Optimized mode-field adapter for low-loss fused fiber bundle signal and pump combiners
NASA Astrophysics Data System (ADS)
Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Písařík, Michael; Bohata, Jan
2015-03-01
In our contribution we report novel mode field adapter incorporated inside bundled tapered pump and signal combiner. Pump and signal combiners are crucial component of contemporary double clad high power fiber lasers. Proposed combiner allows simultaneous matching to single mode core on input and output. We used advanced optimization techniques to match the combiner to a single mode core simultaneously on input and output and to minimalize losses of the combiner signal branch. We designed two arrangements of combiners' mode field adapters. Our numerical simulations estimates losses in signal branches of optimized combiners of 0.23 dB for the first design and 0.16 dB for the second design for SMF-28 input fiber and SMF-28 matched output double clad fiber for the wavelength of 2000 nm. The splice losses of the actual combiner are expected to be even lower thanks to dopant diffusion during the splicing process.
Machine Learning Classification of Heterogeneous Fields to Estimate Physical Responses
NASA Astrophysics Data System (ADS)
McKenna, S. A.; Akhriev, A.; Alzate, C.; Zhuk, S.
2017-12-01
The promise of machine learning to enhance physics-based simulation is examined here using the transient pressure response to a pumping well in a heterogeneous aquifer. 10,000 random fields of log10 hydraulic conductivity (K) are created and conditioned on a single K measurement at the pumping well. Each K-field is used as input to a forward simulation of drawdown (pressure decline). The differential equations governing groundwater flow to the well serve as a non-linear transform of the input K-field to an output drawdown field. The results are stored and the data set is split into training and testing sets for classification. A Euclidean distance measure between any two fields is calculated and the resulting distances between all pairs of fields define a similarity matrix. Similarity matrices are calculated for both input K-fields and the resulting drawdown fields at the end of the simulation. The similarity matrices are then used as input to spectral clustering to determine groupings of similar input and output fields. Additionally, the similarity matrix is used as input to multi-dimensional scaling to visualize the clustering of fields in lower dimensional spaces. We examine the ability to cluster both input K-fields and output drawdown fields separately with the goal of identifying K-fields that create similar drawdowns and, conversely, given a set of simulated drawdown fields, identify meaningful clusters of input K-fields. Feature extraction based on statistical parametric mapping provides insight into what features of the fields drive the classification results. The final goal is to successfully classify input K-fields into the correct output class, and also, given an output drawdown field, be able to infer the correct class of input field that created it.
Serebryannikov, Evgenii E; von der Linde, Dietrich; Zheltikov, Aleksei M
2008-05-01
Hollow-core photonic-crystal fibers are shown to enable dynamically phase-matched high-order harmonic generation by a gigawatt soliton pump field. With a careful design of the waveguide structure and an appropriate choice of input-pulse and gas parameters, a remarkably broadband phase matching can be achieved for a soliton pump field and a large group of optical harmonics in the soft-x-ray-extreme-ultraviolet spectral range.
NASA Astrophysics Data System (ADS)
Farr, T. G.; Fairbanks, A.
2017-12-01
Recent rains in California caused a pause, and even a reversal in some areas, of the subsidence that has plagued the Central Valley for decades. The 3 main drivers of surface deformation in the Central Valley are: Subsurface hydro-geology, precipitation and surface water deliveries, and groundwater pumping. While the geology is relatively fixed in time, water inputs and outputs vary greatly both in time and space. And while subsurface geology and water inputs are reasonably well-known, information about groundwater pumping amounts and rates is virtually non-existent in California. We have derived regional maps of surface deformation in the region for the period 2006 - present which allow reconstruction of seasonal and long-term changes. In order to understand the spatial and temporal patterns of subsidence and rebound in the Central Valley, we have been compiling information on the geology and water inputs and have attempted to infer pumping rates using maps of fallowed fields and published pumping information derived from hydrological models. In addition, the spatial and temporal patterns of hydraulic head as measured in wells across the region allow us to infer the spatial and temporal patterns of groundwater pumping and recharge more directly. A better understanding of how different areas (overlying different stratigraphy) of the Central Valley respond to water inputs and outputs will allow a predictive capability, potentially defining sustainable pumping rates related to water inputs. * work performed under contract to NASA and the CA Dept. of Water Resources
Observation of the Rabi oscillation of light driven by an atomic spin wave.
Chen, L Q; Zhang, Guo-Wan; Bian, Cheng-Ling; Yuan, Chun-Hua; Ou, Z Y; Zhang, Weiping
2010-09-24
Coherent conversion between a Raman pump field and its Stokes field is observed in a Raman process with a strong atomic spin wave initially prepared by another Raman process operated in the stimulated emission regime. The oscillatory behavior resembles the Rabi oscillation in atomic population in a two-level atomic system driven by a strong light field. The Rabi-like oscillation frequency is found to be related to the strength of the prebuilt atomic spin wave. High conversion efficiency of 40% from the Raman pump field to the Stokes field is recorded and it is independent of the input Raman pump field. This process can act as a photon frequency multiplexer and may find wide applications in quantum information science.
Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh
2014-01-01
Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485
Compact, Lightweight Electromagnetic Pump for Liquid Metal
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Palzin, Kurt
2010-01-01
A proposed direct-current electromagnetic pump for circulating a molten alkali metal alloy would be smaller and lighter and would demand less input power, relative to currently available pumps of this type. (Molten alkali metals are used as heat-transfer fluids in high-temperature stages of some nuclear reactors.) The principle of operation of this or any such pump involves exploitation of the electrical conductivity of the molten metal: An electric current is made to pass through the liquid metal along an axis perpendicular to the longitudinal axis of the flow channel, and a magnetic field perpendicular to both the longitudinal axis and the electric current is superimposed on the flowchannel region containing the electric current. The interaction between the electric current and the magnetic field produces the pumping force along the longitudinal axis. The advantages of the proposed pump over other such pumps would accrue from design features that address overlapping thermal and magnetic issues.
Mode-field adapter for tapered-fiber-bundle signal and pump combiners.
Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Bohata, Jan; Písařík, Michael
2015-02-01
We report on a novel mode-field adapter that is proposed to be incorporated inside tapered fused-fiber-bundle pump and signal combiners for high-power double-clad fiber lasers. Such an adapter allows optimization of signal-mode-field matching on the input and output fibers. Correspondingly, losses of the combiner signal branch are significantly reduced. The mode-field adapter optimization procedure is demonstrated on a combiner based on commercially available fibers. Signal wavelengths of 1.55 and 2 μm are considered. The losses can be further improved by using specially designed intermediate fiber and by dopant diffusion during splicing as confirmed by preliminary experimental results.
NASA Astrophysics Data System (ADS)
Baranov, G. A.; Efremov, Yu V.; Smirnov, A. S.; Frolov, K. S.; Shevchenko, Yu I.
1989-02-01
An investigation was made of the distributions of the gain and input energy per unit volume along the discharge chamber length in a CO2-N2-He mixture stream excited by an rf discharge. The dependences of the gain and discharge luminescence intensity on the coordinate x were determined along the direction of the gas flow. The discharge luminescence intensity was shown to characterize the input energy distribution along the X axis. Calculations were made of the small-signal gain in the rf discharge. Experimental data on the distributions of the input energy and of the electric field in the discharge and the average values of the kinetic coefficients were used in the calculations. The efficiency of pumping CO2 lasers with an rf discharge was found to be close to the dc pumping efficiency. The results obtained provide evidence of promising prospects for using an rf discharge in fast-flow industrial lasers.
Program Predicts Performance of Optical Parametric Oscillators
NASA Technical Reports Server (NTRS)
Cross, Patricia L.; Bowers, Mark
2006-01-01
A computer program predicts the performances of solid-state lasers that operate at wavelengths from ultraviolet through mid-infrared and that comprise various combinations of stable and unstable resonators, optical parametric oscillators (OPOs), and sum-frequency generators (SFGs), including second-harmonic generators (SHGs). The input to the program describes the signal, idler, and pump beams; the SFG and OPO crystals; and the laser geometry. The program calculates the electric fields of the idler, pump, and output beams at three locations (inside the laser resonator, just outside the input mirror, and just outside the output mirror) as functions of time for the duration of the pump beam. For each beam, the electric field is used to calculate the fluence at the output mirror, plus summary parameters that include the centroid location, the radius of curvature of the wavefront leaving through the output mirror, the location and size of the beam waist, and a quantity known, variously, as a propagation constant or beam-quality factor. The program provides a typical Windows interface for entering data and selecting files. The program can include as many as six plot windows, each containing four graphs.
D'Aguanno, Giuseppe; Centini, Marco; Scalora, Michael; Sibilia, Concita; Bertolotti, Mario; Bloemer, Mark J; Bowden, Charles M
2003-01-01
We study second-harmonic generation in finite, one-dimensional, photonic band-gap structures with large index contrast in the regime of pump depletion and global phase-matching conditions. We report a number of surprising results: above a certain input intensity, field dynamics resemble a multiwave mixing process, where backward and forward components compete for the available energy; the pump field is mostly reflected, revealing a type of optical limiting behavior; and second-harmonic generation becomes balanced in both directions, showing unusual saturation effects with increasing pump intensity. This dynamics was unexpected, and it is bound to influence the way one goes about thinking and designing nonlinear frequency conversion devices in a practical way.
Investigation of Enersave series 500 pump. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.R.
A new type of pump to be used as a stripper pump for oil wells has been developed by Enersave Pumps, Incorporated of Roswell, New Mexico. The Enersave 500 pump has no moving mechanical parts between the down-hole pistons which lift the fluid and the driving unit at the surface. Rather, a pressure pulse created by the driving unit, usually called the pulser, is transmitted through the fluid in the well string to the down-hole unit and creates the pumping action. Object of the project was to optimize the configuration of the pump, that is, increase the production flow ratemore » while minimizing the energy consumption needed to obtain this flow rate. New Mexico State University's role in this project was to model the pump using computer techniques to provide guidelines for improvement in pump design, to supervise the performance of field and bench testing of the redesigned versions of the pump to validate the actual performance of the pump, and to provide a life cycle cost analysis of the pump. Experimental results at depths to as much as 1729 feet show that the redesigned pump will deliver 3 gpm with an average power input of about 1 hp. The energy requirements of the Enersave 500 pump are on the average 25% lower than the energy requirements of an equivalent pump-jack, the typical pump now used in the oil fields for stripper well operation. Further, a life cycle cost analysis of the Enersave 500 pump compared to an equivalent pump-jack shows the Enersave 500 pump to be more economical to purchase and operate.« less
Tunable infrared source employing Raman mixing
Byer, Robert L.; Herbst, Richard L.
