Sinusoidal input describing function for hysteresis followed by elementary backlash
NASA Technical Reports Server (NTRS)
Ringland, R. F.
1976-01-01
The author proposes a new sinusoidal input describing function which accounts for the serial combination of hysteresis followed by elementary backlash in a single nonlinear element. The output of the hysteresis element drives the elementary backlash element. Various analytical forms of the describing function are given, depending on the a/A ratio, where a is the half width of the hysteresis band or backlash gap, and A is the amplitude of the assumed input sinusoid, and on the value of the parameter representing the fraction of a attributed to the backlash characteristic. The negative inverse describing function is plotted on a gain-phase plot, and it is seen that a relatively small amount of backlash leads to domination of the backlash character in the describing function. The extent of the region of the gain-phase plane covered by the describing function is such as to guarantee some form of limit cycle behavior in most closed-loop systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil
Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.
Comparing fixed and variable-width Gaussian networks.
Kůrková, Věra; Kainen, Paul C
2014-09-01
The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven that if two Gaussian RBF networks have the same input-output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input-output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by "flatter" Gaussians into RKHSs induced by "sharper" Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input-output functions of Gaussian RBFs are described. Copyright © 2014 Elsevier Ltd. All rights reserved.
In Search of a Visual-cortical Describing Function: a Summary of Work in Progress
NASA Technical Reports Server (NTRS)
Junker, A. M.; Peio, K. J.
1984-01-01
The thrust of the present work is to explore the utility of using a sum of sinusoids (seven or more) to obtain an evoked response and, furthermore, to see if the response is sensitive to changes in cognitive processing. Within the field of automatic control system technology, a mathematical input/output relationship for a sinusoidally stimulated nonlinear system is defined as describing function. Applying this technology, sum of sines inputs to yield describing functions for the visual-cortical response have been designed. What follows is a description of the method used to obtain visual-cortical describing functions. A number of measurement system redesigns were necessary to achieve the desired frequency resolution. Results that guided and came out of the redesigns are presented. Preliminary results of stimulus parameter effects (average intensity and depth of modulation) are also shown.
A grid spacing control technique for algebraic grid generation methods
NASA Technical Reports Server (NTRS)
Smith, R. E.; Kudlinski, R. A.; Everton, E. L.
1982-01-01
A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.
Klug, Jason R; Engelhardt, Max D; Cadman, Cara N; Li, Hao; Smith, Jared B; Ayala, Sarah; Williams, Elora W; Hoffman, Hilary
2018-01-01
Striatal cholinergic (ChAT) and parvalbumin (PV) interneurons exert powerful influences on striatal function in health and disease, yet little is known about the organization of their inputs. Here using rabies tracing, electrophysiology and genetic tools, we compare the whole-brain inputs to these two types of striatal interneurons and dissect their functional connectivity in mice. ChAT interneurons receive a substantial cortical input from associative regions of cortex, such as the orbitofrontal cortex. Amongst subcortical inputs, a previously unknown inhibitory thalamic reticular nucleus input to striatal PV interneurons is identified. Additionally, the external segment of the globus pallidus targets striatal ChAT interneurons, which is sufficient to inhibit tonic ChAT interneuron firing. Finally, we describe a novel excitatory pathway from the pedunculopontine nucleus that innervates ChAT interneurons. These results establish the brain-wide direct inputs of two major types of striatal interneurons and allude to distinct roles in regulating striatal activity and controlling behavior. PMID:29714166
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bazdrov, I. I.; Bortkevich, V. S.; Khokhlov, V. N.
2004-10-01
This paper describes a software-hardware complex for the input into a personal computer of telemetric information obtained by means of telemetry stations TRAL KR28, RTS-8, and TRAL K2N. Structural and functional diagrams are given of the input device and the hardware complex. Results that characterize the features of the input process and selective data of optical measurements of atmospheric radiation are given. © 2004
Full wave modulator-demodulator amplifier apparatus. [for generating rectified output signal
NASA Technical Reports Server (NTRS)
Black, J. M. (Inventor)
1974-01-01
A full-wave modulator-demodulator apparatus is described including an operational amplifier having a first input terminal coupled to a circuit input terminal, and a second input terminal alternately coupled to the circuit input terminal. A circuit is ground by a switching circuit responsive to a phase reference signal and the operational amplifier is alternately switched between a non-inverting mode and an inverting mode. The switching circuit includes three field-effect transistors operatively associated to provide the desired switching function in response to an alternating reference signal of the same frequency as an AC input signal applied to the circuit input terminal.
Models for forecasting energy use in the US farm sector
NASA Astrophysics Data System (ADS)
Christensen, L. R.
1981-07-01
Econometric models were developed and estimated for the purpose of forecasting electricity and petroleum demand in US agriculture. A structural approach is pursued which takes account of the fact that the quantity demanded of any one input is a decision made in conjunction with other input decisions. Three different functional forms of varying degrees of complexity are specified for the structural cost function, which describes the cost of production as a function of the level of output and factor prices. Demand for materials (all purchased inputs) is derived from these models. A separate model which break this demand up into demand for the four components of materials is used to produce forecasts of electricity and petroleum is a stepwise manner.
Method and Apparatus for Simultaneous Processing of Multiple Functions
NASA Technical Reports Server (NTRS)
Stoica, Adrian (Inventor); Andrei, Radu (Inventor)
2017-01-01
Electronic logic gates that operate using N logic state levels, where N is greater than 2, and methods of operating such gates. The electronic logic gates operate according to truth tables. At least two input signals each having a logic state that can range over more than two logic states are provided to the logic gates. The logic gates each provide an output signal that can have one of N logic states. Examples of gates described include NAND/NAND gates having two inputs A and B and NAND/NAND gates having three inputs A, B, and C, where A, B and C can take any of four logic states. Systems using such gates are described, and their operation illustrated. Optical logic gates that operate using N logic state levels are also described.
Method and Apparatus for Simultaneous Processing of Multiple Functions
NASA Technical Reports Server (NTRS)
Stoica, Adrian (Inventor); Andrei, Radu (Inventor); Zhu, David (Inventor); Mojarradi, Mohammad Mehdi (Inventor); Vo, Tuan A. (Inventor)
2015-01-01
Electronic logic gates that operate using N logic state levels, where N is greater than 2, and methods of operating such gates. The electronic logic gates operate according to truth tables. At least two input signals each having a logic state that can range over more than two logic states are provided to the logic gates. The logic gates each provide an output signal that can have one of N logic states. Examples of gates described include NAND/NAND gates having two inputs A and B and NAND/NAND gates having three inputs A, B, and C, where A, B and C can take any of four logic states. Systems using such gates are described, and their operation illustrated. Optical logic gates that operate using N logic state levels are also described.
NASA Astrophysics Data System (ADS)
Suhartono, Lee, Muhammad Hisyam; Rezeki, Sri
2017-05-01
Intervention analysis is a statistical model in the group of time series analysis which is widely used to describe the effect of an intervention caused by external or internal factors. An example of external factors that often occurs in Indonesia is a disaster, both natural or man-made disaster. The main purpose of this paper is to provide the results of theoretical studies on identification step for determining the order of multi inputs intervention analysis for evaluating the magnitude and duration of the impact of interventions on time series data. The theoretical result showed that the standardized residuals could be used properly as response function for determining the order of multi inputs intervention model. Then, these results are applied for evaluating the impact of a disaster on a real case in Indonesia, i.e. the magnitude and duration of the impact of the Lapindo mud on the volume of vehicles on the highway. Moreover, the empirical results showed that the multi inputs intervention model can describe and explain accurately the magnitude and duration of the impact of disasters on a time series data.
Piezoelectric Actuator Modeling Using MSC/NASTRAN and MATLAB
NASA Technical Reports Server (NTRS)
Reaves, Mercedes C.; Horta, Lucas G.
2003-01-01
This paper presents a procedure for modeling structures containing piezoelectric actuators using MSCMASTRAN and MATLAB. The paper describes the utility and functionality of one set of validated modeling tools. The tools described herein use MSCMASTRAN to model the structure with piezoelectric actuators and a thermally induced strain to model straining of the actuators due to an applied voltage field. MATLAB scripts are used to assemble the dynamic equations and to generate frequency response functions. The application of these tools is discussed using a cantilever aluminum beam with a surface mounted piezoelectric actuator as a sample problem. Software in the form of MSCINASTRAN DMAP input commands, MATLAB scripts, and a step-by-step procedure to solve the example problem are provided. Analysis results are generated in terms of frequency response functions from deflection and strain data as a function of input voltage to the actuator.
D'Amico, Jessica M.; Condliffe, Elizabeth G.; Martins, Karen J. B.; Bennett, David J.; Gorassini, Monica A.
2014-01-01
The state of areflexia and muscle weakness that immediately follows a spinal cord injury (SCI) is gradually replaced by the recovery of neuronal and network excitability, leading to both improvements in residual motor function and the development of spasticity. In this review we summarize recent animal and human studies that describe how motoneurons and their activation by sensory pathways become hyperexcitable to compensate for the reduction of functional activation of the spinal cord and the eventual impact on the muscle. Specifically, decreases in the inhibitory control of sensory transmission and increases in intrinsic motoneuron excitability are described. We present the idea that replacing lost patterned activation of the spinal cord by activating synaptic inputs via assisted movements, pharmacology or electrical stimulation may help to recover lost spinal inhibition. This may lead to a reduction of uncontrolled activation of the spinal cord and thus, improve its controlled activation by synaptic inputs to ultimately normalize circuit function. Increasing the excitation of the spinal cord with spared descending and/or peripheral inputs by facilitating movement, instead of suppressing it pharmacologically, may provide the best avenue to improve residual motor function and manage spasticity after SCI. PMID:24860447
Statistical linearization for multi-input/multi-output nonlinearities
NASA Technical Reports Server (NTRS)
Lin, Ching-An; Cheng, Victor H. L.
1991-01-01
Formulas are derived for the computation of the random input-describing functions for MIMO nonlinearities; these straightforward and rigorous derivations are based on the optimal mean square linear approximation. The computations involve evaluations of multiple integrals. It is shown that, for certain classes of nonlinearities, multiple-integral evaluations are obviated and the computations are significantly simplified.
Student System, On-Line Admissions.
ERIC Educational Resources Information Center
White, Stephen R.
This report provides technical information on an on-line admissions system developed by Montgomery College. Part I, Systems Development, describes the background, objectives and responsibilities, system design, and reports generated by the system. Part II, Operating Instructions, describes input forms and controls, admission system functions, file…
An analysis of a nonlinear instability in the implementation of a VTOL control system
NASA Technical Reports Server (NTRS)
Weber, J. M.
1982-01-01
The contributions to nonlinear behavior and unstable response of the model following yaw control system of a VTOL aircraft during hover were determined. The system was designed as a state rate feedback implicit model follower that provided yaw rate command/heading hold capability and used combined full authority parallel and limited authority series servo actuators to generate an input to the yaw reaction control system of the aircraft. Both linear and nonlinear system models, as well as describing function linearization techniques were used to determine the influence on the control system instability of input magnitude and bandwidth, series servo authority, and system bandwidth. Results of the analysis describe stability boundaries as a function of these system design characteristics.
An improved viscous characteristics analysis program
NASA Technical Reports Server (NTRS)
Jenkins, R. V.
1978-01-01
An improved two dimensional characteristics analysis program is presented. The program is built upon the foundation of a FORTRAN program entitled Analysis of Supersonic Combustion Flow Fields With Embedded Subsonic Regions. The major improvements are described and a listing of the new program is provided. The subroutines and their functions are given as well as the input required for the program. Several applications of the program to real problems are qualitatively described. Three runs obtained in the investigation of a real problem are presented to provide insight for the input and output of the program.
Ng, Tuck Wah; Neild, Adrian; Heeraman, Pascal
2008-03-15
Feasible sorters need to function rapidly and permit the input and delivery of particles continuously. Here, we describe a scheme that incorporates (i) restricted spatial input location and (ii) orthogonal sort and movement direction features. Sorting is achieved using an asymmetric potential that is cycled on and off, whereas movement is accomplished using photophoresis. Simulations with 0.2 and 0.5 microm diameter spherical particles indicate that sorting can commence quickly from a continuous stream. Procedures to optimize the sorting scheme are also described.
NASA Technical Reports Server (NTRS)
Bains, R. W.; Herwig, H. A.; Luedeman, J. K.; Torina, E. M.
1974-01-01
The Shuttle Electric Power System Analysis SEPS computer program which performs detailed load analysis including predicting energy demands and consumables requirements of the shuttle electric power system along with parameteric and special case studies on the shuttle electric power system is described. The functional flow diagram of the SEPS program is presented along with data base requirements and formats, procedure and activity definitions, and mission timeline input formats. Distribution circuit input and fixed data requirements are included. Run procedures and deck setups are described.
KB3D Reference Manual. Version 1.a
NASA Technical Reports Server (NTRS)
Munoz, Cesar; Siminiceanu, Radu; Carreno, Victor A.; Dowek, Gilles
2005-01-01
This paper is a reference manual describing the implementation of the KB3D conflict detection and resolution algorithm. The algorithm has been implemented in the Java and C++ programming languages. The reference manual gives a short overview of the detection and resolution functions, the structural implementation of the program, inputs and outputs to the program, and describes how the program is used. Inputs to the program can be rectangular coordinates or geodesic coordinates. The reference manual also gives examples of conflict scenarios and the resolution outputs the program produces.
Analysis of nystagmus response to a pseudorandom velocity input
NASA Technical Reports Server (NTRS)
Lessard, C. S.
1986-01-01
Space motion sickness was not reported during the first Apollo missions; however, since Apollo 8 through the current Shuttle and Skylab missions, approximately 50% of the crewmembers have experienced instances of space motion sickness. Space motion sickness, renamed space adaptation syndrome, occurs primarily during the initial period of a mission until habilation takes place. One of NASA's efforts to resolve the space adaptation syndrome is to model the individual's vestibular response for basis knowledge and as a possible predictor of an individual's susceptibility to the disorder. This report describes a method to analyse the vestibular system when subjected to a pseudorandom angular velocity input. A sum of sinusoids (pseudorandom) input lends itself to analysis by linear frequency methods. Resultant horizontal ocular movements were digitized, filtered and transformed into the frequency domain. Programs were developed and evaluated to obtain the (1) auto spectra of input stimulus and resultant ocular resonse, (2) cross spectra, (3) the estimated vestibular-ocular system transfer function gain and phase, and (4) coherence function between stimulus and response functions.
Design of High Quality Chemical XOR Gates with Noise Reduction.
Wood, Mackenna L; Domanskyi, Sergii; Privman, Vladimir
2017-07-05
We describe a chemical XOR gate design that realizes gate-response function with filtering properties. Such gate-response function is flat (has small gradients) at and in the vicinity of all the four binary-input logic points, resulting in analog noise suppression. The gate functioning involves cross-reaction of the inputs represented by pairs of chemicals to produce a practically zero output when both are present and nearly equal. This cross-reaction processing step is also designed to result in filtering at low output intensities by canceling out the inputs if one of the latter has low intensity compared with the other. The remaining inputs, which were not reacted away, are processed to produce the output XOR signal by chemical steps that result in filtering at large output signal intensities. We analyze the tradeoff resulting from filtering, which involves loss of signal intensity. We also discuss practical aspects of realizations of such XOR gates. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using Natural Language to Enable Mission Managers to Control Multiple Heterogeneous UAVs
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Puig-Navarro, Javier; Mehdi, S. Bilal; Mcquarry, A. Kyle
2016-01-01
The availability of highly capable, yet relatively cheap, unmanned aerial vehicles (UAVs) is opening up new areas of use for hobbyists and for commercial activities. This research is developing methods beyond classical control-stick pilot inputs, to allow operators to manage complex missions without in-depth vehicle expertise. These missions may entail several heterogeneous UAVs flying coordinated patterns or flying multiple trajectories deconflicted in time or space to predefined locations. This paper describes the functionality and preliminary usability measures of an interface that allows an operator to define a mission using speech inputs. With a defined and simple vocabulary, operators can input the vast majority of mission parameters using simple, intuitive voice commands. Although the operator interface is simple, it is based upon autonomous algorithms that allow the mission to proceed with minimal input from the operator. This paper also describes these underlying algorithms that allow an operator to manage several UAVs.
Chinchilla middle ear transmission matrix model and middle-ear flexibilitya)
Ravicz, Michael E.; Rosowski, John J.
2017-01-01
The function of the middle ear (ME) in transforming ME acoustic inputs and outputs (sound pressures and volume velocities) can be described with an acoustic two-port transmission matrix. This description is independent of the load on the ME (cochlea or ear canal) and holds in either direction: forward (from ear canal to cochlea) or reverse (from cochlea to ear canal). A transmission matrix describing ME function in chinchilla, an animal commonly used in auditory research, is presented, computed from measurements of forward ME function: input admittance YTM, ME pressure gain GMEP, ME velocity transfer function HV, and cochlear input admittance YC, in the same set of ears [Ravicz and Rosowski (2012b). J. Acoust. Soc. Am. 132, 2437–2454; (2013a). J. Acoust. Soc. Am. 133, 2208–2223; (2013b). J. Acoust. Soc. Am. 134, 2852–2865]. Unlike previous estimates, these computations require no assumptions about the state of the inner ear, effectiveness of ME manipulations, or measurements of sound transmission in the reverse direction. These element values are generally consistent with physical constraints and the anatomical ME “transformer ratio.” Differences from a previous estimate in chinchilla [Songer and Rosowski (2007). J. Acoust. Soc. Am. 122, 932–942] may be due to a difference in ME flexibility between the two subject groups. PMID:28599566
Chinchilla middle ear transmission matrix model and middle-ear flexibility.
Ravicz, Michael E; Rosowski, John J
2017-05-01
The function of the middle ear (ME) in transforming ME acoustic inputs and outputs (sound pressures and volume velocities) can be described with an acoustic two-port transmission matrix. This description is independent of the load on the ME (cochlea or ear canal) and holds in either direction: forward (from ear canal to cochlea) or reverse (from cochlea to ear canal). A transmission matrix describing ME function in chinchilla, an animal commonly used in auditory research, is presented, computed from measurements of forward ME function: input admittance Y TM , ME pressure gain G MEP , ME velocity transfer function H V , and cochlear input admittance Y C , in the same set of ears [Ravicz and Rosowski (2012b). J. Acoust. Soc. Am. 132, 2437-2454; (2013a). J. Acoust. Soc. Am. 133, 2208-2223; (2013b). J. Acoust. Soc. Am. 134, 2852-2865]. Unlike previous estimates, these computations require no assumptions about the state of the inner ear, effectiveness of ME manipulations, or measurements of sound transmission in the reverse direction. These element values are generally consistent with physical constraints and the anatomical ME "transformer ratio." Differences from a previous estimate in chinchilla [Songer and Rosowski (2007). J. Acoust. Soc. Am. 122, 932-942] may be due to a difference in ME flexibility between the two subject groups.
NASA Technical Reports Server (NTRS)
Jefferys, S.; Johnson, W.; Lewis, R.; Rich, R.
1981-01-01
The software modules which comprise the IGDS/TRAP Interface Program are described. A hierarchical input processing output (HIPO) chart for each user command is given. The description consists of: (1) function of the user command; (2) calling sequence; (3) moduls which call this use command; (4) modules called by this user command; (5) IGDS commands used by this user command; and (6) local usage of global registers. Each HIPO contains the principal functions performed within the module. Also included with each function are a list of the inputs which may be required to perform the function and a list of the outputs which may be created as a result of performing the function.
Functional recovery of odor representations in regenerated sensory inputs to the olfactory bulb
Cheung, Man C.; Jang, Woochan; Schwob, James E.; Wachowiak, Matt
2014-01-01
The olfactory system has a unique capacity for recovery from peripheral damage. After injury to the olfactory epithelium (OE), olfactory sensory neurons (OSNs) regenerate and re-converge on target glomeruli of the olfactory bulb (OB). Thus far, this process has been described anatomically for only a few defined populations of OSNs. Here we characterize this regeneration at a functional level by assessing how odor representations carried by OSN inputs to the OB recover after massive loss and regeneration of the sensory neuron population. We used chronic imaging of mice expressing synaptopHluorin in OSNs to monitor odor representations in the dorsal OB before lesion by the olfactotoxin methyl bromide and after a 12 week recovery period. Methyl bromide eliminated functional inputs to the OB, and these inputs recovered to near-normal levels of response magnitude within 12 weeks. We also found that the functional topography of odor representations recovered after lesion, with odorants evoking OSN input to glomerular foci within the same functional domains as before lesion. At a finer spatial scale, however, we found evidence for mistargeting of regenerated OSN axons onto OB targets, with odorants evoking synaptopHluorin signals in small foci that did not conform to a typical glomerular structure but whose distribution was nonetheless odorant-specific. These results indicate that OSNs have a robust ability to reestablish functional inputs to the OB and that the mechanisms underlying the topography of bulbar reinnervation during development persist in the adult and allow primary sensory representations to be largely restored after massive sensory neuron loss. PMID:24431990
Optical Spatial integration methods for ambiguity function generation
NASA Technical Reports Server (NTRS)
Tamura, P. N.; Rebholz, J. J.; Daehlin, O. T.; Lee, T. C.
1981-01-01
A coherent optical spatial integration approach to ambiguity function generation is described. It uses one dimensional acousto-optic Bragg cells as input tranducers in conjunction with a space variant linear phase shifter, a passive optical element, to generate the two dimensional ambiguity function in one exposure. Results of a real time implementation of this system are shown.
Application of genetic algorithms to tuning fuzzy control systems
NASA Technical Reports Server (NTRS)
Espy, Todd; Vombrack, Endre; Aldridge, Jack
1993-01-01
Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.
Testing the Behavioral Interaction and Integration of Attentional Networks
ERIC Educational Resources Information Center
Fan, Jin; Gu, Xiaosi; Guise, Kevin G.; Liu, Xun; Fossella, John; Wang, Hongbin; Posner, Michael I.
2009-01-01
One current conceptualization of attention subdivides it into functions of alerting, orienting, and executive control. Alerting describes the function of tonically maintaining the alert state and phasically responding to a warning signal. Automatic and voluntary orienting are involved in the selection of information among multiple sensory inputs.…
DOT National Transportation Integrated Search
1974-08-01
Volume 2 contains the analysis and description of air traffic management activities at three levels of detail - functions, subfunctions, and tasks. A total of 265 tasks are identified and described, and the flow of information inputs and outputs amon...
DOT National Transportation Integrated Search
1974-08-01
Volume 2 contains the analysis and description of air traffic management activities at three levels of detail - functions, subfunctions, and tasks. A total of 265 tasks are identified and described, and the flow of information inputs and outputs amon...
DOT National Transportation Integrated Search
1974-08-01
Volume 2 contains the analysis and description of air traffic management activities at three levels of detail - functions, subfunctions, and tasks. A total of 265 tasks are identified and described, and the flow of information inputs and outputs amon...
DOT National Transportation Integrated Search
1974-08-01
Volume 2 contains the analysis and description of air traffic management activities at three levels of detail - functions, subfunctions, and tasks. A total of 265 tasks are identified and described, and the flow of information inputs and outputs amon...
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Bobick, Aaron; Jones, Eric
2010-04-01
In this paper, we describe results from experimental analysis of a model designed to recognize activities and functions of moving and static objects from low-resolution wide-area video inputs. Our model is based on representing the activities and functions using three variables: (i) time; (ii) space; and (iii) structures. The activity and function recognition is achieved by imposing lexical, syntactic, and semantic constraints on the lower-level event sequences. In the reported research, we have evaluated the utility and sensitivity of several algorithms derived from natural language processing and pattern recognition domains. We achieved high recognition accuracy for a wide range of activity and function types in the experiments using Electro-Optical (EO) imagery collected by Wide Area Airborne Surveillance (WAAS) platform.
Fee, Michale S.
2012-01-01
In its simplest formulation, reinforcement learning is based on the idea that if an action taken in a particular context is followed by a favorable outcome, then, in the same context, the tendency to produce that action should be strengthened, or reinforced. While reinforcement learning forms the basis of many current theories of basal ganglia (BG) function, these models do not incorporate distinct computational roles for signals that convey context, and those that convey what action an animal takes. Recent experiments in the songbird suggest that vocal-related BG circuitry receives two functionally distinct excitatory inputs. One input is from a cortical region that carries context information about the current “time” in the motor sequence. The other is an efference copy of motor commands from a separate cortical brain region that generates vocal variability during learning. Based on these findings, I propose here a general model of vertebrate BG function that combines context information with a distinct motor efference copy signal. The signals are integrated by a learning rule in which efference copy inputs gate the potentiation of context inputs (but not efference copy inputs) onto medium spiny neurons in response to a rewarded action. The hypothesis is described in terms of a circuit that implements the learning of visually guided saccades. The model makes testable predictions about the anatomical and functional properties of hypothesized context and efference copy inputs to the striatum from both thalamic and cortical sources. PMID:22754501
Fee, Michale S
2012-01-01
In its simplest formulation, reinforcement learning is based on the idea that if an action taken in a particular context is followed by a favorable outcome, then, in the same context, the tendency to produce that action should be strengthened, or reinforced. While reinforcement learning forms the basis of many current theories of basal ganglia (BG) function, these models do not incorporate distinct computational roles for signals that convey context, and those that convey what action an animal takes. Recent experiments in the songbird suggest that vocal-related BG circuitry receives two functionally distinct excitatory inputs. One input is from a cortical region that carries context information about the current "time" in the motor sequence. The other is an efference copy of motor commands from a separate cortical brain region that generates vocal variability during learning. Based on these findings, I propose here a general model of vertebrate BG function that combines context information with a distinct motor efference copy signal. The signals are integrated by a learning rule in which efference copy inputs gate the potentiation of context inputs (but not efference copy inputs) onto medium spiny neurons in response to a rewarded action. The hypothesis is described in terms of a circuit that implements the learning of visually guided saccades. The model makes testable predictions about the anatomical and functional properties of hypothesized context and efference copy inputs to the striatum from both thalamic and cortical sources.
Feasibility study of parallel optical correlation-decoding analysis of lightning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Descour, M.R.; Sweatt, W.C.; Elliott, G.R.
The optical correlator described in this report is intended to serve as an attention-focusing processor. The objective is to narrowly bracket the range of a parameter value that characterizes the correlator input. The input is a waveform collected by a satellite-borne receiver. In the correlator, this waveform is simultaneously correlated with an ensemble of ionosphere impulse-response functions, each corresponding to a different total-electron-count (TEC) value. We have found that correlation is an effective method of bracketing the range of TEC values likely to be represented by the input waveform. High accuracy in a computational sense is not required of themore » correlator. Binarization of the impulse-response functions and the input waveforms prior to correlation results in a lower correlation-peak-to-background-fluctuation (signal-to-noise) ratio than the peak that is obtained when all waveforms retain their grayscale values. The results presented in this report were obtained by means of an acousto-optic correlator previously developed at SNL as well as by simulation. An optical-processor architecture optimized for 1D correlation of long waveforms characteristic of this application is described. Discussions of correlator components, such as optics, acousto-optic cells, digital micromirror devices, laser diodes, and VCSELs are included.« less
Trajectory fitting in function space with application to analytic modeling of surfaces
NASA Technical Reports Server (NTRS)
Barger, Raymond L.
1992-01-01
A theory for representing a parameter-dependent function as a function trajectory is described. Additionally, a theory for determining a piecewise analytic fit to the trajectory is described. An example is given that illustrates the application of the theory to generating a smooth surface through a discrete set of input cross-section shapes. A simple procedure for smoothing in the parameter direction is discussed, and a computed example is given. Application of the theory to aerodynamic surface modeling is demonstrated by applying it to a blended wing-fuselage surface.
Translating PI observing proposals into ALMA observing scripts
NASA Astrophysics Data System (ADS)
Liszt, Harvey S.
2014-08-01
The ALMA telescope is a complex 66-antenna array working in the specialized domain of mm- and sub-mm aperture synthesis imaging. To make ALMA accessible to technically inexperienced but scientifically expert users, the ALMA Observing Tool (OT) has been developed. Using the OT, scientifically oriented user input is formatted as observing proposals that are packaged for peer-review and assessment of technical feasibility. If accepted, the proposal's scientifically oriented inputs are translated by the OT into scheduling blocks, which function as input to observing scripts for the telescope's online control system. Here I describe the processes and practices by which this translation from PI scientific goals to online control input and schedule block execution actually occurs.
Brown, Angus M
2006-04-01
The objective of this present study was to demonstrate a method for fitting complex electrophysiological data with multiple functions using the SOLVER add-in of the ubiquitous spreadsheet Microsoft Excel. SOLVER minimizes the difference between the sum of the squares of the data to be fit and the function(s) describing the data using an iterative generalized reduced gradient method. While it is a straightforward procedure to fit data with linear functions, and we have previously demonstrated a method of non-linear regression analysis of experimental data based upon a single function, it is more complex to fit data with multiple functions, usually requiring specialized expensive computer software. In this paper we describe an easily understood program for fitting experimentally acquired data, in this case the stimulus-evoked compound action potential from the mouse optic nerve, with multiple Gaussian functions. The program is flexible and can be applied to describe data with a wide variety of user-input functions.
A uniform input data convention for the CALL 3-D crash victim simulation
NASA Astrophysics Data System (ADS)
Shaibani, S. J.
1982-07-01
Logical schemes for the labelling of planes (cards D) and functions (cards E) in the input decks used for the Calspan 3-D Crash Victim Simulation (CVS) program are proposed. One benefit of introducing such a standardized format for these inputs would be to facilitate greatly the interchange of data for different vehicles. A further advantage would be that the table of allowed contacts (cards F) could remain largely unaltered. It is hoped that the uniformity of the convention described by these schemes would help to promote the exchange of readily usable data between CVS users.
Developmental process emerges from extended brain-body-behavior networks
Byrge, Lisa; Sporns, Olaf; Smith, Linda B.
2014-01-01
Studies of brain connectivity have focused on two modes of networks: structural networks describing neuroanatomy and the intrinsic and evoked dependencies of functional networks at rest and during tasks. Each mode constrains and shapes the other across multiple time scales, and each also shows age-related changes. Here we argue that understanding how brains change across development requires understanding the interplay between behavior and brain networks: changing bodies and activities modify the statistics of inputs to the brain; these changing inputs mold brain networks; these networks, in turn, promote further change in behavior and input. PMID:24862251
Neurological Organization and Reading.
ERIC Educational Resources Information Center
Consilia, Sister Mary
The structure and function of the nervous system as it puts us into contact with our environment is described. Section 1 presents a detailed discussion of the structure of the brain, drawing an analogy to a computer, and discusses the sensory input function. The transport system is then explained in a description of the transmission of sensory…
Forkert, N D; Cheng, B; Kemmling, A; Thomalla, G; Fiehler, J
2014-01-01
The objective of this work is to present the software tool ANTONIA, which has been developed to facilitate a quantitative analysis of perfusion-weighted MRI (PWI) datasets in general as well as the subsequent multi-parametric analysis of additional datasets for the specific purpose of acute ischemic stroke patient dataset evaluation. Three different methods for the analysis of DSC or DCE PWI datasets are currently implemented in ANTONIA, which can be case-specifically selected based on the study protocol. These methods comprise a curve fitting method as well as a deconvolution-based and deconvolution-free method integrating a previously defined arterial input function. The perfusion analysis is extended for the purpose of acute ischemic stroke analysis by additional methods that enable an automatic atlas-based selection of the arterial input function, an analysis of the perfusion-diffusion and DWI-FLAIR mismatch as well as segmentation-based volumetric analyses. For reliability evaluation, the described software tool was used by two observers for quantitative analysis of 15 datasets from acute ischemic stroke patients to extract the acute lesion core volume, FLAIR ratio, perfusion-diffusion mismatch volume with manually as well as automatically selected arterial input functions, and follow-up lesion volume. The results of this evaluation revealed that the described software tool leads to highly reproducible results for all parameters if the automatic arterial input function selection method is used. Due to the broad selection of processing methods that are available in the software tool, ANTONIA is especially helpful to support image-based perfusion and acute ischemic stroke research projects.
Machine-aided indexing at NASA
NASA Technical Reports Server (NTRS)
Silvester, June P.; Genuardi, Michael T.; Klingbiel, Paul H.
1994-01-01
This report describes the NASA Lexical Dictionary (NLD), a machine-aided indexing system used online at the National Aeronautics and Space Administration's Center for AeroSpace Information (CASI). This system automatically suggests a set of candidate terms from NASA's controlled vocabulary for any designated natural language text input. The system is comprised of a text processor that is based on the computational, nonsyntactic analysis of input text and an extensive knowledge base that serves to recognize and translate text-extracted concepts. The functions of the various NLD system components are described in detail, and production and quality benefits resulting from the implementation of machine-aided indexing at CASI are discussed.
A nonlinear autoregressive Volterra model of the Hodgkin-Huxley equations.
Eikenberry, Steffen E; Marmarelis, Vasilis Z
2013-02-01
We propose a new variant of Volterra-type model with a nonlinear auto-regressive (NAR) component that is a suitable framework for describing the process of AP generation by the neuron membrane potential, and we apply it to input-output data generated by the Hodgkin-Huxley (H-H) equations. Volterra models use a functional series expansion to describe the input-output relation for most nonlinear dynamic systems, and are applicable to a wide range of physiologic systems. It is difficult, however, to apply the Volterra methodology to the H-H model because is characterized by distinct subthreshold and suprathreshold dynamics. When threshold is crossed, an autonomous action potential (AP) is generated, the output becomes temporarily decoupled from the input, and the standard Volterra model fails. Therefore, in our framework, whenever membrane potential exceeds some threshold, it is taken as a second input to a dual-input Volterra model. This model correctly predicts membrane voltage deflection both within the subthreshold region and during APs. Moreover, the model naturally generates a post-AP afterpotential and refractory period. It is known that the H-H model converges to a limit cycle in response to a constant current injection. This behavior is correctly predicted by the proposed model, while the standard Volterra model is incapable of generating such limit cycle behavior. The inclusion of cross-kernels, which describe the nonlinear interactions between the exogenous and autoregressive inputs, is found to be absolutely necessary. The proposed model is general, non-parametric, and data-derived.
Managing fish habitat for flow and temperature extremes ...
Summer low flows and stream temperature maxima are key drivers affecting the sustainability of fish populations. Thus, it is critical to understand both the natural templates of spatiotemporal variability, how these are shifting due to anthropogenic influences of development and climate change, and how these impacts can be moderated by natural and constructed green infrastructure. Low flow statistics of New England streams have been characterized using a combination of regression equations to describe long-term averages as a function of indicators of hydrologic regime (rain- versus snow-dominated), precipitation, evapotranspiration or temperature, surface water storage, baseflow recession rates, and impervious cover. Difference equations have been constructed to describe interannual variation in low flow as a function of changing air temperature, precipitation, and ocean-atmospheric teleconnection indices. Spatial statistical network models have been applied to explore fine-scale variability of thermal regimes along stream networks in New England as a function of variables describing natural and altered energy inputs, groundwater contributions, and retention time. Low flows exacerbate temperature impacts by reducing thermal inertia of streams to energy inputs. Based on these models, we can construct scenarios of fish habitat suitability using current and projected future climate and the potential for preservation and restoration of historic habitat regimes th
Random harmonic analysis program, L221 (TEV156). Volume 1: Engineering and usage
NASA Technical Reports Server (NTRS)
Miller, R. D.; Graham, M. L.
1979-01-01
A digital computer program capable of calculating steady state solutions for linear second order differential equations due to sinusoidal forcing functions is described. The field of application of the program, the analysis of airplane response and loads due to continuous random air turbulence, is discussed. Optional capabilities including frequency dependent input matrices, feedback damping, gradual gust penetration, multiple excitation forcing functions, and a static elastic solution are described. Program usage and a description of the analysis used are presented.
A radar data processing and enhancement system
NASA Technical Reports Server (NTRS)
Anderson, K. F.; Wrin, J. W.; James, R.
1986-01-01
This report describes the space position data processing system of the NASA Western Aeronautical Test Range. The system is installed at the Dryden Flight Research Facility of NASA Ames Research Center. This operational radar data system (RADATS) provides simultaneous data processing for multiple data inputs and tracking and antenna pointing outputs while performing real-time monitoring, control, and data enhancement functions. Experience in support of the space shuttle and aeronautical flight research missions is described, as well as the automated calibration and configuration functions of the system.
Maximally informative pairwise interactions in networks
Fitzgerald, Jeffrey D.; Sharpee, Tatyana O.
2010-01-01
Several types of biological networks have recently been shown to be accurately described by a maximum entropy model with pairwise interactions, also known as the Ising model. Here we present an approach for finding the optimal mappings between input signals and network states that allow the network to convey the maximal information about input signals drawn from a given distribution. This mapping also produces a set of linear equations for calculating the optimal Ising-model coupling constants, as well as geometric properties that indicate the applicability of the pairwise Ising model. We show that the optimal pairwise interactions are on average zero for Gaussian and uniformly distributed inputs, whereas they are nonzero for inputs approximating those in natural environments. These nonzero network interactions are predicted to increase in strength as the noise in the response functions of each network node increases. This approach also suggests ways for how interactions with unmeasured parts of the network can be inferred from the parameters of response functions for the measured network nodes. PMID:19905153
A FORTRAN program for the analysis of linear continuous and sample-data systems
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1976-01-01
A FORTRAN digital computer program which performs the general analysis of linearized control systems is described. State variable techniques are used to analyze continuous, discrete, and sampled data systems. Analysis options include the calculation of system eigenvalues, transfer functions, root loci, root contours, frequency responses, power spectra, and transient responses for open- and closed-loop systems. A flexible data input format allows the user to define systems in a variety of representations. Data may be entered by inputing explicit data matrices or matrices constructed in user written subroutines, by specifying transfer function block diagrams, or by using a combination of these methods.
NASA Astrophysics Data System (ADS)
Korelin, Ivan A.; Porshnev, Sergey V.
2018-01-01
The paper demonstrates the possibility of calculating the characteristics of the flow of visitors to objects carrying out mass events passing through checkpoints. The mathematical model is based on the non-stationary queuing system (NQS) where dependence of requests input rate from time is described by the function. This function was chosen in such way that its properties were similar to the real dependencies of speed of visitors arrival on football matches to the stadium. A piecewise-constant approximation of the function is used when statistical modeling of NQS performing. Authors calculated the dependencies of the queue length and waiting time for visitors to service (time in queue) on time for different laws. Time required to service the entire queue and the number of visitors entering the stadium at the beginning of the match were calculated too. We found the dependence for macroscopic quantitative characteristics of NQS from the number of averaging sections of the input rate.
NASA Technical Reports Server (NTRS)
Izumi, K. H.; Thompson, J. L.; Groce, J. L.; Schwab, R. W.
1986-01-01
The design requirements for a 4D path definition algorithm are described. These requirements were developed for the NASA ATOPS as an extension of the Local Flow Management/Profile Descent algorithm. They specify the processing flow, functional and data architectures, and system input requirements, and recommended the addition of a broad path revision (reinitialization) function capability. The document also summarizes algorithm design enhancements and the implementation status of the algorithm on an in-house PDP-11/70 computer. Finally, the requirements for the pilot-computer interfaces, the lateral path processor, and guidance and steering function are described.
Modal analysis using a Fourier analyzer, curve-fitting, and modal tuning
NASA Technical Reports Server (NTRS)
Craig, R. R., Jr.; Chung, Y. T.
1981-01-01
The proposed modal test program differs from single-input methods in that preliminary data may be acquired using multiple inputs, and modal tuning procedures may be employed to define closely spaced frquency modes more accurately or to make use of frequency response functions (FRF's) which are based on several input locations. In some respects the proposed modal test proram resembles earlier sine-sweep and sine-dwell testing in that broadband FRF's are acquired using several input locations, and tuning is employed to refine the modal parameter estimates. The major tasks performed in the proposed modal test program are outlined. Data acquisition and FFT processing, curve fitting, and modal tuning phases are described and examples are given to illustrate and evaluate them.
Getting quantitative about consequences of cross-ecosystem resource subsidies on recipient consumers
Richardson, John S.; Wipfli, Mark S.
2016-01-01
Most studies of cross-ecosystem resource subsidies have demonstrated positive effects on recipient consumer populations, often with very large effect sizes. However, it is important to move beyond these initial addition–exclusion experiments to consider the quantitative consequences for populations across gradients in the rates and quality of resource inputs. In our introduction to this special issue, we describe at least four potential models that describe functional relationships between subsidy input rates and consumer responses, most of them asymptotic. Here we aim to advance our quantitative understanding of how subsidy inputs influence recipient consumers and their communities. In the papers following, fish were either the recipient consumers or the subsidy as carcasses of anadromous species. Advancing general, predictive models will enable us to further consider what other factors are potentially co-limiting (e.g., nutrients, other population interactions, physical habitat, etc.) and better integrate resource subsidies into consumer–resource, biophysical dynamics models.
Angular velocities, angular accelerations, and coriolis accelerations
NASA Technical Reports Server (NTRS)
Graybiel, A.
1975-01-01
Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.
NASA Astrophysics Data System (ADS)
Korelin, Ivan A.; Porshnev, Sergey V.
2018-05-01
A model of the non-stationary queuing system (NQS) is described. The input of this model receives a flow of requests with input rate λ = λdet (t) + λrnd (t), where λdet (t) is a deterministic function depending on time; λrnd (t) is a random function. The parameters of functions λdet (t), λrnd (t) were identified on the basis of statistical information on visitor flows collected from various Russian football stadiums. The statistical modeling of NQS is carried out and the average statistical dependences are obtained: the length of the queue of requests waiting for service, the average wait time for the service, the number of visitors entered to the stadium on the time. It is shown that these dependencies can be characterized by the following parameters: the number of visitors who entered at the time of the match; time required to service all incoming visitors; the maximum value; the argument value when the studied dependence reaches its maximum value. The dependences of these parameters on the energy ratio of the deterministic and random component of the input rate are investigated.
Cao, Dingcai; Nicandro, Nathaniel; Barrionuevo, Pablo A.
2015-01-01
Intrinsically photosensitive retinal ganglion cells (ipRGCs) can respond to light directly through self-contained photopigment, melanopsin. IpRGCs also receive synaptic inputs from rods and cones. Thus, studying ipRGC functions requires a novel photostimulating method that can account for all of the photoreceptor inputs. Here, we introduced an inexpensive LED-based five-primary photostimulator that can control the excitations of rods, S-, M-, L-cones, and melanopsin-containing ipRGCs in humans at constant background photoreceptor excitation levels, a critical requirement for studying the adaptation behavior of ipRGCs with rod, cone, or melanopsin input. We described the theory and technical aspects (including optics, electronics, software, and calibration) of the five-primary photostimulator. Then we presented two preliminary studies using the photostimulator we have implemented to measure melanopsin-mediated pupil responses and temporal contrast sensitivity function (TCSF). The results showed that the S-cone input to pupil responses was antagonistic to the L-, M- or melanopsin inputs, consistent with an S-OFF and (L + M)-ON response property of primate ipRGCs (Dacey et al., 2005). In addition, the melanopsin-mediated TCSF had a distinctive pattern compared with L + M or S-cone mediated TCSF. Other than controlling individual photoreceptor excitation independently, the five-primary photostimulator has the flexibility in presenting stimuli modulating any combination of photoreceptor excitations, which allows researchers to study the mechanisms by which ipRGCs combine various photoreceptor inputs. PMID:25624466
NASA Technical Reports Server (NTRS)
Mclennan, G. A.
1986-01-01
This report describes, and is a User's Manual for, a computer code (ANL/RBC) which calculates cycle performance for Rankine bottoming cycles extracting heat from a specified source gas stream. The code calculates cycle power and efficiency and the sizes for the heat exchangers, using tabular input of the properties of the cycle working fluid. An option is provided to calculate the costs of system components from user defined input cost functions. These cost functions may be defined in equation form or by numerical tabular data. A variety of functional forms have been included for these functions and they may be combined to create very general cost functions. An optional calculation mode can be used to determine the off-design performance of a system when operated away from the design-point, using the heat exchanger areas calculated for the design-point.
Inhibitory neurotransmission regulates vagal efferent activity and gastric motility
McMenamin, Caitlin A; Travagli, R Alberto
2016-01-01
The gastrointestinal tract receives extrinsic innervation from both the sympathetic and parasympathetic nervous systems, which regulate and modulate the function of the intrinsic (enteric) nervous system. The stomach and upper gastrointestinal tract in particular are heavily influenced by the parasympathetic nervous system, supplied by the vagus nerve, and disruption of vagal sensory or motor functions results in disorganized motility patterns, disrupted receptive relaxation and accommodation, and delayed gastric emptying, amongst others. Studies from several laboratories have shown that the activity of vagal efferent motoneurons innervating the upper GI tract is inhibited tonically by GABAergic synaptic inputs from the adjacent nucleus tractus solitarius. Disruption of this influential central GABA input impacts vagal efferent output, hence gastric functions, significantly. The purpose of this review is to describe the development, physiology, and pathophysiology of this functionally dominant inhibitory synapse and its role in regulating vagally determined gastric functions. PMID:27302177
Digital controller design: Continuous and discrete describing function analysis of the IPS system
NASA Technical Reports Server (NTRS)
1977-01-01
The dynamic equations and the mathematical model of the continuous-data IPS control system are developed. The IPS model considered included one flexible body mode and was hardmounted to the Orbiter/Pallet. The model contains equations describing a torque feed-forward loop (using accelerometers as inputs) which will aid in reducing the pointing errors caused by Orbiter disturbances.
A first approach to the distortion analysis of nonlinear analog circuits utilizing X-parameters
NASA Astrophysics Data System (ADS)
Weber, H.; Widemann, C.; Mathis, W.
2013-07-01
In this contribution a first approach to the distortion analysis of nonlinear 2-port-networks with X-parameters1 is presented. The X-parameters introduced by Verspecht and Root (2006) offer the possibility to describe nonlinear microwave 2-port-networks under large signal conditions. On the basis of X-parameter measurements with a nonlinear network analyzer (NVNA) behavioral models can be extracted for the networks. These models can be used to consider the nonlinear behavior during the design process of microwave circuits. The idea of the present work is to extract the behavioral models in order to describe the influence of interfering signals on the output behavior of the nonlinear circuits. Hereby, a simulator is used instead of a NVNA to extract the X-parameters. Assuming that the interfering signals are relatively small compared to the nominal input signal, the output signal can be described as a superposition of the effects of each input signal. In order to determine the functional correlation between the scattering variables, a polynomial dependency is assumed. The required datasets for the approximation of the describing functions are simulated by a directional coupler model in Cadence Design Framework. The polynomial coefficients are obtained by a least-square method. The resulting describing functions can be used to predict the system's behavior under certain conditions as well as the effects of the interfering signal on the output signal. 1 X-parameter is a registered trademark of Agilent Technologies, Inc.
Analog Computation by DNA Strand Displacement Circuits.
Song, Tianqi; Garg, Sudhanshu; Mokhtar, Reem; Bui, Hieu; Reif, John
2016-08-19
DNA circuits have been widely used to develop biological computing devices because of their high programmability and versatility. Here, we propose an architecture for the systematic construction of DNA circuits for analog computation based on DNA strand displacement. The elementary gates in our architecture include addition, subtraction, and multiplication gates. The input and output of these gates are analog, which means that they are directly represented by the concentrations of the input and output DNA strands, respectively, without requiring a threshold for converting to Boolean signals. We provide detailed domain designs and kinetic simulations of the gates to demonstrate their expected performance. On the basis of these gates, we describe how DNA circuits to compute polynomial functions of inputs can be built. Using Taylor Series and Newton Iteration methods, functions beyond the scope of polynomials can also be computed by DNA circuits built upon our architecture.
Advanced information processing system: Input/output system services
NASA Technical Reports Server (NTRS)
Masotto, Tom; Alger, Linda
1989-01-01
The functional requirements and detailed specifications for the Input/Output (I/O) Systems Services of the Advanced Information Processing System (AIPS) are discussed. The introductory section is provided to outline the overall architecture and functional requirements of the AIPS system. Section 1.1 gives a brief overview of the AIPS architecture as well as a detailed description of the AIPS fault tolerant network architecture, while section 1.2 provides an introduction to the AIPS systems software. Sections 2 and 3 describe the functional requirements and design and detailed specifications of the I/O User Interface and Communications Management modules of the I/O System Services, respectively. Section 4 illustrates the use of the I/O System Services, while Section 5 concludes with a summary of results and suggestions for future work in this area.
Teasing apart the effects of natural and constructed green ...
Summer low flows and stream temperature maxima are key drivers affecting the sustainability of fish populations. Thus, it is critical to understand both the natural templates of spatiotemporal variability, how these are shifting due to anthropogenic influences of development and climate change, and how these impacts can be moderated by natural and constructed green infrastructure. Low flow statistics of New England streams have been characterized using a combination of regression equations to describe long-term averages as a function of indicators of hydrologic regime (rain- versus snow-dominated), precipitation, evapotranspiration or temperature, surface water storage, baseflow recession rates, and impervious cover. Difference equations have been constructed to describe interannual variation in low flow as a function of changing air temperature, precipitation, and ocean-atmospheric teleconnection indices. Spatial statistical network models have been applied to explore fine-scale variability of thermal regimes along stream networks in New England as a function of variables describing natural and altered energy inputs, groundwater contributions, and retention time. Low flows exacerbate temperature impacts by reducing thermal inertia of streams to energy inputs. Based on these models, we can construct scenarios of fish habitat suitability using current and projected future climate and the potential for preservation and restoration of historic habitat regimes th
NASA Technical Reports Server (NTRS)
1985-01-01
The function design of the Input/Output (I/O) services for the Advanced Information Processing System (AIPS) proof of concept system is described. The data flow diagrams, which show the functional processes in I/O services and the data that flows among them, are contained. A complete list of the data identified on the data flow diagrams and in the process descriptions are provided.
Electromechanical Componentry. High-Technology Training Module.
ERIC Educational Resources Information Center
Lindemann, Don
This training module on electromechanical components contains 10 units for a two-year vocational program packaging system equipment control course at Wisconsin Indianhead Technical College. This module describes the functions of electromechanical devices essential for understanding input/output devices for Programmable Logic Control (PLC)…
Steidle, Ernest F.
1983-01-01
This paper describes the design of a functional assessment system, a component of a management information system (MIS) that supports a comprehensive rehabilitation facility. Products of the subsystem document the functional status of rehabilitation clients through process evaluation reporting and outcomes reporting. The purpose of this paper is to describe the design of this MIS component. The environment supported, the integration requirements and the needed development approach is unique, requiring significant input from health care professionals, medical informatics specialists, statisticians and program evaluators. Strategies for the implementation of the functional assessment system are the major results reported in this paper. They are most useful to the systems designer or management engineer in a human service delivery setting. MIS plan development, computer file structure and access methods, and approaches to scheduling applications is described. Finally, the development of functional status measures is discussed. Application of the methodologies described will facilitate similar efforts towards systems development in other human service delivery settings.
NASA Astrophysics Data System (ADS)
Holmdahl, P. E.; Ellis, A. B. E.; Moeller-Olsen, P.; Ringgaard, J. P.
1981-12-01
The basic requirements of the SAR ground segment of ERS-1 are discussed. A system configuration for the real time data acquisition station and the processing and archive facility is depicted. The functions of a typical SAR processing unit (SPU) are specified, and inputs required for near real time and full precision, deferred time processing are described. Inputs and the processing required for provision of these inputs to the SPU are dealt with. Data flow through the systems, and normal and nonnormal operational sequence, are outlined. Prerequisites for maintaining overall performance are identified, emphasizing quality control. The most demanding tasks to be performed by the front end are defined in order to determine types of processors and peripherals which comply with throughput requirements.
