper meter (104 y). A distinct depth trend in ??13C values and OC/ON values within the upper 40 cm at the driest site may reflect photochemical alteration of organic matter at the soil surface, combined with limited subsurface decomposition and downward transport. We argue that while root inputs are preserved at the wetter sites, C cycling in the most hyperarid soil occurs through infrequent, rapid dissolved transport of highly photodegraded organic matter during rare rain events, each followed by a pulse of decomposition and subsequent prolonged drought. These belowground inputs are likely a primary control on the character, activity, and depth distribution of small microbial populations. While the lack of water is the dominant control on C cycling, very low C/N ratios of organic matter suggest that when rainfall occurs, hyperarid soils are effectively C limited. The preservation of fossil root fragments in the sediment beneath the driest soil indicates that wetter climate conditions preceded formation of this soil, and that vadose zone microbial activity has been extremely limited for the past 2 My. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Paulatto, M.; Laigle, M.; Charvis, P.; Galve, A.
2015-12-01
The degree of coupling and the seismogenic properties of the plate interface at subduction zones are affected by the abundance of slab fluids and subducted sediments. High fluid input can cause high pore-fluid pressures in the subduction channel and decrease coupling leading to aseismic behaviour. Constraining fluid input and transfer is therefore important for understanding plate coupling and large earthquake hazard, particularly in places where geodetic and seismological constraints are scarce. We use P-wave traveltimes from several active source seismic experiments and P- and S-wave traveltimes from shallow and intermediate depth (< 150 km) local earthquakes recorded on a vast amphibious array of OBSs and land stations to recover the Vp and Vp/Vs structure of the central Lesser Antilles subduction zone. Our model extends between Martinique and Antigua from the prism to the arc and from the surface to a depth of 160 km. We find low Vp and high Vp/Vs ratio (> 1.80) on the top of the slab, at depths of up to 100 km. We interpret this high Vp/Vs ratio anomaly as evidence of elevated fluid content either as free fluids or as bound fluids in hydrated minerals (e.g. serpentinite). The strength and depth extent of the anomaly varies strongly from south to north along the subduction zone and correlates with variations in forearc morphology and with sediment input constrained by multi-channel seismic reflection profiles. The anomaly is stronger and extends to greater depth in the south, offshore Martinique, where sediment input is elevated due to the vicinity of the Orinoco delta. The gently dipping forearc slope observed in this region may be the result of weak coupling of the plate interface. A high Vp/Vs ratio is also observed in the forearc likely indicating a fractured and water-saturated overriding plate. On the other hand the anomaly is weaker and shallower offshore Guadeloupe, where sediment input is low due to subduction of the Barracuda ridge. Here a strong plate coupling is likely responsible for uplifting the inner forearc and formation of the Karukera spur. We infer that variations in plate coupling modulated by slab fluid transport and release are a major factor in determining the distribution of seismic slip in the Lesser Antilles subduction zone.
Park, George D; Reed, Catherine L
2015-10-01
Despite attentional prioritization for grasping space near the hands, tool-use appears to transfer attentional bias to the tool's end/functional part. The contributions of haptic and visual inputs to attentional distribution along a tool were investigated as a function of tool-use in near (Experiment 1) and far (Experiment 2) space. Visual attention was assessed with a 50/50, go/no-go, target discrimination task, while a tool was held next to targets appearing near the tool-occupied hand or tool-end. Target response times (RTs) and sensitivity (d-prime) were measured at target locations, before and after functional tool practice for three conditions: (1) open-tool: tool-end visible (visual + haptic inputs), (2) hidden-tool: tool-end visually obscured (haptic input only), and (3) short-tool: stick missing tool's length/end (control condition: hand occupied but no visual/haptic input). In near space, both open- and hidden-tool groups showed a tool-end, attentional bias (faster RTs toward tool-end) before practice; after practice, RTs near the hand improved. In far space, the open-tool group showed no bias before practice; after practice, target RTs near the tool-end improved. However, the hidden-tool group showed a consistent tool-end bias despite practice. Lack of short-tool group results suggested that hidden-tool group results were specific to haptic inputs. In conclusion, (1) allocation of visual attention along a tool due to tool practice differs in near and far space, and (2) visual attention is drawn toward the tool's end even when visually obscured, suggesting haptic input provides sufficient information for directing attention along the tool.
NASA Astrophysics Data System (ADS)
Beecham, J. A.; Engelhard, G. H.
