Science.gov

Sample records for input negative entropy

  1. Negative Entropy of Life

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2015-10-01

    We modify Newtonian gravity to probabilistic quantum mechanical gravity to derive strong coupling. If this approach is valid, we should be able to extend it to the physical body (life) as follows. Using Boltzmann equation, we get the entropy of the universe (137) as if its reciprocal, the fine structure constant (ALPHA), is the hidden candidate representing the negative entropy of the universe which is indicative of the binary information as its basis (http://www.arXiv.org/pdf/physics0210040v5). Since ALPHA relates to cosmology, it must relate to molecular biology too, with the binary system as the fundamental source of information for the nucleotides of the DNA as implicit in the book by the author: ``Quantum Consciousness - The Road to Reality.'' We debate claims of anthropic principle based on the negligible variation of ALPHA and throw light on thermodynamics. We question constancy of G in multiple ways.

  2. Photosynthesis and negative entropy production.

    PubMed

    Jennings, Robert C; Engelmann, Enrico; Garlaschi, Flavio; Casazza, Anna Paola; Zucchelli, Giuseppe

    2005-09-30

    The widely held view that the maximum efficiency of a photosynthetic pigment system is given by the Carnot cycle expression (1-T/Tr) for energy transfer from a hot bath (radiation at temperature Tr) to a cold bath (pigment system at temperature T) is critically examined and demonstrated to be inaccurate when the entropy changes associated with the microscopic process of photon absorption and photochemistry at the level of single photosystems are considered. This is because entropy losses due to excited state generation and relaxation are extremely small (DeltaS < T/Tr) and are essentially associated with the absorption-fluorescence Stokes shift. Total entropy changes associated with primary photochemistry for single photosystems are shown to depend critically on the thermodynamic efficiency of the process. This principle is applied to the case of primary photochemistry of the isolated core of higher plant photosystem I and photosystem II, which are demonstrated to have maximal thermodynamic efficiencies of xi > 0.98 and xi > 0.92 respectively, and which, in principle, function with negative entropy production. It is demonstrated that for the case of xi > (1-T/Tr) entropy production is always negative and only becomes positive when xi < (1-T/Tr).

  3. Negative temperatures and the definition of entropy

    NASA Astrophysics Data System (ADS)

    Swendsen, Robert H.; Wang, Jian-Sheng

    2016-07-01

    The concept of negative temperature has recently received renewed interest in the context of debates about the correct definition of the thermodynamic entropy in statistical mechanics. Several researchers have identified the thermodynamic entropy exclusively with the ;volume entropy; suggested by Gibbs, and have further concluded that by this definition, negative temperatures violate the principles of thermodynamics. We disagree with these conclusions. We demonstrate that volume entropy is inconsistent with the postulates of thermodynamics for systems with non-monotonic energy densities, while a definition of entropy based on the probability distributions of macroscopic variables does satisfy the postulates of thermodynamics. Our results confirm that negative temperature is a valid extension of thermodynamics.

  4. Correlation entropy of synaptic input-output dynamics

    NASA Astrophysics Data System (ADS)

    Kleppe, Ingo C.; Robinson, Hugh P. C.

    2006-10-01

    The responses of synapses in the neocortex show highly stochastic and nonlinear behavior. The microscopic dynamics underlying this behavior, and its computational consequences during natural patterns of synaptic input, are not explained by conventional macroscopic models of deterministic ensemble mean dynamics. Here, we introduce the correlation entropy of the synaptic input-output map as a measure of synaptic reliability which explicitly includes the microscopic dynamics. Applying this to experimental data, we find that cortical synapses show a low-dimensional chaos driven by the natural input pattern.

  5. Limits on negative information in language input.

    PubMed

    Morgan, J L; Travis, L L

    1989-10-01

    Hirsh-Pasek, Treiman & Schneiderman (1984) and Demetras, Post & Snow (1986) have recently suggested that certain types of parental repetitions and clarification questions may provide children with subtle cues to their grammatical errors. We further investigated this possibility by examining parental responses to inflectional over-regularizations and wh-question auxiliary-verb omission errors in the sets of transcripts from Adam, Eve and Sarah (Brown 1973). These errors were chosen because they are exemplars of overgeneralization, the type of mistake for which negative information is, in theory, most critically needed. Expansions and Clarification Questions occurred more often following ill-formed utterances in Adam's and Eve's input, but not in Sarah's. However, these corrective responses formed only a small proportion of all adult responses following Adam's and Eve's grammatical errors. Moreover, corrective responses appear to drop out of children's input while they continue to make overgeneralization errors. Whereas negative feedback may occasionally be available, in the light of these findings the contention that language input generally incorporates negative information appears to be unfounded.

  6. Specific transfer entropy and other state-dependent transfer entropies for continuous-state input-output systems

    NASA Astrophysics Data System (ADS)

    Darmon, David; Rapp, Paul E.

    2017-08-01

    Since its original formulation in 2000, transfer entropy has become an invaluable tool in the toolbox of nonlinear dynamicists working with empirical data. Transfer entropy and its generalizations provide a precise definition of uncertainty and information transfer that are central to the coupled systems studied in nonlinear science. However, a canonical definition of state-dependent transfer entropy has yet to be introduced. We introduce a candidate measure, the specific transfer entropy, and compare its properties to both total and local transfer entropy. Specific transfer entropy makes possible both state- and time-resolved analysis of the predictive impact of a candidate input system on a candidate output system. We also present principled methods for estimating total, local, and specific transfer entropies from empirical data. We demonstrate the utility of specific transfer entropy and our proposed estimation procedures with two model systems, and find that specific transfer entropy provides more, and more easily interpretable, information about an input-output system compared to currently existing methods.

  7. Disentangling geometric and dissipative origins of negative Casimir entropies.

    PubMed

    Umrath, Stefan; Hartmann, Michael; Ingold, Gert-Ludwig; Neto, Paulo A Maia

    2015-10-01

    Dissipative electromagnetic response and scattering geometry are potential sources for the appearance of a negative Casimir entropy. We show that the dissipative contribution familiar from the plane-plane geometry appears also in the plane-sphere and the sphere-sphere geometries and adds to the negative Casimir entropy known to exist in these geometries even for perfectly reflecting objects. Taking the sphere-sphere geometry as an example, we carry out a scattering-channel analysis, which allows us to distinguish between the contributions of different polarizations. We demonstrate that dissipation and geometry share a common feature making possible negative values of the Casimir entropy. In both cases there exists a scattering channel whose contribution to the Casimir free energy vanishes in the high-temperature limit. While the mode-mixing channel is associated with the geometric origin, the transverse electric channel is associated with the dissipative origin of the negative Casimir entropy. By going beyond the Rayleigh limit, we find even for large distances that negative Casimir entropies can occur also for Drude-type metals provided the dissipation strength is sufficiently small.

  8. Connectivity in the human brain dissociates entropy and complexity of auditory inputs.

    PubMed

    Nastase, Samuel A; Iacovella, Vittorio; Davis, Ben; Hasson, Uri

    2015-03-01

    Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. Copyright © 2014. Published by Elsevier Inc.

  9. Configurational Information as Potentially Negative Entropy: The Triple Helix Model

    NASA Astrophysics Data System (ADS)

    Leydesdorff, Loet

    2008-12-01

    Configurational information is generated when three or more sources of variance interact. The variations not only disturb each other relationally, but by selecting upon each other, they are also positioned in a configuration. A configuration can be stabilized and/or globalized. Different stabilizations can be considered as second-order variation, and globalization as a second-order selection. The positive manifestations and the negative selections operate upon one another by adding and reducing uncertainty, respectively. Reduction of uncertainty in a configuration can be measured in bits of information. The variables can also be considered as dimensions of the probabilistic entropy in the system(s) under study. The configurational information then provides us with a measure of synergy within a complex system. For example, the knowledge base of an economy can be considered as such a synergy in the otherwise virtual (that is, fourth) dimension of a regime

  10. Thermodynamics of exotic black holes, negative temperature, and Bekenstein Hawking entropy

    NASA Astrophysics Data System (ADS)

    Park, Mu-In

    2007-04-01

    Recently, exotic black holes whose masses and angular momenta are interchanged have been found, and it is known that their entropies depend only on the inner horizon areas. But a basic problem of these entropies is that the second law of thermodynamics is not guaranteed, in contrast to the Bekenstein Hawking entropy. Here, I find that there is another entropy formula which recovers the usual Bekenstein Hawking form, but the characteristic angular velocity and temperature are identified with those of the inner horizon, in order to satisfy the first law of black hole thermodynamics. The temperature has a negative value, due to an upper bound of mass as in spin systems, and the angular velocity has a lower bound. I show that one can obtain the same entropy formula from a conformal field theory computation, based on classical Virasoro algebras. I also describe several unanswered problems and some proposals for how these might be addressed.

  11. Geometric origin of negative Casimir entropies: A scattering-channel analysis.

    PubMed

    Ingold, Gert-Ludwig; Umrath, Stefan; Hartmann, Michael; Guérout, Romain; Lambrecht, Astrid; Reynaud, Serge; Milton, Kimball A

    2015-03-01

    Negative values of the Casimir entropy occur quite frequently at low temperatures in arrangements of metallic objects. The physical reason lies either in the dissipative nature of the metals as is the case for the plane-plane geometry or in the geometric form of the objects involved. Examples for the latter are the sphere-plane and the sphere-sphere geometry, where negative Casimir entropies can occur already for perfect metal objects. After appropriately scaling out the size of the objects, negative Casimir entropies of geometric origin are particularly pronounced in the limit of large distances between the objects. We analyze this limit in terms of the different scattering channels and demonstrate how the negativity of the Casimir entropy is related to the polarization mixing arising in the scattering process. If all involved objects have a finite zero-frequency conductivity, the channels involving transverse electric modes are suppressed and the Casimir entropy within the large-distance limit is found to be positive.

  12. The Stumbling Block of the Gibbs Entropy: the Reality of the Negative Absolute Temperatures

    NASA Astrophysics Data System (ADS)

    Anghel, Dragoş-Victor

    2016-02-01

    The second Tisza-Callen postulate of equilibrium thermodynamics states that for any system there exists a function of the system extensive parameters, called entropy, defined for all equilibrium states and having the property that the values assumed by the extensive parameters in the absence of a constraint are those that maximize the entropy over the manifold of constrained equilibrium states. Based on the thermodynamic evolution of systems which (in the Boltzmann description) have positive and negative temperatures, we show that this postulate is satisfied by the Boltzmann formula for the entropy and may be violated by the Gibbs formula, therefore invalidating the later. Vice versa, if we assume, by reductio ad absurdum, that for some thermodynamic systems the equilibrium state is determined by the Gibbs' prescription and not by Boltzmann's, this implies that such systems have macroscopic fluctuations and therefore do not reach the thermodynamic equilibrium.

  13. Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions

    NASA Astrophysics Data System (ADS)

    Zunino, Luciano; Olivares, Felipe; Scholkmann, Felix; Rosso, Osvaldo A.

    2017-06-01

    A symbolic encoding scheme, based on the ordinal relation between the amplitude of neighboring values of a given data sequence, should be implemented before estimating the permutation entropy. Consequently, equalities in the analyzed signal, i.e. repeated equal values, deserve special attention and treatment. In this work, we carefully study the effect that the presence of equalities has on permutation entropy estimated values when these ties are symbolized, as it is commonly done, according to their order of appearance. On the one hand, the analysis of computer-generated time series is initially developed to understand the incidence of repeated values on permutation entropy estimations in controlled scenarios. The presence of temporal correlations is erroneously concluded when true pseudorandom time series with low amplitude resolutions are considered. On the other hand, the analysis of real-world data is included to illustrate how the presence of a significant number of equal values can give rise to false conclusions regarding the underlying temporal structures in practical contexts.

  14. An entropy-based input variable selection approach to identify equally informative subsets for data-driven hydrological models

    NASA Astrophysics Data System (ADS)

    Karakaya, Gulsah; Taormina, Riccardo; Galelli, Stefano; Damla Ahipasaoglu, Selin

    2015-04-01

    Input Variable Selection (IVS) is an essential step in hydrological modelling problems, since it allows determining the optimal subset of input variables from a large set of candidates to characterize a preselected output. Interestingly, most of the existing IVS algorithms select a single subset, or, at most, one subset of input variables for each cardinality level, thus overlooking the fact that, for a given cardinality, there can be several subsets with similar information content. In this study, we develop a novel IVS approach specifically conceived to account for this issue. The approach is based on the formulation of a four-objective optimization problem that aims at minimizing the number of selected variables and maximizing the prediction accuracy of a data-driven model, while optimizing two entropy-based measures of relevance and redundancy. The redundancy measure ensures that the cross-dependence between the variables in a subset is minimized, while the relevance measure guarantees that the information content of each subset is maximized. In addition to the capability of selecting equally informative subsets, the approach is characterized by two other properties, namely 1) the capability of handling nonlinear interactions between the candidate input variables and preselected output, and 2) computational efficiency. These properties are guaranteed by the adoption of Extreme Learning Machine and Borg MOEA as data-driven model and heuristic optimization procedure, respectively. The approach is demonstrated on a long-term streamflow prediction problem, with the input dataset including both hydro-meteorological variables and climate indices representing dominant modes of climate variability. Results show that the availability of several equally informative subsets allows 1) determining the relative importance of each candidate input, thus supporting the understanding of the underlying physical processes, and 2) finding a better trade-off between multiple

  15. Entropies of negative incomes, Pareto-distributed loss, and financial crises.

    PubMed

    Gao, Jianbo; Hu, Jing; Mao, Xiang; Zhou, Mi; Gurbaxani, Brian; Lin, Johnny

    2011-01-01

    Health monitoring of world economy is an important issue, especially in a time of profound economic difficulty world-wide. The most important aspect of health monitoring is to accurately predict economic downturns. To gain insights into how economic crises develop, we present two metrics, positive and negative income entropy and distribution analysis, to analyze the collective "spatial" and temporal dynamics of companies in nine sectors of the world economy over a 19 year period from 1990-2008. These metrics provide accurate predictive skill with a very low false-positive rate in predicting downturns. The new metrics also provide evidence of phase transition-like behavior prior to the onset of recessions. Such a transition occurs when negative pretax incomes prior to or during economic recessions transition from a thin-tailed exponential distribution to the higher entropy Pareto distribution, and develop even heavier tails than those of the positive pretax incomes. These features propagate from the crisis initiating sector of the economy to other sectors.

  16. Exact master equation for a spin interacting with a spin bath: Non-Markovianity and negative entropy production rate

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Samyadeb; Misra, Avijit; Mukhopadhyay, Chiranjib; Pati, Arun Kumar

    2017-01-01

    An exact canonical master equation of the Lindblad form is derived for a central spin interacting uniformly with a sea of completely unpolarized spins. The Kraus operators for the dynamical map are also derived. The non-Markovianity of the dynamics in terms of the divisibility breaking of the dynamical map and the increase of the trace distance fidelity between quantum states is shown. Moreover, it is observed that the irreversible entropy production rate is always negative (for a fixed initial state) whenever the dynamics exhibits non-Markovian behavior. In continuation with the study of witnessing non-Markovianity, it is shown that the positive rate of change of the purity of the central qubit is a faithful indicator of the non-Markovian information backflow. Given the experimental feasibility of measuring the purity of a quantum state, a possibility of experimental demonstration of non-Markovianity and the negative irreversible entropy production rate is addressed. This gives the present work considerable practical importance for detecting the non-Markovianity and the negative irreversible entropy production rate.

  17. Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis

    PubMed Central

    Dordek, Yedidyah; Soudry, Daniel; Meir, Ron; Derdikman, Dori

    2016-01-01

    Many recent models study the downstream projection from grid cells to place cells, while recent data have pointed out the importance of the feedback projection. We thus asked how grid cells are affected by the nature of the input from the place cells. We propose a single-layer neural network with feedforward weights connecting place-like input cells to grid cell outputs. Place-to-grid weights are learned via a generalized Hebbian rule. The architecture of this network highly resembles neural networks used to perform Principal Component Analysis (PCA). Both numerical results and analytic considerations indicate that if the components of the feedforward neural network are non-negative, the output converges to a hexagonal lattice. Without the non-negativity constraint, the output converges to a square lattice. Consistent with experiments, grid spacing ratio between the first two consecutive modules is −1.4. Our results express a possible linkage between place cell to grid cell interactions and PCA. DOI: http://dx.doi.org/10.7554/eLife.10094.001 PMID:26952211

  18. Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli.

    PubMed

    Madar, Daniel; Dekel, Erez; Bren, Anat; Alon, Uri

    2011-07-12

    Gene regulation networks are made of recurring regulatory patterns, called network motifs. One of the most common network motifs is negative auto-regulation, in which a transcription factor represses its own production. Negative auto-regulation has several potential functions: it can shorten the response time (time to reach halfway to steady-state), stabilize expression against noise, and linearize the gene's input-output response curve. This latter function of negative auto-regulation, which increases the range of input signals over which downstream genes respond, has been studied by theory and synthetic gene circuits. Here we ask whether negative auto-regulation preserves this function also in the context of a natural system, where it is embedded within many additional interactions. To address this, we studied the negative auto-regulation motif in the arabinose utilization system of Escherichia coli, in which negative auto-regulation is part of a complex regulatory network. We find that when negative auto-regulation is disrupted by placing the regulator araC under constitutive expression, the input dynamic range of the arabinose system is reduced by 10-fold. The apparent Hill coefficient of the induction curve changes from about n = 1 with negative auto-regulation, to about n = 2 when it is disrupted. We present a mathematical model that describes how negative auto-regulation can increase input dynamic-range, by coupling the transcription factor protein level to the input signal. Here we demonstrate that the negative auto-regulation motif in the native arabinose system of Escherichia coli increases the range of arabinose signals over which the system can respond. In this way, negative auto-regulation may help to increase the input dynamic-range while maintaining the specificity of cooperative regulatory systems. This function may contribute to explaining the common occurrence of negative auto-regulation in biological systems.

  19. Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli

    PubMed Central

    2011-01-01

    Background Gene regulation networks are made of recurring regulatory patterns, called network motifs. One of the most common network motifs is negative auto-regulation, in which a transcription factor represses its own production. Negative auto-regulation has several potential functions: it can shorten the response time (time to reach halfway to steady-state), stabilize expression against noise, and linearize the gene's input-output response curve. This latter function of negative auto-regulation, which increases the range of input signals over which downstream genes respond, has been studied by theory and synthetic gene circuits. Here we ask whether negative auto-regulation preserves this function also in the context of a natural system, where it is embedded within many additional interactions. To address this, we studied the negative auto-regulation motif in the arabinose utilization system of Escherichia coli, in which negative auto-regulation is part of a complex regulatory network. Results We find that when negative auto-regulation is disrupted by placing the regulator araC under constitutive expression, the input dynamic range of the arabinose system is reduced by 10-fold. The apparent Hill coefficient of the induction curve changes from about n = 1 with negative auto-regulation, to about n = 2 when it is disrupted. We present a mathematical model that describes how negative auto-regulation can increase input dynamic-range, by coupling the transcription factor protein level to the input signal. Conclusions Here we demonstrate that the negative auto-regulation motif in the native arabinose system of Escherichia coli increases the range of arabinose signals over which the system can respond. In this way, negative auto-regulation may help to increase the input dynamic-range while maintaining the specificity of cooperative regulatory systems. This function may contribute to explaining the common occurrence of negative auto-regulation in biological systems. PMID

  20. Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass

    NASA Astrophysics Data System (ADS)

    Tilman, David; Hill, Jason; Lehman, Clarence

    2006-12-01

    Biofuels derived from low-input high-diversity (LIHD) mixtures of native grassland perennials can provide more usable energy, greater greenhouse gas reductions, and less agrichemical pollution per hectare than can corn grain ethanol or soybean biodiesel. High-diversity grasslands had increasingly higher bioenergy yields that were 238% greater than monoculture yields after a decade. LIHD biofuels are carbon negative because net ecosystem carbon dioxide sequestration (4.4 megagram hectare-1 year-1 of carbon dioxide in soil and roots) exceeds fossil carbon dioxide release during biofuel production (0.32 megagram hectare-1 year-1). Moreover, LIHD biofuels can be produced on agriculturally degraded lands and thus need to neither displace food production nor cause loss of biodiversity via habitat destruction.

  1. Edge theory approach to topological entanglement entropy, mutual information, and entanglement negativity in Chern-Simons theories

    NASA Astrophysics Data System (ADS)

    Wen, Xueda; Matsuura, Shunji; Ryu, Shinsei

    2016-06-01

    We develop an approach based on edge theories to calculate the entanglement entropy and related quantities in (2+1)-dimensional topologically ordered phases. Our approach is complementary to, e.g., the existing methods using replica trick and Witten's method of surgery, and applies to a generic spatial manifold of genus g , which can be bipartitioned in an arbitrary way. The effects of fusion and braiding of Wilson lines can be also straightforwardly studied within our framework. By considering a generic superposition of states with different Wilson line configurations, through an interference effect, we can detect, by the entanglement entropy, the topological data of Chern-Simons theories, e.g., the R symbols, monodromy, and topological spins of quasiparticles. Furthermore, by using our method, we calculate other entanglement/correlation measures such as the mutual information and the entanglement negativity. In particular, it is found that the entanglement negativity of two adjacent noncontractible regions on a torus provides a simple way to distinguish Abelian and non-Abelian topological orders.

  2. Comment on "Carbon-negative biofuels from low-input high-diversity grassland biomass".

    PubMed

    Russelle, Michael P; Morey, R Vance; Baker, John M; Porter, Paul M; Jung, Hans-Joachim G

    2007-06-15

    Tilman et al. (Reports, 8 December 2006, p. 1598) argued that low-input high-diversity grasslands can provide a substantial proportion of global energy needs. We contend that their conclusions are not substantiated by their experimental protocol. The authors understated the management inputs required to establish prairies, extrapolated globally from site-specific results, and presented potentially misleading energy accounting.

  3. Positive and negative gustatory inputs affect Drosophila lifespan partly in parallel to dFOXO signaling

    PubMed Central

    Ostojic, Ivan; Boll, Werner; Waterson, Michael J.; Chan, Tammy; Chandra, Rashmi; Pletcher, Scott D.; Alcedo, Joy

    2014-01-01

    In Caenorhabditis elegans, a subset of gustatory neurons, as well as olfactory neurons, shortens lifespan, whereas a different subset of gustatory neurons lengthens it. Recently, the lifespan-shortening effect of olfactory neurons has been reported to be conserved in Drosophila. Here we show that the Drosophila gustatory system also affects lifespan in a bidirectional manner. We find that taste inputs shorten lifespan through inhibition of the insulin pathway effector dFOXO, whereas other taste inputs lengthen lifespan in parallel to this pathway. We also note that the gustatory influence on lifespan does not necessarily depend on food intake levels. Finally, we identify the nature of some of the taste inputs that could shorten versus lengthen lifespan. Together our data suggest that different gustatory cues can modulate the activities of distinct signaling pathways, including different insulin-like peptides, to promote physiological changes that ultimately affect lifespan. PMID:24847072

  4. Coexistence of positive and negative magnetic entropy changes in CeMn2(Si1 - xGex)2 compounds

    NASA Astrophysics Data System (ADS)

    Zuo, Wen-Liang; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2015-09-01

    A series of CeMn2(Si1-xGex)2 (x = 0.2, 0.4, 0.6, 0.8) compounds are prepared by the arc-melting method. All the samples primarily crystallize in the ThCr2Si2-type structure. The temperature dependences of zero-field-cooled (ZFC) and FC magnetization measurements show a transition from antiferromagnetic (AFM) state to ferromagnetic (FM) state at room temperature with the increase of the Ge concentration. For x = 0.4, the sample exhibits two kinds of phase transitions with increasing temperature: from AFM to FM and from FM to paramagnetic (PM) at around TN ˜ 197 K and TC ˜ 300 K, respectively. The corresponding Arrott curves indicate that the AFM-FM transition is of first-order character and the FM-PM transition is of second-order character. Meanwhile, the coexistence of positive and negative magnetic entropy changes can be observed, which are corresponding to the AFM-FM and FM-PM transitions, respectively. Project supported by the Beijing Natural Science Foundation, China (Grant No. 2152034) and the National Natural Science Foundation of China (Grant Nos. 11274357 and 51271196).

  5. Coherent Behavior and the Bound State of Water and K+ Imply Another Model of Bioenergetics: Negative Entropy Instead of High-energy Bonds

    PubMed Central

    Jaeken, Laurent; Vasilievich Matveev, Vladimir

    2012-01-01

    Observations of coherent cellular behavior cannot be integrated into widely accepted membrane (pump) theory (MT) and its steady state energetics because of the thermal noise of assumed ordinary cell water and freely soluble cytoplasmic K+. However, Ling disproved MT and proposed an alternative based on coherence, showing that rest (R) and action (A) are two different phases of protoplasm with different energy levels. The R-state is a coherent metastable low-entropy state as water and K+ are bound to unfolded proteins. The A-state is the higher-entropy state because water and K+ are free. The R-to-A phase transition is regarded as a mechanism to release energy for biological work, replacing the classical concept of high-energy bonds. Subsequent inactivation during the endergonic A-to-R phase transition needs an input of metabolic energy to restore the low entropy R-state. Matveev’s native aggregation hypothesis allows to integrate the energetic details of globular proteins into this view. PMID:23264833

  6. Coherent Behavior and the Bound State of Water and K(+) Imply Another Model of Bioenergetics: Negative Entropy Instead of High-energy Bonds.

    PubMed

    Jaeken, Laurent; Vasilievich Matveev, Vladimir

    2012-01-01

    Observations of coherent cellular behavior cannot be integrated into widely accepted membrane (pump) theory (MT) and its steady state energetics because of the thermal noise of assumed ordinary cell water and freely soluble cytoplasmic K(+). However, Ling disproved MT and proposed an alternative based on coherence, showing that rest (R) and action (A) are two different phases of protoplasm with different energy levels. The R-state is a coherent metastable low-entropy state as water and K(+) are bound to unfolded proteins. The A-state is the higher-entropy state because water and K(+) are free. The R-to-A phase transition is regarded as a mechanism to release energy for biological work, replacing the classical concept of high-energy bonds. Subsequent inactivation during the endergonic A-to-R phase transition needs an input of metabolic energy to restore the low entropy R-state. Matveev's native aggregation hypothesis allows to integrate the energetic details of globular proteins into this view.

  7. Seeking the foundations of cognition in bacteria: From Schrödinger's negative entropy to latent information

    NASA Astrophysics Data System (ADS)

    Ben Jacob, Eshel; Shapira, Yoash; Tauber, Alfred I.

    2006-01-01

    We reexamine Schrödinger's reflections on the fundamental requirements for life in view of new observations about bacterial self-organization and the emerging understanding of gene-network regulation mechanisms and dynamics. Focusing on the energy, matter and thermodynamic imbalances provided by the environment, Schrödinger proposed his consumption of negative entropy requirement for life. We take the criteria further and propose that, besides “negative entropy”, organisms extract latent information embedded in the complexity of their environment. By latent information we refer to the non-arbitrary spatio-temporal patterns of regularities and variations that characterize the environmental dynamics. Hence it can be used to generate an internal condensed description (model or usable information) of the environment which guides the organisms functioning. Accordingly, we propose that Schrödinger's criterion of “consumption of negative entropy” is not sufficient and “consumption of latent information” is an additional fundamental requirement of Life. In other words, all organisms, including bacteria, the most primitive (fundamental) ones, must be able to sense the environment and perform internal information processing for thriving on latent information embedded in the complexity of their environment. We then propose that by acting together, bacteria can perform this most elementary cognitive function more efficiently as can be illustrated by their cooperative behavior (colonial or inter-cellular self-organization). As a member of a complex superorganism-the colony-each unit (bacteria) must possess the ability to sense and communicate with the other units comprising the collective and perform its task within a distribution of tasks. Bacterial communication thus entails collective sensing and cooperativity. The fundamental (primitive) elements of cognition in such systems include interpretation of (chemical) messages, distinction between internal and

  8. Parole release decisions: impact of positive and negative victim and nonvictim input on a representative sample of parole-eligible inmates.

    PubMed

    Caplan, Joel M

    2010-01-01

    This study analyzed administrative data from the New Jersey State Parole Board to determine the extent to which victim and nonvictim input impacted parole release decisions. Positive and negative input, in both verbal and written forms, was studied for a representative sample of 820 parole-eligible adult inmates. Victim input was not found to be a significant predictor of parole release; measures of institutional behavior, crime severity, and criminal history were significant. Though insignificant, verbal input had a greater effect than written input. Results suggest that the impact of victim input is not generalizable across different types of offenders or across different paroling jurisdictions. It can no longer be assumed that victim rights laws and public participation at parole guarantee victim-desired outcomes.

  9. Specification of motoneuron fate in Drosophila: integration of positive and negative transcription factor inputs by a minimal eve enhancer.

    PubMed

    McDonald, Jocelyn A; Fujioka, Miki; Odden, Joanne P; Jaynes, James B; Doe, Chris Q

    2003-11-01

    We are interested in the mechanisms that generate neuronal diversity within the Drosophila central nervous system (CNS), and in particular in the development of a single identified motoneuron called RP2. Expression of the homeodomain transcription factor Even-skipped (Eve) is required for RP2 to establish proper connectivity with its muscle target. Here we investigate the mechanisms by which eve is specifically expressed within the RP2 motoneuron lineage. Within the NB4-2 lineage, expression of eve first occurs in the precursor of RP2, called GMC4-2a. We identify a small 500 base pair eve enhancer that mediates eve expression in GMC4-2a. We show that four different transcription factors (Prospero, Huckebein, Fushi tarazu, and Pdm1) are all expressed in GMC4-2a, and are required to activate eve via this minimal enhancer, and that one transcription factor (Klumpfuss) represses eve expression via this element. All four positively acting transcription factors act independently, regulating eve but not each other. Thus, the eve enhancer integrates multiple positive and negative transcription factor inputs to restrict eve expression to a single precursor cell (GMC4-2a) and its RP2 motoneuron progeny. Copyright 2003 Wiley Periodicals, Inc.

  10. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe{sub 11.4}Si{sub 1.6}

    SciTech Connect

    Hu, Feng-xia; Shen, Bao-gen; Sun, Ji-rong; Cheng, Zhao-hua; Rao, Guang-hui; Zhang, Xi-xiang

    2001-06-04

    Magnetization of the compound LaFe{sub 11.4}Si{sub 1.6} with the cubic NaZn{sub 13}-type structure was measured as functions of temperature and magnetic field around its Curie temperature T{sub C} of {similar_to}208 K. It is found that the magnetic phase transition at T{sub C} is completely reversible. Magnetic entropy change {Delta}S, allowing one to estimate the magnetocaloric effect, was determined based on the thermodynamic Maxwell relation. The achieved magnitude of {vert_bar}{Delta}S{vert_bar} reaches 19.4 J/kgK under a field of 5 T, which exceeds that of most other materials involving a reversible magnetic transition in the corresponding temperature range. The large entropy change is ascribed to the sharp change of magnetization, which is caused by a large negative lattice expansion at the T{sub C}. An asymmetrical broadening of {vert_bar}{Delta}S{vert_bar} peak with increasing field was observed, which is resulted from the field-induced itinerant-electron metamagnetic transition from the paramagnetic to ferromagnetic state above the T{sub C}. {copyright} 2001 American Institute of Physics.

  11. Time-varying spectral entropy differentiates between positive and negative feed back-related EEG activity in a hypothesis testing paradigm.

    PubMed

    Papo, David; Caverni, Jean-Paul; Douiri, Abdel; Podlipsky, Ilana; Baudonnière, Pierre-Marie

    2007-12-01

    Positive and negative performance feedbacks have been shown to differentially modulate amplitudes of the associated electroencephalographic (EEG) brain activity. In the present study, we tested whether feedback also modulates the organization of neuronal oscillations. Ten college students serially tested hypotheses concerning a hidden rule by judging its presence or absence in triplets of digits and revised them on the basis of an exogenous performance feedback. The EEG signal time-locked to feedback was convolved with a family of complex wavelets. The time-varying spectral entropy of the resulting time-frequency representation was then computed. The results showed that feedback differentially modulated spectral organization at frontal and posterior scalp regions around 200 ms and in the 300-500 ms range. Spatio-temporal principal component analysis (PCA) indicated that feedback-specific modulations essentially resulted from the interplay between fronto-polar, fronto-central, and parieto-occipital components. Functional and methodological implications were discussed.

  12. A Regulated Double-Negative Feedback Decodes the Temporal Gradient of Input Stimulation in a Cell Signaling Network

    PubMed Central

    Park, Sang-Min; Shin, Sung-Young; Cho, Kwang-Hyun

    2016-01-01

    Revealing the hidden mechanism of how cells sense and react to environmental signals has been a central question in cell biology. We focused on the rate of increase of stimulation, or temporal gradient, known to cause different responses of cells. We have investigated all possible three-node enzymatic networks and identified a network motif that robustly generates a transient or sustained response by acute or gradual stimulation, respectively. We also found that a regulated double-negative feedback within the motif is essential for the temporal gradient-sensitive switching. Our analysis highlights the essential structure and mechanism enabling cells to properly respond to dynamic environmental changes. PMID:27584002

  13. Entropy, materials, and posterity

    USGS Publications Warehouse

    Cloud, P.

    1977-01-01

    Materials and energy are the interdependent feedstocks of economic systems, and thermodynamics is their moderator. It costs energy to transform the dispersed minerals of Earth's crust into ordered materials and structures. And it costs materials to collect and focus the energy to perform work - be it from solar, fossil fuel, nuclear, or other sources. The greater the dispersal of minerals sought, the more energy is required to collect them into ordered states. But available energy can be used once only. And the ordered materials of industrial economies become disordered with time. They may be partially reordered and recycled, but only at further costs in energy. Available energy everywhere degrades to bound states and order to disorder - for though entropy may be juggled it always increases. Yet industry is utterly dependent on low entropy states of matter and energy, while decreasing grades of ore require ever higher inputs of energy to convert them to metals, with ever increasing growth both of entropy and environmental hazard. Except as we may prize a thing for its intrinsic qualities - beauty, leisure, love, or gold - low-entropy is the only thing of real value. It is worth whatever the market will bear, and it becomes more valuable as entropy increases. It would be foolish of suppliers to sell it more cheaply or in larger amounts than their own enjoyment of life requires, whatever form it may take. For this reason, and because of physical constraints on the availability of all low-entropy states, the recent energy crises is only the first of a sequence of crises to be expected in energy and materials as long as current trends continue. The apportioning of low-entropy states in a modern industrial society is achieved more or less according to the theory of competitive markets. But the rational powers of this theory suffer as the world grows increasingly polarized into rich, over-industrialized nations with diminishing resource bases and poor, supplier nations

  14. Entanglement entropy in flat holography

    NASA Astrophysics Data System (ADS)

    Jiang, Hongliang; Song, Wei; Wen, Qiang

    2017-07-01

    BMS symmetry, which is the asymptotic symmetry at null infinity of flat spacetime, is an important input for flat holography. In this paper, we give a holographic calculation of entanglement entropy and Rényi entropy in three dimensional Einstein gravity and Topologically Massive Gravity. The geometric picture for the entanglement entropy is the length of a spacelike geodesic which is connected to the interval at null infinity by two null geodesics. The spacelike geodesic is the fixed points of replica symmetry, and the null geodesics are along the modular flow. Our strategy is to first reformulate the Rindler method for calculating entanglement entropy in a general setup, and apply it for BMS invariant field theories, and finally extend the calculation to the bulk.

  15. Upper entropy axioms and lower entropy axioms

    SciTech Connect

    Guo, Jin-Li Suo, Qi

    2015-04-15

    The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon–Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon–Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover, different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics.

  16. Entropy and Enzyme Catalysis.

    PubMed

    Åqvist, Johan; Kazemi, Masoud; Isaksen, Geir Villy; Brandsdal, Bjørn Olav

    2017-02-21

    The role played by entropy for the enormous rate enhancement achieved by enzymes has been debated for many decades. There are, for example, several confirmed cases where the activation free energy is reduced by around 10 kcal/mol due to entropic effects, corresponding to a rate enhancement of ∼10(7) compared to the uncatalyzed reaction. However, despite substantial efforts from both the experimental and theoretical side, no real consensus has been reached regarding the origin of such large entropic contributions to enzyme catalysis. Another remarkable instance of entropic effects is found in enzymes that are adapted by evolution to work at low temperatures, near the freezing point of water. These cold-adapted enzymes invariably show a more negative entropy and a lower enthalpy of activation than their mesophilic orthologs, which counteracts the exponential damping of reaction rates at lower temperature. The structural origin of this universal phenomenon has, however, remained elusive. The basic problem with connecting macroscopic thermodynamic quantities, such as activation entropy and enthalpy derived from Arrhenius plots, to the 3D protein structure is that the underlying detailed (microscopic) energetics is essentially inaccessible to experiment. Moreover, attempts to calculate entropy contributions by computer simulations have mostly focused only on substrate entropies, which do not provide the full picture. We have recently devised a new approach for accessing thermodynamic activation parameters of both enzyme and solution reactions from computer simulations, which turns out to be very successful. This method is analogous to the experimental Arrhenius plots and directly evaluates the temperature dependence of calculated reaction free energy profiles. Hence, by extensive molecular dynamics simulations and calculations of up to thousands of independent free energy profiles, we are able to extract activation parameters with sufficient precision for making

  17. Expression of the Troponin C at 41C Gene in Adult Drosophila Tubular Muscles Depends upon Both Positive and Negative Regulatory Inputs.

    PubMed

    Chechenova, Maria B; Maes, Sara; Cripps, Richard M

    2015-01-01

    Most animals express multiple isoforms of structural muscle proteins to produce tissues with different physiological properties. In Drosophila, the adult muscles include tubular-type muscles and the fibrillar indirect flight muscles. Regulatory processes specifying tubular muscle fate remain incompletely understood, therefore we chose to analyze the transcriptional regulation of TpnC41C, a Troponin C gene expressed in the tubular jump muscles, but not in the fibrillar flight muscles. We identified a 300-bp promoter fragment of TpnC41C sufficient for the fiber-specific reporter expression. Through an analysis of this regulatory element, we identified two sites necessary for the activation of the enhancer. Mutations in each of these sites resulted in 70% reduction of enhancer activity. One site was characterized as a binding site for Myocyte Enhancer Factor-2. In addition, we identified a repressive element that prevents activation of the enhancer in other muscle fiber types. Mutation of this site increased jump muscle-specific expression of the reporter, but more importantly reporter expression expanded into the indirect flight muscles. Our findings demonstrate that expression of the TpnC41C gene in jump muscles requires integration of multiple positive and negative transcriptional inputs. Identification of the transcriptional regulators binding the cis-elements that we identified will reveal the regulatory pathways controlling muscle fiber differentiation.

  18. Casimir self-entropy of an electromagnetic thin sheet

    NASA Astrophysics Data System (ADS)

    Li, Yang; Milton, Kimball A.; Kalauni, Pushpa; Parashar, Prachi

    2016-10-01

    Casimir entropies due to quantum fluctuations in the interaction between electrical bodies can often be negative, caused either by dissipation or by geometry. Although generally such entropies vanish at zero temperature, consistent with the third law of thermodynamics (the Nernst heat theorem), there is a region in the space of temperature and separation between the bodies where negative entropy occurs, while positive interaction entropies arise for large distances or temperatures. Systematic studies on this phenomenon in the Casimir-Polder interaction between a polarizable nanoparticle or atom and a conducting plate in the dipole approximation have been given recently. Since the total entropy should be positive according to the second law of thermodynamics, we expect that the self-entropy of the bodies would be sufficiently positive as to overwhelm the negative interaction entropy. This expectation, however, has not been explicitly verified. Here we compute the self-entropy of an electromagnetic δ -function plate, which corresponds to a perfectly conducting sheet in the strong coupling limit. The transverse electric contribution to the self-entropy is negative, while the transverse magnetic contribution is larger and positive, so the total self-entropy is positive. However, this self-entropy vanishes in the strong-coupling limit. In that case, it is the self-entropy of the nanoparticle, which we recalculate in the perfect conducting limit, that is just sufficient to result in a non-negative total entropy.

  19. Maximum Entropy Guide for BSS

    NASA Astrophysics Data System (ADS)

    Górriz, J. M.; Puntonet, C. G.; Medialdea, E. G.; Rojas, F.

    2005-11-01

    This paper proposes a novel method for Blindly Separating unobservable independent component (IC) Signals (BSS) based on the use of a maximum entropy guide (MEG). The paper also includes a formal proof on the convergence of the proposed algorithm using the guiding operator, a new concept in the genetic algorithm (GA) scenario. The Guiding GA (GGA) presented in this work, is able to extract IC with faster rate than the previous ICA algorithms, based on maximum entropy contrast functions, as input space dimension increases. It shows significant accuracy and robustness than the previous approaches in any case.

  20. On the dispute between Boltzmann and Gibbs entropy

    SciTech Connect

    Buonsante, Pierfrancesco; Franzosi, Roberto Smerzi, Augusto

    2016-12-15

    The validity of the concept of negative temperature has been recently challenged by arguing that the Boltzmann entropy (that allows negative temperatures) is inconsistent from a mathematical and statistical point of view, whereas the Gibbs entropy (that does not admit negative temperatures) provides the correct definition for the microcanonical entropy. Here we prove that the Boltzmann entropy is thermodynamically and mathematically consistent. Analytical results on two systems supporting negative temperatures illustrate the scenario we propose. In addition we numerically study a lattice system to show that negative temperature equilibrium states are accessible and obey standard statistical mechanics prediction.

  1. The Burg problem and Tsallis' entropy

    NASA Astrophysics Data System (ADS)

    Pintarelli, María B.; Mesón, Alejandro M.; Vericat, Fernando

    1999-06-01

    A maximum-entropy criterion (MAXENT), involving the q-entropy proposed by Tsallis, is applied to estimate the power spectrum of a real time series of finite length T under the assumption that the autocovariance is known for m+1 lags, where m< T (Burg problem). For a given input, the spectrum we find for an arbitrary value of q is equal to that of q=1 (standard MAXENT) and it corresponds to an autoregressive model (AR).

  2. In defense of negative temperature

    NASA Astrophysics Data System (ADS)

    Poulter, J.

    2016-03-01

    This pedagogical comment highlights three misconceptions concerning the usefulness of the concept of negative temperature, being derived from the usual, often termed Boltzmann, definition of entropy. First, both the Boltzmann and Gibbs entropies must obey the same thermodynamic consistency relation. Second, the Boltzmann entropy does obey the second law of thermodynamics. Third, there exists an integrating factor of the heat differential with both definitions of entropy.

  3. Entropy power inequalities for qudits

    NASA Astrophysics Data System (ADS)

    Audenaert, Koenraad; Datta, Nilanjana; Ozols, Maris

    2016-05-01

    Shannon's entropy power inequality (EPI) can be viewed as a statement of concavity of an entropic function of a continuous random variable under a scaled addition rule: f ( √{ a } X + √{ 1 - a } Y ) ≥ a f ( X ) + ( 1 - a ) f ( Y ) ∀ a ∈ [ 0 , 1 ] . Here, X and Y are continuous random variables and the function f is either the differential entropy or the entropy power. König and Smith [IEEE Trans. Inf. Theory 60(3), 1536-1548 (2014)] and De Palma, Mari, and Giovannetti [Nat. Photonics 8(12), 958-964 (2014)] obtained quantum analogues of these inequalities for continuous-variable quantum systems, where X and Y are replaced by bosonic fields and the addition rule is the action of a beam splitter with transmissivity a on those fields. In this paper, we similarly establish a class of EPI analogues for d-level quantum systems (i.e., qudits). The underlying addition rule for which these inequalities hold is given by a quantum channel that depends on the parameter a ∈ [0, 1] and acts like a finite-dimensional analogue of a beam splitter with transmissivity a, converting a two-qudit product state into a single qudit state. We refer to this channel as a partial swap channel because of the particular way its output interpolates between the states of the two qudits in the input as a is changed from zero to one. We obtain analogues of Shannon's EPI, not only for the von Neumann entropy and the entropy power for the output of such channels, but also for a much larger class of functions. This class includes the Rényi entropies and the subentropy. We also prove a qudit analogue of the entropy photon number inequality (EPnI). Finally, for the subclass of partial swap channels for which one of the qudit states in the input is fixed, our EPIs and EPnI yield lower bounds on the minimum output entropy and upper bounds on the Holevo capacity.

  4. The minimum entropy principle and task performance.

    PubMed

    Guastello, Stephen J; Gorin, Hillary; Huschen, Samuel; Peters, Natalie E; Fabisch, Megan; Poston, Kirsten; Weinberger, Kelsey

    2013-07-01

    According to the minimum entropy principle, efficient cognitive performance is produced with a neurocognitive strategy that involves a minimum of degrees of freedom. Although high performance is often regarded as consistent performance as well, some variability in performance still remains which allows the person to adapt to changing goal conditions or fatigue. The present study investigated the connection between performance, entropy in performance, and four task-switching strategies. Fifty-one undergraduates performed 7 different computer-based cognitive tasks producing sets of 49 responses under instructional conditions requiring task quotas or no quotas. The temporal patterns of performance were analyzed using orbital decomposition to extract pattern types and lengths, which were then compared with regard to Shannon entropy, topological entropy, and overall performance. Task switching strategies from a previous study were available for the same participants as well. Results indicated that both topological entropy and Shannon entropy were negatively correlated with performance. Some task-switching strategies produced lower entropy in performance than others. Stepwise regression showed that the top three predictors of performance were Shannon entropy and arithmetic and spatial abilities. Additional implications for the prediction of work performance with cognitive ability measurements and the applicability of the minimum entropy principle to multidimensional performance criteria and team work are discussed.

  5. Compressive sensing and entropy in seismic signals

    NASA Astrophysics Data System (ADS)

    Marinho, Eberton S.; Rocha, Tiago C.; Corso, Gilberto; Lucena, Liacir S.

    2017-09-01

    This work analyzes the correlation between the seismic signal entropy and the Compressive Sensing (CS) recovery index. The recovery index measures the quality of a signal reconstructed by the CS method. We analyze the performance of two CS algorithms: the ℓ1-MAGIC and the Fast Bayesian Compressive Sensing (BCS). We have observed a negative correlation between the performance of CS and seismic signal entropy. Signals with low entropy have small recovery index in their reconstruction by CS. The rationale behind our finding is: a sparse signal is easy to recover by CS and, besides, a sparse signal has low entropy. In addition, ℓ1-MAGIC shows a more significant correlation between entropy and CS performance than Fast BCS.