Voltage controlled current source
Casne, Gregory M.
1992-01-01
A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.
Empirical mode decomposition-based facial pose estimation inside video sequences
NASA Astrophysics Data System (ADS)
Qing, Chunmei; Jiang, Jianmin; Yang, Zhijing
2010-03-01
We describe a new pose-estimation algorithm via integration of the strength in both empirical mode decomposition (EMD) and mutual information. While mutual information is exploited to measure the similarity between facial images to estimate poses, EMD is exploited to decompose input facial images into a number of intrinsic mode function (IMF) components, which redistribute the effect of noise, expression changes, and illumination variations as such that, when the input facial image is described by the selected IMF components, all the negative effects can be minimized. Extensive experiments were carried out in comparisons to existing representative techniques, and the results show that the proposed algorithm achieves better pose-estimation performances with robustness to noise corruption, illumination variation, and facial expressions.
DRI Model of the U.S. Economy -- Model Documentation
1993-01-01
Provides documentation on Data Resources, Inc., DRI Model of the U.S. Economy and the DRI Personal Computer Input/Output Model. It also describes the theoretical basis, structure and functions of both DRI models; and contains brief descriptions of the models and their equations.
Modeling the atmospheric chemistry of TICs
NASA Astrophysics Data System (ADS)
Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John
2009-05-01
An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.
Two Unipolar Terminal-Attractor-Based Associative Memories
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Wu, Chwan-Hwa
1995-01-01
Two unipolar mathematical models of electronic neural network functioning as terminal-attractor-based associative memory (TABAM) developed. Models comprise sets of equations describing interactions between time-varying inputs and outputs of neural-network memory, regarded as dynamical system. Simplifies design and operation of optoelectronic processor to implement TABAM performing associative recall of images. TABAM concept described in "Optoelectronic Terminal-Attractor-Based Associative Memory" (NPO-18790). Experimental optoelectronic apparatus that performed associative recall of binary images described in "Optoelectronic Inner-Product Neural Associative Memory" (NPO-18491).
Simulation analysis of a microcomputer-based, low-cost Omega navigation system
NASA Technical Reports Server (NTRS)
Lilley, R. W.; Salter, R. J., Jr.
1976-01-01
The current status of research on a proposed micro-computer-based, low-cost Omega Navigation System (ONS) is described. The design approach emphasizes minimum hardware, maximum software, and the use of a low-cost, commercially-available microcomputer. Currently under investigation is the implementation of a low-cost navigation processor and its interface with an omega sensor to complete the hardware-based ONS. Sensor processor functions are simulated to determine how many of the sensor processor functions can be handled by innovative software. An input data base of live Omega ground and flight test data was created. The Omega sensor and microcomputer interface modules used to collect the data are functionally described. Automatic synchronization to the Omega transmission pattern is described as an example of the algorithms developed using this data base.
Motor Control of Human Spinal Cord Disconnected from the Brain and Under External Movement.
Mayr, Winfried; Krenn, Matthias; Dimitrijevic, Milan R
2016-01-01
Motor control after spinal cord injury is strongly depending on residual ascending and descending pathways across the lesion. The individually altered neurophysiology is in general based on still intact sublesional control loops with afferent sensory inputs linked via interneuron networks to efferent motor outputs. Partial or total loss of translesional control inputs reduces and alters the ability to perform voluntary movements and results in motor incomplete (residual voluntary control of movement functions) or motor complete (no residual voluntary control) spinal cord injury classification. Of particular importance are intact functionally silent neural structures with residual brain influence but reduced state of excitability that inhibits execution of voluntary movements. The condition is described by the term discomplete spinal cord injury. There are strong evidences that artificial afferent input, e.g., by epidural or noninvasive electrical stimulation of the lumbar posterior roots, can elevate the state of excitability and thus re-enable or augment voluntary movement functions. This modality can serve as a powerful assessment technique for monitoring details of the residual function profile after spinal cord injury, as a therapeutic tool for support of restoration of movement programs and as a neuroprosthesis component augmenting and restoring movement functions, per se or in synergy with classical neuromuscular or muscular electrical stimulation.
The Lake Tahoe Basin Land Use Simulation Model
Forney, William M.; Oldham, I. Benson
2011-01-01
This U.S. Geological Survey Open-File Report describes the final modeling product for the Tahoe Decision Support System project for the Lake Tahoe Basin funded by the Southern Nevada Public Land Management Act and the U.S. Geological Survey's Geographic Analysis and Monitoring Program. This research was conducted by the U.S. Geological Survey Western Geographic Science Center. The purpose of this report is to describe the basic elements of the novel Lake Tahoe Basin Land Use Simulation Model, publish samples of the data inputs, basic outputs of the model, and the details of the Python code. The results of this report include a basic description of the Land Use Simulation Model, descriptions and summary statistics of model inputs, two figures showing the graphical user interface from the web-based tool, samples of the two input files, seven tables of basic output results from the web-based tool and descriptions of their parameters, and the fully functional Python code.
NASA Astrophysics Data System (ADS)
Villa, Enrique; Cano, Juan L.; Aja, Beatriz; Terán, J. Vicente; de la Fuente, Luisa; Mediavilla, Ángel; Artal, Eduardo
2018-03-01
This paper describes the analysis, design and characterization of a polarimetric receiver developed for covering the 35 to 47 GHz frequency band in the new instrument aimed at completing the ground-based Q-U-I Joint Tenerife Experiment. This experiment is designed to measure polarization in the Cosmic Microwave Background. The described high frequency instrument is a HEMT-based array composed of 29 pixels. A thorough analysis of the behaviour of the proposed receiver, based on electronic phase switching, is presented for a noise-like linearly polarized input signal, obtaining simultaneously I, Q and U Stokes parameters of the input signal. Wideband subsystems are designed, assembled and characterized for the polarimeter. Their performances are described showing appropriate results within the 35-to-47 GHz frequency band. Functionality tests are performed at room and cryogenic temperatures with adequate results for both temperature conditions, which validate the receiver concept and performance.
Noise produced by turbulent flow into a rotor: Users manual for noise calculation
NASA Technical Reports Server (NTRS)
Amiet, R. K.; Egolf, C. G.; Simonich, J. C.
1989-01-01
A users manual for a computer program for the calculation of noise produced by turbulent flow into a helicopter rotor is presented. These inputs to the program are obtained from the atmospheric turbulence model and mean flow distortion calculation, described in another volume of this set of reports. Descriptions of the various program modules and subroutines, their function, programming structure, and the required input and output variables are included. This routine is incorporated as one module of NASA's ROTONET helicopter noise prediction program.
ACOSS Three (Active Control of Space Structures). Phase I.
1980-05-01
their assorted pitfalls, programs such as NASTRAN, SPAR, ASTRO , etc., are never-the-less the primary tools for generating dynamical models of...proofs and additional details, see Ref [*] Consider the system described in state-space form by: Dynamics: X = FX + Gu Sensors: y = HX = (F +GCH)X (1...input u and output y = Fx + Gu (6) y = Hx+Du (7) The input-output transfer function is given by y = (H(sI- F)-1G +D)u (8) or y(s) _ 1 N u(s) A(s) E
Adaptive Technology that Provides Access to Computers. DO-IT Program.
ERIC Educational Resources Information Center
Washington Univ., Seattle.
This brochure describes the different types of barriers individuals with mobility impairments, blindness, low vision, hearing impairments, and specific learning disabilities face in providing computer input, interpreting output, and reading documentation. The adaptive hardware and software that has been developed to provide functional alternatives…
Spreadsheet-Based Program for Simulating Atomic Emission Spectra
ERIC Educational Resources Information Center
Flannigan, David J.
2014-01-01
A simple Excel spreadsheet-based program for simulating atomic emission spectra from the properties of neutral atoms (e.g., energies and statistical weights of the electronic states, electronic partition functions, transition probabilities, etc.) is described. The contents of the spreadsheet (i.e., input parameters, formulas for calculating…
Description of the IV + V System Software Package.
ERIC Educational Resources Information Center
Microcomputers for Information Management: An International Journal for Library and Information Services, 1984
1984-01-01
Describes the IV + V System, a software package designed by the Institut fur Maschinelle Dokumentation for the United Nations General Information Programme and UNISIST to support automation of local information and documentation services. Principle program features and functions outlined include input/output, databank, text image, output, and…
Three Types of Cortical L5 Neurons that Differ in Brain-Wide Connectivity and Function
Kim, Euiseok J.; Juavinett, Ashley L.; Kyubwa, Espoir M.; Jacobs, Matthew W.; Callaway, Edward M.
2015-01-01
SUMMARY Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. PMID:26671462
Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function.
Kim, Euiseok J; Juavinett, Ashley L; Kyubwa, Espoir M; Jacobs, Matthew W; Callaway, Edward M
2015-12-16
Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. Copyright © 2015 Elsevier Inc. All rights reserved.
Evolution of optimal Hill coefficients in nonlinear public goods games.
Archetti, Marco; Scheuring, István
2016-10-07
In evolutionary game theory, the effect of public goods like diffusible molecules has been modelled using linear, concave, sigmoid and step functions. The observation that biological systems are often sigmoid input-output functions, as described by the Hill equation, suggests that a sigmoid function is more realistic. The Michaelis-Menten model of enzyme kinetics, however, predicts a concave function, and while mechanistic explanations of sigmoid kinetics exist, we lack an adaptive explanation: what is the evolutionary advantage of a sigmoid benefit function? We analyse public goods games in which the shape of the benefit function can evolve, in order to determine the optimal and evolutionarily stable Hill coefficients. We find that, while the dynamics depends on whether output is controlled at the level of the individual or the population, intermediate or high Hill coefficients often evolve, leading to sigmoid input-output functions that for some parameters are so steep to resemble a step function (an on-off switch). Our results suggest that, even when the shape of the benefit function is unknown, biological public goods should be modelled using a sigmoid or step function rather than a linear or concave function. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Austin, Charles J.
The purpose of this document is to present a final description of the original MEDLARS system as it evolved through four years of operation. The system is described as it was functioning on January 1, 1968. Among the various system elements discussed are: (1) the input subsystem, including journal selection and coverage, Medical Subject Headings…
Program CALIB. [for computing noise levels for helicopter version of S-191 filter wheel spectrometer
NASA Technical Reports Server (NTRS)
Mendlowitz, M. A.
1973-01-01
The program CALIB, which was written to compute noise levels and average signal levels of aperture radiance for the helicopter version of the S-191 filter wheel spectrometer is described. The program functions, and input description are included along with a compiled program listing.
SPIRES Tailored to a Special Library: A Mainframe Answer for a Small Online Catalog.
ERIC Educational Resources Information Center
Newton, Mary
1989-01-01
Describes the design and functions of a technical library database maintained on a mainframe computer and supported by the SPIRES database management system. The topics covered include record structures, vocabulary control, input procedures, searching features, time considerations, and cost effectiveness. (three references) (CLB)
Price, G.W.
1954-08-01
A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.
Symbolic Execution Enhanced System Testing
NASA Technical Reports Server (NTRS)
Davies, Misty D.; Pasareanu, Corina S.; Raman, Vishwanath
2012-01-01
We describe a testing technique that uses information computed by symbolic execution of a program unit to guide the generation of inputs to the system containing the unit, in such a way that the unit's, and hence the system's, coverage is increased. The symbolic execution computes unit constraints at run-time, along program paths obtained by system simulations. We use machine learning techniques treatment learning and function fitting to approximate the system input constraints that will lead to the satisfaction of the unit constraints. Execution of system input predictions either uncovers new code regions in the unit under analysis or provides information that can be used to improve the approximation. We have implemented the technique and we have demonstrated its effectiveness on several examples, including one from the aerospace domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartkiewicz, Karol; Miranowicz, Adam
We find an optimal quantum cloning machine, which clones qubits of arbitrary symmetrical distribution around the Bloch vector with the highest fidelity. The process is referred to as phase-independent cloning in contrast to the standard phase-covariant cloning for which an input qubit state is a priori better known. We assume that the information about the input state is encoded in an arbitrary axisymmetric distribution (phase function) on the Bloch sphere of the cloned qubits. We find analytical expressions describing the optimal cloning transformation and fidelity of the clones. As an illustration, we analyze cloning of qubit state described by themore » von Mises-Fisher and Brosseau distributions. Moreover, we show that the optimal phase-independent cloning machine can be implemented by modifying the mirror phase-covariant cloning machine for which quantum circuits are known.« less
Heliocentric interplanetary low thrust trajectory optimization program, supplement 1, part 2
NASA Technical Reports Server (NTRS)
Mann, F. I.; Horsewood, J. L.
1978-01-01
The improvements made to the HILTOP electric propulsion trajectory computer program are described. A more realistic propulsion system model was implemented in which various thrust subsystem efficiencies and specific impulse are modeled as variable functions of power available to the propulsion system. The number of operating thrusters are staged, and the beam voltage is selected from a set of five (or less) constant voltages, based upon the application of variational calculus. The constant beam voltages may be optimized individually or collectively. The propulsion system logic is activated by a single program input key in such a manner as to preserve the HILTOP logic. An analysis describing these features, a complete description of program input quantities, and sample cases of computer output illustrating the program capabilities are presented.
Hendrickson, Phillip J; Yu, Gene J; Song, Dong; Berger, Theodore W
2016-01-01
This paper describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust nonrandom pattern of spiking best described as a spatiotemporal "clustering." To identify the network property or properties responsible for generating such firing "clusters," we progressively eliminated from the model key mechanisms, such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatiotemporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as "functional units" or "channels" that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics.
Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.
2016-01-01
Goal This manuscript describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. Methods The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust, non-random pattern of spiking best described as spatio-temporal “clustering”. To identify the network property or properties responsible for generating such firing “clusters”, we progressively eliminated from the model key mechanisms such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Conclusion Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatio-temporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as “functional units” or “channels” that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics. PMID:26087482
Gene Ontology Terms and Automated Annotation for Energy-Related Microbial Genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Biswarup; Tyler, Brett M.; Setubal, Joao
Gene Ontology (GO) is one of the more widely used functional ontologies for describing gene functions at various levels. The project developed 660 GO terms for describing energy-related microbial processes and filled the known gaps in this area of the GO system, and then used these terms to describe functions of 179 genes to showcase the utilities of the new resources. It hosted a series of workshops and made presentations at key meetings to inform and train scientific community members on these terms and to receive inputs from them for the GO term generation efforts. The project has developed amore » website for storing and displaying the resources (http://www.mengo.biochem.vt.edu/). The outcome of the project was further disseminated through peer-reviewed publications and poster and seminar presentations.« less
A Within-subjects Experimental Protocol to Assess the Effects of Social Input on Infant EEG.
St John, Ashley M; Kao, Katie; Chita-Tegmark, Meia; Liederman, Jacqueline; Grieve, Philip G; Tarullo, Amanda R
2017-05-03
Despite the importance of social interactions for infant brain development, little research has assessed functional neural activation while infants socially interact. Electroencephalography (EEG) power is an advantageous technique to assess infant functional neural activation. However, many studies record infant EEG only during one baseline condition. This protocol describes a paradigm that is designed to comprehensively assess infant EEG activity in both social and nonsocial contexts as well as tease apart how different types of social inputs differentially relate to infant EEG. The within-subjects paradigm includes four controlled conditions. In the nonsocial condition, infants view objects on computer screens. The joint attention condition involves an experimenter directing the infant's attention to pictures. The joint attention condition includes three types of social input: language, face-to-face interaction, and the presence of joint attention. Differences in infant EEG between the nonsocial and joint attention conditions could be due to any of these three types of input. Therefore, two additional conditions (one with language input while the experimenter is hidden behind a screen and one with face-to-face interaction) were included to assess the driving contextual factors in patterns of infant neural activation. Representative results demonstrate that infant EEG power varied by condition, both overall and differentially by brain region, supporting the functional nature of infant EEG power. This technique is advantageous in that it includes conditions that are clearly social or nonsocial and allows for examination of how specific types of social input relate to EEG power. This paradigm can be used to assess how individual differences in age, affect, socioeconomic status, and parent-infant interaction quality relate to the development of the social brain. Based on the demonstrated functional nature of infant EEG power, future studies should consider the role of EEG recording context and design conditions that are clearly social or nonsocial.
On the way to a microscopic derivation of covariant density functionals in nuclei
NASA Astrophysics Data System (ADS)
Ring, Peter
2018-02-01
Several methods are discussed to derive covariant density functionals from the microscopic input of bare nuclear forces. In a first step there are semi-microscopic functionals, which are fitted to ab-initio calculations of nuclear matter and depend in addition on very few phenomenological parameters. They are able to describe nuclear properties with the same precision as fully phenomenological functionals. In a second step we present first relativistic Brueckner-Hartree-Fock calculations in finite nuclei in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.
The Design of Feedback Control Systems Containing a Saturation Type Nonlinearity
NASA Technical Reports Server (NTRS)
Schmidt, Stanley F.; Harper, Eleanor V.
1960-01-01
A derivation of the optimum response for a step input for plant transfer functions which have an unstable pole and further data on plants with a single zero in the left half of the s plane. The calculated data are presented tabulated in normalized form. Optimum control systems are considered. The optimum system is defined as one which keeps the error as small as possible regardless of the input, under the constraint that the input to the plant (or controlled system) is limited. Intuitive arguments show that in the case where only the error can be sensed directly, the optimum system is obtained from the optimum relay or on-off solution. References to known solutions are presented. For the case when the system is of the sampled-data type, arguments are presented which indicate the optimum sampled-data system may be extremely difficult if not impossible to realize practically except for very simple plant transfer functions. Two examples of aircraft attitude autopilots are presented, one for a statically stable and the other for a statically unstable airframe. The rate of change of elevator motion is assumed limited for these examples. It is shown that by use of nonlinear design techniques described in NASA TN D-20 one can obtain near optimum response for step inputs and reason- able response to sine wave inputs for either case. Also, the nonlinear design prevents inputs from driving the system unstable for either case.
NASA Technical Reports Server (NTRS)
Zehe, Michael J.; Gordon, Sanford; McBride, Bonnie J.
2002-01-01
For several decades the NASA Glenn Research Center has been providing a file of thermodynamic data for use in several computer programs. These data are in the form of least-squares coefficients that have been calculated from tabular thermodynamic data by means of the NASA Properties and Coefficients (PAC) program. The source thermodynamic data are obtained from the literature or from standard compilations. Most gas-phase thermodynamic functions are calculated by the authors from molecular constant data using ideal gas partition functions. The Coefficients and Properties (CAP) program described in this report permits the generation of tabulated thermodynamic functions from the NASA least-squares coefficients. CAP provides considerable flexibility in the output format, the number of temperatures to be tabulated, and the energy units of the calculated properties. This report provides a detailed description of input preparation, examples of input and output for several species, and a listing of all species in the current NASA Glenn thermodynamic data file.
CAP: A Computer Code for Generating Tabular Thermodynamic Functions from NASA Lewis Coefficients
NASA Technical Reports Server (NTRS)
Zehe, Michael J.; Gordon, Sanford; McBride, Bonnie J.
2001-01-01
For several decades the NASA Glenn Research Center has been providing a file of thermodynamic data for use in several computer programs. These data are in the form of least-squares coefficients that have been calculated from tabular thermodynamic data by means of the NASA Properties and Coefficients (PAC) program. The source thermodynamic data are obtained from the literature or from standard compilations. Most gas-phase thermodynamic functions are calculated by the authors from molecular constant data using ideal gas partition functions. The Coefficients and Properties (CAP) program described in this report permits the generation of tabulated thermodynamic functions from the NASA least-squares coefficients. CAP provides considerable flexibility in the output format, the number of temperatures to be tabulated, and the energy units of the calculated properties. This report provides a detailed description of input preparation, examples of input and output for several species, and a listing of all species in the current NASA Glenn thermodynamic data file.
Larsen, T; Doll, J C; Loizeau, F; Hosseini, N; Peng, A W; Fantner, G; Ricci, A J; Pruitt, B L
2017-01-01
Electrothermal actuators have many advantages compared to other actuators used in Micro-Electro-Mechanical Systems (MEMS). They are simple to design, easy to fabricate and provide large displacements at low voltages. Low voltages enable less stringent passivation requirements for operation in liquid. Despite these advantages, thermal actuation is typically limited to a few kHz bandwidth when using step inputs due to its intrinsic thermal time constant. However, the use of pre-shaped input signals offers a route for reducing the rise time of these actuators by orders of magnitude. We started with an electrothermally actuated cantilever having an initial 10-90% rise time of 85 μs in air and 234 μs in water for a standard open-loop step input. We experimentally characterized the linearity and frequency response of the cantilever when operated in air and water, allowing us to obtain transfer functions for the two cases. We used these transfer functions, along with functions describing desired reduced rise-time system responses, to numerically simulate the required input signals. Using these pre-shaped input signals, we improved the open-loop 10-90% rise time from 85 μs to 3 μs in air and from 234 μs to 5 μs in water, an improvement by a factor of 28 and 47, respectively. Using this simple control strategy for MEMS electrothermal actuators makes them an attractive alternative to other high speed micromechanical actuators such as piezoelectric stacks or electrostatic comb structures which are more complex to design, fabricate, or operate.
correlcalc: Two-point correlation function from redshift surveys
NASA Astrophysics Data System (ADS)
Rohin, Yeluripati
2017-11-01
correlcalc calculates two-point correlation function (2pCF) of galaxies/quasars using redshift surveys. It can be used for any assumed geometry or Cosmology model. Using BallTree algorithms to reduce the computational effort for large datasets, it is a parallelised code suitable for running on clusters as well as personal computers. It takes redshift (z), Right Ascension (RA) and Declination (DEC) data of galaxies and random catalogs as inputs in form of ascii or fits files. If random catalog is not provided, it generates one of desired size based on the input redshift distribution and mangle polygon file (in .ply format) describing the survey geometry. It also calculates different realisations of (3D) anisotropic 2pCF. Optionally it makes healpix maps of the survey providing visualization.
Systems and methods for reconfiguring input devices
NASA Technical Reports Server (NTRS)
Lancaster, Jeff (Inventor); De Mers, Robert E. (Inventor)
2012-01-01
A system includes an input device having first and second input members configured to be activated by a user. The input device is configured to generate activation signals associated with activation of the first and second input members, and each of the first and second input members are associated with an input function. A processor is coupled to the input device and configured to receive the activation signals. A memory coupled to the processor, and includes a reconfiguration module configured to store the input functions assigned to the first and second input members and, upon execution of the processor, to reconfigure the input functions assigned to the input members when the first input member is inoperable.
NASA Astrophysics Data System (ADS)
Kudomi, Nobuyuki; Watabe, Hiroshi; Hayashi, Takuya; Iida, Hidehiro
2007-04-01
Cerebral metabolic rate of oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood flow (CBF) images can be quantified using positron emission tomography (PET) by administrating 15O-labelled water (H152O) and oxygen (15O2). Conventionally, those images are measured with separate scans for three tracers C15O for CBV, H152O for CBF and 15O2 for CMRO2, and there are additional waiting times between the scans in order to minimize the influence of the radioactivity from the previous tracers, which results in a relatively long study period. We have proposed a dual tracer autoradiographic (DARG) approach (Kudomi et al 2005), which enabled us to measure CBF, OEF and CMRO2 rapidly by sequentially administrating H152O and 15O2 within a short time. Because quantitative CBF and CMRO2 values are sensitive to arterial input function, it is necessary to obtain accurate input function and a drawback of this approach is to require separation of the measured arterial blood time-activity curve (TAC) into pure water and oxygen input functions under the existence of residual radioactivity from the first injected tracer. For this separation, frequent manual sampling was required. The present paper describes two calculation methods: namely a linear and a model-based method, to separate the measured arterial TAC into its water and oxygen components. In order to validate these methods, we first generated a blood TAC for the DARG approach by combining the water and oxygen input functions obtained in a series of PET studies on normal human subjects. The combined data were then separated into water and oxygen components by the present methods. CBF and CMRO2 were calculated using those separated input functions and tissue TAC. The quantitative accuracy in the CBF and CMRO2 values by the DARG approach did not exceed the acceptable range, i.e., errors in those values were within 5%, when the area under the curve in the input function of the second tracer was larger than half of the first one. Bias and deviation in those values were also compatible to that of the conventional method, when noise was imposed on the arterial TAC. We concluded that the present calculation based methods could be of use for quantitatively calculating CBF and CMRO2 with the DARG approach.
Ogawa, Sachie K; Watabe-Uchida, Mitsuko
2017-05-02
Dopamine and serotonin play critical roles in flexible behaviors and are related to various psychiatric and motor disorders. This paper reviews the global organization of dopamine and serotonin systems through recent findings using a modified rabies virus. We first introduce methods for comprehensive mapping of monosynaptic inputs. We then describe quantitative comparisons across the data regarding monosynaptic inputs to dopamine neurons versus serotonin neurons. There is surprising similarity between the input to dopamine neurons in the ventral tegmental area (VTA) and the input to serotonin neurons in the dorsal raphe (DR), suggesting functional interactions between these systems. We next introduce studies of mapping monosynaptic inputs to subpopulations of dopamine neurons specified by their projection targets. It was found that the population of dopamine neurons that project to the tail of the striatum (TS) forms an anatomically distinct outlier, suggesting a unique function. From these series of anatomical studies, we propose that there are three information flows that regulate these neuromodulatory systems: the midline stream to serotonin neurons in median raphe (MR) and B6, the central stream to value-coding dopamine neurons and serotonin neurons in rostral DR, and the lateral stream to TS-projecting dopamine neurons. Finally we introduce a new approach to investigate firing patterns of monosynaptic inputs to dopamine neurons in behaving animals. Combining anatomical and physiological findings, we propose that within the central stream, dopamine neurons broadcast a central teaching signal rather than personal teaching signals to multiple brain areas, which are computed in a redundant way in multi-layered neural circuits. Examination of global organization of the dopamine and serotonin circuits not only revealed the complexity of the systems but also revealed some principles of their organization. We will also discuss limitations, practical issues and the possibility of future improvements of the rabies virus-mediated tracing system. Copyright © 2017 Elsevier Inc. All rights reserved.
Dynamic modeling and parameter estimation of a radial and loop type distribution system network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun Qui; Heng Chen; Girgis, A.A.
1993-05-01
This paper presents a new identification approach to three-phase power system modeling and model reduction taking power system network as multi-input, multi-output (MIMO) processes. The model estimate can be obtained in discrete-time input-output form, discrete- or continuous-time state-space variable form, or frequency-domain impedance transfer function matrix form. An algorithm for determining the model structure of this MIMO process is described. The effect of measurement noise on the approach is also discussed. This approach has been applied on a sample system and simulation results are also presented in this paper.
Bilinearity in Spatiotemporal Integration of Synaptic Inputs
Li, Songting; Liu, Nan; Zhang, Xiao-hui; Zhou, Douglas; Cai, David
2014-01-01
Neurons process information via integration of synaptic inputs from dendrites. Many experimental results demonstrate dendritic integration could be highly nonlinear, yet few theoretical analyses have been performed to obtain a precise quantitative characterization analytically. Based on asymptotic analysis of a two-compartment passive cable model, given a pair of time-dependent synaptic conductance inputs, we derive a bilinear spatiotemporal dendritic integration rule. The summed somatic potential can be well approximated by the linear summation of the two postsynaptic potentials elicited separately, plus a third additional bilinear term proportional to their product with a proportionality coefficient . The rule is valid for a pair of synaptic inputs of all types, including excitation-inhibition, excitation-excitation, and inhibition-inhibition. In addition, the rule is valid during the whole dendritic integration process for a pair of synaptic inputs with arbitrary input time differences and input locations. The coefficient is demonstrated to be nearly independent of the input strengths but is dependent on input times and input locations. This rule is then verified through simulation of a realistic pyramidal neuron model and in electrophysiological experiments of rat hippocampal CA1 neurons. The rule is further generalized to describe the spatiotemporal dendritic integration of multiple excitatory and inhibitory synaptic inputs. The integration of multiple inputs can be decomposed into the sum of all possible pairwise integration, where each paired integration obeys the bilinear rule. This decomposition leads to a graph representation of dendritic integration, which can be viewed as functionally sparse. PMID:25521832
Analysis of Mission Effectiveness: Modern System Architecture Tools for Project Developers
2017-12-01
operator input and scripted instructions to describe low-level flow. Note that the case study in Chapter IV describes one pass through evaluation...capability of the sensors. A constraint on the case study is that each sensor type must cover the entire operations area. Cost is a function of 53...completed. 5. Assessment This case study focuses on the first recursive refinement phase completed in a multi-phase effort to demonstrate the effects
NASA Technical Reports Server (NTRS)
1979-01-01
The functions performed by the systems management (SM) application software are described along with the design employed to accomplish these functions. The operational sequences (OPS) control segments and the cyclic processes they control are defined. The SM specialist function control (SPEC) segments and the display controlled 'on-demand' processes that are invoked by either an OPS or SPEC control segment as a direct result of an item entry to a display are included. Each processing element in the SM application is described including an input/output table and a structured control flow diagram. The flow through the module and other information pertinent to that process and its interfaces to other processes are included.
The conical scanner evaluation system design
NASA Technical Reports Server (NTRS)
Cumella, K. E.; Bilanow, S.; Kulikov, I. B.
1982-01-01
The software design for the conical scanner evaluation system is presented. The purpose of this system is to support the performance analysis of the LANDSAT-D conical scanners, which are infrared horizon detection attitude sensors designed for improved accuracy. The system consists of six functionally independent subsystems and five interface data bases. The system structure and interfaces of each of the subsystems is described and the content, format, and file structure of each of the data bases is specified. For each subsystem, the functional logic, the control parameters, the baseline structure, and each of the subroutines are described. The subroutine descriptions include a procedure definition and the input and output parameters.
A computer-aided approach to nonlinear control systhesis
NASA Technical Reports Server (NTRS)
Wie, Bong; Anthony, Tobin
1988-01-01
The major objective of this project is to develop a computer-aided approach to nonlinear stability analysis and nonlinear control system design. This goal is to be obtained by refining the describing function method as a synthesis tool for nonlinear control design. The interim report outlines the approach by this study to meet these goals including an introduction to the INteractive Controls Analysis (INCA) program which was instrumental in meeting these study objectives. A single-input describing function (SIDF) design methodology was developed in this study; coupled with the software constructed in this study, the results of this project provide a comprehensive tool for design and integration of nonlinear control systems.
Modelling effects on grid cells of sensory input during self‐motion
Raudies, Florian; Hinman, James R.
2016-01-01
Abstract The neural coding of spatial location for memory function may involve grid cells in the medial entorhinal cortex, but the mechanism of generating the spatial responses of grid cells remains unclear. This review describes some current theories and experimental data concerning the role of sensory input in generating the regular spatial firing patterns of grid cells, and changes in grid cell firing fields with movement of environmental barriers. As described here, the influence of visual features on spatial firing could involve either computations of self‐motion based on optic flow, or computations of absolute position based on the angle and distance of static visual cues. Due to anatomical selectivity of retinotopic processing, the sensory features on the walls of an environment may have a stronger effect on ventral grid cells that have wider spaced firing fields, whereas the sensory features on the ground plane may influence the firing of dorsal grid cells with narrower spacing between firing fields. These sensory influences could contribute to the potential functional role of grid cells in guiding goal‐directed navigation. PMID:27094096
Connectivity in the human brain dissociates entropy and complexity of auditory inputs.
Nastase, Samuel A; Iacovella, Vittorio; Davis, Ben; Hasson, Uri
2015-03-01
Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. Copyright © 2014. Published by Elsevier Inc.
Ward, B Douglas; Mazaheri, Yousef
2006-12-15
The blood oxygenation level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments in response to input stimuli is temporally delayed and distorted due to the blurring effect of the voxel hemodynamic impulse response function (IRF). Knowledge of the IRF, obtained during the same experiment, or as the result of a separate experiment, can be used to dynamically obtain an estimate of the input stimulus function. Reconstruction of the input stimulus function allows the fMRI experiment to be evaluated as a communication system. The input stimulus function may be considered as a "message" which is being transmitted over a noisy "channel", where the "channel" is characterized by the voxel IRF. Following reconstruction of the input stimulus function, the received message is compared with the transmitted message on a voxel-by-voxel basis to determine the transmission error rate. Reconstruction of the input stimulus function provides insight into actual brain activity during task activation with less temporal blurring, and may be considered as a first step toward estimation of the true neuronal input function.
A multi-purpose open-source triggering platform for magnetic resonance
NASA Astrophysics Data System (ADS)
Ruytenberg, T.; Webb, A. G.; Beenakker, J. W. M.
2014-10-01
Many MR scans need to be synchronised with external events such as the cardiac or respiratory cycles. For common physiological functions commercial trigger equipment exists, but for more experimental inputs these are not available. This paper describes the design of a multi-purpose open-source trigger platform for MR systems. The heart of the system is an open-source Arduino Due microcontroller. This microcontroller samples an analogue input and digitally processes these data to determine the trigger. The output of the microcontroller is programmed to mimic a physiological signal which is fed into the electrocardiogram (ECG) or pulse oximeter port of MR scanner. The microcontroller is connected to a Bluetooth dongle that allows wireless monitoring and control outside the scanner room. This device can be programmed to generate a trigger based on various types of input. As one example, this paper describes how it can be used as an acoustic cardiac triggering unit. For this, a plastic stethoscope is connected to a microphone which is used as an input for the system. This test setup was used to acquire retrospectively-triggered cardiac scans in ten volunteers. Analysis showed that this platform produces a reliable trigger (>99% triggers are correct) with a small average 8 ms variation between the exact trigger points.
A multi-purpose open-source triggering platform for magnetic resonance.
Ruytenberg, T; Webb, A G; Beenakker, J W M
2014-10-01
Many MR scans need to be synchronised with external events such as the cardiac or respiratory cycles. For common physiological functions commercial trigger equipment exists, but for more experimental inputs these are not available. This paper describes the design of a multi-purpose open-source trigger platform for MR systems. The heart of the system is an open-source Arduino Due microcontroller. This microcontroller samples an analogue input and digitally processes these data to determine the trigger. The output of the microcontroller is programmed to mimic a physiological signal which is fed into the electrocardiogram (ECG) or pulse oximeter port of MR scanner. The microcontroller is connected to a Bluetooth dongle that allows wireless monitoring and control outside the scanner room. This device can be programmed to generate a trigger based on various types of input. As one example, this paper describes how it can be used as an acoustic cardiac triggering unit. For this, a plastic stethoscope is connected to a microphone which is used as an input for the system. This test setup was used to acquire retrospectively-triggered cardiac scans in ten volunteers. Analysis showed that this platform produces a reliable trigger (>99% triggers are correct) with a small average 8 ms variation between the exact trigger points. Copyright © 2014 Elsevier Inc. All rights reserved.
Gabriele, Mark L.; Shahmoradian, Sarah H.; French, Christopher C.; Henkel, Craig K.we; McHaffie, John G.
2007-01-01
The central nucleus of the inferior colliculus (IC) is a laminated structure that receives multiple converging afferent projections. These projections terminate in a layered arrangement and are aligned with dendritic arbors of the predominant disc-shaped neurons, forming fibrodendritic laminae. Within this structural framework, inputs terminate in a precise manner, establishing a mosaic of partially overlapping domains that likely define functional compartments. Although several of these patterned inputs have been described in the adult, relatively little is known about their organization prior to hearing onset. The present study used the lipophilic carbocyanine dyes DiI and DiD to examine the ipsilateral and contralateral projections from the lateral superior olivary (LSO) nucleus to the IC in a developmental series of paraformaldehyde-fixed kitten tissue. By birth, the crossed and uncrossed projections had reached the IC and were distributed across the frequency axis of the central nucleus. At this earliest postnatal stage, projections already exhibited a characteristic banded arrangement similar to that described in the adult. The heaviest terminal fields of the two inputs were always complementary in nature, with the ipsilateral input appearing slightly denser. This early arrangement of interdigitating ipsilateral and contralateral LSO axonal bands that occupy adjacent sublayers supports the idea that the initial establishment of this highly organized mosaic of inputs that defines distinct synaptic domains within the IC occurs largely in the absence of auditory experience. Potential developmental mechanisms that may shape these highly ordered inputs prior to hearing onset are discussed. PMID:17850770
Nonlinear analysis of a rotor-bearing system using describing functions
NASA Astrophysics Data System (ADS)
Maraini, Daniel; Nataraj, C.
2018-04-01
This paper presents a technique for modelling the nonlinear behavior of a rotor-bearing system with Hertzian contact, clearance, and rotating unbalance. The rotor-bearing system is separated into linear and nonlinear components, and the nonlinear bearing force is replaced with an equivalent describing function gain. The describing function captures the relationship between the amplitude of the fundamental input to the nonlinearity and the fundamental output. The frequency response is constructed for various values of the clearance parameter, and the results show the presence of a jump resonance in bearings with both clearance and preload. Nonlinear hardening type behavior is observed in the case with clearance and softening behavior is observed for the case with preload. Numerical integration is also carried out on the nonlinear equations of motion showing strong agreement with the approximate solution. This work could easily be extended to include additional nonlinearities that arise from defects, providing a powerful diagnostic tool.
Functional identification of spike-processing neural circuits.
Lazar, Aurel A; Slutskiy, Yevgeniy B
2014-02-01
We introduce a novel approach for a complete functional identification of biophysical spike-processing neural circuits. The circuits considered accept multidimensional spike trains as their input and comprise a multitude of temporal receptive fields and conductance-based models of action potential generation. Each temporal receptive field describes the spatiotemporal contribution of all synapses between any two neurons and incorporates the (passive) processing carried out by the dendritic tree. The aggregate dendritic current produced by a multitude of temporal receptive fields is encoded into a sequence of action potentials by a spike generator modeled as a nonlinear dynamical system. Our approach builds on the observation that during any experiment, an entire neural circuit, including its receptive fields and biophysical spike generators, is projected onto the space of stimuli used to identify the circuit. Employing the reproducing kernel Hilbert space (RKHS) of trigonometric polynomials to describe input stimuli, we quantitatively describe the relationship between underlying circuit parameters and their projections. We also derive experimental conditions under which these projections converge to the true parameters. In doing so, we achieve the mathematical tractability needed to characterize the biophysical spike generator and identify the multitude of receptive fields. The algorithms obviate the need to repeat experiments in order to compute the neurons' rate of response, rendering our methodology of interest to both experimental and theoretical neuroscientists.
NASA Astrophysics Data System (ADS)
Nakaike, Shin'ichi; Tanaka, Masao
The authors describe present status of patent information service by JAPIO, new on-line system project (PATOLIS-III), Paperless Project by the Patent Office and input of domestic gazettes for patent into optical disks. They also describe CD-ROM created by using image information of the gazettes for patent which is produced under the Paperless Project, its production method, and the terminals and their functions. Some problems found in CD-ROM of JAPIO, such as time lag for the issuance, treatment of the multiple copies, and countermeasures against them are mentioned.
NASA Technical Reports Server (NTRS)
Purves, L.; Strang, R. F.; Dube, M. P.; Alea, P.; Ferragut, N.; Hershfeld, D.
1983-01-01
The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data.
Rosen, I G; Luczak, Susan E; Weiss, Jordan
2014-03-15
We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.
Gamberini, Michela; Bakola, Sophia; Passarelli, Lauretta; Burman, Kathleen J; Rosa, Marcello G P; Fattori, Patrizia; Galletti, Claudio
2016-04-01
The medial posterior parietal cortex of the primate brain includes different functional areas, which have been defined based on the functional properties, cyto- and myeloarchitectural criteria, and cortico-cortical connections. Here, we describe the thalamic projections to two of these areas (V6 and V6A), based on 14 retrograde neuronal tracer injections in 11 hemispheres of 9 Macaca fascicularis. The injections were placed either by direct visualisation or using electrophysiological guidance, and the location of injection sites was determined post mortem based on cyto- and myeloarchitectural criteria. We found that the majority of the thalamic afferents to the visual area V6 originate in subdivisions of the lateral and inferior pulvinar nuclei, with weaker inputs originating from the central densocellular, paracentral, lateral posterior, lateral geniculate, ventral anterior and mediodorsal nuclei. In contrast, injections in both the dorsal and ventral parts of the visuomotor area V6A revealed strong inputs from the lateral posterior and medial pulvinar nuclei, as well as smaller inputs from the ventrolateral complex and from the central densocellular, paracentral, and mediodorsal nuclei. These projection patterns are in line with the functional properties of injected areas: "dorsal stream" extrastriate area V6 receives information from visuotopically organised subdivisions of the thalamus; whereas visuomotor area V6A, which is involved in the sensory guidance of arm movement, receives its primary afferents from thalamic nuclei that provide high-order somatic and visual input.
Connectivity in the human brain dissociates entropy and complexity of auditory inputs☆
Nastase, Samuel A.; Iacovella, Vittorio; Davis, Ben; Hasson, Uri
2015-01-01
Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. PMID:25536493
Art, Reflection, and Creativity in the Classroom: The Student-Driven Art Course
ERIC Educational Resources Information Center
Andrews, Barbara Henriksen
2005-01-01
The structure and functioning mechanics of a student-driven art course, "Arts and Ideas" [described in the September 2001 issue of "Art Education" in "Art and Ideas: Reaching Nontraditional Art Students" (Andrews, 2001)] were designed to create a classroom environment that would promote greater student input into learning and the choice of art…
ERIC Educational Resources Information Center
Czuchry, Andrew J.; And Others
This user's guide describes the functions, logical operations and subroutines, input data requirements, and available outputs of the Training Requirements Analysis Model (TRAMOD), a computerized analytical life cycle cost modeling system for use in the early stages of system design. Operable in a stand-alone mode, TRAMOD can be used for the…
Bouncers, Brokers, and Glue: The Self-Described Roles of Social Workers in Urban Hospitals
ERIC Educational Resources Information Center
Craig, Shelley L.; Muskat, Barbara
2013-01-01
Social workers delivering services in health care settings face unique challenges and opportunities. The purpose of this study was to solicit input from social workers employed in urban hospitals about their perceptions of the roles, contribution, and professional functioning of social work in a rapidly changing health care environment. Using…
Jeffrey P. Prestemon; Geoffrey H. Donovan
2008-01-01
Making input decisions under climate uncertainty often involves two-stage methods that use expensive and opaque transfer functions. This article describes an alternative, single-stage approach to such decisions using forecasting methods. The example shown is for preseason fire suppression resource contracting decisions faced by the United States Forest Service. Two-...
Locally Bayesian Learning with Applications to Retrospective Revaluation and Highlighting
ERIC Educational Resources Information Center
Kruschke, John K.
2006-01-01
A scheme is described for locally Bayesian parameter updating in models structured as successions of component functions. The essential idea is to back-propagate the target data to interior modules, such that an interior component's target is the input to the next component that maximizes the probability of the next component's target. Each layer…
ERIC Educational Resources Information Center
Price Waterhouse and Co., New York, NY.
This volume on Phase II of the New York State Educational Information System (NYSEIS) describes the Gross Systems Analysis and Design, which includes the general flow diagram and processing chart for each of the student, personnel, and financial subsystems. Volume II, Functional Specifications, includes input/output requirements and file…
NASA Astrophysics Data System (ADS)
Michalik, Peter; Mital, Dusan; Zajac, Jozef; Brezikova, Katarina; Duplak, Jan; Hatala, Michal; Radchenko, Svetlana
2016-10-01
Article deals with point to using intelligent relay and PLC systems in practice, to their architecture and principles of programming and simulations for education process on all types of school from secondary to universities. Aim of the article is proposal of simple examples of applications, where is demonstrated methodology of programming on real simple practice examples and shown using of chosen instructions. In practical part is described process of creating schemas and describing of function blocks, where are described methodologies of creating program and simulations of output reactions on changeable inputs for intelligent relays.
NASA Technical Reports Server (NTRS)
Zacharias, G. L.; Young, L. R.
1981-01-01
Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation is modeled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A dual-input describing function analysis supports the complementary model; vestibular cues dominate sensation at higher frequencies. The describing function model is extended by the proposal of a nonlinear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.
AOIPS 3 user's guide. Volume 2: Program descriptions
NASA Technical Reports Server (NTRS)
Schotz, Steve S.; Piper, Thomas S.; Negri, Andrew J.
1990-01-01
The Atmospheric and Oceanographic Information Processing System (AOIPS) 3 is the version of the AOIPS software as of April 1989. The AOIPS software was developed jointly by the Goddard Space Flight Center and General Sciences Corporation. A detailed description of very AOIPS program is presented. It is intended to serve as a reference for such items as program functionality, program operational instructions, and input/output variable descriptions. Program descriptions are derived from the on-line help information. Each program description is divided into two sections. The functional description section describes the purpose of the program and contains any pertinent operational information. The program description sections lists the program variables as they appear on-line, and describes them in detail.
Langenbucher, Frieder
2003-11-01
Convolution and deconvolution are the classical in-vitro-in-vivo correlation tools to describe the relationship between input and weighting/response in a linear system, where input represents the drug release in vitro, weighting/response any body response in vivo. While functional treatment, e.g. in terms of polyexponential or Weibull distribution, is more appropriate for general survey or prediction, numerical algorithms are useful for treating actual experimental data. Deconvolution is not considered an algorithm by its own, but the inversion of a corresponding convolution. MS Excel is shown to be a useful tool for all these applications.
NERVA dynamic analysis methodology, SPRVIB
NASA Technical Reports Server (NTRS)
Vronay, D. F.
1972-01-01
The general dynamic computer code called SPRVIB (Spring Vib) developed in support of the NERVA (nuclear engine for rocket vehicle application) program is described. Using normal mode techniques, the program computes kinematical responses of a structure caused by various combinations of harmonic and elliptic forcing functions or base excitations. Provision is made for a graphical type of force or base excitation input to the structure. A description of the required input format and a listing of the program are presented, along with several examples illustrating the use of the program. SPRVIB is written in FORTRAN 4 computer language for use on the CDC 6600 or the IBM 360/75 computers.
Portable Microcomputer Utilization for On-Line Pulmonary Testing
Pugh, R.; Fourre, J.; Karetzky, M.
1981-01-01
A host-remote pulmonary function testing system is described that is flexible, non-dedicated, inexpensive, and readily upgradable. It is applicable for laboratories considering computerization as well as for those which have converted to one of the already available but restricted systems. The remote unit has an 8 slot bus for memory, input-output boards, and an A-D converter. It has its own terminal for manual input and display of computed and measured data which is transmitted via an acoustic modem to a larger microcomputer. The program modules are written in Pascal-Z and/or the supplied Z-80 macro assembler as external procedures.
Gradient-based controllers for timed continuous Petri nets
NASA Astrophysics Data System (ADS)
Lefebvre, Dimitri; Leclercq, Edouard; Druaux, Fabrice; Thomas, Philippe
2015-07-01
This paper is about control design for timed continuous Petri nets that are described as piecewise affine systems. In this context, the marking vector is considered as the state space vector, weighted marking of place subsets are defined as the model outputs and the model inputs correspond to multiplicative control actions that slow down the firing rate of some controllable transitions. Structural and functional sensitivity of the outputs with respect to the inputs are discussed in terms of Petri nets. Then, gradient-based controllers (GBC) are developed in order to adapt the control actions of the controllable transitions according to desired trajectories of the outputs.
NASA Technical Reports Server (NTRS)
Hammond, P. L.
1979-01-01
This manual describes the use of the primary ultrasonics task (PUT) and the transducer characterization system (XC) for the collection, processing, and recording of data received from a pulse-echo ultrasonic system. Both PUT and XC include five primary functions common to many real-time data acquisition systems. Some of these functions are implemented using the same code in both systems. The solicitation and acceptance of operator control input is emphasized. Those operations not under user control are explained.
Orbiter global positioning system design and Ku-band problem investigations, exhibit B, revision 1
NASA Technical Reports Server (NTRS)
Lindsey, W. C.
1983-01-01
The hardware, software, and interface between them was investigated for a low dynamics, nonhostile environment, low cost GPS receiver (GPS Z set). The set is basically a three dimensional geodetic and way point navigator with GPS time, ground speed, and ground track as possible outputs in addition to the usual GPS receiver set outputs. Each functional module comprising the GPS set is described, enumerating its functional inputs and outputs, leading to the interface between hardware and software of the set.
NASA Astrophysics Data System (ADS)
Xiong, Guoming; Cumming, Paul; Todica, Andrei; Hacker, Marcus; Bartenstein, Peter; Böning, Guido
2012-12-01
Absolute quantitation of the cerebral metabolic rate for glucose (CMRglc) can be obtained in positron emission tomography (PET) studies when serial measurements of the arterial [18F]-fluoro-deoxyglucose (FDG) input are available. Since this is not always practical in PET studies of rodents, there has been considerable interest in defining an image-derived input function (IDIF) by placing a volume of interest (VOI) within the left ventricle of the heart. However, spill-in arising from trapping of FDG in the myocardium often leads to progressive contamination of the IDIF, which propagates to underestimation of the magnitude of CMRglc. We therefore developed a novel, non-invasive method for correcting the IDIF without scaling to a blood sample. To this end, we first obtained serial arterial samples and dynamic FDG-PET data of the head and heart in a group of eight anaesthetized rats. We fitted a bi-exponential function to the serial measurements of the IDIF, and then used the linear graphical Gjedde-Patlak method to describe the accumulation in myocardium. We next estimated the magnitude of myocardial spill-in reaching the left ventricle VOI by assuming a Gaussian point-spread function, and corrected the measured IDIF for this estimated spill-in. Finally, we calculated parametric maps of CMRglc using the corrected IDIF, and for the sake of comparison, relative to serial blood sampling from the femoral artery. The uncorrected IDIF resulted in 20% underestimation of the magnitude of CMRglc relative to the gold standard arterial input method. However, there was no bias with the corrected IDIF, which was robust to the variable extent of myocardial tracer uptake, such that there was a very high correlation between individual CMRglc measurements using the corrected IDIF with gold-standard arterial input results. Based on simulation, we furthermore find that electrocardiogram-gating, i.e. ECG-gating is not necessary for IDIF quantitation using our approach.
Frequency and function in the basal ganglia: the origins of beta and gamma band activity.
Blenkinsop, Alexander; Anderson, Sean; Gurney, Kevin
2017-07-01
Neuronal oscillations in the basal ganglia have been observed to correlate with behaviours, although the causal mechanisms and functional significance of these oscillations remain unknown. We present a novel computational model of the healthy basal ganglia, constrained by single unit recordings from non-human primates. When the model is run using inputs that might be expected during performance of a motor task, the network shows emergent phenomena: it functions as a selection mechanism and shows spectral properties that match those seen in vivo. Beta frequency oscillations are shown to require pallido-striatal feedback, and occur with behaviourally relevant cortical input. Gamma oscillations arise in the subthalamic-globus pallidus feedback loop, and occur during movement. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the basal ganglia and lays the foundation for an integrated approach to study basal ganglia pathologies such as Parkinson's disease in silico. Neural oscillations in the basal ganglia (BG) are well studied yet remain poorly understood. Behavioural correlates of spectral activity are well described, yet a quantitative hypothesis linking time domain dynamics and spectral properties to BG function has been lacking. We show, for the first time, that a unified description is possible by interpreting previously ignored structure in data describing globus pallidus interna responses to cortical stimulation. These data were used to expose a pair of distinctive neuronal responses to the stimulation. This observation formed the basis for a new mathematical model of the BG, quantitatively fitted to the data, which describes the dynamics in the data, and is validated against other stimulus protocol experiments. A key new result is that when the model is run using inputs hypothesised to occur during the performance of a motor task, beta and gamma frequency oscillations emerge naturally during static-force and movement, respectively, consistent with experimental local field potentials. This new model predicts that the pallido-striatum connection has a key role in the generation of beta band activity, and that the gamma band activity associated with motor task performance has its origins in the pallido-subthalamic feedback loop. The network's functionality as a selection mechanism also occurs as an emergent property, and closer fits to the data gave better selection properties. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the BG and therefore lays the foundation for an integrated approach to study BG pathologies such as Parkinson's disease in silico. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs
McFarland, James M.; Cui, Yuwei; Butts, Daniel A.