2007-10-01
An ecological economic model of trawling is presented to demonstrate the effect of trawling location choice strategy on net input (rate of economic gain of fish caught per time spent less costs). Fishing location choice is considered to be a dynamic process whereby trawlers chose from among a repertoire of plastic strategies that they modify if their gains fall below a fixed proportion of the mean gains of the fleet as a whole. The distribution of fishing across different areas of a fishery follows an approximate ideal free distribution (IFD) with varying noise due to uncertainty. The least-productive areas are not utilised because initial net input never reaches the mean yield of better areas subject to competitive exploitation. In cases, where there is a weak temporal autocorrelation between fish stocks in a specific location, a plastic strategy of local translocation between trawls mixed with longer-range translocation increases realised input. The trawler can change its translocation strategy in the light of information about recent trawling success compared to its long-term average but, in contrast to predictions of the Marginal Value Theorem (MVT) model, does not know for certain what it will find by moving, so may need to sample new patches. The combination of the two types of translocation mirrored beam-trawling strategies used by the Dutch fleet and the resultant distribution of trawling effort is confirmed by analysis of historical effort distribution of British otter trawling fleets in the North Sea. Fisheries exploitation represents an area where dynamic agent-based adaptive models may be a better representation of the economic dynamics of a fleet than classically inspired optimisation models.
Bill, Johannes; Buesing, Lars; Habenschuss, Stefan; Nessler, Bernhard; Maass, Wolfgang; Legenstein, Robert
2015-01-01
During the last decade, Bayesian probability theory has emerged as a framework in cognitive science and neuroscience for describing perception, reasoning and learning of mammals. However, our understanding of how probabilistic computations could be organized in the brain, and how the observed connectivity structure of cortical microcircuits supports these calculations, is rudimentary at best. In this study, we investigate statistical inference and self-organized learning in a spatially extended spiking network model, that accommodates both local competitive and large-scale associative aspects of neural information processing, under a unified Bayesian account. Specifically, we show how the spiking dynamics of a recurrent network with lateral excitation and local inhibition in response to distributed spiking input, can be understood as sampling from a variational posterior distribution of a well-defined implicit probabilistic model. This interpretation further permits a rigorous analytical treatment of experience-dependent plasticity on the network level. Using machine learning theory, we derive update rules for neuron and synapse parameters which equate with Hebbian synaptic and homeostatic intrinsic plasticity rules in a neural implementation. In computer simulations, we demonstrate that the interplay of these plasticity rules leads to the emergence of probabilistic local experts that form distributed assemblies of similarly tuned cells communicating through lateral excitatory connections. The resulting sparse distributed spike code of a well-adapted network carries compressed information on salient input features combined with prior experience on correlations among them. Our theory predicts that the emergence of such efficient representations benefits from network architectures in which the range of local inhibition matches the spatial extent of pyramidal cells that share common afferent input. PMID:26284370
Thorium isotopes in colloidal fraction of water from San Marcos Dam, Chihuahua, Mexico
NASA Astrophysics Data System (ADS)
Cabral-Lares, M.; Melgoza, A.; Montero-Cabrera, M. E.; Renteria-Villalobos, M.
2013-07-01
The main interest of this stiidy is to assess the contents and distribution of Th-series isotopes in colloidal fraction of surface water from San Marcos dam, because the suspended particulate matter serves as transport medium for several pollutants. The aim of this work was to assess the distribution of thorium isotopes (232Th and 230Th) contained in suspended matter. Samples were taken from three surface points along the San Marcos dam: water input, midpoint, and near to dam wall. In this last point, a depth sampling was also carried out. Here, three depth points were taken at 0.4, 8 and 15 meters. To evaluate the thorium behavior in surface water, from every water sample the colloidal fraction was separated, between 1 and 0.1 μm. Thorium isotopes concentraron in samples were obtained by alpha spectrometry. Activity concentrations obtained of 232Th and 230Th in surface points ranged from 0.3 to 0.5 Bq ṡ L-1, whereas in depth points ranged from 0.4 to 3.2 Bq ṡ L-1, respectively. The results show that 230Th is in higher concentration than 232Th in colloidal fraction. This can be attributed to a preference of these colloids to adsorb uranium. Thus, the activity ratio 230Th/232Th in colloidal fraction showed values from 2.3 to 10.2. In surface points along the dam, 230Th activity concentration decreases while 232Th concentration remains constant. On the other hand, activity concentrations of both isotopes showed a pointed out enhancement with depth. The results have shown a possible lixiviation of uranium from geological substrate into the surface water and an important fractionation of thorium isotopes, which suggest that thorium is non-homogeneously distributed along San Marcos dam.
Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle*
De La Fuente, Sergio; Fernandez-Sanz, Celia; Vail, Caitlin; Agra, Elorm J.; Holmstrom, Kira; Sun, Junhui; Mishra, Jyotsna; Williams, Dewight; Finkel, Toren; Murphy, Elizabeth; Joseph, Suresh K.; Sheu, Shey-Shing; Csordás, György
2016-01-01
Control of myocardial energetics by Ca2+ signal propagation to the mitochondrial matrix includes local Ca2+ delivery from sarcoplasmic reticulum (SR) ryanodine receptors (RyR2) to the inner mitochondrial membrane (IMM) Ca2+ uniporter (mtCU). mtCU activity in cardiac mitochondria is relatively low, whereas the IMM surface is large, due to extensive cristae folding. Hence, stochastically distributed mtCU may not suffice to support local Ca2+ transfer. We hypothesized that mtCU concentrated at mitochondria-SR associations would promote the effective Ca2+ transfer. mtCU distribution was determined by tracking MCU and EMRE, the proteins essential for channel formation. Both proteins were enriched in the IMM-outer mitochondrial membrane (OMM) contact point submitochondrial fraction and, as super-resolution microscopy revealed, located more to the mitochondrial periphery (inner boundary membrane) than inside the cristae, indicating high accessibility to cytosol-derived Ca2+ inputs. Furthermore, MCU immunofluorescence distribution was biased toward the mitochondria-SR interface (RyR2), and this bias was promoted by Ca2+ signaling activity in intact cardiomyocytes. The SR fraction of heart homogenate contains mitochondria with extensive SR associations, and these mitochondria are highly enriched in EMRE. Size exclusion chromatography suggested for EMRE- and MCU-containing complexes a wide size range and also revealed MCU-containing complexes devoid of EMRE (thus disabled) in the mitochondrial but not the SR fraction. Functional measurements suggested more effective mtCU-mediated Ca2+ uptake activity by the mitochondria of the SR than of the mitochondrial fraction. Thus, mtCU “hot spots” can be formed at the cardiac muscle mitochondria-SR associations via localization and assembly bias, serving local Ca2+ signaling and the excitation-energetics coupling. PMID:27637331
NASA Astrophysics Data System (ADS)
Debry, E.; Malherbe, L.; Schillinger, C.; Bessagnet, B.; Rouil, L.
2009-04-01
Evaluation of human exposure to atmospheric pollution usually requires the knowledge of pollutants concentrations in ambient air. In the framework of PAISA project, which studies the influence of socio-economical status on relationships between air pollution and short term health effects, the concentrations of gas and particle pollutants are computed over Strasbourg with the ADMS-Urban model. As for any modeling result, simulated concentrations come with uncertainties which have to be characterized and quantified. There are several sources of uncertainties related to input data and parameters, i.e. fields used to execute the model like meteorological fields, boundary conditions and emissions, related to the model formulation because of incomplete or inaccurate treatment of dynamical and chemical processes, and inherent to the stochastic behavior of atmosphere and human activities [1]. Our aim is here to assess the uncertainties of the simulated concentrations with respect to input data and model parameters. In this scope the first step consisted in bringing out the input data and model parameters that contribute most effectively to space and time variability of predicted concentrations. Concentrations of several pollutants were simulated for two months in winter 2004 and two months in summer 2004 over five areas of Strasbourg. The sensitivity analysis shows the dominating influence of boundary conditions and emissions. Among model parameters, the roughness and Monin-Obukhov lengths appear to have non neglectable local effects. Dry deposition is also an important dynamic process. The second step of the characterization and quantification of uncertainties consists in attributing a probability distribution to each input data and model parameter and in propagating the joint distribution of all data and parameters into the model so as to associate a probability distribution to the modeled concentrations. Several analytical and numerical methods exist to perform an uncertainty analysis. We chose the Monte Carlo method which has already been applied to atmospheric dispersion models [2, 3, 4]. The main advantage of this method is to be insensitive to the number of perturbed parameters but its drawbacks are its computation cost and its slow convergence. In order to speed up this one we used the method of antithetic variable which takes adavantage of the symmetry of probability laws. The air quality