  6. Gravitational entropies in LTB dust models

    NASA Astrophysics Data System (ADS)

    Sussman, Roberto A.; Larena, Julien

    2014-04-01

    We consider generic Lemaître-Tolman-Bondi (LTB) dust models to probe the gravitational entropy proposals of Clifton, Ellis and Tavakol (CET) and of Hosoya and Buchert (HB). We also consider a variant of the HB proposal based on a suitable quasi-local scalar weighted average. We show that the conditions for entropy growth for all proposals are directly related to a negative correlation of similar fluctuations of the energy density and Hubble scalar. While this correlation is evaluated locally for the CET proposal, it must be evaluated in a non-local domain dependent manner for the two HB proposals. By looking at the fulfilment of these conditions at the relevant asymptotic limits we are able to provide a well grounded qualitative description of the full time evolution and radial asymptotic scaling of the three entropies in generic models. The following rigorous analytic results are obtained for the three proposals: (i) entropy grows when the density growing mode is dominant, (ii) all ever-expanding hyperbolic models reach a stable terminal equilibrium characterized by an inhomogeneous entropy maximum in their late time evolution; (iii) regions with decaying modes and collapsing elliptic models exhibit unstable equilibria associated with an entropy minimum (iv) near singularities the CET entropy diverges while the HB entropies converge; (v) the CET entropy converges for all models in the radial asymptotic range, whereas the HB entropies only converge for models asymptotic to a Friedmann-Lemaître-Robertson-Walker background. The fact that different independent proposals yield fairly similar conditions for entropy production, time evolution and radial scaling in generic LTB models seems to suggest that their common notion of a ‘gravitational entropy’ may be a theoretically robust concept applicable to more general spacetimes.

  7. The third law of thermodynamics and the fractional entropies

    NASA Astrophysics Data System (ADS)

    Baris Bagci, G.

    2016-08-01

    We consider the fractal calculus based Ubriaco and Machado entropies and investigate whether they conform to the third law of thermodynamics. The Ubriaco entropy satisfies the third law of thermodynamics in the interval 0 < q ≤ 1 exactly where it is also thermodynamically stable. The Machado entropy, on the other hand, yields diverging inverse temperature in the region 0 < q ≤ 1, albeit with non-vanishing negative entropy values. Therefore, despite the divergent inverse temperature behavior, the Machado entropy fails the third law of thermodynamics. We also show that the aforementioned results are also supported by the one-dimensional Ising model with no external field.

  8. Generalized entanglement entropy

    NASA Astrophysics Data System (ADS)

    Taylor, Marika

    2016-07-01

    We discuss two measures of entanglement in quantum field theory and their holographic realizations. For field theories admitting a global symmetry, we introduce a global symmetry entanglement entropy, associated with the partitioning of the symmetry group. This quantity is proposed to be related to the generalized holographic entanglement entropy defined via the partitioning of the internal space of the bulk geometry. Thesecond measure of quantum field theory entanglement is the field space entanglement entropy, obtained by integrating out a subset of the quantum fields. We argue that field space entanglement entropy cannot be precisely realised geometrically in a holographic dual. However, for holographic geometries with interior decoupling regions, the differential entropy provides a close analogue to the field space entanglement entropy. We derive generic descriptions of such inner throat regions in terms of gravity coupled to massive scalars and show how the differential entropy in the throat captures features of the field space entanglement entropy.

  9. Modeling loop entropy.

    PubMed

    Chirikjian, Gregory S

    2011-01-01

    Proteins fold from a highly disordered state into a highly ordered one. Traditionally, the folding problem has been stated as one of predicting "the" tertiary structure from sequential information. However, new evidence suggests that the ensemble of unfolded forms may not be as disordered as once believed, and that the native form of many proteins may not be described by a single conformation, but rather an ensemble of its own. Quantifying the relative disorder in the folded and unfolded ensembles as an entropy difference may therefore shed light on the folding process. One issue that clouds discussions of "entropy" is that many different kinds of entropy can be defined: entropy associated with overall translational and rotational Brownian motion, configurational entropy, vibrational entropy, conformational entropy computed in internal or Cartesian coordinates (which can even be different from each other), conformational entropy computed on a lattice, each of the above with different solvation and solvent models, thermodynamic entropy measured experimentally, etc. The focus of this work is the conformational entropy of coil/loop regions in proteins. New mathematical modeling tools for the approximation of changes in conformational entropy during transition from unfolded to folded ensembles are introduced. In particular, models for computing lower and upper bounds on entropy for polymer models of polypeptide coils both with and without end constraints are presented. The methods reviewed here include kinematics (the mathematics of rigid-body motions), classical statistical mechanics, and information theory.

  10. Entropy Is Simple, Qualitatively.

    ERIC Educational Resources Information Center

    Lambert, Frank L.

    2002-01-01

    Suggests that qualitatively, entropy is simple. Entropy increase from a macro viewpoint is a measure of the dispersal of energy from localized to spread out at a temperature T. Fundamentally based on statistical and quantum mechanics, this approach is superior to the non-fundamental "disorder" as a descriptor of entropy change. (MM)

  11. Entropy: Order or Information

    ERIC Educational Resources Information Center

    Ben-Naim, Arieh

    2011-01-01

    Changes in entropy can "sometimes" be interpreted in terms of changes in disorder. On the other hand, changes in entropy can "always" be interpreted in terms of changes in Shannon's measure of information. Mixing and demixing processes are used to highlight the pitfalls in the association of entropy with disorder. (Contains 3 figures.)

  12. Entropy: Order or Information

    ERIC Educational Resources Information Center

    Ben-Naim, Arieh

    2011-01-01

    Changes in entropy can "sometimes" be interpreted in terms of changes in disorder. On the other hand, changes in entropy can "always" be interpreted in terms of changes in Shannon's measure of information. Mixing and demixing processes are used to highlight the pitfalls in the association of entropy with disorder. (Contains 3 figures.)

  13. Entropy Is Simple, Qualitatively.

    ERIC Educational Resources Information Center

    Lambert, Frank L.

    2002-01-01

    Suggests that qualitatively, entropy is simple. Entropy increase from a macro viewpoint is a measure of the dispersal of energy from localized to spread out at a temperature T. Fundamentally based on statistical and quantum mechanics, this approach is superior to the non-fundamental "disorder" as a descriptor of entropy change. (MM)

  14. Entropy, a Protean Concept

    NASA Astrophysics Data System (ADS)

    Balian, Roger

    We review at a tutorial level the many aspects of the concept of entropy and their interrelations, in thermodynamics, information theory, probability theory and statistical physics. The consideration of relevant entropies and the identification of entropy with missing information enlighten the paradoxes of irreversibility and of Maxwell's demon.

  15. Modeling Loop Entropy

    PubMed Central

    Chirikjian, Gregory S.

    2011-01-01

    Proteins fold from a highly disordered state into a highly ordered one. Traditionally, the folding problem has been stated as one of predicting ‘the’ tertiary structure from sequential information. However, new evidence suggests that the ensemble of unfolded forms may not be as disordered as once believed, and that the native form of many proteins may not be described by a single conformation, but rather an ensemble of its own. Quantifying the relative disorder in the folded and unfolded ensembles as an entropy difference may therefore shed light on the folding process. One issue that clouds discussions of ‘entropy’ is that many different kinds of entropy can be defined: entropy associated with overall translational and rotational Brownian motion, configurational entropy, vibrational entropy, conformational entropy computed in internal or Cartesian coordinates (which can even be different from each other), conformational entropy computed on a lattice; each of the above with different solvation and solvent models; thermodynamic entropy measured experimentally, etc. The focus of this work is the conformational entropy of coil/loop regions in proteins. New mathematical modeling tools for the approximation of changes in conformational entropy during transition from unfolded to folded ensembles are introduced. In particular, models for computing lower and upper bounds on entropy for polymer models of polypeptide coils both with and without end constraints are presented. The methods reviewed here include kinematics (the mathematics of rigid-body motions), classical statistical mechanics and information theory. PMID:21187223

  16. RNA Thermodynamic Structural Entropy

    PubMed Central

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner’99 and Turner’04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  17. RNA Thermodynamic Structural Entropy.

    PubMed

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  18. High Order Entropy-Constrained Residual VQ for Lossless Compression of Images

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen

    1995-01-01

    High order entropy coding is a powerful technique for exploiting high order statistical dependencies. However, the exponentially high complexity associated with such a method often discourages its use. In this paper, an entropy-constrained residual vector quantization method is proposed for lossless compression of images. The method consists of first quantizing the input image using a high order entropy-constrained residual vector quantizer and then coding the residual image using a first order entropy coder. The distortion measure used in the entropy-constrained optimization is essentially the first order entropy of the residual image. Experimental results show very competitive performance.

  19. Increase of Boltzmann entropy in a quantum forced harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Campisi, Michele

    2008-11-01

    Recently, a quantum-mechanical proof of the increase of Boltzmann entropy in quantum systems that are coupled to an external classical source of work has been given. Here we illustrate this result by applying it to a forced quantum harmonic oscillator. We show plots of the actual temporal evolution of work and entropy for various forcing protocols. We note that entropy and work can be partially or even fully returned to the source, although both work and entropy balances are non-negative at all times in accordance with the minimal work principle and the Clausius principle, respectively. A necessary condition for the increase of entropy is that the initial distribution is decreasing (e.g., canonical). We show evidence that for a nondecreasing distribution (e.g., microcanonical), the quantum expectation of entropy may decrease slightly. Interestingly, the classical expectation of entropy cannot decrease, irrespective of the initial distribution, in the forced harmonic oscillator.

  20. Increase of Boltzmann entropy in a quantum forced harmonic oscillator.

    PubMed

    Campisi, Michele

    2008-11-01

    Recently, a quantum-mechanical proof of the increase of Boltzmann entropy in quantum systems that are coupled to an external classical source of work has been given. Here we illustrate this result by applying it to a forced quantum harmonic oscillator. We show plots of the actual temporal evolution of work and entropy for various forcing protocols. We note that entropy and work can be partially or even fully returned to the source, although both work and entropy balances are non-negative at all times in accordance with the minimal work principle and the Clausius principle, respectively. A necessary condition for the increase of entropy is that the initial distribution is decreasing (e.g., canonical). We show evidence that for a nondecreasing distribution (e.g., microcanonical), the quantum expectation of entropy may decrease slightly. Interestingly, the classical expectation of entropy cannot decrease, irrespective of the initial distribution, in the forced harmonic oscillator.

  1. Relative entropy equals bulk relative entropy

    SciTech Connect

    Jafferis, Daniel L.; Lewkowycz, Aitor; Maldacena, Juan; Suh, S. Josephine

    2016-06-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  2. Geometric entropy and edge modes of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Wall, Aron C.

    2016-11-01

    We calculate the vacuum entanglement entropy of Maxwell theory in a class of curved spacetimes by Kaluza-Klein reduction of the theory onto a two-dimensional base manifold. Using two-dimensional duality, we express the geometric entropy of the electromagnetic field as the entropy of a tower of scalar fields, constant electric and magnetic fluxes, and a contact term, whose leading-order divergence was discovered by Kabat. The complete contact term takes the form of one negative scalar degree of freedom confined to the entangling surface. We show that the geometric entropy agrees with a statistical definition of entanglement entropy that includes edge modes: classical solutions determined by their boundary values on the entangling surface. This resolves a long-standing puzzle about the statistical interpretation of the contact term in the entanglement entropy. We discuss the implications of this negative term for black hole thermodynamics and the renormalization of Newton's constant.

  3. On variational definition of quantum entropy

    SciTech Connect

    Belavkin, Roman V.

    2015-01-13

    Entropy of distribution P can be defined in at least three different ways: 1) as the expectation of the Kullback-Leibler (KL) divergence of P from elementary δ-measures (in this case, it is interpreted as expected surprise); 2) as a negative KL-divergence of some reference measure ν from the probability measure P; 3) as the supremum of Shannon’s mutual information taken over all channels such that P is the output probability, in which case it is dual of some transportation problem. In classical (i.e. commutative) probability, all three definitions lead to the same quantity, providing only different interpretations of entropy. In non-commutative (i.e. quantum) probability, however, these definitions are not equivalent. In particular, the third definition, where the supremum is taken over all entanglements of two quantum systems with P being the output state, leads to the quantity that can be twice the von Neumann entropy. It was proposed originally by V. Belavkin and Ohya [1] and called the proper quantum entropy, because it allows one to define quantum conditional entropy that is always non-negative. Here we extend these ideas to define also quantum counterpart of proper cross-entropy and cross-information. We also show inequality for the values of classical and quantum information.

  4. Applications of quantum entropy to statistics

    SciTech Connect

    Silver, R.N.; Martz, H.F.

    1994-07-01

    This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to heirarchical Bayes methods.

  5. Entropy and econophysics

    NASA Astrophysics Data System (ADS)

    Rosser, J. Barkley

    2016-12-01

    Entropy is a central concept of statistical mechanics, which is the main branch of physics that underlies econophysics, the application of physics concepts to understand economic phenomena. It enters into econophysics both in an ontological way through the Second Law of Thermodynamics as this drives the world economy from its ecological foundations as solar energy passes through food chains in dissipative process of entropy rising and production fundamentally involving the replacement of lower entropy energy states with higher entropy ones. In contrast the mathematics of entropy as appearing in information theory becomes the basis for modeling financial market dynamics as well as income and wealth distribution dynamics. It also provides the basis for an alternative view of stochastic price equilibria in economics, as well providing a crucial link between econophysics and sociophysics, keeping in mind the essential unity of the various concepts of entropy.

  6. Single water entropy: hydrophobic crossover and application to drug binding.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2014-09-11

    Entropy of water plays an important role in both chemical and biological processes e.g. hydrophobic effect, molecular recognition etc. Here we use a new approach to calculate translational and rotational entropy of the individual water molecules around different hydrophobic and charged solutes. We show that for small hydrophobic solutes, the translational and rotational entropies of each water molecule increase as a function of its distance from the solute reaching finally to a constant bulk value. As the size of the solute increases (0.746 nm), the behavior of the translational entropy is opposite; water molecules closest to the solute have higher entropy that reduces with distance from the solute. This indicates that there is a crossover in translational entropy of water molecules around hydrophobic solutes from negative to positive values as the size of the solute is increased. Rotational entropy of water molecules around hydrophobic solutes for all sizes increases with distance from the solute, indicating the absence of crossover in rotational entropy. This makes the crossover in total entropy (translation + rotation) of water molecule happen at much larger size (>1.5 nm) for hydrophobic solutes. Translational entropy of single water molecule scales logarithmically (Str(QH) = C + kB ln V), with the volume V obtained from the ellipsoid of inertia. We further discuss the origin of higher entropy of water around water and show the possibility of recovering the entropy loss of some hypothetical solutes. The results obtained are helpful to understand water entropy behavior around various hydrophobic and charged environments within biomolecules. Finally, we show how our approach can be used to calculate the entropy of the individual water molecules in a protein cavity that may be replaced during ligand binding.

  7. Entropy in Rhetoric.

    ERIC Educational Resources Information Center

    Marder, Daniel

    The Second Law of Thermodynamics demonstrates the idea of entropy, the tendency of ordered energy to free itself and thus break apart the system that contains it and dissipate that system into chaos. When applied to communications theory, entropy increases not only with noise but with the density of information--particles of possible meaning…

  8. The Holographic Entropy Cone

    SciTech Connect

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  9. The Holographic Entropy Cone

    DOE PAGES

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; ...

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phasemore » space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.« less

  10. Black hole entropy quantization.

    PubMed

    Corichi, Alejandro; Díaz-Polo, Jacobo; Fernández-Borja, Enrique

    2007-05-04

    Ever since the pioneering works of Bekenstein and Hawking, black hole entropy has been known to have a quantum origin. Furthermore, it has long been argued by Bekenstein that entropy should be quantized in discrete (equidistant) steps given its identification with horizon area in (semi-)classical general relativity and the properties of area as an adiabatic invariant. This lead to the suggestion that the black hole area should also be quantized in equidistant steps to account for the discrete black hole entropy. Here we shall show that loop quantum gravity, in which area is not quantized in equidistant steps, can nevertheless be consistent with Bekenstein's equidistant entropy proposal in a subtle way. For that we perform a detailed analysis of the number of microstates compatible with a given area and show consistency with the Bekenstein framework when an oscillatory behavior in the entropy-area relation is properly interpreted.

  11. Theory of entropy production in quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Solano-Carrillo, E.; Millis, A. J.

    2016-06-01

    We define the entropy operator as the negative of the logarithm of the density matrix, give a prescription for extracting its thermodynamically measurable part, and discuss its dynamics. For an isolated system we derive the first, second, and third laws of thermodynamics. For weakly coupled subsystems of an isolated system, an expression for the long-time limit of the expectation value of the rate of change of the thermodynamically measurable part of the entropy operator is derived and interpreted in terms of entropy production and entropy transport terms. The interpretation is justified by comparison to the known expression for the entropy production in an aged classical Markovian system with Gaussian fluctuations and by a calculation of the current-induced entropy production in a conductor with electron-phonon scattering.

  12. Infinite Shannon entropy

    NASA Astrophysics Data System (ADS)

    Baccetti, Valentina; Visser, Matt

    2013-04-01

    Even if a probability distribution is properly normalizable, its associated Shannon (or von Neumann) entropy can easily be infinite. We carefully analyze conditions under which this phenomenon can occur. Roughly speaking, this happens when arbitrarily small amounts of probability are dispersed into an infinite number of states; we shall quantify this observation and make it precise. We develop several particularly simple, elementary, and useful bounds, and also provide some asymptotic estimates, leading to necessary and sufficient conditions for the occurrence of infinite Shannon entropy. We go to some effort to keep technical computations as simple and conceptually clear as possible. In particular, we shall see that large entropies cannot be localized in state space; large entropies can only be supported on an exponentially large number of states. We are for the time being interested in single-channel Shannon entropy in the information theoretic sense, not entropy in a stochastic field theory or quantum field theory defined over some configuration space, on the grounds that this simple problem is a necessary precursor to understanding infinite entropy in a field theoretic context.

  13. Entropy Bounds and Entanglement

    NASA Astrophysics Data System (ADS)

    Fisher, Zachary

    The generalized covariant entropy bound, or Bousso bound, is a holographic bound on the entropy of a region of space in a gravitational theory. It bounds the entropy passing through certain null surfaces. The bound remains non-trivial in the weak-gravity limit, and provides non-trivial constraints on the entropy of ordinary quantum states even in a regime where gravity is negligible. In the first half of this thesis, we present a proof of the Bousso bound in the weak-gravity regime within the framework of quantum field theory. The bound uses techniques from quantum information theory which relate the energy and entropy of quantum states. We present two proofs of the bound in free and interacting field theory. In the second half, we present a generalization of the Bousso bound called the quantum focussing conjecture. Our conjecture is a bound on the rate of entropy generation in a quantum field theory coupled semiclassically to gravity. The conjecture unifies and generalizes several ideas in holography. In particular, the quantum focussing conjecture implies a bound on entropies which is similar to, but subtly different from, the Bousso bound proven in the first half. The quantum focussing conjecture implies a novel non-gravitational energy condition, the quantum null energy condition, which gives a point-wise lower bound on the null-null component of the stress tensor of quantum matter. We give a proof of this bound in the context of free and superrenormalizable bosonic quantum field theory.

  14. Continuity of the entropy of macroscopic quantum systems.

    PubMed

    Swendsen, Robert H

    2015-11-01

    The proper definition of entropy is fundamental to the relationship between statistical mechanics and thermodynamics. It also plays a major role in the recent debate about the validity of the concept of negative temperature. In this paper, I analyze and calculate the thermodynamic entropy for large but finite quantum mechanical systems. A special feature of this analysis is that the thermodynamic energy of a quantum system is shown to be a continuous variable, rather than being associated with discrete energy eigenvalues. Calculations of the entropy as a function of energy can be carried out with a Legendre transform of thermodynamic potentials obtained from a canonical ensemble. The resultant expressions for the entropy are able to describe equilibrium between quantum systems having incommensurate energy-level spacings. This definition of entropy preserves all required thermodynamic properties, including satisfaction of all postulates and laws of thermodynamics. It demonstrates the consistency of the concept of negative temperature with the principles of thermodynamics.

  15. Effects of correlated variability on information entropies in nonextensive systems

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hideo

    2008-08-01

    We have calculated the Tsallis entropy and Fisher information matrix (entropy) of spatially correlated nonextensive systems, by using an analytic non-Gaussian distribution obtained by the maximum entropy method. The effects of the correlated variability on the Fisher information matrix are shown to be different from those on the Tsallis entropy. The Fisher information is increased (decreased) by a positive (negative) correlation, whereas the Tsallis entropy is decreased with increasing absolute magnitude of the correlation, independently of its sign. This fact arises from the difference in their characteristics. It implies from the Cramér-Rao inequality that the accuracy of an unbiased estimate of fluctuation is improved by a negative correlation. A critical comparison is made between the present study and previous ones employing the Gaussian approximation for the correlated variability due to multiplicative noise.

  16. Entropy and biological systems: Experimentally-investigated entropy-driven stacking of plant photosynthetic membranes

    NASA Astrophysics Data System (ADS)

    Jia, Husen; Liggins, John R.; Chow, Wah Soon

    2014-02-01

    According to the Second Law of Thermodynamics, an overall increase of entropy contributes to the driving force for any physicochemical process, but entropy has seldom been investigated in biological systems. Here, for the first time, we apply Isothermal Titration Calorimetry (ITC) to investigate the Mg2+-induced spontaneous stacking of photosynthetic membranes isolated from spinach leaves. After subtracting a large endothermic interaction of MgCl2 with membranes, unrelated to stacking, we demonstrate that the enthalpy change (heat change at constant pressure) is zero or marginally positive or negative. This first direct experimental evidence strongly suggests that an entropy increase significantly drives membrane stacking in this ordered biological structure. Possible mechanisms for the entropy increase include: (i) the attraction between discrete oppositely-charged areas, releasing counterions; (ii) the release of loosely-bound water molecules from the inter-membrane gap; (iii) the increased orientational freedom of previously-aligned water dipoles; and (iv) the lateral rearrangement of membrane components.

  17. Repositioning Recitation Input in College English Teaching

    ERIC Educational Resources Information Center

    Xu, Qing

    2009-01-01

    This paper tries to discuss how recitation input helps overcome the negative influences on the basis of second language acquisition theory and confirms the important role that recitation input plays in improving college students' oral and written English.

  18. Characterizing Component Hiding Using Ancestral Entropy

    DTIC Science & Technology

    2009-03-26

    placed. The maximum entropy value for experiment is 1 because the right uppermost circuit in Figure A.15(a) is preserved. Two ancestors are in 776 of...Input 11 Input Output Level .137 .273 .136 Node .005 .595 .002 Circuit Level . 013 .459 0.000 4.9. Table 4.2 contains the p values from the 2-Sample t...03.03shortstories/. 12. McDonald, Jeffrey T. Enhanced Security for Mobile Agent Systems. Ph.D. thesis, Florida State University, 2006. 13. Mish

  19. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  20. The Mystique of Entropy.

    ERIC Educational Resources Information Center

    Kyle, Benjamin G.

    1988-01-01

    Illustrates qualitative and metaphoric applications of entropy in the areas of cosmology, the birth and death of the universe and time; life and evolution; literature and art; and social science. (RT)

  1. Entropy of international trades

    NASA Astrophysics Data System (ADS)

    Oh, Chang-Young; Lee, D.-S.

    2017-05-01

    The organization of international trades is highly complex under the collective efforts towards economic profits of participating countries given inhomogeneous resources for production. Considering the trade flux as the probability of exporting a product from a country to another, we evaluate the entropy of the world trades in the period 1950-2000. The trade entropy has increased with time, and we show that it is mainly due to the extension of trade partnership. For a given number of trade partners, the mean trade entropy is about 60% of the maximum possible entropy, independent of time, which can be regarded as a characteristic of the trade fluxes' heterogeneity and is shown to be derived from the scaling and functional behaviors of the universal trade-flux distribution. The correlation and time evolution of the individual countries' gross-domestic products and the number of trade partners show that most countries achieved their economic growth partly by extending their trade relationship.

  2. The Mystique of Entropy.

    ERIC Educational Resources Information Center

    Kyle, Benjamin G.

    1988-01-01

    Illustrates qualitative and metaphoric applications of entropy in the areas of cosmology, the birth and death of the universe and time; life and evolution; literature and art; and social science. (RT)

  3. Entropy of stochastic flows

    SciTech Connect

    Dorogovtsev, Andrei A

    2010-06-29

    For sets in a Hilbert space the concept of quadratic entropy is introduced. It is shown that this entropy is finite for the range of a stochastic flow of Brownian particles on R. This implies, in particular, the fact that the total time of the free travel in the Arratia flow of all particles that started from a bounded interval is finite. Bibliography: 10 titles.

  4. Anomalies and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Nishioka, Tatsuma; Yarom, Amos

    2016-03-01

    We initiate a systematic study of entanglement and Rényi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanishing Pontryagin classes.

  5. Connectivity in the human brain dissociates entropy and complexity of auditory inputs☆

    PubMed Central

    Nastase, Samuel A.; Iacovella, Vittorio; Davis, Ben; Hasson, Uri

    2015-01-01

    Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. PMID:25536493

  6. Information Entropy of Fullerenes.

    PubMed

    Sabirov, Denis Sh; Ōsawa, Eiji

    2015-08-24

    The reasons for the formation of the highly symmetric C60 molecule under nonequilibrium conditions are widely discussed as it dominates over numerous similar fullerene structures. In such conditions, evolution of structure rather than energy defines the processes. We have first studied the diversity of fullerenes in terms of information entropy. Sorting 2079 structures from An Atlas of Fullerenes [ Fowler , P. W. ; Manolopoulos , D. E. An Atlas of Fullerenes ; Oxford : Clarendon , 1995 . ], we have found that the information entropies of only 14 fullerenes (<1% of the studied structures) lie between the values of C60 and C70, the two most abundant fullerenes. Interestingly, buckminsterfullerene is the only fullerene with zero information entropy, i.e., an exclusive compound among the other members of the fullerene family. Such an efficient sorting demonstrates possible relevance of information entropy to chemical processes. For this reason, we have introduced an algorithm for calculating changes in information entropy at chemical transformations. The preliminary calculations of changes in information entropy at the selected fullerene reactions show good agreement with thermochemical data.

  7. The entropy of alloys.

    SciTech Connect

    Stan, M.

    2004-01-01

    A major problem in simulating thermodynamic properties of alloys is modeling the entropy. While configurational entropy is incorporated in most stability calculations, the other components, such as the vibrational and electronic entropy are often neglected or roughly estimated. In this work we propose a method of accounting for both configurational and vibrational entropy and discuss the electronic contribution for several actinide based alloys. The meaning of entropy in non-equilibrium thermodynamic processes is also discussed and illustrated for the case of phase transformations and diffusion. The influence of temperature on the enthalpy and free energy of delta-Pu-Ga phase, as resulted from Modified Embedded Atom Method (MEAM), and the influence of Ga content on the enthalpy and free energy of delta-Pu-Ga phase are discussed. The analysis of the thermodynamic properties of the fcc Pu-Ga phase, as calculated with MEAM shows that the vibrational entropy contribution to the free energy is ve ry important and non-linear with temperature. The free energy also changes with the Ga content.

  8. Renormalized entanglement entropy

    NASA Astrophysics Data System (ADS)

    Taylor, Marika; Woodhead, William

    2016-08-01

    We develop a renormalization method for holographic entanglement entropy based on area renormalization of entangling surfaces. The renormalized entanglement en-tropy is derived for entangling surfaces in asymptotically locally anti-de Sitter spacetimes in general dimensions and for entangling surfaces in four dimensional holographic renor-malization group flows. The renormalized entanglement entropy for disk regions in AdS 4 spacetimes agrees precisely with the holographically renormalized action for AdS 4 with spherical slicing and hence with the F quantity, in accordance with the Casini-Huerta-Myers map. We present a generic class of holographic RG flows associated with deforma-tions by operators of dimension 3 /2 < Δ < 5 /2 for which the F quantity increases along the RG flow, hence violating the strong version of the F theorem. We conclude by explaining how the renormalized entanglement entropy can be derived directly from the renormalized partition function using the replica trick i.e. our renormalization method for the entangle-ment entropy is inherited directly from that of the partition function. We show explicitly how the entanglement entropy counterterms can be derived from the standard holographic renormalization counterterms for asymptotically locally anti-de Sitter spacetimes.

  9. Entropy of quasiblack holes

    SciTech Connect

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2010-03-15

    We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

  10. Entropy, matter, and cosmology

    PubMed Central

    Prigogine, I.; Géhéniau, J.

    1986-01-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary “C” field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747

  11. Entropy and environmental mystery.

    PubMed

    Stamps, Arthur E

    2007-06-01

    Two studies are reported regarding the effects of entropy, lighting, and occlusion on impressions of mystery in physical environments. The theoretical context of this study was the "informational theory" of environmental preference, which, among other claims, holds that mystery can be measured by the extent to which people perceive a promise of more information if they move deeper into an environment. Entropy, in the context of this article, is visual diversity as measured using information theory. Mystery was measured by a semantic differential scale. The definition of mystery was left up to each individual participant. Entropy of occluded objects was used to obtain an objective, experimentally manipulatable and operational definition of "promise of more information." Exp. 1 had 12 stimuli and 15 participants. Exp. 2 had 12 stimuli and 16 participants. Entropy of occluded objects ranged from 0 to 6 bits. Entropy of occluded objects was used to measure the promise that there would be more information if one moved deeper into an environment. Overall, amount of light had the strongest effect on responses of mystery (r = -.63, darker was more mysterious), followed by occlusion (r = .26, occluding objects made a scene seem more mysterious), and by the promise of more information if one moved about in the scene (r = .13), the more entropy in occluded objects, the greater the impression of mystery). The theoretical contribution of this work is that a relationship between subjective impressions of mystery and an objective measure of "promise of more information" was found.

  12. Differential entropy and time

    NASA Astrophysics Data System (ADS)

    Garbaczewski, Piotr

    2005-12-01

    We give a detailed analysis of the Gibbs-type entropy notion and its dynamical behavior in case of time-dependent continuous probability distributions of varied origins: related to classical and quantum systems. The purpose-dependent usage of conditional Kullback-Leibler and Gibbs (Shannon) entropies is explained in case of non-equilibrium Smoluchowski processes. A very different temporal behavior of Gibbs and Kullback entropies is confronted. A specific conceptual niche is addressed, where quantum von Neumann, classical Kullback-Leibler and Gibbs entropies can be consistently introduced as information measures for the same physical system. If the dynamics of probability densities is driven by the Schrödinger picture wave-packet evolution, Gibbs-type and related Fisher information functionals appear to quantify nontrivial power transfer processes in the mean. This observation is found to extend to classical dissipative processes and supports the view that the Shannon entropy dynamics provides an insight into physically relevant non-equilibrium phenomena, which are inaccessible in terms of the Kullback-Leibler entropy and typically ignored in the literature.

  13. The continuity of the output entropy of positive maps

    SciTech Connect

    Shirokov, Maxim E

    2011-10-31

    Global and local continuity conditions for the output von Neumann entropy for positive maps between Banach spaces of trace-class operators in separable Hilbert spaces are obtained. Special attention is paid to completely positive maps: infinite dimensional quantum channels and operations. It is shown that as a result of some specific properties of the von Neumann entropy (as a function on the set of density operators) several results on the output entropy of positive maps can be obtained, which cannot be derived from the general properties of entropy type functions. In particular, it is proved that global continuity of the output entropy of a positive map follows from its finiteness. A characterization of positive linear maps preserving continuity of the entropy (in the following sense: continuity of the entropy on an arbitrary subset of input operators implies continuity of the output entropy on this subset) is obtained. A connection between the local continuity properties of two completely positive complementary maps is considered. Bibliography: 21 titles.

  14. Excitation entanglement entropy in two dimensional conformal field theories

    NASA Astrophysics Data System (ADS)

    Sheikh-Jabbari, M. M.; Yavartanoo, H.

    2016-12-01

    We analyze how excitations affect the entanglement entropy for an arbitrary entangling interval in a 2d conformal field theory (CFT) using the holographic entanglement entropy techniques as well as direct CFT computations. We introduce the excitation entanglement entropy ΔhS , the difference between the entanglement entropy generic excitations and their arbitrary conformal descendants denoted through h . The excitation entanglement entropy, unlike the entanglement entropy, is a finite quantity (independent of the cutoff), and hence a good physical observable. We show that the excitation entanglement entropy for any given interval is uniquely specified by a local second order differential equation sourced by the one point function of the energy momentum tensor computed in the excited background state, and two boundary and smoothness conditions. We analyze low and high temperature behavior of the excitation entanglement entropy and show that ΔhS grows as a function of temperature. We prove an "integrated positivity" for the excitation entanglement entropy, that although ΔhS can be positive or negative, its average value is always positive. We also discuss the mutual and multipartite information and (strong) subadditivity inequality in the presence of generic excitations and their conformal descendants.

  15. The vibrational and configurational entropy of α-brass☆

    PubMed Central

    Benisek, Artur; Dachs, Edgar; Salihović, Miralem; Paunovic, Aleksandar; Maier, Maria E.

    2014-01-01

    The heat capacities of two samples of a fcc Cu–Zn alloy with the composition CuZn15 and CuZn34 were measured from T = 5 K to 573 K using relaxation and differential scanning calorimetry. Below ∼90 K, they are characterised by negative excess heat capacities deviating from ideal mixing by up to −0.20 and −0.44 J · mol−1 · K−1 for CuZn15 and CuZn34, respectively. The excess heat capacities produce excess vibrational entropies, which are less negative compared to the excess entropy available from the literature. Since the literature entropy data contain both, the configurational and the vibrational part of the entropy, the difference is attributed to the excess configurational entropy. The thermodynamics of different short-range ordered samples was also investigated. The extent of the short-range order had no influence on the heat capacity below T = 300 K. Above T = 300 K, where the ordering changed during the measurement, the heat capacity depended strongly on the thermal history of the samples. From these data, the heat and entropy of ordering was calculated. The results on the vibrational entropy of this study were also used to test a relationship for estimating the excess vibrational entropy of mixing. PMID:24926103

  16. Comparison of canonical and microcanonical definitions of entropy

    NASA Astrophysics Data System (ADS)

    Matty, Michael; Lancaster, Lachlan; Griffin, William; Swendsen, Robert H.

    2017-02-01

    For more than 100 years, one of the central concepts in statistical mechanics has been the microcanonical ensemble, which provides a way of calculating the thermodynamic entropy for a specified energy. A controversy has recently emerged between two distinct definitions of the entropy based on the microcanonical ensemble: (1) The Boltzmann entropy, defined by the density of states at a specified energy, and (2) The Gibbs entropy, defined by the sum or integral of the density of states below a specified energy. A critical difference between the consequences of these definitions pertains to the concept of negative temperatures, which by the Gibbs definition cannot exist. In this paper, we call into question the fundamental assumption that the microcanonical ensemble should be used to define the entropy. We base our analysis on a recently proposed canonical definition of the entropy as a function of energy. We investigate the predictions of the Boltzmann, Gibbs, and canonical definitions for a variety of classical and quantum models. Our results support the validity of the concept of negative temperature, but not for all models with a decreasing density of states. We find that only the canonical entropy consistently predicts the correct thermodynamic properties, while microcanonical definitions of entropy, including those of Boltzmann and Gibbs, are correct only for a limited set of models. For models which exhibit a first-order phase transition, we show that the use of the thermodynamic limit, as usually interpreted, can conceal the essential physics.

  17. Intermediate inputs and economic productivity.

    PubMed

    Baptist, Simon; Hepburn, Cameron

    2013-03-13

    Many models of economic growth exclude materials, energy and other intermediate inputs from the production function. Growing environmental pressures and resource prices suggest that this may be increasingly inappropriate. This paper explores the relationship between intermediate input intensity, productivity and national accounts using a panel dataset of manufacturing subsectors in the USA over 47 years. The first contribution is to identify sectoral production functions that incorporate intermediate inputs, while allowing for heterogeneity in both technology and productivity. The second contribution is that the paper finds a negative correlation between intermediate input intensity and total factor productivity (TFP)--sectors that are less intensive in their use of intermediate inputs have higher productivity. This finding is replicated at the firm level. We propose tentative hypotheses to explain this association, but testing and further disaggregation of intermediate inputs is left for further work. Further work could also explore more directly the relationship between material inputs and economic growth--given the high proportion of materials in intermediate inputs, the results in this paper are suggestive of further work on material efficiency. Depending upon the nature of the mechanism linking a reduction in intermediate input intensity to an increase in TFP, the implications could be significant. A third contribution is to suggest that an empirical bias in productivity, as measured in national accounts, may arise due to the exclusion of intermediate inputs. Current conventions of measuring productivity in national accounts may overstate the productivity of resource-intensive sectors relative to other sectors.

  18. Upper bound for the average entropy production based on stochastic entropy extrema

    NASA Astrophysics Data System (ADS)

    Limkumnerd, Surachate

    2017-03-01

    The second law of thermodynamics, which asserts the non-negativity of the average total entropy production of a combined system and its environment, is a direct consequence of applying Jensen's inequality to a fluctuation relation. It is also possible, through this inequality, to determine an upper bound of the average total entropy production based on the entropies along the most extreme stochastic trajectories. In this work, we construct an upper bound inequality of the average of a convex function over a domain whose average is known. When applied to the various fluctuation relations, the upper bounds of the average total entropy production are established. Finally, by employing the result of Neri, Roldán, and Jülicher [Phys. Rev. X 7, 011019 (2017)], 10.1103/PhysRevX.7.011019, we are able to show that the average total entropy production is bounded only by the total entropy production supremum, and vice versa, for a general nonequilibrium stationary system.

  19. On Entropy Trail

    NASA Astrophysics Data System (ADS)

    Farokhi, Saeed; Taghavi, Ray; Keshmiri, Shawn

    2015-11-01

    Stealth technology is developed for military aircraft to minimize their signatures. The primary attention was focused on radar signature, followed by the thermal and noise signatures of the vehicle. For radar evasion, advanced configuration designs, extensive use of carbon composites and radar-absorbing material, are developed. On thermal signature, mainly in the infra-red (IR) bandwidth, the solution was found in blended rectangular nozzles of high aspect ratio that are shielded from ground detectors. For noise, quiet and calm jets are integrated into vehicles with low-turbulence configuration design. However, these technologies are totally incapable of detecting new generation of revolutionary aircraft. These shall use all electric, distributed, propulsion system that are thermally transparent. In addition, composite skin and non-emitting sensors onboard the aircraft will lead to low signature. However, based on the second-law of thermodynamics, there is no air vehicle that can escape from leaving an entropy trail. Entropy is thus the only inevitable signature of any system, that once measured, can detect the source. By characterizing the entropy field based on its statistical properties, the source may be recognized, akin to face recognition technology. Direct measurement of entropy is cumbersome, however as a derived property, it can be easily measured. The measurement accuracy depends on the probe design and the sensors onboard. One novel air data sensor suite is introduced with promising potential to capture the entropy trail.

  20. Entropy production and non-Markovian dynamical maps.

    PubMed

    Marcantoni, S; Alipour, S; Benatti, F; Floreanini, R; Rezakhani, A T

    2017-09-29

    In the weak-coupling limit approach to open quantum systems, the presence of the bath is eliminated and accounted for by a master equation that introduces dissipative contributions to the system reduced dynamics: within this framework, there are no bath entropy contributions to the entropy balance. We show that, as a consequence, the entropy production fails to be positive for a class of physically legitimate, that is completely positive and trace preserving, non-Markovian dynamical maps. Moreover, in absence of the semigroup property, if the reduced dynamics has a thermal asymptotic state, this need not be stationary. Then even the integrated entropy production becomes negative. These observations imply that, when the conditions leading to reduced dynamics of semigroup type are relaxed, a consistent formulation of the second law of thermodynamics requires that the environment contribution to the entropy balance be explicitly taken into account.

  1. Entropy, color, and color rendering.

    PubMed

    Price, Luke L A

    2012-12-01

    The Shannon entropy [Bell Syst. Tech J.27, 379 (1948)] of spectral distributions is applied to the problem of color rendering. With this novel approach, calculations for visual white entropy, spectral entropy, and color rendering are proposed, indices that are unreliant on the subjectivity inherent in reference spectra and color samples. The indices are tested against real lamp spectra, showing a simple and robust system for color rendering assessment. The discussion considers potential roles for white entropy in several areas of color theory and psychophysics and nonextensive entropy generalizations of the entropy indices in mathematical color spaces.

  2. Holographic entropy production

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Wu, Xiao-Ning; Zhang, Hongbao

    2014-10-01

    The suspicion that gravity is holographic has been supported mainly by a variety of specific examples from string theory. In this paper, we propose that such a holography can actually be observed in the context of Einstein's gravity and at least a class of generalized gravitational theories, based on a definite holographic principle where neither is the bulk space-time required to be asymptotically AdS nor the boundary to be located at conformal infinity, echoing Wilson's formulation of quantum field theory. After showing the general equilibrium thermodynamics from the corresponding holographic dictionary, in particular, we provide a rather general proof of the equality between the entropy production on the boundary and the increase of black hole entropy in the bulk, which can be regarded as strong support to this holographic principle. The entropy production in the familiar holographic superconductors/superfluids is investigated as an important example, where the role played by the holographic renormalization is explained.

  3. Casimir entropy for magnetodielectrics.

    PubMed

    Klimchitskaya, G L; Korikov, C C

    2015-06-03

    We find the analytic expressions for the Casimir free energy, entropy and pressure at low temperature in the configuration of two parallel plates made of magnetodielectic material. The cases of constant and frequency-dependent dielectic permittivity and magnetic permeability of the plates are considered. Special attention is paid to the account of dc conductivity. It is shown that in the case of finite static dielectric permittivity and magnetic permeability the Nernst heat theorem for the Casimir entropy is satisfied. If the dc conductivity is taken into account, the Casimir entropy goes to a positive nonzero limit depending on the parameters of a system when the temperature vanishes, i.e. the Nernst theorem is violated. The experimental situation is also discussed.

  4. Sharp continuity bounds for entropy and conditional entropy

    NASA Astrophysics Data System (ADS)

    Chen, ZhiHua; Ma, ZhiHao; Nikoufar, Ismail; Fei, Shao-Ming

    2017-02-01

    The Renyi entropy plays an essential role in quantum information theory. We study the continuity estimation of the Renyi entropy. An inequality relating the Renyi entropy difference of two quantum states to their trace norm distance is derived. This inequality is shown to be tight in the sense that equality can be attained for every prescribed value of the trace norm distance. It includes the sharp Fannes inequality for von Neumann entropy as a special case.

  5. Physics of negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  6. EEG entropy measures in anesthesia

    PubMed Central

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation

  7. Information entropy in cosmology.

    PubMed

    Hosoya, Akio; Buchert, Thomas; Morita, Masaaki

    2004-04-09

    The effective evolution of an inhomogeneous cosmological model may be described in terms of spatially averaged variables. We point out that in this context, quite naturally, a measure arises which is identical to a fluid model of the Kullback-Leibler relative information entropy, expressing the distinguishability of the local inhomogeneous mass density field from its spatial average on arbitrary compact domains. We discuss the time evolution of "effective information" and explore some implications. We conjecture that the information content of the Universe-measured by relative information entropy of a cosmological model containing dust matter-is increasing.

  8. Calibrated entanglement entropy

    NASA Astrophysics Data System (ADS)

    Bakhmatov, I.; Deger, N. S.; Gutowski, J.; Colgáin, E. Ó.; Yavartanoo, H.

    2017-07-01

    The Ryu-Takayanagi prescription reduces the problem of calculating entanglement entropy in CFTs to the determination of minimal surfaces in a dual anti-de Sitter geometry. For 3D gravity theories and BTZ black holes, we identify the minimal surfaces as special Lagrangian cycles calibrated by the real part of the holomorphic one-form of a spacelike hypersurface. We show that (generalised) calibrations provide a unified way to determine holographic entanglement entropy from minimal surfaces, which is applicable to warped AdS3 geometries. We briefly discuss generalisations to higher dimensions.

  9. Entropy NOR: Early Functional Completeness in Entropy Networks

    NASA Astrophysics Data System (ADS)

    Jesse, Forrest Fabian; Miao, Zhenjiang; Li, Weidong

    2016-01-01

    Linking together two directional entropy disequilibriums, NOR functionality can be found. The entropy NOR gate presented is constructed of discrete observations and so is very small, emerging at the earliest stages of complexity. The gate is based on the axiom that an observer increases in entropy as it receives information from what it is observing.

  10. Enthalpy-entropy compensation: the role of solvation.

    PubMed

    Dragan, Anatoliy I; Read, Christopher M; Crane-Robinson, Colyn

    2017-05-01

    Structural modifications to interacting systems frequently lead to changes in both the enthalpy (heat) and entropy of the process that compensate each other, so that the Gibbs free energy is little changed: a major barrier to the development of lead compounds in drug discovery. The conventional explanation for such enthalpy-entropy compensation (EEC) is that tighter contacts lead to a more negative enthalpy but increased molecular constraints, i.e., a compensating conformational entropy reduction. Changes in solvation can also contribute to EEC but this contribution is infrequently discussed. We review long-established and recent cases of EEC and conclude that the large fluctuations in enthalpy and entropy observed are too great to be a result of only conformational changes and must result, to a considerable degree, from variations in the amounts of water immobilized or released on forming complexes. Two systems exhibiting EEC show a correlation between calorimetric entropies and local mobilities, interpreted to mean conformational control of the binding entropy/free energy. However, a substantial contribution from solvation gives the same effect, as a consequence of a structural link between the amount of bound water and the protein flexibility. Only by assuming substantial changes in solvation-an intrinsically compensatory process-can a more complete understanding of EEC be obtained. Faced with such large, and compensating, changes in the enthalpies and entropies of binding, the best approach to engineering elevated affinities must be through the addition of ionic links, as they generate increased entropy without affecting the enthalpy.

  11. Entropy model of dissipative structure on corporate social responsibility

    NASA Astrophysics Data System (ADS)

    Li, Zuozhi; Jiang, Jie

    2017-06-01

    Enterprise is prompted to fulfill the social responsibility requirement by the internal and external environment. In this complex system, some studies suggest that firms have an orderly or chaotic entropy exchange behavior. Based on the theory of dissipative structure, this paper constructs the entropy index system of corporate social responsibility(CSR) and explores the dissipative structure of CSR through Brusselator model criterion. Picking up listed companies of the equipment manufacturing, the research shows that CSR has positive incentive to negative entropy and promotes the stability of dissipative structure. In short, the dissipative structure of CSR has a positive impact on the interests of stakeholders and corporate social images.

  12. Angular momentum independence of the entropy sum and entropy product for AdS rotating black holes in all dimensions

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Meng, Xin-he

    2016-08-01

    In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d > 4 with at least one rotation parameter ai = 0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d > 4) and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.