1980-01-01
A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.
Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2001-01-01
A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.
NASA Astrophysics Data System (ADS)
Cao, Nan; Zhu, Hongna; Li, Peipei; Taccheo, Stefano; Zhu, Yuanna; Gao, Xiaorong; Wang, Zeyong
2018-06-01
A two-pump fiber optical parametric amplifier (FOPA) based on the photonic crystal fiber (PCF) in the telecommunication region is investigated numerically. The fiber loss and pump depletion are considered. The influences of the fiber length, input signal power, input pump power, and the center pump wavelength on the gain bandwidth, flatness, and peak gain are discussed. The 6-wave model-based analysis of two-pump FOPA is also achieved and compared with that based on the 4-wave model; furthermore, the gain properties of the FOPA based on the 6-wave model are optimized and investigated. The comparison results show that the PCF-based two-pump FOPA achieves flatter and wider gain spectra with less fiber length and input pump power compared to the two-pump FOPA based on the normal highly nonlinear fiber, where the obtained results show the great potential of the FOPA for the optical communication system.
NASA Astrophysics Data System (ADS)
Cao, Nan; Zhu, Hongna; Li, Peipei; Taccheo, Stefano; Zhu, Yuanna; Gao, Xiaorong; Wang, Zeyong
2018-03-01
A two-pump fiber optical parametric amplifier (FOPA) based on the photonic crystal fiber (PCF) in the telecommunication region is investigated numerically. The fiber loss and pump depletion are considered. The influences of the fiber length, input signal power, input pump power, and the center pump wavelength on the gain bandwidth, flatness, and peak gain are discussed. The 6-wave model-based analysis of two-pump FOPA is also achieved and compared with that based on the 4-wave model; furthermore, the gain properties of the FOPA based on the 6-wave model are optimized and investigated. The comparison results show that the PCF-based two-pump FOPA achieves flatter and wider gain spectra with less fiber length and input pump power compared to the two-pump FOPA based on the normal highly nonlinear fiber, where the obtained results show the great potential of the FOPA for the optical communication system.
STEAM CARRYUNDER MEASUREMENT BY MEANS OF TWO-PHASE PUMP PERFORMANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemi, R.O.; Steamer, A.G.
1960-10-01
Pump tests were conducted at the Moss Landing Steam Separation Facility at operating pressures of 600 and 1000 psig to provide a method for determining the rate of steam carryunder. Pump power input and head were measured as functions of water flow and steam flow to the pump suction. The pump tested had a rated flow of 1700 gpm and a rated head of 148 feet. It was found that in this facility, steam carryander can be measured to 0.1% by measuring the recirculating water pump input power and Pump head. (auth)
RF rectifiers for EM power harvesting in a Deep Brain Stimulating device.
Hosain, Md Kamal; Kouzani, Abbas Z; Tye, Susannah; Kaynak, Akif; Berk, Michael
2015-03-01
A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.
Coronal heating by stochastic magnetic pumping
NASA Technical Reports Server (NTRS)
Sturrock, P. A.; Uchida, Y.
1980-01-01
Recent observational data cast serious doubt on the widely held view that the Sun's corona is heated by traveling waves (acoustic or magnetohydrodynamic). It is proposed that the energy responsible for heating the corona is derived from the free energy of the coronal magnetic field derived from motion of the 'feet' of magnetic field lines in the photosphere. Stochastic motion of the feet of magnetic field lines leads, on the average, to a linear increase of magnetic free energy with time. This rate of energy input is calculated for a simple model of a single thin flux tube. The model appears to agree well with observational data if the magnetic flux originates in small regions of high magnetic field strength. On combining this energy input with estimates of energy loss by radiation and of energy redistribution by thermal conduction, we obtain scaling laws for density and temperature in terms of length and coronal magnetic field strength.
Peak expiratory flow profiles delivered by pump systems. Limitations due to wave action.
Miller, M R; Jones, B; Xu, Y; Pedersen, O F; Quanjer, P H
2000-06-01
Pump systems are currently used to test the performance of both spirometers and peak expiratory flow (PEF) meters, but for certain flow profiles the input signal (i.e., requested profile) and the output profile can differ. We developed a mathematical model of wave action within a pump and compared the recorded flow profiles with both the input profiles and the output predicted by the model. Three American Thoracic Society (ATS) flow profiles and four artificial flow-versus-time profiles were delivered by a pump, first to a pneumotachograph (PT) on its own, then to the PT with a 32-cm upstream extension tube (which would favor wave action), and lastly with the PT in series with and immediately downstream to a mini-Wright peak flow meter. With the PT on its own, recorded flow for the seven profiles was 2.4 +/- 1.9% (mean +/- SD) higher than the pump's input flow, and similarly was 2.3 +/- 2.3% higher than the pump's output flow as predicted by the model. With the extension tube in place, the recorded flow was 6.6 +/- 6.4% higher than the input flow (range: 0.1 to 18.4%), but was only 1.2 +/- 2.5% higher than the output flow predicted by the model (range: -0.8 to 5.2%). With the mini-Wright meter in series, the flow recorded by the PT was on average 6.1 +/- 9.1% below the input flow (range: -23.8 to 2. 5%), but was only 0.6 +/- 3.3% above the pump's output flow predicted by the model (range: -5.5 to 3.9%). The mini-Wright meter's reading (corrected for its nonlinearity) was on average 1.3 +/- 3.6% below the model's predicted output flow (range: -9.0 to 1. 5%). The mini-Wright meter would be deemed outside ATS limits for accuracy for three of the seven profiles when compared with the pump's input PEF, but this would be true for only one profile when compared with the pump's output PEF as predicted by the model. Our study shows that the output flow from pump systems can differ from the input waveform depending on the operating configuration. This effect can be predicted with reasonable accuracy using a model based on nonsteady flow analysis that takes account of pressure wave reflections within pump systems.
The whale pump: marine mammals enhance primary productivity in a coastal basin.
Roman, Joe; McCarthy, James J
2010-10-11
It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×10(4) metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward "whale pump" played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities.
Ring-Down Spectroscopy for Characterizing a CW Raman Laser
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute
2007-01-01
.A relatively simple technique for characterizing an all-resonant intracavity continuous-wave (CW) solid-state Raman laser involves the use of ring-down spectroscopy. As used here, characterizing signifies determining such parameters as threshold pump power, Raman gain, conversion efficiency, and quality factors (Q values) of the pump and Stokes cavity modes. Heretofore, in order to characterize resonant-cavity-based Raman lasers, it has usually been necessary to manipulate the frequencies and power levels of pump lasers and, in each case, to take several sets of measurements. In cases involving ultra-high-Q resonators, it also has been desirable to lock pump lasers to resonator modes to ensure the quality of measurement data. Simpler techniques could be useful. In the present ring-down spectroscopic technique, one infers the parameters of interest from the decay of the laser out of its steady state. This technique does not require changing the power or frequency of the pump laser or locking the pump laser to the resonator mode. The technique is based on a theoretical analysis of what happens when the pump laser is abruptly switched off after the Raman generation reaches the steady state. The analysis starts with differential equations for the evolution of the amplitudes of the pump and Stokes electric fields, leading to solutions for the power levels of the pump and Stokes fields as functions of time and of the aforementioned parameters. Among other things, these solutions show how the ring-down time depends, to some extent, on the electromagnetic energy accumulated in the cavity. The solutions are readily converted to relatively simple equations for the parameters as functions of quantities that can be determined from measurements of the time-dependent power levels. For example, the steady-state intracavity conversion efficiency is given by G1/G2 1 and the threshold power is given by Pin(G2/G1)2, where Pin is the steady-state input pump power immediately prior to abrupt switch-off, G1 is the initial rate of decay of the pump field, and G2 is the final rate of decay of the pump field. Hence, it is possible to determine all the parameters from a single ring-down scan, provided that the measurements taken in that scan are sufficiently accurate and complete.
NASA Astrophysics Data System (ADS)
Eleiwi, Fadi; Laleg-Kirati, Taous Meriem
2018-06-01
An observer-based perturbation extremum seeking control is proposed for a direct-contact membrane distillation (DCMD) process. The process is described with a dynamic model that is based on a 2D advection-diffusion equation model which has pump flow rates as process inputs. The objective of the controller is to optimise the trade-off between the permeate mass flux and the energy consumption by the pumps inside the process. Cases of single and multiple control inputs are considered through the use of only the feed pump flow rate or both the feed and the permeate pump flow rates. A nonlinear Lyapunov-based observer is designed to provide an estimation for the temperature distribution all over the designated domain of the DCMD process. Moreover, control inputs are constrained with an anti-windup technique to be within feasible and physical ranges. Performance of the proposed structure is analysed, and simulations based on real DCMD process parameters for each control input are provided.
Electromagnetic Pumps for Liquid Metal-Fed Electric Thrusters
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Markusic, Thomas E.
2007-01-01
Prototype designs of two separate pumps for use in electric propulsion systems with liquid lithium and bismuth propellants are presented. Both pumps are required to operate at elevated temperatures, and the lithium pump must additionally withstand the corrosive nature of the propellant. Compatibility of the pump materials and seals with lithium and bismuth were demonstrated through proof-of-concept experiments followed by post-experiment visual inspections. The pressure rise produced by the bismuth pump was found to be linear with input current and ranged from 0-9 kPa for corresponding input current levels of 0-30 A, showing good quantitative agreement with theoretical analysis.