model simulations were carried out by the Association for study and watching of Atmospheric Pollution in Alsace (ASPA). The output concentrations distributions can then be updated with a Bayesian method. This work is part of an INERIS Research project also aiming at assessing the uncertainty of the CHIMERE dispersion model used in the Prev'Air forecasting platform (www.prevair.org) in order to deliver more accurate predictions. (1) Rao, K.S. Uncertainty Analysis in Atmospheric Dispersion Modeling, Pure and Applied Geophysics, 2005, 162, 1893-1917. (2) Beekmann, M. and Derognat, C. Monte Carlo uncertainty analysis of a regional-scale transport chemistry model constrained by measurements from the Atmospheric Pollution Over the PAris Area (ESQUIF) campaign, Journal of Geophysical Research, 2003, 108, 8559-8576. (3) Hanna, S.R. and Lu, Z. and Frey, H.C. and Wheeler, N. and Vukovich, J. and Arunachalam, S. and Fernau, M. and Hansen, D.A. Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain, Atmospheric Environment, 2001, 35, 891-903. (4) Romanowicz, R. and Higson, H. and Teasdale, I. Bayesian uncertainty estimation methodology applied to air pollution modelling, Environmetrics, 2000, 11, 351-371.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amakawa, Hiroshi; Alibo, D.S.; Nozaki, Yoshiyuki
2000-05-01
The Nd isotopic composition and dissolved rare earth elements (REEs) have been measured in the surface waters along the 1996/97 R.V. Hakuho-Maru Expedition route from Tokyo to the Southern Ocean, southwest of Australia, through the Philippine and Indonesian Archipelago, the eastern Indian Ocean, the Bay of Bengal and the South China Sea. The radiogenic {epsilon}{sub Nd} values of {minus}1.3 and {minus}1.4 were found in the Sulu Sea and near the Lombok Strait, indicating the strong influence of surrounding volcanic islands, whereas non-radiogenic {epsilon}{sub Nd} values of less than {minus}10 were found in the Southern Ocean and the Bay of Bengalmore » suggesting Nd of continental origin. The dissolved Nd concentrations also showed a wide range of variation from 2.8 to 19.6 pmol/kg and the trivalent REE patterns exhibited characteristic features that can be grouped into each different oceanic province. The geographical distribution of dissolved Nd is different from that of atmospherically derived {sup 210}Pb, but generally resembles that of coastally derived {sup 228}Ra. This strongly suggests that fluvial and coastal input predominates over eolian input for dissolved Nd in the surface ocean. However, the riverine dissolved Nd flux appears to be relatively minor, and remobilization of Nd from coastal and shelf sediments may play an important role in the total Nd input to the ocean. By modeling the distributions of the isotopic composition and concentration of Nd together with the activity ratio of {sup 228}Ra/{sup 226}Ra in the southeastern Indian Ocean, the authors estimate a mean residence time of Nd in the surface mixed layer to be 1.5--2.6 years. The short mean residence time is comparable with, or slightly longer than that of {sup 210}Pb suggesting similar chemical reactivity.« less
A broadband 8-18GHz 4-input 4-output Butler matrix
NASA Astrophysics Data System (ADS)
Milner, Leigh; Parker, Michael
2007-01-01
Butler matrices can be used in antenna beam-forming networks to provide a linear phase distribution across the elements of an array. The development of an 8 to 18GHz micro-strip implementation of a 4-input 4-ouput Butler matrix is described. The designed Butler matrix uses March hybrids, Schiffman phase shifters and wire-bond crossovers integrated on a single 60mm x 70mm alumina substrate.
Information-Based Approach to Unsupervised Machine Learning
2013-06-19
Leibler , R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22, 79–86. Minka, T. P. (2000). Old and new matrix algebra use ...and Arabie, P. Comparing partitions. Journal of Classification, 2(1):193–218, 1985. Kullback , S. and Leibler , R. A. On information and suf- ficiency...the test input density to a lin- ear combination of class-wise input distributions under the Kullback - Leibler (KL) divergence ( Kullback
Fall 2014 SEI Research Review Probabilistic Analysis of Time Sensitive Systems
2014-10-28
Osmosis SMC Tool Osmosis is a tool for Statistical Model Checking (SMC) with Semantic Importance Sampling. • Input model is written in subset of C...ASSERT() statements in model indicate conditions that must hold. • Input probability distributions defined by the user. • Osmosis returns the...on: – Target relative error, or – Set number of simulations Osmosis Main Algorithm 1 http://dreal.cs.cmu.edu/ (?⃑?): Indicator
ERIC Educational Resources Information Center
Tallman, Oliver H.