  13. Entropy of the Universe

    NASA Astrophysics Data System (ADS)

    Sato, Humitaka

    2010-06-01

    Charles Darwin's calculation of a life of Earth had ignited Kelvin's insight on a life of Sun, which had eventually inherited to the physical study of stellar structure and energy source. Nuclear energy had secured a longevity of the universe and the goal of the cosmic evolution has been secured by the entropy of black holes.

  14. Rescaling Temperature and Entropy

    ERIC Educational Resources Information Center

    Olmsted, John, III

    2010-01-01

    Temperature and entropy traditionally are expressed in units of kelvin and joule/kelvin. These units obscure some important aspects of the natures of these thermodynamic quantities. Defining a rescaled temperature using the Boltzmann constant, T' = k[subscript B]T, expresses temperature in energy units, thereby emphasizing the close relationship…

  15. Maximum Entropies Copulas

    NASA Astrophysics Data System (ADS)

    Pougaza, Doriano-Boris; Mohammad-Djafari, Ali

    2011-03-01

    New families of copulas are obtained in a two-step process: first considering the inverse problem which consists of finding a joint distribution from its given marginals as the constrained maximization of some entropies (Shannon, Rényi, Burg, Tsallis-Havrda-Charvát), and then using Sklar's theorem, to define the corresponding copula.

  16. Optimized Kernel Entropy Components.

    PubMed

    Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau

    2016-02-25

    This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

  17. Rescaling Temperature and Entropy

    ERIC Educational Resources Information Center

    Olmsted, John, III

    2010-01-01

    Temperature and entropy traditionally are expressed in units of kelvin and joule/kelvin. These units obscure some important aspects of the natures of these thermodynamic quantities. Defining a rescaled temperature using the Boltzmann constant, T' = k[subscript B]T, expresses temperature in energy units, thereby emphasizing the close relationship…

  18. Entropy squeezing for qubit – field system under decoherence effect

    SciTech Connect

    Abdel-Khalek, S; Berrada, K; A-S F Obada; Wahiddin, M R

    2014-03-28

    We study in detail the dynamics of field entropy squeezing (FES) for a qubit – field system whose dynamics is described by the phase-damped model. The results of calculations show that the initial state and decoherence play a crucial role in the evolution of FES. During the temporal evolution of the system under decoherence effect, an interesting monotonic relation between FES, Wehrl entropy (WE) and negativity is observed. (laser applications and other topics in quantum electronics)

  19. Entropy and cosmology.

    NASA Astrophysics Data System (ADS)

    Zucker, M. H.

    This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own

  20. Entropy Production in Convective Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Boersing, Nele; Wellmann, Florian; Niederau, Jan

    2016-04-01

    Rayleigh number and moderate aspect ratio, entropy production even enables to predict a preferred convection mode for a model with homogeneous parameter distribution. As a general rule, the thermodynamic measure of entropy production can be used to analyze uncertainties accompanied by modelling convective hydrothermal systems. Without considering any probability distributions of input data, this synthetic study shows that a higher entropy production implies a lower ability to uniquely predict the convection pattern. This in turn means that the uncertainty in estimating subsurface temperatures is higher.

  1. Diffusive mixing and Tsallis entropy

    DOE PAGES

    O'Malley, Daniel; Vesselinov, Velimir V.; Cushman, John H.

    2015-04-29

    Brownian motion, the classical diffusive process, maximizes the Boltzmann-Gibbs entropy. The Tsallis q-entropy, which is non-additive, was developed as an alternative to the classical entropy for systems which are non-ergodic. A generalization of Brownian motion is provided that maximizes the Tsallis entropy rather than the Boltzmann-Gibbs entropy. This process is driven by a Brownian measure with a random diffusion coefficient. In addition, the distribution of this coefficient is derived as a function of q for 1 < q < 3. Applications to transport in porous media are considered.

  2. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines.

    PubMed

    Haseli, Y

    2016-05-01

    The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate are compared for each of these engines. The results reveal that in an endoreversible heat engine, a reduction in entropy production corresponds to an increase in thermal efficiency. The three criteria of minimum entropy production, the maximum thermal efficiency, and the maximum power may become equivalent at the condition of fixed heat input.

  3. The different paths to entropy

    NASA Astrophysics Data System (ADS)

    Benguigui, L.

    2013-03-01

    In order to understand how the complex concept of entropy emerged, we propose a trip into the past, reviewing the works of Clausius, Boltzmann, Gibbs and Planck. In particular, since Gibbs's work is not very well known we present a detailed analysis, recalling the three definitions of entropy that Gibbs gives. The introduction of entropy in quantum mechanics gives in a compact form all the classical definitions of entropy. Perhaps one of the most important aspects of entropy is to see it as a thermodynamic potential like the others proposed by Callen. The calculation of fluctuations in thermodynamic quantities is thus naturally related to entropy. We close with some remarks on entropy and irreversibility.

  4. Entropy and information optics

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.

    2000-03-01

    In this paper we shall begin our discussion with the relationship between optics and humans, in which we see that light has indeed provided us with a very valuable source of information. A general optical communication concept is discussed, in which we see that a picture is indeed worth more than a thousand words. Based on Shannon's information theory, one can show that entropy and information can be simply traded. One of the most intriguing laws of thermodynamics must be the second law, in which we have found that there exists a profound relationship between the physical entropy and information. Without this relationship, information theory would be totally useless in physical science. By applying this relationship, Maxwell and diffraction-limited demons are discussed. And finally, samples of information optics are provided.

  5. Entropy-stabilized oxides

    PubMed Central

    Rost, Christina M.; Sachet, Edward; Borman, Trent; Moballegh, Ali; Dickey, Elizabeth C.; Hou, Dong; Jones, Jacob L.; Curtarolo, Stefano; Maria, Jon-Paul

    2015-01-01

    Configurational disorder can be compositionally engineered into mixed oxide by populating a single sublattice with many distinct cations. The formulations promote novel and entropy-stabilized forms of crystalline matter where metal cations are incorporated in new ways. Here, through rigorous experiments, a simple thermodynamic model, and a five-component oxide formulation, we demonstrate beyond reasonable doubt that entropy predominates the thermodynamic landscape, and drives a reversible solid-state transformation between a multiphase and single-phase state. In the latter, cation distributions are proven to be random and homogeneous. The findings validate the hypothesis that deliberate configurational disorder provides an orthogonal strategy to imagine and discover new phases of crystalline matter and untapped opportunities for property engineering. PMID:26415623

  6. Avoiding the entropy trap

    SciTech Connect

    Weinberg, A.M.

    1982-10-01

    Utopians who use entropy to warn of a vast deterioration of energy and mineral resources seek a self-fulfilling prophesy when they work to deny society access to new energy sources, particularly nuclear power. While theoretically correct, entropy is not the relevant factor for the rest of this century. The more extreme entropists call for a return to an eotechnic society based on decentralized, renewable energy technologies, which rests on the assumptions of a loss in Gibbs Free Energy, a mineral depletion that will lead to OPEC-like manipulation, and a current technology that is destroying the environment. The author challenges these assumptions and calls for an exorcism of public fears over reactor accidents. He foresees a resurgence in public confidence in nuclear power by 1990 that will resolve Western dependence on foreign oil. (DCK)

  7. Relative Entropy Credibility Theory

    NASA Astrophysics Data System (ADS)

    Fernández-Durán, Juan José; Gregorio-Domínguez, María Mercedes

    2004-11-01

    Consider a portfolio of personal motor insurance policies in which, for each policyholder in the portfolio, we want to assign a credibility factor at the end of each policy period that reflects the claim experience of the policyholder compared with the claim experience of the entire portfolio. In this paper we present the calculation of credibility factors based on the concept of relative entropy between the claim size distribution of the entire portfolio and the claim size distribution of the policyholder.

  8. Quantum and Ecosystem Entropies

    NASA Astrophysics Data System (ADS)

    Kirwan, A. D.

    2008-06-01

    Ecosystems and quantum gases share a number of superficial similarities including enormous numbers of interacting elements and the fundamental role of energy in such interactions. A theory for the synthesis of data and prediction of new phenomena is well established in quantum statistical mechanics. The premise of this paper is that the reason a comparable unifying theory has not emerged in ecology is that a proper role for entropy has yet to be assigned. To this end, a phase space entropy model of ecosystems is developed. Specification of an ecosystem phase space cell size based on microbial mass, length, and time scales gives an ecosystem uncertainty parameter only about three orders of magnitude larger than Planck’s constant. Ecosystem equilibria is specified by conservation of biomass and total metabolic energy, along with the principle of maximum entropy at equilibria. Both Bose - Einstein and Fermi - Dirac equilibrium conditions arise in ecosystems applications. The paper concludes with a discussion of some broader aspects of an ecosystem phase space.

  9. Entropy meters and the entropy of non-extensive systems

    PubMed Central

    Lieb, Elliott H.; Yngvason, Jakob

    2014-01-01

    In our derivation of the second law of thermodynamics from the relation of adiabatic accessibility of equilibrium states, we stressed the importance of being able to scale a system's size without changing its intrinsic properties. This leaves open the question of defining the entropy of macroscopic, but unscalable systems, such as gravitating bodies or systems where surface effects are important. We show here how the problem can be overcome, in principle, with the aid of an ‘entropy meter’. An entropy meter can also be used to determine entropy functions for non-equilibrium states and mesoscopic systems. PMID:25002830

  10. Entropy generation method to quantify thermal comfort

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.

    2001-01-01

    The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study

  11. Nonequilibrium Entropy in a Shock

    DOE PAGES

    Margolin, Len G.

    2017-07-19

    In a classic paper, Morduchow and Libby use an analytic solution for the profile of a Navier–Stokes shock to show that the equilibrium thermodynamic entropy has a maximum inside the shock. There is no general nonequilibrium thermodynamic formulation of entropy; the extension of equilibrium theory to nonequililbrium processes is usually made through the assumption of local thermodynamic equilibrium (LTE). However, gas kinetic theory provides a perfectly general formulation of a nonequilibrium entropy in terms of the probability distribution function (PDF) solutions of the Boltzmann equation. In this paper I will evaluate the Boltzmann entropy for the PDF that underlies themore » Navier–Stokes equations and also for the PDF of the Mott–Smith shock solution. I will show that both monotonically increase in the shock. As a result, I will propose a new nonequilibrium thermodynamic entropy and show that it is also monotone and closely approximates the Boltzmann entropy.« less

  12. Quantum chaos: An entropy approach

    NASA Astrophysics Data System (ADS)

    Sl/omczyński, Wojciech; Życzkowski, Karol

    1994-11-01

    A new definition of the entropy of a given dynamical system and of an instrument describing the measurement process is proposed within the operational approach to quantum mechanics. It generalizes other definitions of entropy, in both the classical and quantum cases. The Kolmogorov-Sinai (KS) entropy is obtained for a classical system and the sharp measurement instrument. For a quantum system and a coherent states instrument, a new quantity, coherent states entropy, is defined. It may be used to measure chaos in quantum mechanics. The following correspondence principle is proved: the upper limit of the coherent states entropy of a quantum map as ℏ→0 is less than or equal to the KS-entropy of the corresponding classical map. ``Chaos umpire sits, And by decision more imbroils the fray By which he reigns: next him high arbiter Chance governs all.'' John Milton, Paradise Lost, Book II

  13. Self-organization and entropy reduction in a living cell

    PubMed Central

    Davies, Paul C.W.; Rieper, Elisabeth; Tuszynski, Jack A.

    2012-01-01

    In this paper we discuss the entropy and information aspects of a living cell. Particular attention is paid to the information gain on assembling and maintaining a living state. Numerical estimates of the information and entropy reduction are given and discussed in the context of the cell’s metabolic activity. We discuss a solution to an apparent paradox that there is less information content in DNA than in the proteins that are assembled based on the genetic code encrypted in DNA. When energy input required for protein synthesis is accounted for, the paradox is clearly resolved. Finally, differences between biological information and instruction are discussed. PMID:23159919

  14. Investigating dynamical complexity in the magnetosphere using various entropy measures

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Daglis, Ioannis A.; Papadimitriou, Constantinos; Kalimeri, Maria; Anastasiadis, Anastasios; Eftaxias, Konstantinos

    2009-09-01

    The complex system of the Earth's magnetosphere corresponds to an open spatially extended nonequilibrium (input-output) dynamical system. The nonextensive Tsallis entropy has been recently introduced as an appropriate information measure to investigate dynamical complexity in the magnetosphere. The method has been employed for analyzing Dst time series and gave promising results, detecting the complexity dissimilarity among different physiological and pathological magnetospheric states (i.e., prestorm activity and intense magnetic storms, respectively). This paper explores the applicability and effectiveness of a variety of computable entropy measures (e.g., block entropy, Kolmogorov entropy, T complexity, and approximate entropy) to the investigation of dynamical complexity in the magnetosphere. We show that as the magnetic storm approaches there is clear evidence of significant lower complexity in the magnetosphere. The observed higher degree of organization of the system agrees with that inferred previously, from an independent linear fractal spectral analysis based on wavelet transforms. This convergence between nonlinear and linear analyses provides a more reliable detection of the transition from the quiet time to the storm time magnetosphere, thus showing evidence that the occurrence of an intense magnetic storm is imminent. More precisely, we claim that our results suggest an important principle: significant complexity decrease and accession of persistency in Dst time series can be confirmed as the magnetic storm approaches, which can be used as diagnostic tools for the magnetospheric injury (global instability). Overall, approximate entropy and Tsallis entropy yield superior results for detecting dynamical complexity changes in the magnetosphere in comparison to the other entropy measures presented herein. Ultimately, the analysis tools developed in the course of this study for the treatment of Dst index can provide convenience for space weather

  15. Entropy of electromyography time series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Zurcher, Ulrich; Sung, Paul S.

    2007-12-01

    A nonlinear analysis based on Renyi entropy is applied to electromyography (EMG) time series from back muscles. The time dependence of the entropy of the EMG signal exhibits a crossover from a subdiffusive regime at short times to a plateau at longer times. We argue that this behavior characterizes complex biological systems. The plateau value of the entropy can be used to differentiate between healthy and low back pain individuals.

  16. Entanglement Entropy of Black Holes

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2011-12-01

    The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  17. Entropy Generation in Regenerative Systems

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1995-01-01

    Heat exchange to the oscillating flows in regenerative coolers generates entropy. These flows are characterized by oscillating mass flows and oscillating temperatures. Heat is transferred between the flow and heat exchangers and regenerators. In the former case, there is a steady temperature difference between the flow and the heat exchangers. In the latter case, there is no mean temperature difference. In this paper a mathematical model of the entropy generated is developed for both cases. Estimates of the entropy generated by this process are given for oscillating flows in heat exchangers and in regenerators. The practical significance of this entropy is also discussed.

  18. Entanglement entropy on fuzzy spaces

    SciTech Connect

    Dou, Djamel; Ydri, Badis

    2006-08-15

    We study the entanglement entropy of a scalar field in 2+1 spacetime where space is modeled by a fuzzy sphere and a fuzzy disc. In both models we evaluate numerically the resulting entropies and find that they are proportional to the number of boundary degrees of freedom. In the Moyal plane limit of the fuzzy disc the entanglement entropy per unite area (length) diverges if the ignored region is of infinite size. The divergence is (interpreted) of IR-UV mixing origin. In general we expect the entanglement entropy per unite area to be finite on a noncommutative space if the ignored region is of finite size.

  19. Automorphic Black Hole Entropy

    NASA Astrophysics Data System (ADS)

    Schimmrigk, Rolf

    2013-09-01

    Over the past few years the understanding of the microscopic theory of black hole entropy has made important conceptual progress by recognizing that the degeneracies are encoded in partition functions which are determined by higher rank automorphic representations, in particular in the context of Siegel modular forms of genus two. In this review, some of the elements of this framework are highlighted. One of the surprising aspects is that the Siegel forms that have appeared in the entropic context are geometric in origin, arising from weight two cusp forms, hence from elliptic curves.

  20. Order and correlation contributions to the entropy of hydrophobic solvation

    SciTech Connect

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus

    2015-03-21

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom’s test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  1. Order and correlation contributions to the entropy of hydrophobic solvation

    NASA Astrophysics Data System (ADS)

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus

    2015-03-01

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom's test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  2. Link Influence Entropy

    NASA Astrophysics Data System (ADS)

    Singh, Priti; Chakraborty, Abhishek; Manoj, B. S.

    2017-01-01

    In this paper we propose a new metric, Link Influence Entropy (LInE), which describes importance of each node based on the influence of each link present in a network. Influence of a link can neither be effectively estimated using betweenness centrality nor using degree based probability measures. The proposed LInE metric which provides an effective way to estimate the influence of a link in the network and incorporates this influence to identify nodal characteristics, performs better compared to degree based entropy. We found that LInE can differentiate various network types which degree-based or betweenness centrality based node influence metrics cannot. Our findings show that spatial wireless networks and regular grid networks, respectively, have lowest and highest LInE values. Finally, performance analysis of LInE is carried out on a real-world network as well as on a wireless mesh network testbed to study the influence of our metric as well as influence stability of nodes in dynamic networks.

  3. Macromolecular Entropy Can Be Accurately Computed from Force.

    PubMed

    Hensen, Ulf; Gräter, Frauke; Henchman, Richard H

    2014-11-11

    A method is presented to evaluate a molecule's entropy from the atomic forces calculated in a molecular dynamics simulation. Specifically, diagonalization of the mass-weighted force covariance matrix produces eigenvalues which in the harmonic approximation can be related to vibrational frequencies. The harmonic oscillator entropies of each vibrational mode may be summed to give the total entropy. The results for a series of hydrocarbons, dialanine and a β hairpin are found to agree much better with values derived from thermodynamic integration than results calculated using quasiharmonic analysis. Forces are found to follow a harmonic distribution more closely than coordinate displacements and better capture the underlying potential energy surface. The method's accuracy, simplicity, and computational similarity to quasiharmonic analysis, requiring as input force trajectories instead of coordinate trajectories, makes it readily applicable to a wide range of problems.

  4. Entropy and biological systems: Experimentally-investigated entropy-driven stacking of plant photosynthetic membranes

    PubMed Central

    Jia, Husen; Liggins, John R.; Chow, Wah Soon

    2014-01-01

    According to the Second Law of Thermodynamics, an overall increase of entropy contributes to the driving force for any physicochemical process, but entropy has seldom been investigated in biological systems. Here, for the first time, we apply Isothermal Titration Calorimetry (ITC) to investigate the Mg2+-induced spontaneous stacking of photosynthetic membranes isolated from spinach leaves. After subtracting a large endothermic interaction of MgCl2 with membranes, unrelated to stacking, we demonstrate that the enthalpy change (heat change at constant pressure) is zero or marginally positive or negative. This first direct experimental evidence strongly suggests that an entropy increase significantly drives membrane stacking in this ordered biological structure. Possible mechanisms for the entropy increase include: (i) the attraction between discrete oppositely-charged areas, releasing counterions; (ii) the release of loosely-bound water molecules from the inter-membrane gap; (iii) the increased orientational freedom of previously-aligned water dipoles; and (iv) the lateral rearrangement of membrane components. PMID:24561561

  5. Possible extended forms of thermodynamic entropy

    NASA Astrophysics Data System (ADS)

    Sasa, Shin-ichi

    2014-01-01

    Thermodynamic entropy is determined by a heat measurement through the Clausius equality. The entropy then formalizes a fundamental limitation of operations by the second law of thermodynamics. The entropy is also expressed as the Shannon entropy of the microscopic degrees of freedom. Whenever an extension of thermodynamic entropy is attempted, we must pay special attention to how its three different aspects just mentioned are altered. In this paper, we discuss possible extensions of the thermodynamic entropy.

  6. Configurational entropy of glueball states

    NASA Astrophysics Data System (ADS)

    Bernardini, Alex E.; Braga, Nelson R. F.; da Rocha, Roldão

    2017-02-01

    The configurational entropy of glueball states is calculated using a holographic description. Glueball states are represented by a supergravity dual picture, consisting of a 5-dimensional graviton-dilaton action of a dynamical holographic AdS/QCD model. The configurational entropy is studied as a function of the glueball spin and of the mass, providing information about the stability of the glueball states.

  7. Trajectory versus probability density entropy.

    PubMed

    Bologna, M; Grigolini, P; Karagiorgis, M; Rosa, A

    2001-07-01

    We show that the widely accepted conviction that a connection can be established between the probability density entropy and the Kolmogorov-Sinai (KS) entropy is questionable. We adopt the definition of density entropy as a functional of a distribution density whose time evolution is determined by a transport equation, conceived as the only prescription to use for the calculation. Although the transport equation is built up for the purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible only in a limited number of cases. The proposals made by some authors to establish a connection between the two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is foreign to that of density entropy.

  8. Thermal Expansion Anomaly Regulated by Entropy

    PubMed Central

    Liu, Zi-Kui; Wang, Yi; Shang, ShunLi

    2014-01-01

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions. PMID:25391631

  9. Thermal expansion anomaly regulated by entropy.

    PubMed

    Liu, Zi-Kui; Wang, Yi; Shang, ShunLi

    2014-11-13

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions.

  10. Entropy Budget for Hawking Evaporation

    NASA Astrophysics Data System (ADS)

    Alonso-Serrano, Ana; Visser, Matt

    2017-07-01

    Blackbody radiation, emitted from a furnace and described by a Planck spectrum, contains (on average) an entropy of $3.9\\pm 2.5$ bits per photon. Since normal physical burning is a unitary process, this amount of entropy is compensated by the same amount of "hidden information" in correlations between the photons. The importance of this result lies in the posterior extension of this argument to the Hawking radiation from black holes, demonstrating that the assumption of unitarity leads to a perfectly reasonable entropy/information budget for the evaporation process. In order to carry out this calculation we adopt a variant of the "average subsystem" approach, but consider a tripartite pure system that includes the influence of the rest of the universe, and which allows "young" black holes to still have a non-zero entropy; which we identify with the standard Bekenstein entropy.

  11. Does information entropy play a role in the expansion and acceleration of the Universe?

    NASA Astrophysics Data System (ADS)

    Pandey, Biswajit

    2017-10-01

    We propose an interpretation of the expansion and acceleration of the Universe from an information theoretic viewpoint. We obtain the time evolution of the configuration entropy of the mass distribution in a static Universe and show that the process of gravitational instability leads to a rapid dissipation of configuration entropy during the growth of the density fluctuations making such a Universe entropically unfavourable. We find that in an expanding Universe, the configuration entropy rate is governed by the expansion rate of the Universe and the growth rate of density fluctuations. The configuration entropy rate becomes smaller but still remains negative in a matter dominated Universe and eventually becomes zero at some future time in a $\\Lambda$ dominated Universe. The configuration entropy may have a connection to the dark energy and possibly plays a driving role in the current accelerating expansion of the Universe leading the Universe to its maximum entropy configuration.

  12. Equilibrium distributions in entropy driven balanced processes

    NASA Astrophysics Data System (ADS)

    Biró, Tamás S.; Néda, Zoltán

    2017-05-01

    For entropy driven balanced processes we obtain final states with Poisson, Bernoulli, negative binomial and Pólya distributions. We apply this both for complex networks and particle production. For random networks we follow the evolution of the degree distribution, Pn, in a system where a node can activate k fixed connections from K possible partnerships among all nodes. The total number of connections, N, is also fixed. For particle physics problems Pn is the probability of having n particles (or other quanta) distributed among k states (phase space cells) while altogether a fixed number of N particles reside on K states.

  13. Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints

    NASA Astrophysics Data System (ADS)

    Winter, Andreas

    2016-10-01

    We present a bouquet of continuity bounds for quantum entropies, falling broadly into two classes: first, a tight analysis of the Alicki-Fannes continuity bounds for the conditional von Neumann entropy, reaching almost the best possible form that depends only on the system dimension and the trace distance of the states. Almost the same proof can be used to derive similar continuity bounds for the relative entropy distance from a convex set of states or positive operators. As applications, we give new proofs, with tighter bounds, of the asymptotic continuity of the relative entropy of entanglement, E R , and its regularization {E_R^{∞}}, as well as of the entanglement of formation, E F . Using a novel "quantum coupling" of density operators, which may be of independent interest, we extend the latter to an asymptotic continuity bound for the regularized entanglement of formation, aka entanglement cost, {E_C=E_F^{∞}}. Second, we derive analogous continuity bounds for the von Neumann entropy and conditional entropy in infinite dimensional systems under an energy constraint, most importantly systems of multiple quantum harmonic oscillators. While without an energy bound the entropy is discontinuous, it is well-known to be continuous on states of bounded energy. However, a quantitative statement to that effect seems not to have been known. Here, under some regularity assumptions on the Hamiltonian, we find that, quite intuitively, the Gibbs entropy at the given energy roughly takes the role of the Hilbert space dimension in the finite-dimensional Fannes inequality.

  14. Multi-scale symbolic transfer entropy analysis of EEG

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-10-01

    From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.

  15. Measurement of granular entropy.

    PubMed

    McNamara, Sean; Richard, Patrick; de Richter, Sébastien Kiesgen; Le Caër, Gérard; Delannay, Renaud

    2009-09-01

    Recently, Dean and Lefèvre [Phys. Rev. Lett. 90, 198301 (2003)] developed a method for testing the statistical mechanical theory of granular packings proposed by Edwards and co-workers [Physica A 157, 1080 (1989); Phys. Rev. E 58, 4758 (1998)]. The method relies on the prediction that the ratio of two overlapping volume histograms should be exponential in volume. We extend the method by showing that one can also calculate the entropy of the packing and also that the method can yield false positive results when the histograms are Gaussians with nearly identical variances. We then apply the method to simulations and experiments of granular compaction. The distribution of global volumes (the volume of the entire packing) is nearly Gaussian and it is difficult to conclude if the theory is valid. On the other hand, the distribution of Voronoï volumes clearly obeys the theoretical prediction.

  16. Revisiting sample entropy analysis

    NASA Astrophysics Data System (ADS)

    Govindan, R. B.; Wilson, J. D.; Eswaran, H.; Lowery, C. L.; Preißl, H.

    2007-03-01

    We modify the definition of sample entropy (SaEn) by incorporating a time delay between the components of the block (from which the densities are estimated) and show that the modified method characterizes the complexity of the system better than the original version. We apply the modified SaEn to the standard deterministic systems and stochastic processes (uncorrelated and long range correlated (LRC) processes) and show that the underlying complexity of the system is better quantified by the modified method. We extend this analysis to the RR intervals of the normal and congestive heart failure (CHF) subjects (available via www.physionet.org) and show that there is a good degree of separation between the two groups.

  17. FULL PARTICLE ELECTROMAGNETIC SIMULATIONS OF ENTROPY GENERATION ACROSS A COLLISIONLESS SHOCK

    SciTech Connect

    Yang, Zhongwei; Liu, Ying D.; Wang, Rui; Hu, Huidong; Parks, George K.; Wu, Pin; Huang, Can; Shi, Run

    2014-09-20

    Experimental data from Cluster have shown that entropy density can be generated across Earth's bow shock. These new observations are a starting point for a more sophisticated analysis that includes computer modeling of a collisionless shock using observed shock parameters as input. In this Letter, we present the first comparison between observations and particle-in-cell simulations of such entropy generation across a collisionless shock. The ion heating at the shock is dominated by the phase mixing of reflected and directly transmitted ions, which are separated from the incident ions. The electron heating is a nearly thermal process due to the conservation of their angular momentum. For both species, we calculate the entropy density across the shock, and obtain good consistency between observations and simulations on entropy generation across the shock. We also find that the entropy generation rate is reduced as the shock Mach number decreases.

  18. Bayes' estimators of generalized entropies

    NASA Astrophysics Data System (ADS)

    Holste, D.; Große, I.; Herzel, H.

    1998-03-01

    The order-q Tsallis 0305-4470/31/11/007/img5 and Rényi entropy 0305-4470/31/11/007/img6 receive broad applications in the statistical analysis of complex phenomena. A generic problem arises, however, when these entropies need to be estimated from observed data. The finite size of data sets can lead to serious systematic and statistical errors in numerical estimates. In this paper, we focus upon the problem of estimating generalized entropies from finite samples and derive the Bayes estimator of the order-q Tsallis entropy, including the order-1 (i.e. the Shannon) entropy, under the assumption of a uniform prior probability density. The Bayes estimator yields, in general, the smallest mean-quadratic deviation from the true parameter as compared with any other estimator. Exploiting the functional relationship between 0305-4470/31/11/007/img7 and 0305-4470/31/11/007/img8, we use the Bayes estimator of 0305-4470/31/11/007/img7 to estimate the Rényi entropy 0305-4470/31/11/007/img8. We compare these novel estimators with the frequency-count estimators for 0305-4470/31/11/007/img7 and 0305-4470/31/11/007/img8. We find by numerical simulations that the Bayes estimator reduces statistical errors of order-q entropy estimates for Bernoulli as well as for higher-order Markov processes derived from the complete genome of the prokaryote Haemophilus influenzae.

  19. Population entropies estimates of proteins

    NASA Astrophysics Data System (ADS)

    Low, Wai Yee

    2017-05-01

    The Shannon entropy equation provides a way to estimate variability of amino acids sequences in a multiple sequence alignment of proteins. Knowledge of protein variability is useful in many areas such as vaccine design, identification of antibody binding sites, and exploration of protein 3D structural properties. In cases where the population entropies of a protein are of interest but only a small sample size can be obtained, a method based on linear regression and random subsampling can be used to estimate the population entropy. This method is useful for comparisons of entropies where the actual sequence counts differ and thus, correction for alignment size bias is needed. In the current work, an R based package named EntropyCorrect that enables estimation of population entropy is presented and an empirical study on how well this new algorithm performs on simulated dataset of various combinations of population and sample sizes is discussed. The package is available at https://github.com/lloydlow/EntropyCorrect. This article, which was originally published online on 12 May 2017, contained an error in Eq. (1), where the summation sign was missing. The corrected equation appears in the Corrigendum attached to the pdf.

  20. Do `negative' temperatures exist?

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    1999-06-01

    A modification of the second law is required for a system with a bounded density of states and not the introduction of a `negative' temperature scale. The ascending and descending branches of the entropy versus energy curve describe particle and hole states, having thermal equations of state that are given by the Fermi and logistic distributions, respectively. Conservation of energy requires isentropic states to be isothermal. The effect of adiabatically reversing the field is entirely mechanical because the only difference between the two states is their energies. The laws of large and small numbers, leading to the normal and Poisson approximations, characterize statistically the states of infinite and zero temperatures, respectively. Since the heat capacity also vanishes in the state of maximum disorder, the third law can be generalized in systems with a bounded density of states: the entropy tends to a constant as the temperature tends to either zero or infinity.

  1. Entanglement entropy converges to classical entropy around periodic orbits

    SciTech Connect

    Asplund, Curtis T.; Berenstein, David

    2016-03-15

    We consider oscillators evolving subject to a periodic driving force that dynamically entangles them, and argue that this gives the linearized evolution around periodic orbits in a general chaotic Hamiltonian dynamical system. We show that the entanglement entropy, after tracing over half of the oscillators, generically asymptotes to linear growth at a rate given by the sum of the positive Lyapunov exponents of the system. These exponents give a classical entropy growth rate, in the sense of Kolmogorov, Sinai and Pesin. We also calculate the dependence of this entropy on linear mixtures of the oscillator Hilbert-space factors, to investigate the dependence of the entanglement entropy on the choice of coarse graining. We find that for almost all choices the asymptotic growth rate is the same.

  2. Entropy of gaseous boron monobromide

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Feng; Peng, Xiao-Long; Zhang, Lie-Hui; Wang, Chao-Wen; Jia, Chun-Sheng

    2017-10-01

    We present an explicit representation of molar entropy for gaseous boron monobromide in terms of experimental values of only three molecular constants. Fortunately, through comparison of theoretically calculated results and experimental data, we find that the molar entropy of gaseous boron monobromide can be well predicted by employing the improved Manning-Rosen oscillator to describe the internal vibration of boron monobromide molecule. The present approach provides also opportunities for theoretical predictions of molar entropy for other gases with no use of large amounts of experimental spectroscopy data.

  3. Zero modes and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Yazdi, Yasaman K.

    2017-04-01

    Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this note, we discuss the importance of carefully handling zero modes in entanglement entropy. We give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. We also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.

  4. Entropy distance: New quantum phenomena

    SciTech Connect

    Weis, Stephan; Knauf, Andreas

    2012-10-15

    We study a curve of Gibbsian families of complex 3 Multiplication-Sign 3-matrices and point out new features, absent in commutative finite-dimensional algebras: a discontinuous maximum-entropy inference, a discontinuous entropy distance, and non-exposed faces of the mean value set. We analyze these problems from various aspects including convex geometry, topology, and information geometry. This research is motivated by a theory of infomax principles, where we contribute by computing first order optimality conditions of the entropy distance.

  5. Nonequilibrium stationary states and entropy.

    PubMed

    Gallavotti, G; Cohen, E G D

    2004-03-01

    In transformations between nonequilibrium stationary states, entropy might not be a well defined concept. It might be analogous to the "heat content" in transformations in equilibrium which is not well defined either, if they are not isochoric (i.e., do involve mechanical work). Hence we conjecture that in a nonequilibrium stationary state the entropy is just a quantity that can be transferred or created, such as heat in equilibrium, but has no physical meaning as "entropy content" as a property of the system.

  6. Entropy in statistical energy analysis.

    PubMed

    Le Bot, Alain

    2009-03-01

    In this paper, the second principle of thermodynamics is discussed in the framework of statistical energy analysis (SEA). It is shown that the "vibrational entropy" and the "vibrational temperature" of sub-systems only depend on the vibrational energy and the number of resonant modes. A SEA system can be described as a thermodynamic system slightly out of equilibrium. In steady-state condition, the entropy exchanged with exterior by sources and dissipation exactly balances the production of entropy by irreversible processes at interface between SEA sub-systems.

  7. Entropy-as-a-Service: Unlocking the Full Potential of Cryptography

    PubMed Central

    Vassilev, Apostol; Staples, Robert

    2016-01-01

    Securing the Internet requires strong cryptography, which depends on the availability of good entropy for generating unpredictable keys and accurate clocks. Attacks abusing weak keys or old inputs portend challenges for the Internet. EaaS is a novel architecture providing entropy and timestamps from a decentralized root of trust, scaling gracefully across diverse geopolitical locales and remaining trustworthy unless much of the collective is compromised. PMID:28003687

  8. Entropy-as-a-Service: Unlocking the Full Potential of Cryptography.

    PubMed

    Vassilev, Apostol; Staples, Robert

    2016-09-01

    Securing the Internet requires strong cryptography, which depends on the availability of good entropy for generating unpredictable keys and accurate clocks. Attacks abusing weak keys or old inputs portend challenges for the Internet. EaaS is a novel architecture providing entropy and timestamps from a decentralized root of trust, scaling gracefully across diverse geopolitical locales and remaining trustworthy unless much of the collective is compromised.

  9. Forbidden patterns, permutation entropy and stock market inefficiency

    NASA Astrophysics Data System (ADS)

    Zunino, Luciano; Zanin, Massimiliano; Tabak, Benjamin M.; Pérez, Darío G.; Rosso, Osvaldo A.

    2009-07-01

    In this paper we introduce two new quantifiers for the stock market inefficiency: the number of forbidden patterns and the normalized permutation entropy. They are model-independent measures, thus they have more general applicability. We find robust evidence that degree of market inefficiency is positively correlated with the number of forbidden patterns and negatively correlated with the permutation entropy. Our empirical results suggest that these two physical tools are useful to discriminate the stage of stock market development and can be easily implemented.

  10. Entropy Production in Nonlinear, Thermally Driven Hamiltonian Systems

    NASA Astrophysics Data System (ADS)

    Eckmann, Jean-Pierre; Pillet, Claude-Alain; Rey-Bellet, Luc

    1999-04-01

    We consider a finite chain of nonlinear oscillators coupled at its ends to two infinite heat baths which are at different temperatures. Using our earlier results about the existence of a stationary state, we show rigorously that for arbitrary temperature differences and arbitrary couplings, such a system has a unique stationary state. (This extends our earlier results for small temperature differences.) In all these cases, any initial state will converge (at an unknown rate) to the stationary state. We show that this stationary state continually produces entropy. The rate of entropy production is strictly negative when the temperatures are unequal and is proportional to the mean energy flux through the system

  11. Maximum entropy spectral analysis for streamflow forecasting

    NASA Astrophysics Data System (ADS)

    Cui, Huijuan; Singh, Vijay P.

    2016-01-01

    Configurational entropy spectral analysis (CESAS) is developed with spectral power as a random variable for streamflow forecasting. It is found that the CESAS derived by maximizing the configurational entropy yields the same solution as by the Burg entropy spectral analysis (BESA). Comparison of forecasted streamflows by CESAS and BESA shows less than 0.001% difference between the two analyses and thus the two entropy spectral analyses are concluded to be identical. Thus, the Burg entropy spectral analysis and two configurational entropy spectral analyses form the maximum entropy spectral analysis.

  12. Entropy exchange for infinite-dimensional systems

    PubMed Central

    Duan, Zhoubo; Hou, Jinchuan

    2017-01-01

    In this paper the entropy exchange for channels and states in infinite-dimensional systems are defined and studied. It is shown that, this entropy exchange depends only on the given channel and the state. An explicit expression of the entropy exchange in terms of the state and the channel is proposed. The generalized Klein’s inequality, the subadditivity and the triangle inequality about the entropy including infinite entropy for the infinite-dimensional systems are established, and then, applied to compare the entropy exchange with the entropy change. PMID:28164995

  13. Entropy of Open Lattice Systems

    NASA Astrophysics Data System (ADS)

    Derrida, B.; Lebowitz, J. L.; Speer, E. R.

    2007-03-01

    We investigate the behavior of the Gibbs-Shannon entropy of the stationary nonequilibrium measure describing a one-dimensional lattice gas, of L sites, with symmetric exclusion dynamics and in contact with particle reservoirs at different densities. In the hydrodynamic scaling limit, L → ∞, the leading order ( O( L)) behavior of this entropy has been shown by Bahadoran to be that of a product measure corresponding to strict local equilibrium; we compute the first correction, which is O(1). The computation uses a formal expansion of the entropy in terms of truncated correlation functions; for this system the k th such correlation is shown to be O( L - k+1). This entropy correction depends only on the scaled truncated pair correlation, which describes the covariance of the density field. It coincides, in the large L limit, with the corresponding correction obtained from a Gaussian measure with the same covariance.

  14. Entropy balance in holographic superconductors

    NASA Astrophysics Data System (ADS)

    Hartnoll, Sean A.; Pourhasan, Razieh

    2012-07-01

    In systems undergoing second order phase transitions, the temperature integral of the specific heat over temperature from zero to the critical temperature is the same in both the normal and ordered phases. This entropy balance relates the critical temperature to the distribution of degrees of freedom in the normal and ordered states. Quantum criticality and fractionalization can imply an increased number of low energy degrees of freedom in both the normal and ordered states. We explore the rôle of entropy balance in holographic models of superconductivity, focussing on the interplay between quantum criticality and superconductivity. We consider models with and without a ground state entropy density in the normal phase; the latter models are a new class of holographic superconductors. We explain how a normal phase entropy density manifests itself in the stable superconducting phase.

  15. An adaptable binary entropy coder

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.

    2001-01-01

    We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.

  16. Orientational high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Kumar, Nitesh; Subramaniam, Anandh

    2014-12-01

    In high-entropy alloys (HEA), the configurational entropy arising from the presence of multiple elements, stabilizes a disordered solid solution in preference to the possible formation of compounds. In the current work, we identify cluster compounds (of the type AM4X8) as orientational analogues of HEA (as a first report on orientational high-entropy systems). In cluster compounds, orientational disorder increases the entropy and plays a role analogous to positional disorder in HEA. In the GaMo4S8 compound, at temperatures greater than 50 K, the entropic benefit more than makes up for the strain energy cost and stabilizes the disordered phase in preference to an orientationally ordered compound.

  17. Quantum entropy and special relativity.

    PubMed

    Peres, Asher; Scudo, Petra F; Terno, Daniel R

    2002-06-10

    We consider a single free spin- 1 / 2 particle. The reduced density matrix for its spin is not covariant under Lorentz transformations. The spin entropy is not a relativistic scalar and has no invariant meaning.

  18. High-Entropy Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Wang, W. H.

    2014-10-01

    The high-entropy alloys are defined as solid-solution alloys containing five or more than five principal elements in equal or near-equal atomic percent. The concept of high mixing entropy introduces a new way for developing advanced metallic materials with unique physical and mechanical properties that cannot be achieved by the conventional microalloying approach based on only a single base element. The metallic glass (MG) is the metallic alloy rapidly quenched from the liquid state, and at room temperature it still shows an amorphous liquid-like structure. Bulk MGs represent a particular class of amorphous alloys usually with three or more than three components but based on a single principal element such as Zr, Cu, Ce, and Fe. These materials are very attractive for applications because of their excellent mechanical properties such as ultrahigh (near theoretical) strength, wear resistance, and hardness, and physical properties such as soft magnetic properties. In this article, we review the formation and properties of a series of high-mixing-entropy bulk MGs based on multiple major elements. It is found that the strategy and route for development of the high-entropy alloys can be applied to the development of the MGs with excellent glass-forming ability. The high-mixing-entropy bulk MGs are then loosely defined as metallic glassy alloys containing five or more than five elements in equal or near-equal atomic percent, which have relatively high mixing entropy compared with the conventional MGs based on a single principal element. The formation mechanism, especially the role of the mixing entropy in the formation of the high-entropy MGs, is discussed. The unique physical, mechanical, chemical, and biomedical properties of the high-entropy MGs in comparison with the conventional metallic alloys are introduced. We show that the high-mixing-entropy MGs, along the formation idea and strategy of the high-entropy alloys and based on multiple major elements, might provide

  19. Extremal surfaces and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Pal, Shesansu Sekhar

    2014-05-01

    We have obtained the equation of the extremal hypersurface by considering the Jacobson-Myers functional and computed the entanglement entropy. In this context, we show that the higher derivative corrected extremal surfaces cannot penetrate the horizon. Also, we have studied the entanglement temperature and entanglement entropy for low excited states for such higher derivative theories when the entangling region is of the strip type.

  20. Steganography Detection Using Entropy Measures

    DTIC Science & Technology

    2012-08-19

    REPORT Steganography Detection Using Entropy Measures 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: There are two problems in steganalysis: (1) detecting...the existence of a hidden message and (2) decoding the message. As terrorist groups have been known to use steganography in planning their attacks...298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Steganography Detection Using Entropy Measures Report Title ABSTRACT There are two problems in

  1. Boundary effects in entanglement entropy

    NASA Astrophysics Data System (ADS)

    Berthiere, Clément; Solodukhin, Sergey N.

    2016-09-01

    We present a number of explicit calculations of Renyi and entanglement entropies in situations where the entangling surface intersects the boundary of d-dimensional Minkowski spacetime. When the boundary is a single plane we compute the contribution to the entropy due to this intersection, first in the case of the Neumann and Dirichlet boundary conditions, and then in the case of a generic Robin type boundary condition. The flow in the boundary coupling between the Neumann and Dirichlet phases is analyzed in arbitrary dimension d and is shown to be monotonic, the peculiarity of d = 3 case is noted. We argue that the translational symmetry along the entangling surface is broken due the presence of the boundary which reveals that the entanglement is not homogeneous. In order to characterize this quantitatively, we introduce a density of entanglement entropy and compute it explicitly. This quantity clearly indicates that the entanglement is maximal near the boundary. We then consider the situation where the boundary is composed of two parallel planes at a finite separation and compute the entanglement entropy as well as its density in this case. The complete contribution to entanglement entropy due to the boundaries is shown not to depend on the distance between the planes and is simply twice the entropy in the case of single plane boundary. Additionally, we find how the area law, the part in the entropy proportional to the area of entire entangling surface, depends on the size of the separation between the two boundaries. The latter is shown to appear in the UV finite part of the entropy.

  2. Holographic avatars of entanglement entropy

    NASA Astrophysics Data System (ADS)

    Barbón, J. L. F.

    2009-07-01

    This is a rendering of the blackboard lectures at the 2008 Cargese summer school, discussing some elementary facts regarding the application of AdS/CFT techniques to the computation of entanglement entropy in strongly coupled systems. We emphasize the situations where extensivity of the entanglement entropy can be used as a crucial criterion to characterize either nontrivial dynamical phenomena at large length scales, or nonlocality in the short-distance realm.

  3. Dissipation, interaction, and relative entropy.

    PubMed

    Gaveau, B; Granger, L; Moreau, M; Schulman, L S

    2014-03-01

    Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (also called the Kullback-Leibler divergence). The processes considered are general time evolutions in both classical and quantum mechanics, and the initial state is sometimes thermal, sometimes partially so. As an application, the relative entropy is related to transport coefficients.

  4. Information entropy to measure the spatial and temporal complexity of solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Li, Weiyao; Huang, Guanhua; Xiong, Yunwu

    2016-04-01

    The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and

  5. The entropy conjecture for dominated splitting with multi 1D centers via upper semi-continuity of the metric entropy

    NASA Astrophysics Data System (ADS)

    Zang, Yuntao; Yang, Dawei; Cao, Yongluo

    2017-08-01

    Let f be a C 1 diffeomorphism on a compact manifold M, Λ be a compact invariant subset with a dominated splitting TΛM=Ecu \\oplus> E1 \\oplus> E2\\cdots \\oplus> El \\oplus> Ecs such that dim Ei=1(1≤slant i≤slant l) and for any invariant probability measure ν, the Lyapunov exponents of ν are non-negative along E cu and non-positive along E cs . Then the entropy conjecture is true in this setting as a consequence of the upper semi-continuity of the metric entropy.

  6. Entropy Production in Chemical Reactors

    NASA Astrophysics Data System (ADS)

    Kingston, Diego; Razzitte, Adrián C.

    2017-06-01

    We have analyzed entropy production in chemically reacting systems and extended previous results to the two limiting cases of ideal reactors, namely continuous stirred tank reactor (CSTR) and plug flow reactor (PFR). We have found upper and lower bounds for the entropy production in isothermal systems and given expressions for non-isothermal operation and analyzed the influence of pressure and temperature in entropy generation minimization in reactors with a fixed volume and production. We also give a graphical picture of entropy production in chemical reactions subject to constant volume, which allows us to easily assess different options. We show that by dividing a reactor into two smaller ones, operating at different temperatures, the entropy production is lowered, going as near as 48 % less in the case of a CSTR and PFR in series, and reaching 58 % with two CSTR. Finally, we study the optimal pressure and temperature for a single isothermal PFR, taking into account the irreversibility introduced by a compressor and a heat exchanger, decreasing the entropy generation by as much as 30 %.