2013-01-01
The computation represented by a sensory neuron's response to stimuli is constructed from an array of physiological processes both belonging to that neuron and inherited from its inputs. Although many of these physiological processes are known to be nonlinear, linear approximations are commonly used to describe the stimulus selectivity of sensory neurons (i.e., linear receptive fields). Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron's inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron's response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. Parameter estimation is robust and efficient even with large numbers of model components and in the context of high-dimensional stimuli with complex statistical structure (e.g. natural stimuli). We describe detailed methods for estimating the model parameters, and illustrate the advantages of the NIM using a range of example sensory neurons in the visual and auditory systems. We thus present a modeling framework that can capture a broad range of nonlinear response functions while providing physiologically interpretable descriptions of neural computation. PMID:23874185
A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1989-01-01
Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.
Dynamic Docking Test System (DDTS) active table computer program NASA Advanced Docking System (NADS)
NASA Technical Reports Server (NTRS)
Gates, R. M.; Jantz, R. E.
1974-01-01
A computer program was developed to describe the three-dimensional motion of the Dynamic Docking Test System active table. The input consists of inertia and geometry data, actuator structural data, forcing function data, hydraulics data, servo electronics data, and integration control data. The output consists of table responses, actuator bending responses, and actuator responses.
On-orbit flight control algorithm description
NASA Technical Reports Server (NTRS)
1975-01-01
Algorithms are presented for rotational and translational control of the space shuttle orbiter in the orbital mission phases, which are external tank separation, orbit insertion, on-orbit and de-orbit. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. Software functional requirements are described using block diagrams where feasible, and input--output tables, and the software implementation of each function is presented in equations and structured flow charts. Included are a glossary of all symbols used to define the requirements, and an appendix of supportive material.
Hellyer, Peter John; Clopath, Claudia; Kehagia, Angie A; Turkheimer, Federico E; Leech, Robert
2017-08-01
In recent years, there have been many computational simulations of spontaneous neural dynamics. Here, we describe a simple model of spontaneous neural dynamics that controls an agent moving in a simple virtual environment. These dynamics generate interesting brain-environment feedback interactions that rapidly destabilize neural and behavioral dynamics demonstrating the need for homeostatic mechanisms. We investigate roles for homeostatic plasticity both locally (local inhibition adjusting to balance excitatory input) as well as more globally (regional "task negative" activity that compensates for "task positive", sensory input in another region) balancing neural activity and leading to more stable behavior (trajectories through the environment). Our results suggest complementary functional roles for both local and macroscale mechanisms in maintaining neural and behavioral dynamics and a novel functional role for macroscopic "task-negative" patterns of activity (e.g., the default mode network).
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2015-01-01
Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions
Realistic Covariance Prediction for the Earth Science Constellation
NASA Technical Reports Server (NTRS)
Duncan, Matthew; Long, Anne
2006-01-01
Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. One component of the risk assessment process is computing the collision probability between two space objects. The collision probability is computed using Monte Carlo techniques as well as by numerically integrating relative state probability density functions. Each algorithm takes as inputs state vector and state vector uncertainty information for both objects. The state vector uncertainty information is expressed in terms of a covariance matrix. The collision probability computation is only as good as the inputs. Therefore, to obtain a collision calculation that is a useful decision-making metric, realistic covariance matrices must be used as inputs to the calculation. This paper describes the process used by the NASA/Goddard Space Flight Center's Earth Science Mission Operations Project to generate realistic covariance predictions for three of the Earth Science Constellation satellites: Aqua, Aura and Terra.
GEMPAK: An arbitrary aircraft geometry generator
NASA Technical Reports Server (NTRS)
Stack, S. H.; Edwards, C. L. W.; Small, W. J.
1977-01-01
A computer program, GEMPAK, has been developed to aid in the generation of detailed configuration geometry. The program was written to allow the user as much flexibility as possible in his choices of configurations and the detail of description desired and at the same time keep input requirements and program turnaround and cost to a minimum. The program consists of routines that generate fuselage and planar-surface (winglike) geometry and a routine that will determine the true intersection of all components with the fuselage. This paper describes the methods by which the various geometries are generated and provides input description with sample input and output. Also included are descriptions of the primary program variables and functions performed by the various routines. The FORTRAN program GEMPAK has been used extensively in conjunction with interfaces to several aerodynamic and plotting computer programs and has proven to be an effective aid in the preliminary design phase of aircraft configurations.
Antibody-controlled actuation of DNA-based molecular circuits.
Engelen, Wouter; Meijer, Lenny H H; Somers, Bram; de Greef, Tom F A; Merkx, Maarten
2017-02-17
DNA-based molecular circuits allow autonomous signal processing, but their actuation has relied mostly on RNA/DNA-based inputs, limiting their application in synthetic biology, biomedicine and molecular diagnostics. Here we introduce a generic method to translate the presence of an antibody into a unique DNA strand, enabling the use of antibodies as specific inputs for DNA-based molecular computing. Our approach, antibody-templated strand exchange (ATSE), uses the characteristic bivalent architecture of antibodies to promote DNA-strand exchange reactions both thermodynamically and kinetically. Detailed characterization of the ATSE reaction allowed the establishment of a comprehensive model that describes the kinetics and thermodynamics of ATSE as a function of toehold length, antibody-epitope affinity and concentration. ATSE enables the introduction of complex signal processing in antibody-based diagnostics, as demonstrated here by constructing molecular circuits for multiplex antibody detection, integration of multiple antibody inputs using logic gates and actuation of enzymes and DNAzymes for signal amplification.
Angelici, Bartolomeo; Mailand, Erik; Haefliger, Benjamin; Benenson, Yaakov
2016-08-30
One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with endogenous mammalian transcription factors has been particularly difficult. Here, we describe a systematic approach that enables integration and transduction of multiple mammalian transcription factor inputs by a synthetic network. The approach is facilitated by a proportional amplifier sensor based on synergistic positive autoregulation. The circuits efficiently transduce endogenous transcription factor levels into RNAi, transcriptional transactivation, and site-specific recombination. They also enable AND logic between pairs of arbitrary transcription factors. The results establish a framework for developing synthetic gene networks that interface with cellular processes through transcriptional regulators. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Antibody-controlled actuation of DNA-based molecular circuits
NASA Astrophysics Data System (ADS)
Engelen, Wouter; Meijer, Lenny H. H.; Somers, Bram; de Greef, Tom F. A.; Merkx, Maarten
2017-02-01
DNA-based molecular circuits allow autonomous signal processing, but their actuation has relied mostly on RNA/DNA-based inputs, limiting their application in synthetic biology, biomedicine and molecular diagnostics. Here we introduce a generic method to translate the presence of an antibody into a unique DNA strand, enabling the use of antibodies as specific inputs for DNA-based molecular computing. Our approach, antibody-templated strand exchange (ATSE), uses the characteristic bivalent architecture of antibodies to promote DNA-strand exchange reactions both thermodynamically and kinetically. Detailed characterization of the ATSE reaction allowed the establishment of a comprehensive model that describes the kinetics and thermodynamics of ATSE as a function of toehold length, antibody-epitope affinity and concentration. ATSE enables the introduction of complex signal processing in antibody-based diagnostics, as demonstrated here by constructing molecular circuits for multiplex antibody detection, integration of multiple antibody inputs using logic gates and actuation of enzymes and DNAzymes for signal amplification.
Computing Functions by Approximating the Input
ERIC Educational Resources Information Center
Goldberg, Mayer
2012-01-01
In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their…
A computer program for obtaining airplane configuration plots from digital Datcom input data
NASA Technical Reports Server (NTRS)
Roy, M. L.; Sliwa, S. M.
1983-01-01
A computer program is described which reads the input file for the Stability and Control Digital Datcom program and generates plots from the aircraft configuration data. These plots can be used to verify the geometric input data to the Digital Datcom program. The program described interfaces with utilities available for plotting aircraft configurations by creating a file from the Digital Datcom input data.
Jump resonant frequency islands in nonlinear feedback control systems
NASA Technical Reports Server (NTRS)
Koenigsberg, W. D.; Dunn, J. C.
1975-01-01
A new type of jump resonance is predicted and observed in certain nonlinear feedback control systems. The new jump resonance characteristic is described as a 'frequency island' due to the fact that a portion of the input-output transfer characteristic is disjoint from the main body. The presence of such frequency islands was predicted by using a sinusoidal describing function characterization of the dynamics of an inertial gyro employing nonlinear ternary rebalance logic. While the general conditions under which such islands are possible has not been examined, a numerical approach is presented which can aid in establishing their presence. The existence of the frequency islands predicted for the ternary rebalanced gyro was confirmed by simulating the nonlinear system and measuring the transfer function.
Prediction, scenarios and insight: The uses of an end-to-end model
NASA Astrophysics Data System (ADS)
Steele, John H.
2012-09-01
A major function of ecosystem models is to provide extrapolations from observed data in terms of predictions or scenarios or insight. These models can be at various levels of taxonomic resolution such as total community production, abundance of functional groups, or species composition, depending on the data input as drivers. A 40-year dynamic simulation of end-to-end processes in the Georges Bank food web is used to illustrate the input/output relations and the insights gained at the three levels of food web aggregation. The focus is on the intermediate level and the longer term changes in three functional fish guilds - planktivores, benthivores and piscivores - in terms of three ecosystem-based metrics - nutrient input, relative productivity of plankton and benthos, and food intake by juvenile fish. These simulations can describe the long term constraints imposed on guild structure and productivity by energy fluxes over the 40 years but cannot explain concurrent switches in abundance of individual species within guilds. Comparing time series data for individual species with model output provides insights; but including the data in the model would confer only limited extra information. The advantages and limitations of the three levels of resolution of models in relation to ecosystem-based management are: The correlations between primary production and total yield of fish imply a “bottom-up” constraint on end-to-end energy flow through the food web that can provide predictions of such yields. Functionally defined metrics such as nutrient input, relative productivity of plankton and benthos and food intake by juvenile fish, represent bottom-up, mid-level and top-down forcing of the food web. Model scenarios using these metrics can demonstrate constraints on the productivity of these functionally defined guilds within the limits set by (1). Comparisons of guild simulations with time series of fish species provide insight into the switches in species dominance that accompany changes in guild productivity and can illuminate the top-down aspects of regime shifts.
Martin, S.J.; Ricco, A.J.
1993-08-10
A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.
Transforming the Way We Teach Function Transformations
ERIC Educational Resources Information Center
Faulkenberry, Eileen Durand; Faulkenberry, Thomas J.
2010-01-01
In this article, the authors discuss "function," a well-defined rule that relates inputs to outputs. They have found that by using the input-output definition of "function," they can examine transformations of functions simply by looking at changes to input or output and the respective changes to the graph. Applying transformations to the input…
Human Factors and Information Operation for a Nuclear Power Space Vehicle
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Brown-VanHoozer, S. Alenka
2002-01-01
This paper describes human-interactive systems needed for a crewed nuclear-enabled space mission. A synthesis of aircraft engine and nuclear power plant displays, biofeedback of sensory input, virtual control, brain mapping for control process and manipulation, and so forth are becoming viable solutions. These aspects must maintain the crew's situation awareness and performance, which entails a delicate function allocation between crew and automation.
Compiler writing system detail design specification. Volume 2: Component specification
NASA Technical Reports Server (NTRS)
Arthur, W. J.
1974-01-01
The logic modules and data structures composing the Meta-translator module are desribed. This module is responsible for the actual generation of the executable language compiler as a function of the input Meta-language. Machine definitions are also processed and are placed as encoded data on the compiler library data file. The transformation of intermediate language in target language object text is described.
NASA Technical Reports Server (NTRS)
Green, D. M.
1978-01-01
Software programs are described, one which implements a voltage regulation function, and one which implements a charger function with peak-power tracking of its input. The software, written in modular fashion, is intended as a vehicle for further experimentation with the P-3 system. A control teleprinter allows an operator to make parameter modifications to the control algorithm during experiments. The programs require 3K ROM and 2K ram each. User manuals for each system are included as well as a third program for simple I/O control.
Structural tailoring of advanced turboprops (STAT): User's manual
NASA Technical Reports Server (NTRS)
Brown, K. W.
1991-01-01
This user's manual describes the Structural Tailoring of Advanced Turboprops program. It contains instructions to prepare the input for optimization, blade geometry and analysis, geometry generation, and finite element program control. In addition, a sample input file is provided as well as a section describing special applications (i.e., non-standard input).
Optimal inverse functions created via population-based optimization.
Jennings, Alan L; Ordóñez, Raúl
2014-06-01
Finding optimal inputs for a multiple-input, single-output system is taxing for a system operator. Population-based optimization is used to create sets of functions that produce a locally optimal input based on a desired output. An operator or higher level planner could use one of the functions in real time. For the optimization, each agent in the population uses the cost and output gradients to take steps lowering the cost while maintaining their current output. When an agent reaches an optimal input for its current output, additional agents are generated in the output gradient directions. The new agents then settle to the local optima for the new output values. The set of associated optimal points forms an inverse function, via spline interpolation, from a desired output to an optimal input. In this manner, multiple locally optimal functions can be created. These functions are naturally clustered in input and output spaces allowing for a continuous inverse function. The operator selects the best cluster over the anticipated range of desired outputs and adjusts the set point (desired output) while maintaining optimality. This reduces the demand from controlling multiple inputs, to controlling a single set point with no loss in performance. Results are demonstrated on a sample set of functions and on a robot control problem.
NASA Astrophysics Data System (ADS)
Guan, Jun; Xu, Xiaoyu; Xing, Lizhi
2018-03-01
The input-output table is comprehensive and detailed in describing national economic systems with abundance of economic relationships depicting information of supply and demand among industrial sectors. This paper focuses on how to quantify the degree of competition on the global value chain (GVC) from the perspective of econophysics. Global Industrial Strongest Relevant Network models are established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output (ICIO) tables and then have them transformed into Global Industrial Resource Competition Network models to analyze the competitive relationships based on bibliographic coupling approach. Three indicators well suited for the weighted and undirected networks with self-loops are introduced here, including unit weight for competitive power, disparity in the weight for competitive amplitude and weighted clustering coefficient for competitive intensity. Finally, these models and indicators were further applied empirically to analyze the function of industrial sectors on the basis of the latest World Input-Output Database (WIOD) in order to reveal inter-sector competitive status during the economic globalization.
Controllers, observers, and applications thereof
NASA Technical Reports Server (NTRS)
Gao, Zhiqiang (Inventor); Zhou, Wankun (Inventor); Miklosovic, Robert (Inventor); Radke, Aaron (Inventor); Zheng, Qing (Inventor)
2011-01-01
Controller scaling and parameterization are described. Techniques that can be improved by employing the scaling and parameterization include, but are not limited to, controller design, tuning and optimization. The scaling and parameterization methods described here apply to transfer function based controllers, including PID controllers. The parameterization methods also apply to state feedback and state observer based controllers, as well as linear active disturbance rejection (ADRC) controllers. Parameterization simplifies the use of ADRC. A discrete extended state observer (DESO) and a generalized extended state observer (GESO) are described. They improve the performance of the ESO and therefore ADRC. A tracking control algorithm is also described that improves the performance of the ADRC controller. A general algorithm is described for applying ADRC to multi-input multi-output systems. Several specific applications of the control systems and processes are disclosed.
Elliptical orbit performance computer program
NASA Technical Reports Server (NTRS)
Myler, T. R.
1981-01-01
A FORTRAN coded computer program which generates and plots elliptical orbit performance capability of space boosters for presentation purposes is described. Orbital performance capability of space boosters is typically presented as payload weight as a function of perigee and apogee altitudes. The parameters are derived from a parametric computer simulation of the booster flight which yields the payload weight as a function of velocity and altitude at insertion. The process of converting from velocity and altitude to apogee and perigee altitude and plotting the results as a function of payload weight is mechanized with the ELOPE program. The program theory, user instruction, input/output definitions, subroutine descriptions and detailed FORTRAN coding information are included.
Henningsen, Peter; Gündel, Harald; Kop, Willem J; Löwe, Bernd; Martin, Alexandra; Rief, Winfried; Rosmalen, Judith G M; Schröder, Andreas; van der Feltz-Cornelis, Christina; Van den Bergh, Omer
2018-06-01
The mechanisms underlying the perception and experience of persistent physical symptoms are not well understood, and in the models, the specific relevance of peripheral input versus central processing, or of neurobiological versus psychosocial factors in general, is not clear. In this article, we proposed a model for this clinical phenomenon that is designed to be coherent with an underlying, relatively new model of the normal brain functions involved in the experience of bodily signals. Based on a review of recent literature, we describe central elements of this model and its clinical implications. In the model, the brain is seen as an active predictive processing or inferential device rather than one that is passively waiting for sensory input. A central aspect of the model is the attempt of the brain to minimize prediction errors that result from constant comparisons of predictions and sensory input. Two possibilities exist: adaptation of the generative model underlying the predictions or alteration of the sensory input via autonomic nervous activation (in the case of interoception). Following this model, persistent physical symptoms can be described as "failures of inference" and clinically well-known factors such as expectation are assigned a role, not only in the later amplification of bodily signals but also in the very basis of symptom perception. We discuss therapeutic implications of such a model including new interpretations for established treatments as well as new options such as virtual reality techniques combining exteroceptive and interoceptive information.
Carbonell-Ballestero, Max; Duran-Nebreda, Salva; Montañez, Raúl; Solé, Ricard; Macía, Javier; Rodríguez-Caso, Carlos
2014-12-16
Within the field of synthetic biology, a rational design of genetic parts should include a causal understanding of their input-output responses-the so-called transfer function-and how to tune them. However, a commonly adopted strategy is to fit data to Hill-shaped curves without considering the underlying molecular mechanisms. Here we provide a novel mathematical formalization that allows prediction of the global behavior of a synthetic device by considering the actual information from the involved biological parts. This is achieved by adopting an enzymology-like framework, where transfer functions are described in terms of their input affinity constant and maximal response. As a proof of concept, we characterize a set of Lux homoserine-lactone-inducible genetic devices with different levels of Lux receptor and signal molecule. Our model fits the experimental results and predicts the impact of the receptor's ribosome-binding site strength, as a tunable parameter that affects gene expression. The evolutionary implications are outlined. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Analysis of the performance of a wireless optical multi-input to multi-output communication system.
Bushuev, Denis; Arnon, Shlomi
2006-07-01
We investigate robust optical wireless communication in a highly scattering propagation medium using multielement optical detector arrays. The communication setup consists of synchronized multiple transmitters that send information to a receiver array and an atmospheric propagation channel. The mathematical model that best describes this scenario is multi-input to multi-output communication through stochastic slow changing channels. In this model, signals from m transmitters are received by n receiver-detectors. The channel transfer function matrix is G, and its size is n x m. G(i,j) is the transfer function from transmitter i to detector j, and m > or = n. We adopt a quasi-stationary approach in which the channel time variation has a negligible effect on communication performance over a burst. The G matrix is calculated on the basis of the optical transfer function of the atmospheric channel (composed of aerosol and turbulence elements) and the receiver's optics. In this work we derive a performance model using environmental data, such as documented turbulence and aerosol models and noise statistics. We also present the results of simulations conducted for the proposed detection algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halpin, M.P.
This project used a Box and Jenkins time-series analysis of energetic electron fluxes measured at geosynchronous orbit in an effort to derive prediction models for the flux in each of five energy channels. In addition, the technique of transfer function modeling described by Box and Jenkins was used in an attempt to derive input-output relationships between the flux channels (viewed as the output) and the solar-wind speed or interplanetary magnetic field (IMF) north-south component, Bz, (viewed as the input). The transfer function modeling was done in order to investigate the theoretical dynamic relationship which is believed to exist between themore » solar wind, the IMF Bz, and the energetic electron flux in the magnetosphere. The models derived from the transfer-function techniques employed were also intended to be used in the prediction of flux values. The results from this study indicate that the energetic electron flux changes in the various channels are dependent on more than simply the solar-wind speed or the IMF Bz.« less
NASA Astrophysics Data System (ADS)
Souty, F.; Brunelle, T.; Dumas, P.; Dorin, B.; Ciais, P.; Crassous, R.; Müller, C.; Bondeau, A.
2012-10-01
Interactions between food demand, biomass energy and forest preservation are driving both food prices and land-use changes, regionally and globally. This study presents a new model called Nexus Land-Use version 1.0 which describes these interactions through a generic representation of agricultural intensification mechanisms within agricultural lands. The Nexus Land-Use model equations combine biophysics and economics into a single coherent framework to calculate crop yields, food prices, and resulting pasture and cropland areas within 12 regions inter-connected with each other by international trade. The representation of cropland and livestock production systems in each region relies on three components: (i) a biomass production function derived from the crop yield response function to inputs such as industrial fertilisers; (ii) a detailed representation of the livestock production system subdivided into an intensive and an extensive component, and (iii) a spatially explicit distribution of potential (maximal) crop yields prescribed from the Lund-Postdam-Jena global vegetation model for managed Land (LPJmL). The economic principles governing decisions about land-use and intensification are adapted from the Ricardian rent theory, assuming cost minimisation for farmers. In contrast to the other land-use models linking economy and biophysics, crops are aggregated as a representative product in calories and intensification for the representative crop is a non-linear function of chemical inputs. The model equations and parameter values are first described in details. Then, idealised scenarios exploring the impact of forest preservation policies or rising energy price on agricultural intensification are described, and their impacts on pasture and cropland areas are investigated.
Genetically identified spinal interneurons integrating tactile afferents for motor control
Panek, Izabela; Farah, Carl
2015-01-01
Our movements are shaped by our perception of the world as communicated by our senses. Perception of sensory information has been largely attributed to cortical activity. However, a prior level of sensory processing occurs in the spinal cord. Indeed, sensory inputs directly project to many spinal circuits, some of which communicate with motor circuits within the spinal cord. Therefore, the processing of sensory information for the purpose of ensuring proper movements is distributed between spinal and supraspinal circuits. The mechanisms underlying the integration of sensory information for motor control at the level of the spinal cord have yet to be fully described. Recent research has led to the characterization of spinal neuron populations that share common molecular identities. Identification of molecular markers that define specific populations of spinal neurons is a prerequisite to the application of genetic techniques devised to both delineate the function of these spinal neurons and their connectivity. This strategy has been used in the study of spinal neurons that receive tactile inputs from sensory neurons innervating the skin. As a result, the circuits that include these spinal neurons have been revealed to play important roles in specific aspects of motor function. We describe these genetically identified spinal neurons that integrate tactile information and the contribution of these studies to our understanding of how tactile information shapes motor output. Furthermore, we describe future opportunities that these circuits present for shedding light on the neural mechanisms of tactile processing. PMID:26445867
Formal specification and verification of Ada software
NASA Technical Reports Server (NTRS)
Hird, Geoffrey R.
1991-01-01
The use of formal methods in software development achieves levels of quality assurance unobtainable by other means. The Larch approach to specification is described, and the specification of avionics software designed to implement the logic of a flight control system is given as an example. Penelope is described which is an Ada-verification environment. The Penelope user inputs mathematical definitions, Larch-style specifications and Ada code and performs machine-assisted proofs that the code obeys its specifications. As an example, the verification of a binary search function is considered. Emphasis is given to techniques assisting the reuse of a verification effort on modified code.
Computer program for supersonic Kernel-function flutter analysis of thin lifting surfaces
NASA Technical Reports Server (NTRS)
Cunningham, H. J.
1974-01-01
This report describes a computer program (program D2180) that has been prepared to implement the analysis described in (N71-10866) for calculating the aerodynamic forces on a class of harmonically oscillating planar lifting surfaces in supersonic potential flow. The planforms treated are the delta and modified-delta (arrowhead) planforms with subsonic leading and supersonic trailing edges, and (essentially) pointed tips. The resulting aerodynamic forces are applied in a Galerkin modal flutter analysis. The required input data are the flow and planform parameters including deflection-mode data, modal frequencies, and generalized masses.
Castro, Luísa; Aguiar, Paulo
2012-08-01
Phase precession is one of the most well known examples within the temporal coding hypothesis. Here we present a biophysical spiking model for phase precession in hippocampal CA1 which focuses on the interaction between place cells and local inhibitory interneurons. The model's functional block is composed of a place cell (PC) connected with a local inhibitory cell (IC) which is modulated by the population theta rhythm. Both cells receive excitatory inputs from the entorhinal cortex (EC). These inputs are both theta modulated and space modulated. The dynamics of the two neuron types are described by integrate-and-fire models with conductance synapses, and the EC inputs are described using non-homogeneous Poisson processes. Phase precession in our model is caused by increased drive to specific PC/IC pairs when the animal is in their place field. The excitation increases the IC's firing rate, and this modulates the PC's firing rate such that both cells precess relative to theta. Our model implies that phase coding in place cells may not be independent from rate coding. The absence of restrictive connectivity constraints in this model predicts the generation of phase precession in any network with similar architecture and subject to a clocking rhythm, independently of the involvement in spatial tasks.
Classification of Land Cover and Land Use Based on Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Yang, Chun; Rottensteiner, Franz; Heipke, Christian
2018-04-01
Land cover describes the physical material of the earth's surface, whereas land use describes the socio-economic function of a piece of land. Land use information is typically collected in geospatial databases. As such databases become outdated quickly, an automatic update process is required. This paper presents a new approach to determine land cover and to classify land use objects based on convolutional neural networks (CNN). The input data are aerial images and derived data such as digital surface models. Firstly, we apply a CNN to determine the land cover for each pixel of the input image. We compare different CNN structures, all of them based on an encoder-decoder structure for obtaining dense class predictions. Secondly, we propose a new CNN-based methodology for the prediction of the land use label of objects from a geospatial database. In this context, we present a strategy for generating image patches of identical size from the input data, which are classified by a CNN. Again, we compare different CNN architectures. Our experiments show that an overall accuracy of up to 85.7 % and 77.4 % can be achieved for land cover and land use, respectively. The classification of land cover has a positive contribution to the classification of the land use classification.
A kernel adaptive algorithm for quaternion-valued inputs.
Paul, Thomas K; Ogunfunmi, Tokunbo
2015-10-01
The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations.
NASA Astrophysics Data System (ADS)
Martel, Anne L.
2004-04-01
In order to extract quantitative information from dynamic contrast-enhanced MR images (DCE-MRI) it is usually necessary to identify an arterial input function. This is not a trivial problem if there are no major vessels present in the field of view. Most existing techniques rely on operator intervention or use various curve parameters to identify suitable pixels but these are often specific to the anatomical region or the acquisition method used. They also require the signal from several pixels to be averaged in order to improve the signal to noise ratio, however this introduces errors due to partial volume effects. We have described previously how factor analysis can be used to automatically separate arterial and venous components from DCE-MRI studies of the brain but although that method works well for single slice images through the brain when the blood brain barrier technique is intact, it runs into problems for multi-slice images with more complex dynamics. This paper will describe a factor analysis method that is more robust in such situations and is relatively insensitive to the number of physiological components present in the data set. The technique is very similar to that used to identify spectral end-members from multispectral remote sensing images.
Chip level modeling of LSI devices
NASA Technical Reports Server (NTRS)
Armstrong, J. R.
1984-01-01
The advent of Very Large Scale Integration (VLSI) technology has rendered the gate level model impractical for many simulation activities critical to the design automation process. As an alternative, an approach to the modeling of VLSI devices at the chip level is described, including the specification of modeling language constructs important to the modeling process. A model structure is presented in which models of the LSI devices are constructed as single entities. The modeling structure is two layered. The functional layer in this structure is used to model the input/output response of the LSI chip. A second layer, the fault mapping layer, is added, if fault simulations are required, in order to map the effects of hardware faults onto the functional layer. Modeling examples for each layer are presented. Fault modeling at the chip level is described. Approaches to realistic functional fault selection and defining fault coverage for functional faults are given. Application of the modeling techniques to single chip and bit slice microprocessors is discussed.
Shabaev, Andrew; Lambrakos, Samuel G; Bernstein, Noam; Jacobs, Verne L; Finkenstadt, Daniel
2011-04-01
We have developed a general framework for numerical simulation of various types of scenarios that can occur for the detection of improvised explosive devices (IEDs) through the use of excitation using incident electromagnetic waves. A central component model of this framework is an S-matrix representation of a multilayered composite material system. Each layer of the system is characterized by an average thickness and an effective electric permittivity function. The outputs of this component are the reflectivity and the transmissivity as functions of frequency and angle of the incident electromagnetic wave. The input of the component is a parameterized analytic-function representation of the electric permittivity as a function of frequency, which is provided by another component model of the framework. The permittivity function is constructed by fitting response spectra calculated using density functional theory (DFT) and parameter adjustment according to any additional information that may be available, e.g., experimentally measured spectra or theory-based assumptions concerning spectral features. A prototype simulation is described that considers response characteristics for THz excitation of the high explosive β-HMX. This prototype simulation includes a description of a procedure for calculating response spectra using DFT as input to the Smatrix model. For this purpose, the DFT software NRLMOL was adopted. © 2011 Society for Applied Spectroscopy
Influential input classification in probabilistic multimedia models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddalena, Randy L.; McKone, Thomas E.; Hsieh, Dennis P.H.
1999-05-01
Monte Carlo analysis is a statistical simulation method that is often used to assess and quantify the outcome variance in complex environmental fate and effects models. Total outcome variance of these models is a function of (1) the uncertainty and/or variability associated with each model input and (2) the sensitivity of the model outcome to changes in the inputs. To propagate variance through a model using Monte Carlo techniques, each variable must be assigned a probability distribution. The validity of these distributions directly influences the accuracy and reliability of the model outcome. To efficiently allocate resources for constructing distributions onemore » should first identify the most influential set of variables in the model. Although existing sensitivity and uncertainty analysis methods can provide a relative ranking of the importance of model inputs, they fail to identify the minimum set of stochastic inputs necessary to sufficiently characterize the outcome variance. In this paper, we describe and demonstrate a novel sensitivity/uncertainty analysis method for assessing the importance of each variable in a multimedia environmental fate model. Our analyses show that for a given scenario, a relatively small number of input variables influence the central tendency of the model and an even smaller set determines the shape of the outcome distribution. For each input, the level of influence depends on the scenario under consideration. This information is useful for developing site specific models and improving our understanding of the processes that have the greatest influence on the variance in outcomes from multimedia models.« less
Voice and gesture-based 3D multimedia presentation tool
NASA Astrophysics Data System (ADS)
Fukutake, Hiromichi; Akazawa, Yoshiaki; Okada, Yoshihiro
2007-09-01
This paper proposes a 3D multimedia presentation tool that allows the user to manipulate intuitively only through the voice input and the gesture input without using a standard keyboard or a mouse device. The authors developed this system as a presentation tool to be used in a presentation room equipped a large screen like an exhibition room in a museum because, in such a presentation environment, it is better to use voice commands and the gesture pointing input rather than using a keyboard or a mouse device. This system was developed using IntelligentBox, which is a component-based 3D graphics software development system. IntelligentBox has already provided various types of 3D visible, reactive functional components called boxes, e.g., a voice input component and various multimedia handling components. IntelligentBox also provides a dynamic data linkage mechanism called slot-connection that allows the user to develop 3D graphics applications by combining already existing boxes through direct manipulations on a computer screen. Using IntelligentBox, the 3D multimedia presentation tool proposed in this paper was also developed as combined components only through direct manipulations on a computer screen. The authors have already proposed a 3D multimedia presentation tool using a stage metaphor and its voice input interface. This time, we extended the system to make it accept the user gesture input besides voice commands. This paper explains details of the proposed 3D multimedia presentation tool and especially describes its component-based voice and gesture input interfaces.
Comparison of requirements and capabilities of major multipurpose software packages.
Igo, Robert P; Schnell, Audrey H
2012-01-01
The aim of this chapter is to introduce the reader to commonly used software packages and illustrate their input requirements, analysis options, strengths, and limitations. We focus on packages that perform more than one function and include a program for quality control, linkage, and association analyses. Additional inclusion criteria were (1) programs that are free to academic users and (2) currently supported, maintained, and developed. Using those criteria, we chose to review three programs: Statistical Analysis for Genetic Epidemiology (S.A.G.E.), PLINK, and Merlin. We will describe the required input format and analysis options. We will not go into detail about every possible program in the packages, but we will give an overview of the packages requirements and capabilities.
What can posturography tell us about vestibular function?
NASA Technical Reports Server (NTRS)
Black, F. O.
2001-01-01
Patients with balance disorders want answers to the following basic questions: (1) What is causing my problem? and (2) What can be done about my problem? Information to fully answer these questions must include status of both sensory and motor components of the balance control systems. Computerized dynamic posturography (CDP) provides quantitative assessment of both sensory and motor components of postural control along with how the sensory inputs to the brain interact. This paper reviews the scientific basis and clinical applications of CDP. Specifically, studies describing the integration of vestibular inputs with other sensory systems for postural control are briefly summarized. Clinical applications, including assessment, rehabilitation, and management are presented. Effects of aging on postural control along with prevention and management strategies are discussed.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony; Wieseman, Carol; Hoadley, Sherwood Tiffany; Mukhopadhyay, Vivek
1991-01-01
Described here is the development and implementation of on-line, near real time controller performance evaluation (CPE) methods capability. Briefly discussed are the structure of data flow, the signal processing methods used to process the data, and the software developed to generate the transfer functions. This methodology is generic in nature and can be used in any type of multi-input/multi-output (MIMO) digital controller application, including digital flight control systems, digitally controlled spacecraft structures, and actively controlled wind tunnel models. Results of applying the CPE methodology to evaluate (in near real time) MIMO digital flutter suppression systems being tested on the Rockwell Active Flexible Wing (AFW) wind tunnel model are presented to demonstrate the CPE capability.
A computer simulation of an adaptive noise canceler with a single input
NASA Astrophysics Data System (ADS)
Albert, Stuart D.
1991-06-01
A description of an adaptive noise canceler using Widrows' LMS algorithm is presented. A computer simulation of canceler performance (adaptive convergence time and frequency transfer function) was written for use as a design tool. The simulations, assumptions, and input parameters are described in detail. The simulation is used in a design example to predict the performance of an adaptive noise canceler in the simultaneous presence of both strong and weak narrow-band signals (a cosited frequency hopping radio scenario). On the basis of the simulation results, it is concluded that the simulation is suitable for use as an adaptive noise canceler design tool; i.e., it can be used to evaluate the effect of design parameter changes on canceler performance.
Speech versus manual control of camera functions during a telerobotic task
NASA Technical Reports Server (NTRS)
Bierschwale, John M.; Sampaio, Carlos E.; Stuart, Mark A.; Smith, Randy L.
1989-01-01
Voice input for control of camera functions was investigated in this study. Objective were to (1) assess the feasibility of a voice-commanded camera control system, and (2) identify factors that differ between voice and manual control of camera functions. Subjects participated in a remote manipulation task that required extensive camera-aided viewing. Each subject was exposed to two conditions, voice and manual input, with a counterbalanced administration order. Voice input was found to be significantly slower than manual input for this task. However, in terms of remote manipulator performance errors and subject preference, there was no difference between modalities. Voice control of continuous camera functions is not recommended. It is believed that the use of voice input for discrete functions, such as multiplexing or camera switching, could aid performance. Hybrid mixes of voice and manual input may provide the best use of both modalities. This report contributes to a better understanding of the issues that affect the design of an efficient human/telerobot interface.
Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold.
Winges, Sara A; Kornatz, Kurt W; Santello, Marco
2008-03-01
Anatomical and physiological evidence suggests that common input to motor neurons of hand muscles is an important neural mechanism for hand control. To gain insight into the synaptic input underlying the coordination of hand muscles, significant effort has been devoted to describing the distribution of common input across motor units of extrinsic muscles. Much less is known, however, about the distribution of common input to motor units belonging to different intrinsic muscles and to intrinsic-extrinsic muscle pairs. To address this void in the literature, we quantified the incidence and strength of near-simultaneous discharges of motor units residing in either the same or different intrinsic hand muscles (m. first dorsal, FDI, and m. first palmar interosseus, FPI) during two-digit object hold. To extend the characterization of common input to pairs of extrinsic muscles (previous work) and pairs of intrinsic muscles (present work), we also recorded electromyographic (EMG) activity from an extrinsic thumb muscle (m. flexor pollicis longus, FPL). Motor-unit synchrony across FDI and FPI was weak (common input strength, CIS, mean +/- SE: 0.17 +/- 0.02). Similarly, motor units from extrinsic-intrinsic muscle pairs were characterized by weak synchrony (FPL-FDI: 0.25 +/- 0.02; FPL-FPI: 0.29 +/- 0.03) although stronger than FDI-FPI. Last, CIS from within FDI and FPI was more than three times stronger (0.70 +/- 0.06 and 0.66 +/- 0.06, respectively) than across these muscles. We discuss present and previous findings within the framework of muscle-pair specific distribution of common input to hand muscles based on their functional role in grasping.
Berger, Theodore W.; Song, Dong; Chan, Rosa H. M.; Marmarelis, Vasilis Z.; LaCoss, Jeff; Wills, Jack; Hampson, Robert E.; Deadwyler, Sam A.; Granacki, John J.
2012-01-01
This paper describes the development of a cognitive prosthesis designed to restore the ability to form new long-term memories typically lost after damage to the hippocampus. The animal model used is delayed nonmatch-to-sample (DNMS) behavior in the rat, and the “core” of the prosthesis is a biomimetic multi-input/multi-output (MIMO) nonlinear model that provides the capability for predicting spatio-temporal spike train output of hippocampus (CA1) based on spatio-temporal spike train inputs recorded presynaptically to CA1 (e.g., CA3). We demonstrate the capability of the MIMO model for highly accurate predictions of CA1 coded memories that can be made on a single-trial basis and in real-time. When hippocampal CA1 function is blocked and long-term memory formation is lost, successful DNMS behavior also is abolished. However, when MIMO model predictions are used to reinstate CA1 memory-related activity by driving spatio-temporal electrical stimulation of hippocampal output to mimic the patterns of activity observed in control conditions, successful DNMS behavior is restored. We also outline the design in very-large-scale integration for a hardware implementation of a 16-input, 16-output MIMO model, along with spike sorting, amplification, and other functions necessary for a total system, when coupled together with electrode arrays to record extracellularly from populations of hippocampal neurons, that can serve as a cognitive prosthesis in behaving animals. PMID:22438335
Semework, Mulugeta; DiStasio, Marcello
2014-01-01
Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step toward the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP) research, which uses microstimulation (MiSt) to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL) and somatosensory cortex (S1) in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both rehabilitation and brain—machine interface SSNP applications. PMID:25249973
INDES User's guide multistep input design with nonlinear rotorcraft modeling
NASA Technical Reports Server (NTRS)
1979-01-01
The INDES computer program, a multistep input design program used as part of a data processing technique for rotorcraft systems identification, is described. Flight test inputs base on INDES improve the accuracy of parameter estimates. The input design algorithm, program input, and program output are presented.
A model for heat and mass input control in GMAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smartt, H.B.; Einerson, C.J.
1993-05-01
This work describes derivation of a control model for electrode melting and heat and mass transfer from the electrode to the work piece in gas metal arc welding (GMAW). Specifically, a model is developed which allows electrode speed and welding speed to be calculated for given values of voltage and torch-to-base metal distance, as a function of the desired heat and mass input to the weldment. Heat input is given on a per unit weld length basis, and mass input is given in terms of transverse cross-sectional area added to the weld bead (termed reinforcement). The relationship to prior workmore » is discussed. The model was demonstrated using a computer-controlled welding machine and a proportional-integral (PI) controller receiving input from a digital filter. The difference between model-calculated welding current and measured current is used as controller feedback. The model is calibrated for use with carbon steel welding wire and base plate with Ar-CO[sub 2] shielding gas. Although the system is intended for application during spray transfer of molten metal from the electrode to the weld pool, satisfactory performance is also achieved during globular and streaming transfer. Data are presented showing steady-state and transient performance, as well as resistance to external disturbances.« less
Carbonell-Ballestero, Max; Duran-Nebreda, Salva; Montañez, Raúl; Solé, Ricard; Macía, Javier; Rodríguez-Caso, Carlos
2014-01-01
Within the field of synthetic biology, a rational design of genetic parts should include a causal understanding of their input-output responses—the so-called transfer function—and how to tune them. However, a commonly adopted strategy is to fit data to Hill-shaped curves without considering the underlying molecular mechanisms. Here we provide a novel mathematical formalization that allows prediction of the global behavior of a synthetic device by considering the actual information from the involved biological parts. This is achieved by adopting an enzymology-like framework, where transfer functions are described in terms of their input affinity constant and maximal response. As a proof of concept, we characterize a set of Lux homoserine-lactone-inducible genetic devices with different levels of Lux receptor and signal molecule. Our model fits the experimental results and predicts the impact of the receptor's ribosome-binding site strength, as a tunable parameter that affects gene expression. The evolutionary implications are outlined. PMID:25404136
A silicon central pattern generator controls locomotion in vivo.
Vogelstein, R J; Tenore, F; Guevremont, L; Etienne-Cummings, R; Mushahwar, V K
2008-09-01
We present a neuromorphic silicon chip that emulates the activity of the biological spinal central pattern generator (CPG) and creates locomotor patterns to support walking. The chip implements ten integrate-and-fire silicon neurons and 190 programmable digital-to-analog converters that act as synapses. This architecture allows for each neuron to make synaptic connections to any of the other neurons as well as to any of eight external input signals and one tonic bias input. The chip's functionality is confirmed by a series of experiments in which it controls the motor output of a paralyzed animal in real-time and enables it to walk along a three-meter platform. The walking is controlled under closed-loop conditions with the aide of sensory feedback that is recorded from the animal's legs and fed into the silicon CPG. Although we and others have previously described biomimetic silicon locomotor control systems for robots, this is the first demonstration of a neuromorphic device that can replace some functions of the central nervous system in vivo.
Schuwirth, Nele; Reichert, Peter
2013-02-01
For the first time, we combine concepts of theoretical food web modeling, the metabolic theory of ecology, and ecological stoichiometry with the use of functional trait databases to predict the coexistence of invertebrate taxa in streams. We developed a mechanistic model that describes growth, death, and respiration of different taxa dependent on various environmental influence factors to estimate survival or extinction. Parameter and input uncertainty is propagated to model results. Such a model is needed to test our current quantitative understanding of ecosystem structure and function and to predict effects of anthropogenic impacts and restoration efforts. The model was tested using macroinvertebrate monitoring data from a catchment of the Swiss Plateau. Even without fitting model parameters, the model is able to represent key patterns of the coexistence structure of invertebrates at sites varying in external conditions (litter input, shading, water quality). This confirms the suitability of the model concept. More comprehensive testing and resulting model adaptations will further increase the predictive accuracy of the model.
Analysis of positron lifetime spectra in polymers
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Mall, Gerald H.; Sprinkle, Danny R.
1988-01-01
A new procedure for analyzing multicomponent positron lifetime spectra in polymers was developed. It requires initial estimates of the lifetimes and the intensities of various components, which are readily obtainable by a standard spectrum stripping process. These initial estimates, after convolution with the timing system resolution function, are then used as the inputs for a nonlinear least squares analysis to compute the estimates that conform to a global error minimization criterion. The convolution integral uses the full experimental resolution function, in contrast to the previous studies where analytical approximations of it were utilized. These concepts were incorporated into a generalized Computer Program for Analyzing Positron Lifetime Spectra (PAPLS) in polymers. Its validity was tested using several artificially generated data sets. These data sets were also analyzed using the widely used POSITRONFIT program. In almost all cases, the PAPLS program gives closer fit to the input values. The new procedure was applied to the analysis of several lifetime spectra measured in metal ion containing Epon-828 samples. The results are described.
Hori, Yuki; Ihara, Naoki; Teramoto, Noboru; Kunimi, Masako; Honda, Manabu; Kato, Koichi; Hanakawa, Takashi
2015-01-01
Measurement of arterial input function (AIF) for quantitative positron emission tomography (PET) studies is technically challenging. The present study aimed to develop a method based on a standard arterial input function (SIF) to estimate input function without blood sampling. We performed 18F-fluolodeoxyglucose studies accompanied by continuous blood sampling for measurement of AIF in 11 rats. Standard arterial input function was calculated by averaging AIFs from eight anesthetized rats, after normalization with body mass (BM) and injected dose (ID). Then, the individual input function was estimated using two types of SIF: (1) SIF calibrated by the individual's BM and ID (estimated individual input function, EIFNS) and (2) SIF calibrated by a single blood sampling as proposed previously (EIF1S). No significant differences in area under the curve (AUC) or cerebral metabolic rate for glucose (CMRGlc) were found across the AIF-, EIFNS-, and EIF1S-based methods using repeated measures analysis of variance. In the correlation analysis, AUC or CMRGlc derived from EIFNS was highly correlated with those derived from AIF and EIF1S. Preliminary comparison between AIF and EIFNS in three awake rats supported an idea that the method might be applicable to behaving animals. The present study suggests that EIFNS method might serve as a noninvasive substitute for individual AIF measurement. PMID:25966947
Hori, Yuki; Ihara, Naoki; Teramoto, Noboru; Kunimi, Masako; Honda, Manabu; Kato, Koichi; Hanakawa, Takashi
2015-10-01
Measurement of arterial input function (AIF) for quantitative positron emission tomography (PET) studies is technically challenging. The present study aimed to develop a method based on a standard arterial input function (SIF) to estimate input function without blood sampling. We performed (18)F-fluolodeoxyglucose studies accompanied by continuous blood sampling for measurement of AIF in 11 rats. Standard arterial input function was calculated by averaging AIFs from eight anesthetized rats, after normalization with body mass (BM) and injected dose (ID). Then, the individual input function was estimated using two types of SIF: (1) SIF calibrated by the individual's BM and ID (estimated individual input function, EIF(NS)) and (2) SIF calibrated by a single blood sampling as proposed previously (EIF(1S)). No significant differences in area under the curve (AUC) or cerebral metabolic rate for glucose (CMRGlc) were found across the AIF-, EIF(NS)-, and EIF(1S)-based methods using repeated measures analysis of variance. In the correlation analysis, AUC or CMRGlc derived from EIF(NS) was highly correlated with those derived from AIF and EIF(1S). Preliminary comparison between AIF and EIF(NS) in three awake rats supported an idea that the method might be applicable to behaving animals. The present study suggests that EIF(NS) method might serve as a noninvasive substitute for individual AIF measurement.
Describing-function analysis of a ripple regulator with slew-rate limits and time delays
NASA Technical Reports Server (NTRS)
Wester, Gene W.
1990-01-01
The effects of time delays and slew-rate limits on the steady-state operating points and performance of a free-running ripple regulator are evaluated using describing-function analysis. The describing function of an ideal comparator (no time delays or slew rate limits) has no phase shift and is independent of frequency. It is found that turn-on delay and turn-off delay have different effects on gain and phase and cannot be combined. Comparator hysteresis affects both gain and phase; likewise, time delays generally affect both gain and phase. It is found that the effective time delay around the feedback loop is one half the sum of turn-on and turn-off delays, regardless of whether the delays are caused by storage time or slew rate limits. Expressions are formulated for the switching frequency, switch duty ratio, dc output, and output ripple. For the case of no hysteresis, a simple, graphical solution for the switching frequency is possible, and the resulting switching frequency is independent of first-order variations of input or load.
NASA Technical Reports Server (NTRS)
Arbuckle, P. D.; Sliwa, S. M.; Roy, M. L.; Tiffany, S. H.
1985-01-01
A computer program for interactively developing least-squares polynomial equations to fit user-supplied data is described. The program is characterized by the ability to compute the polynomial equations of a surface fit through data that are a function of two independent variables. The program utilizes the Langley Research Center graphics packages to display polynomial equation curves and data points, facilitating a qualitative evaluation of the effectiveness of the fit. An explanation of the fundamental principles and features of the program, as well as sample input and corresponding output, are included.
Inference Engine in an Intelligent Ship Course-Keeping System
2017-01-01
The article presents an original design of an expert system, whose function is to automatically stabilize ship's course. The focus is put on the inference engine, a mechanism that consists of two functional components. One is responsible for the construction of state space regions, implemented on the basis of properly processed signals recorded by sensors from the input and output of an object. The other component is responsible for generating a control decision based on the knowledge obtained in the first module. The computing experiments described herein prove the effective and correct operation of the proposed system. PMID:29317859
Sensor Authentication: Embedded Processor Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svoboda, John
2012-09-25
Described is the c code running on the embedded Microchip 32bit PIC32MX575F256H located on the INL developed noise analysis circuit board. The code performs the following functions: Controls the noise analysis circuit board preamplifier voltage gains of 1, 10, 100, 000 Initializes the analog to digital conversion hardware, input channel selection, Fast Fourier Transform (FFT) function, USB communications interface, and internal memory allocations Initiates high resolution 4096 point 200 kHz data acquisition Computes complex 2048 point FFT and FFT magnitude. Services Host command set Transfers raw data to Host Transfers FFT result to host Communication error checking
Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development
NASA Technical Reports Server (NTRS)
Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William
1987-01-01
Spacelab Data Processing Facility (SLDPF) expert system prototypes were developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. The SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.
Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development
NASA Technical Reports Server (NTRS)
Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William
1987-01-01
Spacelab Data Processing Facility (SLDPF) expert system prototypes have been developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.
Calibration of a universal indicated turbulence system
NASA Technical Reports Server (NTRS)
Chapin, W. G.
1977-01-01
Theoretical and experimental work on a Universal Indicated Turbulence Meter is described. A mathematical transfer function from turbulence input to output indication was developed. A random ergodic process and a Gaussian turbulence distribution were assumed. A calibration technique based on this transfer function was developed. The computer contains a variable gain amplifier to make the system output independent of average velocity. The range over which this independence holds was determined. An optimum dynamic response was obtained for the tubulation between the system pitot tube and pressure transducer by making dynamic response measurements for orifices of various lengths and diameters at the source end.
Fuzzy Neuron: Method and Hardware Realization
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.; Prokop, Norman F.
2014-01-01
This innovation represents a method by which single-to-multi-input, single-to-many-output system transfer functions can be estimated from input/output data sets. This innovation can be run in the background while a system is operating under other means (e.g., through human operator effort), or may be utilized offline using data sets created from observations of the estimated system. It utilizes a set of fuzzy membership functions spanning the input space for each input variable. Linear combiners associated with combinations of input membership functions are used to create the output(s) of the estimator. Coefficients are adjusted online through the use of learning algorithms.