NASA Astrophysics Data System (ADS)
Ahmad, H.; Karim, M. R.; Rahman, B. M. A.
2018-03-01
A rigorous numerical investigation has been carried out through dispersion engineering of chalcogenide rib waveguide for near-infrared to mid-infrared ultraflat broadband supercontinuum generation in all-normal group-velocity dispersion regime. We propose a novel design of a 1-cm-long air-clad rib waveguide which is made from {Ge}_{11.5} {As}_{24} {Se}_{64.5} chalcogenide glass as the core with either silica or {Ge}_{11.5} {As}_{24} {S}_{64.5} chalcogenide glass as a lower cladding separately. A broadband ultraflat supercontinuum spanning from 1300 to 1900 nm could be generated when pumped at 1.55 μ {m} with a low input peak power of 100 W. Shifting the pump to 2 μ {m}, the supercontinuum spectra extended in the mid-infrared region up to 3400 nm with a moderate-input peak power of 500 W. To achieve further extension in mid-infrared, we excite our optimized rib waveguide in both the anomalous and all-normal dispersion pumping regions at 3.1 μ {m} with a largest input peak power of 3 kW. In the case of anomalous dispersion region pumping, numerical analysis shows that supercontinuum spectrum can be extended in the mid-infrared up to 10 μ {m}, although this contains high spectral amplitude fluctuations over the entire bandwidth which limits the supercontinuum sources in the field of high precision measurement applications. On the other hand, by optimizing a rib waveguide geometry for pumping in all-normal dispersion region, we are able to generate a smooth and flat-top coherent supercontinuum spectrum with a moderate bandwidth spanning the wavelength range 2-5.5 μ {m} with less than 5 dB spectral fluctuation over the entire output bandwidth. Our proposed design is highly suitable for making on-chip SC light sources for a variety of applications such as biomedical imaging, and environmental and industrial sensing in the mid-infrared region.
Capillary pumped loop body heat exchanger
NASA Technical Reports Server (NTRS)
Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)
1998-01-01
A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.
Locked-mode avoidance and recovery without momentum input
NASA Astrophysics Data System (ADS)
Delgado-Aparicio, L.; Rice, J. E.; Wolfe, S.; Cziegler, I.; Gao, C.; Granetz, R.; Wukitch, S.; Terry, J.; Greenwald, M.; Sugiyama, L.; Hubbard, A.; Hugges, J.; Marmar, E.; Phillips, P.; Rowan, W.
2015-11-01
Error-field-induced locked-modes (LMs) have been studied in Alcator C-Mod at ITER-Bϕ, without NBI fueling and momentum input. Delay of the mode-onset and locked-mode recovery has been successfully obtained without external momentum input using Ion Cyclotron Resonance Heating (ICRH). The use of external heating in-sync with the error-field ramp-up resulted in a successful delay of the mode-onset when PICRH > 1 MW, which demonstrates the existence of a power threshold to ``unlock'' the mode; in the presence of an error field the L-mode discharge can transition into H-mode only when PICRH > 2 MW and at high densities, avoiding also the density pump-out. The effects of ion heating observed on unlocking the core plasma may be due to ICRH induced flows in the plasma boundary, or modifications of plasma profiles that changed the underlying turbulence. This work was performed under US DoE contracts including DE-FC02-99ER54512 and others at MIT, DE-FG03-96ER-54373 at University of Texas at Austin, and DE-AC02-09CH11466 at PPPL.
NASA Astrophysics Data System (ADS)
Zhang, X. L.; Hu, S. B.; Shen, Z. Z.; Wu, S. P.; Li, K.
2016-05-01
In this paper, an attempt has been made for the calculation of an expression for the intrinsic law of input power which has not yet been given by current theory of Rotodynamic pump. By adequate recognition of the characteristics of non-inertial system within the rotating impeller, it is concluded that the input power consists of two power components, the first power component, whose magnitude increases with the increase of the flow rate, corresponds to radial velocity component, and the second power component, whose magnitude decreases with the increase of the flow rate, corresponds to tangential velocity component, therefore, the law of rise, basic levelness and drop of input power curves of centrifugal pump, mixed-flow pump and axial-flow pump can be explained reasonably. Through further analysis, the main ways for realizing non-overload of centrifugal pump are obtained, and its equivalent design factor is found out, the factor correlates with the outlet angle of leading face and back face of the blade, wrap angle, number of blades, outlet width, area ratio, and the ratio of operating flow rate to specified flow rate and so on. These are verified with actual example.
Performance Testing of a Prototypic Annular Linear Induction Pump for Fission Surface Power
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Pearson, J. B.; Schoenfeld, M. P.; Webster, K.; Houts, M. G.; Godfroy, T. J.; Bossard, J. A.
2010-01-01
Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal (NaK) through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 25 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head <1 to 90 kPa (<0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. While the pump was powered, the fluid responded immediately to changes in the input power level, but when power was removed altogether, there was a brief slow-down period before the fluid would come to rest. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.
Livestock water pumping with wind and solar power
USDA-ARS?s Scientific Manuscript database
Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...
Enhancement of laser power-efficiency by control of spatial hole burning interactions
NASA Astrophysics Data System (ADS)
Ge, Li; Malik, Omer; Türeci, Hakan E.
2014-11-01
The laser is an out-of-equilibrium nonlinear wave system where the interplay of the cavity geometry and nonlinear wave interactions mediated by the gain medium determines the self-organized oscillation frequencies and the associated spatial field patterns. In the steady state, a constant energy flux flows through the laser from the pump to the far field, with the ratio of the total output power to the input power determining the power-efficiency. Although nonlinear wave interactions have been modelled and well understood since the early days of laser theory, their impact on the power-efficiency of a laser system is poorly understood. Here, we show that spatial hole burning interactions generally decrease the power-efficiency. We then demonstrate how spatial hole burning interactions can be controlled by a spatially tailored pump profile, thereby boosting the power-efficiency, in some cases by orders of magnitude.
Kwon, Osung; Ra, Young-Sik; Kim, Yoon-Ho
2009-07-20
Coherence properties of the photon pair generated via spontaneous parametric down-conversion pumped by a multi-mode cw diode laser are studied with a Mach-Zehnder interferometer. Each photon of the pair enters a different input port of the interferometer and the biphoton coherence properties are studied with a two-photon detector placed at one output port. When the photon pair simultaneously enters the interferometer, periodic recurrence of the biphoton de Broglie wave packet is observed, closely resembling the coherence properties of the pump diode laser. With non-zero delays between the photons at the input ports, biphoton interference exhibits the same periodic recurrence but the wave packet shapes are shown to be dependent on both the input delay as well as the interferometer delay. These properties could be useful for building engineered entangled photon sources based on diode laser-pumped spontaneous parametric down-conversion.
Stable nonlinear Mach-Zehnder fiber switch
Digonnet, Michel J. F.; Shaw, H. John; Pantell, Richard H.; Sadowski, Robert W.
1999-01-01
An all-optical fiber switch is implemented within a short Mach-Zehnder interferometer configuration. The Mach-Zehnder switch is constructed to have a high temperature stability so as to minimize temperature gradients and other thermal effects which result in undesirable instability at the output of the switch. The Mach-Zehnder switch of the preferred embodiment is advantageously less than 2 cm in length between couplers to be sufficiently short to be thermally stable, and full switching is accomplished by heavily doping one or both of the arms between the couplers so as to provide a highly nonlinear region within one or both of the arms. A pump input source is used to affect the propagation characteristics of one of the arms to control the output coupling ratio of the switch. Because of the high nonlinearity of the pump input arm, low pump powers can be used, thereby alleviating difficulties and high cost associated with high pump input powers.
Application of a neural network as a potential aid in predicting NTF pump failure
NASA Technical Reports Server (NTRS)
Rogers, James L.; Hill, Jeffrey S.; Lamarsh, William J., II; Bradley, David E.
1993-01-01
The National Transonic Facility has three centrifugal multi-stage pumps to supply liquid nitrogen to the wind tunnel. Pump reliability is critical to facility operation and test capability. A highly desirable goal is to be able to detect a pump rotating component problem as early as possible during normal operation and avoid serious damage to other pump components. If a problem is detected before serious damage occurs, the repair cost and downtime could be reduced significantly. A neural network-based tool was developed for monitoring pump performance and aiding in predicting pump failure. Once trained, neural networks can rapidly process many combinations of input values other than those used for training to approximate previously unknown output values. This neural network was applied to establish relationships among the critical frequencies and aid in predicting failures. Training pairs were developed from frequency scans from typical tunnel operations. After training, various combinations of critical pump frequencies were propagated through the neural network. The approximated output was used to create a contour plot depicting the relationships of the input frequencies to the output pump frequency.
Price, G.W.
1954-08-01
A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.
NASA Astrophysics Data System (ADS)
Niu, Ran; Khodorov, Stanislav; Weber, Julian; Reinmüller, Alexander; Palberg, Thomas
2017-11-01
Micro-fluidic pumps as well as artificial micro-swimmers are conveniently realized exploiting phoretic solvent flows based on local gradients of temperature, electrolyte concentration or pH. We here present a facile micro-photometric method for monitoring pH gradients and demonstrate its performance and scope on different experimental situations including an electro-osmotic pump and modular micro-swimmers assembled from ion exchange resin beads and polystyrene colloids. In combination with the present microscope and DSLR camera our method offers a 2 μm spatial resolution at video frame rate over a field of view of 3920 × 2602 μm2. Under optimal conditions we achieve a pH-resolution of 0.05 with about equal contributions from statistical and systematical uncertainties. Our quantitative micro-photometric characterization of pH gradients which develop in time and reach out several mm is anticipated to provide valuable input for reliable modeling and simulations of a large variety of complex flow situations involving pH-gradients including artificial micro-swimmers, microfluidic pumping or even electro-convection.
Ideal photon number amplifier and duplicator
NASA Technical Reports Server (NTRS)
Dariano, G. M.