A digital simulation of a model for the processing of visual images is derived from known aspects of the human visual system. The fundamental principle of computation suggested by a biological model is a transformation that distributes information contained in an input stimulus everywhere in a transform domain. Each sensory input contributes under…
2017-01-01
Kappa opioid receptors (KORs) are highly enriched within the ventral striatum (VS) and are thought to modulate striatal neurotransmission. This includes presynaptic inhibition of local glutamatergic release from excitatory inputs to the VS. However, it is not known which inputs drive this modulation and what impact they have on the local circuit dynamics within the VS. Individual medium spiny neurons (MSNs) within the VS serve as a site of convergence for glutamatergic inputs arising from the PFC and limbic regions, such as the hippocampus (HP). Recent data suggest that competition can arise between these inputs with robust cortical activation leading to a reduction in ongoing HP-evoked MSN responses. Here, we investigated the contribution of KOR signaling in PFC-driven heterosynaptic suppression of HP inputs onto MSNs using whole-cell patch-clamp recordings in slices from adult rats. Optogenetically evoked HP EPSPs were greatly attenuated after a short latency (50 ms) following burst-like PFC electrical stimulation, and the magnitude of this suppression was partially reversed following blockade of GABAARs (GABA Type A receptors), but not GABABRs (GABA Type B receptors). A similar reduction in suppression was observed in the presence of the KOR antagonist, norBNI. Combined blockade of local GABAARs and KORs resulted in complete blockade of PFC-induced heterosynaptic suppression of less salient HP inputs. These findings highlight a mechanism by which strong, transient PFC activity can take precedence over other excitatory inputs to the VS. SIGNIFICANCE STATEMENT Emerging evidence suggests that kappa opioid receptor (KOR) activation can selectively modulate striatal glutamatergic inputs onto medium spiny neurons (MSNs). In this study, we found that robust cortical stimulation leads to a reduction in ongoing hippocampal-evoked MSNs responses through the combined recruitment of local inhibitory mechanisms and activation of presynaptic KORs in the ventral striatum (VS). These processes are likely to facilitate the efficient transfer of cortical information through the VS during critical decision making by dampening competing information from less salient excitatory inputs. These data provide a novel mechanism through which VS information processing could influence decision making, a function thought to occur primarily in the PFC. PMID:28642282
Kaskan, Peter M.; Lu, Haidong D.; Dillenburger, Barbara C.; Roe, Anna W.; Kaas, Jon H.
2007-01-01
A significant concept in neuroscience is that sensory areas of the neocortex have evolved the remarkable ability to represent a number of stimulus features within the confines of a global map of the sensory periphery. Modularity, the term often used to describe the inhomogeneous nature of the neocortex, is without a doubt an important organizational principle of early sensory areas, such as the primary visual cortex (V1). Ocular dominance columns, one type of module in V1, are found in many primate species as well as in carnivores. Yet, their variable presence in some New World monkey species and complete absence in other species has been enigmatic. Here, we demonstrate that optical imaging reveals the presence of ocular dominance columns in the superficial layers of V1 of owl monkeys (Aotus trivirgatus), even though the geniculate inputs related to each eye are highly overlapping in layer 4. The ocular dominance columns in owl monkeys revealed by optical imaging are circular in appearance. The distance between left eye centers and right eye centers is approximately 650 μm. We find no relationship between ocular dominance centers and other modular organizational features such as orientation pinwheels or the centers of the cytochrome oxidase blobs. These results are significant because they suggest that functional columns may exist in the absence of obvious differences in the distributions of activating inputs and ocular dominance columns may be more widely distributed across mammalian taxa than commonly suggested. PMID:18974855
NASA Technical Reports Server (NTRS)
Stanitz, J. D.