Hydrogen Assisted Fracture of Stainless Steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugar, Joshua Daniel; Somerday, Brian P.; Homer, Mark
2016-02-01
The Enhanced Surveillance Sub-program has an annual NNSA requirement to submit a comprehensive report on all our fiscal year activities right after the start of the next calendar year. As most of you know, we collate all of our PI task submissions into a single volume that we send to NNSA, our customers, and use for other programmatic purposes. The functional objective of this report is to formally document the purpose, status, and accomplishments and impacts of all our work. For your specific submission, please follow the instructions described below and use the template provided. These are essentially the samemore » as was used last year. We recognize this report may also include information on specific age-related findings that you will provide again in a few months as input to the Stockpile Annual Assessment process (e.g., in the submittal of your Component Assessment Report). However, the related content of your ES AR input should provide an excellent foundation that can simply be updated as needed for your Annual Assessment input.« less
Advanced Connectivity Analysis (ACA): a Large Scale Functional Connectivity Data Mining Environment.
Chen, Rong; Nixon, Erika; Herskovits, Edward
2016-04-01
Using resting-state functional magnetic resonance imaging (rs-fMRI) to study functional connectivity is of great importance to understand normal development and function as well as a host of neurological and psychiatric disorders. Seed-based analysis is one of the most widely used rs-fMRI analysis methods. Here we describe a freely available large scale functional connectivity data mining software package called Advanced Connectivity Analysis (ACA). ACA enables large-scale seed-based analysis and brain-behavior analysis. It can seamlessly examine a large number of seed regions with minimal user input. ACA has a brain-behavior analysis component to delineate associations among imaging biomarkers and one or more behavioral variables. We demonstrate applications of ACA to rs-fMRI data sets from a study of autism.
NASA Technical Reports Server (NTRS)
Delp, P.; Crossman, E. R. F. W.; Szostak, H.
1972-01-01
The automobile-driver describing function for lateral position control was estimated for three subjects from frequency response analysis of straight road test results. The measurement procedure employed an instrumented full size sedan with known steering response characteristics, and equipped with a lateral lane position measuring device based on video detection of white stripe lane markings. Forcing functions were inserted through a servo driven double steering wheel coupling the driver to the steering system proper. Random appearing, Gaussian, and transient time functions were used. The quasi-linear models fitted to the random appearing input frequency response characterized the driver as compensating for lateral position error in a proportional, derivative, and integral manner. Similar parameters were fitted to the Gabor transformed frequency response of the driver to transient functions. A fourth term corresponding to response to lateral acceleration was determined by matching the time response histories of the model to the experimental results. The time histories show evidence of pulse-like nonlinear behavior during extended response to step transients which appear as high frequency remnant power.
Ito, Hiroshi; Yokoi, Takashi; Ikoma, Yoko; Shidahara, Miho; Seki, Chie; Naganawa, Mika; Takahashi, Hidehiko; Takano, Harumasa; Kimura, Yuichi; Ichise, Masanori; Suhara, Tetsuya
2010-01-01
In positron emission tomography (PET) studies with radioligands for neuroreceptors, tracer kinetics have been described by the standard two-tissue compartment model that includes the compartments of nondisplaceable binding and specific binding to receptors. In the present study, we have developed a new graphic plot analysis to determine the total distribution volume (V(T)) and nondisplaceable distribution volume (V(ND)) independently, and therefore the binding potential (BP(ND)). In this plot, Y(t) is the ratio of brain tissue activity to time-integrated arterial input function, and X(t) is the ratio of time-integrated brain tissue activity to time-integrated arterial input function. The x-intercept of linear regression of the plots for early phase represents V(ND), and the x-intercept of linear regression of the plots for delayed phase after the equilibrium time represents V(T). BP(ND) can be calculated by BP(ND)=V(T)/V(ND)-1. Dynamic PET scanning with measurement of arterial input function was performed on six healthy men after intravenous rapid bolus injection of [(11)C]FLB457. The plot yielded a curve in regions with specific binding while it yielded a straight line through all plot data in regions with no specific binding. V(ND), V(T), and BP(ND) values calculated by the present method were in good agreement with those by conventional non-linear least-squares fitting procedure. This method can be used to distinguish graphically whether the radioligand binding includes specific binding or not.
Market Survey and Analysis in Support of ASAS Computer-Based Training System Design
1988-11-01
development nf a recommended strategy for incorporating CBT in the ASAS/ENSCE training system. Approach - In order to establish the state of the art and...a training system which will meet ASAS training requirements. Eleven subsystems are described in terms of their functional input to the overall...keyboard and displays used in actual operation are also used in training, maximizing the transfer effect from practice situations to actual system
Magnetic Field Satellite (Magsat) data processing system specifications
NASA Technical Reports Server (NTRS)
Berman, D.; Gomez, R.; Miller, A.
1980-01-01
The software specifications for the MAGSAT data processing system (MDPS) are presented. The MDPS is divided functionally into preprocessing of primary input data, data management, chronicle processing, and postprocessing. Data organization and validity, and checks of spacecraft and instrumentation are dicussed. Output products of the MDPS, including various plots and data tapes, are described. Formats for important tapes are presented. Dicussions and mathematical formulations for coordinate transformations and field model coefficients are included.
Modeling and Analysis of Power Processing Systems (MAPPS). Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Lee, F. C.; Radman, S.; Carter, R. A.; Wu, C. H.; Yu, Y.; Chang, R.
1980-01-01
The computer programs and derivations generated in support of the modeling and design optimization program are presented. Programs for the buck regulator, boost regulator, and buck-boost regulator are described. The computer program for the design optimization calculations is presented. Constraints for the boost and buck-boost converter were derived. Derivations of state-space equations and transfer functions are presented. Computer lists for the converters are presented, and the input parameters justified.
Development of bubble memory recorder onboard Japan Earth Resources Satellite-1
NASA Astrophysics Data System (ADS)
Araki, Tsunehiko; Ishida, Chu; Ochiai, Kiyoshi; Nozue, Tatsuhiro; Tachibana, Kyozo; Yoshida, Kazutoshi
The Bubble Memory Recorder (BMR) developed for use on the Earth Resources Satellite is described in terms of its design, capabilities, and functions. The specifications of the BMR are given listing memory capacity, functions, and interface types for data, command, and telemetry functions. The BMR has an emergency signal interface to provide contingency recording, and a satellite-separation signal interface can be turned on automatically by signal input. Data are stored in a novolatile memory device so that the memory is retained during power outages. The BMR is characterized by a capability for random access, nonvolatility, and a solid-state design that is useful for space operations since it does not disturb spacecraft attitude.
Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex.
Briggs, F; Callaway, E M
2001-05-15
Layer 6 of monkey V1 contains a physiologically and anatomically diverse population of excitatory pyramidal neurons. Distinctive arborization patterns of axons and dendrites within the functionally specialized cortical layers define eight types of layer 6 pyramidal neurons and suggest unique information processing roles for each cell type. To address how input sources contribute to cellular function, we examined the laminar sources of functional excitatory input onto individual layer 6 pyramidal neurons using scanning laser photostimulation. We find that excitatory input sources correlate with cell type. Class I neurons with axonal arbors selectively targeting magnocellular (M) recipient layer 4Calpha receive input from M-dominated layer 4B, whereas class I neurons whose axonal arbors target parvocellular (P) recipient layer 4Cbeta receive input from P-dominated layer 2/3. Surprisingly, these neuronal types do not differ significantly in the inputs they receive directly from layers 4Calpha or 4Cbeta. Class II cells, which lack dense axonal arbors within layer 4C, receive excitatory input from layers targeted by their local axons. Specifically, type IIA cells project axons to and receive input from the deep but not superficial layers. Type IIB neurons project to and receive input from the deepest and most superficial, but not middle layers. Type IIC neurons arborize throughout the cortical layers and tend to receive inputs from all cortical layers. These observations have implications for the functional roles of different layer 6 cell types in visual information processing.
Towards a general theory of neural computation based on prediction by single neurons.
Fiorillo, Christopher D
2008-10-01
Although there has been tremendous progress in understanding the mechanics of the nervous system, there has not been a general theory of its computational function. Here I present a theory that relates the established biophysical properties of single generic neurons to principles of Bayesian probability theory, reinforcement learning and efficient coding. I suggest that this theory addresses the general computational problem facing the nervous system. Each neuron is proposed to mirror the function of the whole system in learning to predict aspects of the world related to future reward. According to the model, a typical neuron receives current information about the state of the world from a subset of its excitatory synaptic inputs, and prior information from its other inputs. Prior information would be contributed by synaptic inputs representing distinct regions of space, and by different types of non-synaptic, voltage-regulated channels representing distinct periods of the past. The neuron's membrane voltage is proposed to signal the difference between current and prior information ("prediction error" or "surprise"). A neuron would apply a Hebbian plasticity rule to select those excitatory inputs that are the most closely correlated with reward but are the least predictable, since unpredictable inputs provide the neuron with the most "new" information about future reward. To minimize the error in its predictions and to respond only when excitation is "new and surprising," the neuron selects amongst its prior information sources through an anti-Hebbian rule. The unique inputs of a mature neuron would therefore result from learning about spatial and temporal patterns in its local environment, and by extension, the external world. Thus the theory describes how the structure of the mature nervous system could reflect the structure of the external world, and how the complexity and intelligence of the system might develop from a population of undifferentiated neurons, each implementing similar learning algorithms.
Responses of tree and insect herbivores to elevated nitrogen inputs: A meta-analysis
NASA Astrophysics Data System (ADS)
Li, Furong; Dudley, Tom L.; Chen, Baoming; Chang, Xiaoyu; Liang, Liyin; Peng, Shaolin
2016-11-01
Increasing atmospheric nitrogen (N) inputs have the potential to alter terrestrial ecosystem function through impacts on plant-herbivore interactions. The goal of our study is to search for a general pattern in responses of tree characteristics important for herbivores and insect herbivorous performance to elevated N inputs. We conducted a meta-analysis based on 109 papers describing impacts of nitrogen inputs on tree characteristics and 16 papers on insect performance. The differences in plant characteristics and insect performance between broadleaves and conifers were also explored. Tree aboveground biomass, leaf biomass and leaf N concentration significantly increased under elevated N inputs. Elevated N inputs had no significantly overall effect on concentrations of phenolic compounds and lignin but adversely affected tannin, as defensive chemicals for insect herbivores. Additionally, the overall effect of insect herbivore performance (including development time, insect biomass, relative growth rate, and so on) was significantly increased by elevated N inputs. According to the inconsistent responses between broadleaves and conifers, broadleaves would be more likely to increase growth by light interception and photosynthesis rather than producing more defensive chemicals to elevated N inputs by comparison with conifers. Moreover, the overall carbohydrate concentration was significantly reduced by 13.12% in broadleaves while increased slightly in conifers. The overall tannin concentration decreased significantly by 39.21% in broadleaves but a 5.8% decrease in conifers was not significant. The results of the analysis indicated that elevated N inputs would provide more food sources and ameliorate tree palatability for insects, while the resistance of trees against their insect herbivores was weakened, especially for broadleaves. Thus, global forest insect pest problems would be aggravated by elevated N inputs. As N inputs continue to rise in the future, forest ecosystem management should pay more attention to insect pest, especially in the regions dominated by broadleaves.
NASA Astrophysics Data System (ADS)
Kokarev, V. N.; Vedenin, A. A.; Basin, A. B.; Azovsky, A. I.
2017-11-01
The studies of functional structure of high-Arctic Ecosystems are scarce. We used data on benthic macrofauna from 500-km latitudinal transect in the eastern Laptev Sea, from the Lena delta to the continental shelf break, to describe spatial patterns in species composition, taxonomic and functional structure in relation to environmental factors. Both taxonomy-based approach and Biological Trait analysis yielded similar results and showed general depth-related gradient in benthic diversity and composition. This congruence between taxonomical and functional dimensions of community organization suggests that the same environmental factors (primarily riverine input and regime of sedimentation) have similar effect on both community structure and functioning. BTA also revealed a distinct functional structure of stations situated at the Eastern Lena valley, with dominance of motile, burrowing sub-surface deposit-feeders and absence of sedentary tube-dwelling forms. The overall spatial distribution of benthic assemblages corresponds well to that described there in preceding decades, evidencing the long-term stability of bottom ecosystem. Strong linear relationship between species and traits diversity, however, indicates low functional redundancy, which potentially makes the ecosystem susceptible to a species loss or structural shifts.
2017-01-01
The input-output table is comprehensive and detailed in describing the national economic system with complex economic relationships, which embodies information of supply and demand among industrial sectors. This paper aims to scale the degree of competition/collaboration on the global value chain from the perspective of econophysics. Global Industrial Strongest Relevant Network models were established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output tables and then transformed into Global Industrial Resource Competition Network/Global Industrial Production Collaboration Network models embodying the competitive/collaborative relationships based on bibliographic coupling/co-citation approach. Three indicators well suited for these two kinds of weighted and non-directed networks with self-loops were introduced, including unit weight for competitive/collaborative power, disparity in the weight for competitive/collaborative amplitude and weighted clustering coefficient for competitive/collaborative intensity. Finally, these models and indicators were further applied to empirically analyze the function of sectors in the latest World Input-Output Database, to reveal inter-sector competitive/collaborative status during the economic globalization. PMID:28873432
A Reward-Maximizing Spiking Neuron as a Bounded Rational Decision Maker.
Leibfried, Felix; Braun, Daniel A
2015-08-01
Rate distortion theory describes how to communicate relevant information most efficiently over a channel with limited capacity. One of the many applications of rate distortion theory is bounded rational decision making, where decision makers are modeled as information channels that transform sensory input into motor output under the constraint that their channel capacity is limited. Such a bounded rational decision maker can be thought to optimize an objective function that trades off the decision maker's utility or cumulative reward against the information processing cost measured by the mutual information between sensory input and motor output. In this study, we interpret a spiking neuron as a bounded rational decision maker that aims to maximize its expected reward under the computational constraint that the mutual information between the neuron's input and output is upper bounded. This abstract computational constraint translates into a penalization of the deviation between the neuron's instantaneous and average firing behavior. We derive a synaptic weight update rule for such a rate distortion optimizing neuron and show in simulations that the neuron efficiently extracts reward-relevant information from the input by trading off its synaptic strengths against the collected reward.
Xing, Lizhi
2017-01-01
The input-output table is comprehensive and detailed in describing the national economic system with complex economic relationships, which embodies information of supply and demand among industrial sectors. This paper aims to scale the degree of competition/collaboration on the global value chain from the perspective of econophysics. Global Industrial Strongest Relevant Network models were established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output tables and then transformed into Global Industrial Resource Competition Network/Global Industrial Production Collaboration Network models embodying the competitive/collaborative relationships based on bibliographic coupling/co-citation approach. Three indicators well suited for these two kinds of weighted and non-directed networks with self-loops were introduced, including unit weight for competitive/collaborative power, disparity in the weight for competitive/collaborative amplitude and weighted clustering coefficient for competitive/collaborative intensity. Finally, these models and indicators were further applied to empirically analyze the function of sectors in the latest World Input-Output Database, to reveal inter-sector competitive/collaborative status during the economic globalization.
Analysis and selection of optimal function implementations in massively parallel computer
Archer, Charles Jens [Rochester, MN; Peters, Amanda [Rochester, MN; Ratterman, Joseph D [Rochester, MN
2011-05-31
An apparatus, program product and method optimize the operation of a parallel computer system by, in part, collecting performance data for a set of implementations of a function capable of being executed on the parallel computer system based upon the execution of the set of implementations under varying input parameters in a plurality of input dimensions. The collected performance data may be used to generate selection program code that is configured to call selected implementations of the function in response to a call to the function under varying input parameters. The collected performance data may be used to perform more detailed analysis to ascertain the comparative performance of the set of implementations of the function under the varying input parameters.
Horsager, Jacob; Munk, Ole Lajord; Sørensen, Michael
2015-01-01
Metabolic liver function can be measured by dynamic PET/CT with the radio-labelled galactose-analogue 2-[(18)F]fluoro-2-deoxy-D-galactose ((18)F-FDGal) in terms of hepatic systemic clearance of (18)F-FDGal (K, ml blood/ml liver tissue/min). The method requires arterial blood sampling from a radial artery (arterial input function), and the aim of this study was to develop a method for extracting an image-derived, non-invasive input function from a volume of interest (VOI). Dynamic (18)F-FDGal PET/CT data from 16 subjects without liver disease (healthy subjects) and 16 patients with liver cirrhosis were included in the study. Five different input VOIs were tested: four in the abdominal aorta and one in the left ventricle of the heart. Arterial input function from manual blood sampling was available for all subjects. K*-values were calculated using time-activity curves (TACs) from each VOI as input and compared to the K-value calculated using arterial blood samples as input. Each input VOI was tested on PET data reconstructed with and without resolution modelling. All five image-derived input VOIs yielded K*-values that correlated significantly with K calculated using arterial blood samples. Furthermore, TACs from two different VOIs yielded K*-values that did not statistically deviate from K calculated using arterial blood samples. A semicircle drawn in the posterior part of the abdominal aorta was the only VOI that was successful for both healthy subjects and patients as well as for PET data reconstructed with and without resolution modelling. Metabolic liver function using (18)F-FDGal PET/CT can be measured without arterial blood samples by using input data from a semicircle VOI drawn in the posterior part of the abdominal aorta.
An open source digital servo for atomic, molecular, and optical physics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leibrandt, D. R., E-mail: david.leibrandt@nist.gov; Heidecker, J.
2015-12-15
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of themore » laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.« less
An open source digital servo for atomic, molecular, and optical physics experiments.
Leibrandt, D R; Heidecker, J
2015-12-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of (27)Al(+) in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.
A method for determining customer requirement weights based on TFMF and TLR
NASA Astrophysics Data System (ADS)
Ai, Qingsong; Shu, Ting; Liu, Quan; Zhou, Zude; Xiao, Zheng
2013-11-01
'Customer requirements' (CRs) management plays an important role in enterprise systems (ESs) by processing customer-focused information. Quality function deployment (QFD) is one of the main CRs analysis methods. Because CR weights are crucial for the input of QFD, we developed a method for determining CR weights based on trapezoidal fuzzy membership function (TFMF) and 2-tuple linguistic representation (TLR). To improve the accuracy of CR weights, we propose to apply TFMF to describe CR weights so that they can be appropriately represented. Because the fuzzy logic is not capable of aggregating information without loss, TLR model is adopted as well. We first describe the basic concepts of TFMF and TLR and then introduce an approach to compute CR weights. Finally, an example is provided to explain and verify the proposed method.
An open source digital servo for atomic, molecular, and optical physics experiments
NASA Astrophysics Data System (ADS)
Leibrandt, D. R.; Heidecker, J.
2015-12-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.
An open source digital servo for atomic, molecular, and optical physics experiments
Leibrandt, D. R.; Heidecker, J.
2016-01-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser. PMID:26724014
Variance-based interaction index measuring heteroscedasticity
NASA Astrophysics Data System (ADS)
Ito, Keiichi; Couckuyt, Ivo; Poles, Silvia; Dhaene, Tom
2016-06-01
This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices by Sobol'. The proposed interaction index can quantify the relative importance of input variables in interaction. Furthermore, detection of non-interaction for screening can be done with as low as 4 n + 2 function evaluations, where n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may be decomposed into a set of lower dimensional functions which may then be analyzed separately.
Graphical User Interface for the NASA FLOPS Aircraft Performance and Sizing Code
NASA Technical Reports Server (NTRS)
Lavelle, Thomas M.; Curlett, Brian P.
1994-01-01
XFLOPS is an X-Windows/Motif graphical user interface for the aircraft performance and sizing code FLOPS. This new interface simplifies entering data and analyzing results, thereby reducing analysis time and errors. Data entry is simpler because input windows are used for each of the FLOPS namelists. These windows contain fields to input the variable's values along with help information describing the variable's function. Analyzing results is simpler because output data are displayed rapidly. This is accomplished in two ways. First, because the output file has been indexed, users can view particular sections with the click of a mouse button. Second, because menu picks have been created, users can plot engine and aircraft performance data. In addition, XFLOPS has a built-in help system and complete on-line documentation for FLOPS.
The computational worm: spatial orientation and its neuronal basis in C. elegans.
Lockery, Shawn R
2011-10-01
Spatial orientation behaviors in animals are fundamental for survival but poorly understood at the neuronal level. The nematode Caenorhabditis elegans orients to a wide range of stimuli and has a numerically small and well-described nervous system making it advantageous for investigating the mechanisms of spatial orientation. Recent work by the C. elegans research community has identified essential computational elements of the neural circuits underlying two orientation strategies that operate in five different sensory modalities. Analysis of these circuits reveals novel motifs including simple circuits for computing temporal derivatives of sensory input and for integrating sensory input with behavioral state to generate adaptive behavior. These motifs constitute hypotheses concerning the identity and functionality of circuits controlling spatial orientation in higher organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Welch, J. D.
1975-01-01
The preliminary design of an experiment for landmark recognition and tracking from the Shuttle/Advanced Technology Laboratory is described. It makes use of parallel coherent optical processing to perform correlation tests between landmarks observed passively with a telescope and previously made holographic matched filters. The experimental equipment including the optics, the low power laser, the random access file of matched filters and the electro-optical readout device are described. A real time optically excited liquid crystal device is recommended for performing the input non-coherent optical to coherent optical interface function. A development program leading to a flight experiment in 1981 is outlined.
Input Devices for Young Handicapped Children.
ERIC Educational Resources Information Center
Morris, Karen
The versatility of the computer can be expanded considerably for young handicapped children by using input devices other than the typewriter-style keyboard. Input devices appropriate for young children can be classified into four categories: alternative keyboards, contact switches, speech input devices, and cursor control devices. Described are…
Alviña, Karina; Sawtell, Nathaniel B
2014-07-15
Although it has been suggested that the cerebellum functions to predict the sensory consequences of motor commands, how such predictions are implemented in cerebellar circuitry remains largely unknown. A detailed and relatively complete account of predictive mechanisms has emerged from studies of cerebellum-like sensory structures in fish, suggesting that comparisons of the cerebellum and cerebellum-like structures may be useful. Here we characterize electrophysiological response properties of Purkinje cells in a region of the cerebellum proper of weakly electric mormyrid fish, the posterior caudal lobe (LCp), which receives the same mossy fiber inputs and projects to the same target structures as the electrosensory lobe (ELL), a well-studied cerebellum-like structure. We describe patterns of simple spike and climbing fiber activation in LCp Purkinje cells in response to motor corollary discharge, electrosensory, and proprioceptive inputs and provide evidence for two functionally distinct Purkinje cell subtypes within LCp. Protocols that induce rapid associative plasticity in ELL fail to induce plasticity in LCp, suggesting differences in the adaptive functions of the two structures. Similarities and differences between LCp and ELL are discussed in light of these results. Copyright © 2014 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.; Meyer, Claudia M.
1991-01-01
A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided.
Creating speech-synchronized animation.
King, Scott A; Parent, Richard E
2005-01-01
We present a facial model designed primarily to support animated speech. Our facial model takes facial geometry as input and transforms it into a parametric deformable model. The facial model uses a muscle-based parameterization, allowing for easier integration between speech synchrony and facial expressions. Our facial model has a highly deformable lip model that is grafted onto the input facial geometry to provide the necessary geometric complexity needed for creating lip shapes and high-quality renderings. Our facial model also includes a highly deformable tongue model that can represent the shapes the tongue undergoes during speech. We add teeth, gums, and upper palate geometry to complete the inner mouth. To decrease the processing time, we hierarchically deform the facial surface. We also present a method to animate the facial model over time to create animated speech using a model of coarticulation that blends visemes together using dominance functions. We treat visemes as a dynamic shaping of the vocal tract by describing visemes as curves instead of keyframes. We show the utility of the techniques described in this paper by implementing them in a text-to-audiovisual-speech system that creates animation of speech from unrestricted text. The facial and coarticulation models must first be interactively initialized. The system then automatically creates accurate real-time animated speech from the input text. It is capable of cheaply producing tremendous amounts of animated speech with very low resource requirements.
Pre- and postprocessing for reservoir simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, W.L.; Ingalls, L.J.; Prasad, S.J.
1991-05-01
This paper describes the functionality and underlying programing paradigms of Shell's simulator-related reservoir-engineering graphics system. THis system includes the simulation postprocessing programs Reservoir Display System (RDS) and Fast Reservoir Engineering Displays (FRED), a hypertext-like on-line documentation system (DOC), and a simulator input preprocessor (SIMPLSIM). RDS creates displays of reservoir simulation results. These displays represent the areal or cross-section distribution of computer reservoir parameters, such as pressure, phase saturation, or temperature. Generation of these images at real-time animation rates is discussed. FRED facilitates the creation of plot files from reservoir simulation output. The use of dynamic memory allocation, asynchronous I/O, amore » table-driven screen manager, and mixed-language (FORTRAN and C) programming are detailed. DOC is used to create and access on-line documentation for the pre-and post-processing programs and the reservoir simulators. DOC can be run by itself or can be accessed from within any other graphics or nongraphics application program. DOC includes a text editor, which is that basis for a reservoir simulation tutorial and greatly simplifies the preparation of simulator input. The use of sharable images, graphics, and the documentation file network are described. Finally, SIMPLSIM is a suite of program that uses interactive graphics in the preparation of reservoir description data for input into reservoir simulators. The SIMPLSIM user-interface manager (UIM) and its graphic interface for reservoir description are discussed.« less
Uncertainty in modeled upper ocean heat content change
NASA Astrophysics Data System (ADS)
Tokmakian, Robin; Challenor, Peter
2014-02-01
This paper examines the uncertainty in the change in the heat content in the ocean component of a general circulation model. We describe the design and implementation of our statistical methodology. Using an ensemble of model runs and an emulator, we produce an estimate of the full probability distribution function (PDF) for the change in upper ocean heat in an Atmosphere/Ocean General Circulation Model, the Community Climate System Model v. 3, across a multi-dimensional input space. We show how the emulator of the GCM's heat content change and hence, the PDF, can be validated and how implausible outcomes from the emulator can be identified when compared to observational estimates of the metric. In addition, the paper describes how the emulator outcomes and related uncertainty information might inform estimates of the same metric from a multi-model Coupled Model Intercomparison Project phase 3 ensemble. We illustrate how to (1) construct an ensemble based on experiment design methods, (2) construct and evaluate an emulator for a particular metric of a complex model, (3) validate the emulator using observational estimates and explore the input space with respect to implausible outcomes and (4) contribute to the understanding of uncertainties within a multi-model ensemble. Finally, we estimate the most likely value for heat content change and its uncertainty for the model, with respect to both observations and the uncertainty in the value for the input parameters.
NASA Astrophysics Data System (ADS)
Xing, Lizhi; Dong, Xianlei; Guan, Jun
2017-04-01
Input-output table is very comprehensive and detailed in describing the national economic system with lots of economic relationships, which contains supply and demand information among industrial sectors. The complex network, a theory and method for measuring the structure of complex system, can describe the structural characteristics of the internal structure of the research object by measuring the structural indicators of the social and economic system, revealing the complex relationship between the inner hierarchy and the external economic function. This paper builds up GIVCN-WIOT models based on World Input-Output Database in order to depict the topological structure of Global Value Chain (GVC), and assumes the competitive advantage of nations is equal to the overall performance of its domestic sectors' impact on the GVC. Under the perspective of econophysics, Global Industrial Impact Coefficient (GIIC) is proposed to measure the national competitiveness in gaining information superiority and intermediate interests. Analysis of GIVCN-WIOT models yields several insights including the following: (1) sectors with higher Random Walk Centrality contribute more to transmitting value streams within the global economic system; (2) Half-Value Ratio can be used to measure robustness of open-economy macroeconomics in the process of globalization; (3) the positive correlation between GIIC and GDP indicates that one country's global industrial impact could reveal its international competitive advantage.
Wang, Cheng-Te; Lee, Chung-Ting; Wang, Xiao-Jing; Lo, Chung-Chuan
2013-01-01
Recent physiological studies have shown that neurons in various regions of the central nervous systems continuously receive noisy excitatory and inhibitory synaptic inputs in a balanced and covaried fashion. While this balanced synaptic input (BSI) is typically described in terms of maintaining the stability of neural circuits, a number of experimental and theoretical studies have suggested that BSI plays a proactive role in brain functions such as top-down modulation for executive control. Two issues have remained unclear in this picture. First, given the noisy nature of neuronal activities in neural circuits, how do the modulatory effects change if the top-down control implements BSI with different ratios between inhibition and excitation? Second, how is a top-down BSI realized via only excitatory long-range projections in the neocortex? To address the first issue, we systematically tested how the inhibition/excitation ratio affects the accuracy and reaction times of a spiking neural circuit model of perceptual decision. We defined an energy function to characterize the network dynamics, and found that different ratios modulate the energy function of the circuit differently and form two distinct functional modes. To address the second issue, we tested BSI with long-distance projection to inhibitory neurons that are either feedforward or feedback, depending on whether these inhibitory neurons do or do not receive inputs from local excitatory cells, respectively. We found that BSI occurs in both cases. Furthermore, when relying on feedback inhibitory neurons, through the recurrent interactions inside the circuit, BSI dynamically and automatically speeds up the decision by gradually reducing its inhibitory component in the course of a trial when a decision process takes too long. PMID:23626812
Wang, Cheng-Te; Lee, Chung-Ting; Wang, Xiao-Jing; Lo, Chung-Chuan
2013-01-01
Recent physiological studies have shown that neurons in various regions of the central nervous systems continuously receive noisy excitatory and inhibitory synaptic inputs in a balanced and covaried fashion. While this balanced synaptic input (BSI) is typically described in terms of maintaining the stability of neural circuits, a number of experimental and theoretical studies have suggested that BSI plays a proactive role in brain functions such as top-down modulation for executive control. Two issues have remained unclear in this picture. First, given the noisy nature of neuronal activities in neural circuits, how do the modulatory effects change if the top-down control implements BSI with different ratios between inhibition and excitation? Second, how is a top-down BSI realized via only excitatory long-range projections in the neocortex? To address the first issue, we systematically tested how the inhibition/excitation ratio affects the accuracy and reaction times of a spiking neural circuit model of perceptual decision. We defined an energy function to characterize the network dynamics, and found that different ratios modulate the energy function of the circuit differently and form two distinct functional modes. To address the second issue, we tested BSI with long-distance projection to inhibitory neurons that are either feedforward or feedback, depending on whether these inhibitory neurons do or do not receive inputs from local excitatory cells, respectively. We found that BSI occurs in both cases. Furthermore, when relying on feedback inhibitory neurons, through the recurrent interactions inside the circuit, BSI dynamically and automatically speeds up the decision by gradually reducing its inhibitory component in the course of a trial when a decision process takes too long.
NASA Astrophysics Data System (ADS)
Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping
2017-11-01
A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.
Compact universal logic gates realized using quantization of current in nanodevices.
Zhang, Wancheng; Wu, Nan-Jian; Yang, Fuhua
2007-12-12
This paper proposes novel universal logic gates using the current quantization characteristics of nanodevices. In nanodevices like the electron waveguide (EW) and single-electron (SE) turnstile, the channel current is a staircase quantized function of its control voltage. We use this unique characteristic to compactly realize Boolean functions. First we present the concept of the periodic-threshold threshold logic gate (PTTG), and we build a compact PTTG using EW and SE turnstiles. We show that an arbitrary three-input Boolean function can be realized with a single PTTG, and an arbitrary four-input Boolean function can be realized by using two PTTGs. We then use one PTTG to build a universal programmable two-input logic gate which can be used to realize all two-input Boolean functions. We also build a programmable three-input logic gate by using one PTTG. Compared with linear threshold logic gates, with the PTTG one can build digital circuits more compactly. The proposed PTTGs are promising for future smart nanoscale digital system use.
Turbulence simulation mechanization for Space Shuttle Orbiter dynamics and control studies
NASA Technical Reports Server (NTRS)
Tatom, F. B.; King, R. L.
1977-01-01
The current version of the NASA turbulent simulation model in the form of a digital computer program, TBMOD, is described. The logic of the program is discussed and all inputs and outputs are defined. An alternate method of shear simulation suitable for incorporation into the model is presented. The simulation is based on a von Karman spectrum and the assumption of isotropy. The resulting spectral density functions for the shear model are included.
Manual control of yaw motion with combined visual and vestibular cues
NASA Technical Reports Server (NTRS)
Zacharias, G. L.; Young, L. R.
1977-01-01
Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation was modelled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A correction to the frequency responses is provided by a separate measurement of manual control performance in an analogous visual pursuit nulling task. The resulting dual-input describing function for motion perception dependence on combined cue presentation supports the complementary model, in which vestibular cues dominate sensation at frequencies above 0.05 Hz. The describing function model is extended by the proposal of a non-linear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.
Data analytics using canonical correlation analysis and Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Rickman, Jeffrey M.; Wang, Yan; Rollett, Anthony D.; Harmer, Martin P.; Compson, Charles
2017-07-01
A canonical correlation analysis is a generic parametric model used in the statistical analysis of data involving interrelated or interdependent input and output variables. It is especially useful in data analytics as a dimensional reduction strategy that simplifies a complex, multidimensional parameter space by identifying a relatively few combinations of variables that are maximally correlated. One shortcoming of the canonical correlation analysis, however, is that it provides only a linear combination of variables that maximizes these correlations. With this in mind, we describe here a versatile, Monte-Carlo based methodology that is useful in identifying non-linear functions of the variables that lead to strong input/output correlations. We demonstrate that our approach leads to a substantial enhancement of correlations, as illustrated by two experimental applications of substantial interest to the materials science community, namely: (1) determining the interdependence of processing and microstructural variables associated with doped polycrystalline aluminas, and (2) relating microstructural decriptors to the electrical and optoelectronic properties of thin-film solar cells based on CuInSe2 absorbers. Finally, we describe how this approach facilitates experimental planning and process control.
NESTEM-QRAS: A Tool for Estimating Probability of Failure
NASA Technical Reports Server (NTRS)
Patel, Bhogilal M.; Nagpal, Vinod K.; Lalli, Vincent A.; Pai, Shantaram; Rusick, Jeffrey J.
2002-01-01
An interface between two NASA GRC specialty codes, NESTEM and QRAS has been developed. This interface enables users to estimate, in advance, the risk of failure of a component, a subsystem, and/or a system under given operating conditions. This capability would be able to provide a needed input for estimating the success rate for any mission. NESTEM code, under development for the last 15 years at NASA Glenn Research Center, has the capability of estimating probability of failure of components under varying loading and environmental conditions. This code performs sensitivity analysis of all the input variables and provides their influence on the response variables in the form of cumulative distribution functions. QRAS, also developed by NASA, assesses risk of failure of a system or a mission based on the quantitative information provided by NESTEM or other similar codes, and user provided fault tree and modes of failure. This paper will describe briefly, the capabilities of the NESTEM, QRAS and the interface. Also, in this presentation we will describe stepwise process the interface uses using an example.
NESTEM-QRAS: A Tool for Estimating Probability of Failure
NASA Astrophysics Data System (ADS)
Patel, Bhogilal M.; Nagpal, Vinod K.; Lalli, Vincent A.; Pai, Shantaram; Rusick, Jeffrey J.
2002-10-01
An interface between two NASA GRC specialty codes, NESTEM and QRAS has been developed. This interface enables users to estimate, in advance, the risk of failure of a component, a subsystem, and/or a system under given operating conditions. This capability would be able to provide a needed input for estimating the success rate for any mission. NESTEM code, under development for the last 15 years at NASA Glenn Research Center, has the capability of estimating probability of failure of components under varying loading and environmental conditions. This code performs sensitivity analysis of all the input variables and provides their influence on the response variables in the form of cumulative distribution functions. QRAS, also developed by NASA, assesses risk of failure of a system or a mission based on the quantitative information provided by NESTEM or other similar codes, and user provided fault tree and modes of failure. This paper will describe briefly, the capabilities of the NESTEM, QRAS and the interface. Also, in this presentation we will describe stepwise process the interface uses using an example.
Field-programmable logic devices with optical input-output.
Szymanski, T H; Saint-Laurent, M; Tyan, V; Au, A; Supmonchai, B
2000-02-10
A field-programmable logic device (FPLD) with optical I/O is described. FPLD's with optical I/O can have their functionality specified in the field by means of downloading a control-bit stream and can be used in a wide range of applications, such as optical signal processing, optical image processing, and optical interconnects. Our device implements six state-of-the-art dynamically programmable logic arrays (PLA's) on a 2 mm x 2 mm die. The devices were fabricated through the Lucent Technologies-Advanced Research Projects Agency-Consortium for Optical and Optoelectronic Technologies in Computing (Lucent/ARPA/COOP) workshop by use of 0.5-microm complementary metal-oxide semiconductor-self-electro-optic device technology and were delivered in 1998. All devices are fully functional: The electronic data paths have been verified at 200 MHz, and optical tests are pending. The device has been programmed to implement a two-stage optical switching network with six 4 x 4 crossbar switches, which can realize more than 190 x 10(6) unique programmable input-output permutations. The same device scaled to a 2 cm x 2 cm substrate could support as many as 4000 optical I/O and 1 Tbit/s of optical I/O bandwidth and offer fully programmable digital functionality with approximately 110,000 programmable logic gates. The proposed optoelectronic FPLD is also ideally suited to realizing dense, statically reconfigurable crossbar switches. We describe an attractive application area for such devices: a rearrangeable three-stage optical switch for a wide-area-network backbone, switching 1000 traffic streams at the OC-48 data rate and supporting several terabits of traffic.
Quantitative myocardial perfusion from static cardiac and dynamic arterial CT
NASA Astrophysics Data System (ADS)
Bindschadler, Michael; Branch, Kelley R.; Alessio, Adam M.
2018-05-01
Quantitative myocardial blood flow (MBF) estimation by dynamic contrast enhanced cardiac computed tomography (CT) requires multi-frame acquisition of contrast transit through the blood pool and myocardium to inform the arterial input and tissue response functions. Both the input and the tissue response functions for the entire myocardium are sampled with each acquisition. However, the long breath holds and frequent sampling can result in significant motion artifacts and relatively high radiation dose. To address these limitations, we propose and evaluate a new static cardiac and dynamic arterial (SCDA) quantitative MBF approach where (1) the input function is well sampled using either prediction from pre-scan timing bolus data or measured from dynamic thin slice ‘bolus tracking’ acquisitions, and (2) the whole-heart tissue response data is limited to one contrast enhanced CT acquisition. A perfusion model uses the dynamic arterial input function to generate a family of possible myocardial contrast enhancement curves corresponding to a range of MBF values. Combined with the timing of the single whole-heart acquisition, these curves generate a lookup table relating myocardial contrast enhancement to quantitative MBF. We tested the SCDA approach in 28 patients that underwent a full dynamic CT protocol both at rest and vasodilator stress conditions. Using measured input function plus single (enhanced CT only) or plus double (enhanced and contrast free baseline CT’s) myocardial acquisitions yielded MBF estimates with root mean square (RMS) error of 1.2 ml/min/g and 0.35 ml/min/g, and radiation dose reductions of 90% and 83%, respectively. The prediction of the input function based on timing bolus data and the static acquisition had an RMS error compared to the measured input function of 26.0% which led to MBF estimation errors greater than threefold higher than using the measured input function. SCDA presents a new, simplified approach for quantitative perfusion imaging with an acquisition strategy offering substantial radiation dose and computational complexity savings over dynamic CT.
Immunity of medical electrical equipment to radiated RF disturbances
NASA Astrophysics Data System (ADS)
Mocha, Jan; Wójcik, Dariusz; Surma, Maciej
2018-04-01
Immunity of medical equipment to radiated radio frequency (RF) electromagnetic (EM) fields is a priority issue owing to the functions that the equipment is intended to perform. This is reflected in increasingly stringent normative requirements that medical electrical equipment has to conform to. A new version of the standard concerning electromagnetic compatibility of medical electrical equipment IEC 60601-1-2:2014 has recently been published. The paper discusses major changes introduced in this edition of the standard. The changes comprise more rigorous immunity requirements for medical equipment as regards radiated RF EM fields and a new requirement for testing the immunity of medical electrical equipment to disturbances coming from digital radio communication systems. Further on, the paper presents two typical designs of the input block: involving a multi-level filtering and amplification circuit and including a solution which integrates an input amplifier and an analog-to-digital converter in one circuit. Regardless of the applied solution, presence of electromagnetic disturbances in the input block leads to demodulation of the disturbance signal envelope. The article elaborates on mechanisms of amplitude detection occurring in such cases. Electromagnetic interferences penetration from the amplifier's input to the output is also described in the paper. If the aforementioned phenomena are taken into account, engineers will be able to develop a more conscious approach towards the issue of immunity to RF EM fields in the process of designing input circuits in medical electrical equipment.
An open tool for input function estimation and quantification of dynamic PET FDG brain scans.
Bertrán, Martín; Martínez, Natalia; Carbajal, Guillermo; Fernández, Alicia; Gómez, Álvaro
2016-08-01
Positron emission tomography (PET) analysis of clinical studies is mostly restricted to qualitative evaluation. Quantitative analysis of PET studies is highly desirable to be able to compute an objective measurement of the process of interest in order to evaluate treatment response and/or compare patient data. But implementation of quantitative analysis generally requires the determination of the input function: the arterial blood or plasma activity which indicates how much tracer is available for uptake in the brain. The purpose of our work was to share with the community an open software tool that can assist in the estimation of this input function, and the derivation of a quantitative map from the dynamic PET study. Arterial blood sampling during the PET study is the gold standard method to get the input function, but is uncomfortable and risky for the patient so it is rarely used in routine studies. To overcome the lack of a direct input function, different alternatives have been devised and are available in the literature. These alternatives derive the input function from the PET image itself (image-derived input function) or from data gathered from previous similar studies (population-based input function). In this article, we present ongoing work that includes the development of a software tool that integrates several methods with novel strategies for the segmentation of blood pools and parameter estimation. The tool is available as an extension to the 3D Slicer software. Tests on phantoms were conducted in order to validate the implemented methods. We evaluated the segmentation algorithms over a range of acquisition conditions and vasculature size. Input function estimation algorithms were evaluated against ground truth of the phantoms, as well as on their impact over the final quantification map. End-to-end use of the tool yields quantification maps with [Formula: see text] relative error in the estimated influx versus ground truth on phantoms. The main contribution of this article is the development of an open-source, free to use tool that encapsulates several well-known methods for the estimation of the input function and the quantification of dynamic PET FDG studies. Some alternative strategies are also proposed and implemented in the tool for the segmentation of blood pools and parameter estimation. The tool was tested on phantoms with encouraging results that suggest that even bloodless estimators could provide a viable alternative to blood sampling for quantification using graphical analysis. The open tool is a promising opportunity for collaboration among investigators and further validation on real studies.
Mapping Inhibitory Neuronal Circuits by Laser Scanning Photostimulation
Ikrar, Taruna; Olivas, Nicholas D.; Shi, Yulin; Xu, Xiangmin
2011-01-01
Inhibitory neurons are crucial to cortical function. They comprise about 20% of the entire cortical neuronal population and can be further subdivided into diverse subtypes based on their immunochemical, morphological, and physiological properties1-4. Although previous research has revealed much about intrinsic properties of individual types of inhibitory neurons, knowledge about their local circuit connections is still relatively limited3,5,6. Given that each individual neuron's function is shaped by its excitatory and inhibitory synaptic input within cortical circuits, we have been using laser scanning photostimulation (LSPS) to map local circuit connections to specific inhibitory cell types. Compared to conventional electrical stimulation or glutamate puff stimulation, LSPS has unique advantages allowing for extensive mapping and quantitative analysis of local functional inputs to individually recorded neurons3,7-9. Laser photostimulation via glutamate uncaging selectively activates neurons perisomatically, without activating axons of passage or distal dendrites, which ensures a sub-laminar mapping resolution. The sensitivity and efficiency of LSPS for mapping inputs from many stimulation sites over a large region are well suited for cortical circuit analysis. Here we introduce the technique of LSPS combined with whole-cell patch clamping for local inhibitory circuit mapping. Targeted recordings of specific inhibitory cell types are facilitated by use of transgenic mice expressing green fluorescent proteins (GFP) in limited inhibitory neuron populations in the cortex3,10, which enables consistent sampling of the targeted cell types and unambiguous identification of the cell types recorded. As for LSPS mapping, we outline the system instrumentation, describe the experimental procedure and data acquisition, and present examples of circuit mapping in mouse primary somatosensory cortex. As illustrated in our experiments, caged glutamate is activated in a spatially restricted region of the brain slice by UV laser photolysis; simultaneous voltage-clamp recordings allow detection of photostimulation-evoked synaptic responses. Maps of either excitatory or inhibitory synaptic input to the targeted neuron are generated by scanning the laser beam to stimulate hundreds of potential presynaptic sites. Thus, LSPS enables the construction of detailed maps of synaptic inputs impinging onto specific types of inhibitory neurons through repeated experiments. Taken together, the photostimulation-based technique offers neuroscientists a powerful tool for determining the functional organization of local cortical circuits. PMID:22006064
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2015-01-01
Several key capabilities have been identified by the aerospace community as lacking in the material/models for composite materials currently available within commercial transient dynamic finite element codes such as LS-DYNA. Some of the specific desired features that have been identified include the incorporation of both plasticity and damage within the material model, the capability of using the material model to analyze the response of both three-dimensional solid elements and two dimensional shell elements, and the ability to simulate the response of composites composed with a variety of composite architectures, including laminates, weaves and braids. In addition, a need has been expressed to have a material model that utilizes tabulated experimentally based input to define the evolution of plasticity and damage as opposed to utilizing discrete input parameters (such as modulus and strength) and analytical functions based on curve fitting. To begin to address these needs, an orthotropic macroscopic plasticity based model suitable for implementation within LS-DYNA has been developed. Specifically, the Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The coefficients in the yield function are determined based on tabulated stress-strain curves in the various normal and shear directions, along with selected off-axis curves. Incorporating rate dependence into the yield function is achieved by using a series of tabluated input curves, each at a different constant strain rate. The non-associative flow-rule is used to compute the evolution of the effective plastic strain. Systematic procedures have been developed to determine the values of the various coefficients in the yield function and the flow rule based on the tabulated input data. An algorithm based on the radial return method has been developed to facilitate the numerical implementation of the material model. The presented paper will present in detail the development of the orthotropic plasticity model and the procedures used to obtain the required material parameters. Methods in which a combination of actual testing and selective numerical testing can be combined to yield the appropriate input data for the model will be described. A specific laminated polymer matrix composite will be examined to demonstrate the application of the model.
Integrating Brain and Biomechanical Models—A New Paradigm for Understanding Neuro-muscular Control
James, Sebastian S.; Papapavlou, Chris; Blenkinsop, Alexander; Cope, Alexander J.; Anderson, Sean R.; Moustakas, Konstantinos; Gurney, Kevin N.
2018-01-01
To date, realistic models of how the central nervous system governs behavior have been restricted in scope to the brain, brainstem or spinal column, as if these existed as disembodied organs. Further, the model is often exercised in relation to an in vivo physiological experiment with input comprising an impulse, a periodic signal or constant activation, and output as a pattern of neural activity in one or more neural populations. Any link to behavior is inferred only indirectly via these activity patterns. We argue that to discover the principles of operation of neural systems, it is necessary to express their behavior in terms of physical movements of a realistic motor system, and to supply inputs that mimic sensory experience. To do this with confidence, we must connect our brain models to neuro-muscular models and provide relevant visual and proprioceptive feedback signals, thereby closing the loop of the simulation. This paper describes an effort to develop just such an integrated brain and biomechanical system using a number of pre-existing models. It describes a model of the saccadic oculomotor system incorporating a neuromuscular model of the eye and its six extraocular muscles. The position of the eye determines how illumination of a retinotopic input population projects information about the location of a saccade target into the system. A pre-existing saccadic burst generator model was incorporated into the system, which generated motoneuron activity patterns suitable for driving the biomechanical eye. The model was demonstrated to make accurate saccades to a target luminance under a set of environmental constraints. Challenges encountered in the development of this model showed the importance of this integrated modeling approach. Thus, we exposed shortcomings in individual model components which were only apparent when these were supplied with the more plausible inputs available in a closed loop design. Consequently we were able to suggest missing functionality which the system would require to reproduce more realistic behavior. The construction of such closed-loop animal models constitutes a new paradigm of computational neurobehavior and promises a more thoroughgoing approach to our understanding of the brain's function as a controller for movement and behavior. PMID:29467606
Improved Monitoring of Vegetation Productivity using Continuous Assimilation of Radiometric Data
NASA Astrophysics Data System (ADS)
Baret, F.; Lauvernet, C.; Weiss, M.; Prevot, L.; Rochdi, N.
Canopy functioning models describe crop production from meteorological and soil inputs. However, because of the large number of variables and parameters used, and the poor knowledge of the actual values of some of them, the time course of the canopy and thus final production simulated by these models is often not very accurate. Satellite observations sensors allow controlling the simulations through assimilation of the radiometric data within radiative transfer models coupled to canopy functioning models. An assimilation scheme is presented with application to wheat crops. The coupling between radiative transfer models and canopy functioning models is described. The assimilation scheme is then applied to an experiment achieved within the ReSeDA project. Several issues relative to the assimilation process are discussed. They concern the type of canopy functioning model used, the possibility to assimilate biophysical products rather than radiances, and the use of ancillary information. Further, considerations associated to the problems linked to high spatial and temporal resolution data are listed and illustrated by preliminary results acquired within the ADAM project. Further discussion is made on the required temporal sampling for space observations.
Study of limitations and attributes of microprocessor testing techniques
NASA Technical Reports Server (NTRS)
Mccaskill, R.; Sohl, W. E.
1977-01-01
All microprocessor units have a similar architecture from which a basic test philosophy can be adopted and used to develop an approach to test each module separately in order to verify the functionality of each module within the device using the input/output pins of the device and its instruction set; test for destructive interaction between functional modules; and verify all timing, status information, and interrupt operations of the device. Block and test flow diagrams are given for the 8080, 8008, 2901, 6800, and 1802 microprocessors. Manufacturers are listed and problems encountered in testing the modules are discussed. Test equipment and methods are described.
NASA Technical Reports Server (NTRS)
1974-01-01
The functional, performance, and design requirements for the Operations Control Center (OCC) of the Earth Observatory Satellite (EOS) system are presented. The OCC controls the operations of the EOS satellite to acquire mission data consisting of: (1) thematic mapper data, (2) multispectral scanner data on EOS-A, or High Resolution Pointable Imager data on EOS-B, and (3) data collection system (DCS) data. The various inputs to the OCC are identified. The functional requirements of the OCC are defined. The specific systems and subsystems of the OCC are described and block diagrams are provided.
Eye-gaze and intent: Application in 3D interface control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, J.C.; Goldberg, J.H.
1993-06-01
Computer interface control is typically accomplished with an input ``device`` such as keyboard, mouse, trackball, etc. An input device translates a users input actions, such as mouse clicks and key presses, into appropriate computer commands. To control the interface, the user must first convert intent into the syntax of the input device. A more natural means of computer control is possible when the computer can directly infer user intent, without need of intervening input devices. We describe an application of eye-gaze-contingent control of an interactive three-dimensional (3D) user interface. A salient feature of the user interface is natural input, withmore » a heightened impression of controlling the computer directly by the mind. With this interface, input of rotation and translation are intuitive, whereas other abstract features, such as zoom, are more problematic to match with user intent. This paper describes successes with implementation to date, and ongoing efforts to develop a more sophisticated intent inferencing methodology.« less
Eye-gaze and intent: Application in 3D interface control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, J.C.; Goldberg, J.H.