1992-01-01
The photon number-amplification and number-duplication mechanism are analyzed in the ideal case. The search for unitary evolutions leads to consider also a number-deamplification mechanism, the symmetry between amplification and deamplification being broken by the integer-value nature of the number operator. Both transformations, amplification and duplication, need an auxiliary field which, in the case of amplification, turns out to be amplified in the inverse way. Input-output energy conservation is accounted for using a classical pump or through frequency-conversion of the fields. Ignoring one of the fields is equivalent to considering the amplifier as an open system involving entropy production. The Hamiltonians of the ideal devices are given and compared with those of realistic systems.
Heat transfer in an evaporation-condensation system in simulated weightlessness conditions
NASA Astrophysics Data System (ADS)
Bologa, M. K.; Grosu, F. P.; Kozhevnikov, I. V.; Motorin, O. V.; Polikarpov, A. A.
2017-10-01
The process of heat transfer in an evaporation-condensation system (ECS) at circulation of dielectric liquid in a closed thermoelectrohydrodynamic (TEHD) loop consisting of an evaporator, a condenser and electrohydrodynamic (EHD) pump for pumping of heat carrier, is considered. Previously, the authors studied the dependence of heat transfer on the angle of rotation of TEHD loop in a vertical plane. The report contains the results of studies of heat transfer at electrohydrodynamic pumping of the heat carrier (8% solution of acetone in Freon 113) in the condenser area by means of EHD pump of “cone-cone” type. All elements of the ECS are arranged in a horizontal plane and the heat transfer from the heater to the condenser without EHD pumping is impossible. A pulsating heat carrier flow mode, depending on the heat input and the voltage applied to the pump, takes place at EHD pumping. As the input power is decreasing the frequency of the coolant pulsations as well as the departure diameter and number of vapour bubbles are also decreasing. At some critical heat input the pulsations disappear and the transition from turbulent mode to the laminar one takes place causing the decrease of the heat transfer coefficient. The increase of the pumping flow rate by raising the voltage applied to the EHD pump, results in a partial suppression of boiling. The maximum intensification of heat transfer is reached at pulsation frequency of 1.25 Hz. The maximum heat flow from the heater was 4.2·104 W/m2. Graphical representation and the physical interpretation of the results, which reflect the essence of the process, are given.
NASA Astrophysics Data System (ADS)
Yoshida, Minori; Miyaji, Kousuke
2018-04-01
A start-up charge pump circuit for an extremely low input voltage (V IN) is proposed and demonstrated. The proposed circuit uses an inverter level shifter to generate a 2V IN voltage swing to the gate of both main NMOS and PMOS power transistors in a charge pump to reduce the channel resistance. The proposed circuit is fully implemented in a standard 0.18 µm CMOS process, and the measurement result shows that a minimum input voltage of 190 mV is achieved and output power increases by 181% compared with the conventional forward-body-bias scheme at a 300 mV input voltage. The proposed scheme achieves a maximum efficiency of 59.2% when the input voltage is 390 mV and the output current is 320 nA. The proposed circuit is suitable as a start-up circuit in ultralow power energy harvesting power management applications to boost-up from below threshold voltage.
Tunable pulsed narrow bandwidth light source
Powers, Peter E.; Kulp, Thomas J.
2002-01-01
A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.
Performance of an Annular Linear Induction Pump with Applications to Space Nuclear Power Systems
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Schoenfeld, Michael; Pearson, J. Boise; Webster, Kenneth; Godfroy, Thomas; Adkins, Harold E., Jr.; Werner, James E.
2010-01-01
Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 125 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head less than 1 to 90 kPa (less than 0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.
Pump and Signal Taper for Airclad Fibers
2006-01-05
as follows: Crystal Fibre A/S will develop a taper/coupler solution to interface between a new polarization maintaining/polarizing amplifier fiber ...MM) pump combiner with a high NA air-clad output. The input side of the combiner is 7 individual MM pump delivery solid all- glass fibers . The NA of...pump combiner. MOTIVATION FINAL REPORT ITEM 0002 In a typical standard fused fiber coupler a number of all- glass 0.22 NA pump
Demonstration of passive saturable absorber by utilizing MWCNT-ABS filament as starting material
NASA Astrophysics Data System (ADS)
Zuikafly, S. N. F.; Ahmad, F.; Ibrahim, M. H.; Latif, A. A.; Harun, S. W.
2017-06-01
This work demonstrated a stable passively Q-switched laser with the employment MWCNTs dispersed in acrylonitrile butadiene styrene (ABS) resin (MWCNTs-ABS) based filament as passive saturable absorber. The simple fabrication process of the SA is further explained, started from the process of extruding the filament through a 3D printer nozzle at 210 °C to reduce the diameter from 1.75 mm to 200 μm. It is then weighed to about 25 mg and mixed with 1 ml acetone before sonicated for 5 minutes to dissolve the ABS. The resultant MWCNTs-acetone suspension is dropped on a glass slide to be characterized using Field-Emission Scanning Electron Microscope (FESEM) and Raman spectroscopy. It is also drop-casted on the end of a fiber ferrule to be integrated in the laser cavity. The proposed work revealed that the laser oscillated at about 1558 nm with threshold input pump power of 22.54 mW and maximum input pump power of 108.8 mW. The increase in pump power resulted in the increase in repetition rate where the pulse train increases from 8.96 kHz to 39.34 kHz while the pulse width decreases from 33.58 μs to 5.14 μs. The generated pulsed laser yields a maximum of 1.01 mW and 5.53 nJ of peak power and pulse energy respectively. The signal-to-noise ratio of 40 dB indicates that the generated pulse is stable.
NASA Astrophysics Data System (ADS)
Chen, Jing; Qiu, Xiaojie; Yin, Cunyi; Jiang, Hao
2018-02-01
An efficient method to design the broadband gain-flattened Raman fiber amplifier with multiple pumps is proposed based on least squares support vector regression (LS-SVR). A multi-input multi-output LS-SVR model is introduced to replace the complicated solving process of the nonlinear coupled Raman amplification equation. The proposed approach contains two stages: offline training stage and online optimization stage. During the offline stage, the LS-SVR model is trained. Owing to the good generalization capability of LS-SVR, the net gain spectrum can be directly and accurately obtained when inputting any combination of the pump wavelength and power to the well-trained model. During the online stage, we incorporate the LS-SVR model into the particle swarm optimization algorithm to find the optimal pump configuration. The design results demonstrate that the proposed method greatly shortens the computation time and enhances the efficiency of the pump parameter optimization for Raman fiber amplifier design.
Fluidic angular velocity sensor
NASA Technical Reports Server (NTRS)
Berdahl, C. M. (Inventor)
1986-01-01
A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.
Modeling of SBS Phase Conjugation in Multimode Step Index Fibers
2008-03-01
cavity or in an external amplifier. Since pumping is never a perfectly efficient process, some heat will be introduced, and for very high pump powers...modes it supports, and the incident pump power. While theoretical investigations of SBS PCMs have been conducted by a num- ber of authors, the model...predictions about the phase conjugate fidelity that could be expected from a given pump intensity input coupled into a specific fiber. A numerical
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping.
Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung
2014-07-01
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies.
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping
Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S.; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung
2014-01-01
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies. PMID:25379101
Effect of subsurface heterogeneity on free-product recovery from unconfined aquifers
NASA Astrophysics Data System (ADS)
Kaluarachchi, Jagath J.
1996-03-01
Free-product record system designs for light-hydrocarbon-contaminated sites were investigated to evaluate the effects of subsurface heterogeneity using a vertically integrated three-phase flow model. The input stochastic variable of the areal flow analysis was the log-intrinsic permeability and it was generated using the Turning Band method. The results of a series of hypothetical field-scale simulations showed that subsurface heterogeneity has a substantial effect on free-product recovery predictions. As the heterogeneity increased, the recoverable oil volume decreased and the residual trapped oil volume increased. As the subsurface anisotropy increased, these effects together with free- and total-oil contaminated areas were further enhanced. The use of multiple-stage water pumping was found to be insignificant compared to steady uniform pumping due to reduced recovery efficiency and increased residual oil volume. This observation was opposite to that produced under homogeneous scenarios. The effect of subsurface heterogeneity was enhanced at relatively low water pumping rates. The difference in results produced by homogeneous and heterogeneous simulations was substantial, indicating greater attention should be paid in modeling free-product recovery systems with appropriate subsurface heterogeneity.
Small Scale Irrigation within Water, Energy and Food Nexus Framework in Ethiopia.
NASA Astrophysics Data System (ADS)
Gerik, T.; Worqlul, A. W.; Yihun, D.; Bizimana, J. C.; Jeong, J.; Schmitter, P.; Srinivasan, R.; Richardson, J. W.; Clark, N.
2017-12-01
This study presents the nexus of food, energy and water framework in the context of small scale irrigation for vegetable production during the dry season in an irrigated agriculture system in Ethiopia. The study is based on detailed data collected in three sites of the Innovation Lab for Small Scale Irrigation (ILSSI) project in Ethiopia. The sites were Robit, Dangishta and Lemo and detailed field data was collected in 18 households in each site. The field data collected includes crop management (such as irrigation amount and dates, fertilizer rates, tillage practices, irrigation technologies, etc.) and agricultural production (crop yield, biomass, etc.) on tomato, onion and cabbage during the dry season. Four different water lifting technologies - namely rope with pulley and bucket, rope and washer pump, solar pump and motor pump - were used for water withdrawal from shallow groundwater wells. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) models were used in an integrated manner to assess water resource potential and develop water use efficiency of vegetables, which is a relationship between amount of water applied and vegetable yield. The water use efficiency for each vegetable crops were translated into energy requirement as pumping hours and potential irrigable areas for the water lifting technologies. This integrated approach was found useful to optimize water and energy use for sustainable food production using small scale irrigation. The holistic approach will not only provide a significant contribution to achieving food self-sufficiency, but will also be effective for optimizing agricultural input. Keyword: small scale irrigation, integrated modeling, water lifting technology, East Africa
Carey, A.E.; Prudic, David E.