  7. Generalized Maximum Entropy

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John

    2005-01-01

    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  8. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    PubMed

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (p<2.2e-16) than HK gene promoters. The entropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Talking Speech Input.

    ERIC Educational Resources Information Center

    Berliss-Vincent, Jane; Whitford, Gigi

    2002-01-01

    This article presents both the factors involved in successful speech input use and the potential barriers that may suggest that other access technologies could be more appropriate for a given individual. Speech input options that are available are reviewed and strategies for optimizing use of speech recognition technology are discussed. (Contains…

  10. MDS MIC Catalog Inputs

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Vowell, C. W.; Smith, Byron; Darcy, Jeannette

    2006-01-01

    This viewgraph presentation reviews the inputs to the MDS Medical Information Communique (MIC) catalog. The purpose of the group is to provide input for updating the MDS MIC Catalog and to request that MMOP assign Action Item to other working groups and FSs to support the MITWG Process for developing MIC-DDs.

  11. High input impedance amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1995-01-01

    High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provide an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.

  12. Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations.

    PubMed

    Ou, Zhaoyang; Muthukumar, M

    2006-04-21

    We report a systematic study by Langevin dynamics simulation on the energetics of complexation between two oppositely charged polyelectrolytes of same charge density in dilute solutions of a good solvent with counterions and salt ions explicitly included. The enthalpy of polyelectrolyte complexation is quantified by comparisons of the Coulomb energy before and after complexation. The entropy of polyelectrolyte complexation is determined directly from simulations and compared with that from a mean-field lattice model explicitly accounting for counterion adsorption. At weak Coulomb interaction strengths, e.g., in solvents of high dielectric constant or with weakly charged polyelectrolytes, complexation is driven by a negative enthalpy due to electrostatic attraction between two oppositely charged chains, with counterion release entropy playing only a subsidiary role. In the strong interaction regime, complexation is driven by a large counterion release entropy and opposed by a positive enthalpy change. The addition of salt reduces the enthalpy of polyelectrolyte complexation by screening electrostatic interaction at all Coulomb interaction strengths. The counterion release entropy also decreases in the presence of salt, but the reduction only becomes significant at higher Coulomb interaction strengths. More significantly, in the range of Coulomb interaction strengths appropriate for highly charged polymers in aqueous solutions, complexation enthalpy depends weakly on salt concentration and counterion release entropy exhibits a large variation as a function of salt concentration. Our study quantitatively establishes that polyelectrolyte complexation in highly charged Coulomb systems is of entropic origin.

  13. Entropy Production and Fluctuation Relation in Turbulent Convection

    NASA Astrophysics Data System (ADS)

    Chibbaro, Sergio; Zonta, Francesco

    2016-11-01

    We report on a numerical experiment performed to analyze fluctuations of the entropy production in turbulent thermal convection. Using Direct Numerical Simulations (DNS), we estimate the entropy production from instantaneous measurements of the local temperature and velocity fields sampled along the trajectory of a large number of point-wise Lagrangian tracers. Entropy production is related to the work made by buoyancy force. The entropy production is characterized by large fluctuations and becomes often negative. This represents a sort of "finite-time" violation of the second principle of thermodynamics, since the direction of the energy flux is opposite to that prescribed by the external gradient. We provide a physical-sound definition of energy-scale characterizing the sytem, based upon Kolmogorov theory. Then, we link our results with recent theory of statistical mechanics of nonequilibrium systems, notably the results obtained by Evans, Cohen, Morris and Gallavotti for generic reversible dynamical systems. We show that the fluctuations of entropy production observed in the present system verify neatly the Fluctuation Relation (FR), cornerstone of that theory, even though the system is time-irreversible.

  14. Relative Entropy and Squashed Entanglement

    NASA Astrophysics Data System (ADS)

    Li, Ke; Winter, Andreas

    2014-02-01

    We are interested in the properties and relations of entanglement measures. Especially, we focus on the squashed entanglement and relative entropy of entanglement, as well as their analogues and variants. Our first result is a monogamy-like inequality involving the relative entropy of entanglement and its one-way LOCC variant. The proof is accomplished by exploring the properties of relative entropy in the context of hypothesis testing via one-way LOCC operations, and by making use of an argument resembling that by Piani on the faithfulness of regularized relative entropy of entanglement. Following this, we obtain a commensurate and faithful lower bound for squashed entanglement, in the form of one-way LOCC relative entropy of entanglement. This gives a strengthening to the strong subadditivity of von Neumann entropy. Our result improves the trace-distance-type bound derived in Brandão et al. (Commun Math Phys, 306:805-830, 2011), where faithfulness of squashed entanglement was first proved. Applying Pinsker's inequality, we are able to recover the trace-distance-type bound, even with slightly better constant factor. However, the main improvement is that our new lower bound can be much larger than the old one and it is almost a genuine entanglement measure. We evaluate exactly the relative entropy of entanglement under various restricted measurement classes, for maximally entangled states. Then, by proving asymptotic continuity, we extend the exact evaluation to their regularized versions for all pure states. Finally, we consider comparisons and separations between some important entanglement measures and obtain several new results on these, too.

  15. Entropy from State Probabilities: Hydration Entropy of Cations

    PubMed Central

    2013-01-01

    Entropy is an important energetic quantity determining the progression of chemical processes. We propose a new approach to obtain hydration entropy directly from probability density functions in state space. We demonstrate the validity of our approach for a series of cations in aqueous solution. Extensive validation of simulation results was performed. Our approach does not make prior assumptions about the shape of the potential energy landscape and is capable of calculating accurate hydration entropy values. Sampling times in the low nanosecond range are sufficient for the investigated ionic systems. Although the presented strategy is at the moment limited to systems for which a scalar order parameter can be derived, this is not a principal limitation of the method. The strategy presented is applicable to any chemical system where sufficient sampling of conformational space is accessible, for example, by computer simulations. PMID:23651109

  16. Classification of 5-S Epileptic EEG Recordings Using Distribution Entropy and Sample Entropy

    PubMed Central

    Li, Peng; Karmakar, Chandan; Yan, Chang; Palaniswami, Marimuthu; Liu, Changchun

    2016-01-01

    Epilepsy is an electrophysiological disorder of the brain, the hallmark of which is recurrent and unprovoked seizures. Electroencephalogram (EEG) measures electrical activity of the brain that is commonly applied as a non-invasive technique for seizure detection. Although a vast number of publications have been published on intelligent algorithms to classify interictal and ictal EEG, it remains an open question whether they can be detected using short-length EEG recordings. In this study, we proposed three protocols to select 5 s EEG segment for classifying interictal and ictal EEG from normal. We used the publicly-accessible Bonn database, which consists of normal, interical, and ictal EEG signals with a length of 4097 sampling points (23.6 s) per record. In this study, we selected three segments of 868 points (5 s) length from each recordings and evaluated results for each of them separately. The well-studied irregularity measure—sample entropy (SampEn)—and a more recently proposed complexity measure—distribution entropy (DistEn)—were used as classification features. A total of 20 combinations of input parameters m and τ for the calculation of SampEn and DistEn were selected for compatibility. Results showed that SampEn was undefined for half of the used combinations of input parameters and indicated a large intra-class variance. Moreover, DistEn performed robustly for short-length EEG data indicating relative independence from input parameters and small intra-class fluctuations. In addition, it showed acceptable performance for all three classification problems (interictal EEG from normal, ictal EEG from normal, and ictal EEG from interictal) compared to SampEn, which showed better results only for distinguishing normal EEG from interictal and ictal. Both SampEn and DistEn showed good reproducibility and consistency, as evidenced by the independence of results on analysing protocol. PMID:27148074

  17. Classification of 5-S Epileptic EEG Recordings Using Distribution Entropy and Sample Entropy.

    PubMed

    Li, Peng; Karmakar, Chandan; Yan, Chang; Palaniswami, Marimuthu; Liu, Changchun

    2016-01-01

    Epilepsy is an electrophysiological disorder of the brain, the hallmark of which is recurrent and unprovoked seizures. Electroencephalogram (EEG) measures electrical activity of the brain that is commonly applied as a non-invasive technique for seizure detection. Although a vast number of publications have been published on intelligent algorithms to classify interictal and ictal EEG, it remains an open question whether they can be detected using short-length EEG recordings. In this study, we proposed three protocols to select 5 s EEG segment for classifying interictal and ictal EEG from normal. We used the publicly-accessible Bonn database, which consists of normal, interical, and ictal EEG signals with a length of 4097 sampling points (23.6 s) per record. In this study, we selected three segments of 868 points (5 s) length from each recordings and evaluated results for each of them separately. The well-studied irregularity measure-sample entropy (SampEn)-and a more recently proposed complexity measure-distribution entropy (DistEn)-were used as classification features. A total of 20 combinations of input parameters m and τ for the calculation of SampEn and DistEn were selected for compatibility. Results showed that SampEn was undefined for half of the used combinations of input parameters and indicated a large intra-class variance. Moreover, DistEn performed robustly for short-length EEG data indicating relative independence from input parameters and small intra-class fluctuations. In addition, it showed acceptable performance for all three classification problems (interictal EEG from normal, ictal EEG from normal, and ictal EEG from interictal) compared to SampEn, which showed better results only for distinguishing normal EEG from interictal and ictal. Both SampEn and DistEn showed good reproducibility and consistency, as evidenced by the independence of results on analysing protocol.

  18. Some new measures of entropy, useful tools in biocomputing.

    PubMed

    Garrido, Angel

    2010-01-01

    The basic problem rooted in Information Theory (IT) foundations (Shannon, Bell Syst Tech J 27:379-423 and 623-656, 1948; Volkenstein, Entropy and Information. Series: Progress in Mathematical Physics, 2009) is to reconstruct, as closely as possible, the input signal after observing the received output signal.The Shannon information measure is the only possible one in this context, but it must be clear that it is only valid within the more restricted scope of coding problems that C. E. Shannon himself had seen in his lifetime (Shannon, Bell Syst Tech J 27:379-423 and 623-656, 1948). As pointed out by Alfred Rényi (1961), in his essential paper (Rényi, Proc. of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, 547-561, 1961) on generalized information measures, for other sorts of problems other quantities may serve just as well as measures of information, or even better. This would be supported either by their operational significance or by a set of natural postulates characterizing them, or preferably by both. Thus, the idea of generalized entropies arises in scientific literature.We analyze here some new measures of Entropy, very useful to be applied on Biocomputing (Ulanowicz and Hannon, Proc R Soc Lond B 232:181-192, 1987; Volkenstein, Entropy and Information. Series: Progress in Mathematical Physics, 2009).

  19. Towards a derivation of holographic entanglement entropy

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Huerta, Marina; Myers, Robert C.

    2011-05-01

    We provide a derivation of holographic entanglement entropy for spherical entangling surfaces. Our construction relies on conformally mapping the boundary CFT to a hyperbolic geometry and observing that the vacuum state is mapped to a thermal state in the latter geometry. Hence the conformal transformation maps the entanglement entropy to the thermodynamic entropy of this thermal state. The AdS/CFT dictionary allows us to calculate this thermodynamic entropy as the horizon entropy of a certain topological black hole. In even dimensions, we also demonstrate that the universal contribution to the entanglement entropy is given by A-type trace anomaly for any CFT, without reference to holography.

  20. Convex Accelerated Maximum Entropy Reconstruction

    PubMed Central

    Worley, Bradley

    2016-01-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm – called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm – is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. PMID:26894476

  1. Wavelet entropy of stochastic processes

    NASA Astrophysics Data System (ADS)

    Zunino, L.; Pérez, D. G.; Garavaglia, M.; Rosso, O. A.

    2007-06-01

    We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano, Time-frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E 57 (1998) 932-940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65-75] and a second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71-78]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise ( -1<α< 1) and fractional Brownian motion ( 1<α< 3) are assessed. We find out that the NTWS family performs better as a characterization method for these stochastic processes.

  2. Conditional entropy and Landauer principle

    NASA Astrophysics Data System (ADS)

    Chiuchiú, D.; Diamantini, M. C.; Gammaitoni, L.

    2015-08-01

    The Landauer principle describes the minimum heat produced by an information-processing device. Recently a new term has been included in the minimum heat production: it is called conditional entropy and takes into account the microstates content of a given logic state. Usually this term is assumed to be zero in bistable symmetric systems thanks to the strong hypothesis used to derive the Landauer principle. In this paper we show that conditional entropy can be nonzero even for bistable symmetric systems and that it can be expressed as the sum of three different terms related to the probabilistic features of the device. The contribution of the three terms to conditional entropy (and thus to the minimum heat production) is then discussed for the case of bit reset.

  3. Quantum geometry and gravitational entropy

    SciTech Connect

    Simon, Joan; Balasubramanian, Vijay; Czech, Bart Iomiej; Larjo, Klaus; Marolf, Donald; Simon, Joan

    2007-05-29

    Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S5 universes. In this sector we devise a"coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.

  4. Relative Entropy and Torsion Coupling

    NASA Astrophysics Data System (ADS)

    Lin, Feng-Li; Ning, Bo

    2017-08-01

    Based on the the geometric realization of entanglement entropy via Ryu-Takayanagi formula, in this work we evaluate the relative entropy for the holographic deformed CFT dual to the torsion gravity coupled to the fermions of nonzero vev in the Einstein-Cartan formulation. We find that the positivity and monotonicity of the relative entropy imposes constraint on the strength of axial-current coupling, fermion mass and equation of state. Our work is the first example to demonstrate the nontrivial constraint on the bulk gravity theory from the quantum information inequalities. Especially, this constraint is beyond the symmetry action principle and should be understood as the unitarity constraint. This talk is based on the work [1] of the authors.

  5. Convex accelerated maximum entropy reconstruction.

    PubMed

    Worley, Bradley

    2016-04-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm - called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm - is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Convex accelerated maximum entropy reconstruction

    NASA Astrophysics Data System (ADS)

    Worley, Bradley

    2016-04-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm - called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm - is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra.

  7. Construction of microcanonical entropy on thermodynamic pillars.

    PubMed

    Campisi, Michele

    2015-05-01

    A question that is currently highly debated is whether the microcanonical entropy should be expressed as the logarithm of the phase volume (volume entropy, also known as the Gibbs entropy) or as the logarithm of the density of states (surface entropy, also known as the Boltzmann entropy). Rather than postulating them and investigating the consequence of each definition, as is customary, here we adopt a bottom-up approach and construct the entropy expression within the microcanonical formalism upon two fundamental thermodynamic pillars: (i) The second law of thermodynamics as formulated for quasistatic processes: δQ/T is an exact differential, and (ii) the law of ideal gases: PV=k(B)NT. The first pillar implies that entropy must be some function of the phase volume Ω. The second pillar singles out the logarithmic function among all possible functions. Hence the construction leads uniquely to the expression S=k(B)lnΩ, that is, the volume entropy. As a consequence any entropy expression other than that of Gibbs, e.g., the Boltzmann entropy, can lead to inconsistencies with the two thermodynamic pillars. We illustrate this with the prototypical example of a macroscopic collection of noninteracting spins in a magnetic field, and show that the Boltzmann entropy severely fails to predict the magnetization, even in the thermodynamic limit. The uniqueness of the Gibbs entropy, as well as the demonstrated potential harm of the Boltzmann entropy, provide compelling reasons for discarding the latter at once.

  8. Construction of microcanonical entropy on thermodynamic pillars

    NASA Astrophysics Data System (ADS)

    Campisi, Michele

    2015-05-01

    A question that is currently highly debated is whether the microcanonical entropy should be expressed as the logarithm of the phase volume (volume entropy, also known as the Gibbs entropy) or as the logarithm of the density of states (surface entropy, also known as the Boltzmann entropy). Rather than postulating them and investigating the consequence of each definition, as is customary, here we adopt a bottom-up approach and construct the entropy expression within the microcanonical formalism upon two fundamental thermodynamic pillars: (i) The second law of thermodynamics as formulated for quasistatic processes: δ Q /T is an exact differential, and (ii) the law of ideal gases: P V =kBN T . The first pillar implies that entropy must be some function of the phase volume Ω . The second pillar singles out the logarithmic function among all possible functions. Hence the construction leads uniquely to the expression S =kBlnΩ , that is, the volume entropy. As a consequence any entropy expression other than that of Gibbs, e.g., the Boltzmann entropy, can lead to inconsistencies with the two thermodynamic pillars. We illustrate this with the prototypical example of a macroscopic collection of noninteracting spins in a magnetic field, and show that the Boltzmann entropy severely fails to predict the magnetization, even in the thermodynamic limit. The uniqueness of the Gibbs entropy, as well as the demonstrated potential harm of the Boltzmann entropy, provide compelling reasons for discarding the latter at once.

  9. The entropy of Black Shells

    NASA Astrophysics Data System (ADS)

    Rojas C., W. A.; Arenas S., R.

    2017-07-01

    The formalism of Darmois-Israel is used to calculate the entropy of a thin spherical shell that contracts from infinity down to near its gravitational radius. It was found that the entropy contained in the thin shell is proportional to the horizon area depending on the number of species N, the distance own above the horizon α and two constants C1 and C2 which can be measured observationally. Certain thermodynamic parameters were calculated, when thin shell it is near the horizon of events for a static space-time, this parameters are agree with reported.

  10. Using entropy measures to characterize human locomotion.

    PubMed

    Leverick, Graham; Szturm, Tony; Wu, Christine Q

    2014-12-01

    Entropy measures have been widely used to quantify the complexity of theoretical and experimental dynamical systems. In this paper, the value of using entropy measures to characterize human locomotion is demonstrated based on their construct validity, predictive validity in a simple model of human walking and convergent validity in an experimental study. Results show that four of the five considered entropy measures increase meaningfully with the increased probability of falling in a simple passive bipedal walker model. The same four entropy measures also experienced statistically significant increases in response to increasing age and gait impairment caused by cognitive interference in an experimental study. Of the considered entropy measures, the proposed quantized dynamical entropy (QDE) and quantization-based approximation of sample entropy (QASE) offered the best combination of sensitivity to changes in gait dynamics and computational efficiency. Based on these results, entropy appears to be a viable candidate for assessing the stability of human locomotion.

  11. Entropy Analyses of Four Familiar Processes.

    ERIC Educational Resources Information Center

    Craig, Norman C.

    1988-01-01

    Presents entropy analysis of four processes: a chemical reaction, a heat engine, the dissolution of a solid, and osmosis. Discusses entropy, the second law of thermodynamics, and the Gibbs free energy function. (MVL)

  12. Entropy Analyses of Four Familiar Processes.

    ERIC Educational Resources Information Center

    Craig, Norman C.

    1988-01-01

    Presents entropy analysis of four processes: a chemical reaction, a heat engine, the dissolution of a solid, and osmosis. Discusses entropy, the second law of thermodynamics, and the Gibbs free energy function. (MVL)

  13. Periodic Trends for the Entropy of Elements.

    ERIC Educational Resources Information Center

    Thoms, Travis

    1995-01-01

    Explores the periodic trends in the entropy of elements. Focuses on concepts understandable to high school and beginning chemists. Concludes that entropy values increase with a period and generally decrease toward the center of a period. (JRH)

  14. Entropy of a vacuum: What does the covariant entropy count?

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Weinberg, Sean J.

    2014-11-01

    We argue that a unitary description of the formation and evaporation of a black hole implies that the Bekenstein-Hawking entropy is the "entropy of a vacuum": the logarithm of the number of possible independent ways in which quantum field theory on a fixed classical spacetime background can emerge in a full quantum theory of gravity. In many cases, the covariant entropy counts this entropy—the degeneracy of emergent quantum field theories in full quantum gravity—with the entropy of particle excitations in each quantum field theory giving only a tiny perturbation. In the Rindler description of a (black hole) horizon, the relevant vacuum degrees of freedom manifest themselves as an extra hidden quantum number carried by the states representing the second exterior region; this quantum number is invisible in the emergent quantum field theory. In a distant picture, these states arise as exponentially degenerate ground and excited states of the intrinsically quantum gravitational degrees of freedom on the stretched horizon. The formation and evaporation of a black hole involve processes in which the entropy of collapsing matter is transformed into that of a vacuum and then to that of final-state Hawking radiation. In the intermediate stage of this evolution, entanglement between the vacuum and (early) Hawking radiation develops, which is transferred to the entanglement among final-state Hawking quanta through the evaporation process. The horizon is kept smooth throughout the evolution; in particular, no firewall develops. Similar considerations also apply for cosmological horizons, for example for the horizon of a metastable de Sitter space.

  15. Input and Input Processing in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Alcon, Eva

    1998-01-01

    Analyzes second-language learners' processing of linguistic data within the target language, focusing on input and intake in second-language acquisition and factors and cognitive processes that affect input processing. Input factors include input simplification, input enhancement, and interactional modifications. Individual learner differences…

  16. Remainder terms for some quantum entropy inequalities

    SciTech Connect

    Carlen, Eric A.; Lieb, Elliott H.

    2014-04-15

    We consider three von Neumann entropy inequalities: subadditivity; Pinsker's inequality for relative entropy; and the monotonicity of relative entropy. For these we state conditions for equality, and we prove some new error bounds away from equality, including an improved version of Pinsker's inequality.

  17. Entropy and temperatures of Nariai black hole

    NASA Astrophysics Data System (ADS)

    Eune, Myungseok; Kim, Wontae

    2013-06-01

    The statistical entropy of the Nariai black hole in a thermal equilibrium is calculated by using the brick-wall method. Even if the temperature depends on the choice of the timelike Killing vector, the entropy can be written by the ordinary area law which agrees with the Wald entropy. We discuss some physical consequences of this result and the properties of the temperatures.

  18. Entropy of local smeared field observables

    NASA Astrophysics Data System (ADS)

    Satz, Alejandro

    2017-01-01

    We re-conceptualize the usual entanglement entropy of quantum fields in a spatial region as a limiting case of a more general and well-defined quantity, the entropy of a subalgebra of smeared field observables. We introduce this notion, discuss various examples, and recover from it the area law for the entanglement entropy of a sphere in Minkowski space.

  19. Tachyon condensation and black hole entropy.

    PubMed

    Dabholkar, Atish

    2002-03-04

    String propagation on a cone with deficit angle 2pi(1-1 / N) is considered for the purpose of computing the entropy of a large mass black hole. The entropy computed using the recent results on condensation of twisted-sector tachyons in this theory is found to be in precise agreement with the Bekenstein-Hawking entropy.

  20. Input Decimated Ensembles

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Using an ensemble of classifiers instead of a single classifier has been shown to improve generalization performance in many pattern recognition problems. However, the extent of such improvement depends greatly on the amount of correlation among the errors of the base classifiers. Therefore, reducing those correlations while keeping the classifiers' performance levels high is an important area of research. In this article, we explore input decimation (ID), a method which selects feature subsets for their ability to discriminate among the classes and uses them to decouple the base classifiers. We provide a summary of the theoretical benefits of correlation reduction, along with results of our method on two underwater sonar data sets, three benchmarks from the Probenl/UCI repositories, and two synthetic data sets. The results indicate that input decimated ensembles (IDEs) outperform ensembles whose base classifiers use all the input features; randomly selected subsets of features; and features created using principal components analysis, on a wide range of domains.

  1. Holographic entropy and Calabi's diastasis

    NASA Astrophysics Data System (ADS)

    D'Hoker, Eric; Gutperle, Michael

    2014-10-01

    The entanglement entropy for interfaces and junctions of two-dimensional CFTs is evaluated on holographically dual half-BPS solutions to six-dimensional Type 4b supergravity with m anti-symmetric tensor supermultiplets. It is shown that the moduli space for an N-junction solution projects to N points in the Kähler manifold SO(2 , m) / (SO(2) × SO( m)). For N =2 the interface entropy is expressed in terms of the central charge and Calabi's diastasis function on SO(2 , m) / (SO(2) × SO( m)), thereby lending support from holography to a proposal of Bachas, Brunner, Douglas, and Rastelli. For N =3, the entanglement entropy for a 3-junction decomposes into a sum of diastasis functions between pairs, weighed by combinations of the three central charges, provided the flux charges are all parallel to one another or, more generally, provided the space of flux charges is orthogonal to the space of unattracted scalars. Under similar assumptions for N ≥4, the entanglement entropy for the N -junction solves a variational problem whose data consist of the N central charges, and the diastasis function evaluated between pairs of N asymptotic AdS 3 × S 3 regions.

  2. Entanglement entropy and anomaly inflow

    NASA Astrophysics Data System (ADS)

    Hughes, Taylor L.; Leigh, Robert G.; Parrikar, Onkar; Ramamurthy, Srinidhi T.

    2016-03-01

    We study entanglement entropy for parity-violating (time-reversal breaking) quantum field theories on R1 ,2 in the presence of a domain wall between two distinct parity-odd phases. The domain wall hosts a 1 +1 -dimensional conformal field theory (CFT) with nontrivial chiral central charge. Such a CFT possesses gravitational anomalies. It has been shown recently that, as a consequence, its intrinsic entanglement entropy is sensitive to Lorentz boosts around the entangling surface. Here, we show using various methods that the entanglement entropy of the three-dimensional bulk theory is also sensitive to such boosts owing to parity-violating effects, and that the bulk response to a Lorentz boost precisely cancels the contribution coming from the domain wall CFT. We argue that this can naturally be interpreted as entanglement inflow (i.e., inflow of entanglement entropy analogous to the familiar Callan-Harvey effect) between the bulk and the domain-wall, mediated by the low-lying states in the entanglement spectrum. These results can be generally applied to 2 +1 -d topological phases of matter that have edge theories with gravitational anomalies, and provide a precise connection between the gravitational anomaly of the physical edge theory and the low-lying spectrum of the entanglement Hamiltonian.

  3. Origin of the 'Extra Entropy'

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    2008-01-01

    I will discuss how one can determine the origin of the 'extra entropy' in groups and clusters and the feedback needed in models of galaxy formation. I will stress the use of x-ray spectroscopy and imaging and the critical value that Con-X has in this regard.

  4. Numerical Calculation of Granular Entropy

    NASA Astrophysics Data System (ADS)

    Asenjo, Daniel; Paillusson, Fabien; Frenkel, Daan

    2014-03-01

    We present numerical simulations that allow us to compute the number of ways in which N particles can pack into a given volume V. Our technique modifies the method of Xu, Frenkel, and Liu [Phys. Rev. Lett. 106, 245502 (2011)] and outperforms existing direct enumeration methods by more than 200 orders of magnitude. We use our approach to study the system size dependence of the number of distinct packings of a system of up to 128 polydisperse soft disks. We show that, even though granular particles are distinguishable, we have to include a factor 1/N! to ensure that the entropy does not change when exchanging particles between systems in the same macroscopic state. Our simulations provide strong evidence that the packing entropy, when properly defined, is extensive. As different packings are created with unequal probabilities, it is natural to express the packing entropy as S=-∑ipilnpi-lnN!, where pi denotes the probability to generate the ith packing. We can compute this quantity reliably and it is also extensive. The granular entropy thus (re)defined, while distinct from the one proposed by Edwards [J. Phys. Condens. Matter 2, SA63 (1990)], does have all the properties Edwards assumed.

  5. Coherent Informational Energy and Entropy.

    ERIC Educational Resources Information Center

    Avramescu, Aurel

    1980-01-01

    Seeks to provide a common theoretical foundation for all known bibliometric laws by assimilating a systemic view of the information transfer process with a thermodynamic process, i.e., the conduction of heat in solids. The resulting diffusion model establishes new definitions for informational energy and entropy consistent with corresponding…

  6. Coherent Informational Energy and Entropy.

    ERIC Educational Resources Information Center

    Avramescu, Aurel

    1980-01-01

    Seeks to provide a common theoretical foundation for all known bibliometric laws by assimilating a systemic view of the information transfer process with a thermodynamic process, i.e., the conduction of heat in solids. The resulting diffusion model establishes new definitions for informational energy and entropy consistent with corresponding…

  7. Numerical calculation of granular entropy.

    PubMed

    Asenjo, Daniel; Paillusson, Fabien; Frenkel, Daan

    2014-03-07

    We present numerical simulations that allow us to compute the number of ways in which N particles can pack into a given volume V. Our technique modifies the method of Xu, Frenkel, and Liu [Phys. Rev. Lett. 106, 245502 (2011)] and outperforms existing direct enumeration methods by more than 200 orders of magnitude. We use our approach to study the system size dependence of the number of distinct packings of a system of up to 128 polydisperse soft disks. We show that, even though granular particles are distinguishable, we have to include a factor 1=N! to ensure that the entropy does not change when exchanging particles between systems in the same macroscopic state. Our simulations provide strong evidence that the packing entropy, when properly defined, is extensive. As different packings are created with unequal probabilities, it is natural to express the packing entropy as S = − Σ(i)p(i) ln pi − lnN!, where pi denotes the probability to generate the ith packing. We can compute this quantity reliably and it is also extensive. The granular entropy thus (re)defined, while distinct from the one proposed by Edwards [J. Phys. Condens. Matter 2, SA63 (1990)], does have all the properties Edwards assumed.

  8. Maximum entropy beam diagnostic tomography

    SciTech Connect

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs.

  9. Entropy in an expanding universe

    NASA Astrophysics Data System (ADS)

    Frautschi, S.

    1982-08-01

    The evolution of organized structures from initial chaos in the expanding universe is demonstrated to be reconcilable with the second law of thermodynamics, and the effects of expansion and gravity on this problem are emphasized. Numerical estimates of the major sources of entropy increase are calculated, including the entropy increase in stars, the earth, black hole formation and decay, quantum tunneling of matter into black holes, positronium formation and decay, etc. An expanding 'causal' region is defined in which the entropy, though increasing, tends to fall further and further behind its maximum possible value, thus allowing for the development of order. That is, the classical heat death argument does not hold, because an expanding universe never achieves equilibrium and never reaches a constant temperature. Also considered are questions of whether entropy will continue increasing without limit in the future, and whether such increase in the form of Hawking radiation or radiation from positronium might enable life to maintain itself permanently. Attempts to find a scheme for preserving life based on solid structures fail because events such as quantum tunneling recurrently disorganize matter on a very long but fixed time scale.

  10. Entropy, semantic relatedness and proximity.

    PubMed

    Hahn, Lance W; Sivley, Robert M

    2011-09-01

    Although word co-occurrences within a document have been demonstrated to be semantically useful, word interactions over a local range have been largely neglected by psychologists due to practical challenges. Shannon's (Bell Systems Technical Journal, 27, 379-423, 623-665, 1948) conceptualization of information theory suggests that these interactions should be useful for understanding communication. Computational advances make an examination of local word-word interactions possible for a large text corpus. We used Brants and Franz's (2006) dataset to generate conditional probabilities for 62,474 word pairs and entropy calculations for 9,917 words in Nelson, McEvoy, and Schreiber's (Behavior Research Methods, Instruments, & Computers, 36, 402-407, 2004) free association norms. Semantic associativity correlated moderately with the probabilities and was stronger when the two words were not adjacent. The number of semantic associates for a word and the entropy of a word were also correlated. Finally, language entropy decreases from 11 bits for single words to 6 bits per word for four-word sequences. The probabilities and entropies discussed here are included in the supplemental materials for the article.

  11. Entropy of dynamical social networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Karsai, Marton; Bianconi, Ginestra

    2012-02-01

    Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.

  12. Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels.

    PubMed

    De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio

    2017-04-21

    We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p→q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

  13. Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio

    2017-04-01

    We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p →q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

  14. The Effect of Input-Based Instruction Type on the Acquisition of Spanish Accusative Clitics

    ERIC Educational Resources Information Center

    White, Justin

    2015-01-01

    The purpose of this paper is to compare structured input (SI) with other input-based instructional treatments. The input-based instructional types include: input flood (IF), text enhancement (TE), SI activities, and focused input (FI; SI without implicit negative feedback). Participants included 145 adult learners enrolled in an intermediate…

  15. The Effect of Input-Based Instruction Type on the Acquisition of Spanish Accusative Clitics

    ERIC Educational Resources Information Center

    White, Justin

    2015-01-01

    The purpose of this paper is to compare structured input (SI) with other input-based instructional treatments. The input-based instructional types include: input flood (IF), text enhancement (TE), SI activities, and focused input (FI; SI without implicit negative feedback). Participants included 145 adult learners enrolled in an intermediate…

  16. Entropy and plasma sheet transport

    NASA Astrophysics Data System (ADS)

    Wolf, R. A.; Wan, Yifei; Xing, X.; Zhang, J.-C.; Sazykin, S.

    2009-09-01

    This paper presents a focused review of the role of entropy in plasma sheet transport and also describes new calculations of the implications of plasma sheet entropy conservation for the case where the plasma pressure is not isotropic. For the isotropic case, the entropy varies in proportion to log[PV5/3], where P is plasma pressure and V is the volume of a tube containing one unit of magnetic flux. Theory indicates that entropy should be conserved in the ideal MHD approximation, and a generalized form of entropy conservation also holds when transport by gradient/curvature drift is included. These considerations lead to the conclusion that under the assumption of strong, elastic pitch angle scattering, PV5/3 should be approximately conserved over large regions of the plasma sheet, though gradient/curvature drift causes major violations in the innermost region. Statistical magnetic field and plasma models lead to the conclusion that PV5/3 increases significantly with distance downtail (pressure balance inconsistency). We investigate the possibility that the inconsistency could be removed or reduced by eliminating the assumption of strong, elastic pitch angle scattering but find that the inconsistency becomes worse if the first two adiabatic invariants are conserved as the particles drift. We consider two previously suggested mechanisms, bubbles and gradient/curvature drift, and conclude that the combination of the two is likely adequate for resolving the pressure balance inconsistency. Quantitatively accurate estimation of the efficiency of these mechanisms depends on finding a method of estimating PV5/3 (or equivalent) from spacecraft measurements. Two present approaches to that problem are discussed.

  17. Entropy: A new measure of stock market volatility?

    NASA Astrophysics Data System (ADS)

    Bentes, Sonia R.; Menezes, Rui

    2012-11-01

    When uncertainty dominates understanding stock market volatility is vital. There are a number of reasons for that. On one hand, substantial changes in volatility of financial market returns are capable of having significant negative effects on risk averse investors. In addition, such changes can also impact on consumption patterns, corporate capital investment decisions and macroeconomic variables. Arguably, volatility is one of the most important concepts in the whole finance theory. In the traditional approach this phenomenon has been addressed based on the concept of standard-deviation (or variance) from which all the famous ARCH type models - Autoregressive Conditional Heteroskedasticity Models- depart. In this context, volatility is often used to describe dispersion from an expected value, price or model. The variability of traded prices from their sample mean is only an example. Although as a measure of uncertainty and risk standard-deviation is very popular since it is simple and easy to calculate it has long been recognized that it is not fully satisfactory. The main reason for that lies in the fact that it is severely affected by extreme values. This may suggest that this is not a closed issue. Bearing on the above we might conclude that many other questions might arise while addressing this subject. One of outstanding importance, from which more sophisticated analysis can be carried out, is how to evaluate volatility, after all? If the standard-deviation has some drawbacks shall we still rely on it? Shall we look for an alternative measure? In searching for this shall we consider the insight of other domains of knowledge? In this paper we specifically address if the concept of entropy, originally developed in physics by Clausius in the XIX century, which can constitute an effective alternative. Basically, what we try to understand is, which are the potentialities of entropy compared to the standard deviation. But why entropy? The answer lies on the fact

  18. Controlling the Shannon Entropy of Quantum Systems

    PubMed Central

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819

  19. q-entropy for symbolic dynamical systems

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Pesin, Yakov

    2015-12-01

    For symbolic dynamical systems we use the Carathéodory construction as described in (Pesin 1997 Dimension Theory in Dynamical Systems, ConTemporary Views and Applications (Chicago: University of Chicago Press)) to introduce the notions of q-topological and q-metric entropies. We describe some basic properties of these entropies and in particular, discuss relations between q-metric entropy and local metric entropy. Both q-topological and q-metric entropies are new invariants respectively under homeomorphisms and metric isomorphisms of dynamical systems.

  20. Time evolution of entropy in gravitational collapse

    SciTech Connect

    Greenwood, Eric

    2009-06-01

    We study the time evolution of the entropy of a collapsing spherical domain wall, from the point of view of an asymptotic observer, by investigating the entropy of the entire system (i.e. domain wall and radiation) and induced radiation alone during the collapse. By taking the difference, we find the entropy of the collapsing domain wall, since this is the object which will form a black hole. We find that for large values of time (times larger than t/R{sub s} ≈ 8), the entropy of the collapsing domain wall is a constant, which is of the same order as the Bekenstein-Hawking entropy.

  1. Generalized gravitational entropy from total derivative action

    NASA Astrophysics Data System (ADS)

    Dong, Xi; Miao, Rong-Xin

    2015-12-01

    We investigate the generalized gravitational entropy from total derivative terms in the gravitational action. Following the method of Lewkowycz and Maldacena, we find that the generalized gravitational entropy from total derivatives vanishes. We compare our results with the work of Astaneh, Patrushev, and Solodukhin. We find that if total derivatives produced nonzero entropy, the holographic and the field-theoretic universal terms of entanglement entropy would not match. Furthermore, the second law of thermodynamics could be violated if the entropy of total derivatives did not vanish.

  2. Entropy-based portfolio models: Practical issues

    NASA Astrophysics Data System (ADS)

    Shirazi, Yasaman Izadparast; Sabiruzzaman, Md.; Hamzah, Nor Aishah

    2015-10-01

    Entropy is a nonparametric alternative of variance and has been used as a measure of risk in portfolio analysis. In this paper, the computation of entropy risk for a given set of data is discussed with illustration. A comparison between entropy-based portfolio models is made. We propose a natural extension of the mean entropy portfolio to make it more general and diversified. In terms of performance, this new model is similar to the mean-entropy portfolio when applied to real and simulated data, and offers higher return if no constraint is set for the desired return; also it is found to be the most diversified portfolio model.

  3. Controlling the shannon entropy of quantum systems.

    PubMed

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.

  4. Tsallis Entropy Composition and the Heisenberg Group

    NASA Astrophysics Data System (ADS)

    Kalogeropoulos, Nikos

    2013-03-01

    We present an embedding of the Tsallis entropy into the three-dimensional Heisenberg group, in order to understand the meaning of generalized independence as encoded in the Tsallis entropy composition property. We infer that the Tsallis entropy composition induces fractal properties on the underlying Euclidean space. Using a theorem of Milnor/Wolf/Tits/Gromov, we justify why the underlying configuration/phase space of systems described by the Tsallis entropy has polynomial growth for both discrete and Riemannian cases. We provide a geometric framework that elucidates Abe's formula for the Tsallis entropy, in terms the Pansu derivative of a map between sub-Riemannian spaces.

  5. Maximum entropy principle and partial probability weighted moments

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Pandey, M. D.; Xie, W. C.

    2012-05-01

    Maximum entropy principle (MaxEnt) is usually used for estimating the probability density function under specified moment constraints. The density function is then integrated to obtain the cumulative distribution function, which needs to be inverted to obtain a quantile corresponding to some specified probability. In such analysis, consideration of higher ordermoments is important for accurate modelling of the distribution tail. There are three drawbacks for this conventional methodology: (1) Estimates of higher order (>2) moments from a small sample of data tend to be highly biased; (2) It can merely cope with problems with complete or noncensored samples; (3) Only probability weighted moments of integer orders have been utilized. These difficulties inevitably induce bias and inaccuracy of the resultant quantile estimates and therefore have been the main impediments to the application of the MaxEnt Principle in extreme quantile estimation. This paper attempts to overcome these problems and presents a distribution free method for estimating the quantile function of a non-negative randomvariable using the principle of maximum partial entropy subject to constraints of the partial probability weighted moments estimated from censored sample. The main contributions include: (1) New concepts, i.e., partial entropy, fractional partial probability weighted moments, and partial Kullback-Leibler measure are elegantly defined; (2) Maximum entropy principle is re-formulated to be constrained by fractional partial probability weighted moments; (3) New distribution free quantile functions are derived. Numerical analyses are performed to assess the accuracy of extreme value estimates computed from censored samples.

  6. Localization of negative energy and the Bekenstein bound.

    PubMed

    Blanco, David D; Casini, Horacio

    2013-11-27

    A simple argument shows that negative energy cannot be isolated far away from positive energy in a conformal field theory and strongly constrains its possible dispersal. This is also required by consistency with the Bekenstein bound written in terms of the positivity of relative entropy. We prove a new form of the Bekenstein bound based on the monotonicity of the relative entropy, involving a "free" entropy enclosed in a region which is highly insensitive to space-time entanglement, and show that it further improves the negative energy localization bound.

  7. Entropy-Based Financial Asset Pricing

    PubMed Central

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return – entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy. PMID:25545668

  8. Entropy Generation Across Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; Lin, Naiguo; Wilber, Mark

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  9. Entropy-based financial asset pricing.

    PubMed

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy.

  10. Nonparametric entropy estimation using kernel densities.

    PubMed

    Lake, Douglas E

    2009-01-01

    The entropy of experimental data from the biological and medical sciences provides additional information over summary statistics. Calculating entropy involves estimates of probability density functions, which can be effectively accomplished using kernel density methods. Kernel density estimation has been widely studied and a univariate implementation is readily available in MATLAB. The traditional definition of Shannon entropy is part of a larger family of statistics, called Renyi entropy, which are useful in applications that require a measure of the Gaussianity of data. Of particular note is the quadratic entropy which is related to the Friedman-Tukey (FT) index, a widely used measure in the statistical community. One application where quadratic entropy is very useful is the detection of abnormal cardiac rhythms, such as atrial fibrillation (AF). Asymptotic and exact small-sample results for optimal bandwidth and kernel selection to estimate the FT index are presented and lead to improved methods for entropy estimation.

  11. Entropy and climate. I - ERBE observations of the entropy production of the earth

    NASA Technical Reports Server (NTRS)

    Stephens, G. L.; O'Brien, D. M.

    1993-01-01

    An approximate method for estimating the global distributions of the entropy fluxes flowing through the upper boundary of the climate system is introduced, and an estimate of the entropy exchange between the earth and space and the entropy production of the planet is provided. Entropy fluxes calculated from the Earth Radiation Budget Experiment measurements show how the long-wave entropy flux densities dominate the total entropy fluxes at all latitudes compared with the entropy flux densities associated with reflected sunlight, although the short-wave flux densities are important in the context of clear sky-cloudy sky net entropy flux differences. It is suggested that the entropy production of the planet is both constant for the 36 months of data considered and very near its maximum possible value. The mean value of this production is 0.68 x 10 exp 15 W/K, and the amplitude of the annual cycle is approximately 1 to 2 percent of this value.

  12. Implementation of the maximum entropy method for analytic continuation

    NASA Astrophysics Data System (ADS)

    Levy, Ryan; LeBlanc, J. P. F.; Gull, Emanuel

    2017-06-01

    We present Maxent, a tool for performing analytic continuation of spectral functions using the maximum entropy method. The code operates on discrete imaginary axis datasets (values with uncertainties) and transforms this input to the real axis. The code works for imaginary time and Matsubara frequency data and implements the 'Legendre' representation of finite temperature Green's functions. It implements a variety of kernels, default models, and grids for continuing bosonic, fermionic, anomalous, and other data. Our implementation is licensed under GPLv3 and extensively documented. This paper shows the use of the programs in detail.

  13. Parameters Selection for Bivariate Multiscale Entropy Analysis of Postural Fluctuations in Fallers and Non-Fallers Older Adults.

    PubMed

    Ramdani, Sofiane; Bonnet, Vincent; Tallon, Guillaume; Lagarde, Julien; Bernard, Pierre Louis; Blain, Hubert

    2016-08-01

    Entropy measures are often used to quantify the regularity of postural sway time series. Recent methodological developments provided both multivariate and multiscale approaches allowing the extraction of complexity features from physiological signals; see "Dynamical complexity of human responses: A multivariate data-adaptive framework," in Bulletin of Polish Academy of Science and Technology, vol. 60, p. 433, 2012. The resulting entropy measures are good candidates for the analysis of bivariate postural sway signals exhibiting nonstationarity and multiscale properties. These methods are dependant on several input parameters such as embedding parameters. Using two data sets collected from institutionalized frail older adults, we numerically investigate the behavior of a recent multivariate and multiscale entropy estimator; see "Multivariate multiscale entropy: A tool for complexity analysis of multichannel data," Physics Review E, vol. 84, p. 061918, 2011. We propose criteria for the selection of the input parameters. Using these optimal parameters, we statistically compare the multivariate and multiscale entropy values of postural sway data of non-faller subjects to those of fallers. These two groups are discriminated by the resulting measures over multiple time scales. We also demonstrate that the typical parameter settings proposed in the literature lead to entropy measures that do not distinguish the two groups. This last result confirms the importance of the selection of appropriate input parameters.

  14. Entanglement entropy in jammed CFTs

    NASA Astrophysics Data System (ADS)

    Mefford, Eric

    2017-09-01

    We construct solutions to the Einstein equations for asymptotically locally Anti-de Sitter spacetimes with four, five, and six dimensional Reissner-Nordström boundary metrics. These spacetimes are gravitational duals to "jammed" CFTs on those backgrounds at infinite N and strong coupling. For these spacetimes, we calculate the boundary stress tensor as well as compute entanglement entropies for ball shaped regions as functions of the boundary black hole temperature T BH. From this, we see how the CFT prevents heat flow from the black hole to the vacuum at spatial infinity. We also compute entanglement entropies for a three dimensional boundary black hole using the AdS C-metric. We compare our results to previous work done in similar spacetimes.

  15. Preserved entropy and fragile magnetism

    SciTech Connect

    Canfield, Paul C.; Bud’ko, Sergey L.

    2016-07-05

    Here, a large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.

  16. Preserved entropy and fragile magnetism

    DOE PAGES

    Canfield, Paul C.; Bud’ko, Sergey L.

    2016-07-05

    Here, a large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.

  17. Preserved entropy and fragile magnetism.

    PubMed

    Canfield, Paul C; Bud'ko, Sergey L

    2016-08-01

    A large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.

  18. A Note on Entropy Estimation.

    PubMed

    Schürmann, Thomas

    2015-10-01

    We compare an entropy estimator H(z) recently discussed by Zhang (2012) with two estimators, H(1) and H(2), introduced by Grassberger (2003) and Schürmann (2004). We prove the identity H(z) ≡ H(1), which has not been taken into account by Zhang (2012). Then we prove that the systematic error (bias) of H(1) is less than or equal to the bias of the ordinary likelihood (or plug-in) estimator of entropy. Finally, by numerical simulation, we verify that for the most interesting regime of small sample estimation and large event spaces, the estimator H(2) has a significantly smaller statistical error than H(z).

  19. Preserved entropy and fragile magnetism

    SciTech Connect

    Canfield, Paul C.; Bud’ko, Sergey L.