1993-01-01
Computer interface control is typically accomplished with an input device'' such as keyboard, mouse, trackball, etc. An input device translates a users input actions, such as mouse clicks and key presses, into appropriate computer commands. To control the interface, the user must first convert intent into the syntax of the input device. A more natural means of computer control is possible when the computer can directly infer user intent, without need of intervening input devices. We describe an application of eye-gaze-contingent control of an interactive three-dimensional (3D) user interface. A salient feature of the user interface is natural input, withmore » a heightened impression of controlling the computer directly by the mind. With this interface, input of rotation and translation are intuitive, whereas other abstract features, such as zoom, are more problematic to match with user intent. This paper describes successes with implementation to date, and ongoing efforts to develop a more sophisticated intent inferencing methodology.« less
Determination of poles and zeros of transfer functions for flexible spacecraft attitude control
NASA Technical Reports Server (NTRS)
Ohkami, Y.; Likins, P. W.
1976-01-01
The transfer function matrix is obtained for a three-input and three-output model of minimum sensors and actuators for the attitude control system of flexible spacecraft, and a method is described for determining the poles and zeros of this transfer function. Three cases are considered: (1) the actuators and the sensors are all attached to the primary body, (2) the actuators are on the primary body and the sensors are on the sub-body, and (3) the actuators are on the sub-body and the sensors are on the primary body. The zero-determination problem is shown to reduce to eigenvalue calculations of a matrix which is constructed from the inertial and modal matrices in a simple fashion.
Display nonlinearity in digital image processing for visual communications
NASA Astrophysics Data System (ADS)
Peli, Eli
1992-11-01
The luminance emitted from a cathode ray tube (CRT) display is a nonlinear function (the gamma function) of the input video signal voltage. In most analog video systems, compensation for this nonlinear transfer function is implemented in the camera amplifiers. When CRT displays are used to present psychophysical stimuli in vision research, the specific display nonlinearity usually is measured and accounted for to ensure that the luminance of each pixel in the synthetic image property represents the intended value. However, when using digital image processing, the linear analog-to-digital converters store a digital image that is nonlinearly related to the displayed or recorded image. The effect of this nonlinear transformation on a variety of image-processing applications used in visual communications is described.
Display nonlinearity in digital image processing for visual communications
NASA Astrophysics Data System (ADS)
Peli, Eli
1991-11-01
The luminance emitted from a cathode ray tube, (CRT) display is a nonlinear function (the gamma function) of the input video signal voltage. In most analog video systems, compensation for this nonlinear transfer function is implemented in the camera amplifiers. When CRT displays are used to present psychophysical stimuli in vision research, the specific display nonlinearity usually is measured and accounted for to ensure that the luminance of each pixel in the synthetic image properly represents the intended value. However, when using digital image processing, the linear analog-to-digital converters store a digital image that is nonlinearly related to the displayed or recorded image. This paper describes the effect of this nonlinear transformation on a variety of image-processing applications used in visual communications.
NASA Technical Reports Server (NTRS)
Anderson, O. L.; Chiappetta, L. M.; Edwards, D. E.; Mcvey, J. B.
1982-01-01
A user's manual describing the operation of three computer codes (ADD code, PTRAK code, and VAPDIF code) is presented. The general features of the computer codes, the input/output formats, run streams, and sample input cases are described.
Transfer Function Control for Biometric Monitoring System
NASA Technical Reports Server (NTRS)
Chmiel, Alan J. (Inventor); Grodinsky, Carlos M. (Inventor); Humphreys, Bradley T. (Inventor)
2015-01-01
A modular apparatus for acquiring biometric data may include circuitry operative to receive an input signal indicative of a biometric condition, the circuitry being configured to process the input signal according to a transfer function thereof and to provide a corresponding processed input signal. A controller is configured to provide at least one control signal to the circuitry to programmatically modify the transfer function of the modular system to facilitate acquisition of the biometric data.
Massively parallel sparse matrix function calculations with NTPoly
NASA Astrophysics Data System (ADS)
Dawson, William; Nakajima, Takahito
2018-04-01
We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.
Gaussian-input Gaussian mixture model for representing density maps and atomic models.
Kawabata, Takeshi
2018-07-01
A new Gaussian mixture model (GMM) has been developed for better representations of both atomic models and electron microscopy 3D density maps. The standard GMM algorithm employs an EM algorithm to determine the parameters. It accepted a set of 3D points with weights, corresponding to voxel or atomic centers. Although the standard algorithm worked reasonably well; however, it had three problems. First, it ignored the size (voxel width or atomic radius) of the input, and thus it could lead to a GMM with a smaller spread than the input. Second, the algorithm had a singularity problem, as it sometimes stopped the iterative procedure due to a Gaussian function with almost zero variance. Third, a map with a large number of voxels required a long computation time for conversion to a GMM. To solve these problems, we have introduced a Gaussian-input GMM algorithm, which considers the input atoms or voxels as a set of Gaussian functions. The standard EM algorithm of GMM was extended to optimize the new GMM. The new GMM has identical radius of gyration to the input, and does not suddenly stop due to the singularity problem. For fast computation, we have introduced a down-sampled Gaussian functions (DSG) by merging neighboring voxels into an anisotropic Gaussian function. It provides a GMM with thousands of Gaussian functions in a short computation time. We also have introduced a DSG-input GMM: the Gaussian-input GMM with the DSG as the input. This new algorithm is much faster than the standard algorithm. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Balancing the stochastic description of uncertainties as a function of hydrologic model complexity
NASA Astrophysics Data System (ADS)
Del Giudice, D.; Reichert, P.; Albert, C.; Kalcic, M.; Logsdon Muenich, R.; Scavia, D.; Bosch, N. S.; Michalak, A. M.
2016-12-01
Uncertainty analysis is becoming an important component of forecasting water and pollutant fluxes in urban and rural environments. Properly accounting for errors in the modeling process can help to robustly assess the uncertainties associated with the inputs (e.g. precipitation) and outputs (e.g. runoff) of hydrological models. In recent years we have investigated several Bayesian methods to infer the parameters of a mechanistic hydrological model along with those of the stochastic error component. The latter describes the uncertainties of model outputs and possibly inputs. We have adapted our framework to a variety of applications, ranging from predicting floods in small stormwater systems to nutrient loads in large agricultural watersheds. Given practical constraints, we discuss how in general the number of quantities to infer probabilistically varies inversely with the complexity of the mechanistic model. Most often, when evaluating a hydrological model of intermediate complexity, we can infer the parameters of the model as well as of the output error model. Describing the output errors as a first order autoregressive process can realistically capture the "downstream" effect of inaccurate inputs and structure. With simpler runoff models we can additionally quantify input uncertainty by using a stochastic rainfall process. For complex hydrologic transport models, instead, we show that keeping model parameters fixed and just estimating time-dependent output uncertainties could be a viable option. The common goal across all these applications is to create time-dependent prediction intervals which are both reliable (cover the nominal amount of validation data) and precise (are as narrow as possible). In conclusion, we recommend focusing both on the choice of the hydrological model and of the probabilistic error description. The latter can include output uncertainty only, if the model is computationally-expensive, or, with simpler models, it can separately account for different sources of errors like in the inputs and the structure of the model.
Hepatic function imaging using dynamic Gd-EOB-DTPA enhanced MRI and pharmacokinetic modeling.
Ning, Jia; Yang, Zhiying; Xie, Sheng; Sun, Yongliang; Yuan, Chun; Chen, Huijun
2017-10-01
To determine whether pharmacokinetic modeling parameters with different output assumptions of dynamic contrast-enhanced MRI (DCE-MRI) using Gd-EOB-DTPA correlate with serum-based liver function tests, and compare the goodness of fit of the different output assumptions. A 6-min DCE-MRI protocol was performed in 38 patients. Four dual-input two-compartment models with different output assumptions and a published one-compartment model were used to calculate hepatic function parameters. The Akaike information criterion fitting error was used to evaluate the goodness of fit. Imaging-based hepatic function parameters were compared with blood chemistry using correlation with multiple comparison correction. The dual-input two-compartment model assuming venous flow equals arterial flow plus portal venous flow and no bile duct output better described the liver tissue enhancement with low fitting error and high correlation with blood chemistry. The relative uptake rate Kir derived from this model was found to be significantly correlated with direct bilirubin (r = -0.52, P = 0.015), prealbumin concentration (r = 0.58, P = 0.015), and prothrombin time (r = -0.51, P = 0.026). It is feasible to evaluate hepatic function by proper output assumptions. The relative uptake rate has the potential to serve as a biomarker of function. Magn Reson Med 78:1488-1495, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
This paper presents a study on the optimization of systems with structured uncertainties, whose inputs and outputs can be exhaustively described in the probabilistic sense. By propagating the uncertainty from the input to the output in the space of the probability density functions and the moments, optimization problems that pursue performance, robustness and reliability based designs are studied. Be specifying the desired outputs in terms of desired probability density functions and then in terms of meaningful probabilistic indices, we settle a computationally viable framework for solving practical optimization problems. Applications to static optimization and stability control are used to illustrate the relevance of incorporating uncertainty in the early stages of the design. Several examples that admit a full probabilistic description of the output in terms of the design variables and the uncertain inputs are used to elucidate the main features of the generic problem and its solution. Extensions to problems that do not admit closed form solutions are also evaluated. Concrete evidence of the importance of using a consistent probabilistic formulation of the optimization problem and a meaningful probabilistic description of its solution is provided in the examples. In the stability control problem the analysis shows that standard deterministic approaches lead to designs with high probability of running into instability. The implementation of such designs can indeed have catastrophic consequences.
NASA Astrophysics Data System (ADS)
Daniell, R. E.; Strickland, D. J.; Decker, D. T.; Jasperse, J. R.; Carlson, H. C., Jr.
1985-04-01
The possible use of satellite ultraviolet measurements to deduce the ionospheric electron density profile (EDP) on a global basis is discussed. During 1984 comparisons were continued between the hybrid daytime ionospheric model and the experimental observations. These comparison studies indicate that: (1) the essential features of the EDP and certain UV emissions can be modelled; (2) the models are sufficiently sensitive to input parameters to yield poor agreement with observations when typical input values are used; (3) reasonable adjustments of the parameters can produce excellent agreement between theory and data for either EDP or airglow but not both; and (4) the qualitative understanding of the relationship between two input parameters (solar flux and neutral densities) and the model EDP and airglow features has been verified. The development of a hybrid dynamic model for the nighttime midlatitude ionosphere has been initiated. This model is similar to the daytime hybrid model, but uses the sunset EDP as an initial value and calculates the EDP as a function of time through the night. In addition, a semiempirical model has been developed, based on the assumption that the nighttime EDP is always well described by a modified Chapman function. This model has great simplicity and allows the EDP to be inferred in a straightforward manner from optical observations. Comparisons with data are difficult, however, because of the low intensity of the nightglow.
Existence conditions for unknown input functional observers
NASA Astrophysics Data System (ADS)
Fernando, T.; MacDougall, S.; Sreeram, V.; Trinh, H.
2013-01-01
This article presents necessary and sufficient conditions for the existence and design of an unknown input Functional observer. The existence of the observer can be verified by computing a nullspace of a known matrix and testing some matrix rank conditions. The existence of the observer does not require the satisfaction of the observer matching condition (i.e. Equation (16) in Hou and Muller 1992, 'Design of Observers for Linear Systems with Unknown Inputs', IEEE Transactions on Automatic Control, 37, 871-875), is not limited to estimating scalar functionals and allows for arbitrary pole placement. The proposed observer always exists when a state observer exists for the unknown input system, and furthermore, the proposed observer can exist even in some instances when an unknown input state observer does not exist.
'spup' - an R package for uncertainty propagation in spatial environmental modelling
NASA Astrophysics Data System (ADS)
Sawicka, Kasia; Heuvelink, Gerard
2016-04-01
Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Currently, advances in uncertainty propagation and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability, including case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the 'spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques, as well as several uncertainty visualization functions. Uncertain environmental variables are represented in the package as objects whose attribute values may be uncertain and described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is also accommodated for. For uncertainty propagation the package has implemented the MC approach with efficient sampling algorithms, i.e. stratified random sampling and Latin hypercube sampling. The design includes facilitation of parallel computing to speed up MC computation. The MC realizations may be used as an input to the environmental models called from R, or externally. Selected static and interactive visualization methods that are understandable by non-experts with limited background in statistics can be used to summarize and visualize uncertainty about the measured input, model parameters and output of the uncertainty propagation. We demonstrate that the 'spup' package is an effective and easy tool to apply and can be used in multi-disciplinary research and model-based decision support.
'spup' - an R package for uncertainty propagation analysis in spatial environmental modelling
NASA Astrophysics Data System (ADS)
Sawicka, Kasia; Heuvelink, Gerard
2017-04-01
Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Currently, advances in uncertainty propagation and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability and being able to deal with case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the 'spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques, as well as several uncertainty visualization functions. Uncertain environmental variables are represented in the package as objects whose attribute values may be uncertain and described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is also accommodated for. For uncertainty propagation the package has implemented the MC approach with efficient sampling algorithms, i.e. stratified random sampling and Latin hypercube sampling. The design includes facilitation of parallel computing to speed up MC computation. The MC realizations may be used as an input to the environmental models called from R, or externally. Selected visualization methods that are understandable by non-experts with limited background in statistics can be used to summarize and visualize uncertainty about the measured input, model parameters and output of the uncertainty propagation. We demonstrate that the 'spup' package is an effective and easy tool to apply and can be used in multi-disciplinary research and model-based decision support.
Fujita, Masahiko
2016-03-01
Lesions of the cerebellum result in large errors in movements. The cerebellum adaptively controls the strength and timing of motor command signals depending on the internal and external environments of movements. The present theory describes how the cerebellar cortex can control signals for accurate and timed movements. A model network of the cerebellar Golgi and granule cells is shown to be equivalent to a multiple-input (from mossy fibers) hierarchical neural network with a single hidden layer of threshold units (granule cells) that receive a common recurrent inhibition (from a Golgi cell). The weighted sum of the hidden unit signals (Purkinje cell output) is theoretically analyzed regarding the capability of the network to perform two types of universal function approximation. The hidden units begin firing as the excitatory inputs exceed the recurrent inhibition. This simple threshold feature leads to the first approximation theory, and the network final output can be any continuous function of the multiple inputs. When the input is constant, this output becomes stationary. However, when the recurrent unit activity is triggered to decrease or the recurrent inhibition is triggered to increase through a certain mechanism (metabotropic modulation or extrasynaptic spillover), the network can generate any continuous signals for a prolonged period of change in the activity of recurrent signals, as the second approximation theory shows. By incorporating the cerebellar capability of two such types of approximations to a motor system, in which learning proceeds through repeated movement trials with accompanying corrections, accurate and timed responses for reaching the target can be adaptively acquired. Simple models of motor control can solve the motor error vs. sensory error problem, as well as the structural aspects of credit (or error) assignment problem. Two physiological experiments are proposed for examining the delay and trace conditioning of eyelid responses, as well as saccade adaptation, to investigate this novel idea of cerebellar processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Penchovsky, Robert
2012-10-19
Here we describe molecular implementations of integrated digital circuits, including a three-input AND logic gate, a two-input multiplexer, and 1-to-2 decoder using allosteric ribozymes. Furthermore, we demonstrate a multiplexer-decoder circuit. The ribozymes are designed to seek-and-destroy specific RNAs with a certain length by a fully computerized procedure. The algorithm can accurately predict one base substitution that alters the ribozyme's logic function. The ability to sense the length of RNA molecules enables single ribozymes to be used as platforms for multiple interactions. These ribozymes can work as integrated circuits with the functionality of up to five logic gates. The ribozyme design is universal since the allosteric and substrate domains can be altered to sense different RNAs. In addition, the ribozymes can specifically cleave RNA molecules with triplet-repeat expansions observed in genetic disorders such as oculopharyngeal muscular dystrophy. Therefore, the designer ribozymes can be employed for scaling up computing and diagnostic networks in the fields of molecular computing and diagnostics and RNA synthetic biology.
NASA Astrophysics Data System (ADS)
Zhang, Wangshou; Swaney, Dennis; Hong, Bongghi; Howarth, Robert
2017-04-01
Phosphorus (P) originating from anthropogenic sources as a pollutant of surface waters has been an environmental issue for decades because of the well-known role of P in eutrophication. Human activities, such as food production and rapid urbanization, have been linked to increased P inputs which are often accompanied by corresponding increases in riverine P export. However, uneven distributions of anthropogenic P inputs along watersheds from the headwaters to downstream reaches can result in significantly different contributions to the riverine P fluxes of a receiving water body. So far, there is still very little scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream to downstream continuum. Here, we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China, and developed a simple empirical function to describe the relationship between anthropogenic inputs and riverine TP fluxes. The results indicated that an average of 1.1% of anthropogenic P inputs are exported into rivers, with most of the remainder retained in the watershed landscape over the period studied. Fertilizer application was the main contributor of P loading to the lake (55% of total loads), followed by legacy P stock (30%), food and feed P inputs (12%) and non-food P inputs (4%). From 60% to 89% of the riverine TP loads generated from various locations within this basin were ultimately transported into the receiving lake of the downstream, with an average rate of 1.86 tons P km-1 retaining in the main stem of the inflowing river annually. Our results highlight that in-stream processes can significantly buffer the riverine P loading to the downstream receiving lake. An integrated P management strategy considering the influence of anthropogenic inputs and hydrological interactions is required to assess and optimize P management for protecting fresh waters.
NASA Astrophysics Data System (ADS)
Praba Drijarkara, Agustinus; Gergiso Gebrie, Tadesse; Lee, Jae Yong; Kang, Chu-Shik
2018-06-01
Evaluation of uncertainty of thickness and gravity-compensated warp of a silicon wafer measured by a spectrally resolved interferometer is presented. The evaluation is performed in a rigorous manner, by analysing the propagation of uncertainty from the input quantities through all the steps of measurement functions, in accordance with the ISO Guide to the Expression of Uncertainty in Measurement. In the evaluation, correlation between input quantities as well as uncertainty attributed to thermal effect, which were not included in earlier publications, are taken into account. The temperature dependence of the group refractive index of silicon was found to be nonlinear and varies widely within a wafer and also between different wafers. The uncertainty evaluation described here can be applied to other spectral interferometry applications based on similar principles.
Some new results concerning the dynamic behavior of annular turbulent seals
NASA Technical Reports Server (NTRS)
Massmann, H.; Nordmann, R.
1985-01-01
The dynamic characteristics of annular turbulent seals applied in high pressure turbopumps can be described by stiffness, damping, and inertia coefficients. An improved procedure is presented for determining these parameters by using measurements made with newly developed test equipment. The dynamic system seal, consisting of the fluid between the cylindrical surfaces of the rotating shaft and the housing, is excited by test forces (input), and the relative motion between the surfaces (output) is measured. Transformation of the input and output time signals into the frequency domain leads to frequency response functions. An analytical model, depending on the seal parameters, is fitted to the measured data in order to identify the dynamic coefficients. Some new results are reported that show the dependencies of these coefficients with respect to the axial and radial Reynolds numbers and the geometrical data of the seal.
NASA Technical Reports Server (NTRS)
1979-01-01
The computer program Linear SCIDNT which evaluates rotorcraft stability and control coefficients from flight or wind tunnel test data is described. It implements the maximum likelihood method to maximize the likelihood function of the parameters based on measured input/output time histories. Linear SCIDNT may be applied to systems modeled by linear constant-coefficient differential equations. This restriction in scope allows the application of several analytical results which simplify the computation and improve its efficiency over the general nonlinear case.
Methods and new approaches to the calculation of physiological parameters by videodensitometry
NASA Technical Reports Server (NTRS)
Kedem, D.; Londstrom, D. P.; Rhea, T. C., Jr.; Nelson, J. H.; Price, R. R.; Smith, C. W.; Graham, T. P., Jr.; Brill, A. B.; Kedem, D.
1976-01-01
A complex system featuring a video-camera connected to a video disk, cine (medical motion picture) camera and PDP-9 computer with various input/output facilities has been developed. This system enables the performance of quantitative analysis of various functions recorded in clinical studies. Several studies are described, such as heart chamber volume calculations, left ventricle ejection fraction, blood flow through the lungs and also the possibility of obtaining information about blood flow and constrictions in small cross-section vessels
Interplanetary Physics Laboratory (IPL): A concept for an interplanetary mission in the mid-eighties
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Ogilvie, K. W.; Feldman, W.
1977-01-01
A concept for a near-earth interplanetary mission in the mid-eighties is described. The proposed objectives would be to determine the composition of the interplanetary constituents and its dependence on source-conditions and to investigate energy and momentum transfer processes in the interplanetary medium. Such a mission would accomplish three secondary objectives: (1) provide a baseline for deep space missions, (2) investigate variations of the solar wind with solar activity, and (3) provide input functions for magnetospheric studies.
AUTOPLAN: A PC-based automated mission planning tool
NASA Technical Reports Server (NTRS)
Paterra, Frank C.; Allen, Marc S.; Lawrence, George F.
1987-01-01
A PC-based automated mission and resource planning tool, AUTOPLAN, is described, with application to small-scale planning and scheduling systems in the Space Station program. The input is a proposed mission profile, including mission duration, number of allowable slip periods, and requirement profiles for one or more resources as a function of time. A corresponding availability profile is also entered for each resource over the whole time interval under study. AUTOPLAN determines all integrated schedules which do not require more than the available resources.
IGDS/TRAP Interface Program (ITIP). Software Design Document
NASA Technical Reports Server (NTRS)
Jefferys, Steve; Johnson, Wendell
1981-01-01
The preliminary design of the IGDS/TRAP Interface Program (ITIP) is described. The ITIP is implemented on the PDP 11/70 and interfaces directly with the Interactive Graphics Design System and the Data Management and Retrieval System. The program provides an efficient method for developing a network flow diagram. Performance requirements, operational rquirements, and design requirements are discussed along with sources and types of input and destination and types of output. Information processing functions and data base requirements are also covered.
Experiments for Ka-band mobile applications: The ACTS mobile terminal
NASA Technical Reports Server (NTRS)
Estabrook, Polly; Dessouky, Khaled; Jedrey, Thomas
1990-01-01
To explore the potential of Ka-band to support mobile satellite services, the Jet Propulsion Laboratory (JPL) has initiated the design and development of a Ka-band land-mobile terminal to be used with the Advanced Communications Technology Satellite (ACTS). The planned experimental setup with ACTS is described. Brief functional descriptions of the mobile and fixed terminals are provided. The inputs required from the propagation community to support the design activities and the planned experiments are also discussed.
CCD research. [design, fabrication, and applications
NASA Technical Reports Server (NTRS)
Gassaway, J. D.
1976-01-01
The fundamental problems encountered in designing, fabricating, and applying CCD's are reviewed. Investigations are described and results and conclusions are given for the following: (1) the development of design analyses employing computer aided techniques and their application to the design of a grapped structure; (2) the role of CCD's in applications to electronic functions, in particular, signal processing; (3) extending the CCD to silicon films on sapphire (SOS); and (4) all aluminum transfer structure with low noise input-output circuits. Related work on CCD imaging devices is summarized.
Input and language development in bilingually developing children.
Hoff, Erika; Core, Cynthia
2013-11-01
Language skills in young bilingual children are highly varied as a result of the variability in their language experiences, making it difficult for speech-language pathologists to differentiate language disorder from language difference in bilingual children. Understanding the sources of variability in bilingual contexts and the resulting variability in children's skills will help improve language assessment practices by speech-language pathologists. In this article, we review literature on bilingual first language development for children under 5 years of age. We describe the rate of development in single and total language growth, we describe effects of quantity of input and quality of input on growth, and we describe effects of family composition on language input and language growth in bilingual children. We provide recommendations for language assessment of young bilingual children and consider implications for optimizing children's dual language development. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Data-Driven Modeling and Rendering of Force Responses from Elastic Tool Deformation
Rakhmatov, Ruslan; Ogay, Tatyana; Jeon, Seokhee
2018-01-01
This article presents a new data-driven model design for rendering force responses from elastic tool deformation. The new design incorporates a six-dimensional input describing the initial position of the contact, as well as the state of the tool deformation. The input-output relationship of the model was represented by a radial basis functions network, which was optimized based on training data collected from real tool-surface contact. Since the input space of the model is represented in the local coordinate system of a tool, the model is independent of recording and rendering devices and can be easily deployed to an existing simulator. The model also supports complex interactions, such as self and multi-contact collisions. In order to assess the proposed data-driven model, we built a custom data acquisition setup and developed a proof-of-concept rendering simulator. The simulator was evaluated through numerical and psychophysical experiments with four different real tools. The numerical evaluation demonstrated the perceptual soundness of the proposed model, meanwhile the user study revealed the force feedback of the proposed simulator to be realistic. PMID:29342964
GD SDR Automatic Gain Control Characterization Testing
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Briones, Janette C.
2013-01-01
The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) will provide experimenters an opportunity to develop and demonstrate experimental waveforms in space. The GD SDR platform and initial waveform were characterized on the ground before launch and the data will be compared to the data that will be collected during on-orbit operations. A desired function of the SDR is to estimate the received signal to noise ratio (SNR), which would enable experimenters to better determine on-orbit link conditions. The GD SDR does not have an SNR estimator, but it does have an analog and a digital automatic gain control (AGC). The AGCs can be used to estimate the SDR input power which can be converted into a SNR. Tests were conducted to characterize the AGC response to changes in SDR input power and temperature. This purpose of this paper is to describe the tests that were conducted, discuss the results showi ng how the AGCs relate to the SDR input power, and provide recommendations for AGC testing and characterization.
GD SDR Automatic Gain Control Characterization Testing
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Briones, Janette C.
2013-01-01
The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) will provide experimenters an opportunity to develop and demonstrate experimental waveforms in space. The GD SDR platform and initial waveform were characterized on the ground before launch and the data will be compared to the data that will be collected during on-orbit operations. A desired function of the SDR is to estimate the received signal to noise ratio (SNR), which would enable experimenters to better determine on-orbit link conditions. The GD SDR does not have an SNR estimator, but it does have an analog and a digital automatic gain control (AGC). The AGCs can be used to estimate the SDR input power which can be converted into a SNR. Tests were conducted to characterize the AGC response to changes in SDR input power and temperature. This purpose of this paper is to describe the tests that were conducted, discuss the results showing how the AGCs relate to the SDR input power, and provide recommendations for AGC testing and characterization.
INFANT HEALTH PRODUCTION FUNCTIONS: WHAT A DIFFERENCE THE DATA MAKE
Reichman, Nancy E.; Corman, Hope; Noonan, Kelly; Dave, Dhaval
2008-01-01
SUMMARY We examine the extent to which infant health production functions are sensitive to model specification and measurement error. We focus on the importance of typically unobserved but theoretically important variables (typically unobserved variables, TUVs), other non-standard covariates (NSCs), input reporting, and characterization of infant health. The TUVs represent wantedness, taste for risky behavior, and maternal health endowment. The NSCs include father characteristics. We estimate the effects of prenatal drug use, prenatal cigarette smoking, and First trimester prenatal care on birth weight, low birth weight, and a measure of abnormal infant health conditions. We compare estimates using self-reported inputs versus input measures that combine information from medical records and self-reports. We find that TUVs and NSCs are significantly associated with both inputs and outcomes, but that excluding them from infant health production functions does not appreciably affect the input estimates. However, using self-reported inputs leads to overestimated effects of inputs, particularly prenatal care, on outcomes, and using a direct measure of infant health does not always yield input estimates similar to those when using birth weight outcomes. The findings have implications for research, data collection, and public health policy. PMID:18792077
NASA Astrophysics Data System (ADS)
Schiepers, Christiaan; Hoh, Carl K.; Dahlbom, Magnus; Wu, Hsiao-Ming; Phelps, Michael E.
1999-05-01
PET imaging can quantify metabolic processes in-vivo; this requires the measurement of an input function which is invasive and labor intensive. A non-invasive, semi-automated, image based method of input function generation would be efficient, patient friendly, and allow quantitative PET to be applied routinely. A fully automated procedure would be ideal for studies across institutions. Factor analysis (FA) was applied as processing tool for definition of temporally changing structures in the field of view. FA has been proposed earlier, but the perceived mathematical difficulty has prevented widespread use. FA was utilized to delineate structures and extract blood and tissue time-activity-curves (TACs). These TACs were used as input and output functions for tracer kinetic modeling, the results of which were compared with those from an input function obtained with serial blood sampling. Dynamic image data of myocardial perfusion studies with N-13 ammonia, O-15 water, or Rb-82, cancer studies with F-18 FDG, and skeletal studies with F-18 fluoride were evaluated. Correlation coefficients of kinetic parameters obtained with factor and plasma input functions were high. Linear regression usually furnished a slope near unity. Processing time was 7 min/patient on an UltraSPARC. Conclusion: FA can non-invasively generate input functions from image data eliminating the need for blood sampling. Output (tissue) functions can be simultaneously generated. The method is simple, requires no sophisticated operator interaction and has little inter-operator variability. FA is well suited for studies across institutions and standardized evaluations.
ERIC Educational Resources Information Center
Weinberger, Elizabeth
The document contains optical scannable forms for some of the instruments in the Input and Process Batteries, and guidelines for administration of the instruments in the Input Batteries of the Management Information System for Occupational Education (MISOE) Sample Data Systems. Input information describes the characteristics of the students at…
NASA Astrophysics Data System (ADS)
Kahraman, Gokalp
We examine the performance of optical communication systems using erbium-doped fiber amplifiers (OFAs) and avalanche photodiodes (APDs) including nonlinear and transient effects in the former and transient effects in the latter. Transient effects become important as these amplifiers are operated at very high data rates. Nonlinear effects are important for high gain amplifiers. In most studies of noise in these devices, the temporal and nonlinear effects have been ignored. We present a quantum theory of noise in OFAs including the saturation of the atomic population inversion and the pump depletion. We study the quantum-statistical properties of pulse amplification. The generating function of the output photon number distribution (PND) is determined as a function of time during the course of the pulse with an arbitrary input PND assumed. Under stationary conditions, we determine the Kolmogorov equation obeyed by the PND. The PND at the output is determined for arbitrary input distributions. The effect of the counting time and the filter bandwidth used by the detection circuit is determined. We determine the gain, the noise figure, and the sensitivity of receivers using OFAs as preamplifiers, including the effect of backward amplified spontaneous emission (ASE). Backward ASE degrades the noise figure and the sensitivity by depleting the population inversion at the input side of the fiber and thus increasing the noise during signal amplification. We show that the sensitivity improves with the bit rate at low rates but degrades at high rates. We provide a stochastic model that describes the time dynamics in a double-carrier multiplication (DCM) APD. A discrete stochastic model for the electron/hole motion and multiplication is defined on a spatio-temporal lattice and used to derive recursive equations for the mean, the variance, and the autocorrelation of the impulse response as functions of time. The power spectral density of the photocurrent produced in response to a Poisson-distributed stream of photons of uniform rate is evaluated. A method is also developed for solving the coupled transport equations that describe the electron and hole currents in a DCM-APD of arbitrary structure.
Enabling complex queries to drug information sources through functional composition.
Peters, Lee; Mortensen, Jonathan; Nguyen, Thang; Bodenreider, Olivier
2013-01-01
Our objective was to enable an end-user to create complex queries to drug information sources through functional composition, by creating sequences of functions from application program interfaces (API) to drug terminologies. The development of a functional composition model seeks to link functions from two distinct APIs. An ontology was developed using Protégé to model the functions of the RxNorm and NDF-RT APIs by describing the semantics of their input and output. A set of rules were developed to define the interoperable conditions for functional composition. The operational definition of interoperability between function pairs is established by executing the rules on the ontology. We illustrate that the functional composition model supports common use cases, including checking interactions for RxNorm drugs and deploying allergy lists defined in reference to drug properties in NDF-RT. This model supports the RxMix application (http://mor.nlm.nih.gov/RxMix/), an application we developed for enabling complex queries to the RxNorm and NDF-RT APIs.
Electronic collection system for spacelab mission timeline requirements
NASA Technical Reports Server (NTRS)
Lindberg, James P.; Piner, John R.; Huang, Allen K. H.
1995-01-01
This paper describes the Functional Objective Requirements Collection System (FORCS) software tool that has been developed for use by Principal Investigators (PI's) and Payload Element Developers (PED's) on their own personal computers to develop on-orbit timelining requirements for their payloads. The FORCS tool can be used either in a totally stand-alone mode, storing the information in a local file on the user's personal computer hard disk or in a remote mode where the user's computer is linked to a host computer containing the integrated database of the timeline requirements for all of the payloads on a mission. There are a number of features incorporated in the FORCS software to assist the user. The user may move freely back and forth between the various forms for inputting the data. Several methods are used to input the information, depending on the type of the information. These methods range from filling in text boxes, using check boxes and radio buttons, to inputting information into a spreadsheet format. There are automated features provided to assist in developing the proper format for the data, ranging from limit checking on some of the parameters to automatic conversion of different formats of time data inputs to the one standard format used for the timeline scheduling software.
DIATOM (Data Initialization and Modification) Library Version 7.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, David A.; Schmitt, Robert G.; Hensinger, David M.
DIATOM is a library that provides numerical simulation software with a computational geometry front end that can be used to build up complex problem geometries from collections of simpler shapes. The library provides a parser which allows for application-independent geometry descriptions to be embedded in simulation software input decks. Descriptions take the form of collections of primitive shapes and/or CAD input files and material properties that can be used to describe complex spatial and temporal distributions of numerical quantities (often called “database variables” or “fields”) to help define starting conditions for numerical simulations. The capability is designed to be generalmore » purpose, robust and computationally efficient. By using a combination of computational geometry and recursive divide-and-conquer approximation techniques, a wide range of primitive shapes are supported to arbitrary degrees of fidelity, controllable through user input and limited only by machine resources. Through the use of call-back functions, numerical simulation software can request the value of a field at any time or location in the problem domain. Typically, this is used only for defining initial conditions, but the capability is not limited to just that use. The most recent version of DIATOM provides the ability to import the solution field from one numerical solution as input for another.« less
Measuring Changes in the Economics of Medical Practice.
Fleming, Christopher; Rich, Eugene; DesRoches, Catherine; Reschovsky, James; Kogan, Rachel
2015-08-01
For the latter third of the twentieth century, researchers have estimated production and cost functions for physician practices. Today, those attempting to measure the inputs and outputs of physician practice must account for many recent changes in models of care delivery. In this paper, we review practice inputs and outputs as typically described in research on the economics of medical practice, and consider the implications of the changing organization of medical practice and nature of physician work. This evolving environment has created conceptual challenges in what are the appropriate measures of output from physician work, as well as what inputs should be measured. Likewise, the increasing complexity of physician practice organizations has introduced challenges to finding the appropriate data sources for measuring these constructs. Both these conceptual and data challenges pose measurement issues that must be overcome to study the economics of modern medical practice. Despite these challenges, there are several promising initiatives involving data sharing at the organizational level that could provide a starting point for developing the needed new data sources and metrics for physician inputs and outputs. However, additional efforts will be required to establish data collection approaches and measurements applicable to smaller and single specialty practices. Overcoming these measurement and data challenges will be key to supporting policy-relevant research on the changing economics of medical practice.
Design automation techniques for custom LSI arrays
NASA Technical Reports Server (NTRS)
Feller, A.
1975-01-01
The standard cell design automation technique is described as an approach for generating random logic PMOS, CMOS or CMOS/SOS custom large scale integration arrays with low initial nonrecurring costs and quick turnaround time or design cycle. The system is composed of predesigned circuit functions or cells and computer programs capable of automatic placement and interconnection of the cells in accordance with an input data net list. The program generates a set of instructions to drive an automatic precision artwork generator. A series of support design automation and simulation programs are described, including programs for verifying correctness of the logic on the arrays, performing dc and dynamic analysis of MOS devices, and generating test sequences.
Simulator for multilevel optimization research
NASA Technical Reports Server (NTRS)
Padula, S. L.; Young, K. C.
1986-01-01
A computer program designed to simulate and improve multilevel optimization techniques is described. By using simple analytic functions to represent complex engineering analyses, the simulator can generate and test a large variety of multilevel decomposition strategies in a relatively short time. This type of research is an essential step toward routine optimization of large aerospace systems. The paper discusses the types of optimization problems handled by the simulator and gives input and output listings and plots for a sample problem. It also describes multilevel implementation techniques which have value beyond the present computer program. Thus, this document serves as a user's manual for the simulator and as a guide for building future multilevel optimization applications.
NASA Technical Reports Server (NTRS)
Maples, A. L.
1981-01-01
The operation of solidification Model 2 is described and documentation of the software associated with the model is provided. Model 2 calculates the macrosegregation in a rectangular ingot of a binary alloy as a result of unsteady horizontal axisymmetric bidirectional solidification. The solidification program allows interactive modification of calculation parameters as well as selection of graphical and tabular output. In batch mode, parameter values are input in card image form and output consists of printed tables of solidification functions. The operational aspects of Model 2 that differ substantially from Model 1 are described. The global flow diagrams and data structures of Model 2 are included. The primary program documentation is the code itself.
Significance of Input Correlations in Striatal Function
Yim, Man Yi; Aertsen, Ad; Kumar, Arvind
2011-01-01
The striatum is the main input station of the basal ganglia and is strongly associated with motor and cognitive functions. Anatomical evidence suggests that individual striatal neurons are unlikely to share their inputs from the cortex. Using a biologically realistic large-scale network model of striatum and cortico-striatal projections, we provide a functional interpretation of the special anatomical structure of these projections. Specifically, we show that weak pairwise correlation within the pool of inputs to individual striatal neurons enhances the saliency of signal representation in the striatum. By contrast, correlations among the input pools of different striatal neurons render the signal representation less distinct from background activity. We suggest that for the network architecture of the striatum, there is a preferred cortico-striatal input configuration for optimal signal representation. It is further enhanced by the low-rate asynchronous background activity in striatum, supported by the balance between feedforward and feedback inhibitions in the striatal network. Thus, an appropriate combination of rates and correlations in the striatal input sets the stage for action selection presumably implemented in the basal ganglia. PMID:22125480
NASA Astrophysics Data System (ADS)
Zhang, Wangshou; Swaney, Dennis P.; Hong, Bongghi; Howarth, Robert W.
2017-12-01
The increasing trend in riverine phosphorus (P) loads resulting from anthropogenic inputs has gained wide attention because of the well-known role of P in eutrophication. So far, however, there is still limited scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream-to-downstream continuum. Here we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China and developed an empirical function to describe the relationship between anthropogenic inputs and riverine P fluxes. Our results indicated that there are obvious gradients regarding P budgets in response to changes in human activities. Fertilizer application and food and feed P import was always the dominant source of P inputs in all sections, followed by nonfood P. Further interpretation using the model revealed the processes of P loading to the lake. About 2%-9% of anthropogenic P inputs are transported from the various sections into the corresponding tributaries of the river systems, depending upon local precipitation rates. Of this amount, around 41%-95% is delivered to the main stem of the Huai River after in-stream attenuation in its tributaries. Ultimately, 55%-86% of the P loads delivered to different locations of the main stem are transported into the receiving lake of the downstream, due to additional losses in the main stem. An integrated P management strategy that considers the gradients of P loss along the upstream-to-downstream continuum is required to assess and optimize P management to protect the region's freshwater resource.
Parallel, but Dissociable, Processing in Discrete Corticostriatal Inputs Encodes Skill Learning.
Kupferschmidt, David A; Juczewski, Konrad; Cui, Guohong; Johnson, Kari A; Lovinger, David M
2017-10-11
Changes in cortical and striatal function underlie the transition from novel actions to refined motor skills. How discrete, anatomically defined corticostriatal projections function in vivo to encode skill learning remains unclear. Using novel fiber photometry approaches to assess real-time activity of associative inputs from medial prefrontal cortex to dorsomedial striatum and sensorimotor inputs from motor cortex to dorsolateral striatum, we show that associative and sensorimotor inputs co-engage early in action learning and disengage in a dissociable manner as actions are refined. Disengagement of associative, but not sensorimotor, inputs predicts individual differences in subsequent skill learning. Divergent somatic and presynaptic engagement in both projections during early action learning suggests potential learning-related in vivo modulation of presynaptic corticostriatal function. These findings reveal parallel processing within associative and sensorimotor circuits that challenges and refines existing views of corticostriatal function and expose neuronal projection- and compartment-specific activity dynamics that encode and predict action learning. Published by Elsevier Inc.
Concurrent Image Processing Executive (CIPE). Volume 3: User's guide
NASA Technical Reports Server (NTRS)
Lee, Meemong; Cooper, Gregory T.; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.; Kong, Mih-Seh
1990-01-01
CIPE (the Concurrent Image Processing Executive) is both an executive which organizes the parameter inputs for hypercube applications and an environment which provides temporary data workspace and simple real-time function definition facilities for image analysis. CIPE provides two types of user interface. The Command Line Interface (CLI) provides a simple command-driven environment allowing interactive function definition and evaluation of algebraic expressions. The menu interface employs a hierarchical screen-oriented menu system where the user is led through a menu tree to any specific application and then given a formatted panel screen for parameter entry. How to initialize the system through the setup function, how to read data into CIPE symbols, how to manipulate and display data through the use of executive functions, and how to run an application in either user interface mode, are described.
Accurate, up-to-date information describing Nr inputs by source is needed for effective Nr management and for guiding Nr research. Here we present a new synthesis of spatial data describing present Nr inputs to terrestrial and aquatic ecosystems across the conterminous US to hel...
VizieR Online Data Catalog: Planetary atmosphere radiative transport code (Garcia Munoz+ 2015)
NASA Astrophysics Data System (ADS)
Garcia Munoz, A.; Mills, F. P.
2014-08-01
Files are: * readme.txt * Input files: INPUThazeL.txt, INPUTL13.txt, INPUT_L60.txt; they contain explanations to the input parameters. Copy INPUT_XXXX.txt into INPUT.dat to execute some of the examples described in the reference. * Files with scattering matrix properties: phFhazeL.txt, phFL13.txt, phF_L60.txt * Script for compilation in GFortran (myscript) (10 data files).
A hierarchy of time-scales and the brain.
Kiebel, Stefan J; Daunizeau, Jean; Friston, Karl J
2008-11-01
In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure-function relationships, which can be tested by manipulating the time-scales of sensory input.
Input filter compensation for switching regulators
NASA Technical Reports Server (NTRS)
Lee, F. C.
1984-01-01
Problems caused by input filter interaction and conventional input filter design techniques are discussed. The concept of feedforward control is modeled with an input filter and a buck regulator. Experimental measurement and comparison to the analytical predictions is carried out. Transient response and the use of a feedforward loop to stabilize the regulator system is described. Other possible applications for feedforward control are included.
Thrust Chamber Modeling Using Navier-Stokes Equations: Code Documentation and Listings. Volume 2
NASA Technical Reports Server (NTRS)
Daley, P. L.; Owens, S. F.
1988-01-01
A copy of the PHOENICS input files and FORTRAN code developed for the modeling of thrust chambers is given. These copies are contained in the Appendices. The listings are contained in Appendices A through E. Appendix A describes the input statements relevant to thrust chamber modeling as well as the FORTRAN code developed for the Satellite program. Appendix B describes the FORTRAN code developed for the Ground program. Appendices C through E contain copies of the Q1 (input) file, the Satellite program, and the Ground program respectively.
An update of input instructions to TEMOD
NASA Technical Reports Server (NTRS)
1973-01-01
The theory and operation of a FORTRAN 4 computer code, designated as TEMOD, used to calcuate tubular thermoelectric generator performance is described in WANL-TME-1906. The original version of TEMOD was developed in 1969. A description is given of additions to the mathematical model and an update of the input instructions to the code. Although the basic mathematical model described in WANL-TME-1906 has remained unchanged, a substantial number of input/output options were added to allow completion of module performance parametrics as required in support of the compact thermoelectric converter system technology program.
User's guide for a large signal computer model of the helical traveling wave tube
NASA Technical Reports Server (NTRS)
Palmer, Raymond W.
1992-01-01
The use is described of a successful large-signal, two-dimensional (axisymmetric), deformable disk computer model of the helical traveling wave tube amplifier, an extensively revised and operationally simplified version. We also discuss program input and output and the auxiliary files necessary for operation. Included is a sample problem and its input data and output results. Interested parties may now obtain from the author the FORTRAN source code, auxiliary files, and sample input data on a standard floppy diskette, the contents of which are described herein.
Helioseismic and neutrino data-driven reconstruction of solar properties
NASA Astrophysics Data System (ADS)
Song, Ningqiang; Gonzalez-Garcia, M. C.; Villante, Francesco L.; Vinyoles, Nuria; Serenelli, Aldo
2018-06-01
In this work, we use Bayesian inference to quantitatively reconstruct the solar properties most relevant to the solar composition problem using as inputs the information provided by helioseismic and solar neutrino data. In particular, we use a Gaussian process to model the functional shape of the opacity uncertainty to gain flexibility and become as free as possible from prejudice in this regard. With these tools we first readdress the statistical significance of the solar composition problem. Furthermore, starting from a composition unbiased set of standard solar models (SSMs) we are able to statistically select those with solar chemical composition and other solar inputs which better describe the helioseismic and neutrino observations. In particular, we are able to reconstruct the solar opacity profile in a data-driven fashion, independently of any reference opacity tables, obtaining a 4 per cent uncertainty at the base of the convective envelope and 0.8 per cent at the solar core. When systematic uncertainties are included, results are 7.5 per cent and 2 per cent, respectively. In addition, we find that the values of most of the other inputs of the SSMs required to better describe the helioseismic and neutrino data are in good agreement with those adopted as the standard priors, with the exception of the astrophysical factor S11 and the microscopic diffusion rates, for which data suggests a 1 per cent and 30 per cent reduction, respectively. As an output of the study we derive the corresponding data-driven predictions for the solar neutrino fluxes.
Vegetation pattern formation in a fog-dependent ecosystem.
Borthagaray, Ana I; Fuentes, Miguel A; Marquet, Pablo A
2010-07-07
Vegetation pattern formation is a striking characteristic of several water-limited ecosystems around the world. Typically, they have been described on runoff-based ecosystems emphasizing local interactions between water, biomass interception, growth and dispersal. Here, we show that this situation is by no means general, as banded patterns in vegetation can emerge in areas without rainfall and in plants without functional root (the Bromeliad Tillandsia landbeckii) and where fog is the principal source of moisture. We show that a simple model based on the advection of fog-water by wind and its interception by the vegetation can reproduce banded patterns which agree with empirical patterns observed in the Coastal Atacama Desert. Our model predicts how the parameters may affect the conditions to form the banded pattern, showing a transition from a uniform vegetated state, at high water input or terrain slope to a desert state throughout intermediate banded states. Moreover, the model predicts that the pattern wavelength is a decreasing non-linear function of fog-water input and slope, and an increasing function of plant loss and fog-water flow speed. Finally, we show that the vegetation density is increased by the formation of the regular pattern compared to the density expected by the spatially homogeneous model emphasizing the importance of self-organization in arid ecosystems. (c) 2010 Elsevier Ltd. All rights reserved.
Inferring neural activity from BOLD signals through nonlinear optimization.
Vakorin, Vasily A; Krakovska, Olga O; Borowsky, Ron; Sarty, Gordon E
2007-11-01
The blood oxygen level-dependent (BOLD) fMRI signal does not measure neuronal activity directly. This fact is a key concern for interpreting functional imaging data based on BOLD. Mathematical models describing the path from neural activity to the BOLD response allow us to numerically solve the inverse problem of estimating the timing and amplitude of the neuronal activity underlying the BOLD signal. In fact, these models can be viewed as an advanced substitute for the impulse response function. In this work, the issue of estimating the dynamics of neuronal activity from the observed BOLD signal is considered within the framework of optimization problems. The model is based on the extended "balloon" model and describes the conversion of neuronal signals into the BOLD response through the transitional dynamics of the blood flow-inducing signal, cerebral blood flow, cerebral blood volume and deoxyhemoglobin concentration. Global optimization techniques are applied to find a control input (the neuronal activity and/or the biophysical parameters in the model) that causes the system to follow an admissible solution to minimize discrepancy between model and experimental data. As an alternative to a local linearization (LL) filtering scheme, the optimization method escapes the linearization of the transition system and provides a possibility to search for the global optimum, avoiding spurious local minima. We have found that the dynamics of the neural signals and the physiological variables as well as the biophysical parameters can be robustly reconstructed from the BOLD responses. Furthermore, it is shown that spiking off/on dynamics of the neural activity is the natural mathematical solution of the model. Incorporating, in addition, the expansion of the neural input by smooth basis functions, representing a low-pass filtering, allows us to model local field potential (LFP) solutions instead of spiking solutions.
Inhomogeneous hard homonuclear molecules
NASA Astrophysics Data System (ADS)
Quintana, Jacqueline
A review is given of some features of theories for inhomogeneous fluids of nonspherical molecules that take as input the direct correlation function of the corresponding homogeneous system. Two different methods are described for defining the structure of hard homonuclear molecules close to a hard planar wall. A spherical harmonics expanison (SHE) within the integral equation (IE) method is presented and, for comparison, a version of density functional theory for orientable hard bodies. In both cases the Pynn-Lado model is employed and a comparison is made with Monte Carlo data. The results indicate that for hard molecules the IE approach does not always capture the effects of orientation due to the characteristics of the SHE for the step function. This disadvantage is particularly true in the case of the orientationally averaged density profile.
Solar electric propulsion thrust subsystem development
NASA Technical Reports Server (NTRS)
Masek, T. D.
1973-01-01
The Solar Electric Propulsion System developed under this program was designed to demonstrate all the thrust subsystem functions needed on an unmanned planetary vehicle. The demonstration included operation of the basic elements, power matching input and output voltage regulation, three-axis thrust vector control, subsystem automatic control including failure detection and correction capability (using a PDP-11 computer), operation of critical elements in thermal-vacuum-, zero-gravity-type propellant storage, and data outputs from all subsystem elements. The subsystem elements, functions, unique features, and test setup are described. General features and capabilities of the test-support data system are also presented. The test program culminated in a 1500-h computer-controlled, system-functional demonstration. This included simultaneous operation of two thruster/power conditioner sets. The results of this testing phase satisfied all the program goals.
Using Natural Language to Enhance Mission Effectiveness
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Meszaros, Erica
2016-01-01
The availability of highly capable, yet relatively cheap, unmanned aerial vehicles (UAVs) is opening up new areas of use for hobbyists and for professional-related activities. The driving function of this research is allowing a non-UAV pilot, an operator, to define and manage a mission. This paper describes the preliminary usability measures of an interface that allows an operator to define the mission using speech to make inputs. An experiment was conducted to begin to enumerate the efficacy and user acceptance of using voice commands to define a multi-UAV mission and to provide high-level vehicle control commands such as "takeoff." The primary independent variable was input type - voice or mouse. The primary dependent variables consisted of the correctness of the mission parameter inputs and the time needed to make all inputs. Other dependent variables included NASA-TLX workload ratings and subjective ratings on a final questionnaire. The experiment required each subject to fill in an online form that contained comparable required information that would be needed for a package dispatcher to deliver packages. For each run, subjects typed in a simple numeric code for the package code. They then defined the initial starting position, the delivery location, and the return location using either pull-down menus or voice input. Voice input was accomplished using CMU Sphinx4-5prealpha for speech recognition. They then inputted the length of the package. These were the option fields. The subject had the system "Calculate Trajectory" and then "Takeoff" once the trajectory was calculated. Later, the subject used "Land" to finish the run. After the voice and mouse input blocked runs, subjects completed a NASA-TLX. At the conclusion of all runs, subjects completed a questionnaire asking them about their experience in inputting the mission parameters, and starting and stopping the mission using mouse and voice input. In general, the usability of voice commands is acceptable. With a relatively well-defined and simple vocabulary, the operator can input the vast majority of the mission parameters using simple, intuitive voice commands. However, voice input may be more applicable to initial mission specification rather than for critical commands such as the need to land immediately due to time and feedback constraints. It would also be convenient to retrieve relevant mission information using voice input. Therefore, further on-going research is looking at using intent from operator utterances to provide the relevant mission information to the operator. The information displayed will be inferred from the operator's utterances just before key phrases are spoken. Linguistic analysis of the context of verbal communication provides insight into the intended meaning of commonly heard phrases such as "What's it doing now?" Analyzing the semantic sphere surrounding these common phrases enables us to predict the operator's intent and supply the operator's desired information to the interface. This paper also describes preliminary investigations into the generation of the semantic space of UAV operation and the success at providing information to the interface based on the operator's utterances.