1996-01-01
Documentation is provided of model input and sample output used in a previous report for analysis of ground-water flow and simulated pumping scenarios in Paradise Valley, Humboldt County, Nevada.Documentation includes files containing input values and listings of sample output. The files, in American International Standard Code for Information Interchange (ASCII) or binary format, are compressed and put on a 3-1/2-inch diskette. The decompressed files require approximately 8.4 megabytes of disk space on an International Business Machine (IBM)- compatible microcomputer using the MicroSoft Disk Operating System (MS-DOS) operating system version 5.0 or greater.
Selective Emitter Pumped Rare Earth Laser
NASA Technical Reports Server (NTRS)
Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)
2001-01-01
A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.
NASA Technical Reports Server (NTRS)
Schaub, J. D.; Koenig, S. C.; Schroeder, M. J.; Ewert, D. L.; Drew, G. A.; Swope, R. D.; Convertino, V. A. (Principal Investigator)
1999-01-01
An in vitro pulsatile pump flow system that is capable of producing physiologic pressures and flows in a mock circulatory system tuned to reproduce the first nine harmonics of the input impedance of a rhesus monkey was developed and tested. The system was created as a research tool for evaluating cardiovascular function and for the design, testing, and evaluation of electrical-mechanical cardiovascular models and chronically implanted sensors. The system possesses a computerized user interface for controlling a linear displacement pulsatile pump in a controlled flow loop format to emulate in vivo cardiovascular characteristics. Evaluation of the pump system consisted of comparing its aortic pressure and flow profiles with in vivo rhesus hemodynamic waveforms in the time and frequency domains. Comparison of aortic pressure and flow data between the pump system and in vivo data showed good agreement in the time and frequency domains, however, the pump system produced a larger pulse pressure. The pump system can be used for comparing cardiovascular parameters with predicted cardiovascular model values and for evaluating such items as vascular grafts, heart valves, biomaterials, and sensors. This article describes the development and evaluation of this feedback controlled cardiovascular dynamics simulation modeling system.
NASA Astrophysics Data System (ADS)
Bartoli, G. L.; Studer, A. S.; Martinez Garcia, A.; Haug, G. H.
2011-12-01
The Bering Sea is one of the major sink of atmospheric CO2 today, due to the efficiency of its biological pump, despite a limitation by iron. Here we present records of iron fertilization by aeolian dust deposition (n-alkane concentration) and phytoplankton nutrient consumption (diatom-bound δ15N record) over the last 3.5 Myrs in the southwestern Bering Sea at Site U1341 drilled during IODP Expedition 323. During the Pliocene Epoch, when sea surface temperatures were 3-4°C warmer than today and sea-ice cover was reduced, the biological pump efficiency during glacial and interglacial stages was minimal, similar to Quaternary interglacials. Low iron deposition and weaker surface water stratification resulting in higher nutrient inputs contributed to reduce the biological pump efficiency until 1.5 Ma. After the intensification of glacial conditions in the Bering Sea and the increase in sea-ice cover and iron inputs, the biological pump efficiency progressively increased, reaching values similar to Quaternary glacials after the mid-Pleistocene transition.
GaAs laser diode pumped Nd:YAG laser
NASA Technical Reports Server (NTRS)
Conant, L. C.; Reno, C. W.
1974-01-01
A 1.5-mm by 3-cm neodymium-ion doped YAG laser rod has been side pumped using a GaAs laser diode array tuned to the 8680-A absorption line, achieving a multimode average output power of 120 mW for a total input power of 20 W to the final-stage laser diode drivers. The pumped arrangement was designed to take advantage of the high brightness of a conventional GaAs array as a linear source by introducing the pump light through a slit into a close-wrapped gold coated pump cavity. This cavity forms an integrating chamber for the pump light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frerichs, H.; Reiter, D.; Schmitz, O.
The impact of resonant magnetic perturbations (RMPs) on the plasma edge can be analyzed in detail by three dimensional computer simulations, which take the underlying magnetic field structure as input. Previously, the 'vacuum approximation' has been used to calculate the magnetic field structure although plasma response effects may result in a screening (or even an amplification) of the external perturbations. Simulation results for an ITER similar shape plasma at the DIII-D tokamak are presented for the full vacuum perturbation field and an ad hoc screening case in comparison to the unperturbed configuration. It is shown that the RMP induced helicalmore » patterns in the plasma edge and on the divertor target shrink once screening is taken into account. However, a flat temperature profile is still found in the 'open field line domain' inside the separatrix, while the 'density pump out effect' found in the vacuum RMP case is considerably weakened.« less
Thermomechanical piston pump development
NASA Technical Reports Server (NTRS)
Sabelman, E. E.
1971-01-01
A thermally powered reciprocating pump has been devised to replace or augment an electric pump for the transport of temperature-control fluid on the Thermoelectric Outer Planet Spacecraft (TOPS). The thermally powered pump operates cyclically by extracting heat energy from the fluid by means of a vapor-pressure expansion system and by using the heat to perform the mechanical work of pumping. A feasibility test unit has been constructed to provide an output of 7 cu in during a 10- to 100-second cycle. It operates with a fluid input temperature of 200 to 300 F and a heat sink temperature of 0 to 30 F.
Method and system for homogenizing diode laser pump arrays
Bayramian, Andrew James
2016-05-03
An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.
Method and system for homogenizing diode laser pump arrays
Bayramian, Andy J
2013-10-01
An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.
Ultra-long fiber Raman lasers: design considerations
NASA Astrophysics Data System (ADS)
Koltchanov, I.; Kroushkov, D. I.; Richter, A.
2015-03-01
In frame of the European Marie Currie project GRIFFON [http://astonishgriffon.net/] the usage of a green approach in terms of reduced power consumption and maintenance costs is envisioned for long-span fiber networks. This shall be accomplished by coherent transmission in unrepeatered links (100 km - 350 km) utilizing ultra-long Raman fiber laser (URFL)-based distributed amplification, multi-level modulation formats, and adapted Digital Signal Processing (DSP) algorithms. The URFL uses a cascaded 2-order pumping scheme where two (co- and counter-) ˜ 1365 nm pumps illuminate the fiber. The URFL oscillates at ˜ 1450 nm whereas amplification is provided by stimulated Raman scattering (SRS) of the ˜ 1365 nm pumps and the optical feedback is realized by two Fiber Bragg gratings (FBGs) at the fiber ends reflecting at 1450 nm. The light field at 1450 nm provides amplification for signal waves in the 1550 nm range due to SRS. In this work we present URFL design studies intended to characterize and optimize the power and noise characteristics of the fiber links. We use a bidirectional fiber model describing propagation of the signal, pump and noise powers along the fiber length. From the numerical solution we evaluate the on/off Raman gain and its bandwidth, the signal excursion over the fiber length, OSNR spectra, and the accumulated nonlinearities. To achieve best performance for these characteristics the laser design is optimized with respect to the forward/backward pump powers and wavelengths, input/output signal powers, reflectivity profile of the FBGs and other parameters.
Synchronization modulation of Na/K pumps on Xenopus oocytes
NASA Astrophysics Data System (ADS)
Liang, Pengfei; Mast, Jason; Chen, Wei
We developed a new technique named synchronization modulation to electrically synchronize and modulate the Na/K pump molecules by a specially designed oscillating electric field. This technique is based on the theory of energy-trap in quantum physics as well as the concept of electronic synchrotron accelerator. As a result, the Na-transports are all entrapped into the positive half-cycle of the applied electric field and consequently, all of the K-transports are entrapped into the negative half cycle of the field. To demonstrate the process of the pump synchronization and modulation, we use Xenopus oocytes as a platform and introduce two-electrode whole-cell voltage clamp in measurement of pump current. Practically, we first synchronize the pump molecules running at the same pace (rate and phase) by a specially designed oscillation electric field. Then, we carefully maintain the pump synchronization status and gradually change the field frequency (decrease and increase) to modulate the pump molecules to newer pumping rate. The result shows a separation of the inward K current from the outward Na current, and about 10 time increase of the total (inward plus outward) pump current from the net outward current from the random paced pump molecules. Also, the ratio of the modulated total pump current with synchronized total pump current is consistent with the ratio of their field frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Anand Kumar; Boyd, Robert W.
2010-01-15
We study the spatial coherence properties of the entangled two-photon field produced by parametric down-conversion (PDC) when the pump field is, spatially, a partially coherent beam. By explicitly treating the case of a pump beam of the Gaussian Schell-model type, we show that in PDC the spatial coherence properties of the pump field get entirely transferred to the spatial coherence properties of the down-converted two-photon field. As one important consequence of this study, we find that, for two-qubit states based on the position correlations of the two-photon field, the maximum achievable entanglement, as quantified by concurrence, is bounded by themore » degree of spatial coherence of the pump field. These results could be important by providing a means of controlling the entanglement of down-converted photons by tailoring the degree of coherence of the pump field.« less
NASA Astrophysics Data System (ADS)
Si, Liu-Gang; Guo, Ling-Xia; Xiong, Hao; Wu, Ying
2018-02-01
We investigate the high-order-sideband generation (HSG) in a hybrid cavity electro-photomechanical system in which an optical cavity is driven by two optical fields (a monochromatic pump field and a nanosecond Gaussian probe pulse with huge numbers of wave cycles), and at the same time a microwave cavity is driven by a monochromatic ac voltage bias. We show that even if the input powers of two driven optical fields are comparatively low the HSG spectra can be induced and enhanced, and the sideband plateau is extended remarkably with the power of the ac voltage bias increasing. It is also shown that the driven ac voltage bias has profound effects on the carrier-envelope-phase-dependent effects of the HSG in the hybrid cavity electro-photomechanical system. Our research may provide an effective way to control the HSG of optical fields by using microwave fields in cavity optomechanics systems.
In-situ Measurements of the Direction of Propagation of Pump Waves
NASA Astrophysics Data System (ADS)
James, H. G.; Bernhardt, P. A.; Leyser, T.; Siefring, C. L.