    2016-07-05

    Here, a large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.

  20. Biological adaptabilities and quantum entropies.

    PubMed

    Kirby, Kevin G

    2002-01-01

    The entropy-based theory of adaptability set forth by Michael Conrad in the early 1970s continued to appear in his work for over two decades, and was the subject of the only book he published in his lifetime. He applied this theory to a host of subjects ranging from enzyme dynamics to sociology. This paper reviews the formalism of adaptability theory, clarifying some of its mathematical and interpretive difficulties. The theory frames the computational tradeoff principle, a thesis that was the most frequently recurring claim in his work. The formulation of adaptability theory presented here allows the introduction of quantum entropy functions into the theory, revealing an interesting relationship between adaptability and another one of Conrad's deep preoccupations, the role of quantum processes in life.

  1. Entropy shaping by shock decay

    NASA Astrophysics Data System (ADS)

    Piriz, A. R.; Sun, Y. B.; Tahir, N. A.

    2016-11-01

    A previous model [Piriz et al., Phys. Plasmas 23, 032704 (2016)] developed for describing the evolution of a shock wave driven by an arbitrary pressure pulse, is shown to be suitable for calculating the entropy shaping induced by a shock of decaying intensity. It is also shown that by allowing a causal connection between the shock and the piston, the model results to be complementary to the well-known self-similar solution for the impulsive loading problem, which is valid in the asymptotic regime when both fronts become decoupled. As a consequence, the entropy distribution depends on the details of the driving pressure pulse. A comparison with the available numerical simulations is presented.

  2. Bacterial chemotaxis and entropy production

    PubMed Central

    Županović, Paško; Brumen, Milan; Jagodič, Marko; Juretić, Davor

    2010-01-01

    Entropy production is calculated for bacterial chemotaxis in the case of a migrating band of bacteria in a capillary tube. It is found that the speed of the migrating band is a decreasing function of the starting concentration of the metabolizable attractant. The experimentally found dependence of speed on the starting concentration of galactose, glucose and oxygen is fitted with power-law functions. It is found that the corresponding exponents lie within the theoretically predicted interval. The effect of the reproduction of bacteria on band speed is considered, too. The acceleration of the band is predicted due to the reproduction rate of bacteria. The relationship between chemotaxis, the maximum entropy production principle and the formation of self-organizing structure is discussed. PMID:20368258

  3. Manufacturing of High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Jablonski, Paul D.; Licavoli, Joseph J.; Gao, Michael C.; Hawk, Jeffrey A.

    2015-07-01

    High entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion they have high configurational entropy, and thus they hold the promise of interesting and useful properties such as enhanced strength and phase stability. The present study investigates the microstructure of two single-phase face-centered cubic (FCC) HEAs, CoCrFeNi and CoCrFeNiMn, with special attention given to melting, homogenization and thermo-mechanical processing. Large-scale ingots were made by vacuum induction melting to avoid the extrinsic factors inherent in small-scale laboratory button samples. A computationally based homogenization heat treatment was applied to both alloys in order to eliminate segregation due to normal ingot solidification. The alloys fabricated well, with typical thermo-mechanical processing parameters being employed.

  4. Entropy estimation and Fibonacci numbers

    NASA Astrophysics Data System (ADS)

    Timofeev, Evgeniy A.; Kaltchenko, Alexei

    2013-05-01

    We introduce a new metric on a space of right-sided infinite sequences drawn from a finite alphabet. Emerging from a problem of entropy estimation of a discrete stationary ergodic process, the metric is important on its own part and exhibits some interesting properties. Notably, the number of distinct metric values for a set of sequences of length m is equal to Fm+3 - 1, where Fm is a Fibonacci number.

  5. Coverage-adjusted entropy estimation.

    PubMed

    Vu, Vincent Q; Yu, Bin; Kass, Robert E

    2007-09-20

    Data on 'neural coding' have frequently been analyzed using information-theoretic measures. These formulations involve the fundamental and generally difficult statistical problem of estimating entropy. We review briefly several methods that have been advanced to estimate entropy and highlight a method, the coverage-adjusted entropy estimator (CAE), due to Chao and Shen that appeared recently in the environmental statistics literature. This method begins with the elementary Horvitz-Thompson estimator, developed for sampling from a finite population, and adjusts for the potential new species that have not yet been observed in the sample-these become the new patterns or 'words' in a spike train that have not yet been observed. The adjustment is due to I. J. Good, and is called the Good-Turing coverage estimate. We provide a new empirical regularization derivation of the coverage-adjusted probability estimator, which shrinks the maximum likelihood estimate. We prove that the CAE is consistent and first-order optimal, with rate O(P)(1/log n), in the class of distributions with finite entropy variance and that, within the class of distributions with finite qth moment of the log-likelihood, the Good-Turing coverage estimate and the total probability of unobserved words converge at rate O(P)(1/(log n)(q)). We then provide a simulation study of the estimator with standard distributions and examples from neuronal data, where observations are dependent. The results show that, with a minor modification, the CAE performs much better than the MLE and is better than the best upper bound estimator, due to Paninski, when the number of possible words m is unknown or infinite.

  6. Statistical mechanical proof of the second law of thermodynamics based on volume entropy

    NASA Astrophysics Data System (ADS)

    Campisi, Michele

    2008-01-01

    In a previous work [Campisi, M. (2005). On the mechanical foundations of thermodynamics: The generalized Helmholtz theorem. Studies in History and Philosophy of Modern Physics, 36, 275-290] we have addressed the mechanical foundations of equilibrium thermodynamics on the basis of the generalized Helmholtz theorem. It was found that the volume entropy provides a good mechanical analogue of thermodynamic entropy because it satisfies the heat theorem and it is an adiabatic invariant. This property explains the "equal" sign in Clausius principle (Sf ⩾Si) in a purely mechanical way and suggests that the volume entropy might explain the "larger than" sign (i.e. the law of entropy increase) if non-adiabatic transformations are considered. Based on the principles of microscopic (quantum or classical) mechanics we prove here that, provided the initial equilibrium satisfies the natural condition of decreasing ordering of probabilities, the expectation value of the volume entropy cannot decrease for arbitrary transformations performed by some external source of work on an insulated system. This can be regarded as a rigorous quantum-mechanical proof of the second law. We discuss how this result relates to the minimal work principle and how it improves on previous attempts. The natural evolution of entropy is towards larger values because the natural state of matter is at positive temperature. Actually the law of entropy decrease holds in artificially prepared negative temperature systems.

  7. Entropy production from chaoticity in Yang-Mills field theory with use of the Husimi function

    NASA Astrophysics Data System (ADS)

    Tsukiji, Hidekazu; Iida, Hideaki; Kunihiro, Teiji; Ohnishi, Akira; Takahashi, Toru T.

    2016-11-01

    We investigate possible entropy production in Yang-Mills (YM) field theory by using a quantum distribution function called the Husimi function fH(A ,E ,t ) for the YM field, which is given by a coarse graining of the Wigner function and non-negative. We calculate the Husimi-Wehrl entropy SHW(t )=-Tr fHlog fH defined as an integral over the phase space, for which two adaptations of the test-particle method are used combined with Monte Carlo method. We utilize the semiclassical approximation to obtain the time evolution of the distribution functions of the YM field, which is known to show chaotic behavior in the classical limit. We also make a simplification of the multidimensional phase-space integrals by making a product ansatz for the Husimi function, which is found to give a 10-20% overestimate of the Husimi-Wehrl entropy for a quantum system with a few degrees of freedom. We show that the quantum YM theory does exhibit the entropy production and that the entropy production rate agrees with the sum of positive Lyapunov exponents or the Kolmogorov-Sinai entropy, suggesting that the chaoticity of the classical YM field causes the entropy production in the quantum YM theory.

  8. Entanglement entropy production in gravitational collapse: covariant regularization and solvable models

    NASA Astrophysics Data System (ADS)

    Bianchi, Eugenio; De Lorenzo, Tommaso; Smerlak, Matteo

    2015-06-01

    We study the dynamics of vacuum entanglement in the process of gravitational collapse and subsequent black hole evaporation. In the first part of the paper, we introduce a covariant regularization of entanglement entropy tailored to curved spacetimes; this regularization allows us to propose precise definitions for the concepts of black hole "exterior entropy" and "radiation entropy." For a Vaidya model of collapse we find results consistent with the standard thermodynamic properties of Hawking radiation. In the second part of the paper, we compute the vacuum entanglement entropy of various spherically-symmetric spacetimes of interest, including the nonsingular black hole model of Bardeen, Hayward, Frolov and Rovelli-Vidotto and the "black hole fireworks" model of Haggard-Rovelli. We discuss specifically the role of event and trapping horizons in connection with the behavior of the radiation entropy at future null infinity. We observe in particular that ( i) in the presence of an event horizon the radiation entropy diverges at the end of the evaporation process, ( ii) in models of nonsingular evaporation (with a trapped region but no event horizon) the generalized second law holds only at early times and is violated in the "purifying" phase, ( iii) at late times the radiation entropy can become negative (i.e. the radiation can be less correlated than the vacuum) before going back to zero leading to an up-down-up behavior for the Page curve of a unitarily evaporating black hole.

  9. Entropy in an expanding universe.

    PubMed

    Frautschi, S

    1982-08-13

    The question of how the observed evolution of organized structures from initial chaos in the expanding universe can be reconciled with the laws of statistical mechanics is studied, with emphasis on effects of the expansion and gravity. Some major sources of entropy increase are listed. An expanding "causal" region is defined in which the entropy, though increasing, tends to fall further and further behind its maximum possible value, thus allowing for the development of order. The related questions of whether entropy will continue increasing without limit in the future, and whether such increase in the form of Hawking radiation or radiation from positronium might enable life to maintain itself permanently, are considered. Attempts to find a scheme for preserving life based on solid structures fail because events such as quantum tunneling recurrently disorganize matter on a very long but fixed time scale, whereas all energy sources slow down progressively in an expanding universe. However, there remains hope that other modes of life capable of maintaining themselves permanently can be found.

  10. Economics and Maximum Entropy Production

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2003-04-01

    Price differentials, sales volume and profit can be seen as analogues of temperature difference, heat flow and work or entropy production in the climate system. One aspect in which economic systems exhibit more clarity than the climate is that the empirical and/or statistical mechanical tendency for systems to seek a maximum in production is very evident in economics, in that the profit motive is very clear. Noting the common link between 1/f noise, power laws and Self-Organized Criticality with Maximum Entropy Production, the power law fluctuations in security and commodity prices is not inconsistent with the analogy. There is an additional thermodynamic analogy, in that scarcity is valued. A commodity concentrated among a few traders is valued highly by the many who do not have it. The market therefore encourages via prices the spreading of those goods among a wider group, just as heat tends to diffuse, increasing entropy. I explore some empirical price-volume relationships of metals and meteorites in this context.

  11. Entropy of random entangling surfaces

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2012-09-01

    We consider the situation when a globally defined four-dimensional field system is separated on two entangled sub-systems by a dynamical (random) two-dimensional surface. The reduced density matrix averaged over ensemble of random surfaces of fixed area and the corresponding average entropy are introduced. The average entanglement entropy is analyzed for a generic conformal field theory in four dimensions. Two important particular cases are considered. In the first, both the intrinsic metric on the entangling surface and the spacetime metric are fluctuating. An important example of this type is when the entangling surface is a black hole horizon, the fluctuations of which cause necessarily the fluctuations in the spacetime geometry. In the second case, the spacetime is considered to be fixed. The detailed analysis is carried out for the random entangling surfaces embedded in flat Minkowski spacetime. In all cases, the problem reduces to an effectively two-dimensional problem of random surfaces which can be treated by means of the well-known conformal methods. Focusing on the logarithmic terms in the entropy, we predict the appearance of a new ln ln(A) term. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  12. Entropy estimation in Turing's perspective.

    PubMed

    Zhang, Zhiyi

    2012-05-01

    A new nonparametric estimator of Shannon's entropy on a countable alphabet is proposed and analyzed against the well-known plug-in estimator. The proposed estimator is developed based on Turing's formula, which recovers distributional characteristics on the subset of the alphabet not covered by a size-n sample. The fundamental switch in perspective brings about substantial gain in estimation accuracy for every distribution with finite entropy. In general, a uniform variance upper bound is established for the entire class of distributions with finite entropy that decays at a rate of O(ln(n)/n) compared to O([ln(n)]2/n) for the plug-in. In a wide range of subclasses, the variance of the proposed estimator converges at a rate of O(1/n), and this rate of convergence carries over to the convergence rates in mean squared errors in many subclasses. Specifically, for any finite alphabet, the proposed estimator has a bias decaying exponentially in n. Several new bias-adjusted estimators are also discussed.

  13. Linearity of holographic entanglement entropy

    NASA Astrophysics Data System (ADS)

    Almheiri, Ahmed; Dong, Xi; Swingle, Brian

    2017-02-01

    We consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and find it consistent with evaluating the expectation value of the area operator within such states. However, we find that this fails once the number of semi-classical states in the superposition grows exponentially in the central charge of the CFT. Moreover, in certain such scenarios we find that the choice of surface on which to evaluate the area operator depends on the density matrix of the entire CFT. This nonlinearity is enforced in the bulk via the homology prescription of Ryu-Takayanagi. We thus conclude that the homology constraint is not a linear property in the CFT. We also discuss the existence of `entropy operators' in general systems with a large number of degrees of freedom.

  14. Linearity of holographic entanglement entropy

    DOE PAGES

    Almheiri, Ahmed; Dong, Xi; Swingle, Brian

    2017-02-14

    Here, we consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and find it consistent with evaluating the expectation value of the area operator within such states. However, we find that this fails once the number of semi-classical states in the superposition grows exponentially in the central charge of the CFT. Moreover, in certainmore » such scenarios we find that the choice of surface on which to evaluate the area operator depends on the density matrix of the entire CFT. This nonlinearity is enforced in the bulk via the homology prescription of Ryu-Takayanagi. We thus conclude that the homology constraint is not a linear property in the CFT. We also discuss the existence of entropy operators in general systems with a large number of degrees of freedom.« less

  15. Crowd macro state detection using entropy model

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Yuan, Mengqi; Su, Guofeng; Chen, Tao

    2015-08-01

    In the crowd security research area a primary concern is to identify the macro state of crowd behaviors to prevent disasters and to supervise the crowd behaviors. The entropy is used to describe the macro state of a self-organization system in physics. The entropy change indicates the system macro state change. This paper provides a method to construct crowd behavior microstates and the corresponded probability distribution using the individuals' velocity information (magnitude and direction). Then an entropy model was built up to describe the crowd behavior macro state. Simulation experiments and video detection experiments were conducted. It was verified that in the disordered state, the crowd behavior entropy is close to the theoretical maximum entropy; while in ordered state, the entropy is much lower than half of the theoretical maximum entropy. The crowd behavior macro state sudden change leads to the entropy change. The proposed entropy model is more applicable than the order parameter model in crowd behavior detection. By recognizing the entropy mutation, it is possible to detect the crowd behavior macro state automatically by utilizing cameras. Results will provide data support on crowd emergency prevention and on emergency manual intervention.

  16. Formal groups and Z-entropies

    NASA Astrophysics Data System (ADS)

    Tempesta, Piergiulio

    2016-11-01

    We shall prove that the celebrated Rényi entropy is the first example of a new family of infinitely many multi-parametric entropies. We shall call them the Z-entropies. Each of them, under suitable hypotheses, generalizes the celebrated entropies of Boltzmann and Rényi. A crucial aspect is that every Z-entropy is composable (Tempesta 2016 Ann. Phys. 365, 180-197. (doi:10.1016/j.aop.2015.08.013)). This property means that the entropy of a system which is composed of two or more independent systems depends, in all the associated probability space, on the choice of the two systems only. Further properties are also required to describe the composition process in terms of a group law. The composability axiom, introduced as a generalization of the fourth Shannon-Khinchin axiom (postulating additivity), is a highly non-trivial requirement. Indeed, in the trace-form class, the Boltzmann entropy and Tsallis entropy are the only known composable cases. However, in the non-trace form class, the Z-entropies arise as new entropic functions possessing the mathematical properties necessary for information-theoretical applications, in both classical and quantum contexts. From a mathematical point of view, composability is intimately related to formal group theory of algebraic topology. The underlying group-theoretical structure determines crucially the statistical properties of the corresponding entropies.

  17. Statistical mechanical theory of liquid entropy

    SciTech Connect

    Wallace, D.C.

    1993-07-01

    The multiparticle correlation expansion for the entropy of a classical monatomic liquid is presented. This entropy expresses the physical picture in which there is no free particle motion, but rather, each atom moves within a cage formed by its neighbors. The liquid expansion, including only pair correlations, gives an excellent account of the experimental entropy of most liquid metals, of liquid argon, and the hard sphere liquid. The pair correlation entropy is well approximated by a universal function of temperature. Higher order correlation entropy, due to n-particle irreducible correlations for n{ge}3, is significant in only a few liquid metals, and its occurrence suggests the presence of n-body forces. When the liquid theory is applied to the study of melting, the author discovers the important classification of normal and anomalous melting, according to whether there is not or is a significant change in the electronic structure upon melting, and he discovers the universal disordering entropy for melting of a monatomic crystal. Interesting directions for future research are: extension to include orientational correlations of molecules, theoretical calculation of the entropy of water, application to the entropy of the amorphous state, and correlational entropy of compressed argon. The author clarifies the relation among different entropy expansions in the recent literature.

  18. Formal groups and Z-entropies.

    PubMed

    Tempesta, Piergiulio

    2016-11-01

    We shall prove that the celebrated Rényi entropy is the first example of a new family of infinitely many multi-parametric entropies. We shall call them the Z-entropies. Each of them, under suitable hypotheses, generalizes the celebrated entropies of Boltzmann and Rényi. A crucial aspect is that every Z-entropy is composable (Tempesta 2016 Ann. Phys.365, 180-197. (doi:10.1016/j.aop.2015.08.013)). This property means that the entropy of a system which is composed of two or more independent systems depends, in all the associated probability space, on the choice of the two systems only. Further properties are also required to describe the composition process in terms of a group law. The composability axiom, introduced as a generalization of the fourth Shannon-Khinchin axiom (postulating additivity), is a highly non-trivial requirement. Indeed, in the trace-form class, the Boltzmann entropy and Tsallis entropy are the only known composable cases. However, in the non-trace form class, the Z-entropies arise as new entropic functions possessing the mathematical properties necessary for information-theoretical applications, in both classical and quantum contexts. From a mathematical point of view, composability is intimately related to formal group theory of algebraic topology. The underlying group-theoretical structure determines crucially the statistical properties of the corresponding entropies.

  19. Combinatorial entropy and phase diagram of partially ordered ice phases.

    PubMed

    Macdowell, Luis G; Sanz, Eduardo; Vega, Carlos; Abascal, José Luis F

    2004-11-22

    A close analytical estimate for the combinatorial entropy of partially ordered ice phases is presented. The expression obtained is very general, as it can be used for any ice phase obeying the Bernal-Fowler rules. The only input required is a number of crystallographic parameters, and the experimentally observed proton site occupancies. For fully disordered phases such as hexagonal ice, it recovers the result deduced by Pauling, while for fully ordered ice it is found to vanish. Although the space groups determined for ice I, VI, and VII require random proton site occupancies, it is found that such random allocation of protons does not necessarily imply random orientational disorder. The theoretical estimate for the combinatorial entropy is employed together with free energy calculations in order to obtain the phase diagram of ice from 0 to 10 GPa. Overall qualitative agreement with experiment is found for the TIP4P model of water. An accurate estimate of the combinatorial entropy is found to play an important role in determining the stability of partially ordered ice phases, such as ice III and ice V.

  20. Resting state fMRI entropy probes complexity of brain activity in adults with ADHD.

    PubMed

    Sokunbi, Moses O; Fung, Wilson; Sawlani, Vijay; Choppin, Sabine; Linden, David E J; Thome, Johannes

    2013-12-30

    In patients with attention deficit hyperactivity disorder (ADHD), quantitative neuroimaging techniques have revealed abnormalities in various brain regions, including the frontal cortex, striatum, cerebellum, and occipital cortex. Nonlinear signal processing techniques such as sample entropy have been used to probe the regularity of brain magnetoencephalography signals in patients with ADHD. In the present study, we extend this technique to analyse the complex output patterns of the 4 dimensional resting state functional magnetic resonance imaging signals in adult patients with ADHD. After adjusting for the effect of age, we found whole brain entropy differences (P=0.002) between groups and negative correlation (r=-0.45) between symptom scores and mean whole brain entropy values, indicating lower complexity in patients. In the regional analysis, patients showed reduced entropy in frontal and occipital regions bilaterally and a significant negative correlation between the symptom scores and the entropy maps at a family-wise error corrected cluster level of P<0.05 (P=0.001, initial threshold). Our findings support the hypothesis of abnormal frontal-striatal-cerebellar circuits in ADHD and the suggestion that sample entropy is a useful tool in revealing abnormalities in the brain dynamics of patients with psychiatric disorders. © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    USGS Publications Warehouse

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  2. Local entropy of a nonequilibrium fermion system

    NASA Astrophysics Data System (ADS)

    Stafford, Charles A.; Shastry, Abhay

    2017-03-01

    The local entropy of a nonequilibrium system of independent fermions is investigated and analyzed in the context of the laws of thermodynamics. It is shown that the local temperature and chemical potential can only be expressed in terms of derivatives of the local entropy for linear deviations from local equilibrium. The first law of thermodynamics is shown to lead to an inequality, not equality, for the change in the local entropy as the nonequilibrium state of the system is changed. The maximum entropy principle (second law of thermodynamics) is proven: a nonequilibrium distribution has a local entropy less than or equal to a local equilibrium distribution satisfying the same constraints. It is shown that the local entropy of the system tends to zero when the local temperature tends to zero, consistent with the third law of thermodynamics.

  3. Black Hole Entropy and the Renormalization Group

    NASA Astrophysics Data System (ADS)

    Satz, Alejandro; Jacobson, Ted

    2015-01-01

    Four decades after its first postulation by Bekenstein, black hole entropy remains mysterious. It has long been suggested that the entanglement entropy of quantum fields on the black hole gravitational background should represent at least an important contribution to the total Bekenstein-Hawking entropy, and that the divergences in the entanglement entropy should be absorbed in the renormalization of the gravitational couplings. In this talk, we describe how an improved understanding of black hole entropy is obtained by combining these notions with the renormalization group. By introducing an RG flow scale, we investigate whether the total entropy of the black hole can be partitioned in a "gravitational" part related to the flowing gravitational action, and a "quantum" part related to the unintegrated degrees of freedom. We describe the realization of this idea for free fields, and the complications and qualifications arising for interacting fields.

  4. Mutual entropy production in bipartite systems

    NASA Astrophysics Data System (ADS)

    Diana, Giovanni; Esposito, Massimiliano

    2014-04-01

    It was recently shown by Barato et al (2013 Phys. Rev. E 87 042104) that the mutual information at the trajectory level of a bipartite Markovian system is not bounded by the entropy production. In the same way as Gaspard showed (2004 J. Stat. Phys. 117 599) that the entropy production is not directly related to the Shannon entropy at the trajectory level but is in fact equal to its difference from the so-called time-reversed Shannon entropy, we show in this paper that the difference between the mutual information and its time-reversed form is equal to the mutual entropy production (MEP), i.e. the difference between the full entropy production and that of the two marginal processes. Evaluation of the MEP is in general a difficult task due to non-Markovian effects. For bipartite systems, we provide closed expressions in various limiting regimes which we verify by numerical simulations.

  5. The Moist Entropy Change in Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Juracic, Ana

    2012-10-01

    Important part of moist entropy budget is the advection of moist entropy in or out of the system, due to interaction of wind and moist entropy fields. The dropwindsonde data from several tropical storms is used to calculate both of those fields, as well as the resulting flow. In order to determine if the storm is exporting or importing moist entropy, the advection is horizontally averaged and vertically integrated. The storms of interest were Alex, Karl, Gaston and Fanapi from 2010. First three occurred in Atlantic basin while Fanapi evolved over Pacific basin. Gaston is the only one that was not developing during dropsonde missions, so it can be used as some kind of indicator of non-developing features in the entropy flux. The data show that during the development of the storm, the values of the moist entropy export are lower than for non-developing systems.

  6. Entropy jump across an inviscid shock wave

    NASA Technical Reports Server (NTRS)

    Salas, Manuel D.; Iollo, Angelo

    1995-01-01

    The shock jump conditions for the Euler equations in their primitive form are derived by using generalized functions. The shock profiles for specific volume, speed, and pressure are shown to be the same, however density has a different shock profile. Careful study of the equations that govern the entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We demonstrate that because of this phenomenon, the entropy, propagation equation cannot be used as a conservation law.

  7. Monitoring Brain Injury With TSALLIS Entropy

    DTIC Science & Technology

    2001-10-25

    significant but still remains to be studied. Literature has pointed to the role of q in the entropy computation for EEG studies [10]. In our study it is... EEG in the form of reduction during the bad physiological function outcome. The reduction level and recovery rate of TE are also consistent with...USA Abstract- Nonextensive entropy measure, Tsallis Entropy (TE), was undertaken to monitor the brain injury after cardiac arrest. EEG of human and

  8. Corrected Entropy of BTZ Black Holes

    NASA Astrophysics Data System (ADS)

    Farahani, Hoda; Sadeghi, Jafar; Saadat, Hassan

    2012-12-01

    In this paper, corrected entropy of a class of BTZ black holes, include charge and rotation, studied. We obtain corrected Bekenstein-Hawking entropy and find that effect of charge viewed at order A -2, and effect of rotation viewed at order A -6, therefore Q and J don't have contribution in corrected entropy lower than the second order. We also write the first law of black hole thermodynamics for the case of charged rotating BTZ black hole.

  9. Entropy modeling of sustainable development of megacities

    NASA Astrophysics Data System (ADS)

    Tyrsin, A. N.; Gevorgyan, G. G.

    2017-06-01

    The entropy approach of modeling multidimensional stochastic systems is described. It is based on the system representation as a multidimensional random vector and on the use of its differential entropy as a mathematical model. The possibilities of using this entropy model are considered for problems of monitoring the state of complex systems, including megacities, regions and critical infrastructure. Examples of practical implementation of the model are presented for the study of the sustainable development of megacities and regional environmental protection systems.

  10. Cyclic entropy: An alternative to inflationary cosmology

    NASA Astrophysics Data System (ADS)

    Frampton, Paul Howard

    2015-07-01

    We address how to construct an infinitely cyclic universe model. A major consideration is to make the entropy cyclic which requires the entropy to be reset to zero in each cycle expansion → turnaround → contraction → bounce → etc. Here, we reset entropy at the turnaround by selecting the introverse (visible universe) from the extroverse which is generated by the accelerated expansion. In the model, the observed homogeneity is explained by the low entropy at the bounce. The observed flatness arises from the contraction together with the reduction in size between the expanding and contracting universe. The present flatness is predicted to be very precise.

  11. Quantification Of Leakage In Microvessels Using Entropy

    NASA Astrophysics Data System (ADS)

    Desoky, Ahmed H.; O'Connor, Carol; Harris, Patrick D.; Hall, Steven

    1989-05-01

    This paper describes the use of entropy to quantify leakage of large molecules in a microvascular system. This measure can be used as a global parameter to characterize leakage. A software package for analysis of a sequence of images comprising leakage in rat cremaster tissue has been developed. The analysis is based on the statistics of both gray level components and frequency components of the images. Results show that entropy provides a better measure of leakage because it does not depend on variation in illumination or translation and rotation of image objects. Moreover entropy based on frequency components provides a more sensitive leakage measure than entropy based on gray level components.

  12. Thai Negation.

    ERIC Educational Resources Information Center

    Alam, Samsul

    A study analyzed the structure of negative sentences in the Thai language, based on data gathered from two native speakers. It is shown that the Thai negative marker generally occurs between the noun phrase (subject) and the verb phrase in simple active sentences and in passive sentences. Negation of noun phrases is also allowed in Thai, with a…

  13. Three faces of entropy for complex systems: Information, thermodynamics, and the maximum entropy principle

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Corominas-Murtra, Bernat; Hanel, Rudolf

    2017-09-01

    There are at least three distinct ways to conceptualize entropy: entropy as an extensive thermodynamic quantity of physical systems (Clausius, Boltzmann, Gibbs), entropy as a measure for information production of ergodic sources (Shannon), and entropy as a means for statistical inference on multinomial processes (Jaynes maximum entropy principle). Even though these notions represent fundamentally different concepts, the functional form of the entropy for thermodynamic systems in equilibrium, for ergodic sources in information theory, and for independent sampling processes in statistical systems, is degenerate, H (p ) =-∑ipilogpi . For many complex systems, which are typically history-dependent, nonergodic, and nonmultinomial, this is no longer the case. Here we show that for such processes, the three entropy concepts lead to different functional forms of entropy, which we will refer to as SEXT for extensive entropy, SIT for the source information rate in information theory, and SMEP for the entropy functional that appears in the so-called maximum entropy principle, which characterizes the most likely observable distribution functions of a system. We explicitly compute these three entropy functionals for three concrete examples: for Pólya urn processes, which are simple self-reinforcing processes, for sample-space-reducing (SSR) processes, which are simple history dependent processes that are associated with power-law statistics, and finally for multinomial mixture processes.

  14. Mechanically Alloyed High Entropy Composite

    NASA Astrophysics Data System (ADS)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  15. TASSRAP Input Module

    DTIC Science & Technology

    1977-07-29

    retrieve data necessary for the other modules to function. Initially there are 13 inputs, with the CRT dis - playing the information to be entered...id 46aý .0sso somma % 4bt--f. ft Aa W #4t - lQ *a - 4 c ,0 45 40 aK 43 ’ C = 04 ZSC 0 de *020.4 %- li’l ~ ~ ~ ~ ~ ~ & 1&.1 gol~ -,.-’ ow. -6 -N*4••1L...tv Z (𔃽 - C- ft %- ftb 0*4 *- -1 *4* (30 w ag &h 𔃾 0 a _6a .N I 0 A. 6.2 IL ILN ’ S MS 6C 0 to ~ 0 " di a S 0 m J *- -j f’ md op9 -9 $-. -6 = -A U .Af

  16. Clausius entropy for arbitrary bifurcate null surfaces

    NASA Astrophysics Data System (ADS)

    Baccetti, Valentina; Visser, Matt

    2014-02-01

    Jacobson’s thermodynamic derivation of the Einstein equations was originally applied only to local Rindler horizons. But at least some parts of that construction can usefully be extended to give meaningful results for arbitrary bifurcate null surfaces. As presaged in Jacobson’s original article, this more general construction sharply brings into focus the questions: is entropy objectively ‘real’? Or is entropy in some sense subjective and observer-dependent? These innocent questions open a Pandora’s box of often inconclusive debate. A consensus opinion, though certainly not universally held, seems to be that Clausius entropy (thermodynamic entropy, defined via a Clausius relation {\\rm{d}}S = \\unicode{x111} Q/T) should be objectively real, but that the ontological status of statistical entropy (Shannon or von Neumann entropy) is much more ambiguous, and much more likely to be observer-dependent. This question is particularly pressing when it comes to understanding Bekenstein entropy (black hole entropy). To perhaps further add to the confusion, we shall argue that even the Clausius entropy can often be observer-dependent. In the current article we shall conclusively demonstrate that one can meaningfully assign a notion of Clausius entropy to arbitrary bifurcate null surfaces—effectively defining a ‘virtual Clausius entropy’ for arbitrary ‘virtual (local) causal horizons’. As an application, we see that we can implement a version of the generalized second law (GSL) for this virtual Clausius entropy. This version of GSL can be related to certain (nonstandard) integral variants of the null energy condition. Because the concepts involved are rather subtle, we take some effort in being careful and explicit in developing our framework. In future work we will apply this construction to generalize Jacobson’s derivation of the Einstein equations.

  17. Time dependence of Hawking radiation entropy

    SciTech Connect

    Page, Don N.

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM{sub 0}{sup 2}, or about 7.509M{sub 0}{sup 2} ≈ 6.268 × 10{sup 76}(M{sub 0}/M{sub s}un){sup 2}, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M{sub 0}{sup 2} ≈ 1.254 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}, and then decreases back down to 4πM{sub 0}{sup 2} = 1.049 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}.

  18. Time dependence of Hawking radiation entropy

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM02, or about 7.509M02 ≈ 6.268 × 1076(M0/Msolar)2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M02 ≈ 1.254 × 1077(M0/Msolar)2, and then decreases back down to 4πM02 = 1.049 × 1077(M0/Msolar)2.

  19. Modeling and generating input processes

    SciTech Connect

    Johnson, M.E.

    1987-01-01

    This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.

  20. Input Multiplicities in Process Control.

    ERIC Educational Resources Information Center

    Koppel, Lowell B.

    1983-01-01

    Describes research investigating potential effect of input multiplicity on multivariable chemical process control systems. Several simple processes are shown to exhibit the possibility of theoretical developments on input multiplicity and closely related phenomena are discussed. (JN)

  1. Physical entropy and the senses.

    PubMed

    Norwich, Kenneth H

    2005-01-01

    With reference to two specific modalities of sensation, the taste of saltiness of chloride salts, and the loudness of steady tones, it is shown that the laws of sensation (logarithmic and power laws) are expressions of the entropy per mole of the stimulus. That is, the laws of sensation are linear functions of molar entropy. In partial verification of this hypothesis, we are able to derive an approximate value for the gas constant, a fundamental physical constant, directly from psychophysical measurements. The significance of our observation lies in the linking of the phenomenon of "sensation" directly to a physical measure. It suggests that if the laws of physics are universal, the laws of sensation and perception are similarly universal. It also connects the sensation of a simple, steady physical signal with the molecular structure of the signal: the greater the number of microstates or complexions of the stimulus signal, the greater the magnitude of the sensation (saltiness or loudness). The hypothesis is currently tested on two sensory modalities.

  2. Ehrenfest's Lottery--Time and Entropy Maximization

    ERIC Educational Resources Information Center

    Ashbaugh, Henry S.

    2010-01-01

    Successful teaching of the Second Law of Thermodynamics suffers from limited simple examples linking equilibrium to entropy maximization. I describe a thought experiment connecting entropy to a lottery that mixes marbles amongst a collection of urns. This mixing obeys diffusion-like dynamics. Equilibrium is achieved when the marble distribution is…

  3. Chemical Engineering Students' Ideas of Entropy

    ERIC Educational Resources Information Center

    Haglund, Jesper; Andersson, Staffan; Elmgren, Maja

    2015-01-01

    Thermodynamics, and in particular entropy, has been found to be challenging for students, not least due to its abstract character. Comparisons with more familiar and concrete domains, by means of analogy and metaphor, are commonly used in thermodynamics teaching, in particular the metaphor "entropy is disorder." However, this particular…

  4. Entropy and Certainty in Lossless Data Compression

    ERIC Educational Resources Information Center

    Jacobs, James Jay

    2009-01-01

    Data compression is the art of using encoding techniques to represent data symbols using less storage space compared to the original data representation. The encoding process builds a relationship between the entropy of the data and the certainty of the system. The theoretical limits of this relationship are defined by the theory of entropy in…

  5. Campbell's Rule for Estimating Entropy Changes

    ERIC Educational Resources Information Center

    Jensen, William B.

    2004-01-01

    Campbell's rule for estimating entropy changes is discussed in relation to an earlier article by Norman Craig, where it was proposed that the approximate value of the entropy of reaction was related to net moles of gas consumed or generated. It was seen that the average for Campbell's data set was lower than that for Craig's data set and…

  6. Campbell's Rule for Estimating Entropy Changes

    ERIC Educational Resources Information Center

    Jensen, William B.

    2004-01-01

    Campbell's rule for estimating entropy changes is discussed in relation to an earlier article by Norman Craig, where it was proposed that the approximate value of the entropy of reaction was related to net moles of gas consumed or generated. It was seen that the average for Campbell's data set was lower than that for Craig's data set and…

  7. Generalized Entropic Uncertainty Relations with Tsallis' Entropy

    NASA Technical Reports Server (NTRS)

    Portesi, M.; Plastino, A.

    1996-01-01

    A generalization of the entropic formulation of the Uncertainty Principle of Quantum Mechanics is considered with the introduction of the q-entropies recently proposed by Tsallis. The concomitant generalized measure is illustrated for the case of phase and number operators in quantum optics. Interesting results are obtained when making use of q-entropies as the basis for constructing generalized entropic uncertainty measures.

  8. Entropy and Information: A Multidisciplinary Overview.

    ERIC Educational Resources Information Center

    Shaw, Debora; Davis, Charles H.

    1983-01-01

    Cites representative extensions of concept of entropy (measure of the amount of energy unavailable for useful work; from the second law of thermodynamics) noting basic relationships between entropy, order, information, and meaning in such disciplines as biology, economics, information science, the arts, and religion. Seventy-eight references are…

  9. Entropy Generation in a Chemical Reaction

    ERIC Educational Resources Information Center

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  10. Entropy estimation of very short symbolic sequences

    NASA Astrophysics Data System (ADS)

    Lesne, Annick; Blanc, Jean-Luc; Pezard, Laurent

    2009-04-01

    While entropy per unit time is a meaningful index to quantify the dynamic features of experimental time series, its estimation is often hampered in practice by the finite length of the data. We here investigate the performance of entropy estimation procedures, relying either on block entropies or Lempel-Ziv complexity, when only very short symbolic sequences are available. Heuristic analytical arguments point at the influence of temporal correlations on the bias and statistical fluctuations, and put forward a reduced effective sequence length suitable for error estimation. Numerical studies are conducted using, as benchmarks, the wealth of different dynamic regimes generated by the family of logistic maps and stochastic evolutions generated by a Markov chain of tunable correlation time. Practical guidelines and validity criteria are proposed. For instance, block entropy leads to a dramatic overestimation for sequences of low entropy, whereas it outperforms Lempel-Ziv complexity at high entropy. As a general result, the quality of entropy estimation is sensitive to the sequence temporal correlation hence self-consistently depends on the entropy value itself, thus promoting a two-step procedure. Lempel-Ziv complexity is to be preferred in the first step and remains the best estimator for highly correlated sequences.

  11. Entropy estimation of very short symbolic sequences.

    PubMed

    Lesne, Annick; Blanc, Jean-Luc; Pezard, Laurent

    2009-04-01

    While entropy per unit time is a meaningful index to quantify the dynamic features of experimental time series, its estimation is often hampered in practice by the finite length of the data. We here investigate the performance of entropy estimation procedures, relying either on block entropies or Lempel-Ziv complexity, when only very short symbolic sequences are available. Heuristic analytical arguments point at the influence of temporal correlations on the bias and statistical fluctuations, and put forward a reduced effective sequence length suitable for error estimation. Numerical studies are conducted using, as benchmarks, the wealth of different dynamic regimes generated by the family of logistic maps and stochastic evolutions generated by a Markov chain of tunable correlation time. Practical guidelines and validity criteria are proposed. For instance, block entropy leads to a dramatic overestimation for sequences of low entropy, whereas it outperforms Lempel-Ziv complexity at high entropy. As a general result, the quality of entropy estimation is sensitive to the sequence temporal correlation hence self-consistently depends on the entropy value itself, thus promoting a two-step procedure. Lempel-Ziv complexity is to be preferred in the first step and remains the best estimator for highly correlated sequences.

  12. Ehrenfest's Lottery--Time and Entropy Maximization

    ERIC Educational Resources Information Center

    Ashbaugh, Henry S.

    2010-01-01

    Successful teaching of the Second Law of Thermodynamics suffers from limited simple examples linking equilibrium to entropy maximization. I describe a thought experiment connecting entropy to a lottery that mixes marbles amongst a collection of urns. This mixing obeys diffusion-like dynamics. Equilibrium is achieved when the marble distribution is…

  13. The Origins of the Entropy Concept

    NASA Astrophysics Data System (ADS)

    Darrigol, Olivier

    To this day entropy remains a strange, difficult, and multiform concept. Even the great Henri Poincaré renounced precisely defining energy and entropy. In order to justify the success of the two laws of thermodynamics for his students at the Sorbonne, he turned to history:

  14. Progress in High-Entropy Alloys

    SciTech Connect

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  15. Chemical Engineering Students' Ideas of Entropy

    ERIC Educational Resources Information Center

    Haglund, Jesper; Andersson, Staffan; Elmgren, Maja

    2015-01-01

    Thermodynamics, and in particular entropy, has been found to be challenging for students, not least due to its abstract character. Comparisons with more familiar and concrete domains, by means of analogy and metaphor, are commonly used in thermodynamics teaching, in particular the metaphor "entropy is disorder." However, this particular…

  16. Rudolf Clausius and the road to entropy

    NASA Astrophysics Data System (ADS)

    Cropper, William H.

    1986-12-01

    That Rudolf Clausius invented the entropy concept is well known, but less familiar is the argument that served as his inspiration. This paper traces the development of Clausius' ``transformation theory'' of heat, which finally persuaded him to define the measure of transformation equivalence he called entropy.

  17. Invariant of dynamical systems: A generalized entropy

    SciTech Connect

    Meson, A.M.; Vericat, F. |

    1996-09-01

    In this work the concept of entropy of a dynamical system, as given by Kolmogorov, is generalized in the sense of Tsallis. It is shown that this entropy is an isomorphism invariant, being complete for Bernoulli schemes. {copyright} {ital 1996 American Institute of Physics.}

  18. Entropy Generation in a Chemical Reaction

    ERIC Educational Resources Information Center

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  19. Entropy and Certainty in Lossless Data Compression

    ERIC Educational Resources Information Center

    Jacobs, James Jay

    2009-01-01

    Data compression is the art of using encoding techniques to represent data symbols using less storage space compared to the original data representation. The encoding process builds a relationship between the entropy of the data and the certainty of the system. The theoretical limits of this relationship are defined by the theory of entropy in…

  20. Entropy production in a photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad H.

    2017-05-01

    We evaluate entropy production in a photovoltaic cell that is modeled by four electronic levels resonantly coupled to thermally populated field modes at different temperatures. We use a formalism recently proposed, the so-called multiple parallel worlds, to consistently address the nonlinearity of entropy in terms of density matrix. Our result shows that entropy production is the difference between two flows: a semiclassical flow that linearly depends on occupational probabilities, and another flow that depends nonlinearly on quantum coherence and has no semiclassical analog. We show that entropy production in the cells depends on environmentally induced decoherence time and energy detuning. We characterize regimes where reversal flow of information takes place from a cold to hot bath. Interestingly, we identify a lower bound on entropy production, which sets limitations on the statistics of dissipated heat in the cells.

  1. Entanglement entropy in top-down models

    NASA Astrophysics Data System (ADS)

    Jones, Peter A. R.; Taylor, Marika

    2016-08-01

    We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entan-glement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduc-tion over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.

  2. Low Streamflow Forcasting using Minimum Relative Entropy

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  3. Trends of stellar entropy along stellar evolution

    NASA Astrophysics Data System (ADS)

    de Avellar, Guilherme Bronzato, Marcio; Alvares de Souza, Rodrigo; Horvath, Jorge Ernesto

    2016-02-01

    This paper is devoted to discussing the difference in the thermodynamic entropy budget per baryon in each type of stellar object found in the Universe. We track and discuss the actual decrease of the stored baryonic thermodynamic entropy from the most primitive molecular cloud up to the final fate of matter in black holes, passing through evolved states of matter as found in white dwarfs and neutron stars. We then discuss the case of actual stars with different masses throughout their evolution, clarifying the role of the virial equilibrium condition for the decrease in entropy and related issues. Finally, we discuss the role of gravity in driving the composition and the structural changes of stars with different Main Sequence masses during their evolution up to the final product. Particularly, we discuss the entropy of a black hole in this context arguing that the dramatic increase in its entropy, differently from the other cases, is due to the gravitational field itself.

  4. The role of entropy in magnetotail dynamics

    SciTech Connect

    Birn, Joachim; Zaharia, Sorin; Hesse, Michael

    2008-01-01

    The role of entropy conservation and loss in magnetospheric dynamics, particularly in relation to substorm phases, is discussed on the basis of MHD theory and simulations, using comparisons with PIC simulations for validation. Entropy conservation appears to be a crucial element leading to the formation of thin embedded current sheets in the late substorm growth phase and the potential loss of equilibrium. Entropy loss (in the form of plasmoids) is essential in the earthward transport of flux tubes (bubbles, bursty bulk flows). Entropy loss also changes the tail stability properties and may render ballooning modes unstable and thus contribute to cross-tail variability. We illustrate these effects through results from theory and simulations. Entropy conservation also governs the accessibility of final states of evolution and the amount of energy that may be released.

  5. Axiomatic Relation between Thermodynamic and Information-Theoretic Entropies

    NASA Astrophysics Data System (ADS)

    Weilenmann, Mirjam; Kraemer, Lea; Faist, Philippe; Renner, Renato

    2016-12-01

    Thermodynamic entropy, as defined by Clausius, characterizes macroscopic observations of a system based on phenomenological quantities such as temperature and heat. In contrast, information-theoretic entropy, introduced by Shannon, is a measure of uncertainty. In this Letter, we connect these two notions of entropy, using an axiomatic framework for thermodynamics [E. H. Lieb and J. Yngvason Proc. R. Soc. 469, 20130408 (2013)]. In particular, we obtain a direct relation between the Clausius entropy and the Shannon entropy, or its generalization to quantum systems, the von Neumann entropy. More generally, we find that entropy measures relevant in nonequilibrium thermodynamics correspond to entropies used in one-shot information theory.

  6. Real-time sample entropy predicts life-saving interventions after the Boston Marathon bombing.

    PubMed

    Peev, Miroslav P; Naraghi, Leily; Chang, Yuchiao; Demoya, Marc; Fagenholz, Peter; Yeh, Daniel; Velmahos, George; King, David R

    2013-12-01

    Identifying patients in need of a life-saving intervention (LSI) during a mass casualty event is a priority. We hypothesized that real-time, instantaneous sample entropy (SampEn) could predict the need for LSI in the Boston Marathon bombing victims. Severely injured Boston Marathon bombing victims (n = 10) had sample entropy (SampEn) recorded upon presentation using a continuous 200-beat rolling average in real time. Treating clinicians were blinded to real-time results. The correlation between SampEn, injury severity, number, and type of LSI was examined. Victims were males (60%) with a mean age of 39.1 years. Injuries involved lower extremities (50.0%), head and neck (24.2%), or upper extremities (9.7%). Sample entropy negatively correlated with Injury Severity Score (r = -0.70; P = .023), number of injuries (r = -0.70; P = .026), and the number and need for LSI (r = -0.82; P = .004). Sample entropy was reduced under a variety of conditions. (Table see text). Sample entropy strongly correlates with injury severity and predicts LSI after blast injuries sustained in the Boston Marathon bombings. Sample entropy may be a useful triage tool after blast injury. © 2013.