Optimization of multilayer neural network parameters for speaker recognition
NASA Astrophysics Data System (ADS)
Tovarek, Jaromir; Partila, Pavol; Rozhon, Jan; Voznak, Miroslav; Skapa, Jan; Uhrin, Dominik; Chmelikova, Zdenka
2016-05-01
This article discusses the impact of multilayer neural network parameters for speaker identification. The main task of speaker identification is to find a specific person in the known set of speakers. It means that the voice of an unknown speaker (wanted person) belongs to a group of reference speakers from the voice database. One of the requests was to develop the text-independent system, which means to classify wanted person regardless of content and language. Multilayer neural network has been used for speaker identification in this research. Artificial neural network (ANN) needs to set parameters like activation function of neurons, steepness of activation functions, learning rate, the maximum number of iterations and a number of neurons in the hidden and output layers. ANN accuracy and validation time are directly influenced by the parameter settings. Different roles require different settings. Identification accuracy and ANN validation time were evaluated with the same input data but different parameter settings. The goal was to find parameters for the neural network with the highest precision and shortest validation time. Input data of neural networks are a Mel-frequency cepstral coefficients (MFCC). These parameters describe the properties of the vocal tract. Audio samples were recorded for all speakers in a laboratory environment. Training, testing and validation data set were split into 70, 15 and 15 %. The result of the research described in this article is different parameter setting for the multilayer neural network for four speakers.
Marvin-Dipasquale, Mark; Lutz, Michelle A; Brigham, Mark E; Krabbenhoft, David P; Aiken, George R; Orem, William H; Hall, Britt D
2009-04-15
Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment-pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 microm) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 +/- 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd's) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC concentration and the lowest log Kd's for both THg and MeHg. No significant relationship existed between overlying water MeHg concentrations and those in bed sediment or pore water, suggesting upstream sources of MeHg production may be more important than local streambed production as a driver of water column MeHg concentration in drainage basins that receive Hg inputs primarily from atmospheric sources.
Engineering studies related to Skylab program. [assessment of automatic gain control data
NASA Technical Reports Server (NTRS)
Hayne, G. S.
1973-01-01
The relationship between the S-193 Automatic Gain Control data and the magnitude of received signal power was studied in order to characterize performance parameters for Skylab equipment. The r-factor was used for the assessment and is defined to be less than unity, and a function of off-nadir angle, ocean surface roughness, and receiver signal to noise ratio. A digital computer simulation was also used to assess to additive receiver, or white noise. The system model for the digital simulation is described, along with intermediate frequency and video impulse response functions used, details of the input waveforms, and results to date. Specific discussion of the digital computer programs used is also provided.
NASA Technical Reports Server (NTRS)
Dupnick, E.; Wiggins, D.
1980-01-01
The functional specifications, functional design and flow, and the program logic of the GREEDY computer program are described. The GREEDY program is a submodule of the Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE) program and has been designed as a continuation of the shuttle Mission Payloads (MPLS) program. The MPLS uses input payload data to form a set of feasible payload combinations; from these, GREEDY selects a subset of combinations (a traffic model) so all payloads can be included without redundancy. The program also provides the user a tutorial option so that he can choose an alternate traffic model in case a particular traffic model is unacceptable.
EPICS Input Output Controller (IOC) Record Reference Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.B.; Kraimer, M.R.
1994-12-01
This manual describes all supported EPICS record types. The first chapter gives introduction and describes the field summary table. The second chapter describes the fields in database common, i.e. the fields that are present in every record type. The third chapter describes the input and output field that are common to many record types and have the same usage wherever they are used. Following the third chapter is a separate chapter for each record type containing a description of all the fields for that record type except those in database common.
Aircraft signal definition for flight safety system monitoring system
NASA Technical Reports Server (NTRS)
Gibbs, Michael (Inventor); Omen, Debi Van (Inventor)
2003-01-01
A system and method compares combinations of vehicle variable values against known combinations of potentially dangerous vehicle input signal values. Alarms and error messages are selectively generated based on such comparisons. An aircraft signal definition is provided to enable definition and monitoring of sets of aircraft input signals to customize such signals for different aircraft. The input signals are compared against known combinations of potentially dangerous values by operational software and hardware of a monitoring function. The aircraft signal definition is created using a text editor or custom application. A compiler receives the aircraft signal definition to generate a binary file that comprises the definition of all the input signals used by the monitoring function. The binary file also contains logic that specifies how the inputs are to be interpreted. The file is then loaded into the monitor function, where it is validated and used to continuously monitor the condition of the aircraft.
Hutchison, M A; Gu, X; Adrover, M F; Lee, M R; Hnasko, T S; Alvarez, V A; Lu, W
2018-05-01
Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.
TRANDESNF: A computer program for transonic airfoil design and analysis in nonuniform flow
NASA Technical Reports Server (NTRS)
Chang, J. F.; Lan, C. Edward
1987-01-01
The use of a transonic airfoil code for analysis, inverse design, and direct optimization of an airfoil immersed in propfan slipstream is described. A summary of the theoretical method, program capabilities, input format, output variables, and program execution are described. Input data of sample test cases and the corresponding output are given.
NASA Astrophysics Data System (ADS)
Muinul Islam, Muhammad; Tsujikawa, Tetsuya; Mori, Tetsuya; Kiyono, Yasushi; Okazawa, Hidehiko
2017-06-01
A noninvasive method to estimate input function directly from H2 15O brain PET data for measurement of cerebral blood flow (CBF) was proposed in this study. The image derived input function (IDIF) method extracted the time-activity curves (TAC) of the major cerebral arteries at the skull base from the dynamic PET data. The extracted primordial IDIF showed almost the same radioactivity as the arterial input function (AIF) from sampled blood at the plateau part in the later phase, but significantly lower radioactivity in the initial arterial phase compared with that of AIF-TAC. To correct the initial part of the IDIF, a dispersion function was applied and two constants for the correction were determined by fitting with the individual AIF in 15 patients with unilateral arterial stenoocclusive lesions. The area under the curves (AUC) from the two input functions showed good agreement with the mean AUCIDIF/AUCAIF ratio of 0.92 ± 0.09. The final products of CBF and arterial-to-capillary vascular volume (V 0) obtained from the IDIF and AIF showed no difference, and had with high correlation coefficients.
NASA Astrophysics Data System (ADS)
Wösten, J. H. M.; Pachepsky, Ya. A.; Rawls, W. J.
2001-10-01
Water retention and hydraulic conductivity are crucial input parameters in any modelling study on water flow and solute transport in soils. Due to inherent temporal and spatial variability in these hydraulic characteristics, large numbers of samples are required to properly characterise areas of land. Hydraulic characteristics can be obtained from direct laboratory and field measurements. However, these measurements are time consuming which makes it costly to characterise an area of land. As an alternative, analysis of existing databases of measured soil hydraulic data may result in pedotransfer functions. In practise, these functions often prove to be good predictors for missing soil hydraulic characteristics. Examples are presented of different equations describing hydraulic characteristics and of pedotransfer functions used to predict parameters in these equations. Grouping of data prior to pedotransfer function development is discussed as well as the use of different soil properties as predictors. In addition to regression analysis, new techniques such as artificial neural networks, group methods of data handling, and classification and regression trees are increasingly being used for pedotransfer function development. Actual development of pedotransfer functions is demonstrated by describing a practical case study. Examples are presented of pedotransfer function for predicting other than hydraulic characteristics. Accuracy and reliability of pedotransfer functions are demonstrated and discussed. In this respect, functional evaluation of pedotransfer functions proves to be a good tool to assess the desired accuracy of a pedotransfer function for a specific application.
Brown, A M
2001-06-01
The objective of this present study was to introduce a simple, easily understood method for carrying out non-linear regression analysis based on user input functions. While it is relatively straightforward to fit data with simple functions such as linear or logarithmic functions, fitting data with more complicated non-linear functions is more difficult. Commercial specialist programmes are available that will carry out this analysis, but these programmes are expensive and are not intuitive to learn. An alternative method described here is to use the SOLVER function of the ubiquitous spreadsheet programme Microsoft Excel, which employs an iterative least squares fitting routine to produce the optimal goodness of fit between data and function. The intent of this paper is to lead the reader through an easily understood step-by-step guide to implementing this method, which can be applied to any function in the form y=f(x), and is well suited to fast, reliable analysis of data in all fields of biology.
NASA Astrophysics Data System (ADS)
Suhaila, Jamaludin; Jemain, Abdul Aziz; Hamdan, Muhammad Fauzee; Wan Zin, Wan Zawiah
2011-12-01
SummaryNormally, rainfall data is collected on a daily, monthly or annual basis in the form of discrete observations. The aim of this study is to convert these rainfall values into a smooth curve or function which could be used to represent the continuous rainfall process at each region via a technique known as functional data analysis. Since rainfall data shows a periodic pattern in each region, the Fourier basis is introduced to capture these variations. Eleven basis functions with five harmonics are used to describe the unimodal rainfall pattern for stations in the East while five basis functions which represent two harmonics are needed to describe the rainfall pattern in the West. Based on the fitted smooth curve, the wet and dry periods as well as the maximum and minimum rainfall values could be determined. Different rainfall patterns are observed among the studied regions based on the smooth curve. Using the functional analysis of variance, the test results indicated that there exist significant differences in the functional means between each region. The largest differences in the functional means are found between the East and Northwest regions and these differences may probably be due to the effect of topography and, geographical location and are mostly influenced by the monsoons. Therefore, the same inputs or approaches might not be useful in modeling the hydrological process for different regions.
Hübner, Cora; Bosch, Daniel; Gall, Andrea; Lüthi, Andreas; Ehrlich, Ingrid
2014-01-01
Many lines of evidence suggest that a reciprocally interconnected network comprising the amygdala, ventral hippocampus (vHC), and medial prefrontal cortex (mPFC) participates in different aspects of the acquisition and extinction of conditioned fear responses and fear behavior. This could at least in part be mediated by direct connections from mPFC or vHC to amygdala to control amygdala activity and output. However, currently the interactions between mPFC and vHC afferents and their specific targets in the amygdala are still poorly understood. Here, we use an ex-vivo optogenetic approach to dissect synaptic properties of inputs from mPFC and vHC to defined neuronal populations in the basal amygdala (BA), the area that we identify as a major target of these projections. We find that BA principal neurons (PNs) and local BA interneurons (INs) receive monosynaptic excitatory inputs from mPFC and vHC. In addition, both these inputs also recruit GABAergic feedforward inhibition in a substantial fraction of PNs, in some neurons this also comprises a slow GABAB-component. Amongst the innervated PNs we identify neurons that project back to subregions of the mPFC, indicating a loop between neurons in mPFC and BA, and a pathway from vHC to mPFC via BA. Interestingly, mPFC inputs also recruit feedforward inhibition in a fraction of INs, suggesting that these inputs can activate dis-inhibitory circuits in the BA. A general feature of both mPFC and vHC inputs to local INs is that excitatory inputs display faster rise and decay kinetics than in PNs, which would enable temporally precise signaling. However, mPFC and vHC inputs to both PNs and INs differ in their presynaptic release properties, in that vHC inputs are more depressing. In summary, our data describe novel wiring, and features of synaptic connections from mPFC and vHC to amygdala that could help to interpret functions of these interconnected brain areas at the network level. PMID:24634648
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Patrick I.
2003-09-23
Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neuralmore » networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing information [2]. Each one of these cells acts as a simple processor. When individual cells interact with one another, the complex abilities of the brain are made possible. In neural networks, the input or data are processed by a propagation function that adds up the values of all the incoming data. The ending value is then compared with a threshold or specific value. The resulting value must exceed the activation function value in order to become output. The activation function is a mathematical function that a neuron uses to produce an output referring to its input value. [8] Figure 1 depicts this process. Neural networks usually have three components an input, a hidden, and an output. These layers create the end result of the neural network. A real world example is a child associating the word dog with a picture. The child says dog and simultaneously looks a picture of a dog. The input is the spoken word ''dog'', the hidden is the brain processing, and the output will be the category of the word dog based on the picture. This illustration describes how a neural network functions.« less
Analysis and synthesis of abstract data types through generalization from examples
NASA Technical Reports Server (NTRS)
Wild, Christian
1987-01-01
The discovery of general patterns of behavior from a set of input/output examples can be a useful technique in the automated analysis and synthesis of software systems. These generalized descriptions of the behavior form a set of assertions which can be used for validation, program synthesis, program testing, and run-time monitoring. Describing the behavior is characterized as a learning process in which the set of inputs is mapped into an appropriate transform space such that general patterns can be easily characterized. The learning algorithm must chose a transform function and define a subset of the transform space which is related to equivalence classes of behavior in the original domain. An algorithm for analyzing the behavior of abstract data types is presented and several examples are given. The use of the analysis for purposes of program synthesis is also discussed.
Low-complexity piecewise-affine virtual sensors: theory and design
NASA Astrophysics Data System (ADS)
Rubagotti, Matteo; Poggi, Tomaso; Oliveri, Alberto; Pascucci, Carlo Alberto; Bemporad, Alberto; Storace, Marco
2014-03-01
This paper is focused on the theoretical development and the hardware implementation of low-complexity piecewise-affine direct virtual sensors for the estimation of unmeasured variables of interest of nonlinear systems. The direct virtual sensor is designed directly from measured inputs and outputs of the system and does not require a dynamical model. The proposed approach allows one to design estimators which mitigate the effect of the so-called 'curse of dimensionality' of simplicial piecewise-affine functions, and can be therefore applied to relatively high-order systems, enjoying convergence and optimality properties. An automatic toolchain is also presented to generate the VHDL code describing the digital circuit implementing the virtual sensor, starting from the set of measured input and output data. The proposed methodology is applied to generate an FPGA implementation of the virtual sensor for the estimation of vehicle lateral velocity, using a hardware-in-the-loop setting.
Injection Locking of a Semiconductor Double Quantum Dot Micromaser
Liu, Y.-Y.; Stehlik, J.; Gullans, M. J.; Taylor, J. M.; Petta, J. R.
2016-01-01
Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models. PMID:28127226
Injection Locking of a Semiconductor Double Quantum Dot Micromaser.
Liu, Y-Y; Stehlik, J; Gullans, M J; Taylor, J M; Petta, J R
2015-11-01
Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models.
Measuring the impact of final demand on global production system based on Markov process
NASA Astrophysics Data System (ADS)
Xing, Lizhi; Guan, Jun; Wu, Shan
2018-07-01
Input-output table is a comprehensive and detailed in describing the national economic systems, consisting of supply and demand information among various industrial sectors. The complex network, a theory and method for measuring the structure of complex system, can depict the structural properties of social and economic systems, and reveal the complicated relationships between the inner hierarchies and the external macroeconomic functions. This paper tried to measure the globalization degree of industrial sectors on the global value chain. Firstly, it constructed inter-country input-output network models to reproduce the topological structure of global economic system. Secondly, it regarded the propagation of intermediate goods on the global value chain as Markov process and introduced counting first passage betweenness to quantify the added processing amount when globally final demand stimulates this production system. Thirdly, it analyzed the features of globalization at both global and country-sector level
Conditional parametric models for storm sewer runoff
NASA Astrophysics Data System (ADS)
Jonsdottir, H.; Nielsen, H. Aa; Madsen, H.; Eliasson, J.; Palsson, O. P.; Nielsen, M. K.
2007-05-01
The method of conditional parametric modeling is introduced for flow prediction in a sewage system. It is a well-known fact that in hydrological modeling the response (runoff) to input (precipitation) varies depending on soil moisture and several other factors. Consequently, nonlinear input-output models are needed. The model formulation described in this paper is similar to the traditional linear models like final impulse response (FIR) and autoregressive exogenous (ARX) except that the parameters vary as a function of some external variables. The parameter variation is modeled by local lines, using kernels for local linear regression. As such, the method might be referred to as a nearest neighbor method. The results achieved in this study were compared to results from the conventional linear methods, FIR and ARX. The increase in the coefficient of determination is substantial. Furthermore, the new approach conserves the mass balance better. Hence this new approach looks promising for various hydrological models and analysis.
Burkitt, A N
2006-08-01
The integrate-and-fire neuron model describes the state of a neuron in terms of its membrane potential, which is determined by the synaptic inputs and the injected current that the neuron receives. When the membrane potential reaches a threshold, an action potential (spike) is generated. This review considers the model in which the synaptic input varies periodically and is described by an inhomogeneous Poisson process, with both current and conductance synapses. The focus is on the mathematical methods that allow the output spike distribution to be analyzed, including first passage time methods and the Fokker-Planck equation. Recent interest in the response of neurons to periodic input has in part arisen from the study of stochastic resonance, which is the noise-induced enhancement of the signal-to-noise ratio. Networks of integrate-and-fire neurons behave in a wide variety of ways and have been used to model a variety of neural, physiological, and psychological phenomena. The properties of the integrate-and-fire neuron model with synaptic input described as a temporally homogeneous Poisson process are reviewed in an accompanying paper (Burkitt in Biol Cybern, 2006).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avramova, Maria; Blyth, Taylor S.; Salko, Robert K.
This document describes how to make a CTF input deck. A CTF input deck is organized into Card Groups and Cards. A Card Group is a collection of Cards. A Card is defined as a line of input. Each Card may contain multiple data. A Card is terminated by making a new line.
Blade loss transient dynamics analysis. Volume 3: User's manual for TETRA program
NASA Technical Reports Server (NTRS)
Black, G. R.; Gallardo, V. C.; Storace, A. S.; Sagendorph, F.
1981-01-01
The users manual for TETRA contains program logic, flow charts, error messages, input sheets, modeling instructions, option descriptions, input variable descriptions, and demonstration problems. The process of obtaining a NASTRAN 17.5 generated modal input file for TETRA is also described with a worked sample.
Interstitial Cells: Regulators of Smooth Muscle Function
Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don
2014-01-01
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007
Joint statistics of strongly correlated neurons via dimensionality reduction
NASA Astrophysics Data System (ADS)
Deniz, Taşkın; Rotter, Stefan
2017-06-01
The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.
Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs.
Ledoux, Erwan; Brunel, Nicolas
2011-01-01
We investigate the dynamics of recurrent networks of excitatory (E) and inhibitory (I) neurons in the presence of time-dependent inputs. The dynamics is characterized by the network dynamical transfer function, i.e., how the population firing rate is modulated by sinusoidal inputs at arbitrary frequencies. Two types of networks are studied and compared: (i) a Wilson-Cowan type firing rate model; and (ii) a fully connected network of leaky integrate-and-fire (LIF) neurons, in a strong noise regime. We first characterize the region of stability of the "asynchronous state" (a state in which population activity is constant in time when external inputs are constant) in the space of parameters characterizing the connectivity of the network. We then systematically characterize the qualitative behaviors of the dynamical transfer function, as a function of the connectivity. We find that the transfer function can be either low-pass, or with a single or double resonance, depending on the connection strengths and synaptic time constants. Resonances appear when the system is close to Hopf bifurcations, that can be induced by two separate mechanisms: the I-I connectivity and the E-I connectivity. Double resonances can appear when excitatory delays are larger than inhibitory delays, due to the fact that two distinct instabilities exist with a finite gap between the corresponding frequencies. In networks of LIF neurons, changes in external inputs and external noise are shown to be able to change qualitatively the network transfer function. Firing rate models are shown to exhibit the same diversity of transfer functions as the LIF network, provided delays are present. They can also exhibit input-dependent changes of the transfer function, provided a suitable static non-linearity is incorporated.
NASA Technical Reports Server (NTRS)
Lu, Yun-Chi; Chang, Hyo Duck; Krupp, Brian; Kumar, Ravindar; Swaroop, Anand
1992-01-01
Volume 3 assists Earth Observing System (EOS) investigators in locating required non-EOS data products by identifying their non-EOS input requirements and providing the information on data sets available at various Distributed Active Archive Centers (DAAC's), including those from Pathfinder Activities and Earth Probes. Volume 3 is intended to complement, not to duplicate, the the EOSDIS Science Data Plan (SDP) by providing detailed data set information which was not presented in the SDP. Section 9 of this volume discusses the algorithm summary tables containing information on retrieval algorithms, expected outputs and required input data. Section 10 describes the non-EOS input requirements of instrument teams and IDS investigators. Also described are the current and future data holdings of the original seven DAACS and data products planned from the future missions and projects including Earth Probes and Pathfinder Activities. Section 11 describes source of information used in compiling data set information presented in this volume. A list of data set attributes used to describe various data sets is presented in section 12 along with their descriptions. Finally, Section 13 presents the SPSO's future plan to improve this report .
A functional genomics strategy reveals Rora as a component of the mammalian circadian clock.
Sato, Trey K; Panda, Satchidananda; Miraglia, Loren J; Reyes, Teresa M; Rudic, Radu D; McNamara, Peter; Naik, Kinnery A; FitzGerald, Garret A; Kay, Steve A; Hogenesch, John B
2004-08-19
The mammalian circadian clock plays an integral role in timing rhythmic physiology and behavior, such as locomotor activity, with anticipated daily environmental changes. The master oscillator resides within the suprachiasmatic nucleus (SCN), which can maintain circadian rhythms in the absence of synchronizing light input. Here, we describe a genomics-based approach to identify circadian activators of Bmal1, itself a key transcriptional activator that is necessary for core oscillator function. Using cell-based functional assays, as well as behavioral and molecular analyses, we identified Rora as an activator of Bmal1 transcription within the SCN. Rora is required for normal Bmal1 expression and consolidation of daily locomotor activity and is regulated by the core clock in the SCN. These results suggest that opposing activities of the orphan nuclear receptors Rora and Rev-erb alpha, which represses Bmal1 expression, are important in the maintenance of circadian clock function.
Functional description of signal processing in the Rogue GPS receiver
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1988-01-01
Over the past year, two Rogue GPS prototype receivers have been assembled and successfully subjected to a variety of laboratory and field tests. A functional description is presented of signal processing in the Rogue receiver, tracing the signal from RF input to the output values of group delay, phase, and data bits. The receiver can track up to eight satellites, without time multiplexing among satellites or channels, simultaneously measuring both group delay and phase for each of three channels (L1-C/A, L1-P, L2-P). The Rogue signal processing described requires generation of the code for all three channels. Receiver functional design, which emphasized accuracy, reliability, flexibility, and dynamic capability, is summarized. A detailed functional description of signal processing is presented, including C/A-channel and P-channel processing, carrier-aided averaging of group delays, checks for cycle slips, acquistion, and distinctive features.
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Syed, Hazari I.
1995-01-01
This user's manual describes the installation and operation of TIA, the Thermal-Imaging acquisition and processing Application, developed by the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center, Hampton, Virginia. TIA is a user friendly graphical interface application for the Macintosh 2 and higher series computers. The software has been developed to interface with the Perceptics/Westinghouse Pixelpipe(TM) and PixelStore(TM) NuBus cards and the GW Instruments MacADIOS(TM) input-output (I/O) card for the Macintosh for imaging thermal data. The software is also capable of performing generic image-processing functions.
NASA Astrophysics Data System (ADS)
Petrik, J.
The engineering model of the Salyut-HEXE experiment is described. The detector system, electronics box, and ground station are addressed. The microprocessor system is considered, discussing the cards and presenting block diagrams of their functions. The telemetry is examined, including the various modes and the direct and indirect transmission modes. The ground station programs are discussed, including the tasks, program development, input and output programs, status, power supply, count rates, telemetry dump, hard copy, and checksum.
Smart command recognizer (SCR) - For development, test, and implementation of speech commands
NASA Technical Reports Server (NTRS)
Simpson, Carol A.; Bunnell, John W.; Krones, Robert R.
1988-01-01
The SCR, a rapid prototyping system for the development, testing, and implementation of speech commands in a flight simulator or test aircraft, is described. A single unit performs all functions needed during these three phases of system development, while the use of common software and speech command data structure files greatly reduces the preparation time for successive development phases. As a smart peripheral to a simulation or flight host computer, the SCR interprets the pilot's spoken input and passes command codes to the simulation or flight computer.
DISCOS- Current Status and Future Developments
NASA Astrophysics Data System (ADS)
Flohrer, T.; Lemmens, S.; Bastida Virgili, B.; Krag, H.; Klinkrad, H.; Parrilla, E.; Sanchez, N.; Oliveira, J.; Pina, F.
2013-08-01
We present ESA's Database and Information System Characterizing Objects in Space (DISCOS). DISCOS not only plays an essential role in the collision avoidance and re-entry prediction services provided by ESA's Space Debris Office, it is also providing input to numerous and very differently scoped engineering activities, within ESA and throughout industry. We introduce the central functionalities of DISCOS, present the available reporting capabilities, and describe selected data modelling features. Finally, we revisit the developments of the recent years and take a sneak preview of the on-going replacement of DISCOS web front-end.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin Whiting; Crane, Nathan K.; Heinstein, Martin W.
2011-03-01
Adagio is a Lagrangian, three-dimensional, implicit code for the analysis of solids and structures. It uses a multi-level iterative solver, which enables it to solve problems with large deformations, nonlinear material behavior, and contact. It also has a versatile library of continuum and structural elements, and an extensive library of material models. Adagio is written for parallel computing environments, and its solvers allow for scalable solutions of very large problems. Adagio uses the SIERRA Framework, which allows for coupling with other SIERRA mechanics codes. This document describes the functionality and input structure for Adagio.
Smallwood, D. O.
1996-01-01
It is shown that the usual method for estimating the coherence functions (ordinary, partial, and multiple) for a general multiple-input! multiple-output problem can be expressed as a modified form of Cholesky decomposition of the cross-spectral density matrix of the input and output records. The results can be equivalently obtained using singular value decomposition (SVD) of the cross-spectral density matrix. Using SVD suggests a new form of fractional coherence. The formulation as a SVD problem also suggests a way to order the inputs when a natural physical order of the inputs is absent.
The role of psychosocial factors and psychiatric disorders in functional dyspepsia.
Van Oudenhove, Lukas; Aziz, Qasim
2013-03-01
In this Review, after a brief historical introduction, we first provide an overview of epidemiological studies that demonstrate an association between functional dyspepsia and psychological traits, states or psychiatric disorders. These studies suggest an important intrinsic role for psychosocial factors and psychiatric disorders, especially anxiety and depression, in the aetiopathogenesis of functional dyspepsia, in addition to their putative influence on health-care-seeking behaviour. Second, we describe pathophysiological evidence on how psychosocial factors and psychiatric disorders might exert their role in functional dyspepsia. Novel insights from functional brain imaging studies regarding the integration of gut-brain signals, processed in homeostatic-interoceptive brain regions, with input from the exteroceptive system, the reward system and affective and cognitive circuits, help to clarify the important role of psychological processes and psychiatric morbidity. We therefore propose an integrated model of functional dyspepsia as a disorder of gut-brain signalling, supporting a biopsychosocial approach to the diagnosis and management of this disorder.
Cryptographic Boolean Functions with Biased Inputs
2015-07-31
theory of random graphs developed by Erdős and Rényi [2]. The graph properties in a random graph expressed as such Boolean functions are used by...distributed Bernoulli variates with the parameter p. Since our scope is within the area of cryptography , we initiate an analysis of cryptographic...Boolean functions with biased inputs, which we refer to as µp-Boolean functions, is a common generalization of Boolean functions which stems from the
De Shong, J.A. Jr.
1957-12-31
A logarithmic current amplifier circuit having a high sensitivity and fast response is described. The inventor discovered the time constant of the input circuit of a system utilizing a feedback amplifier, ionization chamber, and a diode, is inversely proportional to the input current, and that the amplifier becomes unstable in amplifying signals in the upper frequency range when the amplifier's forward gain time constant equals the input circuit time constant. The described device incorporates impedance networks having low frequency response characteristic at various points in the circuit to change the forward gain of the amplifler at a rate of 0.7 of the gain magnitude for every two times increased in frequency. As a result of this improvement, the time constant of the input circuit is greatly reduced at high frequencies, and the amplifier response is increased.
Safe Upper-Bounds Inference of Energy Consumption for Java Bytecode Applications
NASA Technical Reports Server (NTRS)
Navas, Jorge; Mendez-Lojo, Mario; Hermenegildo, Manuel V.
2008-01-01
Many space applications such as sensor networks, on-board satellite-based platforms, on-board vehicle monitoring systems, etc. handle large amounts of data and analysis of such data is often critical for the scientific mission. Transmitting such large amounts of data to the remote control station for analysis is usually too expensive for time-critical applications. Instead, modern space applications are increasingly relying on autonomous on-board data analysis. All these applications face many resource constraints. A key requirement is to minimize energy consumption. Several approaches have been developed for estimating the energy consumption of such applications (e.g. [3, 1]) based on measuring actual consumption at run-time for large sets of random inputs. However, this approach has the limitation that it is in general not possible to cover all possible inputs. Using formal techniques offers the potential for inferring safe energy consumption bounds, thus being specially interesting for space exploration and safety-critical systems. We have proposed and implemented a general frame- work for resource usage analysis of Java bytecode [2]. The user defines a set of resource(s) of interest to be tracked and some annotations that describe the cost of some elementary elements of the program for those resources. These values can be constants or, more generally, functions of the input data sizes. The analysis then statically derives an upper bound on the amount of those resources that the program as a whole will consume or provide, also as functions of the input data sizes. This article develops a novel application of the analysis of [2] to inferring safe upper bounds on the energy consumption of Java bytecode applications. We first use a resource model that describes the cost of each bytecode instruction in terms of the joules it consumes. With this resource model, we then generate energy consumption cost relations, which are then used to infer safe upper bounds. How energy consumption for each bytecode instruction is measured is beyond the scope of this paper. Instead, this paper is about how to infer safe energy consumption estimations assuming that those energy consumption costs are provided. For concreteness, we use a simplified version of an existing resource model [1] in which an energy consumption cost for individual Java opcodes is defined.
A Java-based tool for creating KML files from GPS waypoints
NASA Astrophysics Data System (ADS)
Kinnicutt, P. G.; Rivard, C.; Rimer, S.
2008-12-01
Google Earth provides a free tool with powerful capabilities for visualizing geoscience images and data. Commercial software tools exist for doing sophisticated digitizing and spatial modeling , but for the purposes of presentation, visualization and overlaying aerial images with data Google Earth provides much of the functionality. Likewise, with current technologies in GPS (Global Positioning System) systems and with Google Earth Plus, it is possible to upload GPS waypoints, tracks and routes directly into Google Earth for visualization. However, older technology GPS units and even low-cost GPS units found today may lack the necessary communications interface to a computer (e.g. no Bluetooth, no WiFi, no USB, no Serial, etc.) or may have an incompatible interface, such as a Serial port but no USB adapter available. In such cases, any waypoints, tracks and routes saved in the GPS unit or recorded in a field notebook must be manually transferred to a computer for use in a GIS system or other program. This presentation describes a Java-based tool developed by the author which enables users to enter GPS coordinates in a user-friendly manner, then save these coordinates in a Keyhole MarkUp Language (KML) file format, for visualization in Google Earth. This tool either accepts user-interactive input or accepts input from a CSV (Comma Separated Value) file, which can be generated from any spreadsheet program. This tool accepts input in the form of lat/long or UTM (Universal Transverse Mercator) coordinates. This presentation describes this system's applicability through several small case studies. This free and lightweight tool simplifies the task of manually inputting GPS data into Google Earth for people working in the field without an automated mechanism for uploading the data; for instance, the user may not have internet connectivity or may not have the proper hardware or software. Since it is a Java application and not a web- based tool, it can be installed on one's field laptop and the GPS data can be manually entered without the need for internet connectivity. This tool provides a table view of the GPS data, but lacks a KML viewer to view the data overlain on top of an aerial view, as this viewer functionality is provided in Google Earth. The tool's primary contribution lies in its more convenient method for entering the GPS data manually when automated technologies are not available.
Synaptic control of the shape of the motoneuron pool input-output function
Heckman, Charles J.
2017-01-01
Although motoneurons have often been considered to be fairly linear transducers of synaptic input, recent evidence suggests that strong persistent inward currents (PICs) in motoneurons allow neuromodulatory and inhibitory synaptic inputs to induce large nonlinearities in the relation between the level of excitatory input and motor output. To try to estimate the possible extent of this nonlinearity, we developed a pool of model motoneurons designed to replicate the characteristics of motoneuron input-output properties measured in medial gastrocnemius motoneurons in the decerebrate cat with voltage-clamp and current-clamp techniques. We drove the model pool with a range of synaptic inputs consisting of various mixtures of excitation, inhibition, and neuromodulation. We then looked at the relation between excitatory drive and total pool output. Our results revealed that the PICs not only enhance gain but also induce a strong nonlinearity in the relation between the average firing rate of the motoneuron pool and the level of excitatory input. The relation between the total simulated force output and input was somewhat more linear because of higher force outputs in later-recruited units. We also found that the nonlinearity can be increased by increasing neuromodulatory input and/or balanced inhibitory input and minimized by a reciprocal, push-pull pattern of inhibition. We consider the possibility that a flexible input-output function may allow motor output to be tuned to match the widely varying demands of the normal motor repertoire. NEW & NOTEWORTHY Motoneuron activity is generally considered to reflect the level of excitatory drive. However, the activation of voltage-dependent intrinsic conductances can distort the relation between excitatory drive and the total output of a pool of motoneurons. Using a pool of realistic motoneuron models, we show that pool output can be a highly nonlinear function of synaptic input but linearity can be achieved through adjusting the time course of excitatory and inhibitory synaptic inputs. PMID:28053245
A reconfigurable NAND/NOR genetic logic gate
2012-01-01
Background Engineering genetic Boolean logic circuits is a major research theme of synthetic biology. By altering or introducing connections between genetic components, novel regulatory networks are built in order to mimic the behaviour of electronic devices such as logic gates. While electronics is a highly standardized science, genetic logic is still in its infancy, with few agreed standards. In this paper we focus on the interpretation of logical values in terms of molecular concentrations. Results We describe the results of computational investigations of a novel circuit that is able to trigger specific differential responses depending on the input standard used. The circuit can therefore be dynamically reconfigured (without modification) to serve as both a NAND/NOR logic gate. This multi-functional behaviour is achieved by a) varying the meanings of inputs, and b) using branch predictions (as in computer science) to display a constrained output. A thorough computational study is performed, which provides valuable insights for the future laboratory validation. The simulations focus on both single-cell and population behaviours. The latter give particular insights into the spatial behaviour of our engineered cells on a surface with a non-homogeneous distribution of inputs. Conclusions We present a dynamically-reconfigurable NAND/NOR genetic logic circuit that can be switched between modes of operation via a simple shift in input signal concentration. The circuit addresses important issues in genetic logic that will have significance for more complex synthetic biology applications. PMID:22989145
A reconfigurable NAND/NOR genetic logic gate.
Goñi-Moreno, Angel; Amos, Martyn
2012-09-18
Engineering genetic Boolean logic circuits is a major research theme of synthetic biology. By altering or introducing connections between genetic components, novel regulatory networks are built in order to mimic the behaviour of electronic devices such as logic gates. While electronics is a highly standardized science, genetic logic is still in its infancy, with few agreed standards. In this paper we focus on the interpretation of logical values in terms of molecular concentrations. We describe the results of computational investigations of a novel circuit that is able to trigger specific differential responses depending on the input standard used. The circuit can therefore be dynamically reconfigured (without modification) to serve as both a NAND/NOR logic gate. This multi-functional behaviour is achieved by a) varying the meanings of inputs, and b) using branch predictions (as in computer science) to display a constrained output. A thorough computational study is performed, which provides valuable insights for the future laboratory validation. The simulations focus on both single-cell and population behaviours. The latter give particular insights into the spatial behaviour of our engineered cells on a surface with a non-homogeneous distribution of inputs. We present a dynamically-reconfigurable NAND/NOR genetic logic circuit that can be switched between modes of operation via a simple shift in input signal concentration. The circuit addresses important issues in genetic logic that will have significance for more complex synthetic biology applications.
The effect of output-input isolation on the scaling and energy consumption of all-spin logic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jiaxi; Haratipour, Nazila; Koester, Steven J., E-mail: skoester@umn.edu
All-spin logic (ASL) is a novel approach for digital logic applications wherein spin is used as the state variable instead of charge. One of the challenges in realizing a practical ASL system is the need to ensure non-reciprocity, meaning the information flows from input to output, not vice versa. One approach described previously, is to introduce an asymmetric ground contact, and while this approach was shown to be effective, it remains unclear as to the optimal approach for achieving non-reciprocity in ASL. In this study, we quantitatively analyze techniques to achieve non-reciprocity in ASL devices, and we specifically compare themore » effect of using asymmetric ground position and dipole-coupled output/input isolation. For this analysis, we simulate the switching dynamics of multiple-stage logic devices with FePt and FePd perpendicular magnetic anisotropy materials using a combination of a matrix-based spin circuit model coupled to the Landau–Lifshitz–Gilbert equation. The dipole field is included in this model and can act as both a desirable means of coupling magnets and a source of noise. The dynamic energy consumption has been calculated for these schemes, as a function of input/output magnet separation, and the results show that using a scheme that electrically isolates logic stages produces superior non-reciprocity, thus allowing both improved scaling and reduced energy consumption.« less
Applying analog integrated circuits for HERO protection
NASA Technical Reports Server (NTRS)
Willis, Kenneth E.; Blachowski, Thomas J.
1994-01-01
One of the most efficient methods for protecting electro-explosive devices (EED's) from HERO and ESD is to shield the EED in a conducting shell (Faraday cage). Electrical energy is transferred to the bridge by means of a magnetic coupling which passes through a portion of the conducting shell that is made from a magnetically permeable but electrically conducting material. This technique was perfected by ML Aviation, a U.K. company, in the early 80's, and was called a Radio Frequency Attenuation Connector (RFAC). It is now in wide use in the U.K. Previously, the disadvantage of RFAC over more conventional methods was its relatively high cost, largely driven by a thick film hybrid circuit used to switch the primary of the transformer. Recently, through a licensing agreement, this technology has been transferred to the U.S. and significant cost reductions and performance improvements have been achieved by the introduction of analog integrated circuits. An integrated circuit performs the following functions: (1) Chops the DC input to a signal suitable for driving the primary of the transformer; (2) Verifies the input voltage is above a threshold; (3) Verifies the input voltage is valid for a pre set time before enabling the device; (4) Provides thermal protection of the circuit; and (5) Provides an external input for independent logic level enabling of the power transfer mechanism. This paper describes the new RFAC product and its applications.
Using a Tablet PC in the German Classroom to Enliven Teacher Input
ERIC Educational Resources Information Center
Van Orden, Stephen
2006-01-01
Providing students with lively, authentic comprehensible input is one of the most important tasks of introductory German teachers. Using a Tablet PC can enable teachers to improve the quality of the comprehensible input they provide their students. This article describes how integrating a Tablet PC into daily teaching processes allows classroom…
Impact Response Characteristics of Polymeric Materials
1981-11-01
amplitude-frequency domain. In the language of signal communications an input signal given by some time dependence FAt) is introduced into a " channel ...fixed and not altered by the signal. The channel can be charac- terized by its own function H(t), called the transfer function. This concept can be...rcpresented schematically as follows: Input Signal - [ Channel ] -- Output Signal At) H(t) G(t) In our case the input signal is the impact event, the output
Printer model for dot-on-dot halftone screens
NASA Astrophysics Data System (ADS)
Balasubramanian, Raja
1995-04-01
A printer model is described for dot-on-dot halftone screens. For a given input CMYK signal, the model predicts the resulting spectral reflectance of the printed patch. The model is derived in two steps. First, the C, M, Y, K dot growth functions are determined which relate the input digital value to the actual dot area coverages of the colorants. Next, the reflectance of a patch is predicted as a weighted combination of the reflectances of the four solid C, M, Y, K patches and their various overlays. This approach is analogous to the Neugebauer model, with the random mixing equations being replaced by dot-on-dot mixing equations. A Yule-Neilsen correction factor is incorporated to account for light scattering within the paper. The dot area functions and Yule-Neilsen parameter are chosen to optimize the fit to a set of training data. The model is also extended to a cellular framework, requiring additional measurements. The model is tested with a four color xerographic printer employing a line-on-line halftone screen. CIE L*a*b* errors are obtained between measurements and model predictions. The Yule-Neilsen factor significantly decreases the model error. Accuracy is also increased with the use of a cellular framework.
Description and availability of the SMARTS spectral model for photovoltaic applications
NASA Astrophysics Data System (ADS)
Myers, Daryl R.; Gueymard, Christian A.
2004-11-01
Limited spectral response range of photocoltaic (PV) devices requires device performance be characterized with respect to widely varying terrestrial solar spectra. The FORTRAN code "Simple Model for Atmospheric Transmission of Sunshine" (SMARTS) was developed for various clear-sky solar renewable energy applications. The model is partly based on parameterizations of transmittance functions in the MODTRAN/LOWTRAN band model family of radiative transfer codes. SMARTS computes spectra with a resolution of 0.5 nanometers (nm) below 400 nm, 1.0 nm from 400 nm to 1700 nm, and 5 nm from 1700 nm to 4000 nm. Fewer than 20 input parameters are required to compute spectral irradiance distributions including spectral direct beam, total, and diffuse hemispherical radiation, and up to 30 other spectral parameters. A spreadsheet-based graphical user interface can be used to simplify the construction of input files for the model. The model is the basis for new terrestrial reference spectra developed by the American Society for Testing and Materials (ASTM) for photovoltaic and materials degradation applications. We describe the model accuracy, functionality, and the availability of source and executable code. Applications to PV rating and efficiency and the combined effects of spectral selectivity and varying atmospheric conditions are briefly discussed.
Cetacean population density estimation from single fixed sensors using passive acoustics.
Küsel, Elizabeth T; Mellinger, David K; Thomas, Len; Marques, Tiago A; Moretti, David; Ward, Jessica
2011-06-01
Passive acoustic methods are increasingly being used to estimate animal population density. Most density estimation methods are based on estimates of the probability of detecting calls as functions of distance. Typically these are obtained using receivers capable of localizing calls or from studies of tagged animals. However, both approaches are expensive to implement. The approach described here uses a MonteCarlo model to estimate the probability of detecting calls from single sensors. The passive sonar equation is used to predict signal-to-noise ratios (SNRs) of received clicks, which are then combined with a detector characterization that predicts probability of detection as a function of SNR. Input distributions for source level, beam pattern, and whale depth are obtained from the literature. Acoustic propagation modeling is used to estimate transmission loss. Other inputs for density estimation are call rate, obtained from the literature, and false positive rate, obtained from manual analysis of a data sample. The method is applied to estimate density of Blainville's beaked whales over a 6-day period around a single hydrophone located in the Tongue of the Ocean, Bahamas. Results are consistent with those from previous analyses, which use additional tag data. © 2011 Acoustical Society of America
Transient times in linear metabolic pathways under constant affinity constraints.
Lloréns, M; Nuño, J C; Montero, F
1997-10-15
In the early seventies, Easterby began the analytical study of transition times for linear reaction schemes [Easterby (1973) Biochim. Biophys. Acta 293, 552-558]. In this pioneer work and in subsequent papers, a state function (the transient time) was used to measure the period before the stationary state, for systems constrained to work under both constant and variable input flux, was reached. Despite the undoubted usefulness of this quantity to describe the time-dependent features of these kinds of systems, its application to the study of chemical reactions under other constraints is questionable. In the present work, a generalization of these magnitudes to linear metabolic pathways functioning under a constant-affinity constraint is carried out. It is proved that classical definitions of transient times do not reflect the actual properties of the transition to the steady state in systems evolving under this restriction. Alternatively, a more adequate framework for interpretation of the transient times for systems with both constant and variable input flux is suggested. Within this context, new definitions that reflect more accurately the transient characteristics of constant affinity systems are stated. Finally, the meaning of these transient times is discussed.
Simulation requirements for the Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Soosaar, K.
1984-01-01
Simulation tools for the large deployable reflector (LDR) are discussed. These tools are often the transfer function variety equations. However, transfer functions are inadequate to represent time-varying systems for multiple control systems with overlapping bandwidths characterized by multi-input, multi-output features. Frequency domain approaches are the useful design tools, but a full-up simulation is needed. Because of the need for a dedicated computer for high frequency multi degree of freedom components encountered, non-real time smulation is preferred. Large numerical analysis software programs are useful only to receive inputs and provide output to the next block, and should be kept out of the direct loop of simulation. The following blocks make up the simulation. The thermal model block is a classical heat transfer program. It is a non-steady state program. The quasistatic block deals with problems associated with rigid body control of reflector segments. The steady state block assembles data into equations of motion and dynamics. A differential raytrace is obtained to establish a change in wave aberrations. The observation scene is described. The focal plane module converts the photon intensity impinging on it into electron streams or into permanent film records.
Gain Modulation in the Central Nervous System: Where Behavior, Neurophysiology, and Computation Meet
SALINAS, EMILIO; SEJNOWSKI, TERRENCE J.
2010-01-01
Gain modulation is a nonlinear way in which neurons combine information from two (or more) sources, which may be of sensory, motor, or cognitive origin. Gain modulation is revealed when one input, the modulatory one, affects the gain or the sensitivity of the neuron to the other input, without modifying its selectivity or receptive field properties. This type of modulatory interaction is important for two reasons. First, it is an extremely widespread integration mechanism; it is found in a plethora of cortical areas and in some subcortical structures as well, and as a consequence it seems to play an important role in a striking variety of functions, including eye and limb movements, navigation, spatial perception, attentional processing, and object recognition. Second, there is a theoretical foundation indicating that gain-modulated neurons may serve as a basis for a general class of computations, namely, coordinate transformations and the generation of invariant responses, which indeed may underlie all the brain functions just mentioned. This article describes the relationships between computational models, the physiological properties of a variety of gain-modulated neurons, and some of the behavioral consequences of damage to gain-modulated neural representations. PMID:11597102
The human motor neuron pools receive a dominant slow‐varying common synaptic input
Negro, Francesco; Yavuz, Utku Şükrü
2016-01-01
Key points Motor neurons in a pool receive both common and independent synaptic inputs, although the proportion and role of their common synaptic input is debated.Classic correlation techniques between motor unit spike trains do not measure the absolute proportion of common input and have limitations as a result of the non‐linearity of motor neurons.We propose a method that for the first time allows an accurate quantification of the absolute proportion of low frequency common synaptic input (<5 Hz) to motor neurons in humans.We applied the proposed method to three human muscles and determined experimentally that they receive a similar large amount (>60%) of common input, irrespective of their different functional and control properties.These results increase our knowledge about the role of common and independent input to motor neurons in force control. Abstract Motor neurons receive both common and independent synaptic inputs. This observation is classically based on the presence of a significant correlation between pairs of motor unit spike trains. The functional significance of different relative proportions of common input across muscles, individuals and conditions is still debated. One of the limitations in our understanding of correlated input to motor neurons is that it has not been possible so far to quantify the absolute proportion of common input with respect to the total synaptic input received by the motor neurons. Indeed, correlation measures of pairs of output spike trains only allow for relative comparisons. In the present study, we report for the first time an approach for measuring the proportion of common input in the low frequency bandwidth (<5 Hz) to a motor neuron pool in humans. This estimate is based on a phenomenological model and the theoretical fitting of the experimental values of coherence between the permutations of groups of motor unit spike trains. We demonstrate the validity of this theoretical estimate with several simulations. Moreover, we applied this method to three human muscles: the abductor digiti minimi, tibialis anterior and vastus medialis. Despite these muscles having different functional roles and control properties, as confirmed by the results of the present study, we estimate that their motor pools receive a similar and large (>60%) proportion of common low frequency oscillations with respect to their total synaptic input. These results suggest that the central nervous system provides a large amount of common input to motor neuron pools, in a similar way to that for muscles with different functional and control properties. PMID:27151459
Arterial input function derived from pairwise correlations between PET-image voxels.
Schain, Martin; Benjaminsson, Simon; Varnäs, Katarina; Forsberg, Anton; Halldin, Christer; Lansner, Anders; Farde, Lars; Varrone, Andrea
2013-07-01
A metabolite corrected arterial input function is a prerequisite for quantification of positron emission tomography (PET) data by compartmental analysis. This quantitative approach is also necessary for radioligands without suitable reference regions in brain. The measurement is laborious and requires cannulation of a peripheral artery, a procedure that can be associated with patient discomfort and potential adverse events. A non invasive procedure for obtaining the arterial input function is thus preferable. In this study, we present a novel method to obtain image-derived input functions (IDIFs). The method is based on calculation of the Pearson correlation coefficient between the time-activity curves of voxel pairs in the PET image to localize voxels displaying blood-like behavior. The method was evaluated using data obtained in human studies with the radioligands [(11)C]flumazenil and [(11)C]AZ10419369, and its performance was compared with three previously published methods. The distribution volumes (VT) obtained using IDIFs were compared with those obtained using traditional arterial measurements. Overall, the agreement in VT was good (∼3% difference) for input functions obtained using the pairwise correlation approach. This approach performed similarly or even better than the other methods, and could be considered in applied clinical studies. Applications to other radioligands are needed for further verification.
Analysis of fMRI data using noise-diffusion network models: a new covariance-coding perspective.
Gilson, Matthieu
2018-04-01
Since the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input-output mapping-determined by EC-for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data-movie viewing versus resting state-illustrates that changes in local variability and changes in brain coordination go hand in hand.
NASA Astrophysics Data System (ADS)
Tian, Lizhi; Xiong, Zhenhua; Wu, Jianhua; Ding, Han
2017-05-01
Feedforward-feedback control is widely used in motion control of piezoactuator systems. Due to the phase lag caused by incomplete dynamics compensation, the performance of the composite controller is greatly limited at high frequency. This paper proposes a new rate-dependent model to improve the high-frequency tracking performance by reducing dynamics compensation error. The rate-dependent model is designed as a function of the input and input variation rate to describe the input-output relationship of the residual system dynamics which mainly performs as phase lag in a wide frequency band. Then the direct inversion of the proposed rate-dependent model is used to compensate the residual system dynamics. Using the proposed rate-dependent model as feedforward term, the open loop performance can be improved significantly at medium-high frequency. Then, combining the with feedback controller, the composite controller can provide enhanced close loop performance from low frequency to high frequency. At the frequency of 1 Hz, the proposed controller presents the same performance as previous methods. However, at the frequency of 900 Hz, the tracking error is reduced to be 30.7% of the decoupled approach.