1985-01-01
The general design method for three-dimensional, potential, incompressible or subsonic-compressible flow developed in part 1 of this report is applied to the design of simple, unbranched ducts. A computer program, DIN3D1, is developed and five numerical examples are presented: a nozzle, two elbows, an S-duct, and the preliminary design of a side inlet for turbomachines. The two major inputs to the program are the upstream boundary shape and the lateral velocity distribution on the duct wall. As a result of these inputs, boundary conditions are overprescribed and the problem is ill posed. However, it appears that there are degrees of compatibility between these two major inputs and that, for reasonably compatible inputs, satisfactory solutions can be obtained. By not prescribing the shape of the upstream boundary, the problem presumably becomes well posed, but it is not clear how to formulate a practical design method under this circumstance. Nor does it appear desirable, because the designer usually needs to retain control over the upstream (or downstream) boundary shape. The problem is further complicated by the fact that, unlike the two-dimensional case, and irrespective of the upstream boundary shape, some prescribed lateral velocity distributions do not have proper solutions.
Gsflow-py: An integrated hydrologic model development tool
NASA Astrophysics Data System (ADS)
Gardner, M.; Niswonger, R. G.; Morton, C.; Henson, W.; Huntington, J. L.
2017-12-01
Integrated hydrologic modeling encompasses a vast number of processes and specifications, variable in time and space, and development of model datasets can be arduous. Model input construction techniques have not been formalized or made easily reproducible. Creating the input files for integrated hydrologic models (IHM) requires complex GIS processing of raster and vector datasets from various sources. Developing stream network topology that is consistent with the model resolution digital elevation model is important for robust simulation of surface water and groundwater exchanges. Distribution of meteorologic parameters over the model domain is difficult in complex terrain at the model resolution scale, but is necessary to drive realistic simulations. Historically, development of input data for IHM models has required extensive GIS and computer programming expertise which has restricted the use of IHMs to research groups with available financial, human, and technical resources. Here we present a series of Python scripts that provide a formalized technique for the parameterization and development of integrated hydrologic model inputs for GSFLOW. With some modifications, this process could be applied to any regular grid hydrologic model. This Python toolkit automates many of the necessary and laborious processes of parameterization, including stream network development and cascade routing, land coverages, and meteorological distribution over the model domain.
Numerical analysis of the heat source characteristics of a two-electrode TIG arc
NASA Astrophysics Data System (ADS)
Ogino, Y.; Hirata, Y.; Nomura, K.
2011-06-01
Various kinds of multi-electrode welding processes are used to ensure high productivity in industrial fields such as shipbuilding, automotive manufacturing and pipe fabrication. However, it is difficult to obtain the optimum welding conditions for a specific product, because there are many operating parameters, and because welding phenomena are very complicated. In the present research, the heat source characteristics of a two-electrode TIG arc were numerically investigated using a 3D arc plasma model with a focus on the distance between the two electrodes. The arc plasma shape changed significantly, depending on the electrode spacing. The heat source characteristics, such as the heat input density and the arc pressure distribution, changed significantly when the electrode separation was varied. The maximum arc pressure of the two-electrode TIG arc was much lower than that of a single-electrode TIG. However, the total heat input of the two-electrode TIG arc was nearly constant and was independent of the electrode spacing. These heat source characteristics of the two-electrode TIG arc are useful for controlling the heat input distribution at a low arc pressure. Therefore, these results indicate the possibility of a heat source based on a two-electrode TIG arc that is capable of high heat input at low pressures.
The use of organic markers in the differentiation of organic inputs to aquatic systems
NASA Astrophysics Data System (ADS)
Reeves, A. D.
1995-04-01
In previous projects the estuarine distributions of a variety of molecular organic markers have been described and discussed in relation to sources, transport mechanisms and fates of anthropogenic and biogenic inputs to estuaries. Molecular markers have been used successfully to establish terrestrial inputs to marine water and to trace pollutants in water-ways. One of the components selected for study was lignin. Lignin compounds are phenolic polymers that occur as major constituents of the cell walls of vascular plants. Their source, natural abundance, wide distribution and resistance to microbial degradation render them good terrestrial markers and, via their phenolic aldehyde oxidation products, afford characterisation of their source material. In previous work, ratios of various lignin components suggest that permanently suspended material contains a significant proportion of degraded angiosperm tissues whereas, in resuspended material, a component of gymnosperm material is indicated. Comparison of the lignin concentrations in the suspended material with those in underlying sediment reveals that the permanently suspended material is preferentially enriched in lignin. This is due, at least in part, to the relative buoyancy of lignin-containing prticles which causes them to float in near-surface water. This paper considers whether such methodology can be usefully applied to the determination of terrestrial inputs to lentic environments.