2017-12-01
In the course of an experiment to modify the ionosphere, the direction of pump wave propagation is affected by density gradients in the horizontal and vertical directions, fundamentally affecting wave-energy transport. Horizontal gradients on various scales may await a modification attempt as a preexisting state of the ionosphere and/or be changed by the deposition of heater radio-frequency energy. In the results from the Radio Receiver Instrument (RRI) in the enhanced Polar Outflow Probe (e-POP), we have recorded on the order of 100 flights over ionospheric heaters revealing a variety of processes that high-frequency pump waves experience in the ionosphere. E-POP flies on the Canadian satellite CASSIOPE in an elliptic (320 x 1400 km), highly-inclined (81°) orbit. High frequency measurements have been/are being made near SPEAR, HAARP, Sura, EISCAT Heating and Arecibo. Electromagnetic waves from ground-based heaters are detected by the two, orthogonal, 6-m dipoles on the RRI. The high input impedance of the RRI means that the dipoles act as voltage probes, from which the electric field of incoming waves can be simply computed. When combined with cold-magnetoplasma electric-field theory, the relationship of voltages on the two orthogonal dipoles is used to deduce the direction of arrival of an incoming wave in three dimensions. We illustrate the technique by its application to analysis of signals from different transmitters. These results show a variety of pump-wave propagation directions, indicating the complexity of density structure within which modification might take place. Such complexity illustrates the importance of three-dimensional models of density in the vicinity of modification.
Modeling and simulation of flow field in giant magnetostrictive pump
NASA Astrophysics Data System (ADS)
Zhao, Yapeng; Ren, Shiyong; Lu, Quanguo
2017-09-01
Recent years, there has been significant research in the design and analysis of giant magnetostrictive pump. In this paper, the flow field model of giant magnetostrictive pump was established and the relationship between pressure loss and working frequency of piston was studied by numerical simulation method. Then, the influence of different pump chamber height on pressure loss in giant magnetostrictive pump was studied by means of flow field simulation. Finally, the fluid pressure and velocity vector distribution in giant magnetostrictive pump chamber were simulated.
Controlled supercontinua via spatial beam shaping
NASA Astrophysics Data System (ADS)
Zhdanova, Alexandra A.; Shen, Yujie; Thompson, Jonathan V.; Scully, Marlan O.; Yakovlev, Vladislav V.; Sokolov, Alexei V.
2018-06-01
Recently, optimization techniques have had a significant impact in a variety of fields, leading to a higher signal-to-noise and more streamlined techniques. We consider the possibility for using programmable phase-only spatial optimization of the pump beam to influence the supercontinuum generation process. Preliminary results show that significant broadening and rough control of the supercontinuum spectrum in the visible region are possible without loss of input energy. This serves as a proof-of-concept demonstration that spatial effects can controllably influence the supercontinuum spectrum, leading to possibilities for utilizing supercontinuum power more efficiently and achieving excellent spectral control.
Rizzelli, Giuseppe; Iqbal, Md Asif; Gallazzi, Francesca; Rosa, Paweł; Tan, Mingming; Ania-Castañón, Juan Diego; Krzczanowicz, Lukasz; Corredera, Pedro; Phillips, Ian; Forysiak, Wladek; Harper, Paul
2016-12-12
Relative intensity noise transfer from the pump to the signal in 2nd-order ultra-long Raman laser amplifiers for telecommunications is characterized numerically and experimentally. Our results showcase the need for careful adjustment of the front FBG reflectivity and the relative contribution of forward pump power, and their impact on performance. Finally, our analysis is verified through a 10 × 30 GBaud DP-QPSK transmission experiment, showing a large Q factor penalty associated with the combination of high forward pumping and high reflectivities.
Electric field-decoupled electroosmotic pump for microfluidic devices.
Liu, Shaorong; Pu, Qiaosheng; Lu, Joann J
2003-09-26
An electric field-free electroosmotic pump has been constructed and its pumping rate has been measured under various experimental conditions. The key component of the pump is an ion-exchange membrane grounding joint that serves two major functions: (i) to maintain fluid continuity between pump channels and microfluidic conduit and (ii) to ground the solution in the microfluidic channel at the joint through an external electrode, and hence to decouple the electric field applied to the pump channels from the rest of the microfluidic system. A theoretical model has been developed to calculate the pumping rates and its validity has been demonstrated.
Design, manufacture, and test of coolant pump-motor assembly for Brayton power conversion system
NASA Technical Reports Server (NTRS)
Gabacz, L. E.
1973-01-01
The design, development, fabrication, and testing of seven coolant circulating pump-motor assemblies are discussed. The pump-motor assembly is driven by the nominal 44.4-volt, 400-Hz, 3-phase output of a nominal 56-volt dc input inverter. The pump-motor assembly will be used to circulate Dow Corning 200 liquid coolant for use in a Brayton cycle space power system. The pump-motor assembly develops a nominal head of 70 psi at 3.7 gpm with an over-all efficiency of 26 percent. The design description, drawings, photographs, reliability results, and developmental and acceptance test results are included.
Compact, high energy gas laser
Rockwood, Stephen D.; Stapleton, Robert E.; Stratton, Thomas F.
1976-08-03
An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-06-01
The Woods is a 30-home, high- performance, energy efficient sustainable community built by Habitat for Humanity (HFH). With Support from Tacoma Public Utilities, Washington State University (part of the Building America Partnership for Improved Residential Construction) is researching the energy performance of these homes and the ductless heat pumps (DHP) they employ. This project provides Building America with an opportunity to: field test HVAC equipment, ventilation system air flows, building envelope tightness, lighting, appliance, and other input data that are required for preliminary Building Energy Optimization (BEopt™) modeling and ENERGY STAR® field verification; analyze cost data from HFH and othermore » sources related to building-efficiency measures that focus on the DHP/hybrid heating system and heat recovery ventilation system; evaluate the thermal performance and cost benefit of DHP/hybrid heating systems in these homes from the perspective of homeowners; compare the space heating energy consumption of a DHP/electric resistance (ER) hybrid heating system to that of a traditional zonal ER heating system; conduct weekly "flip-flop tests" to compare space heating, temperature, and relative humidity in ER zonal heating mode to DHP/ER mode.« less
Arsenic Remediation Enhancement Through Chemical Additions to Pump and Treat Operations
NASA Astrophysics Data System (ADS)
Wovkulich, K.; Mailloux, B. J.; Stute, M.; Simpson, H. J.; Keimowitz, A. R.; Powell, A.; Lacko, A.; Chillrud, S. N.
2008-12-01
Arsenic is a contaminant found at more than 500 US Superfund sites. Since pump and treat technologies are widely used for remediation of contaminated groundwater, increasing the efficiency of contaminant removal at such sites should allow limited financial resources to clean up more sites. The Vineland Chemical Company Superfund site is extensively contaminated with arsenic after waste arsenic salts were stored and disposed of improperly for much of the company's 44 year manufacturing lifetime. Despite approximately eight years of pump and treat remediation, arsenic concentrations in the recovery wells can still be greater than 1000 ppb. The arsenic concentrations in the groundwater remain high because of slow desorption of arsenic from contaminated aquifer solids. Extrapolation of laboratory column experiments suggest that continuing the current groundwater remediation practice based on flushing ambient groundwater through the system may require on the order of hundreds of years to clean the site. However, chemical additions of phosphate or oxalic acid into the aquifer could decrease the remediation time scale substantially. Laboratory results from a soil column experiment using input of 10 mM oxalic acid suggest that site clean up of groundwater could be decreased to as little as four years. Pilot scale forced gradient field experiments will help establish whether chemical additions can be effective for increasing arsenic mobilization from aquifer solids and thus substantially decrease pump and treat clean up time.
Research and development of a heat-pump water heater. Volume 2. R and D task reports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunning, R.L.; Amthor, F.R.; Doyle, E.J.
1978-08-01
The heat pump water heater is a device that works much like a window air conditioner except that heat from the home is pumped into a water tank rather than to the outdoors. The objective established for the device is to operate with a Coefficient of Performance (COP) of 3 or, an input of one unit of electric energy would create three units of heat energy in the form of hot water. With such a COP, the device would use only one-third the energy and at one-third the cost of a standard resistance water heater. This Volume 2 contains themore » final reports of the three major tasks performed in Phase I. In Task 2, a market study identifies the future market and selects an initial target market and channel of distribution, all based on an analysis of the parameters affecting feasibility of the device and the factors that will affect its market acceptance. In the Task 3 report, the results of a design and test program to arrive at final designs of heat pumps for both new water heaters and for retrofitting existing water heaters are presented. In the Task 4 report, a plan for an extensive field demonstration involving use in actual homes is presented. Volume 1 contains a final summary report of the information in Volume 2.« less
Silicon micromachined pumps employing piezoelectric membrane actuation for microfluidic systems
NASA Astrophysics Data System (ADS)
Koch, Michael
Microsystems technology is a rapidly expanding area that comprises electronics, mechanics and optics. In this field, physical/chemical sensing, fluid handling and optical communication are emerging as potential markets. Microfluidic systems like an implantable insulin pump, a drug delivery system and a total chemical analysis system are currently being developed by academia and industry around the world. This project contributes to the area of microfluidics in that a novel thick-film-on-silicon membrane actuator has been developed to allow inexpensive mass production of micropumps. To date piezoelectric plates have been surface mounted onto a silicon membrane. This single chip fabrication method can now be replaced by screen printing thick piezoelectric layers onto 4 inch silicon substrates. Two different pump types have been developed. These are membrane pumps with either cantilever valves or diffuser/nozzle valves. Pump rates between 100 and 200 μl min-1 and backpressures up to 4 kPa have been achieved with these pumps. Along with the technology of micropumps, simulators have been developed. A novel coupled FEM-CFD solver was realised by a computer controlled coupling of two commercially available packages (ANSYS and CFX-Flow3D). The results of this simulator were in good agreement with measurements on micromachined cantilever valves. CFX- Flow3D was also used to successfully model the behaviour of the diffuser/nozzle valve. Finally, the pump has been simulated using a continuity equation. A behavioural dynamic extension of the cantilever valve was necessary to achieve better prediction of the pump rates for higher frequencies. As well, a common process has been developed for microfluidic devices like micromixers, particle counters and sorters as well as flow sensors. The micromixer has been tested already and achieves mixing for input pressures between 2 and 7 kPa. This agrees with simulations of the diffusive mixing with CFX-Flow3D. Together with the micropump, a combination of these devices allows future development of microfluidic systems for the medical and (bio)chemical market.