Neural networks for data compression and invariant image recognition
NASA Technical Reports Server (NTRS)
Gardner, Sheldon
1989-01-01
An approach to invariant image recognition (I2R), based upon a model of biological vision in the mammalian visual system (MVS), is described. The complete I2R model incorporates several biologically inspired features: exponential mapping of retinal images, Gabor spatial filtering, and a neural network associative memory. In the I2R model, exponentially mapped retinal images are filtered by a hierarchical set of Gabor spatial filters (GSF) which provide compression of the information contained within a pixel-based image. A neural network associative memory (AM) is used to process the GSF coded images. We describe a 1-D shape function method for coding of scale and rotationally invariant shape information. This method reduces image shape information to a periodic waveform suitable for coding as an input vector to a neural network AM. The shape function method is suitable for near term applications on conventional computing architectures equipped with VLSI FFT chips to provide a rapid image search capability.
NASA Technical Reports Server (NTRS)
Chadwick, C.
1984-01-01
This paper describes the development and use of an algorithm to compute approximate statistics of the magnitude of a single random trajectory correction maneuver (TCM) Delta v vector. The TCM Delta v vector is modeled as a three component Cartesian vector each of whose components is a random variable having a normal (Gaussian) distribution with zero mean and possibly unequal standard deviations. The algorithm uses these standard deviations as input to produce approximations to (1) the mean and standard deviation of the magnitude of Delta v, (2) points of the probability density function of the magnitude of Delta v, and (3) points of the cumulative and inverse cumulative distribution functions of Delta v. The approximates are based on Monte Carlo techniques developed in a previous paper by the author and extended here. The algorithm described is expected to be useful in both pre-flight planning and in-flight analysis of maneuver propellant requirements for space missions.
Self-similar Theory of Wind-driven Sea
NASA Astrophysics Data System (ADS)
Zakharov, V. E.
2015-12-01
More than two dozens field experiments performed in the ocean and on the lakes show that the fetch-limited growth of dimensionless energy and dimensionless peak frequency is described by powerlike functions of the dimensionless fetch. Moreover, the exponents of these two functions are connected with a proper accuracy by the standard "magic relation", 10q-2p=1. Recent massive numerical experiments as far as experiments in wave tanks also confirm this magic relation. All these experimental facts can be interpreted in a framework of the following simple theory. The wind-driven sea is described by the "conservative" Hasselmann kinetic equation. The source terms, wind input and white-capping dissipation, play a secondary role in comparison with the nonlinear term Snl that is responsible for the four-wave resonant interaction. This equation has four-parameter family of self-similar solutions. The magic relation holds for all numbers of this family. This fact gives strong hope that development of self-consistent analytic theory of wind-driven sea is quite realizable task.
Nonperturbative quark, gluon, and meson correlators of unquenched QCD
NASA Astrophysics Data System (ADS)
Cyrol, Anton K.; Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils
2018-03-01
We present nonperturbative first-principle results for quark, gluon, and meson 1PI correlation functions of two-flavor Landau-gauge QCD in the vacuum. These correlation functions carry the full information about the theory. They are obtained by solving their functional renormalization group equations in a systematic vertex expansion, aiming at apparent convergence. This work represents a crucial prerequisite for quantitative first-principle studies of the QCD phase diagram and the hadron spectrum within this framework. In particular, we have computed the gluon, ghost, quark, and scalar-pseudoscalar meson propagators, as well as gluon, ghost-gluon, quark-gluon, quark, quark-meson, and meson interactions. Our results stress the crucial importance of the quantitatively correct running of different vertices in the semiperturbative regime for describing the phenomena and scales of confinement and spontaneous chiral symmetry breaking without phenomenological input.
A user's manual for the Loaded Microstrip Antenna Code (LMAC)
NASA Technical Reports Server (NTRS)
Forrai, D. P.; Newman, E. H.
1988-01-01
The use of the Loaded Microstrip Antenna Code is described. The geometry of this antenna is shown and its dimensions are described in terms of the program outputs. The READ statements for the inputs are detailed and typical values are given where applicable. The inputs of four example problems are displayed with the corresponding output of the code given in the appendices.
NASA Technical Reports Server (NTRS)
Deng, Yue
2014-01-01
Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.
PAREMD: A parallel program for the evaluation of momentum space properties of atoms and molecules
NASA Astrophysics Data System (ADS)
Meena, Deep Raj; Gadre, Shridhar R.; Balanarayan, P.
2018-03-01
The present work describes a code for evaluating the electron momentum density (EMD), its moments and the associated Shannon information entropy for a multi-electron molecular system. The code works specifically for electronic wave functions obtained from traditional electronic structure packages such as GAMESS and GAUSSIAN. For the momentum space orbitals, the general expression for Gaussian basis sets in position space is analytically Fourier transformed to momentum space Gaussian basis functions. The molecular orbital coefficients of the wave function are taken as an input from the output file of the electronic structure calculation. The analytic expressions of EMD are evaluated over a fine grid and the accuracy of the code is verified by a normalization check and a numerical kinetic energy evaluation which is compared with the analytic kinetic energy given by the electronic structure package. Apart from electron momentum density, electron density in position space has also been integrated into this package. The program is written in C++ and is executed through a Shell script. It is also tuned for multicore machines with shared memory through OpenMP. The program has been tested for a variety of molecules and correlated methods such as CISD, Møller-Plesset second order (MP2) theory and density functional methods. For correlated methods, the PAREMD program uses natural spin orbitals as an input. The program has been benchmarked for a variety of Gaussian basis sets for different molecules showing a linear speedup on a parallel architecture.
User's Guide for the Updated EST/BEST Software System
NASA Technical Reports Server (NTRS)
Shah, Ashwin
2003-01-01
This User's Guide describes the structure of the IPACS input file that reflects the modularity of each module. The structured format helps the user locate specific input data and manually enter or edit it. The IPACS input file can have any user-specified filename, but must have a DAT extension. The input file may consist of up to six input data blocks; the data blocks must be separated by delimiters beginning with the $ character. If multiple sections are desired, they must be arranged in the order listed.
Scheler, Gabriele
2013-01-01
We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species) with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of individual transfer functions, contradicts notions of ubiquitous complexity by showing input-dependent signal transmission inactivation.
Zanotti-Fregonara, Paolo; Hines, Christina S; Zoghbi, Sami S; Liow, Jeih-San; Zhang, Yi; Pike, Victor W; Drevets, Wayne C; Mallinger, Alan G; Zarate, Carlos A; Fujita, Masahiro; Innis, Robert B
2012-11-15
Quantitative PET studies of neuroreceptor tracers typically require that arterial input function be measured. The aim of this study was to explore the use of a population-based input function (PBIF) and an image-derived input function (IDIF) for [(11)C](R)-rolipram kinetic analysis, with the goal of reducing - and possibly eliminating - the number of arterial blood samples needed to measure parent radioligand concentrations. A PBIF was first generated using [(11)C](R)-rolipram parent time-activity curves from 12 healthy volunteers (Group 1). Both invasive (blood samples) and non-invasive (body weight, body surface area, and lean body mass) scaling methods for PBIF were tested. The scaling method that gave the best estimate of the Logan-V(T) values was then used to determine the test-retest variability of PBIF in Group 1 and then prospectively applied to another population of 25 healthy subjects (Group 2), as well as to a population of 26 patients with major depressive disorder (Group 3). Results were also compared to those obtained with an image-derived input function (IDIF) from the internal carotid artery. In some subjects, we measured arteriovenous differences in [(11)C](R)-rolipram concentration to see whether venous samples could be used instead of arterial samples. Finally, we assessed the ability of IDIF and PBIF to discriminate depressed patients (MDD) and healthy subjects. Arterial blood-scaled PBIF gave better results than any non-invasive scaling technique. Excellent results were obtained when the blood-scaled PBIF was prospectively applied to the subjects in Group 2 (V(T) ratio 1.02±0.05; mean±SD) and Group 3 (V(T) ratio 1.03±0.04). Equally accurate results were obtained for two subpopulations of subjects drawn from Groups 2 and 3 who had very differently shaped (i.e. "flatter" or "steeper") input functions compared to PBIF (V(T) ratio 1.07±0.04 and 0.99±0.04, respectively). Results obtained via PBIF were equivalent to those obtained via IDIF (V(T) ratio 0.99±0.05 and 1.00±0.04 for healthy subjects and MDD patients, respectively). Retest variability of PBIF was equivalent to that obtained with full input function and IDIF (14.5%, 15.2%, and 14.1%, respectively). Due to [(11)C](R)-rolipram arteriovenous differences, venous samples could not be substituted for arterial samples. With both IDIF and PBIF, depressed patients had a 20% reduction in [(11)C](R)-rolipram binding as compared to control (two-way ANOVA: p=0.008 and 0.005, respectively). These results were almost equivalent to those obtained using 23 arterial samples. Although some arterial samples are still necessary, both PBIF and IDIF are accurate and precise alternatives to full arterial input function for [(11)C](R)-rolipram PET studies. Both techniques give accurate results with low variability, even for clinically different groups of subjects and those with very differently shaped input functions. Published by Elsevier Inc.
GWM-VI: groundwater management with parallel processing for multiple MODFLOW versions
Banta, Edward R.; Ahlfeld, David P.
2013-01-01
Groundwater Management–Version Independent (GWM–VI) is a new version of the Groundwater Management Process of MODFLOW. The Groundwater Management Process couples groundwater-flow simulation with a capability to optimize stresses on the simulated aquifer based on an objective function and constraints imposed on stresses and aquifer state. GWM–VI extends prior versions of Groundwater Management in two significant ways—(1) it can be used with any version of MODFLOW that meets certain requirements on input and output, and (2) it is structured to allow parallel processing of the repeated runs of the MODFLOW model that are required to solve the optimization problem. GWM–VI uses the same input structure for files that describe the management problem as that used by prior versions of Groundwater Management. GWM–VI requires only minor changes to the input files used by the MODFLOW model. GWM–VI uses the Joint Universal Parameter IdenTification and Evaluation of Reliability Application Programming Interface (JUPITER-API) to implement both version independence and parallel processing. GWM–VI communicates with the MODFLOW model by manipulating certain input files and interpreting results from the MODFLOW listing file and binary output files. Nearly all capabilities of prior versions of Groundwater Management are available in GWM–VI. GWM–VI has been tested with MODFLOW-2005, MODFLOW-NWT (a Newton formulation for MODFLOW-2005), MF2005-FMP2 (the Farm Process for MODFLOW-2005), SEAWAT, and CFP (Conduit Flow Process for MODFLOW-2005). This report provides sample problems that demonstrate a range of applications of GWM–VI and the directory structure and input information required to use the parallel-processing capability.
Hamodi, Ali S; Pratt, Kara G
2015-01-01
The Xenopus tadpole optic tectum is a multisensory processing center that receives direct visual input as well as nonvisual mechanosensory input. The tectal neurons that comprise the optic tectum are organized into layers. These neurons project their dendrites laterally into the neuropil where visual inputs target the distal region of the dendrite and nonvisual inputs target the proximal region of the same dendrite. The Xenopus tadpole tectum is a popular model to study the development of sensory circuits. However, whole cell patch-clamp electrophysiological studies of the tadpole tectum (using the whole brain or in vivo preparations) have focused solely on the deep-layer tectal neurons because only neurons of the deep layer are visible and accessible for whole cell electrophysiological recordings. As a result, whereas the development and plasticity of these deep-layer neurons has been well-studied, essentially nothing has been reported about the electrophysiology of neurons residing beyond this layer. Hence, there exists a large gap in our understanding about the functional development of the amphibian tectum as a whole. To remedy this, we developed a novel isolated brain preparation that allows visualizing and recording from all layers of the tectum. We refer to this preparation as the "horizontal brain slice preparation." Here, we describe the preparation method and illustrate how it can be used to characterize the electrophysiology of neurons across all of the layers of the tectum as well as the spatial pattern of synaptic input from the different sensory modalities. Copyright © 2015 the American Physiological Society.
Multiple-function multi-input/multi-output digital control and on-line analysis
NASA Technical Reports Server (NTRS)
Hoadley, Sherwood T.; Wieseman, Carol D.; Mcgraw, Sandra M.
1992-01-01
The design and capabilities of two digital controller systems for aeroelastic wind-tunnel models are described. The first allowed control of flutter while performing roll maneuvers with wing load control as well as coordinating the acquisition, storage, and transfer of data for on-line analysis. This system, which employs several digital signal multi-processor (DSP) boards programmed in high-level software languages, is housed in a SUN Workstation environment. A second DCS provides a measure of wind-tunnel safety by functioning as a trip system during testing in the case of high model dynamic response or in case the first DCS fails. The second DCS uses National Instruments LabVIEW Software and Hardware within a Macintosh environment.
Reference manual for the POISSON/SUPERFISH Group of Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
The POISSON/SUPERFISH Group codes were set up to solve two separate problems: the design of magnets and the design of rf cavities in a two-dimensional geometry. The first stage of either problem is to describe the layout of the magnet or cavity in a way that can be used as input to solve the generalized Poisson equation for magnets or the Helmholtz equations for cavities. The computer codes require that the problems be discretized by replacing the differentials (dx,dy) by finite differences ({delta}X,{delta}Y). Instead of defining the function everywhere in a plane, the function is defined only at a finitemore » number of points on a mesh in the plane.« less
ModelMuse - A Graphical User Interface for MODFLOW-2005 and PHAST
Winston, Richard B.
2009-01-01
ModelMuse is a graphical user interface (GUI) for the U.S. Geological Survey (USGS) models MODFLOW-2005 and PHAST. This software package provides a GUI for creating the flow and transport input file for PHAST and the input files for MODFLOW-2005. In ModelMuse, the spatial data for the model is independent of the grid, and the temporal data is independent of the stress periods. Being able to input these data independently allows the user to redefine the spatial and temporal discretization at will. This report describes the basic concepts required to work with ModelMuse. These basic concepts include the model grid, data sets, formulas, objects, the method used to assign values to data sets, and model features. The ModelMuse main window has a top, front, and side view of the model that can be used for editing the model, and a 3-D view of the model that can be used to display properties of the model. ModelMuse has tools to generate and edit the model grid. It also has a variety of interpolation methods and geographic functions that can be used to help define the spatial variability of the model. ModelMuse can be used to execute both MODFLOW-2005 and PHAST and can also display the results of MODFLOW-2005 models. An example of using ModelMuse with MODFLOW-2005 is included in this report. Several additional examples are described in the help system for ModelMuse, which can be accessed from the Help menu.
Using model order tests to determine sensory inputs in a motion study
NASA Technical Reports Server (NTRS)
Repperger, D. W.; Junker, A. M.
1977-01-01
In the study of motion effects on tracking performance, a problem of interest is the determination of what sensory inputs a human uses in controlling his tracking task. In the approach presented here a simple canonical model (FID or a proportional, integral, derivative structure) is used to model the human's input-output time series. A study of significant changes in reduction of the output error loss functional is conducted as different permutations of parameters are considered. Since this canonical model includes parameters which are related to inputs to the human (such as the error signal, its derivatives and integration), the study of model order is equivalent to the study of which sensory inputs are being used by the tracker. The parameters are obtained which have the greatest effect on reducing the loss function significantly. In this manner the identification procedure converts the problem of testing for model order into the problem of determining sensory inputs.
Tutu, Hiroki
2011-06-01
Stochastic resonance (SR) enhanced by time-delayed feedback control is studied. The system in the absence of control is described by a Langevin equation for a bistable system, and possesses a usual SR response. The control with the feedback loop, the delay time of which equals to one-half of the period (2π/Ω) of the input signal, gives rise to a noise-induced oscillatory switching cycle between two states in the output time series, while its average frequency is just smaller than Ω in a small noise regime. As the noise intensity D approaches an appropriate level, the noise constructively works to adapt the frequency of the switching cycle to Ω, and this changes the dynamics into a state wherein the phase of the output signal is entrained to that of the input signal from its phase slipped state. The behavior is characterized by power loss of the external signal or response function. This paper deals with the response function based on a dichotomic model. A method of delay-coordinate series expansion, which reduces a non-Markovian transition probability flux to a series of memory fluxes on a discrete delay-coordinate system, is proposed. Its primitive implementation suggests that the method can be a potential tool for a systematic analysis of SR phenomenon with delayed feedback loop. We show that a D-dependent behavior of poles of a finite Laplace transform of the response function qualitatively characterizes the structure of the power loss, and we also show analytical results for the correlation function and the power spectral density.
A non-linear dimension reduction methodology for generating data-driven stochastic input models
NASA Astrophysics Data System (ADS)
Ganapathysubramanian, Baskar; Zabaras, Nicholas
2008-06-01
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low-dimensional input stochastic models to represent thermal diffusivity in two-phase microstructures. This model is used in analyzing the effect of topological variations of two-phase microstructures on the evolution of temperature in heat conduction processes.
Uncertainty importance analysis using parametric moment ratio functions.
Wei, Pengfei; Lu, Zhenzhou; Song, Jingwen
2014-02-01
This article presents a new importance analysis framework, called parametric moment ratio function, for measuring the reduction of model output uncertainty when the distribution parameters of inputs are changed, and the emphasis is put on the mean and variance ratio functions with respect to the variances of model inputs. The proposed concepts efficiently guide the analyst to achieve a targeted reduction on the model output mean and variance by operating on the variances of model inputs. The unbiased and progressive unbiased Monte Carlo estimators are also derived for the parametric mean and variance ratio functions, respectively. Only a set of samples is needed for implementing the proposed importance analysis by the proposed estimators, thus the computational cost is free of input dimensionality. An analytical test example with highly nonlinear behavior is introduced for illustrating the engineering significance of the proposed importance analysis technique and verifying the efficiency and convergence of the derived Monte Carlo estimators. Finally, the moment ratio function is applied to a planar 10-bar structure for achieving a targeted 50% reduction of the model output variance. © 2013 Society for Risk Analysis.
Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation
Grace, Kevin P.; Horner, Richard L.
2015-01-01
Rapid eye movement (REM) sleep – characterized by vivid dreaming, motor paralysis, and heightened neural activity – is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the “pontine REM sleep generator” by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail. PMID:26388832
Observations of the directional distribution of the wind energy input function over swell waves
NASA Astrophysics Data System (ADS)
Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.
2016-02-01
Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.
High Temperature Test Facility Preliminary RELAP5-3D Input Model Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayless, Paul David
A RELAP5-3D input model is being developed for the High Temperature Test Facility at Oregon State University. The current model is described in detail. Further refinements will be made to the model as final as-built drawings are released and when system characterization data are available for benchmarking the input model.
NASA Technical Reports Server (NTRS)
1982-01-01
Personal data input, decompression data, nitrogen washout, nitrogen data, and update computer programs are described. Input data and formats; program output, reports, and data; program flowcharts; program listings; sample runs with input and output pages; hardware operation; and engineering data are provided.
Yong-Feng Gao; Xi-Ming Sun; Changyun Wen; Wei Wang
2017-07-01
This paper is concerned with the problem of adaptive tracking control for a class of uncertain nonlinear systems with nonsymmetric input saturation and immeasurable states. The radial basis function of neural network (NN) is employed to approximate unknown functions, and an NN state observer is designed to estimate the immeasurable states. To analyze the effect of input saturation, an auxiliary system is employed. By the aid of adaptive backstepping technique, an adaptive tracking control approach is developed. Under the proposed adaptive tracking controller, the boundedness of all the signals in the closed-loop system is achieved. Moreover, distinct from most of the existing references, the tracking error can be bounded by an explicit function of design parameters and saturation input error. Finally, an example is given to show the effectiveness of the proposed method.
How the type of input function affects the dynamic response of conducting polymer actuators
NASA Astrophysics Data System (ADS)
Xiang, Xingcan; Alici, Gursel; Mutlu, Rahim; Li, Weihua
2014-10-01
There has been a growing interest in smart actuators typified by conducting polymer actuators, especially in their (i) fabrication, modeling and control with minimum external data and (ii) applications in bio-inspired devices, robotics and mechatronics. Their control is a challenging research problem due to the complex and nonlinear properties of these actuators, which cannot be predicted accurately. Based on an input-shaping technique, we propose a new method to improve the conducting polymer actuators’ command-following ability, while minimizing their electric power consumption. We applied four input functions with smooth characteristics to a trilayer conducting polymer actuator to experimentally evaluate its command-following ability under an open-loop control strategy and a simulated feedback control strategy, and, more importantly, to quantify how the type of input function affects the dynamic response of this class of actuators. We have found that the four smooth inputs consume less electrical power than sharp inputs such as a step input with discontinuous higher-order derivatives. We also obtained an improved transient response performance from the smooth inputs, especially under the simulated feedback control strategy, which we have proposed previously [X Xiang, R Mutlu, G Alici, and W Li, 2014 “Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization’, Journal of Smart Materials and Structure, 23]. The idea of using a smooth input command, which results in lower power consumption and better control performance, can be extended to other smart actuators. Consuming less electrical energy or power will have a direct effect on enhancing the operational life of these actuators.
Automated manual transmission clutch controller
Lawrie, Robert E.; Reed, Jr., Richard G.; Rausen, David J.
1999-11-30
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission shift sequence controller
Lawrie, Robert E.; Reed, Richard G.; Rausen, David J.
2000-02-01
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both, an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission mode selection controller
Lawrie, Robert E.
1999-11-09
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission controller
Lawrie, Robert E.; Reed, Jr., Richard G.; Bernier, David R.
1999-12-28
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Production Economics of Private Forestry: A Comparison of Industrial and Nonindustrial Forest Owners
David H. Newman; David N. Wear
1993-01-01
This paper compares the producrion behavior of industrial and nonindustrial private forestland owners in the southeastern U.S. using a restricted profit function. Profits are modeled as a function of two outputs, sawtimber and pulpwood. one variable input, regeneration effort. and two quasi-fixed inputs, land and growing stock. Although an identical profit function is...
NASA Astrophysics Data System (ADS)
Shiju, S.; Sumitra, S.
2017-12-01
In this paper, the multiple kernel learning (MKL) is formulated as a supervised classification problem. We dealt with binary classification data and hence the data modelling problem involves the computation of two decision boundaries of which one related with that of kernel learning and the other with that of input data. In our approach, they are found with the aid of a single cost function by constructing a global reproducing kernel Hilbert space (RKHS) as the direct sum of the RKHSs corresponding to the decision boundaries of kernel learning and input data and searching that function from the global RKHS, which can be represented as the direct sum of the decision boundaries under consideration. In our experimental analysis, the proposed model had shown superior performance in comparison with that of existing two stage function approximation formulation of MKL, where the decision functions of kernel learning and input data are found separately using two different cost functions. This is due to the fact that single stage representation helps the knowledge transfer between the computation procedures for finding the decision boundaries of kernel learning and input data, which inturn boosts the generalisation capacity of the model.
Probability Density Functions of the Solar Wind Driver of the Magnetopshere-Ionosphere System
NASA Astrophysics Data System (ADS)
Horton, W.; Mays, M. L.
2007-12-01
The solar-wind driven magnetosphere-ionosphere system is a complex dynamical system in that it exhibits (1) sensitivity to initial conditions; (2) multiple space-time scales; (3) bifurcation sequences with hysteresis in transitions between attractors; and (4) noncompositionality. This system is modeled by WINDMI--a network of eight coupled ordinary differential equations which describe the transfer of power from the solar wind through the geomagnetic tail, the ionosphere, and ring current in the system. The model captures both storm activity from the plasma ring current energy, which yields a model Dst index result, and substorm activity from the region 1 field aligned current, yielding model AL and AU results. The input to the model is the solar wind driving voltage calculated from ACE solar wind parameter data, which has a regular coherent component and broad-band turbulent component. Cross correlation functions of the input-output data time series are computed and the conditional probability density function for the occurrence of substorms given earlier IMF conditions are derived. The model shows a high probability of substorms for solar activity that contains a coherent, rotating IMF with magnetic cloud features. For a theoretical model of the imprint of solar convection on the solar wind we have used the Lorenz attractor (Horton et al., PoP, 1999, doi:10.10631.873683) as a solar wind driver. The work is supported by NSF grant ATM-0638480.
Liu, Hesen; Zhu, Lin; Pan, Zhuohong; ...
2015-09-14
One of the main drawbacks of the existing oscillation damping controllers that are designed based on offline dynamic models is adaptivity to the power system operating condition. With the increasing availability of wide-area measurements and the rapid development of system identification techniques, it is possible to identify a measurement-based transfer function model online that can be used to tune the oscillation damping controller. Such a model could capture all dominant oscillation modes for adaptive and coordinated oscillation damping control. our paper describes a comprehensive approach to identify a low-order transfer function model of a power system using a multi-input multi-outputmore » (MIMO) autoregressive moving average exogenous (ARMAX) model. This methodology consists of five steps: 1) input selection; 2) output selection; 3) identification trigger; 4) model estimation; and 5) model validation. The proposed method is validated by using ambient data and ring-down data in the 16-machine 68-bus Northeast Power Coordinating Council system. Our results demonstrate that the measurement-based model using MIMO ARMAX can capture all the dominant oscillation modes. Compared with the MIMO subspace state space model, the MIMO ARMAX model has equivalent accuracy but lower order and improved computational efficiency. The proposed model can be applied for adaptive and coordinated oscillation damping control.« less
Human (13)N-ammonia PET studies: the importance of measuring (13)N-ammonia metabolites in blood.
Keiding, Susanne; Sørensen, Michael; Munk, Ole Lajord; Bender, Dirk
2010-03-01
Dynamic (13)N-ammonia PET is used to assess ammonia metabolism in brain, liver and muscle based on kinetic modeling of metabolic pathways, using arterial blood (13)N-ammonia as input function. Rosenspire et al. (1990) introduced a solid phase extraction procedure for fractionation of (13)N-content in blood into (13)N-ammonia, (13)N-urea, (13)N-glutamine and (13)N-glutamate. Due to a radioactive half-life for (13)N of 10 min, the procedure is not suitable for blood samples taken beyond 5-7 min after tracer injection. By modifying Rosenspire's method, we established a method enabling analysis of up to 10 blood samples in the course of 30 min. The modified procedure was validated by HPLC and by 30-min reproducibility studies in humans examined by duplicate (13)N-ammonia injections with a 60-min interval. Blood data from a (13)N-ammonia brain PET study (from Keiding et al. 2006) showed: (1) time courses of (13)N-ammonia fractions could be described adequately by double exponential functions; (2) metabolic conversion of (13)N-ammonia to (13)N-metabolites were in the order: healthy subjects > cirrhotic patients without HE > cirrhotic patients with HE; (3) kinetics of initial tracer distribution in tissue can be assessed by using total (13)N-concentration in blood as input function, whereas assessment of metabolic processes requires (13)N-ammonia measurements.
Contextual modulation and stimulus selectivity in extrastriate cortex.
Krause, Matthew R; Pack, Christopher C
2014-11-01
Contextual modulation is observed throughout the visual system, using techniques ranging from single-neuron recordings to behavioral experiments. Its role in generating feature selectivity within the retina and primary visual cortex has been extensively described in the literature. Here, we describe how similar computations can also elaborate feature selectivity in the extrastriate areas of both the dorsal and ventral streams of the primate visual system. We discuss recent work that makes use of normalization models to test specific roles for contextual modulation in visual cortex function. We suggest that contextual modulation renders neuronal populations more selective for naturalistic stimuli. Specifically, we discuss contextual modulation's role in processing optic flow in areas MT and MST and for representing naturally occurring curvature and contours in areas V4 and IT. We also describe how the circuitry that supports contextual modulation is robust to variations in overall input levels. Finally, we describe how this theory relates to other hypothesized roles for contextual modulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Effects of a Change in the Variability of Irrigation Water
NASA Astrophysics Data System (ADS)
Lyon, Kenneth S.
1983-10-01
This paper examines the short-run effects upon several variables of an increase in the variability of an input. The measure of an increase in the variability is the "mean preserving spread" suggested by Rothschild and Stiglitz (1970). The variables examined are real income (utility), expected profits, expected output, the quantity used of the controllable input, and the shadow price of the stochastic input. Four striking features of the results follow: (1) The concepts that have been useful in summarizing deterministic comparative static results are nearly absent when an input is stochastic. (2) Most of the signs of the partial derivatives depend upon more than concavity of the utility and production functions. (3) If the utility function is not "too" risk averse, then the risk-neutral results hold for the risk-aversion case. (4) If the production function is Cobb-Douglas, then definite results are achieved if the utility function is linear or if the "degree of risk-aversion" is "small."
Parsimonious Hydrologic and Nitrate Response Models For Silver Springs, Florida
NASA Astrophysics Data System (ADS)
Klammler, Harald; Yaquian-Luna, Jose Antonio; Jawitz, James W.; Annable, Michael D.; Hatfield, Kirk
2014-05-01
Silver Springs with an approximate discharge of 25 m3/sec is one of Florida's first magnitude springs and among the largest springs worldwide. Its 2500-km2 springshed overlies the mostly unconfined Upper Floridan Aquifer. The aquifer is approximately 100 m thick and predominantly consists of porous, fractured and cavernous limestone, which leads to excellent surface drainage properties (no major stream network other than Silver Springs run) and complex groundwater flow patterns through both rock matrix and fast conduits. Over the past few decades, discharge from Silver Springs has been observed to slowly but continuously decline, while nitrate concentrations in the spring water have enormously increased from a background level of 0.05 mg/l to over 1 mg/l. In combination with concurrent increases in algae growth and turbidity, for example, and despite an otherwise relatively stable water quality, this has given rise to concerns about the ecological equilibrium in and near the spring run as well as possible impacts on tourism. The purpose of the present work is to elaborate parsimonious lumped parameter models that may be used by resource managers for evaluating the springshed's hydrologic and nitrate transport responses. Instead of attempting to explicitly consider the complex hydrogeologic features of the aquifer in a typically numerical and / or stochastic approach, we use a transfer function approach wherein input signals (i.e., time series of groundwater recharge and nitrate loading) are transformed into output signals (i.e., time series of spring discharge and spring nitrate concentrations) by some linear and time-invariant law. The dynamic response types and parameters are inferred from comparing input and output time series in frequency domain (e.g., after Fourier transformation). Results are converted into impulse (or step) response functions, which describe at what time and to what magnitude a unitary change in input manifests at the output. For the hydrologic response model, frequency spectra of groundwater recharge and spring discharge suggest an exponential response model, which may explain a significant portion of spring discharge variability with only two fitting parameters (mean response time 2.4 years). For the transport model, direct use of nitrate data is confounded by inconsistent data and a strong trend. Instead, chloride concentrations in rainfall and at the spring are investigated as a surrogate candidate. Preliminary results indicate that the transport response function of the springshed as a whole may be of the gamma type, which possesses both a larger initial peak as well as a longer tail than the exponential response function. This is consistent with the large range of travel times to be expected between input directly into fast conduits connected to the spring (e.g., though sinkholes) and input or back-diffusion from the rock matrix. The result implies that reductions in nitrate input, especially at remote and hydraulically not well connected locations, will only manifest in a rather delayed and smoothed out form in concentration observed at the spring.
Lu, Guo-Wei; Qin, Jun; Wang, Hongxiang; Ji, XuYuefeng; Sharif, Gazi Mohammad; Yamaguchi, Shigeru
2016-02-08
Optical logic gate, especially exclusive-or (XOR) gate, plays important role in accomplishing photonic computing and various network functionalities in future optical networks. On the other hand, optical multicast is another indispensable functionality to efficiently deliver information in optical networks. In this paper, for the first time, we propose and experimentally demonstrate a flexible optical three-input XOR gate scheme for multiple input phase-modulated signals with a 1-to-2 multicast functionality for each XOR operation using four-wave mixing (FWM) effect in single piece of highly-nonlinear fiber (HNLF). Through FWM in HNLF, all of the possible XOR operations among input signals could be simultaneously realized by sharing a single piece of HNLF. By selecting the obtained XOR components using a followed wavelength selective component, the number of XOR gates and the participant light in XOR operations could be flexibly configured. The re-configurability of the proposed XOR gate and the function integration of the optical logic gate and multicast in single device offer the flexibility in network design and improve the network efficiency. We experimentally demonstrate flexible 3-input XOR gate for four 10-Gbaud binary phase-shift keying signals with a multicast scale of 2. Error-free operations for the obtained XOR results are achieved. Potential application of the integrated XOR and multicast function in network coding is also discussed.
Peak-Seeking Control Using Gradient and Hessian Estimates
NASA Technical Reports Server (NTRS)
Ryan, John J.; Speyer, Jason L.
2010-01-01
A peak-seeking control method is presented which utilizes a linear time-varying Kalman filter. Performance function coordinate and magnitude measurements are used by the Kalman filter to estimate the gradient and Hessian of the performance function. The gradient and Hessian are used to command the system toward a local extremum. The method is naturally applied to multiple-input multiple-output systems. Applications of this technique to a single-input single-output example and a two-input one-output example are presented.
ENHANCED RECOVERY METHODS FOR 85KR AGE-DATING GROUNDWATER: ROYAL WATERSHED, MAINE
Potential widespread use of 85Kr, having a constant input function in the northern hemisphere, for groundwater age-dating would advance watershed investigations. The current input function of tritium is not sufficient to estimate young modern recharge waters. While tri...
ULTRA-STABILIZED D. C. AMPLIFIER
Hartwig, E.C.; Kuenning, R.W.; Acker, R.C.
1959-02-17
An improved circuit is described for stabilizing the drift and minimizing the noise and hum level of d-c amplifiers so that the output voltage will be zero when the input is zero. In its detailed aspects, the disclosed circuit incorporates a d-c amplifier having a signal input, a second input, and an output circuit coupled back to the first input of the amplifier through inverse feedback means. An electronically driven chopper having a pair of fixed contacts and a moveable contact alternately connects the two inputs of a difference amplifier to the signal input. The A. E. error signal produced in the difference amplifier is amplified, rectified, and applied to the second input of the amplifier as the d-c stabilizing voltage.
Emotional moments across time: a possible neural basis for time perception in the anterior insula
Craig, A.D. (Bud)
2009-01-01
A model of awareness based on interoceptive salience is described, which has an endogenous time base that might provide a basis for the human capacity to perceive and estimate time intervals in the range of seconds to subseconds. The model posits that the neural substrate for awareness across time is located in the anterior insular cortex, which fits with recent functional imaging evidence relevant to awareness and time perception. The time base in this model is adaptive and emotional, and thus it offers an explanation for some aspects of the subjective nature of time perception. This model does not describe the mechanism of the time base, but it suggests a possible relationship with interoceptive afferent activity, such as heartbeat-related inputs. PMID:19487195
Using neural networks and Dyna algorithm for integrated planning, reacting and learning in systems
NASA Technical Reports Server (NTRS)
Lima, Pedro; Beard, Randal
1992-01-01
The traditional AI answer to the decision making problem for a robot is planning. However, planning is usually CPU-time consuming, depending on the availability and accuracy of a world model. The Dyna system generally described in earlier work, uses trial and error to learn a world model which is simultaneously used to plan reactions resulting in optimal action sequences. It is an attempt to integrate planning, reactive, and learning systems. The architecture of Dyna is presented. The different blocks are described. There are three main components of the system. The first is the world model used by the robot for internal world representation. The input of the world model is the current state and the action taken in the current state. The output is the corresponding reward and resulting state. The second module in the system is the policy. The policy observes the current state and outputs the action to be executed by the robot. At the beginning of program execution, the policy is stochastic and through learning progressively becomes deterministic. The policy decides upon an action according to the output of an evaluation function, which is the third module of the system. The evaluation function takes the following as input: the current state of the system, the action taken in that state, the resulting state, and a reward generated by the world which is proportional to the current distance from the goal state. Originally, the work proposed was as follows: (1) to implement a simple 2-D world where a 'robot' is navigating around obstacles, to learn the path to a goal, by using lookup tables; (2) to substitute the world model and Q estimate function Q by neural networks; and (3) to apply the algorithm to a more complex world where the use of a neural network would be fully justified. In this paper, the system design and achieved results will be described. First we implement the world model with a neural network and leave Q implemented as a look up table. Next, we use a lookup table for the world model and implement the Q function with a neural net. Time limitations prevented the combination of these two approaches. The final section discusses the results and gives clues for future work.
Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Hiroyuki; Yamamoto, Yuka; Hatakeyama, Tetsuhiro; Nishiyama, Yoshihiro
2018-05-01
CBF, OEF, and CMRO 2 images can be quantitatively assessed using PET. Their image calculation requires arterial input functions, which require invasive procedure. The aim of the present study was to develop a non-invasive approach with image-derived input functions (IDIFs) using an image from an ultra-rapid O 2 and C 15 O 2 protocol. Our technique consists of using a formula to express the input using tissue curve with rate constants. For multiple tissue curves, the rate constants were estimated so as to minimize the differences of the inputs using the multiple tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects ( n = 24). The estimated IDIFs were well-reproduced against the measured ones. The difference in the calculated CBF, OEF, and CMRO 2 values by the two methods was small (<10%) against the invasive method, and the values showed tight correlations ( r = 0.97). The simulation showed errors associated with the assumed parameters were less than ∼10%. Our results demonstrate that IDIFs can be reconstructed from tissue curves, suggesting the possibility of using a non-invasive technique to assess CBF, OEF, and CMRO 2 .
Impact of regulation on English and Welsh water-only companies: an input-distance function approach.
Molinos-Senante, María; Porcher, Simon; Maziotis, Alexandros
2017-07-01
The assessment of productivity change over time and its drivers is of great significance for water companies and regulators when setting urban water tariffs. This issue is even more relevant in privatized water industries, such as those in England and Wales, where the price-cap regulation is adopted. In this paper, an input-distance function is used to estimate productivity change and its determinants for the English and Welsh water-only companies (WoCs) over the period of 1993-2009. The impacts of several exogenous variables on companies' efficiencies are also explored. From a policy perspective, this study describes how regulators can use this type of modeling and results to calculate illustrative X factors for the WoCs. The results indicate that the 1994 and 1999 price reviews stimulated technical change, and there were small efficiency gains. However, the 2004 price review did not accelerate efficiency change or improve technical change. The results also indicated that during the whole period of study, the excessive scale of the WoCs contributed negatively to productivity growth. On average, WoCs reported relatively high efficiency levels, which suggests that they had already been investing in technologies that reduce long-term input requirements with respect to exogenous and service-quality variables. Finally, an average WoC needs to improve its productivity toward that of the best company by 1.58%. The methodology and results of this study are of great interest to both regulators and water-company managers for evaluating the effectiveness of regulation and making informed decisions.
Principal Dynamic Mode Analysis of the Hodgkin–Huxley Equations
Eikenberry, Steffen E.; Marmarelis, Vasilis Z.
2015-01-01
We develop an autoregressive model framework based on the concept of Principal Dynamic Modes (PDMs) for the process of action potential (AP) generation in the excitable neuronal membrane described by the Hodgkin–Huxley (H–H) equations. The model's exogenous input is injected current, and whenever the membrane potential output exceeds a specified threshold, it is fed back as a second input. The PDMs are estimated from the previously developed Nonlinear Autoregressive Volterra (NARV) model, and represent an efficient functional basis for Volterra kernel expansion. The PDM-based model admits a modular representation, consisting of the forward and feedback PDM bases as linear filterbanks for the exogenous and autoregressive inputs, respectively, whose outputs are then fed to a static nonlinearity composed of polynomials operating on the PDM outputs and cross-terms of pair-products of PDM outputs. A two-step procedure for model reduction is performed: first, influential subsets of the forward and feedback PDM bases are identified and selected as the reduced PDM bases. Second, the terms of the static nonlinearity are pruned. The first step reduces model complexity from a total of 65 coefficients to 27, while the second further reduces the model coefficients to only eight. It is demonstrated that the performance cost of model reduction in terms of out-of-sample prediction accuracy is minimal. Unlike the full model, the eight coefficient pruned model can be easily visualized to reveal the essential system components, and thus the data-derived PDM model can yield insight into the underlying system structure and function. PMID:25630480
40 CFR 75.82 - Monitoring of Hg mass emissions and heat input at common and multiple stacks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... heat input at common and multiple stacks. 75.82 Section 75.82 Protection of Environment ENVIRONMENTAL... Provisions § 75.82 Monitoring of Hg mass emissions and heat input at common and multiple stacks. (a) Unit... systems and perform the Hg emission testing described under § 75.81(b). If reporting of the unit heat...
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G.
2003-01-01
Improvements in the efficiency and size of DC-DC converters have resulted from advances in components, primarily semiconductors, and improved topologies. One topology, which has shown very high potential in limited applications, is the Series Connected Boost Unit (SCBU), wherein a small DC-DC converter output is connected in series with the input bus to provide an output voltage equal to or greater than the input voltage. Since the DC-DC converter switches only a fraction of the power throughput, the overall system efficiency is very high. But this technique is limited to applications where the output is always greater than the input. The Series Connected Buck Boost Regulator (SCBBR) concept extends partial power processing technique used in the SCBU to operation when the desired output voltage is higher or lower than the input voltage, and the implementation described can even operate as a conventional buck converter to operate at very low output to input voltage ratios. This paper describes the operation and performance of an SCBBR configured as a bus voltage regulator providing 50 percent voltage regulation range, bus switching, and overload limiting, operating above 98 percent efficiency. The technique does not provide input-output isolation.
NASA Astrophysics Data System (ADS)
Peckham, S. D.
2013-12-01
Model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System) and ESMF (Earth System Modeling Framework) have developed mechanisms that allow heterogeneous sets of process models to be assembled in a plug-and-play manner to create composite "system models". These mechanisms facilitate code reuse, but must simultaneously satisfy many different design criteria. They must be able to mediate or compensate for differences between the process models, such as their different programming languages, computational grids, time-stepping schemes, variable names and variable units. However, they must achieve this interoperability in a way that: (1) is noninvasive, requiring only relatively small and isolated changes to the original source code, (2) does not significantly reduce performance, (3) is not time-consuming or confusing for a model developer to implement, (4) can very easily be updated to accommodate new versions of a given process model and (5) does not shift the burden of providing model interoperability to the model developers, e.g. by requiring them to provide their output in specific forms that meet the input requirements of other models. In tackling these design challenges, model framework developers have learned that the best solution is to provide each model with a simple, standardized interface, i.e. a set of standardized functions that make the model: (1) fully-controllable by a caller (e.g. a model framework) and (2) self-describing. Model control functions are separate functions that allow a caller to initialize the model, advance the model's state variables in time and finalize the model. Model description functions allow a caller to retrieve detailed information on the model's input and output variables, its computational grid and its timestepping scheme. If the caller is a modeling framework, it can compare the answers to these queries with similar answers from other process models in a collection and then automatically call framework service components as necessary to mediate the differences between the coupled models. This talk will first review two key products of the CSDMS project, namely a standardized model interface called the Basic Model Interface (BMI) and the CSDMS Standard Names. The standard names are used in conjunction with BMI to provide a semantic matching mechanism that allows output variables from one process model to be reliably used as input variables to other process models in a collection. They include not just a standardized naming scheme for model variables, but also a standardized set of terms for describing the attributes and assumptions of a given model. To illustrate the power of standardized model interfaces and metadata, a smart, light-weight modeling framework written in Python will be introduced that can automatically (without user intervention) couple a set of BMI-enabled hydrologic process components together to create a spatial hydrologic model. The same mechanisms could also be used to provide seamless integration (import/export) of data and models.
ERIC Educational Resources Information Center
Webster, Raymond E.
1980-01-01
A significant two-way input modality by output modality interaction suggested that short term memory capacity among the groups differed as a function of the modality used to present the items in combination with the output response required. (Author/CL)
Functional Differences between Statistical Learning with and without Explicit Training
ERIC Educational Resources Information Center
Batterink, Laura J.; Reber, Paul J.; Paller, Ken A.
2015-01-01
Humans are capable of rapidly extracting regularities from environmental input, a process known as statistical learning. This type of learning typically occurs automatically, through passive exposure to environmental input. The presumed function of statistical learning is to optimize processing, allowing the brain to more accurately predict and…
Bruns, Eric J.; Hyde, Kelly L.; Sather, April; Hook, Alyssa; Lyon, Aaron R.
2015-01-01
Health information technology (HIT) and care coordination for individuals with complex needs are high priorities for quality improvement in health care. However, there is little empirical guidance about how best to design electronic health record systems and related technologies to facilitate implementation of care coordination models in behavioral health, or how best to apply user input to the design and testing process. In this paper, we describe an iterative development process that incorporated user/stakeholder perspectives at multiple points and resulted in an electronic behavioral health information system (EBHIS) specific to the wraparound care coordination model for youth with serious emotional and behavioral disorders. First, we review foundational HIT research on how EBHIS can enhance efficiency and outcomes of wraparound that was used to inform development. After describing the rationale for and functions of a prototype EBHIS for wraparound, we describe methods and results for a series of six small studies that informed system development across four phases of effort – predevelopment, development, initial user testing, and commercialization – and discuss how these results informed system design and refinement. Finally, we present next steps, challenges to dissemination, and guidance for others aiming to develop specialized behavioral health HIT. The research team's experiences reinforce the opportunity presented by EBHIS to improve care coordination for populations with complex needs, while also pointing to a litany of barriers and challenges to be overcome to implement such technologies. PMID:26060099
Using transfer functions to quantify El Niño Southern Oscillation dynamics in data and models.
MacMartin, Douglas G; Tziperman, Eli
2014-09-08
Transfer function tools commonly used in engineering control analysis can be used to better understand the dynamics of El Niño Southern Oscillation (ENSO), compare data with models and identify systematic model errors. The transfer function describes the frequency-dependent input-output relationship between any pair of causally related variables, and can be estimated from time series. This can be used first to assess whether the underlying relationship is or is not frequency dependent, and if so, to diagnose the underlying differential equations that relate the variables, and hence describe the dynamics of individual subsystem processes relevant to ENSO. Estimating process parameters allows the identification of compensating model errors that may lead to a seemingly realistic simulation in spite of incorrect model physics. This tool is applied here to the TAO array ocean data, the GFDL-CM2.1 and CCSM4 general circulation models, and to the Cane-Zebiak ENSO model. The delayed oscillator description is used to motivate a few relevant processes involved in the dynamics, although any other ENSO mechanism could be used instead. We identify several differences in the processes between the models and data that may be useful for model improvement. The transfer function methodology is also useful in understanding the dynamics and evaluating models of other climate processes.
Bok, Jan; Schauer, Petr
2014-01-01
In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. © 2013 Wiley Periodicals, Inc.
Smart mobility solution with multiple input Output interface.
Sethi, Aartika; Deb, Sujay; Ranjan, Prabhat; Sardar, Arghya
2017-07-01
Smart wheelchairs are commonly used to provide solution for mobility impairment. However their usage is limited primarily due to high cost owing from sensors required for giving input, lack of adaptability for different categories of input and limited functionality. In this paper we propose a smart mobility solution using smartphone with inbuilt sensors (accelerometer, camera and speaker) as an input interface. An Emotiv EPOC+ is also used for motor imagery based input control synced with facial expressions in cases of extreme disability. Apart from traction, additional functions like home security and automation are provided using Internet of Things (IoT) and web interfaces. Although preliminary, our results suggest that this system can be used as an integrated and efficient solution for people suffering from mobility impairment. The results also indicate a decent accuracy is obtained for the overall system.
CHIRAL--A Computer Aided Application of the Cahn-Ingold-Prelog Rules.
ERIC Educational Resources Information Center
Meyer, Edgar F., Jr.
1978-01-01
A computer program is described for identification of chiral centers in molecules. Essential input to the program includes both atomic and bonding information. The program does not require computer graphic input-output. (BB)
Life and dynamic capacity modeling for aircraft transmissions
NASA Technical Reports Server (NTRS)
Savage, Michael
1991-01-01
A computer program to simulate the dynamic capacity and life of parallel shaft aircraft transmissions is presented. Five basic configurations can be analyzed: single mesh, compound, parallel, reverted, and single plane reductions. In execution, the program prompts the user for the data file prefix name, takes input from a ASCII file, and writes its output to a second ASCII file with the same prefix name. The input data file includes the transmission configuration, the input shaft torque and speed, and descriptions of the transmission geometry and the component gears and bearings. The program output file describes the transmission, its components, their capabilities, locations, and loads. It also lists the dynamic capability, ninety percent reliability, and mean life of each component and the transmission as a system. Here, the program, its input and output files, and the theory behind the operation of the program are described.
K2: Extending Kepler's Power to the Ecliptic-Ecliptic Plane Input Catalog
NASA Technical Reports Server (NTRS)
Huber, Daniel; Bryson, Stephen T.
2017-01-01
This document describes the Ecliptic Plane Input Catalog (EPIC) for the K2 mission (Howell et al. 2014). The primary purpose of this catalog is to provide positions and Kepler magnitudes for target management and aperture photometry. The Ecliptic Plane Input Catalog is hosted at MAST (http://archive.stsci.edu/k2/epic/search.php) and should be used for selecting targets when ever possible. The EPIC is updated for future K2 campaigns as their fields of view are finalized and the associated target management is completed. Table 0 summarizes the EPIC updates to date and the ID range for each. The main algorithms used to construct the EPIC are described in Sections 2 through 4. The details for individual campaigns are described in the subsequent sections, with the references listed in the last section. Further details can be found in Huber et al. (2016).
Weber, A J; Stanford, L R
1994-05-15
It has long been known that a number of functionally different types of ganglion cells exist in the cat retina, and that each responds differently to visual stimulation. To determine whether the characteristic response properties of different retinal ganglion cell types might reflect differences in the number and distribution of their bipolar and amacrine cell inputs, we compared the percentages and distributions of the synaptic inputs from bipolar and amacrine cells to the entire dendritic arbors of physiologically characterized retinal X- and Y-cells. Sixty-two percent of the synaptic input to the Y-cell was from amacrine cell terminals, while the X-cells received approximately equal amounts of input from amacrine and bipolar cells. We found no significant difference in the distributions of bipolar or amacrine cell inputs to X- and Y-cells, or ON-center and OFF-center cells, either as a function of dendritic branch order or distance from the origin of the dendritic arbor. While, on the basis of these data, we cannot exclude the possibility that the difference in the proportion of bipolar and amacrine cell input contributes to the functional differences between X- and Y-cells, the magnitude of this difference, and the similarity in the distributions of the input from the two afferent cell types, suggest that mechanisms other than a simple predominance of input from amacrine or bipolar cells underlie the differences in their response properties. More likely, perhaps, is that the specific response features of X- and Y-cells originate in differences in the visual responses of the bipolar and amacrine cells that provide their input, or in the complex synaptic arrangements found among amacrine and bipolar cell terminals and the dendrites of specific types of retinal ganglion cells.
NASA Astrophysics Data System (ADS)
Venkrbec, Vaclav; Bittnerova, Lucie
2017-12-01
Building information modeling (BIM) can support effectiveness during many activities in the AEC industry. even when processing a construction-technological project. This paper presents an approach how to use building information model in higher education, especially during the work on diploma thesis and it supervision. Diploma thesis is project based work, which aims to compile a construction-technological project for a selected construction. The paper describes the use of input data, working with them and compares this process with standard input data such as printed design documentation. The effectiveness of using the building information model as a input data for construction-technological project is described in the conclusion.
Healthy Aging After Age 65: A Life-Span Health Production Function Approach.
Ferdows, Nasim B; Jensen, Gail A; Tarraf, Wassim
2018-06-01
This article examines the determinants of healthy aging using Grossman's framework of a health production function. Healthy aging, sometimes described as successful aging, is produced using a variety of inputs, determined in early life, young adulthood, midlife, and later life. A healthy aging production function is estimated using nationally representative data from the 2010 and 2012 Health and Retirement Study on 7,355 noninstitutionalized seniors. Using a simultaneous equation mediation model, we quantify how childhood factors contribute to healthy aging, both directly and indirectly through their effects on mediating adult outcomes. We find that favorable childhood conditions significantly improve healthy aging scores, both directly and indirectly, mediated through education, income, and wealth. We also find that good health habits have positive effects on healthy aging that are larger in magnitude than the effects of childhood factors. Our findings suggest that exercising, maintaining proper weight, and not smoking are likely to translate into healthier aging.