  7. Entropy and generalized least square methods in assessment of the regional value of streamgages

    USGS Publications Warehouse

    Markus, M.; Vernon, Knapp H.; Tasker, Gary D.

    2003-01-01

    The Illinois State Water Survey performed a study to assess the streamgaging network in the State of Illinois. One of the important aspects of the study was to assess the regional value of each station through an assessment of the information transfer among gaging records for low, average, and high flow conditions. This analysis was performed for the main hydrologic regions in the State, and the stations were initially evaluated using a new approach based on entropy analysis. To determine the regional value of each station within a region, several information parameters, including total net information, were defined based on entropy. Stations were ranked based on the total net information. For comparison, the regional value of the same stations was assessed using the generalized least square regression (GLS) method, developed by the US Geological Survey. Finally, a hybrid combination of GLS and entropy was created by including a function of the negative net information as a penalty function in the GLS. The weights of the combined model were determined to maximize the average correlation with the results of GLS and entropy. The entropy and GLS methods were evaluated using the high-flow data from southern Illinois stations. The combined method was compared with the entropy and GLS approaches using the high-flow data from eastern Illinois stations. ?? 2003 Elsevier B.V. All rights reserved.

  8. Entropy of uremia and dialysis technology.

    PubMed

    Ronco, Claudio

    2013-01-01

    The second law of thermodynamics applies with local exceptions to patient history and therapy interventions. Living things preserve their low level of entropy throughout time because they receive energy from their surroundings in the form of food. They gain their order at the expense of disordering the nutrients they consume. Death is the thermodynamically favored state: it represents a large increase in entropy as molecular structure yields to chaos. The kidney is an organ dissipating large amounts of energy to maintain the level of entropy of the organism as low as possible. Diseases, and in particular uremia, represent conditions of rapid increase in entropy. Therapeutic strategies are oriented towards a reduction in entropy or at least a decrease in the speed of entropy increase. Uremia is a process accelerating the trend towards randomness and disorder (increase in entropy). Dialysis is a factor external to the patient that tends to reduce the level of entropy caused by kidney disease. Since entropy can only increase in closed systems, energy and work must be spent to limit the entropy of uremia. This energy should be adapted to the system (patient) and be specifically oriented and personalized. This includes a multidimensional effort to achieve an adequate dialysis that goes beyond small molecular weight solute clearance. It includes a biological plan for recovery of homeostasis and a strategy towards long-term rehabilitation of the patient. Such objectives can be achieved with a combination of technology and innovation to answer specific questions that are still present after 60 years of dialysis history. This change in the individual bioentropy may represent a local exception to natural trends as the patient could be considered an isolated universe responding to the classic laws of thermodynamics.

  9. Entropy Splitting and Numerical Dissipation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Vinokur, M.; Djomehri, M. J.

    1999-01-01

    A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock

  10. Cross approximate entropy analysis of nocturnal oximetry signals in the diagnosis of the obstructive sleep apnea syndrome.

    PubMed

    Alvarez, Daniel; Hornero, Roberto; Garcia, Mariá; del Campo, Felix; Zamarron, Carlos; López, Miguel

    2006-01-01

    This study is focused on the analysis of blood oxygen saturation (SaO(2)) and heart rate (HR) from nocturnal oximetry using cross approximate entropy (Cross-ApEn). We assessed its usefulness in screening obstructive sleep apnea (OSA) syndrome. We applied Cross-ApEn(m,r,N) to quantify the asynchrony between paired SaO(2) and HR records of 74 patients (44 with a positive OSA diagnosis and 30 with a negative OSA diagnosis). Cross-ApEn values were significantly lower in the OSA positive group compared with those obtained in the OSA negative group. A receiver operating characteristic (ROC) analysis showed that the best results, in terms of diagnostic accuracy, were achieved with m = 2 and r = 0.6. With these input parameters, the optimum decision threshold was found at 1.7, where we achieved 95.5% sensitivity, 73.3% specificity and 86.5% accuracy. Further analyses should be carried out with new and larger data sets to test the usefulness of our methodology prospectively.

  11. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state

    PubMed Central

    Gosseries, Olivia; Schnakers, Caroline; Ledoux, Didier; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurélie; Demertzi, Athéna; Noirhomme, Quentin; Lehembre, Rémy; Damas, Pierre; Goldman, Serge; Peeters, Erika; Moonen, Gustave; Laureys, Steven

    Summary Monitoring the level of consciousness in brain-injured patients with disorders of consciousness is crucial as it provides diagnostic and prognostic information. Behavioral assessment remains the gold standard for assessing consciousness but previous studies have shown a high rate of misdiagnosis. This study aimed to investigate the usefulness of electroencephalography (EEG) entropy measurements in differentiating unconscious (coma or vegetative) from minimally conscious patients. Left fronto-temporal EEG recordings (10-minute resting state epochs) were prospectively obtained in 56 patients and 16 age-matched healthy volunteers. Patients were assessed in the acute (≤1 month post-injury; n=29) or chronic (>1 month post-injury; n=27) stage. The etiology was traumatic in 23 patients. Automated online EEG entropy calculations (providing an arbitrary value ranging from 0 to 91) were compared with behavioral assessments (Coma Recovery Scale-Revised) and outcome. EEG entropy correlated with Coma Recovery Scale total scores (r=0.49). Mean EEG entropy values were higher in minimally conscious (73±19; mean and standard deviation) than in vegetative/unresponsive wakefulness syndrome patients (45±28). Receiver operating characteristic analysis revealed an entropy cut-off value of 52 differentiating acute unconscious from minimally conscious patients (sensitivity 89% and specificity 90%). In chronic patients, entropy measurements offered no reliable diagnostic information. EEG entropy measurements did not allow prediction of outcome. User-independent time-frequency balanced spectral EEG entropy measurements seem to constitute an interesting diagnostic – albeit not prognostic – tool for assessing neural network complexity in disorders of consciousness in the acute setting. Future studies are needed before using this tool in routine clinical practice, and these should seek to improve automated EEG quantification paradigms in order to reduce the remaining false

  12. The Kepler Input Catalog

    NASA Astrophysics Data System (ADS)

    Latham, D. W.; Brown, T. M.; Monet, D. G.; Everett, M.; Esquerdo, G. A.; Hergenrother, C. W.

    2005-12-01

    The Kepler mission will monitor 170,000 planet-search targets during the first year, and 100,000 after that. The Kepler Input Catalog (KIC) will be used to select optimum targets for the search for habitable earth-like transiting planets. The KIC will include all known catalogued stars in an area of about 177 square degrees centered at RA 19:22:40 and Dec +44:30 (l=76.3 and b=+13.5). 2MASS photometry will be supplemented with new ground-based photometry obtained in the SDSS g, r, i, and z bands plus a custom filter centered on the Mg b lines, using KeplerCam on the 48-inch telescope at the Whipple Observatory on Mount Hopkins, Arizona. The photometry will be used to estimate stellar characteristics for all stars brighter than K 14.5 mag. The KIC will include effective temperature, surface gravity, metallicity, reddening, distance, and radius estimates for these stars. The CCD images are pipeline processed to produce instrumental magnitudes at PSI. The photometry is then archived and transformed to the SDSS system at HAO, where the astrophysical analysis of the stellar characteristics is carried out. The results are then merged with catalogued data at the USNOFS to produce the KIC. High dispersion spectroscopy with Hectochelle on the MMT will be used to supplement the information for many of the most interesting targets. The KIC will be released before launch for use by the astronomical community and will be available for queries over the internet. Support from the Kepler mission is gratefully acknowledged.

  13. Entanglement entropy of non-unitary conformal field theory

    NASA Astrophysics Data System (ADS)

    Bianchini, D.; Castro-Alvaredo, O.; Doyon, B.; Levi, E.; Ravanini, F.

    2015-01-01

    Here we show that the Rényi entanglement entropy of a region of large size ℓ in a one-dimensional critical model whose ground state breaks conformal invariance (such as in those described by non-unitary conformal field theories), behaves as {{S}n}˜ \\frac{{{c}eff}(n+1)}{6n}log \\ell , where {{c}eff}=c-24Δ \\gt 0 is the effective central charge, c (which may be negative) is the central charge of the conformal field theory and Δ \

  14. Multi-Scale Low-Entropy Method for Optimizing the Processing Parameters during Automated Fiber Placement.

    PubMed

    Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong

    2017-09-03

    Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro-meso-scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy-enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy-enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates.

  15. Increasing entropy for colloidal stabilization

    PubMed Central

    Mo, Songping; Shao, Xuefeng; Chen, Ying; Cheng, Zhengdong

    2016-01-01

    Stability is of paramount importance in colloidal applications. Attraction between colloidal particles is believed to lead to particle aggregation and phase separation; hence, stability improvement can be achieved through either increasing repulsion or reducing attraction by modifying the fluid medium or by using additives. Two traditional mechanisms for colloidal stability are electrostatic stabilization and steric stabilization. However, stability improvement by mixing attractive and unstable particles has rarely been considered. Here, we emphasize the function of mixing entropy in colloidal stabilization. Dispersion stability improvement is demonstrated by mixing suspensions of attractive nanosized titania spheres and platelets. A three-dimensional phase diagram is proposed to illustrate the collaborative effects of particle mixing and particle attraction on colloidal stability. This discovery provides a novel method for enhancing colloidal stability and opens a novel opportunity for engineering applications. PMID:27872473

  16. Entropy concepts in classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Cole, Daniel C.

    2002-11-01

    Aspects of entropy and related thermodynamic analyses are discussed here that have been deduced in recent years in the area of classical electrodynamics. A motivating factor for most of this work has been an attempted theory of nature often called, "stochastic electrodynamics" (SED). This theory involves classical electrodynamics (Maxwell's equations plus the relativistic version of Newton's second law of motion for particles), but with the consideration that motion and fluctuations should not necessarily be assumed to reduce to zero at temperature T = 0. Both fairly subtle and rather blatant assumptions were often imposed in early thermodynamic analyses of electrodynamic systems that prevented the analyses from being sufficiently general to account for these "zero-point" properties, which hindered classical physics from being able to better account for quantum mechanical phenomena observed in nature. In turn, such thermodynamic considerations have helped motivate many of the key ideas of SED.

  17. Increasing entropy for colloidal stabilization

    NASA Astrophysics Data System (ADS)

    Mo, Songping; Shao, Xuefeng; Chen, Ying; Cheng, Zhengdong

    2016-11-01

    Stability is of paramount importance in colloidal applications. Attraction between colloidal particles is believed to lead to particle aggregation and phase separation; hence, stability improvement can be achieved through either increasing repulsion or reducing attraction by modifying the fluid medium or by using additives. Two traditional mechanisms for colloidal stability are electrostatic stabilization and steric stabilization. However, stability improvement by mixing attractive and unstable particles has rarely been considered. Here, we emphasize the function of mixing entropy in colloidal stabilization. Dispersion stability improvement is demonstrated by mixing suspensions of attractive nanosized titania spheres and platelets. A three-dimensional phase diagram is proposed to illustrate the collaborative effects of particle mixing and particle attraction on colloidal stability. This discovery provides a novel method for enhancing colloidal stability and opens a novel opportunity for engineering applications.

  18. Area terms in entanglement entropy

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Mazzitelli, F. D.; Testé, Eduardo

    2015-05-01

    We discuss area terms in entanglement entropy and show that a recent formula by Rosenhaus and Smolkin is equivalent to the term involving a correlator of traces of the stress tensor in the Adler-Zee formula for the renormalization of the Newton constant. We elaborate on how to fix the ambiguities in these formulas: Improving terms for the stress tensor of free fields, boundary terms in the modular Hamiltonian, and contact terms in the Euclidean correlation functions. We make computations for free fields and show how to apply these calculations to understand some results for interacting theories which have been studied in the literature. We also discuss an application to the F-theorem.

  19. Urban Transfer Entropy across Scales

    PubMed Central

    Murcio, Roberto

    2015-01-01

    The morphology of urban agglomeration is studied here in the context of information exchange between different spatio-temporal scales. Urban migration to and from cities is characterised as non-random and following non-random pathways. Cities are multidimensional non-linear phenomena, so understanding the relationships and connectivity between scales is important in determining how the interplay of local/regional urban policies may affect the distribution of urban settlements. In order to quantify these relationships, we follow an information theoretic approach using the concept of Transfer Entropy. Our analysis is based on a stochastic urban fractal model, which mimics urban growing settlements and migration waves. The results indicate how different policies could affect urban morphology in terms of the information generated across geographical scales. PMID:26207628

  20. Entropy changes in brain function.

    PubMed

    Rosso, Osvaldo A

    2007-04-01

    The traditional way of analyzing brain electrical activity, on the basis of electroencephalography (EEG) records, relies mainly on visual inspection and years of training. Although it is quite useful, of course, one has to acknowledge its subjective nature that hardly allows for a systematic protocol. In the present work quantifiers based on information theory and wavelet transform are reviewed. The "relative wavelet energy" provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The "normalized total wavelet entropy" carries information about the degree of order-disorder associated with a multi-frequency signal response. Their application in the analysis and quantification of short duration EEG signals (event-related potentials) and epileptic EEG records are summarized.

  1. Revisiting the Generalization of Entropy for Non-positive Distribution: Application for Exponent Spectra Analysis

    NASA Astrophysics Data System (ADS)

    Kalaidzidis, Yannis L.; Gopta, Oxana; Kalaidzidis, Inna V.

    2009-12-01

    Originally the maximum entropy method for exponent deconvolution was restricted to the positive exponent's amplitudes by the entropy S(f, m) definition. It limits application of the method, since many experimental kinetics show both the rise and the decay, which manifest themselves as positive and negative amplitudes in the exponent spectrum. The generalization of entropy formulation for non-negative distribution (S. F. Gull and J. Skilling) overcomes this limitation. The drawback of the approach was, that m lost the meaning of the prior distribution, since that maximum of generalized S(f, m) is independent on m and achieved at f ≡ 0. It is significant problem when there are apriori information about possible spectrum behaviour. In the present work some assumptions of the entropy generalization was relaxed and alternative entropy formulation, with non-uniform prior was used for analysis of simulated and experimental data. The new approach was applied to spectra analysis of the absorption kinetics of the bacteriorhodopsin (bR—light driven proton pump from archea Halobacterium salinarium) photocycle. It was shown that the process of the intermediate M formation is non-exponential in the wild type bR. The non-exponential process could be interpreted as result of the protein conformational changes during proton transfer from the Shiff-base of bR.

  2. Controlling chaos in balanced neural circuits with input spike trains

    NASA Astrophysics Data System (ADS)

    Engelken, Rainer; Wolf, Fred

    The cerebral cortex can be seen as a system of neural circuits driving each other with spike trains. Here we study how the statistics of these spike trains affects chaos in balanced target circuits.Earlier studies of chaos in balanced neural circuits either used a fixed input [van Vreeswijk, Sompolinsky 1996, Monteforte, Wolf 2010] or white noise [Lajoie et al. 2014]. We study dynamical stability of balanced networks driven by input spike trains with variable statistics. The analytically obtained Jacobian enables us to calculate the complete Lyapunov spectrum. We solved the dynamics in event-based simulations and calculated Lyapunov spectra, entropy production rate and attractor dimension. We vary correlations, irregularity, coupling strength and spike rate of the input and action potential onset rapidness of recurrent neurons.We generally find a suppression of chaos by input spike trains. This is strengthened by bursty and correlated input spike trains and increased action potential onset rapidness. We find a link between response reliability and the Lyapunov spectrum. Our study extends findings in chaotic rate models [Molgedey et al. 1992] to spiking neuron models and opens a novel avenue to study the role of projections in shaping the dynamics of large neural circuits.

  3. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems.

    PubMed

    Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray

    2014-05-13

    The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann-Gibbs-Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon-Khinchin axioms, the (c,d)-entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process.

  4. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems

    PubMed Central

    Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray

    2014-01-01

    The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann–Gibbs–Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon–Khinchin axioms, the -entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process. PMID:24782541

  5. Serial Input Output

    SciTech Connect

    Waite, Anthony; /SLAC

    2011-09-07

    Serial Input/Output (SIO) is designed to be a long term storage format of a sophistication somewhere between simple ASCII files and the techniques provided by inter alia Objectivity and Root. The former tend to be low density, information lossy (floating point numbers lose precision) and inflexible. The latter require abstract descriptions of the data with all that that implies in terms of extra complexity. The basic building blocks of SIO are streams, records and blocks. Streams provide the connections between the program and files. The user can define an arbitrary list of streams as required. A given stream must be opened for either reading or writing. SIO does not support read/write streams. If a stream is closed during the execution of a program, it can be reopened in either read or write mode to the same or a different file. Records represent a coherent grouping of data. Records consist of a collection of blocks (see next paragraph). The user can define a variety of records (headers, events, error logs, etc.) and request that any of them be written to any stream. When SIO reads a file, it first decodes the record name and if that record has been defined and unpacking has been requested for it, SIO proceeds to unpack the blocks. Blocks are user provided objects which do the real work of reading/writing the data. The user is responsible for writing the code for these blocks and for identifying these blocks to SIO at run time. To write a collection of blocks, the user must first connect them to a record. The record can then be written to a stream as described above. Note that the same block can be connected to many different records. When SIO reads a record, it scans through the blocks written and calls the corresponding block object (if it has been defined) to decode it. Undefined blocks are skipped. Each of these categories (streams, records and blocks) have some characteristics in common. Every stream, record and block has a name with the condition that each

  6. SDR Input Power Estimation Algorithms

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Briones, Janette C.

    2013-01-01

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.

  7. Channel capacity and receiver deployment optimization for multi-input multi-output visible light communications.

    PubMed

    Wang, Jin-Yuan; Dai, Jianxin; Guan, Rui; Jia, Linqiong; Wang, Yongjin; Chen, Ming

    2016-06-13

    Multi-input multi-output (MIMO) technique is attractive for visible light communication (VLC), which exploits the high signal-to-noise ratio (SNR) of a single channel to overcome the capacity limitation due to the small modulation bandwidth of the light emitting diode. This paper establishes a MIMO VLC system under the non-negativity, peak power and dimmable average power constraints. Assume that perfect channel state information at the transmitter is known, the MIMO channel is changed to parallel, non-interfering sub-channels by using the singular value decomposition (SVD). Based on the SVD, the lower bound on the channel capacity for MIMO VLC is derived by employing entropy power inequality and variational method. Moreover, by maximizing the derived lower bound on the capacity under the given constraints, the receiver deployment optimization problem is formulated. The problem is solved by employing the principle of particle swarm optimization. Numerical results verify the derived capacity bound and the proposed deployment optimization scheme.

  8. On entropy, financial markets and minority games

    NASA Astrophysics Data System (ADS)

    Zapart, Christopher A.

    2009-04-01

    The paper builds upon an earlier statistical analysis of financial time series with Shannon information entropy, published in [L. Molgedey, W. Ebeling, Local order, entropy and predictability of financial time series, European Physical Journal B-Condensed Matter and Complex Systems 15/4 (2000) 733-737]. A novel generic procedure is proposed for making multistep-ahead predictions of time series by building a statistical model of entropy. The approach is first demonstrated on the chaotic Mackey-Glass time series and later applied to Japanese Yen/US dollar intraday currency data. The paper also reinterprets Minority Games [E. Moro, The minority game: An introductory guide, Advances in Condensed Matter and Statistical Physics (2004)] within the context of physical entropy, and uses models derived from minority game theory as a tool for measuring the entropy of a model in response to time series. This entropy conditional upon a model is subsequently used in place of information-theoretic entropy in the proposed multistep prediction algorithm.

  9. On variational expressions for quantum relative entropies

    NASA Astrophysics Data System (ADS)

    Berta, Mario; Fawzi, Omar; Tomamichel, Marco

    2017-09-01

    Distance measures between quantum states like the trace distance and the fidelity can naturally be defined by optimizing a classical distance measure over all measurement statistics that can be obtained from the respective quantum states. In contrast, Petz showed that the measured relative entropy, defined as a maximization of the Kullback-Leibler divergence over projective measurement statistics, is strictly smaller than Umegaki's quantum relative entropy whenever the states do not commute. We extend this result in two ways. First, we show that Petz' conclusion remains true if we allow general positive operator-valued measures. Second, we extend the result to Rényi relative entropies and show that for non-commuting states the sandwiched Rényi relative entropy is strictly larger than the measured Rényi relative entropy for α \\in (1/2, ∞) and strictly smaller for α \\in [0,1/2) . The latter statement provides counterexamples for the data processing inequality of the sandwiched Rényi relative entropy for α < 1/2 . Our main tool is a new variational expression for the measured Rényi relative entropy, which we further exploit to show that certain lower bounds on quantum conditional mutual information are superadditive.

  10. Particle entropy and depairing in hot nuclei

    NASA Astrophysics Data System (ADS)

    Saranya, J. Dhivya; Boomadevi, N.; Rajasekaran, T. R.

    2016-11-01

    The nuclear level densities and single particle entropies are predicted for nuclei in the mass region 50 < A < 74 within a framework of statistical theory of hot nuclei method. In this method, particle-number and energy conservation as well as nuclear pairing correlations are included in the partition function of grand canonical ensemble. The suppression of pairing correlations is distinctly noticed in temperature dependence of entropies between the critical temperatures TC ≈ 0.7 MeV and TC ≈ 1.0 MeV for 50,51V, 61,62Ni and 73,74Ge isotopes of the elements. These structural thermodynamic entropies are interpreted as a remarkable signature of the superfluid to normal phase transition connected to the vanishing of pairing gap. The calculated level densities are compared with recent experimental values. In addition, the single particle entropy of intermediate-mass nuclei is depicted as half of the entropy of mid-shell nuclei in the rare-earth region. As a consequence, the N = 28 shell closure of 51V carries low entropy at low excitation energy presents an interesting analogy to the Z = 28 shell closure of 61Ni. Merely, in the case of odd-even 73Ge has higher entropy than the even-even 74Ge nucleus.

  11. Boundary fluctuations and a reduction entropy

    NASA Astrophysics Data System (ADS)

    Herzog, Christopher; Huang, Kuo-Wei

    2017-01-01

    The boundary Weyl anomalies live on a codimension-1 boundary, ∂M . The entanglement entropy originates from infinite correlations on both sides of a codimension-2 surface, Σ . Motivated to have a further understanding of the boundary effects, we introduce a notion of reduction entropy, which, guided by thermodynamics, is a combination of the boundary effective action and the boundary stress tensor defined by allowing the metric on ∂M to fluctuate. We discuss how a reduction might be performed so that the reduction entropy reproduces the entanglement structure.

  12. Maximum entropy analysis of transport networks

    NASA Astrophysics Data System (ADS)

    Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael

    2017-06-01

    The maximum entropy method is used to derive an alternative gravity model for a transport network. The proposed method builds on previous methods which assign the discrete value of a maximum entropy distribution to equal the traffic flow rate. The proposed method however, uses a distribution to represent each flow rate. The proposed method is shown to be able to handle uncertainty in a more elegant way and give similar results to traditional methods. It is able to incorporate more of the observed data through the entropy function, prior distribution and integration limits potentially allowing better inferences to be made.

  13. A psychophysical theory of Shannon entropy.

    PubMed

    Takahashi, Taiki

    2013-01-01

    Connections between information theory and decision under uncertainty have been attracting attention in econophysics, neuroeconomics and quantum decision theory. This paper proposes a psychophysical theory of Shannon entropy based on a mathematical equivalence of delay and uncertainty in decision-making, and psychophysics of the perception of waiting time in probabilistic choices. Furthermore, it is shown that the well-known Shannon entropy is a special case of the general psychophysical entropy. Future directions in the application of the present theory to studies in econophysics and neuroeconomics are discussed.

  14. Wald entropy formula and loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Bodendorfer, N.; Neiman, Y.

    2014-10-01

    We outline how the Wald entropy formula naturally arises in loop quantum gravity based on recently introduced dimension-independent connection variables. The key observation is that in a loop quantization of a generalized gravity theory, the analog of the area operator turns out to measure, morally speaking, the Wald entropy rather than the area. We discuss the explicit example of (higher-dimensional) Lanczos-Lovelock gravity and comment on recent work on finding the correct numerical prefactor of the entropy by comparing it to a semiclassical effective action.

  15. Entropy production for complex Langevin equations

    NASA Astrophysics Data System (ADS)

    Borlenghi, Simone; Iubini, Stefano; Lepri, Stefano; Fransson, Jonas

    2017-07-01

    We study irreversible processes for nonlinear oscillators networks described by complex-valued Langevin equations that account for coupling to different thermochemical baths. Dissipation is introduced via non-Hermitian terms in the Hamiltonian of the model. We apply the stochastic thermodynamics formalism to compute explicit expressions for the entropy production rates. We discuss in particular the nonequilibrium steady states of the network characterized by a constant production rate of entropy and flows of energy and particle currents. For two specific examples, a one-dimensional chain and a dimer, numerical calculations are presented. The role of asymmetric coupling among the oscillators on the entropy production is illustrated.

  16. Growth rate, population entropy, and perturbation theory.

    PubMed

    Demetrius, L

    1989-04-01

    This paper is concerned with the connection between two classes of population variables: measures of population growth rate--the Malthusian parameter, the net reproduction rate, the gross reproduction rate, and the mean life expectancy; and measures of demographic heterogeneity--population entropy. It is shown that the entropy functions predict the response of the growth rate parameters to perturbations in the age-specific fecundity and mortality schedule. These results are invoked to introduce the notion of environmental intensity. The intensity function, expressed in terms of the entropy parameters, is applied to give a comparative study of the effect of environmental factors on the dynamics of Swedish and French populations.

  17. Black hole entropy, topological entropy and the Baum-Connes conjecture in K-theory

    NASA Astrophysics Data System (ADS)

    Zois, Ioannis P.

    2002-03-01

    We shall try to show a relation between black hole (BH) entropy and topological entropy using the famous Baum-Connes conjecture for foliated manifolds which are particular examples of noncommutative spaces. Our argument is qualitative and it is based on the microscopic origin of the Beckenstein-Hawking area-entropy formula for BHs, provided by superstring theory, in the more general noncommutative geometric context of M-theory following the approach of Connes-Douglas-Schwarz.

  18. Structured chaos shapes spike-response noise entropy in balanced neural networks.

    PubMed

    Lajoie, Guillaume; Thivierge, Jean-Philippe; Shea-Brown, Eric

    2014-01-01

    Large networks of sparsely coupled, excitatory and inhibitory cells occur throughout the brain. For many models of these networks, a striking feature is that their dynamics are chaotic and thus, are sensitive to small perturbations. How does this chaos manifest in the neural code? Specifically, how variable are the spike patterns that such a network produces in response to an input signal? To answer this, we derive a bound for a general measure of variability-spike-train entropy. This leads to important insights on the variability of multi-cell spike pattern distributions in large recurrent networks of spiking neurons responding to fluctuating inputs. The analysis is based on results from random dynamical systems theory and is complemented by detailed numerical simulations. We find that the spike pattern entropy is an order of magnitude lower than what would be extrapolated from single cells. This holds despite the fact that network coupling becomes vanishingly sparse as network size grows-a phenomenon that depends on "extensive chaos," as previously discovered for balanced networks without stimulus drive. Moreover, we show how spike pattern entropy is controlled by temporal features of the inputs. Our findings provide insight into how neural networks may encode stimuli in the presence of inherently chaotic dynamics.

  19. Modified correlation entropy estimation for a noisy chaotic time series.

    PubMed

    Jayawardena, A W; Xu, Pengcheng; Li, W K

    2010-06-01

    A method of estimating the Kolmogorov-Sinai (KS) entropy, herein referred to as the modified correlation entropy, is presented. The method can be applied to both noise-free and noisy chaotic time series. It has been applied to some clean and noisy data sets and the numerical results show that the modified correlation entropy is closer to the KS entropy of the nonlinear system calculated by the Lyapunov spectrum than the general correlation entropy. Moreover, the modified correlation entropy is more robust to noise than the correlation entropy.

  20. Spatial entropy-based global and local image contrast enhancement.

    PubMed

    Celik, Turgay

    2014-12-01

    This paper proposes a novel algorithm, which enhances the contrast of an input image using spatial information of pixels. The algorithm introduces a new method to compute the spatial entropy of pixels using spatial distribution of pixel gray levels. Different than the conventional methods, this algorithm considers the distribution of spatial locations of gray levels of an image instead of gray-level distribution or joint statistics computed from the gray levels of an image. For each gray level, the corresponding spatial distribution is computed using a histogram of spatial locations of all pixels with the same gray level. Entropy measures are calculated from the spatial distributions of gray levels of an image to create a distribution function, which is further mapped to a uniform distribution function to achieve the final contrast enhancement. The method achieves contrast improvement in the case of low-contrast images; however, it does not alter the image if the image’s contrast is high enough. Thus, it always produces visually pleasing results without distortions. Furthermore, this method is combined with transform domain coefficient weighting to achieve both local and global contrast enhancement at the same time. The level of the local contrast enhancement can be controlled. Several experiments on effects of contrast enhancement are performed. Experimental results show that the proposed algorithms produce better or comparable enhanced images than several state-of-the-art algorithms.

  1. Stimulus-dependent Maximum Entropy Models of Neural Population Codes

    PubMed Central

    Segev, Ronen; Schneidman, Elad

    2013-01-01

    Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME) model—a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population. PMID:23516339

  2. Insights Into the Robustness of Minimum Error Entropy Estimation.

    PubMed

    Chen, Badong; Xing, Lei; Xu, Bin; Zhao, Haiquan; Principe, Jose C

    2016-12-22

    The minimum error entropy (MEE) is an important and highly effective optimization criterion in information theoretic learning (ITL). For regression problems, MEE aims at minimizing the entropy of the prediction error such that the estimated model preserves the information of the data generating system as much as possible. In many real world applications, the MEE estimator can outperform significantly the well-known minimum mean square error (MMSE) estimator and show strong robustness to noises especially when data are contaminated by non-Gaussian (multimodal, heavy tailed, discrete valued, and so on) noises. In this brief, we present some theoretical results on the robustness of MEE. For a one-parameter linear errors-in-variables (EIV) model and under some conditions, we derive a region that contains the MEE solution, which suggests that the MEE estimate can be very close to the true value of the unknown parameter even in presence of arbitrarily large outliers in both input and output variables. Theoretical prediction is verified by an illustrative example.

  3. On statistical properties of Jizba-Arimitsu hybrid entropy

    NASA Astrophysics Data System (ADS)

    Çankaya, Mehmet Niyazi; Korbel, Jan

    2017-06-01

    Jizba-Arimitsu entropy (also called hybrid entropy) combines axiomatics of Rényi and Tsallis entropy. It has many common properties with them, on the other hand, some aspects as e.g., MaxEnt distributions, are different. In this paper, we discuss statistical properties of hybrid entropy. We define hybrid entropy for continuous distributions and its relation to discrete entropy. Additionally, definition of hybrid divergence and its connection to Fisher metric is also presented. Interestingly, Fisher metric connected to hybrid entropy differs from corresponding Fisher metrics of Rényi and Tsallis entropy. This motivates us to introduce average hybrid entropy, which can be understood as an average between Tsallis and Rényi entropy.

  4. Structural information in two-dimensional patterns: entropy convergence and excess entropy.

    PubMed

    Feldman, David P; Crutchfield, James P

    2003-05-01

    We develop information-theoretic measures of spatial structure and pattern in more than one dimension. As is well known, the entropy density of a two-dimensional configuration can be efficiently and accurately estimated via a converging sequence of conditional entropies. We show that the manner in which these conditional entropies converge to their asymptotic value serves as a measure of global correlation and structure for spatial systems in any dimension. We compare and contrast entropy convergence with mutual-information and structure-factor techniques for quantifying and detecting spatial structure.

  5. Entropy and order in urban street networks

    PubMed Central

    Gudmundsson, Agust; Mohajeri, Nahid

    2013-01-01

    Many complex networks erase parts of their geometry as they develop, so that their evolution is difficult to quantify and trace. Here we introduce entropy measures for quantifying the complexity of street orientations and length variations within planar networks and apply them to the street networks of 41 British cities, whose geometric evolution over centuries can be explored. The results show that the street networks of the old central parts of the cities have lower orientation/length entropies - the streets are more tightly ordered and form denser networks - than the outer and more recent parts. Entropy and street length increase, because of spreading, with distance from the network centre. Tracing the 400-year evolution of one network indicates growth through densification (streets are added within the existing network) and expansion (streets are added at the margin of the network) and a gradual increase in entropy over time. PMID:24281305

  6. Entropy analysis of natural language written texts

    NASA Astrophysics Data System (ADS)

    Papadimitriou, C.; Karamanos, K.; Diakonos, F. K.; Constantoudis, V.; Papageorgiou, H.

    2010-08-01

    The aim of the present work is to investigate the relative contribution of ordered and stochastic components in natural written texts and examine the influence of text category and language on these. To this end, a binary representation of written texts and the generated symbolic sequences are examined by the standard block entropy analysis and the Shannon and Kolmogorov entropies are obtained. It is found that both entropies are sensitive to both language and text category with the text category sensitivity to follow almost the same trends in both languages (English and Greek) considered. The values of these entropies are compared with those of stochastically generated symbolic sequences and the nature of correlations present in this representation of real written texts is identified.

  7. α-z-Rényi relative entropies

    SciTech Connect

    Audenaert, Koenraad M. R.; Datta, Nilanjana

    2015-02-15

    We consider a two-parameter family of Rényi relative entropies D{sub α,z}(ρ ∥ σ) that are quantum generalisations of the classical Rényi divergence D{sub α}(p ∥ q). This family includes many known relative entropies (or divergences) such as the quantum relative entropy, the recently defined quantum Rényi divergences, as well as the quantum Rényi relative entropies. All its members satisfy the quantum generalizations of Rényi’s axioms for a divergence. We consider the range of the parameters α, z for which the data-processing inequality holds. We also investigate a variety of limiting cases for the two parameters, obtaining explicit formulas for each one of them.

  8. Lethality and entropy of protein interaction networks.

    PubMed

    Manke, Thomas; Demetrius, Lloyd; Vingron, Martin

    2005-01-01

    We characterize protein interaction networks in terms of network entropy. This approach suggests a ranking principle, which strongly correlates with elements of functional importance, such as lethal proteins. Our combined analysis of protein interaction networks and functional profiles in single cellular yeast and multi-cellular worm shows that proteins with large contribution to network entropy are preferentially lethal. While entropy is inherently a dynamical concept, the present analysis incorporates only structural information. Our result therefore highlights the importance of topological features, which appear as correlates of an underlying dynamical property, and which in turn determine functional traits. We argue that network entropy is a natural extension of previously studied observables, such as pathway multiplicity and centrality. It is also applicable to networks in which the processes can be quantified and therefore serves as a link to study questions of structural and dynamical robustness in a unified way.

  9. The entropy of a complex molecule

    NASA Astrophysics Data System (ADS)

    Faure, Gérôme; Delgado-Buscalioni, Rafael; Español, Pep

    2017-06-01

    Entropy is a central concept in the theory of coarse-graining. Through Einstein's formula, it provides the equilibrium probability distribution of the coarse-grained variables used to describe the system of interest. We study with molecular dynamics simulations the equilibrium probability distribution of thermal blobs representing at a coarse-grained level star polymer molecules in melt. Thermal blobs are characterized by the positions and momenta of the centers of mass, and internal energies of the molecules. We show that the entropy of the level of description of thermal blobs can be very well approximated as the sum of the thermodynamic entropy of each single molecule considered as isolated thermodynamic systems. The entropy of a single molecule depends on the intrinsic energy, involving only contributions from the atoms that make the molecule and not from the interactions with atoms of other molecules.

  10. On multiscale entropy analysis for physiological data

    NASA Astrophysics Data System (ADS)

    Thuraisingham, Ranjit A.; Gottwald, Georg A.

    2006-07-01

    We perform an analysis of cardiac data using multiscale entropy as proposed in Costa et al. [Multiscale entropy analysis of complex physiological time series, Phys. Rev. Lett. 89 (2002) 068102]. We reproduce the signatures of the multiscale entropy for the three cases of young healthy hearts, atrial fibrillation and congestive heart failure. We show that one has to be cautious how to interpret these signatures in terms of the underlying dynamics. In particular, we show that different dynamical systems can exhibit the same signatures depending on the sampling time, and that similar systems may have different signatures depending on the time scales involved. Besides the total amount of data we identify the sampling time, the correlation time and the period of possible nonlinear oscillations as important time scales which have to be involved in a detailed analysis of the signatures of multiscale entropies. We illustrate our ideas with the Lorenz equation as a simple deterministic chaotic system.

  11. Hard sphere study of condensation entropy

    NASA Astrophysics Data System (ADS)

    Graziano, Giuseppe

    2008-06-01

    A simple procedure is devised to calculate the Ben-Naim standard condensation entropy by treating neat liquids as hard sphere fluids. The calculated values are close to the experimental ones for nonpolar liquids, but not for polar aprotic ones and for H-bonded liquids. For the latter the calculated entropy values become close to the experimental ones if the molecular van der Waals diameters are used instead of the effective ones. This implies that the magnitude of the orientational entropy loss due to H-bond formation is quantitatively similar to that of the configurational entropy gain for the decrease in excluded volume due to the bunching up effect caused by H-bonds.

  12. Entropy growth in emotional online dialogues

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, J.; Skowron, M.; Paltoglou, G.; Hołyst, Janusz A.

    2013-02-01

    We analyze emotionally annotated massive data from IRC (Internet Relay Chat) and model the dialogues between its participants by assuming that the driving force for the discussion is the entropy growth of emotional probability distribution.

  13. Statistical entropy of open quantum systems

    NASA Astrophysics Data System (ADS)

    Durão, L. M. M.; Caldeira, A. O.

    2016-12-01

    Dissipative quantum systems are frequently described within the framework of the so-called "system-plus-reservoir" approach. In this work we assign their description to the Maximum Entropy Formalism and compare the resulting thermodynamic properties with those of the well-established approaches. Due to the non-negligible coupling to the heat reservoir, these systems are nonextensive by nature, and the former task may require the use of nonextensive parameter dependent informational entropies. In doing so, we address the problem of choosing appropriate forms of those entropies in order to describe a consistent thermodynamics for dissipative quantum systems. Nevertheless, even having chosen the most successful and popular forms of those entropies, we have proven our model to be a counterexample where this sort of approach leads us to wrong results.

  14. Holographic equipartition and the maximization of entropy

    NASA Astrophysics Data System (ADS)

    Krishna, P. B.; Mathew, Titus K.

    2017-09-01

    The accelerated expansion of the Universe can be interpreted as a tendency to satisfy holographic equipartition. It can be expressed by a simple law, Δ V =Δ t (Nsurf-ɛ Nbulk) , where V is the Hubble volume in Planck units, t is the cosmic time in Planck units, and Nsurf /bulk is the number of degrees of freedom on the horizon/bulk of the Universe. We show that this holographic equipartition law effectively implies the maximization of entropy. In the cosmological context, a system that obeys the holographic equipartition law behaves as an ordinary macroscopic system that proceeds to an equilibrium state of maximum entropy. We consider the standard Λ CDM model of the Universe and show that it is consistent with the holographic equipartition law. Analyzing the entropy evolution, we find that it also proceeds to an equilibrium state of maximum entropy.

  15. Generalized entropies and the similarity of texts

    NASA Astrophysics Data System (ADS)

    Altmann, Eduardo G.; Dias, Laércio; Gerlach, Martin

    2017-01-01

    We show how generalized Gibbs-Shannon entropies can provide new insights on the statistical properties of texts. The universal distribution of word frequencies (Zipf’s law) implies that the generalized entropies, computed at the word level, are dominated by words in a specific range of frequencies. Here we show that this is the case not only for the generalized entropies but also for the generalized (Jensen-Shannon) divergences, used to compute the similarity between different texts. This finding allows us to identify the contribution of specific words (and word frequencies) for the different generalized entropies and also to estimate the size of the databases needed to obtain a reliable estimation of the divergences. We test our results in large databases of books (from the google n-gram database) and scientific papers (indexed by Web of Science).

  16. Multidimensional entropy landscape of quantum criticality

    NASA Astrophysics Data System (ADS)

    Grube, K.; Zaum, S.; Stockert, O.; Si, Q.; Löhneysen, H. V.

    2017-08-01

    The third law of thermodynamics states that the entropy of any system in equilibrium has to vanish at absolute zero temperature. At nonzero temperatures, on the other hand, matter is expected to accumulate entropy near a quantum critical point, where it undergoes a continuous transition from one ground state to another. Here, we determine, based on general thermodynamic principles, the spatial-dimensional profile of the entropy S near a quantum critical point and its steepest descent in the corresponding multidimensional stress space. We demonstrate this approach for the canonical quantum critical compound CeCu 6-xAux near its onset of antiferromagnetic order. We are able to link the directional stress dependence of S to the previously determined geometry of quantum critical fluctuations. Our demonstration of the multidimensional entropy landscape provides the foundation to understand how quantum criticality nucleates novel phases such as high-temperature superconductivity.

  17. Group entropies, correlation laws, and zeta functions

    NASA Astrophysics Data System (ADS)

    Tempesta, Piergiulio

    2011-08-01

    The notion of group entropy is proposed. It enables the unification and generaliztion of many different definitions of entropy known in the literature, such as those of Boltzmann-Gibbs, Tsallis, Abe, and Kaniadakis. Other entropic functionals are introduced, related to nontrivial correlation laws characterizing universality classes of systems out of equilibrium when the dynamics is weakly chaotic. The associated thermostatistics are discussed. The mathematical structure underlying our construction is that of formal group theory, which provides the general structure of the correlations among particles and dictates the associated entropic functionals. As an example of application, the role of group entropies in information theory is illustrated and generalizations of the Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.

  18. Tissue Radiation Response with Maximum Tsallis Entropy

    SciTech Connect

    Sotolongo-Grau, O.; Rodriguez-Perez, D.; Antoranz, J. C.; Sotolongo-Costa, Oscar

    2010-10-08

    The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.

  19. Entropy and holography constraints for inhomogeneous universes.

    PubMed

    Wang, B; Abdalla, E; Osada, T

    2000-12-25

    We calculated the entropy of a class of inhomogeneous dust universes. Allowing spherical symmetry, we proposed a holographic principle by reflecting all physical freedoms on the surface of the apparent horizon. In contrast to flat homogeneous counterparts, the principle may break down in some models. We refined fractal parabolic solutions to have a reasonable entropy value for the present observable universe and found that the holographic principle always holds in the realistic cases.

  20. Maximum entropy production - Full steam ahead

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2012-05-01

    The application of a principle of Maximum Entropy Production (MEP, or less ambiguously MaxEP) to planetary climate is discussed. This idea suggests that if sufficiently free of dynamical constraints, the atmospheric and oceanic heat flows across a planet may conspire to maximize the generation of mechanical work, or entropy. Thermodynamic and information-theoretic aspects of this idea are discussed. These issues are also discussed in the context of dust devils, convective vortices found in strongly-heated desert areas.

  1. Tissue radiation response with maximum Tsallis entropy.

    PubMed

    Sotolongo-Grau, O; Rodríguez-Pérez, D; Antoranz, J C; Sotolongo-Costa, Oscar

    2010-10-08

    The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.

  2. Minimum entropy deconvolution and blind equalisation

    NASA Technical Reports Server (NTRS)

    Satorius, E. H.; Mulligan, J. J.

    1992-01-01

    Relationships between minimum entropy deconvolution, developed primarily for geophysics applications, and blind equalization are pointed out. It is seen that a large class of existing blind equalization algorithms are directly related to the scale-invariant cost functions used in minimum entropy deconvolution. Thus the extensive analyses of these cost functions can be directly applied to blind equalization, including the important asymptotic results of Donoho.

  3. Behavioral Entropy in Human-Robot Interaction

    DTIC Science & Technology

    2004-01-01

    Department 2 Erwin R. Boer Consulting Brigham Young University San Diego, CA, USA Provo, UT, USA ABSTRACT The ability to quickly and accurately measure...AND ADDRESS(ES) Brigham Young University,Computer Science Department,33361 Talmage Building,Provo,UT,84602 8. PERFORMING ORGANIZATION REPORT NUMBER...in- teraction. To paraphrase Wiener, people work to re- duce entropy so skilled behavior minimizes entropy. This manifests itself in human behavior

  4. Carnot to Clausius: caloric to entropy

    NASA Astrophysics Data System (ADS)

    Newburgh, Ronald

    2009-07-01

    This paper discusses how the Carnot engine led to the formulation of the second law of thermodynamics and entropy. The operation of the engine is analysed both in terms of heat as the caloric fluid and heat as a form of energy. A keystone of Carnot's thinking was the absolute conservation of caloric. Although the Carnot analysis was partly incorrect, Clausius showed that by reinterpreting Carnot's caloric as entropy he was able to formulate the second law.

  5. REL - English Bulk Data Input.

    ERIC Educational Resources Information Center

    Bigelow, Richard Henry

    A bulk data input processor which is available for the Rapidly Extensible Language (REL) English versions is described. In REL English versions, statements that declare names of data items and their interrelationships normally are lines from a terminal or cards in a batch input stream. These statements provide a convenient means of declaring some…

  6. Inputs for L2 Acquisition.

    ERIC Educational Resources Information Center

    Saleemi, Anjum P.

    1989-01-01

    Major approaches of describing or examining linguistic data from a potential target language (input) are analyzed for adequacy in addressing the concerns of second language learning theory. Suggestions are made for making the best of these varied concepts of input and for reformulation of a unified concept. (MSE)

  7. Input in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Gass, Susan M., Ed.; Madden, Carolyn G., Ed.

    This collection of conference papers includes: "When Does Teacher Talk Work as Input?"; "Cultural Input in Second Language Learning"; "Skilled Variation in a Kindergarten Teacher's Use of Foreigner Talk"; "Teacher-Pupil Interaction in Second Language Development"; "Foreigner Talk in the University…

  8. Input in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Gass, Susan M., Ed.; Madden, Carolyn G., Ed.

    This collection of conference papers includes: "When Does Teacher Talk Work as Input?"; "Cultural Input in Second Language Learning"; "Skilled Variation in a Kindergarten Teacher's Use of Foreigner Talk"; "Teacher-Pupil Interaction in Second Language Development"; "Foreigner Talk in the University…

  9. Entropies and correlations in classical and quantum systems

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.; Man'ko, Vladimir I.; Marmo, Giuseppe

    2016-09-01

    We present a review of entropy properties for classical and quantum systems including Shannon entropy, von Neumann entropy, Rényi entropy, and Tsallis entropy. We discuss known and new entropic and information inequalities for classical and quantum systems, both composite and noncomposite. We demonstrate matrix inequalities associated with the entropic subadditivity and strong subadditivity conditions and give a new inequality for matrix elements of unitary matrices.