The Whale Pump: Marine Mammals Enhance Primary Productivity in a Coastal Basin
Roman, Joe; McCarthy, James J.
2010-01-01
It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×104 metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward “whale pump” played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities. PMID:20949007
A double-stage start-up structure to limit the inrush current used in current mode charge pump
NASA Astrophysics Data System (ADS)
Cong, Liu; Xinquan, Lai; Hanxiao, Du; Yuan, Chi
2016-06-01
A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range, fixed output and multimode operation is presented in this paper. As a widely utilized power source implement, a Li-battery is always used as the power supply for chips. Due to the internal resistance, a potential drop will be generated at the input terminal of the chip with an input current. A false shut down with a low supply voltage will happen if the input current is too large, leading to the degradation of the Li-battery's service life. To solve this problem, the inrush current is limited by introducing a new start-up state. All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process. The measurement results show that the inrush current can be limited below 1 A within all input supply ranges, and the power efficiency is higher than the conventional structure. Project supported by the National Natural Science Foundation of China (No. 61106026).
40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...
40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...
40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...
40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...
40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...
Status of Kilowatt-Class Stirling Power Conversion Using a Pumped NaK Loop for Thermal Input
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Geng, Steven M.; Robbie, Malcolm G.
2010-01-01
Free-piston Stirling power conversion has been identified as a viable option for potential Fission Surface Power (FSP) systems on the Moon and Mars. Proposed systems consist of two or more Stirling convertors, in a dual-opposed configuration, coupled to a low-temperature uranium-dioxide-fueled, liquid-metal-cooled reactor. To reduce developmental risks associated with liquid-metal loop integration, a test rig has been built to evaluate the performance of a pair of 1-kW free-piston Stirling convertors using a pumped sodium-potassium (NaK) loop for thermal energy input. Baseline performance maps have been generated at the Glenn Research Center (GRC) for these 1-kW convertors operating with an electric heat source. Each convertor was then retrofitted with a custom-made NaK heater head and integrated into a pumped NaK system at the Marshall Space Flight Center (MSFC). This paper documents baseline testing at GRC as well as the progress made in integrating the Stirling convertors into the pumped NaK loop.
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.
2010-01-01
As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.
2010-01-01
As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.
Centrifugal and Axial Pump Design and Off-Design Performance Prediction
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1995-01-01
A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.
NASA Astrophysics Data System (ADS)
Switzman, Harris; Coulibaly, Paulin; Adeel, Zafar
2015-01-01
Demand for freshwater in many dryland environments is exerting negative impacts on the quality and availability of groundwater resources, particularly in areas where demand is high due to irrigation or industrial water requirements to support dryland agricultural reclamation. Often however, information available to diagnose the drivers of groundwater degradation and assess management options through modeling is sparse, particularly in low and middle-income countries. This study presents an approach for generating transient groundwater model inputs to assess the long-term impacts of dryland agricultural land reclamation on groundwater resources in a highly data-sparse context. The approach was applied to the area of Wadi El Natrun in Northern Egypt, where dryland reclamation and the associated water use has been aggressive since the 1960s. Statistical distributions of water use information were constructed from a variety of sparse field and literature estimates and then combined with remote sensing data in spatio-temporal infilling model to produce the groundwater model inputs of well-pumping and surface recharge. An ensemble of groundwater model inputs were generated and used in a 3D groundwater flow (MODFLOW) of Wadi El Natrun's multi-layer aquifer system to analyze trends in water levels and water budgets over time. Validation of results against monitoring records, and model performance statistics demonstrated that despite the extremely sparse data, the approach used in this study was capable of simulating the cumulative impacts of agricultural land reclamation reasonably well. The uncertainty associated with the groundwater model itself was greater than that associated with the ensemble of well-pumping and surface recharge estimates. Water budget analysis of the groundwater model output revealed that groundwater recharge has not changed significantly over time, while pumping has. As a result of these trends, groundwater was estimated to be in a deficit of approximately 24 billion m3 (±15%) in 2011, compared to 1957. A significant trend in water level declines beginning in the 1990s that has been observed in monitoring records was evident in the model results and is directly attributed to abstraction.
The numerical simulation based on CFD of hydraulic turbine pump
NASA Astrophysics Data System (ADS)
Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.
2016-05-01
As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.
NASA Astrophysics Data System (ADS)
Anija, M.; Philip, Reji
2009-09-01
We report spectroscopic investigations of an ultrafast laser induced plasma generated in a planar water microjet. Plasma recombination emissions along with the spectral blueshift and broadening of the pump laser pulse contribute to the total emission. The laser pulses are of 100 fs duration, and the incident intensity is around 10 15 W/cm 2. The dominant mechanisms leading to plasma formation are optical tunnel ionization and collisional ionization. Spectrally resolved polarization measurements show that the high frequency region of the emission is unpolarized whereas the low frequency region is polarized. Results indicate that at lower input intensities the emission arises mainly from plasma recombinations, which is accompanied by a weak blueshift of the incident laser pulse. At higher input intensities strong recombination emissions are seen, along with a broadening and asymmetric spectral blueshift of the pump laser pulse. From the nature of the blueshifted laser pulse it is possible to deduce whether the rate of change of free electron density is a constant or variable within the pulse lifetime. Two input laser intensity regimes, in which collisional and tunnel ionizations are dominant respectively, have been thus identified.
Convergent strand array liquid pumping system
NASA Technical Reports Server (NTRS)
Collins, Earl R., Jr. (Inventor)
1989-01-01
A surface-tension liquid pumping system is provided by one or more arrays of converging solid monofilament fibers or metal wires (strands) spaced apart at an input end to gather liquid, and gathered close together at the opposite end where menisci forms between wetted strands to force liquid in the direction of convergence of the strands. The liquid pumping system is independent of gravity. It is illustrated as being used in a heat pump having a heating box to vaporize the liquid and a condensing chamber. Condensed liquid is returned by the pumping system to the heating box where it is again vaporized. A vapor tube carries the vapor to the condensing chamber. In that way, a closed system pumps heat from the heating box to the evaporating chamber and from there radiated to the atmosphere.
Ground coupled solar heat pumps: analysis of four options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, J.W.
Heat pump systems which utilize both solar energy and energy withdrawn from the ground are analyzed using a simplified procedure which optimizes the solar storage temperature on a monthly basis. Four ways of introducing collected solar energy to the system are optimized and compared. These include use of actively collected thermal input to the heat pump; use of collected solar energy to heat the load directly (two different ways); and use of a passive option to reduce the effective heating load.
Cladding pumped Yb-doped HOM power amplifier with high gain
NASA Astrophysics Data System (ADS)
Abedin, Kazi S.; Ahmad, Raja; DeSantolo, Anthony M.; Nicholson, Jeffrey W.; Westbrook, Paul S.; Headley, Clifford; DiGiovanni, David J.
2018-02-01
Higher-order mode (HOM) fibers have been engineered to allow propagation of linearly polarized symmetric modes LP0,N in a robust way. Compared with the fundamental mode LP(0,1), HOMs exhibits an effective area that can be larger by over two order magnitude, and thus propagating light in these modes could greatly suppress the effect of nonlinear effects. HOM fibers could also be doped with rare earth ions in order to amplify light propagating in these modes, which offers the enormous potential for generating high-intensity pulses. Excitation of HOM gain fiber using cladding pumping with multimode pump source is attractive for ytterbium based amplifiers, because of the availability of low-cost multimode pump diodes in the 975nm wavelength range. One problem associated with cladding pumping which leads to excitation of the large doped core (over 100 μm diameter) is that it could result in a large amount of amplifiedspontaneous- emission (ASE) noise, particularly when the input signal is weak. Optimization of amplifier design is critical in order to suppress ASE and achieve high gain and pump-to-signal conversion efficiency. We conducted numerical modeling of a cladding pumped HOM-amplifier, which revealed that this problem could be mitigated by using a relatively long gain-fiber that allowed reabsorption of the forward propagating ASE resulting in a further amplification of the signal. We demonstrate efficient amplification of a LP0,10 mode with an effective area 3140μm2 in an Yb-doped HOM amplifier cladding pumped at 975nm. We have successfully obtained a 20.2dB gain for 0.95 W 1064 nm input seed signal to more than 105W.
Polarization switch of four-wave mixing in a lawtunable fiber optical parametric oscillator.
Yang, Kangwen; Ye, Pengbo; Zheng, Shikai; Jiang, Jieshi; Huang, Kun; Hao, Qiang; Zeng, Heping
2018-02-05
We reported the simultaneous generation and selective manipulation of scalar and cross-phase modulation instabilities in a fiber optical parametric oscillator. Numerical and experimental results show independent control of parametric gain by changing the input pump polarization state. The resonant cavity enables power enhancement of 45 dB for the spontaneous sidebands, generating laser pulses tunable from 783 to 791 nm and 896 to 1005 nm due to the combination of four-wave mixing, cascaded Raman scattering and other nonlinear effects. This gain controlled, wavelength tunable, fiber-based laser source may find applications in the fields of nonlinear biomedical imaging and stimulated Raman spectroscopy.
Contributing recharge areas to water-supply wells at Wright-Patterson Air Force Base, Ohio
Sheets, R.A.