Burke, Robert E.; Malone, Daniel; Ridgeway, Kyle J.; McManus, Beth M.; Stevens-Lapsley, Jennifer E.
2016-01-01
Hospital readmissions in older adult populations are an emerging quality indicator for acute care hospitals. Recent evidence has linked functional decline during and after hospitalization with an elevated risk of hospital readmission. However, models of care that have been developed to reduce hospital readmission rates do not adequately address functional deficits. Physical therapists, as experts in optimizing physical function, have a strong opportunity to contribute meaningfully to care transition models and demonstrate the value of physical therapy interventions in reducing readmissions. Thus, the purposes of this perspective article are: (1) to describe the need for physical therapist input during care transitions for older adults and (2) to outline strategies for expanding physical therapy participation in care transitions for older adults, with an overall goal of reducing avoidable 30-day hospital readmissions. PMID:26939601
Falvey, Jason R; Burke, Robert E; Malone, Daniel; Ridgeway, Kyle J; McManus, Beth M; Stevens-Lapsley, Jennifer E
2016-08-01
Hospital readmissions in older adult populations are an emerging quality indicator for acute care hospitals. Recent evidence has linked functional decline during and after hospitalization with an elevated risk of hospital readmission. However, models of care that have been developed to reduce hospital readmission rates do not adequately address functional deficits. Physical therapists, as experts in optimizing physical function, have a strong opportunity to contribute meaningfully to care transition models and demonstrate the value of physical therapy interventions in reducing readmissions. Thus, the purposes of this perspective article are: (1) to describe the need for physical therapist input during care transitions for older adults and (2) to outline strategies for expanding physical therapy participation in care transitions for older adults, with an overall goal of reducing avoidable 30-day hospital readmissions. © 2016 American Physical Therapy Association.
Prediction of enzymatic pathways by integrative pathway mapping
Wichelecki, Daniel J; San Francisco, Brian; Zhao, Suwen; Rodionov, Dmitry A; Vetting, Matthew W; Al-Obaidi, Nawar F; Lin, Henry; O'Meara, Matthew J; Scott, David A; Morris, John H; Russel, Daniel; Almo, Steven C; Osterman, Andrei L
2018-01-01
The functions of most proteins are yet to be determined. The function of an enzyme is often defined by its interacting partners, including its substrate and product, and its role in larger metabolic networks. Here, we describe a computational method that predicts the functions of orphan enzymes by organizing them into a linear metabolic pathway. Given candidate enzyme and metabolite pathway members, this aim is achieved by finding those pathways that satisfy structural and network restraints implied by varied input information, including that from virtual screening, chemoinformatics, genomic context analysis, and ligand -binding experiments. We demonstrate this integrative pathway mapping method by predicting the L-gulonate catabolic pathway in Haemophilus influenzae Rd KW20. The prediction was subsequently validated experimentally by enzymology, crystallography, and metabolomics. Integrative pathway mapping by satisfaction of structural and network restraints is extensible to molecular networks in general and thus formally bridges the gap between structural biology and systems biology. PMID:29377793
Single image super-resolution based on approximated Heaviside functions and iterative refinement
Wang, Xin-Yu; Huang, Ting-Zhu; Deng, Liang-Jian
2018-01-01
One method of solving the single-image super-resolution problem is to use Heaviside functions. This has been done previously by making a binary classification of image components as “smooth” and “non-smooth”, describing these with approximated Heaviside functions (AHFs), and iteration including l1 regularization. We now introduce a new method in which the binary classification of image components is extended to different degrees of smoothness and non-smoothness, these components being represented by various classes of AHFs. Taking into account the sparsity of the non-smooth components, their coefficients are l1 regularized. In addition, to pick up more image details, the new method uses an iterative refinement for the residuals between the original low-resolution input and the downsampled resulting image. Experimental results showed that the new method is superior to the original AHF method and to four other published methods. PMID:29329298
Rausch, Annika; Zhang, Wei; Haak, Koen V; Mennes, Maarten; Hermans, Erno J; van Oort, Erik; van Wingen, Guido; Beckmann, Christian F; Buitelaar, Jan K; Groen, Wouter B
2016-01-01
Amygdala dysfunction is hypothesized to underlie the social deficits observed in autism spectrum disorders (ASD). However, the neurobiological basis of this hypothesis is underspecified because it is unknown whether ASD relates to abnormalities of the amygdaloid input or output nuclei. Here, we investigated the functional connectivity of the amygdaloid social-perceptual input nuclei and emotion-regulation output nuclei in ASD versus controls. We collected resting state functional magnetic resonance imaging (fMRI) data, tailored to provide optimal sensitivity in the amygdala as well as the neocortex, in 20 adolescents and young adults with ASD and 25 matched controls. We performed a regular correlation analysis between the entire amygdala (EA) and the whole brain and used a partial correlation analysis to investigate whole-brain functional connectivity uniquely related to each of the amygdaloid subregions. Between-group comparison of regular EA correlations showed significantly reduced connectivity in visuospatial and superior parietal areas in ASD compared to controls. Partial correlation analysis revealed that this effect was driven by the left superficial and right laterobasal input subregions, but not the centromedial output nuclei. These results indicate reduced connectivity of specifically the amygdaloid sensory input channels in ASD, suggesting that abnormal amygdalo-cortical connectivity can be traced down to the socio-perceptual pathways.
HALE UAS Concept of Operations. Version 3.0
NASA Technical Reports Server (NTRS)
2006-01-01
This document is a system level Concept of Operations (CONOPS) from the perspective of future High Altitude Long Endurance (HALE) Unmanned Aircraft Systems (UAS) service providers and National Airspace System (NAS) users. It describes current systems (existing UAS), describes HALE UAS functions and operations to be performed (via sample missions), and offers insight into the user s environment (i.e., the UAS as a system of systems). It is intended to be a source document for NAS UAS operational requirements, and provides a construct for government agencies to use in guiding their regulatory decisions, architecture requirements, and investment strategies. Although it does not describe the technical capabilities of a specific HALE UAS system (which do, and will vary widely), it is intended to aid in requirements capture and to be used as input to the functional requirements and analysis process. The document provides a basis for development of functional requirements and operational guidelines to achieve unrestricted access into the NAS. This document is an FY06 update to the FY05 Access 5 Project-approved Concept of Operations document previously published in the Public Domain on the Access 5 open website. This version is recommended to be approved for public release also. The updates are a reorganization of materials from the previous version with the addition of an updated set of operational requirements, inclusion of sample mission scenarios, and identification of roles and responsibilities of interfaces within flight phases.
Development of the NASA Digital Astronaut Project Muscle Model
NASA Technical Reports Server (NTRS)
Lewandowski, Beth E.; Pennline, James A.; Thompson, W. K.; Humphreys, B. T.; Ryder, J. W.; Ploutz-Snyder, L. L.; Mulugeta, L.
2015-01-01
This abstract describes development work performed on the NASA Digital Astronaut Project Muscle Model. Muscle atrophy is a known physiological response to exposure to a low gravity environment. The DAP muscle model computationally predicts the change in muscle structure and function vs. time in a reduced gravity environment. The spaceflight muscle model can then be used in biomechanical models of exercise countermeasures and spaceflight tasks to: 1) develop site specific bone loading input to the DAP bone adaptation model over the course of a mission; 2) predict astronaut performance of spaceflight tasks; 3) inform effectiveness of new exercise countermeasures concepts.
NASA Astrophysics Data System (ADS)
Baviere, Ph.
Tests which have proven effective for evaluating VLSI circuits for space applications are described. It is recommended that circuits be examined after each manfacturing step to gain fast feedback on inadequacies in the production system. Data from failure modes which occur during operational lifetimes of circuits also permit redefinition of the manufacturing and quality control process to eliminate the defects identified. Other tests include determination of the operational envelope of the circuits, examination of the circuit response to controlled inputs, and the performance and functional speeds of ROM and RAM memories. Finally, it is desirable that all new circuits be designed with testing in mind.
NASA Technical Reports Server (NTRS)
Hewes, C. R.; Bosshart, P. W.; Eversole, W. L.; Dewit, M.; Buss, D. D.
1976-01-01
Two CCD techniques were discussed for performing an N-point sampled data correlation between an input signal and an electronically programmable reference function. The design and experimental performance of an implementation of the direct time correlator utilizing two analog CCDs and MOS multipliers on a single IC were evaluated. The performance of a CCD implementation of the chirp z transform was described, and the design of a new CCD integrated circuit for performing correlation by multiplication in the frequency domain was presented. This chip provides a discrete Fourier transform (DFT) or inverse DFT, multipliers, and complete support circuitry for the CCD CZT. The two correlation techniques are compared.
Structural Tailoring of Advanced Turboprops (STAT)
NASA Technical Reports Server (NTRS)
Brown, Kenneth W.
1988-01-01
This interim report describes the progress achieved in the structural Tailoring of Advanced Turboprops (STAT) program which was developed to perform numerical optimizations on highly swept propfan blades. The optimization procedure seeks to minimize an objective function, defined as either direct operating cost or aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. This report provides a detailed description of the input, optimization procedures, approximate analyses and refined analyses, as well as validation test cases for the STAT program. In addition, conclusions and recommendations are summarized.
Factorizing the motion sensitivity function into equivalent input noise and calculation efficiency.
Allard, Rémy; Arleo, Angelo
2017-01-01
The photopic motion sensitivity function of the energy-based motion system is band-pass peaking around 8 Hz. Using an external noise paradigm to factorize the sensitivity into equivalent input noise and calculation efficiency, the present study investigated if the variation in photopic motion sensitivity as a function of the temporal frequency is due to a variation of equivalent input noise (e.g., early temporal filtering) or calculation efficiency (ability to select and integrate motion). For various temporal frequencies, contrast thresholds for a direction discrimination task were measured in presence and absence of noise. Up to 15 Hz, the sensitivity variation was mainly due to a variation of equivalent input noise and little variation in calculation efficiency was observed. The sensitivity fall-off at very high temporal frequencies (from 15 to 30 Hz) was due to a combination of a drop of calculation efficiency and a rise of equivalent input noise. A control experiment in which an artificial temporal integration was applied to the stimulus showed that an early temporal filter (generally assumed to affect equivalent input noise, not calculation efficiency) could impair both the calculation efficiency and equivalent input noise at very high temporal frequencies. We conclude that at the photopic luminance intensity tested, the variation of motion sensitivity as a function of the temporal frequency was mainly due to early temporal filtering, not to the ability to select and integrate motion. More specifically, we conclude that photopic motion sensitivity at high temporal frequencies is limited by internal noise occurring after the transduction process (i.e., neural noise), not by quantal noise resulting from the probabilistic absorption of photons by the photoreceptors as previously suggested.
SNP ID-info: SNP ID searching and visualization platform.
Yang, Cheng-Hong; Chuang, Li-Yeh; Cheng, Yu-Huei; Wen, Cheng-Hao; Chang, Phei-Lang; Chang, Hsueh-Wei
2008-09-01
Many association studies provide the relationship between single nucleotide polymorphisms (SNPs), diseases and cancers, without giving a SNP ID, however. Here, we developed the SNP ID-info freeware to provide the SNP IDs within inputting genetic and physical information of genomes. The program provides an "SNP-ePCR" function to generate the full-sequence using primers and template inputs. In "SNPosition," sequence from SNP-ePCR or direct input is fed to match the SNP IDs from SNP fasta-sequence. In "SNP search" and "SNP fasta" function, information of SNPs within the cytogenetic band, contig position, and keyword input are acceptable. Finally, the SNP ID neighboring environment for inputs is completely visualized in the order of contig position and marked with SNP and flanking hits. The SNP identification problems inherent in NCBI SNP BLAST are also avoided. In conclusion, the SNP ID-info provides a visualized SNP ID environment for multiple inputs and assists systematic SNP association studies. The server and user manual are available at http://bio.kuas.edu.tw/snpid-info.
Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex
Wilson, Daniel E.; Whitney, David E.; Scholl, Benjamin; Fitzpatrick, David
2016-01-01
The majority of neurons in primary visual cortex are tuned for stimulus orientation, but the factors that account for the range of orientation selectivities exhibited by cortical neurons remain unclear. To address this issue, we used in vivo 2-photon calcium imaging to characterize the orientation tuning and spatial arrangement of synaptic inputs to the dendritic spines of individual pyramidal neurons in layer 2/3 of ferret visual cortex. The summed synaptic input to individual neurons reliably predicted the neuron’s orientation preference, but did not account for differences in orientation selectivity among neurons. These differences reflected a robust input-output nonlinearity that could not be explained by spike threshold alone, and was strongly correlated with the spatial clustering of co-tuned synaptic inputs within the dendritic field. Dendritic branches with more co-tuned synaptic clusters exhibited greater rates of local dendritic calcium events supporting a prominent role for functional clustering of synaptic inputs in dendritic nonlinearities that shape orientation selectivity. PMID:27294510
NASA Technical Reports Server (NTRS)
Nagle, Gail; Masotto, Thomas; Alger, Linda
1990-01-01
The need to meet the stringent performance and reliability requirements of advanced avionics systems has frequently led to implementations which are tailored to a specific application and are therefore difficult to modify or extend. Furthermore, many integrated flight critical systems are input/output intensive. By using a design methodology which customizes the input/output mechanism for each new application, the cost of implementing new systems becomes prohibitively expensive. One solution to this dilemma is to design computer systems and input/output subsystems which are general purpose, but which can be easily configured to support the needs of a specific application. The Advanced Information Processing System (AIPS), currently under development has these characteristics. The design and implementation of the prototype I/O communication system for AIPS is described. AIPS addresses reliability issues related to data communications by the use of reconfigurable I/O networks. When a fault or damage event occurs, communication is restored to functioning parts of the network and the failed or damage components are isolated. Performance issues are addressed by using a parallelized computer architecture which decouples Input/Output (I/O) redundancy management and I/O processing from the computational stream of an application. The autonomous nature of the system derives from the highly automated and independent manner in which I/O transactions are conducted for the application as well as from the fact that the hardware redundancy management is entirely transparent to the application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smallwood, D.O.
In a previous paper Smallwood and Paez (1991) showed how to generate realizations of partially coherent stationary normal time histories with a specified cross-spectral density matrix. This procedure is generalized for the case of multiple inputs with a specified cross-spectral density function and a specified marginal probability density function (pdf) for each of the inputs. The specified pdfs are not required to be Gaussian. A zero memory nonlinear (ZMNL) function is developed for each input to transform a Gaussian or normal time history into a time history with a specified non-Gaussian distribution. The transformation functions have the property that amore » transformed time history will have nearly the same auto spectral density as the original time history. A vector of Gaussian time histories are then generated with the specified cross-spectral density matrix. These waveforms are then transformed into the required time history realizations using the ZMNL function.« less
Universal Approximation by Using the Correntropy Objective Function.
Nayyeri, Mojtaba; Sadoghi Yazdi, Hadi; Maskooki, Alaleh; Rouhani, Modjtaba
2017-10-16
Several objective functions have been proposed in the literature to adjust the input parameters of a node in constructive networks. Furthermore, many researchers have focused on the universal approximation capability of the network based on the existing objective functions. In this brief, we use a correntropy measure based on the sigmoid kernel in the objective function to adjust the input parameters of a newly added node in a cascade network. The proposed network is shown to be capable of approximating any continuous nonlinear mapping with probability one in a compact input sample space. Thus, the convergence is guaranteed. The performance of our method was compared with that of eight different objective functions, as well as with an existing one hidden layer feedforward network on several real regression data sets with and without impulsive noise. The experimental results indicate the benefits of using a correntropy measure in reducing the root mean square error and increasing the robustness to noise.
NASA Astrophysics Data System (ADS)
Mori, Ryuhei
2016-11-01
Brassard et al. [Phys. Rev. Lett. 96, 250401 (2006), 10.1103/PhysRevLett.96.250401] showed that shared nonlocal boxes with a CHSH (Clauser, Horne, Shimony, and Holt) probability greater than 3/+√{6 } 6 yield trivial communication complexity. There still exists a gap with the maximum CHSH probability 2/+√{2 } 4 achievable by quantum mechanics. It is an interesting open question to determine the exact threshold for the trivial communication complexity. Brassard et al.'s idea is based on recursive bias amplification by the three-input majority function. It was not obvious if another choice of function exhibits stronger bias amplification. We show that the three-input majority function is the unique optimal function, so that one cannot improve the threshold 3/+√{6 } 6 by Brassard et al.'s bias amplification. In this work, protocols for computing the function used for the bias amplification are restricted to be nonadaptive protocols or a particular adaptive protocol inspired by Pawłowski et al.'s protocol for information causality [Nature (London) 461, 1101 (2009), 10.1038/nature08400]. We first show an adaptive protocol inspired by Pawłowski et al.'s protocol, and then show that the adaptive protocol improves upon nonadaptive protocols. Finally, we show that the three-input majority function is the unique optimal function for the bias amplification if we apply the adaptive protocol to each step of the bias amplification.
A method to stabilize linear systems using eigenvalue gradient information
NASA Technical Reports Server (NTRS)
Wieseman, C. D.
1985-01-01
Formal optimization methods and eigenvalue gradient information are used to develop a stabilizing control law for a closed loop linear system that is initially unstable. The method was originally formulated by using direct, constrained optimization methods with the constraints being the real parts of the eigenvalues. However, because of problems in trying to achieve stabilizing control laws, the problem was reformulated to be solved differently. The method described uses the Davidon-Fletcher-Powell minimization technique to solve an indirect, constrained minimization problem in which the performance index is the Kreisselmeier-Steinhauser function of the real parts of all the eigenvalues. The method is applied successfully to solve two different problems: the determination of a fourth-order control law stabilizes a single-input single-output active flutter suppression system and the determination of a second-order control law for a multi-input multi-output lateral-directional flight control system. Various sets of design variables and initial starting points were chosen to show the robustness of the method.
Reusable Rocket Engine Operability Modeling and Analysis
NASA Technical Reports Server (NTRS)
Christenson, R. L.; Komar, D. R.
1998-01-01
This paper describes the methodology, model, input data, and analysis results of a reusable launch vehicle engine operability study conducted with the goal of supporting design from an operations perspective. Paralleling performance analyses in schedule and method, this requires the use of metrics in a validated operations model useful for design, sensitivity, and trade studies. Operations analysis in this view is one of several design functions. An operations concept was developed given an engine concept and the predicted operations and maintenance processes incorporated into simulation models. Historical operations data at a level of detail suitable to model objectives were collected, analyzed, and formatted for use with the models, the simulations were run, and results collected and presented. The input data used included scheduled and unscheduled timeline and resource information collected into a Space Transportation System (STS) Space Shuttle Main Engine (SSME) historical launch operations database. Results reflect upon the importance not only of reliable hardware but upon operations and corrective maintenance process improvements.
A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus.
Venner, Anne; Anaclet, Christelle; Broadhurst, Rebecca Y; Saper, Clifford B; Fuller, Patrick M
2016-08-22
The largest synaptic input to the sleep-promoting ventrolateral preoptic area (VLPO) [1] arises from the lateral hypothalamus [2], a brain area associated with arousal [3-5]. However, the neurochemical identity of the majority of these VLPO-projecting neurons within the lateral hypothalamus (LH), as well as their function in the arousal network, remains unknown. Herein we describe a population of VLPO-projecting neurons in the LH that express the vesicular GABA transporter (VGAT; a marker for GABA-releasing neurons). In addition to the VLPO, these neurons also project to several other established sleep and arousal nodes, including the tuberomammillary nucleus, ventral periaqueductal gray, and locus coeruleus. Selective and acute chemogenetic activation of LH VGAT(+) neurons was profoundly wake promoting, whereas acute inhibition increased sleep. Because of its direct and massive inputs to the VLPO, this population may play a particularly important role in sleep-wake switching. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reilly, Thomas E.; Harbaugh, Arlen W.
1993-01-01
Cylindrical (axisymmetric) flow to a well is an important specialized topic of ground-water hydraulics and has been applied by many investigators to determine aquifer properties and determine heads and flows in the vicinity of the well. A recent modification to the U.S. Geological Survey Modular Three-Dimensional Finite-Difference Ground-Water Flow Model provides the opportunity to simulate axisymmetric flow to a well. The theory involves the conceptualization of a system of concentric shells that are capable of reproducing the large variations in gradient in the vicinity of the well by decreasing their area in the direction of the well. The computer program presented serves as a preprocessor to the U.S. Geological Survey model by creating the input data file needed to implement the axisymmetric conceptualization. Data input requirements to this preprocessor are described, and a comparison with a known analytical solution indicates that the model functions appropriately.
Semantic based man-machine interface for real-time communication
NASA Technical Reports Server (NTRS)
Ali, M.; Ai, C.-S.
1988-01-01
A flight expert system (FLES) was developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. To provide a communications interface between the flight crew and FLES, a natural language interface (NALI) was implemented. Input to NALI is processed by three processors: (1) the semantics parser; (2) the knowledge retriever; and (3) the response generator. First the semantic parser extracts meaningful words and phrases to generate an internal representation of the query. At this point, the semantic parser has the ability to map different input forms related to the same concept into the same internal representation. Then the knowledge retriever analyzes and stores the context of the query to aid in resolving ellipses and pronoun references. At the end of this process, a sequence of retrievel functions is created as a first step in generating the proper response. Finally, the response generator generates the natural language response to the query. The architecture of NALI was designed to process both temporal and nontemporal queries. The architecture and implementation of NALI are described.
In-service health monitoring of composite structures
NASA Technical Reports Server (NTRS)
Pinto, Gino A.; Ventres, C. S.; Ginty, Carol A.; Chamis, Christos C.
1990-01-01
The aerospace industry is witnessing a vast utilization of composites in critical structural applications and anticipates even more use of them in future aircraft. Therefore, a definite need exists for a composite health monitoring expert system to meet today's current needs and tomorrow's future demands. The primary goal for this conceptual health monitoring system is functional reliably for in-service operation in the environments of various composite structures. The underlying philosophy of this system is to utilize proven vibration techniques to assess the structural integrity of a fibrous composite. Statistical methods are used to determine if the variances in the measured data are acceptable for making a reliable decision on the health status of the composite. The flexible system allows for algorithms describing any composite fatigue or damage behavior characteristic to be provided as an input to the system. Alert thresholds and variances can also be provided as an input to this system and may be updated to allow for future changes/refinements in the composite's structural integrity behavior.
The economic impacts of Lake States forestry: an input-output study.
Larry Pedersen; Daniel E. Chappelle; David C. Lothner
1989-01-01
The report describes 1985 and 1995 levels of forest-related economic activity in the three-state area of Michigan, Minnesota, and Wisconsin, and their impacts on other economic sectors based on a regional input-output model.
Marvin-DiPasquale, Mark; Lutz, Michelle A; Brigham, Mark E.; Krabbenhoft, David P.; Aiken, George R.; Orem, William H.; Hall, Britt D.
2009-01-01
Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment−pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 μm) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 ± 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd’s) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC concentration and the lowest log Kd’s for both THg and MeHg. No significant relationship existed between overlying water MeHg concentrations and those in bed sediment or pore water, suggesting upstream sources of MeHg production may be more important than local streambed production as a driver of water column MeHg concentration in drainage basins that receive Hg inputs primarily from atmospheric sources.
Questioning the cerebellar doctrine.
Galliano, Elisa; De Zeeuw, Chris I
2014-01-01
The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells are the only cortical neuron receiving and integrating inputs from climbing fiber and mossy-parallel fiber pathways, and plastic modification at the parallel fiber synapses onto Purkinje cells constitutes the substrate of motor learning. Yet, because of recent technical advances and new angles of investigation, all pillars of the cerebellar doctrine now face regular re-examination. In this review, after summarizing the classic concepts and recent disputes, we attempt to synthesize an integrated view and propose a revisited version of the cerebellar doctrine. © 2014 Elsevier B.V. All rights reserved.
PMU Data Event Detection: A User Guide for Power Engineers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, A.; Singh, M.; Muljadi, E.
2014-10-01
This user guide is intended to accompany a software package containing a Matrix Laboratory (MATLAB) script and related functions for processing phasor measurement unit (PMU) data. This package and guide have been developed by the National Renewable Energy Laboratory and the University of Texas at Austin. The objective of this data processing exercise is to discover events in the vast quantities of data collected by PMUs. This document attempts to cover some of the theory behind processing the data to isolate events as well as the functioning of the MATLAB scripts. The report describes (1) the algorithms and mathematical backgroundmore » that the accompanying MATLAB codes use to detect events in PMU data and (2) the inputs required from the user and the outputs generated by the scripts.« less
The role of efference copy in striatal learning.
Fee, Michale S
2014-04-01
Reinforcement learning requires the convergence of signals representing context, action, and reward. While models of basal ganglia function have well-founded hypotheses about the neural origin of signals representing context and reward, the function and origin of signals representing action are less clear. Recent findings suggest that exploratory or variable behaviors are initiated by a wide array of 'action-generating' circuits in the midbrain, brainstem, and cortex. Thus, in order to learn, the striatum must incorporate an efference copy of action decisions made in these action-generating circuits. Here we review several recent neural models of reinforcement learning that emphasize the role of efference copy signals. Also described are ideas about how these signals might be integrated with inputs signaling context and reward. Copyright © 2014 Elsevier Ltd. All rights reserved.
Model predictive controller design for boost DC-DC converter using T-S fuzzy cost function
NASA Astrophysics Data System (ADS)
Seo, Sang-Wha; Kim, Yong; Choi, Han Ho
2017-11-01
This paper proposes a Takagi-Sugeno (T-S) fuzzy method to select cost function weights of finite control set model predictive DC-DC converter control algorithms. The proposed method updates the cost function weights at every sample time by using T-S type fuzzy rules derived from the common optimal control engineering knowledge that a state or input variable with an excessively large magnitude can be penalised by increasing the weight corresponding to the variable. The best control input is determined via the online optimisation of the T-S fuzzy cost function for all the possible control input sequences. This paper implements the proposed model predictive control algorithm in real time on a Texas Instruments TMS320F28335 floating-point Digital Signal Processor (DSP). Some experimental results are given to illuminate the practicality and effectiveness of the proposed control system under several operating conditions. The results verify that our method can yield not only good transient and steady-state responses (fast recovery time, small overshoot, zero steady-state error, etc.) but also insensitiveness to abrupt load or input voltage parameter variations.
Rail-to-rail differential input amplification stage with main and surrogate differential pairs
Britton, Jr., Charles Lanier; Smith, Stephen Fulton
2007-03-06
An operational amplifier input stage provides a symmetrical rail-to-rail input common-mode voltage without turning off either pair of complementary differential input transistors. Secondary, or surrogate, transistor pairs assume the function of the complementary differential transistors. The circuit also maintains essentially constant transconductance, constant slew rate, and constant signal-path supply current as it provides rail-to-rail operation.
The reservoir model: a differential equation model of psychological regulation.
Deboeck, Pascal R; Bergeman, C S
2013-06-01
Differential equation models can be used to describe the relationships between the current state of a system of constructs (e.g., stress) and how those constructs are changing (e.g., based on variable-like experiences). The following article describes a differential equation model based on the concept of a reservoir. With a physical reservoir, such as one for water, the level of the liquid in the reservoir at any time depends on the contributions to the reservoir (inputs) and the amount of liquid removed from the reservoir (outputs). This reservoir model might be useful for constructs such as stress, where events might "add up" over time (e.g., life stressors, inputs), but individuals simultaneously take action to "blow off steam" (e.g., engage coping resources, outputs). The reservoir model can provide descriptive statistics of the inputs that contribute to the "height" (level) of a construct and a parameter that describes a person's ability to dissipate the construct. After discussing the model, we describe a method of fitting the model as a structural equation model using latent differential equation modeling and latent distribution modeling. A simulation study is presented to examine recovery of the input distribution and output parameter. The model is then applied to the daily self-reports of negative affect and stress from a sample of older adults from the Notre Dame Longitudinal Study on Aging. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
The Reservoir Model: A Differential Equation Model of Psychological Regulation
Deboeck, Pascal R.; Bergeman, C. S.
2017-01-01
Differential equation models can be used to describe the relationships between the current state of a system of constructs (e.g., stress) and how those constructs are changing (e.g., based on variable-like experiences). The following article describes a differential equation model based on the concept of a reservoir. With a physical reservoir, such as one for water, the level of the liquid in the reservoir at any time depends on the contributions to the reservoir (inputs) and the amount of liquid removed from the reservoir (outputs). This reservoir model might be useful for constructs such as stress, where events might “add up” over time (e.g., life stressors, inputs), but individuals simultaneously take action to “blow off steam” (e.g., engage coping resources, outputs). The reservoir model can provide descriptive statistics of the inputs that contribute to the “height” (level) of a construct and a parameter that describes a person's ability to dissipate the construct. After discussing the model, we describe a method of fitting the model as a structural equation model using latent differential equation modeling and latent distribution modeling. A simulation study is presented to examine recovery of the input distribution and output parameter. The model is then applied to the daily self-reports of negative affect and stress from a sample of older adults from the Notre Dame Longitudinal Study on Aging. PMID:23527605
The biological function of consciousness
Earl, Brian
2014-01-01
This research is an investigation of whether consciousness—one's ongoing experience—influences one's behavior and, if so, how. Analysis of the components, structure, properties, and temporal sequences of consciousness has established that, (1) contrary to one's intuitive understanding, consciousness does not have an active, executive role in determining behavior; (2) consciousness does have a biological function; and (3) consciousness is solely information in various forms. Consciousness is associated with a flexible response mechanism (FRM) for decision-making, planning, and generally responding in nonautomatic ways. The FRM generates responses by manipulating information and, to function effectively, its data input must be restricted to task-relevant information. The properties of consciousness correspond to the various input requirements of the FRM; and when important information is missing from consciousness, functions of the FRM are adversely affected; both of which indicate that consciousness is the input data to the FRM. Qualitative and quantitative information (shape, size, location, etc.) are incorporated into the input data by a qualia array of colors, sounds, and so on, which makes the input conscious. This view of the biological function of consciousness provides an explanation why we have experiences; why we have emotional and other feelings, and why their loss is associated with poor decision-making; why blindsight patients do not spontaneously initiate responses to events in their blind field; why counter-habitual actions are only possible when the intended action is in mind; and the reason for inattentional blindness. PMID:25140159
Influence of speckle image reconstruction on photometric precision for large solar telescopes
NASA Astrophysics Data System (ADS)
Peck, C. L.; Wöger, F.; Marino, J.
2017-11-01
Context. High-resolution observations from large solar telescopes require adaptive optics (AO) systems to overcome image degradation caused by Earth's turbulent atmosphere. AO corrections are, however, only partial. Achieving near-diffraction limited resolution over a large field of view typically requires post-facto image reconstruction techniques to reconstruct the source image. Aims: This study aims to examine the expected photometric precision of amplitude reconstructed solar images calibrated using models for the on-axis speckle transfer functions and input parameters derived from AO control data. We perform a sensitivity analysis of the photometric precision under variations in the model input parameters for high-resolution solar images consistent with four-meter class solar telescopes. Methods: Using simulations of both atmospheric turbulence and partial compensation by an AO system, we computed the speckle transfer function under variations in the input parameters. We then convolved high-resolution numerical simulations of the solar photosphere with the simulated atmospheric transfer function, and subsequently deconvolved them with the model speckle transfer function to obtain a reconstructed image. To compute the resulting photometric precision, we compared the intensity of the original image with the reconstructed image. Results: The analysis demonstrates that high photometric precision can be obtained for speckle amplitude reconstruction using speckle transfer function models combined with AO-derived input parameters. Additionally, it shows that the reconstruction is most sensitive to the input parameter that characterizes the atmospheric distortion, and sub-2% photometric precision is readily obtained when it is well estimated.
NASA Technical Reports Server (NTRS)
Gibson, S. G.
1983-01-01
A system of computer programs was developed to model general three dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinates, to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface/surface intersection curves. Input and output data formats are described; detailed suggestions are given for user input. Instructions for execution are given, and examples are shown.
The Insula: A ‘Hub of Activity’ in Migraine
Borsook, David; Veggeberg, Rosanna; Erpelding, Nathalie; Borra, Ronald; Linnman, Clas; Burstein, Rami; Becerra, Lino
2017-01-01
The insula, a ‘cortical hub’ buried within the lateral sulcus, is involved in a number of processes including goal-directed cognition, conscious awareness, autonomic regulation, interoception and somatosensation. While some of these processes are well known in the clinical presentation of migraine (i.e., autonomic and somatosensory alterations), other more complex behaviors in migraine, such as conscious awareness and error detection, are less well described. Since the insula processes and relays afferent inputs from brain areas involved in these functions to areas involved in higher cortical function such as frontal, temporal and parietal regions, it may be implicated as a brain region that translates the signals of altered internal milieu in migraine, along with other chronic pain conditions, through the insula into complex behaviors. Here we review how the insula function and structure is altered in migraine. As a brain region of a number of brain functions, it may serve as a model to study new potential clinical perspectives for migraine treatment. PMID:26290446
Application of Interval Predictor Models to Space Radiation Shielding
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.; Giesy,Daniel P.; Norman, Ryan B.; Blattnig, Steve R.
2016-01-01
This paper develops techniques for predicting the uncertainty range of an output variable given input-output data. These models are called Interval Predictor Models (IPM) because they yield an interval valued function of the input. This paper develops IPMs having a radial basis structure. This structure enables the formal description of (i) the uncertainty in the models parameters, (ii) the predicted output interval, and (iii) the probability that a future observation would fall in such an interval. In contrast to other metamodeling techniques, this probabilistic certi cate of correctness does not require making any assumptions on the structure of the mechanism from which data are drawn. Optimization-based strategies for calculating IPMs having minimal spread while containing all the data are developed. Constraints for bounding the minimum interval spread over the continuum of inputs, regulating the IPMs variation/oscillation, and centering its spread about a target point, are used to prevent data over tting. Furthermore, we develop an approach for using expert opinion during extrapolation. This metamodeling technique is illustrated using a radiation shielding application for space exploration. In this application, we use IPMs to describe the error incurred in predicting the ux of particles resulting from the interaction between a high-energy incident beam and a target.
Fractional cable model for signal conduction in spiny neuronal dendrites
NASA Astrophysics Data System (ADS)
Vitali, Silvia; Mainardi, Francesco
2017-06-01
The cable model is widely used in several fields of science to describe the propagation of signals. A relevant medical and biological example is the anomalous subdiffusion in spiny neuronal dendrites observed in several studies of the last decade. Anomalous subdiffusion can be modelled in several ways introducing some fractional component into the classical cable model. The Chauchy problem associated to these kind of models has been investigated by many authors, but up to our knowledge an explicit solution for the signalling problem has not yet been published. Here we propose how this solution can be derived applying the generalized convolution theorem (known as Efros theorem) for Laplace transforms. The fractional cable model considered in this paper is defined by replacing the first order time derivative with a fractional derivative of order α ∈ (0, 1) of Caputo type. The signalling problem is solved for any input function applied to the accessible end of a semi-infinite cable, which satisfies the requirements of the Efros theorem. The solutions corresponding to the simple cases of impulsive and step inputs are explicitly calculated in integral form containing Wright functions. Thanks to the variability of the parameter α, the corresponding solutions are expected to adapt to the qualitative behaviour of the membrane potential observed in experiments better than in the standard case α = 1.
Convert a low-cost sensor to a colorimeter using an improved regression method
NASA Astrophysics Data System (ADS)
Wu, Yifeng
2008-01-01
Closed loop color calibration is a process to maintain consistent color reproduction for color printers. To perform closed loop color calibration, a pre-designed color target should be printed, and automatically measured by a color measuring instrument. A low cost sensor has been embedded to the printer to perform the color measurement. A series of sensor calibration and color conversion methods have been developed. The purpose is to get accurate colorimetric measurement from the data measured by the low cost sensor. In order to get high accuracy colorimetric measurement, we need carefully calibrate the sensor, and minimize all possible errors during the color conversion. After comparing several classical color conversion methods, a regression based color conversion method has been selected. The regression is a powerful method to estimate the color conversion functions. But the main difficulty to use this method is to find an appropriate function to describe the relationship between the input and the output data. In this paper, we propose to use 1D pre-linearization tables to improve the linearity between the input sensor measuring data and the output colorimetric data. Using this method, we can increase the accuracy of the regression method, so as to improve the accuracy of the color conversion.
Factors leading to different viability predictions for a grizzly bear data set
Mills, L.S.; Hayes, S.G.; Wisdom, M.J.; Citta, J.; Mattson, D.J.; Murphy, K.
1996-01-01
Population viability analysis programs are being used increasingly in research and management applications, but there has not been a systematic study of the congruence of different program predictions based on a single data set. We performed such an analysis using four population viability analysis computer programs: GAPPS, INMAT, RAMAS/AGE, and VORTEX. The standardized demographic rates used in all programs were generalized from hypothetical increasing and decreasing grizzly bear (Ursus arctos horribilis) populations. Idiosyncracies of input format for each program led to minor differences in intrinsic growth rates that translated into striking differences in estimates of extinction rates and expected population size. In contrast, the addition of demographic stochasticity, environmental stochasticity, and inbreeding costs caused only a small divergence in viability predictions. But, the addition of density dependence caused large deviations between the programs despite our best attempts to use the same density-dependent functions. Population viability programs differ in how density dependence is incorporated, and the necessary functions are difficult to parameterize accurately. Thus, we recommend that unless data clearly suggest a particular density-dependent model, predictions based on population viability analysis should include at least one scenario without density dependence. Further, we describe output metrics that may differ between programs; development of future software could benefit from standardized input and output formats across different programs.
Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J
2016-08-01
Building modelers need simulation tools capable of simultaneously considering building energy use, airflow and indoor air quality (IAQ) to design and evaluate the ability of buildings and their systems to meet today's demanding energy efficiency and IAQ performance requirements. CONTAM is a widely-used multizone building airflow and contaminant transport simulation tool that requires indoor temperatures as input values. EnergyPlus is a prominent whole-building energy simulation program capable of performing heat transfer calculations that require interzone and infiltration airflows as input values. On their own, each tool is limited in its ability to account for thermal processes upon which building airflow may be significantly dependent and vice versa. This paper describes the initial phase of coupling of CONTAM with EnergyPlus to capture the interdependencies between airflow and heat transfer using co-simulation that allows for sharing of data between independently executing simulation tools. The coupling is accomplished based on the Functional Mock-up Interface (FMI) for Co-simulation specification that provides for integration between independently developed tools. A three-zone combined heat transfer/airflow analytical BESTEST case was simulated to verify the co-simulation is functioning as expected, and an investigation of a two-zone, natural ventilation case designed to challenge the coupled thermal/airflow solution methods was performed.
Differential flatness properties and multivariable adaptive control of ovarian system dynamics
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos
2016-12-01
The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.
Control of soft machines using actuators operated by a Braille display.
Mosadegh, Bobak; Mazzeo, Aaron D; Shepherd, Robert F; Morin, Stephen A; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M
2014-01-07
One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.
Control of Soft Machines using Actuators Operated by a Braille Display
Mosadegh, Bobak; Mazzeo, Aaron D.; Shepherd, Robert F.; Morin, Stephen A.; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M.
2013-01-01
One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds—often built for a single purpose—are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled braille display and a micropneumatic device. The braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface. PMID:24196070
El-Nagar, Ahmad M
2018-01-01
In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Slyter, Leonard L.
1975-01-01
An artifical rumen continuous culture with pH control, automated input of water-soluble and water-insoluble substrates, controlled mixing of contents, and a collection system for gas is described. Images PMID:16350029
DiffPy-CMI-Python libraries for Complex Modeling Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billinge, Simon; Juhas, Pavol; Farrow, Christopher
2014-02-01
Software to manipulate and describe crystal and molecular structures and set up structural refinements from multiple experimental inputs. Calculation and simulation of structure derived physical quantities. Library for creating customized refinements of atomic structures from available experimental and theoretical inputs.
Test procedures and data input techniques for skid testing.
DOT National Transportation Integrated Search
1974-01-01
The purpose of this report is to describe the system for obtaining and handling skid data, including skid testing procedures and data input procedures. While all testing devices used in Virginia are covered (other than the British portable tester), t...
The relative degree enhancement problem for MIMO nonlinear systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenwald, D.A.; Oezguener, Ue.
1995-07-01
The authors present a result for linearizing a nonlinear MIMO system by employing partial feedback - feedback at all but one input-output channel such that the SISO feedback linearization problem is solvable at the remaining input-output channel. The partial feedback effectively enhances the relative degree at the open input-output channel provided the feedback functions are chosen to satisfy relative degree requirements. The method is useful for nonlinear systems that are not feedback linearizable in a MIMO sense. Several examples are presented to show how these feedback functions can be computed. This strategy can be combined with decentralized observers for amore » completely decentralized feedback linearization result for at least one input-output channel.« less
Method of fuzzy inference for one class of MISO-structure systems with non-singleton inputs
NASA Astrophysics Data System (ADS)
Sinuk, V. G.; Panchenko, M. V.
2018-03-01
In fuzzy modeling, the inputs of the simulated systems can receive both crisp values and non-Singleton. Computational complexity of fuzzy inference with fuzzy non-Singleton inputs corresponds to an exponential. This paper describes a new method of inference, based on the theorem of decomposition of a multidimensional fuzzy implication and a fuzzy truth value. This method is considered for fuzzy inputs and has a polynomial complexity, which makes it possible to use it for modeling large-dimensional MISO-structure systems.
Production Function Geometry with "Knightian" Total Product
ERIC Educational Resources Information Center
Truett, Dale B.; Truett, Lila J.
2007-01-01
Authors of principles and price theory textbooks generally illustrate short-run production using a total product curve that displays first increasing and then diminishing marginal returns to employment of the variable input(s). Although it seems reasonable that a temporary range of increasing returns to variable inputs will likely occur as…
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Geyser, L. C.
1984-01-01
AESOP is a computer program for use in designing feedback controls and state estimators for linear multivariable systems. AESOP is meant to be used in an interactive manner. Each design task that the program performs is assigned a "function" number. The user accesses these functions either (1) by inputting a list of desired function numbers or (2) by inputting a single function number. In the latter case the choice of the function will in general depend on the results obtained by the previously executed function. The most important of the AESOP functions are those that design,linear quadratic regulators and Kalman filters. The user interacts with the program when using these design functions by inputting design weighting parameters and by viewing graphic displays of designed system responses. Supporting functions are provided that obtain system transient and frequency responses, transfer functions, and covariance matrices. The program can also compute open-loop system information such as stability (eigenvalues), eigenvectors, controllability, and observability. The program is written in ANSI-66 FORTRAN for use on an IBM 3033 using TSS 370. Descriptions of all subroutines and results of two test cases are included in the appendixes.
Regan, R.S.; Schaffranek, R.W.; Baltzer, R.A.
1996-01-01
A system of functional utilities and computer routines, collectively identified as the Time-Dependent Data System CI DDS), has been developed and documented by the U.S. Geological Survey. The TDDS is designed for processing time sequences of discrete, fixed-interval, time-varying geophysical data--in particular, hydrologic data. Such data include various, dependent variables and related parameters typically needed as input for execution of one-, two-, and three-dimensional hydrodynamic/transport and associated water-quality simulation models. Such data can also include time sequences of results generated by numerical simulation models. Specifically, TDDS provides the functional capabilities to process, store, retrieve, and compile data in a Time-Dependent Data Base (TDDB) in response to interactive user commands or pre-programmed directives. Thus, the TDDS, in conjunction with a companion TDDB, provides a ready means for processing, preparation, and assembly of time sequences of data for input to models; collection, categorization, and storage of simulation results from models; and intercomparison of field data and simulation results. The TDDS can be used to edit and verify prototype, time-dependent data to affirm that selected sequences of data are accurate, contiguous, and appropriate for numerical simulation modeling. It can be used to prepare time-varying data in a variety of formats, such as tabular lists, sequential files, arrays, graphical displays, as well as line-printer plots of single or multiparameter data sets. The TDDB is organized and maintained as a direct-access data base by the TDDS, thus providing simple, yet efficient, data management and access. A single, easily used, program interface that provides all access to and from a particular TDDB is available for use directly within models, other user-provided programs, and other data systems. This interface, together with each major functional utility of the TDDS, is described and documented in this report.
A controls engineering approach for analyzing airplane input-output characteristics
NASA Technical Reports Server (NTRS)
Arbuckle, P. Douglas
1991-01-01
An engineering approach for analyzing airplane control and output characteristics is presented. State-space matrix equations describing the linear perturbation dynamics are transformed from physical coordinates into scaled coordinates. The scaling is accomplished by applying various transformations to the system to employ prior engineering knowledge of the airplane physics. Two different analysis techniques are then explained. Modal analysis techniques calculate the influence of each system input on each fundamental mode of motion and the distribution of each mode among the system outputs. The optimal steady state response technique computes the blending of steady state control inputs that optimize the steady state response of selected system outputs. Analysis of an example airplane model is presented to demonstrate the described engineering approach.
An on-line system for hand-printed input
NASA Technical Reports Server (NTRS)
Williams, T. G.; Bebb, J.
1971-01-01
The capability of graphic input/output systems is described. Topics considered are a character recognizer and dictionary building program, an initial flow chart element input program, and a system entitled The Assistant Mathematician, which uses ordinary mathematics to specify numeric computation. All three parts are necessary to allow a user to carry on a mathematical dialogue with the computer in the language and notation of his discipline or problem domain.
Large-Signal Klystron Simulations Using KLSC
NASA Astrophysics Data System (ADS)
Carlsten, B. E.; Ferguson, P.
1997-05-01
We describe a new, 2-1/2 dimensional, klystron-simulation code, KLSC. This code has a sophisticated input cavity model for calculating the klystron gain with arbitrary input cavity matching and tuning, and is capable of modeling coupled output cavities. We will discuss the input and output cavity models, and present simulation results from a high-power, S-band design. We will use these results to explore tuning issues with coupled output cavities.
Image processing tool for automatic feature recognition and quantification
Chen, Xing; Stoddard, Ryan J.
2017-05-02
A system for defining structures within an image is described. The system includes reading of an input file, preprocessing the input file while preserving metadata such as scale information and then detecting features of the input file. In one version the detection first uses an edge detector followed by identification of features using a Hough transform. The output of the process is identified elements within the image.
Solomon, Christopher T.; Jones, Stuart E.; Weidel, Brian C.; Buffam, Ishi; Fork, Megan L; Karlsson, Jan; Larsen, Soren; Lennon, Jay T.; Read, Jordan S.; Sadro, Steven; Saros, Jasmine E.
2015-01-01
Lake ecosystems and the services that they provide to people are profoundly influenced by dissolved organic matter derived from terrestrial plant tissues. These terrestrial dissolved organic matter (tDOM) inputs to lakes have changed substantially in recent decades, and will likely continue to change. In this paper, we first briefly review the substantial literature describing tDOM effects on lakes and ongoing changes in tDOM inputs. We then identify and provide examples of four major challenges which limit predictions about the implications of tDOM change for lakes, as follows: First, it is currently difficult to forecast future tDOM inputs for particular lakes or lake regions. Second, tDOM influences ecosystems via complex, interacting, physical-chemical-biological effects and our holistic understanding of those effects is still rudimentary. Third, non-linearities and thresholds in relationships between tDOM inputs and ecosystem processes have not been well described. Fourth, much understanding of tDOM effects is built on comparative studies across space that may not capture likely responses through time. We conclude by identifying research approaches that may be important for overcoming those challenges in order to provide policy- and management-relevant predictions about the implications of changing tDOM inputs for lakes.
Understanding the dynamical control of animal movement
NASA Astrophysics Data System (ADS)
Edwards, Donald
2008-03-01
Over the last 50 years, neurophysiologists have described many neural circuits that transform sensory input into motor commands, while biomechanicians and behavioral biologists have described many patterns of animal movement that occur in response to sensory input. Attempts to link these two have been frustrated by our technical inability to record from the necessary neurons in a freely behaving animal. As a result, we don't know how these neural circuits function in the closed loop context of free behavior, where the sensory and motor context changes on a millisecond time-scale. To address this problem, we have developed a software package, AnimatLab (www.AnimatLab.com), that enables users to reconstruct an animal's body and its relevant neural circuits, to link them at the sensory and motor ends, and through simulation, to test their ability to reproduce appropriate patterns of the animal's movements in a simulated Newtonian world. A Windows-based program, AnimatLab consists of a neural editor, a body editor, a world editor, stimulus and recording facilities, neural and physics engines, and an interactive 3-D graphical display. We have used AnimatLab to study three patterns of behavior: the grasshopper jump, crayfish escape, and crayfish leg movements used in postural control, walking, reaching and grasping. In each instance, the simulation helped identify constraints on both nervous function and biomechanical performance that have provided the basis for new experiments. Colleagues elsewhere have begun to use AnimatLab to study control of paw movements in cats and postural control in humans. We have also used AnimatLab simulations to guide the development of an autonomous hexapod robot in which the neural control circuitry is downloaded to the robot from the test computer.
Vriens, Dennis; de Geus-Oei, Lioe-Fee; Oyen, Wim J G; Visser, Eric P
2009-12-01
For the quantification of dynamic (18)F-FDG PET studies, the arterial plasma time-activity concentration curve (APTAC) needs to be available. This can be obtained using serial sampling of arterial blood or an image-derived input function (IDIF). Arterial sampling is invasive and often not feasible in practice; IDIFs are biased because of partial-volume effects and cannot be used when no large arterial blood pool is in the field of view. We propose a mathematic function, consisting of an initial linear rising activity concentration followed by a triexponential decay, to describe the APTAC. This function was fitted to 80 oncologic patients and verified for 40 different oncologic patients by area-under-the-curve (AUC) comparison, Patlak glucose metabolic rate (MR(glc)) estimation, and therapy response monitoring (Delta MR(glc)). The proposed function was compared with the gold standard (serial arterial sampling) and the IDIF. To determine the free parameters of the function, plasma time-activity curves based on arterial samples in 80 patients were fitted after normalization for administered activity (AA) and initial distribution volume (iDV) of (18)F-FDG. The medians of these free parameters were used for the model. In 40 other patients (20 baseline and 20 follow-up dynamic (18)F-FDG PET scans), this model was validated. The population-based curve, individually calibrated by AA and iDV (APTAC(AA/iDV)), by 1 late arterial sample (APTAC(1 sample)), and by the individual IDIF (APTAC(IDIF)), was compared with the gold standard of serial arterial sampling (APTAC(sampled)) using the AUC. Additionally, these 3 methods of APTAC determination were evaluated with Patlak MR(glc) estimation and with Delta MR(glc) for therapy effects using serial sampling as the gold standard. Excellent individual fits to the function were derived with significantly different decay constants (P < 0.001). Correlations between AUC from APTAC(AA/iDV), APTAC(1 sample), and APTAC(IDIF) with the gold standard (APTAC(sampled)) were 0.880, 0.994, and 0.856, respectively. For MR(glc), these correlations were 0.963, 0.994, and 0.966, respectively. In response monitoring, these correlations were 0.947, 0.982, and 0.949, respectively. Additional scaling by 1 late arterial sample showed a significant improvement (P < 0.001). The fitted input function calibrated for AA and iDV performed similarly to IDIF. Performance improved significantly using 1 late arterial sample. The proposed model can be used when an IDIF is not available or when serial arterial sampling is not feasible.