  10. Entropy Transfer of Quantum Gravity Information Processing

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2015-05-01

    We introduce the term smooth entanglement entropy transfer, a phenomenon that is a consequence of the causality-cancellation property of the quantum gravity environment. The causality-cancellation of the quantum gravity space removes the causal dependencies of the local systems. We study the physical effects of the causality-cancellation and show that it stimulates entropy transfer between the quantum gravity environment and the independent local systems of the quantum gravity space. The entropy transfer reduces the entropies of the contributing local systems and increases the entropy of the quantum gravity environment. We discuss the space-time geometry structure of the quantum gravity environment and the local quantum systems. We propose the space-time geometry model of the smooth entropy transfer. We reveal on a smooth Cauchy slice that the space-time geometry of the quantum gravity environment dynamically adapts to the vanishing causality. We prove that the Cauchy area expansion, along with the dilation of the Rindler horizon area of the quantum gravity environment, is a corollary of the causality-cancellation of the quantum gravity environment. This work was partially supported by the GOP-1.1.1-11-2012-0092 (Secure quantum key distribution between two units on optical fiber network) project sponsored by the EU and European Structural Fund, and by the COST Action MP1006.

  11. Quantum entropies, Schur concavity and dynamical semigroups

    NASA Astrophysics Data System (ADS)

    Aniello, Paolo

    2017-01-01

    Entropy plays a fundamental role in several branches of physics. In the quantum setting, one usually considers the von Neumann entropy, but other useful quantities have been proposed in the literature; e.g., the Rényi and the Tsallis entropies. The evolution of an open quantum system, described by a semigroup of dynamical maps (in short, a dynamical semigroup), may decrease a quantum entropy, for some initial condition. We will discuss various characterizations of those dynamical semigroups that, for every initial condition, do not decrease a general class of quantum entropies, which is defined using the notion of Schur concavity of a function. We will not assume that such a dynamical semigroup be completely positive, the physical justification of this condition being controversial. Therefore, we will consider semigroups of trace-preserving, positive — but not necessarily completely positive — linear maps. We will next focus on a special class of (completely positive) dynamical semigroups, the twirling semigroups, having applications in quantum information science. We will argue that the whole class of dynamical semigroups that do not decrease a quantum entropy can be obtained as a suitable generalization of the twirling semigroups.

  12. Entropy production due to Lorentz invariance violation

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Hosein; Farahmand, Mehrnoosh; Maleki, Mahnaz

    2017-07-01

    It is generally believed that the concept of the spacetime continuum should be modified for distances as small as the Planck length. This is a length scale at which the spacetime might have a discrete structure and quantum gravity effects are dominant. Presumably, the microscopic fluctuations within the geometry of spacetime should result in an enormous entropy production. In the present work, we look for the effects of Lorentz invariance violation (LIV) in flat and curved backgrounds that can be measured by quantum entanglement and quantum thermodynamic entropies for scalar modes. Our results show that the general behavior of these entropies is the same. We also consider variations of the entropies with respect to LIV and cosmological and field parameters. Using the properties of these entropies, along with detecting the most entangled modes, we extract information about the past existence of LIV, which in turn might be useful in recovering the quantum structure of gravity. Indeed, the occurrence of a peak in the behavior of these entropies for a specific momentum could provide information about the expansion parameters. Moreover, information about the LIV parameter is codified in this peak.

  13. Continuously differentiable sample-spacing entropy estimation.

    PubMed

    Ozertem, Umut; Uysal, Ismail; Erdogmus, Deniz

    2008-11-01

    The insufficiency of using only second-order statistics and premise of exploiting higher order statistics of the data has been well understood, and more advanced objectives including higher order statistics, especially those stemming from information theory, such as error entropy minimization, are now being studied and applied in many contexts of machine learning and signal processing. In the adaptive system training context, the main drawback of utilizing output error entropy as compared to correlation-estimation-based second-order statistics is the computational load of the entropy estimation, which is usually obtained via a plug-in kernel estimator. Sample-spacing estimates offer computationally inexpensive entropy estimators; however, resulting estimates are not differentiable, hence, not suitable for gradient-based adaptation. In this brief paper, we propose a nonparametric entropy estimator that captures the desirable properties of both approaches. The resulting estimator yields continuously differentiable estimates with a computational complexity at the order of those of the sample-spacing techniques. The proposed estimator is compared with the kernel density estimation (KDE)-based entropy estimator in the supervised neural network training framework with computation time and performance comparisons.

  14. Normalized entropy measure for multimodality image alignment

    NASA Astrophysics Data System (ADS)

    Studholme, Colin; Hawkes, David J.; Hill, Derek L.

    1998-06-01

    Automated multi-modality 3D medical image alignment has been an active area of research for many years. There have been a number of recent papers proposing and investigating the use of entropy derived measures of brain image alignment. Any registration measure must allow us to choose between transformation estimates based on the similarity of images within their volume of overlap. Since 3D medical images often have a limited extent and overlap, the similarity measure for the two transformation estimates may be derived from two very different regions within the images. Direct measures of information such as the joint entropy and mutual information will therefore be a function of, not only image similarity in the region of overlap, but also of the local image content within the overlap. In this paper we present a new measure, normalized mutual information, which is simply the ratio of the sum of the marginal entropies and the joint entropy. The effect of changing overlap on current entropy measures and this normalized measure are compared using a simple image model and experiments on clinical MR-PET and MR-CT image data. Results indicate that the normalized entropy measure provides significantly improved behavior over a range of imaged fields of view.

  15. Entanglement entropy and nonabelian gauge symmetry

    NASA Astrophysics Data System (ADS)

    Donnelly, William

    2014-11-01

    Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang-Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity.

  16. Remarks on entanglement entropy for gauge fields

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Huerta, Marina; Rosabal, José Alejandro

    2014-04-01

    In gauge theories the presence of constraints can obstruct expressing the global Hilbert space as a tensor product of the Hilbert spaces corresponding to degrees of freedom localized in complementary regions. In algebraic terms, this is due to the presence of a center—a set of operators which commute with all others—in the gauge invariant operator algebra corresponding to a finite region. A unique entropy can be assigned to algebras with a center, giving a place to a local entropy in lattice gauge theories. However, ambiguities arise on the correspondence between algebras and regions. In particular, it is always possible to choose (in many different ways) local algebras with a trivial center, and hence a genuine entanglement entropy, for any region. These choices are in correspondence with maximal trees of links on the boundary, which can be interpreted as partial gauge fixings. This interpretation entails a gauge fixing dependence of the entanglement entropy. In the continuum limit, however, ambiguities in the entropy are given by terms local on the boundary of the region, in such a way relative entropy and mutual information are finite, universal, and gauge independent quantities.

  17. The Shannon information entropy of protein sequences.

    PubMed Central

    Strait, B J; Dewey, T G

    1996-01-01

    A comprehensive data base is analyzed to determine the Shannon information content of a protein sequence. This information entropy is estimated by three methods: a k-tuplet analysis, a generalized Zipf analysis, and a "Chou-Fasman gambler." The k-tuplet analysis is a "letter" analysis, based on conditional sequence probabilities. The generalized Zipf analysis demonstrates the statistical linguistic qualities of protein sequences and uses the "word" frequency to determine the Shannon entropy. The Zipf analysis and k-tuplet analysis give Shannon entropies of approximately 2.5 bits/amino acid. This entropy is much smaller than the value of 4.18 bits/amino acid obtained from the nonuniform composition of amino acids in proteins. The "Chou-Fasman" gambler is an algorithm based on the Chou-Fasman rules for protein structure. It uses both sequence and secondary structure information to guess at the number of possible amino acids that could appropriately substitute into a sequence. As in the case for the English language, the gambler algorithm gives significantly lower entropies than the k-tuplet analysis. Using these entropies, the number of most probable protein sequences can be calculated. The number of most probable protein sequences is much less than the number of possible sequences but is still much larger than the number of sequences thought to have existed throughout evolution. Implications of these results for mutagenesis experiments are discussed. PMID:8804598

  18. Improved entropy rate estimation in physiological data.

    PubMed

    Lake, D E

    2011-01-01

    Calculating entropy rate in physiologic signals has proven very useful in many settings. Common entropy estimates for this purpose are sample entropy (SampEn) and its less robust elder cousin, approximate entropy (ApEn). Both approaches count matches within a tolerance r for templates of length m consecutive observations. When physiologic data records are long and well-behaved, both approaches work very well for a wide range of m and r. However, more attention to the details of the estimation algorithm is needed for short records and signals with anomalies. In addition, interpretation of the magnitude of these estimates is highly dependent on how r is chosen and precludes comparison across studies with even slightly different methodologies. In this paper, we summarize recent novel approaches to improve the accuracy of entropy estimation. An important (but not necessarily new) alternative to current approaches is to develop estimates that convert probabilities to densities by normalizing by the matching region volume. This approach leads to a novel concept introduced here of reporting entropy rate in equivalent Gaussian white noise units. Another approach is to allow r to vary so that a pre-specified number of matches are found, called the minimum numerator count, to ensure confident probability estimation. The approaches are illustrated using a simple example of detecting abnormal cardiac rhythms in heart rate records.

  19. Wavelet Packet Entropy for Heart Murmurs Classification

    PubMed Central

    Safara, Fatemeh; Doraisamy, Shyamala; Azman, Azreen; Jantan, Azrul; Ranga, Sri

    2012-01-01

    Heart murmurs are the first signs of cardiac valve disorders. Several studies have been conducted in recent years to automatically differentiate normal heart sounds, from heart sounds with murmurs using various types of audio features. Entropy was successfully used as a feature to distinguish different heart sounds. In this paper, new entropy was introduced to analyze heart sounds and the feasibility of using this entropy in classification of five types of heart sounds and murmurs was shown. The entropy was previously introduced to analyze mammograms. Four common murmurs were considered including aortic regurgitation, mitral regurgitation, aortic stenosis, and mitral stenosis. Wavelet packet transform was employed for heart sound analysis, and the entropy was calculated for deriving feature vectors. Five types of classification were performed to evaluate the discriminatory power of the generated features. The best results were achieved by BayesNet with 96.94% accuracy. The promising results substantiate the effectiveness of the proposed wavelet packet entropy for heart sounds classification. PMID:23227043

  20. Entanglement entropy of electronic excitations

    NASA Astrophysics Data System (ADS)

    Plasser, Felix

    2016-05-01

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.

  1. Entropy and the Magic Flute

    NASA Astrophysics Data System (ADS)

    Morowitz, Harold J.

    1996-10-01

    Harold Morowitz has long been highly regarded both as an eminent scientist and as an accomplished science writer. The essays in The Wine of Life , his first collection, were hailed by C.P. Snow as "some of the wisest, wittiest and best informed I have ever read," and Carl Sagan called them "a delight to read." In later volumes he established a reputation for a wide-ranging intellect, an ability to see unexpected connections and draw striking parallels, and a talent for communicating scientific ideas with optimism and wit. With Entropy and the Magic Flute , Morowitz once again offers an appealing mix of brief reflections on everything from litmus paper to the hippopotamus to the sociology of Palo Alto coffee shops. Many of these pieces are appreciations of scientists that Morowitz holds in high regard, while others focus on health issues, such as America's obsession with cheese toppings. There is also a fascinating piece on the American Type Culture Collection, a zoo or warehouse for microbes that houses some 11,800 strains of bacteria, and over 3,000 specimens of protozoa, algae, plasmids, and oncogenes. Here then are over forty light, graceful essays in which one of our wisest experimental biologists comments on issues of science, technology, society, philosophy, and the arts.

  2. Maximum entropy production in daisyworld

    NASA Astrophysics Data System (ADS)

    Maunu, Haley A.; Knuth, Kevin H.

    2012-05-01

    Daisyworld was first introduced in 1983 by Watson and Lovelock as a model that illustrates how life can influence a planet's climate. These models typically involve modeling a planetary surface on which black and white daisies can grow thus influencing the local surface albedo and therefore also the temperature distribution. Since then, variations of daisyworld have been applied to study problems ranging from ecological systems to global climate. Much of the interest in daisyworld models is due to the fact that they enable one to study self-regulating systems. These models are nonlinear, and as such they exhibit sensitive dependence on initial conditions, and depending on the specifics of the model they can also exhibit feedback loops, oscillations, and chaotic behavior. Many daisyworld models are thermodynamic in nature in that they rely on heat flux and temperature gradients. However, what is not well-known is whether, or even why, a daisyworld model might settle into a maximum entropy production (MEP) state. With the aim to better understand these systems, this paper will discuss what is known about the role of MEP in daisyworld models.

  3. Mechanical Entropy and Its Implications

    NASA Astrophysics Data System (ADS)

    Williams, Pharis E.

    2001-09-01

    It is shown that the classical laws of thermodynamics require that mechanical systems must exhibit energy that becomes unavailable to do useful work. In thermodynamics, this type of energy is called entropy. It is further shown that these laws require two metrical manifolds, equations of motion, field equations, and Weyl's quantum principles. Weyl's quantum principle requires quantization of the electrostatic potential of a particle and that this potential be non-singular. The interactions of particles through these non-singular electrostatic potentials are analyzed in the low velocity limit and in the relativistic limit. It is shown that writing the two particle interactions for unlike particles allows an examination in two limiting cases: large and small separations. These limits are shown to have the limiting motions of: all motions are ABOUT the center of mass or all motion is OF the center of mass. The first limit leads to the standard Dirac equation. The second limit is shown to have equations of which the electroweak theory is a subset. An extension of the gauge principle into a five-dimensional manifold, then restricting the generality of the five-dimensional manifold by using the conservation principle, shows that the four-dimensional hypersurface that is embedded within the 5-D manifold is required to obey Einstein's field equations. The 5-D gravitational quantum equations of the solar system are presented.

  4. Entropy-Driven Cutoff Phenomena

    NASA Astrophysics Data System (ADS)

    Lancia, Carlo; Nardi, Francesca R.; Scoppola, Benedetto

    2012-10-01

    In this paper we present, in the context of Diaconis' paradigm, a general method to detect the cutoff phenomenon. We use this method to prove cutoff in a variety of models, some already known and others not yet appeared in literature, including a non-reversible random walk on a cylindrical lattice. All the given examples clearly indicate that a drift towards the opportune quantiles of the stationary measure could be held responsible for this phenomenon. In the case of birth-and-death chains this mechanism is fairly well understood; our work is an effort to generalize this picture to more general systems, such as systems having stationary measure spread over the whole state space or systems in which the study of the cutoff may not be reduced to a one-dimensional problem. In those situations the drift may be looked for by means of a suitable partitioning of the state space into classes; using a statistical mechanics language it is then possible to set up a kind of energy-entropy competition between the weight and the size of the classes. Under the lens of this partitioning one can focus the mentioned drift and prove cutoff with relative ease.

  5. Consistent thermostatistics forbids negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Hilbert, Stefan

    2014-01-01

    Over the past 60 years, a considerable number of theories and experiments have claimed the existence of negative absolute temperature in spin systems and ultracold quantum gases. This has led to speculation that ultracold gases may be dark-energy analogues and also suggests the feasibility of heat engines with efficiencies larger than one. Here, we prove that all previous negative temperature claims and their implications are invalid as they arise from the use of an entropy definition that is inconsistent both mathematically and thermodynamically. We show that the underlying conceptual deficiencies can be overcome if one adopts a microcanonical entropy functional originally derived by Gibbs. The resulting thermodynamic framework is self-consistent and implies that absolute temperature remains positive even for systems with a bounded spectrum. In addition, we propose a minimal quantum thermometer that can be implemented with available experimental techniques.

  6. Information Entropy Exchange in the Path Integral Formulation of Transition Amplitudes

    NASA Astrophysics Data System (ADS)

    Deeter, Daniel; Petridis, Athanasios

    2016-09-01

    The quantum mechanical transition amplitude for a free particle is calculated using the path integral formalism. This amplitude is the kernel of the Schrödinger equation. A Wick rotation of the time increment transforms the kernel into a partition function that depends on the space and time intervals of the transition, with the temperature being proportional to the inverse of the time increment. The information entropy exchange between the system and the observer during the transition is calculated from the partition function. The requirement that this be real-valued leads to uncertainty-type relations. Furthermore, the transition exhibits positive information entropy exchange for small time intervals and negative entropy for large ones. The related statistical weight is inversely proportional to the square root of the time interval. Calculations for interacting systems are in progress.

  7. Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms.

    PubMed

    Liang, Kevin; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung

    2016-10-31

    Recent visible light communication (VLC) studies mainly used positive-intrinsic-negative (PIN) and avalanche photodiode (APD). VLC using embedded complementary-metal-oxide-semiconductor (CMOS) camera is attractive. Using the rolling shutter effect of CMOS camera can increase the VLC data rate; and different techniques have been proposed for improving the demodulation of the rolling shutter pattern. Important steps to demodulate the rolling shutter pattern are the smoothing and the application of efficient thresholding to distinguish data logic. Here, we propose and demonstrate for the first time two entropy thresholding algorithms, including maximum entropy thresholding and minimum cross entropy thresholding. Experimental evaluation to compare their bit-error-rate (BER) performances and efficiencies are also performed.

  8. Optimization of floodplain monitoring sensors through an entropy approach

    NASA Astrophysics Data System (ADS)

    Ridolfi, E.; Yan, K.; Alfonso, L.; Di Baldassarre, G.; Napolitano, F.; Russo, F.; Bates, P. D.

    2012-04-01

    To support the decision making processes of flood risk management and long term floodplain planning, a significant issue is the availability of data to build appropriate and reliable models. Often the required data for model building, calibration and validation are not sufficient or available. A unique opportunity is offered nowadays by the globally available data, which can be freely downloaded from internet. However, there remains the question of what is the real potential of those global remote sensing data, characterized by different accuracies, for global inundation monitoring and how to integrate them with inundation models. In order to monitor a reach of the River Dee (UK), a network of cheap wireless sensors (GridStix) was deployed both in the channel and in the floodplain. These sensors measure the water depth, supplying the input data for flood mapping. Besides their accuracy and reliability, their location represents a big issue, having the purpose of providing as much information as possible and at the same time as low redundancy as possible. In order to update their layout, the initial number of six sensors has been increased up to create a redundant network over the area. Through an entropy approach, the most informative and the least redundant sensors have been chosen among all. First, a simple raster-based inundation model (LISFLOOD-FP) is used to generate a synthetic GridStix data set of water stages. The Digital Elevation Model (DEM) used for hydraulic model building is the globally and freely available SRTM DEM. Second, the information content of each sensor has been compared by evaluating their marginal entropy. Those with a low marginal entropy are excluded from the process because of their low capability to provide information. Then the number of sensors has been optimized considering a Multi-Objective Optimization Problem (MOOP) with two objectives, namely maximization of the joint entropy (a measure of the information content) and

  9. Negative Certainty

    ERIC Educational Resources Information Center

    Ariso, José María

    2017-01-01

    The definitions of "negative knowledge" and the studies in this regard published to date have not considered the categorial distinction Wittgenstein established between knowledge and certainty. Hence, the important role that certainty, despite its omission, should have in these definitions and studies has not yet been shown. In this…

  10. Negative Certainty

    ERIC Educational Resources Information Center

    Ariso, José María

    2017-01-01

    The definitions of "negative knowledge" and the studies in this regard published to date have not considered the categorial distinction Wittgenstein established between knowledge and certainty. Hence, the important role that certainty, despite its omission, should have in these definitions and studies has not yet been shown. In this…

  11. Negative Numbers

    ERIC Educational Resources Information Center

    Galbraith, Mary J.

    1974-01-01

    Examination of models for representing integers demonstrates that formal operational thought is required for establishing the operations on integers. Advocated is the use of many models for introducing negative numbers but, apart from addition, it is recommended that operations on integers be delayed until the formal operations stage. (JP)

  12. Negative specific heat of a magnetically self-confined plasma torus

    PubMed Central

    Kiessling, Michael K.-H.; Neukirch, Thomas

    2003-01-01

    It is shown that the thermodynamic maximum-entropy principle predicts negative specific heat for a stationary, magnetically self-confined current-carrying plasma torus. Implications for the magnetic self-confinement of fusion plasma are considered. PMID:12576553

  13. BTZ black hole with higher derivatives, the second law of thermodynamics, and statistical entropy: A new proposal

    SciTech Connect

    Park, Mu-In

    2008-06-15

    I consider the thermodynamics of the BTZ black hole in the presence of the higher curvature and gravitational Chern-Simons terms, and its statistical entropy. I propose a new thermodynamical entropy, which is manifestly non-negative, such that the second law of thermodynamics is satisfied. I show that the new thermodynamical entropy agrees perfectly with the statistical entropy for all the values of the conformal factor of the higher curvature terms and the coupling constant of the gravitational Chern-Simons term, in contrast to some disagreements in the literature. The agreement with both the higher curvature and gravitational Chern-Simons terms is possible because of an appropriate balancing of them, though it is not a trivial matter because of a conflict in the appropriate Hilbert space for a well-defined conformal field theory for each term.

  14. BTZ black hole with higher derivatives, the second law of thermodynamics, and statistical entropy: A new proposal

    NASA Astrophysics Data System (ADS)

    Park, Mu-In

    2008-06-01

    I consider the thermodynamics of the BTZ black hole in the presence of the higher curvature and gravitational Chern-Simons terms, and its statistical entropy. I propose a new thermodynamical entropy, which is manifestly non-negative, such that the second law of thermodynamics is satisfied. I show that the new thermodynamical entropy agrees perfectly with the statistical entropy for all the values of the conformal factor of the higher curvature terms and the coupling constant of the gravitational Chern-Simons term, in contrast to some disagreements in the literature. The agreement with both the higher curvature and gravitational Chern-Simons terms is possible because of an appropriate balancing of them, though it is not a trivial matter because of a conflict in the appropriate Hilbert space for a well-defined conformal field theory for each term.

  15. Intra-Tumour Signalling Entropy Determines Clinical Outcome in Breast and Lung Cancer

    PubMed Central

    Banerji, Christopher R. S.; Severini, Simone; Caldas, Carlos; Teschendorff, Andrew E.

    2015-01-01

    The cancer stem cell hypothesis, that a small population of tumour cells are responsible for tumorigenesis and cancer progression, is becoming widely accepted and recent evidence has suggested a prognostic and predictive role for such cells. Intra-tumour heterogeneity, the diversity of the cancer cell population within the tumour of an individual patient, is related to cancer stem cells and is also considered a potential prognostic indicator in oncology. The measurement of cancer stem cell abundance and intra-tumour heterogeneity in a clinically relevant manner however, currently presents a challenge. Here we propose signalling entropy, a measure of signalling pathway promiscuity derived from a sample’s genome-wide gene expression profile, as an estimate of the stemness of a tumour sample. By considering over 500 mixtures of diverse cellular expression profiles, we reveal that signalling entropy also associates with intra-tumour heterogeneity. By analysing 3668 breast cancer and 1692 lung adenocarcinoma samples, we further demonstrate that signalling entropy correlates negatively with survival, outperforming leading clinical gene expression based prognostic tools. Signalling entropy is found to be a general prognostic measure, valid in different breast cancer clinical subgroups, as well as within stage I lung adenocarcinoma. We find that its prognostic power is driven by genes involved in cancer stem cells and treatment resistance. In summary, by approximating both stemness and intra-tumour heterogeneity, signalling entropy provides a powerful prognostic measure across different epithelial cancers. PMID:25793737

  16. Intracellular signaling entropy can be a biomarker for predicting the development of cervical intraepithelial neoplasia.

    PubMed

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Ogishima, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2017-01-01

    While the mortality rates for cervical cancer have been drastically reduced after the introduction of the Pap smear test, it still is one of the leading causes of death in women worldwide. Additionally, studies that appropriately evaluate the risk of developing cervical lesions are needed. Therefore, we investigated whether intracellular signaling entropy, which is measured with microarray data, could be useful for predicting the risks of developing cervical lesions. We used three datasets, GSE63514 (histology), GSE27678 (cytology) and GSE75132 (cytology, a prospective study). From the data in GSE63514, the entropy rate was significantly increased with disease progression (normal < cervical intraepithelial neoplasia, CIN < cancer) (Kruskal-Wallis test, p < 0.0001). From the data in GSE27678, similar results (normal < low-grade squamous intraepithelial lesions, LSILs < high-grade squamous intraepithelial lesions, HSILs ≤ cancer) were obtained (Kruskal-Wallis test, p < 0.001). From the data in GSE75132, the entropy rate tended to be higher in the HPV-persistent groups than the HPV-negative group. The group that was destined to progress to CIN 3 or higher had a tendency to have a higher entropy rate than the HPV16-positive without progression group. In conclusion, signaling entropy was suggested to be different for different lesion statuses and could be a useful biomarker for predicting the development of cervical intraepithelial neoplasia.

  17. Min-entropy and quantum key distribution: Nonzero key rates for ''small'' numbers of signals

    SciTech Connect

    Bratzik, Sylvia; Mertz, Markus; Kampermann, Hermann; Bruss, Dagmar

    2011-02-15

    We calculate an achievable secret key rate for quantum key distribution with a finite number of signals by evaluating the quantum conditional min-entropy explicitly. The min-entropy for a classical random variable is the negative logarithm of the maximal value in its probability distribution. The quantum conditional min-entropy can be expressed in terms of the guessing probability, which we calculate for d-dimensional systems. We compare these key rates to previous approaches using the von Neumann entropy and find nonzero key rates for a smaller number of signals. Furthermore, we improve the secret key rates by modifying the parameter estimation step. Both improvements taken together lead to nonzero key rates for only 10{sup 4}-10{sup 5} signals. An interesting conclusion can also be drawn from the additivity of the min-entropy and its relation to the guessing probability: for a set of symmetric tensor product states, the optimal minimum-error discrimination (MED) measurement is the optimal MED measurement on each subsystem.

  18. Entropy of single-file water in (6,6) carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Waghe, Aparna; Rasaiah, Jayendran C.; Hummer, Gerhard

    2012-07-01

    We used molecular dynamics simulations to investigate the thermodynamics of filling of a (6,6) open carbon nanotube (diameter D = 0.806 nm) solvated in TIP3P water over a temperature range from 280 K to 320 K at atmospheric pressure. In simulations of tubes with slightly weakened carbon-water attractive interactions, we observed multiple filling and emptying events. From the water occupancy statistics, we directly obtained the free energy of filling, and from its temperature dependence the entropy of filling. We found a negative entropy of about -1.3 kB per molecule for filling the nanotube with a hydrogen-bonded single-file chain of water molecules. The entropy of filling is nearly independent of the strength of the attractive carbon-water interactions over the range studied. In contrast, the energy of transfer depends strongly on the carbon-water attraction strength. These results are in good agreement with entropies of about -0.5 kB per water molecule obtained from grand-canonical Monte Carlo calculations of water in quasi-infinite tubes in vacuum under periodic boundary conditions. Overall, for realistic carbon-water interactions we expect that at ambient conditions filling of a (6,6) carbon nanotube open to a water reservoir is driven by a favorable decrease in energy, and opposed by a small loss of water entropy.

  19. Intra-tumour signalling entropy determines clinical outcome in breast and lung cancer.

    PubMed

    Banerji, Christopher R S; Severini, Simone; Caldas, Carlos; Teschendorff, Andrew E

    2015-03-01

    The cancer stem cell hypothesis, that a small population of tumour cells are responsible for tumorigenesis and cancer progression, is becoming widely accepted and recent evidence has suggested a prognostic and predictive role for such cells. Intra-tumour heterogeneity, the diversity of the cancer cell population within the tumour of an individual patient, is related to cancer stem cells and is also considered a potential prognostic indicator in oncology. The measurement of cancer stem cell abundance and intra-tumour heterogeneity in a clinically relevant manner however, currently presents a challenge. Here we propose signalling entropy, a measure of signalling pathway promiscuity derived from a sample's genome-wide gene expression profile, as an estimate of the stemness of a tumour sample. By considering over 500 mixtures of diverse cellular expression profiles, we reveal that signalling entropy also associates with intra-tumour heterogeneity. By analysing 3668 breast cancer and 1692 lung adenocarcinoma samples, we further demonstrate that signalling entropy correlates negatively with survival, outperforming leading clinical gene expression based prognostic tools. Signalling entropy is found to be a general prognostic measure, valid in different breast cancer clinical subgroups, as well as within stage I lung adenocarcinoma. We find that its prognostic power is driven by genes involved in cancer stem cells and treatment resistance. In summary, by approximating both stemness and intra-tumour heterogeneity, signalling entropy provides a powerful prognostic measure across different epithelial cancers.

  20. Minimum relative entropy, Bayes and Kapur

    NASA Astrophysics Data System (ADS)

    Woodbury, Allan D.

    2011-04-01

    The focus of this paper is to illustrate important philosophies on inversion and the similarly and differences between Bayesian and minimum relative entropy (MRE) methods. The development of each approach is illustrated through the general-discrete linear inverse. MRE differs from both Bayes and classical statistical methods in that knowledge of moments are used as ‘data’ rather than sample values. MRE like Bayes, presumes knowledge of a prior probability distribution and produces the posterior pdf itself. MRE attempts to produce this pdf based on the information provided by new moments. It will use moments of the prior distribution only if new data on these moments is not available. It is important to note that MRE makes a strong statement that the imposed constraints are exact and complete. In this way, MRE is maximally uncommitted with respect to unknown information. In general, since input data are known only to within a certain accuracy, it is important that any inversion method should allow for errors in the measured data. The MRE approach can accommodate such uncertainty and in new work described here, previous results are modified to include a Gaussian prior. A variety of MRE solutions are reproduced under a number of assumed moments and these include second-order central moments. Various solutions of Jacobs & van der Geest were repeated and clarified. Menke's weighted minimum length solution was shown to have a basis in information theory, and the classic least-squares estimate is shown as a solution to MRE under the conditions of more data than unknowns and where we utilize the observed data and their associated noise. An example inverse problem involving a gravity survey over a layered and faulted zone is shown. In all cases the inverse results match quite closely the actual density profile, at least in the upper portions of the profile. The similar results to Bayes presented in are a reflection of the fact that the MRE posterior pdf, and its mean

  1. Input management of production systems.

    PubMed

    Odum, E P

    1989-01-13

    Nonpoint sources of pollution, which are largely responsible for stressing regional and global life-supporting atmosphere, soil, and water, can only be reduced (and ultimately controlled) by input management that involves increasing the efficiency of production systems and reducing the inputs of environmentally damaging materials. Input management requires a major change, an about-face, in the approach to management of agriculture, power plants, and industries because the focus is on waste reduction and recycling rather than on waste disposal. For large-scale ecosystem-level situations a top-down hierarchical approach is suggested and illustrated by recent research in agroecology and landscape ecology.

  2. Maximum entropy principal for transportation

    SciTech Connect

    Bilich, F.; Da Silva, R.

    2008-11-06

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  3. Phonon broadening in high entropy alloys

    NASA Astrophysics Data System (ADS)

    Körmann, Fritz; Ikeda, Yuji; Grabowski, Blazej; Sluiter, Marcel H. F.

    2017-09-01

    Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, thermodynamic and elastic properties, as well as thermal conductivity. In contrast to perfect crystals and ordered alloys, the inherently present mass and force constant fluctuations in multi-component random alloys (high entropy alloys) can induce significant phonon scattering and broadening. Despite their importance, phonon scattering and broadening have so far only scarcely been investigated for high entropy alloys. We tackle this challenge from a theoretical perspective and employ ab initio calculations to systematically study the impact of force constant and mass fluctuations on the phonon spectral functions of 12 body-centered cubic random alloys, from binaries up to 5-component high entropy alloys, addressing the key question of how chemical complexity impacts phonons. We find that it is crucial to include both mass and force constant fluctuations. If one or the other is neglected, qualitatively wrong results can be obtained such as artificial phonon band gaps. We analyze how the results obtained for the phonons translate into thermodynamically integrated quantities, specifically the vibrational entropy. Changes in the vibrational entropy with increasing the number of elements can be as large as changes in the configurational entropy and are thus important for phase stability considerations. The set of studied alloys includes MoTa, MoTaNb, MoTaNbW, MoTaNbWV, VW, VWNb, VWTa, VWNbTa, VTaNbTi, VWNbTaTi, HfZrNb, HfMoTaTiZr.

  4. Entropy of balance--some recent results.

    PubMed

    Borg, Frank G; Laxåback, Gerd

    2010-07-30

    Entropy when applied to biological signals is expected to reflect the state of the biological system. However the physiological interpretation of the entropy is not always straightforward. When should high entropy be interpreted as a healthy sign, and when as marker of deteriorating health? We address this question for the particular case of human standing balance and the Center of Pressure data. We have measured and analyzed balance data of 136 participants (young, n = 45; elderly, n = 91) comprising in all 1085 trials, and calculated the Sample Entropy (SampEn) for medio-lateral (M/L) and anterior-posterior (A/P) Center of Pressure (COP) together with the Hurst self-similarity (ss) exponent alpha using Detrended Fluctuation Analysis (DFA). The COP was measured with a force plate in eight 30 seconds trials with eyes closed, eyes open, foam, self-perturbation and nudge conditions. 1) There is a significant difference in SampEn for the A/P-direction between the elderly and the younger groups Old > young. 2) For the elderly we have in general A/P > M/L. 3) For the younger group there was no significant A/P-M/L difference with the exception for the nudge trials where we had the reverse situation, A/P < M/L. 4) For the elderly we have, Eyes Closed > Eyes Open. 5) In case of the Hurst ss-exponent we have for the elderly, M/L > A/P. These results seem to be require some modifications of the more or less established attention-constraint interpretation of entropy. This holds that higher entropy correlates with a more automatic and a less constrained mode of balance control, and that a higher entropy reflects, in this sense, a more efficient balancing.

  5. Entropy of balance - some recent results

    PubMed Central

    2010-01-01

    Background Entropy when applied to biological signals is expected to reflect the state of the biological system. However the physiological interpretation of the entropy is not always straightforward. When should high entropy be interpreted as a healthy sign, and when as marker of deteriorating health? We address this question for the particular case of human standing balance and the Center of Pressure data. Methods We have measured and analyzed balance data of 136 participants (young, n = 45; elderly, n = 91) comprising in all 1085 trials, and calculated the Sample Entropy (SampEn) for medio-lateral (M/L) and anterior-posterior (A/P) Center of Pressure (COP) together with the Hurst self-similariy (ss) exponent α using Detrended Fluctuation Analysis (DFA). The COP was measured with a force plate in eight 30 seconds trials with eyes closed, eyes open, foam, self-perturbation and nudge conditions. Results 1) There is a significant difference in SampEn for the A/P-direction between the elderly and the younger groups Old > young. 2) For the elderly we have in general A/P > M/L. 3) For the younger group there was no significant A/P-M/L difference with the exception for the nudge trials where we had the reverse situation, A/P < M/L. 4) For the elderly we have, Eyes Closed > Eyes Open. 5) In case of the Hurst ss-exponent we have for the elderly, M/L > A/P. Conclusions These results seem to be require some modifications of the more or less established attention-constraint interpretation of entropy. This holds that higher entropy correlates with a more automatic and a less constrained mode of balance control, and that a higher entropy reflects, in this sense, a more efficient balancing. PMID:20670457

  6. Quantum statistical entropy for Kerr de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Chun; Wu, Yue-Qin; Zhao, Ren

    2004-06-01

    Improving the membrane model by which the entropy of the black hole is studied, we study the entropy of the black hole in the non-thermal equilibrium state. To give the problem stated here widespread meaning, we discuss the (n+2)-dimensional de Sitter spacetime. Through discussion, we obtain that the black hole's entropy which contains two horizons (a black hole's horizon and a cosmological horizon) in the non-thermal equilibrium state comprises the entropy corresponding to the black hole's horizon and the entropy corresponding to the cosmological horizon. Furthermore, the entropy of the black hole is a natural property of the black hole. The entropy is irrelevant to the radiation field out of the horizon. This deepens the understanding of the relationship between black hole's entropy and horizon's area. A way to study the bosonic and fermionic entropy of the black hole in high non-thermal equilibrium spacetime is given.

  7. Double symbolic joint entropy in nonlinear dynamic complexity analysis

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-07-01

    Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.

  8. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kaixuan; Wang, Jun

    2017-02-01

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model.

  9. Entanglement entropy of ABJM theory and entropy of topological black hole

    NASA Astrophysics Data System (ADS)

    Nian, Jun; Zhang, Xinyu

    2017-07-01

    In this paper we discuss the supersymmetric localization of the 4D N = 2 offshell gauged supergravity on the background of the AdS4 neutral topological black hole, which is the gravity dual of the ABJM theory defined on the boundary {S}^1× H^2 . We compute the large- N expansion of the supergravity partition function. The result gives the black hole entropy with the logarithmic correction, which matches the previous result of the entanglement entropy of the ABJM theory up to some stringy effects. Our result is consistent with the previous on-shell one-loop computation of the logarithmic correction to black hole entropy. It provides an explicit example of the identification of the entanglement entropy of the boundary conformal field theory with the bulk black hole entropy beyond the leading order given by the classical Bekenstein-Hawking formula, which consequently tests the AdS/CFT correspondence at the subleading order.

  10. Substorm onset: A switch on the sequence of transport from decreasing entropy to increasing entropy

    NASA Astrophysics Data System (ADS)

    Chen, C. X.

    2016-05-01

    In this study, we propose a scenario about the trigger for substorm onset. In a stable magnetosphere, entropy is an increasing function tailward. However, in the growth phase of a substorm, a later born bubble has lower entropy than earlier born bubbles. When a bubble arrives at its final destination in the near-Earth region, it will spread azimuthally because of its relatively uniform entropy. The magnetic flux tubes of a dying bubble, which cause the most equatorward aurora thin arc, would block the later coming bubble tailward of them, forming an unstable domain. Therefore, an interchange instability develops, which leads to the collapse of the unstable domain, followed by the collapse of the stretched plasma sheet. We regard the substorm onset as a switch on the sequence of transport, i.e., from a decreasing entropy process to an increasing entropy process. We calculated the most unstable growth rates and the wavelengths of instability, and both are in agreement with observations.

  11. Analyzing bin-width effect on the computed entropy

    NASA Astrophysics Data System (ADS)

    Purwani, Sri; Nahar, Julita; Twining, Carole

    2017-08-01

    The Shannon entropy is a mathematical expression for quantifying the amount of randomness which can be used to measure information content. It is used in objective function. Mutual Information (MI) uses Shannon entropy in order to determine shared information content of two images. The Shannon entropy, which was originally derived by Shannon in the context of lossless encoding of messages, is also used to define an optimum message length used in the Minimum Description Length (MDL) principle for groupwise registration. Majority of papers used histogram for computing MI, and hence the entropy. We therefore, aim to analyze the effect of bin-width on the computed entropy. We first derived the Shannon entropy from the integral of probability density function (pdf), and found that Gaussian has maximum entropy over all possible distribution. We also show that the entropy of the flat distribution is less than the entropy of the Gaussian distribution with the same variance. We then investigated the bin-width effect on the computed entropy, and analyzed the relationship between the computed entropy and the integral entropy when we vary bin-width, but fix variance and the number of samples. We then found that the value of the computed entropy lies within the theoretical predictions at small and large bin-widths. We also show two types of bias in entropy estimator.

  12. System monitors discrete computer inputs

    NASA Technical Reports Server (NTRS)

    Burns, J. J.

    1966-01-01

    Computer system monitors inputs from checkout devices. The comparing, addressing, and controlling functions are performed in the I/O unit. This leaves the computer main frame free to handle memory, access priority, and interrupt instructions.

  13. Long-term performance of minimum-input oak restoration plantings

    Treesearch

    Elizabeth Bernhardt; Tedmund J. Swiecki

    2015-01-01

    Starting in 1989, we used minimum-input methods to restore native oaks to parts of their former ranges in Vacaville, California. Each restoration site was analyzed, and only those inputs deemed necessary to overcome expected limiting factors for oak establishment were used. We avoided unnecessary inputs that added to cost and could have unintended negative consequences...

  14. A new methodology based on q-entropy for breast lesion classification in 3-D ultrasound images.

    PubMed

    Rodrigues, Paulo S; Giraldi, Gilson A; Provenzano, Marcia; Faria, Marcelo D; Chang, Ruey-Feng; Suri, Jasjit S

    2006-01-01

    Classification of breast lesions is clinically most relevant for breast radiologists and pathologists for early breast cancer detection. This task is not easy due to poor ultrasound resolution and large amount of patient data size. This paper proposes a five step novel and automatic methodology for breast lesion classification in 3-D ultrasound images. The first three steps yield an accurate segmentation of the breast lesions based on the combination of (a) novel non-extensive entropy, (b) morphologic cleaning and (c) accurate region and boundary extraction in level set framework. Segmented lesions then undergo five feature extractions consisting of: area, circularity, protuberance, homogeneity, and acoustic shadow. These breast lesion features are then input to a support vector machine (SVM)-based classifier that classifies the breast lesions between malignant and benign types. SVM utilizes B-spline as a kernel in its framework. Using a data base of 250 breast ultrasound images (100 benign and 150 malignant) and utilizing the cross-validation protocol, we demonstrate system's accuracy, sensitivity, specificity, positive predictive value and negative predictive value as: 95%, 97%, 94%, 92% and 98% respectively in terms of ROC curves and Az areas, better in performance than the current literature offers.

  15. Maximum entropy production rate in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2010-06-01

    In the framework of the recent quest for well-behaved nonlinear extensions of the traditional Schrödinger-von Neumann unitary dynamics that could provide fundamental explanations of recent experimental evidence of loss of quantum coherence at the microscopic level, a recent paper [Gheorghiu-Svirschevski 2001 Phys. Rev. A 63 054102] reproposes the nonlinear equation of motion proposed by the present author [see Beretta G P 1987 Found. Phys. 17 365 and references therein] for quantum (thermo)dynamics of a single isolated indivisible constituent system, such as a single particle, qubit, qudit, spin or atomic system, or a Bose-Einstein or Fermi-Dirac field. As already proved, such nonlinear dynamics entails a fundamental unifying microscopic proof and extension of Onsager's reciprocity and Callen's fluctuation-dissipation relations to all nonequilibrium states, close and far from thermodynamic equilibrium. In this paper we propose a brief but self-contained review of the main results already proved, including the explicit geometrical construction of the equation of motion from the steepest-entropy-ascent ansatz and its exact mathematical and conceptual equivalence with the maximal-entropy-generation variational-principle formulation presented in Gheorghiu-Svirschevski S 2001 Phys. Rev. A 63 022105. Moreover, we show how it can be extended to the case of a composite system to obtain the general form of the equation of motion, consistent with the demanding requirements of strong separability and of compatibility with general thermodynamics principles. The irreversible term in the equation of motion describes the spontaneous attraction of the state operator in the direction of steepest entropy ascent, thus implementing the maximum entropy production principle in quantum theory. The time rate at which the path of steepest entropy ascent is followed has so far been left unspecified. As a step towards the identification of such rate, here we propose a possible, well

  16. Entropy Measurement for Biometric Verification Systems.

    PubMed

    Lim, Meng-Hui; Yuen, Pong C

    2016-05-01

    Biometric verification systems are designed to accept multiple similar biometric measurements per user due to inherent intrauser variations in the biometric data. This is important to preserve reasonable acceptance rate of genuine queries and the overall feasibility of the recognition system. However, such acceptance of multiple similar measurements decreases the imposter's difficulty of obtaining a system-acceptable measurement, thus resulting in a degraded security level. This deteriorated security needs to be measurable to provide truthful security assurance to the users. Entropy is a standard measure of security. However, the entropy formula is applicable only when there is a single acceptable possibility. In this paper, we develop an entropy-measuring model for biometric systems that accepts multiple similar measurements per user. Based on the idea of guessing entropy, the proposed model quantifies biometric system security in terms of adversarial guessing effort for two practical attacks. Excellent agreement between analytic and experimental simulation-based measurement results on a synthetic and a benchmark face dataset justify the correctness of our model and thus the feasibility of the proposed entropy-measuring approach.

  17. Enzyme catalysis by entropy without Circe effect.

    PubMed

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan

    2016-03-01

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution.

  18. An entropy-assisted musculoskeletal shoulder model.

    PubMed

    Xu, Xu; Lin, Jia-Hua; McGorry, Raymond W

    2017-04-01

    Optimization combined with a musculoskeletal shoulder model has been used to estimate mechanical loading of musculoskeletal elements around the shoulder. Traditionally, the objective function is to minimize the summation of the total activities of the muscles with forces, moments, and stability constraints. Such an objective function, however, tends to neglect the antagonist muscle co-contraction. In this study, an objective function including an entropy term is proposed to address muscle co-contractions. A musculoskeletal shoulder model is developed to apply the proposed objective function. To find the optimal weight for the entropy term, an experiment was conducted. In the experiment, participants generated various 3-D shoulder moments in six shoulder postures. The surface EMG of 8 shoulder muscles was measured and compared with the predicted muscle activities based on the proposed objective function using Bhattacharyya distance and concordance ratio under different weight of the entropy term. The results show that a small weight of the entropy term can improve the predictability of the model in terms of muscle activities. Such a result suggests that the concept of entropy could be helpful for further understanding the mechanism of muscle co-contractions as well as developing a shoulder biomechanical model with greater validity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Entropy in self-similar shock profiles

    DOE PAGES

    Margolin, Len G.; Reisner, Jon Michael; Jordan, Pedro M.

    2017-07-16

    In this paper, we study the structure of a gaseous shock, and in particular the distribution of entropy within, in both a thermodynamics and a statistical mechanics context. The problem of shock structure has a long and distinguished history that we review. We employ the Navier–Stokes equations to construct a self–similar version of Becker’s solution for a shock assuming a particular (physically plausible) Prandtl number; that solution reproduces the well–known result of Morduchow & Libby that features a maximum of the equilibrium entropy inside the shock profile. We then construct an entropy profile, based on gas kinetic theory, that ismore » smooth and monotonically increasing. The extension of equilibrium thermodynamics to irreversible processes is based in part on the assumption of local thermodynamic equilibrium. We show that this assumption is not valid except for the weakest shocks. Finally, we conclude by hypothesizing a thermodynamic nonequilibrium entropy and demonstrating that it closely estimates the gas kinetic nonequilibrium entropy within a shock.« less

  20. Enzyme catalysis by entropy without Circe effect

    PubMed Central

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan

    2016-01-01

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution. PMID:26755610

  1. Polymorphism in a high-entropy alloy

    DOE PAGES

    Zhang, Fei; Wu, Yuan; Lou, Hongbo; ...

    2017-06-01

    Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in materials science and condensed matter physics. Recently, configuration disorder was compositionally engineered into single lattices, leading to the discovery of high-entropy alloys and high-entropy oxides. For these novel entropy-stabilized forms of crystalline matter with extremely high structural stability, is polymorphism still possible? Here by employing in situ high-pressure synchrotron radiation X-ray diffraction, we reveal a polymorphic transition from face-centred-cubic (fcc) structure to hexagonal-close-packing (hcp) structure in the prototype CoCrFeMnNi high-entropy alloy. The transition is irreversible, and our in situ high-temperature synchrotron radiationmore » X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures. Lastly, as pressure is increased, the critical temperature for the hcp-to-fcc transformation also rises.« less

  2. Entropy and Energy, - a Universal Competition

    NASA Astrophysics Data System (ADS)

    Müller, Ingo

    2008-12-01

    When a body approaches equilibrium, energy tends to a minimum and entropy tends to a maximum. Often, or usually, the two tendencies favour different configurations of the body. Thus energy is deterministic in the sense that it favours fixed positions for the atoms, while entropy randomizes the positions. Both may exert considerable forces in the attempt to reach their objectives. Therefore they have to compromise; indeed, under most circumstances it is the available free energy which achieves a minimum. For low temperatures that free energy is energy itself, while for high temperatures it is determined by entropy. Several examples are provided for the roles of energy and entropy as competitors: - Planetary atmospheres; - osmosis; - phase transitions in gases and liquids and in shape memory alloys, and - chemical reactions, viz. the Haber Bosch synthesis of ammonia and photosynthesis. Some historical remarks are strewn through the text to make the reader appreciate the difficulties encountered by the pioneers in understanding the subtlety of the concept of entropy, and in convincing others of the validity and relevance of their arguments.

  3. Approximate von Neumann entropy for directed graphs.

    PubMed

    Ye, Cheng; Wilson, Richard C; Comin, César H; Costa, Luciano da F; Hancock, Edwin R

    2014-05-01

    In this paper, we develop an entropy measure for assessing the structural complexity of directed graphs. Although there are many existing alternative measures for quantifying the structural properties of undirected graphs, there are relatively few corresponding measures for directed graphs. To fill this gap in the literature, we explore an alternative technique that is applicable to directed graphs. We commence by using Chung's generalization of the Laplacian of a directed graph to extend the computation of von Neumann entropy from undirected to directed graphs. We provide a simplified form of the entropy which can be expressed in terms of simple node in-degree and out-degree statistics. Moreover, we find approximate forms of the von Neumann entropy that apply to both weakly and strongly directed graphs, and that can be used to characterize network structure. We illustrate the usefulness of these simplified entropy forms defined in this paper on both artificial and real-world data sets, including structures from protein databases and high energy physics theory citation networks.

  4. Polymorphism in a high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; Wu, Yuan; Lou, Hongbo; Zeng, Zhidan; Prakapenka, Vitali B.; Greenberg, Eran; Ren, Yang; Yan, Jinyuan; Okasinski, John S.; Liu, Xiongjun; Liu, Yong; Zeng, Qiaoshi; Lu, Zhaoping

    2017-06-01

    Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in materials science and condensed matter physics. Recently, configuration disorder was compositionally engineered into single lattices, leading to the discovery of high-entropy alloys and high-entropy oxides. For these novel entropy-stabilized forms of crystalline matter with extremely high structural stability, is polymorphism still possible? Here by employing in situ high-pressure synchrotron radiation X-ray diffraction, we reveal a polymorphic transition from face-centred-cubic (fcc) structure to hexagonal-close-packing (hcp) structure in the prototype CoCrFeMnNi high-entropy alloy. The transition is irreversible, and our in situ high-temperature synchrotron radiation X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures. As pressure is increased, the critical temperature for the hcp-to-fcc transformation also rises.

  5. Disk entanglement entropy for a Maxwell field

    NASA Astrophysics Data System (ADS)

    Agón, César A.; Headrick, Matthew; Jafferis, Daniel L.; Kasko, Skyler

    2014-01-01

    In three dimensions, the pure Maxwell theory with a compact U(1) gauge group is dual to a free compact scalar, and it flows from the Maxwell theory with a noncompact gauge group in the ultraviolet to a noncompact free massless scalar theory in the infrared. We compute the vacuum disk entanglement entropy all along this flow and show that the renormalized entropy F(r) decreases monotonically with the radius r as predicted by the F-theorem, interpolating between a logarithmic growth for small r (matching the behavior of the S3 free energy) and a constant at large r (equal to the free energy of the conformal scalar). The calculation is carried out by the replica trick, employing the scalar formulation of the theory. The Rényi entropies for n >1 are given by a sum over winding sectors, leading to a Riemann-Siegel theta function. The extrapolation to n=1, to obtain the von Neumann entropy, is done by analytic continuation in the large- and small-r limits and by a numerical extrapolation method at intermediate values. We also compute the leading contribution to the renormalized entanglement entropy of the compact free scalar in higher dimensions. Finally, we point out some interesting features of the reduced density matrix for the compact scalar, and its relation to that for the noncompact theory.

  6. Monitoring the depth of anesthesia using entropy features and an artificial neural network.

    PubMed

    Shalbaf, Reza; Behnam, Hamid; Sleigh, Jamie W; Steyn-Ross, Alistair; Voss, Logan J

    2013-08-15

    Monitoring the depth of anesthesia using an electroencephalogram (EEG) is a major ongoing challenge for anesthetists. The EEG is a recording of brain electrical activity, and it contains valuable information related to the different physiological states of the brain. This study proposes a novel automated method consisting of two steps for assessing anesthesia depth. Initially, the sample entropy and permutation entropy features were extracted from the EEG signal. Because EEG-derived parameters represent different aspects of the EEG features, it would be reasonable to use multiple parameters to assess the effect of the anesthetic. The sample entropy and permutation entropy features quantified the amount of complexity or irregularity in the EEG data and were conceptually simple, computationally efficient and artifact-resistant. Next, the extracted features were used as input for an artificial neural network, which was a data processing system based on the structure of a biological nervous system. The experimental results indicated that an overall accuracy of 88% could be obtained during sevoflurane anesthesia in 17 patients to classify the EEG data into awake, light, general and deep anesthetized states. In addition, this method yielded a classification accuracy of 92.4% to distinguish between awake and general anesthesia in an independent database of propofol and desflurane anesthesia in 129 patients. Considering the high accuracy of this method, a new EEG monitoring system could be developed to assist the anesthesiologist in estimating the depth of anesthesia in a rapid and accurate manner. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. [Identification of coupling relationship between urbanization and ecological environment in Jilin from entropy change perspective].

    PubMed

    Sun, Ping-Jun; Xiu, Chun-Liang; Zhang, Tian-Jiao

    2014-03-01

    By using the entropy change equation of the second law of thermodynamics, entropy method and PSE model, this article made an analysis on coupling relationship between urbanization and ecological environment in Jilin Province from 2001 to 2011. In the study period, the urbanization development had been out of normal evolution track: The economic urbanization and space urbanization dominated the whole urbanization process, while population urbanization was neglected too seriously, with an apparent characteristic of extensive and inefficient input of resources (especially land resource). According to the levels of ecological environment on the basis of PSE model, not only the pressure index, sensitivity index and the elasticity index, but also the comprehensive index showed considerable growth with obvious stage characteristics: ascending-descending-ascending. The total entropy values of the urbanization were less than zero during the time, which meant an unstable rising curve. While the total trophy values of the ecological environment varied below and above zero, and 2003, 2006, 2010 and 2011 were the "turning points", reflecting the instability of the ecological environment. The coupling total entropy values between urbanization and ecological environment had the same characteristics with the ecological environment: the same "turning points" and shape of the curve, in which, the "turning points" corresponded to the type of antagonistic evolution pattern, while the rest of years responded to the type of coordination evolution pattern.

  8. Constraining the mSUGRA parameter space through entropy and abundance criteria

    SciTech Connect

    Cabral-Rosetti, Luis G.; Mondragon, Myriam; Nunez, Dario; Sussman, Roberto A.; Zavala, Jesus; Nellen, Lukas

    2007-06-19

    We explore the use of two criteria to constrain the allowed parameter space in mSUGRA models; both criteria are based in the calculation of the present density of neutralinos {chi}0 as Dark Matter in the Universe. The first one is the usual ''abundance'' criterion that requieres that present neutralino relic density complies with 0.0945 < {omega}CDMh2 < 0.1287, which are the 2{sigma} bounds according to WMAP. To calculate the relic density we use the public numerical code micrOMEGAS. The second criterion is the original idea presented in [3] that basically applies the microcanonical definition of entropy to a weakly interacting and self-gravitating gas, and then evaluate the change in entropy per particle of this gas between the freeze-out era and present day virialized structures. An 'entropy consistency' criterion emerges by comparing theoretical and empirical estimates of this entropy. One of the objetives of the work is to analyze the joint application of both criteria, already done in [3], to see if their results, using approximations for the calculations of the relic density, agree with the results coming from the exact numerical results of micrOMEGAS. The main objetive of the work is to use this method to constrain the parameter space in mSUGRA models that are inputs for the calculations of micrOMEGAS, and thus to get some bounds on the predictions for the SUSY spectra.

  9. Measuring entanglement entropies in many-body systems

    SciTech Connect

    Klich, Israel; Refael, Gil; Silva, Alessandro

    2006-09-15

    We explore the relation between entanglement entropy of quantum many-body systems and the distribution of corresponding, properly selected, observables. Such a relation is necessary to actually measure the entanglement entropy. We show that, in general, the Shannon entropy of the probability distribution of certain symmetry observables gives a lower bound to the entropy. In some cases this bound is saturated and directly gives the entropy. We also show other cases in which the probability distribution contains enough information to extract the entropy: we show how this is done in several examples including BEC wave functions, the Dicke model, XY spin chain, and chains with strong randomness.

  10. Valence bond and von Neumann entanglement entropy in Heisenberg ladders.

    PubMed

    Kallin, Ann B; González, Iván; Hastings, Matthew B; Melko, Roger G

    2009-09-11

    We present a direct comparison of the recently proposed valence bond entanglement entropy and the von Neumann entanglement entropy on spin-1/2 Heisenberg systems using quantum Monte Carlo and density-matrix renormalization group simulations. For one-dimensional chains we show that the valence bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bound on the latter. On ladder geometries, simulations with up to seven legs are sufficient to indicate that the von Neumann entropy in two dimensions obeys an area law, even though the valence bond entanglement entropy has a multiplicative logarithmic correction.

  11. Band target entropy minimization for retrieving the information of individual components from overlapping chromatographic data.

    PubMed

    Xia, Zhenzhen; Liu, Yan; Cai, Wensheng; Shao, Xueguang

    2015-09-11

    Band target entropy minimization (BTEM) is a self-modeling curve resolution (SMCR) approach relying on non-negative criterion and minimization of Shannon entropy. In this study, BTEM algorithm was applied to retrieving the information of individual components from overlapping gas chromatography-mass spectrometry (GC-MS) data. The algorithm starts with dividing the whole data into bands along the retention time. In each band, singular value decomposition (SVD) is used to decompose the data into scores and loadings. Because the pure chromatographic signal possesses the lowest Shannon entropy, the chromatographic signal of each component can be constructed by optimizing the combination of the loadings with minimal Shannon entropy under non-negative criterion. To show the efficiency of the algorithm, a simulated four-component overlapping GC-MS data and an experimental GC-MS data of 18 organophosphorus pesticide mixture are investigated. The results show that both the chromatographic profiles and mass spectra of the components can be successfully extracted from the overlapping signals. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Spatial Decomposition of Translational Water–Water Correlation Entropy in Binding Pockets

    PubMed Central

    2015-01-01

    A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST’s entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water–water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water–water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water–water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined. PMID:26636620

  13. Spatial Decomposition of Translational Water-Water Correlation Entropy in Binding Pockets.

    PubMed

    Nguyen, Crystal N; Kurtzman, Tom; Gilson, Michael K

    2016-01-12

    A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST's entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water-water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water-water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water-water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined.

  14. Phonon anharmonicity and components of the entropy in palladium and platinum

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Li, Chen W.; Tang, Xiaoli; Smith, Hillary L.; Fultz, B.

    2016-06-01

    Inelastic neutron scattering was used to measure the phonon density of states in fcc palladium and platinum metal at temperatures from 7 K to 1576 K. Both phonon-phonon interactions and electron-phonon interactions were calculated by methods based on density functional theory (DFT) and were consistent with the measured shifts and broadenings of phonons with temperature. Unlike the longitudinal modes, the characteristic transverse modes had a nonlinear dependence on temperature owing to the requirement for a population of thermal phonons for upscattering. Kohn anomalies were observed in the measurements at low temperature and were reproduced by calculations based on DFT. Contributions to the entropy from phonons and electrons were assessed and summed to obtain excellent agreement with prior calorimetric data. The entropy from thermal expansion is positive for both phonons and electrons but larger for phonons. The anharmonic phonon entropy is negative in Pt, but in Pd it changes from positive to negative with increasing temperature. Owing to the position of the Fermi level on the electronic DOS, the electronic entropy was sensitive to the adiabatic electron-phonon interaction in both Pd and Pt. The adiabatic EPI depended strongly on thermal atom displacements.

  15. Bayesian cross-entropy methodology for optimal design of validation experiments

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Mahadevan, S.

    2006-07-01

    An important concern in the design of validation experiments is how to incorporate the mathematical model in the design in order to allow conclusive comparisons of model prediction with experimental output in model assessment. The classical experimental design methods are more suitable for phenomena discovery and may result in a subjective, expensive, time-consuming and ineffective design that may adversely impact these comparisons. In this paper, an integrated Bayesian cross-entropy methodology is proposed to perform the optimal design of validation experiments incorporating the computational model. The expected cross entropy, an information-theoretic distance between the distributions of model prediction and experimental observation, is defined as a utility function to measure the similarity of two distributions. A simulated annealing algorithm is used to find optimal values of input variables through minimizing or maximizing the expected cross entropy. The measured data after testing with the optimum input values are used to update the distribution of the experimental output using Bayes theorem. The procedure is repeated to adaptively design the required number of experiments for model assessment, each time ensuring that the experiment provides effective comparison for validation. The methodology is illustrated for the optimal design of validation experiments for a three-leg bolted joint structure and a composite helicopter rotor hub component.

  16. Content-based retrieval of medical images with relative entropy

    NASA Astrophysics Data System (ADS)

    Moshfeghi, Mehran; Saiz, Craig; Yu, Hua

    2004-04-01

    Medical image databases are growing at a rapid rate because of the increase in digital medical imaging modalities and the deployment of Picture Archiving and Communication Systems (PACS), Electronic Medical Records (EMR) and telemedicine applications. There is growing research interest in Content-Based Image Retrieval (CBIR) of medical images from such digital archives. A new distance function for CBIR is presented for measuring the similarity between two images. The distance function is a variant of relative entropy, or the Kullback-Liebler distance. The new distance is the sum of the relative entropy of the two images to each other. The latter is a symmetric non-negative function and is only zero when the two images have identical probability distributions. This method has been implemented in a prototype system and has been applied to a database of medical images. Initial results demonstrate improvements over L1-norm and L2-norm histogram matching. The method is computationally simple since it does not require image segmentation. It is invariant to translation, rotation and scaling. The method has also been extended to support retrieval based on Region-Of-Interest (ROI) queries.

  17. Differential network entropy reveals cancer system hallmarks

    PubMed Central

    West, James; Bianconi, Ginestra; Severini, Simone; Teschendorff, Andrew E.

    2012-01-01

    The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network we here demonstrate that cancer cells are characterised by an increase in network entropy. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local network entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local correlation patterns. In particular, we find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in network entropy. These findings may have potential implications for identifying novel drug targets. PMID:23150773

  18. Entropy production of doubly stochastic quantum channels

    SciTech Connect

    Müller-Hermes, Alexander; Stilck França, Daniel Wolf, Michael M.

    2016-02-15

    We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an application we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.

  19. Generalized gravitational entropy without replica symmetry

    NASA Astrophysics Data System (ADS)

    Camps, Joan; Kelly, William R.

    2015-03-01

    We explore several extensions of the generalized entropy construction of Lewkowycz and Maldacena, including a formulation that does not rely on preserving replica symmetry in the bulk. We show that an appropriately general ansatz for the analytically continued replica metric gives us the flexibility needed to solve the gravitational field equations beyond general relativity. As an application of this observation we study EinsteinGauss-Bonnet gravity with a small Gauss-Bonnet coupling and derive the condition that the holographic entanglement entropy must be evaluated on a surface which extremizes the Jacobson-Myers entropy. We find that in both general relativity and Einstein-Gauss-Bonnet gravity replica symmetry breaking terms are permitted by the field equations, suggesting that they do not generically vanish.

  20. An Entropy Model for Artificial Grammar Learning

    PubMed Central

    Pothos, Emmanuel M.

    2010-01-01

    A model is proposed to characterize the type of knowledge acquired in artificial grammar learning (AGL). In particular, Shannon entropy is employed to compute the complexity of different test items in an AGL task, relative to the training items. According to this model, the more predictable a test item is from the training items, the more likely it is that this item should be selected as compatible with the training items. The predictions of the entropy model are explored in relation to the results from several previous AGL datasets and compared to other AGL measures. This particular approach in AGL resonates well with similar models in categorization and reasoning which also postulate that cognitive processing is geared towards the reduction of entropy. PMID:21607072

  1. Estimating entropy rates with Bayesian confidence intervals.

    PubMed

    Kennel, Matthew B; Shlens, Jonathon; Abarbanel, Henry D I; Chichilnisky, E J

    2005-07-01

    The entropy rate quantifies the amount of uncertainty or disorder produced by any dynamical system. In a spiking neuron, this uncertainty translates into the amount of information potentially encoded and thus the subject of intense theoretical and experimental investigation. Estimating this quantity in observed, experimental data is difficult and requires a judicious selection of probabilistic models, balancing between two opposing biases. We use a model weighting principle originally developed for lossless data compression, following the minimum description length principle. This weighting yields a direct estimator of the entropy rate, which, compared to existing methods, exhibits significantly less bias and converges faster in simulation. With Monte Carlo techinques, we estimate a Bayesian confidence interval for the entropy rate. In related work, we apply these ideas to estimate the information rates between sensory stimuli and neural responses in experimental data (Shlens, Kennel, Abarbanel, & Chichilnisky, in preparation).

  2. Horizon Entropy from Quantum Gravity Condensates.

    PubMed

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2016-05-27

    We construct condensate states encoding the continuum spherically symmetric quantum geometry of a horizon in full quantum gravity, i.e., without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits a holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the horizon boundary conditions and semiclassical thermodynamical properties, we recover the Bekenstein-Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one.

  3. Entanglement entropy with background gauge fields

    NASA Astrophysics Data System (ADS)

    Kim, Bom Soo

    2017-08-01

    We study the entanglement entropy, the Rényi entropy, and the mutual (Rényi) information of Dirac fermions on a 2 dimensional torus in the presence of constant gauge fields. We derive their general formulas using the equivalence between twisted boundary conditions and the background gauge fields. Novel and interesting physical consequences have been presented in arXiv:1705.01859. Here we provide detailed computations of the entropies and mutual information in a low temperature limit, a large radius limit, and a high temperature limit. The high temperature limit reveals rather different physical properties compared to those of the low temperature one: there exist two non-trivial limits that depend on a modulus parameter and are not smoothly connected.

  4. Adjusting protein graphs based on graph entropy.

    PubMed

    Peng, Sheng-Lung; Tsay, Yu-Wei

    2014-01-01

    Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid.

  5. Holographic entanglement entropy of surface defects

    NASA Astrophysics Data System (ADS)

    Gentle, Simon A.; Gutperle, Michael; Marasinou, Chrysostomos

    2016-04-01

    We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N=4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena [1] to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.

  6. Entropy production of doubly stochastic quantum channels

    NASA Astrophysics Data System (ADS)

    Müller-Hermes, Alexander; Stilck França, Daniel; Wolf, Michael M.

    2016-02-01

    We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an application we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.

  7. Zipf's law, power laws and maximum entropy

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    2013-04-01

    Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.

  8. Entropy in the natural time domain

    NASA Astrophysics Data System (ADS)

    Varotsos, P. A.; Sarlis, N. V.; Skordas, E. S.; Lazaridou, M. S.

    2004-07-01

    A surrogate data analysis is presented, which is based on the fluctuations of the “entropy” S defined in the natural time domain [Phys. Rev. E 68, 031106 (2003)]. This entropy is not a static one such as, for example, the Shannon entropy. The analysis is applied to three types of time series, i.e., seismic electric signals, “artificial” noises, and electrocardiograms, and it “recognizes” the non-Markovianity in all these signals. Furthermore, it differentiates the electrocardiograms of healthy humans from those of the sudden cardiac death ones. If δS and δSshuf denote the standard deviation when calculating the entropy by means of a time window sweeping through the original data and the “shuffled” (randomized) data, respectively, it seems that the ratio δSshuf/δS plays a key role. The physical meaning of δSshuf is investigated.

  9. Morphology of branching trees related to entropy.

    PubMed

    Horsfield, K

    1977-04-01

    Analyses of river systems by geomorphologists have suggested that for minimal entropy production in the movement of water down the river the fall in altitude should be equal in each order of branching of the tributaries. In this paper the same concepts have been applied to the bronchial tree and pulmonary arterial tree, assuming that the energy associated with pressure difference is analogous to that associated with altitude difference in rivers. The morphology of the bronchial tree is such that, given laminar flow or air, the calculated pressure difference across each order is equal. This may indicate that the bronchial tree is designed for minimal entropy production. In the arterial tree, however, this result is not obtained, probably because we do not know how to calculate the pressure drop in blood flowing through a branching system. It is therefore not currently possible, on the basis of this approach, to say whether the pulmonary arterial tree is designed for minimal entropy production or not.

  10. Transfer Entropy and Transient Limits of Computation

    PubMed Central

    Prokopenko, Mikhail; Lizier, Joseph T.

    2014-01-01

    Transfer entropy is a recently introduced information-theoretic measure quantifying directed statistical coherence between spatiotemporal processes, and is widely used in diverse fields ranging from finance to neuroscience. However, its relationships to fundamental limits of computation, such as Landauer's limit, remain unknown. Here we show that in order to increase transfer entropy (predictability) by one bit, heat flow must match or exceed Landauer's limit. Importantly, we generalise Landauer's limit to bi-directional information dynamics for non-equilibrium processes, revealing that the limit applies to prediction, in addition to retrodiction (information erasure). Furthermore, the results are related to negentropy, and to Bremermann's limit and the Bekenstein bound, producing, perhaps surprisingly, lower bounds on the computational deceleration and information loss incurred during an increase in predictability about the process. The identified relationships set new computational limits in terms of fundamental physical quantities, and establish transfer entropy as a central measure connecting information theory, thermodynamics and theory of computation. PMID:24953547

  11. Rényi entropy for particle systems as an instrument to enlarge the Boltzmannian concept of entropy: Some holographic perspectives

    NASA Astrophysics Data System (ADS)

    Masi, Nicolò

    The Rényi entropy is a mathematical generalization of the concept of entropy and it encodes the total information of a system as a function of its order parameter α. The meaning of the Rényi entropy in physics is not completely established. Here we determined a general and explicit representation of the Rényi entropy for whichever fluid of particles and spin-statistics in the mechanical statistics framework. This allowed us to put physical constraints to the Rényi order α, from main thermodynamic relations and entropy bounds of the holographic theories, defining how much we can enlarge the Boltzmannian concept of entropy.

  12. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Annamalai, Kalyan

    2008-06-01

    The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB) and Centers for Disease Control and Prevention (CDC), which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death) was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years). From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a “healthy minimum” if entropy generation is to be minimized.

  13. Autonomous entropy-based intelligent experimental design

    NASA Astrophysics Data System (ADS)

    Malakar, Nabin Kumar

    2011-07-01

    The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner. Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method. Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment. We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same

  14. Distribution entropy analysis of epileptic EEG signals.

    PubMed

    Li, Peng; Yan, Chang; Karmakar, Chandan; Liu, Changchun

    2015-01-01

    It is an open-ended challenge to accurately detect the epileptic seizures through electroencephalogram (EEG) signals. Recently published studies have made elaborate attempts to distinguish between the normal and epileptic EEG signals by advanced nonlinear entropy methods, such as the approximate entropy, sample entropy, fuzzy entropy, and permutation entropy, etc. Most recently, a novel distribution entropy (DistEn) has been reported to have superior performance compared with the conventional entropy methods for especially short length data. We thus aimed, in the present study, to show the potential of DistEn in the analysis of epileptic EEG signals. The publicly-accessible Bonn database which consisted of normal, interictal, and ictal EEG signals was used in this study. Three different measurement protocols were set for better understanding the performance of DistEn, which are: i) calculate the DistEn of a specific EEG signal using the full recording; ii) calculate the DistEn by averaging the results for all its possible non-overlapped 5 second segments; and iii) calculate it by averaging the DistEn values for all the possible non-overlapped segments of 1 second length, respectively. Results for all three protocols indicated a statistically significantly increased DistEn for the ictal class compared with both the normal and interictal classes. Besides, the results obtained under the third protocol, which only used very short segments (1 s) of EEG recordings showed a significantly (p <; 0.05) increased DistEn for the interictal class in compassion with the normal class, whereas both analyses using relatively long EEG signals failed in tracking this difference between them, which may be due to a nonstationarity effect on entropy algorithm. The capability of discriminating between the normal and interictal EEG signals is of great clinical relevance since it may provide helpful tools for the detection of a seizure onset. Therefore, our study suggests that the Dist

  15. Integrals, Expectation-Values and Entropy.

    NASA Astrophysics Data System (ADS)

    Barron, Arthur Randall

    1982-03-01

    The maximum entropy principle, one of the cornerstones of equilibrium statistical mechanics, has been introduced into probability theory by E. T. JAYNES as part of a rational strategy for making plausible inferences from incomplete information. The conventional maximum entropy formalism, involving the familiar machinery of partition functions, is practically the same in both classical and quantum mechanical formulations of statistical mechanics. The present work undertakes to extend the maximum entropy principle to a generalized abstract formulation of probability theory, encompassing the familiar classical and quantal models as well as certain more exotic models uncovered by G. W. MACKEY in his axiomatization of quantum mechanics--the so-called quantum logics. In this more general approach, the conventional machinery of partition functions is not available. Instead, one makes use of a family of conditional entropy functions. In its dependence on the constraint conditions, the conditional entropy enjoys concavity and monotonicity properties analogous to those of the phenomenological entropy in equilibrium thermodynamics. The new formalism is able to take in stride the possibility that the constraints, although consistent, may fail to determine a unique maximum entropy state (probability distribution). Examples which demonstrate this possibility are readily constructed in both classical and quantal models of probability theory. One observes that, in the convex set of states compatible with the constraints, there is none of greatest entropy; typically this happens at or beyond a "barrier" where the conventional partition function becomes singular. Such examples should not simply be dismissed as "pathological"; they may perhaps have interesting physical interpretations (e.g., turbulence, disorder, chaos). In carrying out the above program it is essential to recognize that the expectation-values of an unbounded observable (real random variable) need not be finite: they

  16. High resolution schemes and the entropy condition

    NASA Technical Reports Server (NTRS)

    Osher, S.; Chakravarthy, S.

    1983-01-01

    A systematic procedure for constructing semidiscrete, second order accurate, variation diminishing, five point band width, approximations to scalar conservation laws, is presented. These schemes are constructed to also satisfy a single discrete entropy inequality. Thus, in the convex flux case, convergence is proven to be the unique physically correct solution. For hyperbolic systems of conservation laws, this construction is used formally to extend the first author's first order accurate scheme, and show (under some minor technical hypotheses) that limit solutions satisfy an entropy inequality. Results concerning discrete shocks, a maximum principle, and maximal order of accuracy are obtained. Numerical applications are also presented.

  17. Black hole entropy without brick walls

    NASA Astrophysics Data System (ADS)

    Xiang, Li

    2002-07-01

    The properties of the thermal radiation are discussed by using the new equation of state density motivated by the generalized uncertainty relation in the quantum gravity. There is no burst at the last stage of the emission of a Schwarzschild black hole. When the new equation of state density is utilized to investigate the entropy of a scalar field outside the horizon of a static black hole, the divergence appearing in the brick wall model is removed, without any cutoff. The entropy proportional to the horizon area is derived from the contribution of the vicinity of the horizon.

  18. Holographic entanglement entropy on generic time slices

    NASA Astrophysics Data System (ADS)

    Kusuki, Yuya; Takayanagi, Tadashi; Umemoto, Koji

    2017-06-01

    We study the holographic entanglement entropy and mutual information for Lorentz boosted subsystems. In holographic CFTs at zero and finite temperature, we find that the mutual information gets divergent in a universal way when the end points of two subsystems are light-like separated. In Lifshitz and hyperscaling violating geometries dual to non-relativistic theories, we show that the holographic entanglement entropy is not well-defined for Lorentz boosted subsystems in general. This strongly suggests that in non-relativistic theories, we cannot make a real space factorization of the Hilbert space on a generic time slice except the constant time slice, as opposed to relativistic field theories.

  19. Maximum entropy PDF projection: A review

    NASA Astrophysics Data System (ADS)

    Baggenstoss, Paul M.

    2017-06-01

    We review maximum entropy (MaxEnt) PDF projection, a method with wide potential applications in statistical inference. The method constructs a sampling distribution for a high-dimensional vector x based on knowing the sampling distribution p(z) of a lower-dimensional feature z = T (x). Under mild conditions, the distribution p(x) having highest possible entropy among all distributions consistent with p(z) may be readily found. Furthermore, the MaxEnt p(x) may be sampled, making the approach useful in Monte Carlo methods. We review the theorem and present a case study in model order selection and classification for handwritten character recognition.

  20. Maximum entropy spherical deconvolution for diffusion MRI.

    PubMed

    Alexander, Daniel C

    2005-01-01

    This paper proposes a maximum entropy method for spherical deconvolution. Spherical deconvolution arises in various inverse problems. This paper uses the method to reconstruct the distribution of microstructural fibre orientations from diffusion MRI measurements. Analysis shows that the PASMRI algorithm, one of the most accurate diffusion MRI reconstruction algorithms in the literature, is a special case of the maximum entropy spherical deconvolution. Experiments compare the new method to linear spherical deconvolution, used previously in diffusion MRI, and to the PASMRI algorithm. The new method compares favourably both in simulation and on standard brain-scan data.

  1. Wehrl entropy, Lieb conjecture, and entanglement monotones

    SciTech Connect

    Mintert, Florian; Zyczkowski, Karol

    2004-02-01

    We propose to quantify the entanglement of pure states of NxN bipartite quantum systems by defining its Husimi distribution with respect to SU(N)xSU(N) coherent states. The Wehrl entropy is minimal if and only if the analyzed pure state is separable. The excess of the Wehrl entropy is shown to be equal to the subentropy of the mixed state obtained by partial trace of the bipartite pure state. This quantity, as well as the generalized (Renyi) subentropies, are proved to be Schur concave, so they are entanglement monotones and may be used as alternative measures of entanglement.

  2. Entanglement entropy of subtracted geometry black holes

    NASA Astrophysics Data System (ADS)

    Cvetič, Mirjam; Saleem, Zain H.; Satz, Alejandro

    2014-09-01

    We compute the entanglement entropy of minimally coupled scalar fields on subtracted geometry black hole backgrounds, focusing on the logarithmic corrections. We notice that matching between the entanglement entropy of original black holes and their subtracted counterparts is only at the order of the area term. The logarithmic correction term is not only different but also, in general, changes sign in the subtracted case. We apply Harrison transformations to the original black holes and find out the choice of the Harrison parameters for which the logarithmic corrections vanish.

  3. Entropy Inequality Violations from Ultraspinning Black Holes.

    PubMed

    Hennigar, Robie A; Mann, Robert B; Kubizňák, David

    2015-07-17

    We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold.

  4. New Standard State Entropy for Sphene (Titanite)

    NASA Astrophysics Data System (ADS)

    Manon, M. R.; Dachs, E.; Essene, E. J.

    2004-12-01

    Several recent papers have questioned the accepted standard state (STP) entropy of sphene (CaTiSiO5), which had been considered to be in the range 129-132 J/mol.K (Berman, 1988: 129.3 Robie and Hemingway, 1995: 129.2 J/mol.K; Holland and Powell, 1995: 131.2 J/mol.K.). However, Xirouchakis and Lindsley (1998) recommended a much lower value of 106 J/mol.K for the STP entropy of sphene. Tangeman and Xirouchakis (2001) inferred a value less than 124 or 120 J/mol.K, based on based on enthalpy constraints combined with the tightly reversed reaction sphene+kyanite=rutile+anorthite by Bohlen and Manning (1991). Their recommendations are in conflict with the accepted values for STP entropy for sphene, including values calculated by direct measurement of Cp from 50 to 300 K by King (1954). In order to resolve this discrepancy, we have collected new data on the Cp of sphene between 5 and 300 K. Our measurements were made in the PPMS at Salzburg on a 21.4 g sample of sphene generously furnished by Tangeman and Xirouchakis (2001), the same sample as used in their experiments. The Cp data are slightly lower than those of King (1954) but merge smoothly with data of Tangeman and Xirouchakis (2001) from 330 to 483 K (or whatever) where a transition is recorded in the Cp data as a lambda anomaly. Tangeman and Xirouchakis also obtained data above the transition up to 950K. Integration of the new Cp data yields a STP entropy of 127.3 J/mol.K, lower than the generally accepted value by ca. 2 J/mol.K. A change in the STP entropy of sphene will have an effect on many Ti-bearing reactions which occur within the earth, although the magnitude of this change is not nearly as large as that suggested by Xirouchakis and Lindsley (1998). Above 700 K, the entropy calculated using the new STP entropy with the heat capacity equation of Tangeman and Xirouchakis (2001) is within 1 J/mol.K of the value tabulated in Robie and Hemingway (1995) and of that calculated from Berman (1988). The effect on

  5. Refractory High-Entropy Alloys (Postprint)

    DTIC Science & Technology

    2010-06-23

    AFRL-RX-WP-JA-2015-0119 REFRACTORY HIGH-ENTROPY ALLOYS (POSTPRINT) D.B. Miracle AFRL/RXCM O.N. Senkov UES, Inc. G.B. Wilks...AUTHOR(S) D.B. Miracle - AFRL/RXCM O.N. Senkov - UES, Inc. G.B. Wilks - General Dynamics, Corp. C.P. Chuang and P.K. Liaw - The University...intermetRefractory high-entropy alloys O.N. Senkov a,b,*, G.B. Wilks a,c, D.B. Miracle a, C.P. Chuang d, P.K. Liawd aAir Force Research Laboratory

  6. Input Type and Parameter Resetting: Is Naturalistic Input Necessary?

    ERIC Educational Resources Information Center

    Rothman, Jason; Iverson, Michael

    2007-01-01

    It has been argued that extended exposure to naturalistic input provides L2 learners with more of an opportunity to converge of target morphosyntactic competence as compared to classroom-only environments, given that the former provide more positive evidence of less salient linguistic properties than the latter (e.g., Isabelli 2004). Implicitly,…

  7. Mass exchange processes with input

    NASA Astrophysics Data System (ADS)

    Krapivsky, P. L.

    2015-05-01

    We investigate a system of interacting clusters evolving through mass exchange and supplemented by input of small clusters. Three possibilities depending on the rate of exchange generically occur when input is homogeneous: continuous growth, gelation, and instantaneous gelation. We mostly study the growth regime using scaling methods. An exchange process with reaction rates equal to the product of reactant masses admits an exact solution which allows us to justify the validity of scaling approaches in this special case. We also investigate exchange processes with a localized input. We show that if the diffusion coefficients are mass-independent, the cluster mass distribution becomes stationary and develops an algebraic tail far away from the source.

  8. A Study of Turkish Chemistry Undergraduates' Understandings of Entropy

    ERIC Educational Resources Information Center

    Sozbilir, Mustafa; Bennett, Judith M.

    2007-01-01

    Entropy is that fundamental concept of chemical thermodynamics, which explains the natural tendency of matter and energy in the Universe. The analysis presents the description of entropy, as understood by the Turkish chemistry undergraduates.

  9. Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces

    SciTech Connect

    Benatti, Fabio; Oskouei, Samad Khabbazi Deh Abad, Ahmad Shafiei

    2014-08-15

    We extend the notion of Gacs quantum algorithmic entropy, originally formulated for finitely many qubits, to infinite dimensional quantum spin chains and investigate the relation of this extension with two quantum dynamical entropies that have been proposed in recent years.

  10. A Study of Turkish Chemistry Undergraduates' Understandings of Entropy

    ERIC Educational Resources Information Center

    Sozbilir, Mustafa; Bennett, Judith M.

    2007-01-01

    Entropy is that fundamental concept of chemical thermodynamics, which explains the natural tendency of matter and energy in the Universe. The analysis presents the description of entropy, as understood by the Turkish chemistry undergraduates.

  11. Gravitational correlation, black hole entropy, and information conservation

    NASA Astrophysics Data System (ADS)

    He, DongShan; Cai, QingYu

    2017-04-01

    When two objects have gravitational interaction between them, they are no longer independent of each other. In fact, there exists gravitational correlation between these two objects. Inspired by Verlinde's paper, we first calculate the entropy change of a system when gravity does positive work on this system. Based on the concept of gravitational correlation entropy, we prove that the entropy of a Schwarzschild black hole originates from the gravitational correlations between the interior matters of the black hole. By analyzing the gravitational correlation entropies in the process of Hawking radiation in a general context, we prove that the reduced entropy of a black hole is exactly carried away by the radiation and the gravitational correlations between these radiating particles, and the entropy or information is conserved at all times during Hawking radiation. Finally, we attempt to give a unified description of the non-extensive black-hole entropy and the extensive entropy of ordinary matter.

  12. Gravitational correlation, black hole entropy, and information conservation

    NASA Astrophysics Data System (ADS)

    He, DongShan; Cai, QingYu

    2017-04-01

    When two objects have gravitational interaction between them, they are no longer independent of each other. In fact, there exists gravitational correlation between these two objects. Inspired by Verlinde's paper, we first calculate the entropy change of a system when gravity does positive work on this system. Based on the concept of gravitational correlation entropy, we prove that the entropy of a Schwarzschild black hole originates from the gravitational correlations between the interior matters of the black hole. By analyzing the gravitational correlation entropies in the process of Hawking radiation in a general context, we prove that the reduced entropy of a black hole is exactly carried away by the radiation and the gravitational correlations between these radiating particles, and the entropy or information is conserved at all times during Hawking radiation. Finally, we attempt to give a unified description of the non-extensive black-hole entropy and the extensive entropy of ordinary matter.

  13. Entropy analysis in foreign exchange markets and economic crisis

    NASA Astrophysics Data System (ADS)

    Ha, Jin-Gi; Yim, Kyubin; Kim, Seunghwan; Jung, Woo-Sung

    2012-08-01

    We investigate the relative market efficiency in 11 foreign exchange markets by using the Lempel-Ziv (LZ) complexity algorithm and several entropy values such as the Shannon entropy, the approximate entropy, and the sample entropy. With daily data in 11 foreign exchange markets from Jan. 2000 to Sep. 2011, we observe that mature markets have higher LZ complexities and entropy values than emerging markets. Furthermore, with sliding time windows, we also investigate the temporal evolutions of those entropies from Jan. 1994 to Sep. 2011, and we find that, after an economic crisis, the approximate entropy and the sample entropy of mature markets such as Japan, Europe and the United Kingdom suddenly become lower.

  14. A logarithmic correction in the entropy functional formalism

    NASA Astrophysics Data System (ADS)

    Hammad, Fayçal; Faizal, Mir

    2016-04-01

    The entropy functional formalism allows one to recover general relativity, modified gravity theories, as well as the Bekenstein-Hawking entropy formula. In most approaches to quantum gravity, the Bekenstein-Hawking’s entropy formula acquires a logarithmic correction term. As such terms occur almost universally in most approaches to quantum gravity, we analyze the effect of such terms on the entropy functional formalism. We demonstrate that the leading correction to the micro-canonical entropy in the entropy functional formalism can be used to recover modified theories of gravity already obtained with an uncorrected micro-canonical entropy. Furthermore, since the entropy functional formalism reproduces modified gravity, the rise of gravity-dependent logarithmic corrections turns out to be one way to impose constraints on these theories of modified gravity. The constraints found here for the simple case of an ℱ(R)-gravity are the same as those obtained in the literature from cosmological considerations.

  15. Enthalpy and entropy contributions to the solubility of sulphamethoxypyridazine in solvent mixtures showing two solubility maxima.

    PubMed

    Bustamante, P; Escalera, B

    1995-07-01

    The solubility of sulphamethoxypyridazine was measured at several temperatures in mixtures of water:ethanol and ethanol:ethyl acetate. Sulphamethoxypyridazine was chosen as a model drug to compare the solvation effects of proton donor-proton acceptor (water and ethanol) and proton acceptor (ethyl acetate) solvents and mixtures of these solvents because this drug contains functional groups capable of Lewis acid-base interaction. A plot of the mole fraction solubility against the solubility parameter (delta 1 = 30.87 MPa1/2 (20:80 v/v water:ethanol) and another at delta 1 = 20.88 MPa1/2 (30:70 v/v ethanol:ethyl acetate) at all the temperatures under study. The enthalpies and entropies of mixing as well as the enthalpies and entropies of transfer of sulphamethoxypyridazine from ethanol of mixing as well as the enthalpies and entropies of transfer of sulphamethoxypyridazine from ethanol to water:ethanol and ethanol:ethyl acetate mixtures were calculated to compare solvation characteristics of the solvent mixtures toward the drug. As ethanol is added to water, the entropy increases and the structure of the solvent mixture became less ordered, favouring the interaction of the drug with the solvent mixture. On the other hand, in the case of the ethanol:ethyl acetate mixture, solubility is favoured by the more negative enthalpy values. This way, the same result, i.e. a solubility maximum, is obtained by different routes. In the ethanol:water mixtures, the dissolution process if entropy-controlled while enthalpy is the driving force in the case of ethanol:ethyl acetate mixtures. The two solvent systems show enthalpy-entropy compensation. Water deviates from the linear relationship due possibly to its hydrophobic effect.

  16. Volcano shapes, entropies, and eruption probabilities

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2014-05-01

    We propose that the shapes of polygenetic volcanic edifices reflect the shapes of the associated probability distributions of eruptions. In this view, the peak of a given volcanic edifice coincides roughly with the peak of the probability (or frequency) distribution of its eruptions. The broadness and slopes of the edifices vary widely, however. The shapes of volcanic edifices can be approximated by various distributions, either discrete (binning or histogram approximation) or continuous. For a volcano shape (profile) approximated by a normal curve, for example, the broadness would be reflected in its standard deviation (spread). Entropy (S) of a discrete probability distribution is a measure of the absolute uncertainty as to the next outcome/message: in this case, the uncertainty as to time and place of the next eruption. A uniform discrete distribution (all bins of equal height), representing a flat volcanic field or zone, has the largest entropy or uncertainty. For continuous distributions, we use differential entropy, which is a measure of relative uncertainty, or uncertainty change, rather than absolute uncertainty. Volcano shapes can be approximated by various distributions, from which the entropies and thus the uncertainties as regards future eruptions can be calculated. We use the Gibbs-Shannon formula for the discrete entropies and the analogues general formula for the differential entropies and compare their usefulness for assessing the probabilities of eruptions in volcanoes. We relate the entropies to the work done by the volcano during an eruption using the Helmholtz free energy. Many factors other than the frequency of eruptions determine the shape of a volcano. These include erosion, landslides, and the properties of the erupted materials (including their angle of repose). The exact functional relation between the volcano shape and the eruption probability distribution must be explored for individual volcanoes but, once established, can be used to

  17. Stability theorem of depolarizing channels for the minimal output quantum Rényi entropies

    NASA Astrophysics Data System (ADS)

    Bae, Eunok; Gour, Gilad; Lee, Soojoon; Park, Jeonghoon; Sanders, Barry C.

    2016-03-01

    The stability theorem of the depolarizing channel states that if a state is close to achieving the minimal/maximal output value of a certain quantity through the channel, then it must be close to an input state giving the minimal/maximal value. We show that the stability theorem of the depolarizing channel holds for the output quantum p-Rényi entropy for p≥slant 2 or p = 1, which is an extension of the known case p = 2. As an application, we present a protocol in which Bob determines whether Alice prepares a pure quantum state close to a product state. In the protocol, Alice transmits to Bob multiple copies of a pure state through a depolarizing channel, and Bob estimates its output quantum p-Rényi entropy. By using our stability theorem, we show that Bob can determine whether her preparation is appropriate.

  18. Sparse kernel entropy component analysis for dimensionality reduction of neuroimaging data.

    PubMed

    Jiang, Qikun; Shi, Jun

    2014-01-01

    The neuroimaging data typically has extremely high dimensions. Therefore, dimensionality reduction is commonly used to extract discriminative features. Kernel entropy component analysis (KECA) is a newly developed data transformation method, where the key idea is to preserve the most estimated Renyi entropy of the input space data set via a kernel-based estimator. Despite its good performance, KECA still suffers from the problem of low computational efficiency for large-scale data. In this paper, we proposed a sparse KECA (SKECA) algorithm with the recursive divide-and-conquer based solution, and then applied it to perform dimensionality reduction of neuroimaging data for classification of the Alzheimer's disease (AD). We compared the SKECA with KECA, principal component analysis (PCA), kernel PCA (KPCA) and sparse KPCA. The experimental results indicate that the proposed SKECA has most superior performance to all other algorithms when extracting discriminative features from neuroimaging data for AD classification.

  19. Waste heat boiler optimization by entropy minimization principle

    SciTech Connect

    Reddy, B.V.; Murali, J.; Satheesh, V.S.; Nag, P.K.

    1996-12-31

    A second law analysis has been undertaken for a waste heat boiler having an economizer, evaporator and superheater. Following the principle of minimization of entropy generation, a general equation for entropy generation number is derived, which incorporates all the operating variables. By differentiating the entropy generation number equation with respect to the operating parameters, various optimization parameters can be obtained. Few illustrations have been made to see the effect of various parameters on entropy generation number.

  20. Negative pressures and melting point depression in oxide-coated liquid metal droplets

    NASA Technical Reports Server (NTRS)

    Spaepen, F.; Turnbull, D.

    1979-01-01

    Negative pressures and melting point depression in oxide-coated liquid metal droplets are studied. The calculation presented show the existence of large negative pressures when the oxide coating is thick enough. The change in the melting point caused by these negative pressures should be considered in studies of homogeneous crystal nucleation. Furthermore, since the negative pressure raises the entropy of the melt, it increases the entropy loss at the crystal-melt interface; the resulting increase of the surface tension could have a large effect on the homogeneous nucleation frequency.