1994-01-01
Wright-Patterson Air Force Base, in southwestern Ohio, has operated three well fields--Area B, Skeel Road, and the East Well Fields--to supply potable water for consumption and use for base activities. To protect these well fields from contamination and to comply with the Ohio Wellhead Protection Plan, the Base is developing a wellhead-protection program for the well fields. A three-dimensional, steady-state ground-water-flow model was developed in 1993 to simulate heads in (1) the buried-valley aquifer system that is tapped by the two active well fields, and in (2) an upland bedrock aquifer that may supply water to the wells. An advective particle-tracking algorithm that requires estimated porosities and simulated heads was used to estimate ground-water-flow pathlines and traveltimes to the active well fields. Contributing recharge areas (CRA's)--areas on the water table that contribute water to a well or well field--were generated for 1-, 5-, and 10-year traveltimes. Results from the simulation and subsequent particle tracking indicate that the CRA's for the Skeel Road Well Fields are oval and extend north- ward, toward the Mad River, as pumping at the well field increases. The sizes of the 1-, 5-, and 10-year CRA's of Skeel Road Well Field, under maximum pumping conditions, are approximately 0.5, 1.5 and 3.2 square miles, respectively. The CRA's for the Area B Well Field extend to the north, up the Mad River Valley; as pumping increases at the well field, the CRA's extend up the Mad River Valley under Huffman Dam. The sizes of the 1-, 5-, and 10-year CRA's of Area B Well Field, under maximum pumping conditions, are approximately 0.1, 0.5, and 0.9 square miles, respectively. The CRA's for the East Well Field are affected by nearby streams under average pumping conditions. The sizes of the 1-, 5-, and 10-year CRA's of the East Well Field, under maximum pumping conditions, are approximately 0.2, 1.2, and 2.4 square miles, respectively. However, as pumping increases at the East Well Field, the ground-water-flow model develops numerical instabilities which limit the usefulness of the CRA's. Sensitivity analyses show that variation of horizontal hydraulic conductivity and porosity in the upland bedrock does not affect the CRA's of the Skeel Road Well Field but does have a slight affect on the CRA's of the Area B Well Field. Uncertainties in horizontal hydraulic conductivity and porosity of the valley-train deposits have the largest affect on the size and shape of the CRA's of the Skeel Road Well Field. The position and size of the CRA's of Area B are probably also controlled by induced infiltration from the nearby Mad River and by pumping at the Rohrer's Island Well Field. However, uncertainty in riverbed conductance, which affects induced infiltration, does not significantly affect the size and shape of these CRA's. Pumping centers not included in the ground-water-flow model do not appreciably affect the CRA's of the Area B and Skeel Road Well Fields under normal pumping. The pumping centers, located near Huffman Dam, will probably limit the northern extent of teh CRA's of Area B Well Field under greater than normal pumping conditions. The CRA's of the East Well Field will propagate farther to the northeast and southwest as a result of the increased pumping-related stress to the aquifer system.
Stimulated Brillouin scattering in the field of a two-dimensionally localized pumping wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solikhov, D. K., E-mail: davlat56@mail.ru; Dvinin, S. A., E-mail: dvinin@phys.msu.ru
2016-06-15
Stimulated Brillouin scattering of electromagnetic waves in the field of a two-dimensionally localized pump wave at arbitrary scattering angles in the regime of forward scattering is analyzed. Spatial variations in the amplitudes of interacting waves are studied for different values of the pump field and different dimensions of the pump wave localization region. The intensity of scattered radiation is determined as a function of the scattering angle and the dimensions of the pump wave localization region. It is shown that the intensity increases with increasing scattering angle.
Solid-state laser pumping with a planar compound parabolic concentrator.
Panteli, D V; Pani, B M; Beli, L Z
1997-10-20
A novel solid-state laser-pumping scheme is proposed that combines a reflective lamp chamber and a compound parabolic concentrator (CPC) as a light guide. The CPC is made of a transparent material of high refractive index, and light is guided by the total internal reflection, with drastically reduced reflection losses. Material is chosen so that the absorption losses are minimized in the pumping wavelength range. The lamp chamber is designed with the principles of nonimaging optics, which ensures that the radiation is efficiently transferred from the lamp to the input aperture of the CPC. The pumping efficiency was first estimated theoretically, which gave us enough justification for the more accurate calculations with ray tracing. Single as well as multiple pumping cavities are discussed. New pumping geometry results in significantly increased pumping efficiency compared with conventional geometries. Also the lamp and the laser rod are separated, leading to reduced thermal load. We found that the proposed pumping method is also applicable to diode-pumped lasers.
A micro surface tension pump (MISPU) in a glass microchip.
Peng, Xing Yue Larry
2011-01-07
A non-membrane micro surface tension pump (MISPU) was fabricated on a glass microchip by one-step glass etching. It needs no material other than glass and is driven by digital gas pressure. The MISPU can be seen working like a piston pump inside the glass microchip under a microscope. The design of the valves (MISVA) and pistons (MISTON) was based on the surface tension theory of the micro surface tension alveolus (MISTA). The digital gas pressure controls the moving gas-liquid interface to open or close the input and output MISVAs to refill or drive the MISTON for pumping a liquid. Without any moving parts, a MISPU is a kind of long-lasting micro pump for micro chips that does not lose its water pumping efficiency over a 20-day period. The volumetric pump output varied from 0 to 10 nl s(-1) when the pump cycle time decreased from 5 min to 15 s. The pump head pressure was 1 kPa.
NASA Technical Reports Server (NTRS)
Brooks, R. L. (Inventor)
1979-01-01
A multipoint fluid sample collection and distribution system is provided wherein the sample inputs are made through one or more of a number of sampling valves to a progressive cavity pump which is not susceptible to damage by large unfiltered particles. The pump output is through a filter unit that can provide a filtered multipoint sample. An unfiltered multipoint sample is also provided. An effluent sample can be taken and applied to a second progressive cavity pump for pumping to a filter unit that can provide one or more filtered effluent samples. The second pump can also provide an unfiltered effluent sample. Means are provided to periodically back flush each filter unit without shutting off the whole system.
Uncooled pump combiners for fiber laser and amplifier systems
NASA Astrophysics Data System (ADS)
Bansal, L.; Sienkowski, R.; Neale, C.; Mann, J.; Headley, C.
2018-02-01
In this work we demonstrate a high transmission pump combiner that can operate uncooled at a maximum power of 400W for a continuous duration of 100hrs. The 7x1 pump combiner has seven 105/125 μm diameter 0.22 NA input pump fibers and a 247 μm diameter and 0.22 NA glass clad output fiber. The combiner has a high, 99%, pump transmission efficiency. These devices withstand without failure, a series of environmental stress tests, namely Thermal Cycling (-40 to 85ºC) and Damp Humidity (85ºC/85RH). These tests are conducted to uncover any latent defects in the device structure. The combiner's also survive an elevated temperature of 75ºC at a power of 365W for duration of 5hrs, without any noticeable change in pump transmission.
Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump
NASA Astrophysics Data System (ADS)
Pan, X. W.; Y Pan, Z.; Huang, D.; Shen, Z. H.
2013-12-01
In order to avoid resonance of a mixed-flow waterjet pump at run time and calculate the stress and deformation of the pump rotor in the flow field, a one-way fluid structure interaction method was applied to simulate the pump rotor using ANSYS CFX and ANSYS Workbench software. The natural frequencies and mode shapes of the pump rotor in the air and in the flow field were analyzed, and the stress and deformation of the impeller were obtained at different flow rates. The obtained numerical results indicated that the mode shapes were similar both in the air and in the flow field, but the pump rotor's natural frequency in the flow field was slightly smaller than that in the air; the difference of the pump rotor's natural frequency varied lightly at different flow rates, and all frequencies at different flow rates were higher than the safe frequency, the pump rotor under the effect of prestress rate did not occur resonance; The maximum stress was on the blade near the hub and the maximum deformation on the blade tip at different flow rates.
Exciton Absorption in Semiconductor Quantum Wells Driven by a Strong Intersubband Pump Field
NASA Technical Reports Server (NTRS)
Liu, Ansheng; Ning, Cun-Zheng
1999-01-01
Optical interband excitonic absorption of semiconductor quantum wells (QW's) driven by a coherent pump field is investigated based on semiconductor Bloch equations. The pump field has a photon energy close to the intersubband spacing between the first two conduction subbands in the QW's. An external weak optical field probes the interband transition. The excitonic effects and pump-induced population redistribution within the conduction subbands in the QW system are included. When the density of the electron-hole pairs in the QW structure is low, the pump field induces an Autler-Townes splitting of the exciton absorption spectrum. The split size and the peak positions of the absorption doublet depend not only on the pump frequency and intensity but also on the carrier density. As the density of the electron-hole pairs is increased, the split contrast (the ratio between the maximum and minimum values) is decreased because the exciton effect is suppressed at higher densities due to the many-body screening.
An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump
NASA Technical Reports Server (NTRS)
Lindley, B. K.; Martinson, A. R.
1971-01-01
The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.
NASA Astrophysics Data System (ADS)
Mojahedi, Mahdi; Shekoohinejad, Hamidreza
2018-02-01
In this paper, temperature distribution in the continuous and pulsed end-pumped Nd:YAG rod crystal is determined using nonclassical and classical heat conduction theories. In order to find the temperature distribution in crystal, heat transfer differential equations of crystal with consideration of boundary conditions are derived based on non-Fourier's model and temperature distribution of the crystal is achieved by an analytical method. Then, by transferring non-Fourier differential equations to matrix equations, using finite element method, temperature and stress of every point of crystal are calculated in the time domain. According to the results, a comparison between classical and nonclassical theories is represented to investigate rupture power values. In continuous end pumping with equal input powers, non-Fourier theory predicts greater temperature and stress compared to Fourier theory. It also shows that with an increase in relaxation time, crystal rupture power decreases. Despite of these results, in single rectangular pulsed end-pumping condition, with an equal input power, Fourier theory indicates higher temperature and stress rather than non-Fourier theory. It is also observed that, when the relaxation time increases, maximum amounts of temperature and stress decrease.
System for detecting and limiting electrical ground faults within electrical devices
Gaubatz, Donald C.
1990-01-01
An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.
Pinotti, M; Paone, N
1996-06-01
A laser Doppler anemometer (LDA) was used to obtain the mean velocity and the Reynolds stress fields in the inner channels of a well-known centrifugal vaneless pump (Bio-pump). Effects of the excessive flow resistance against which an occlusive pump operates in some surgical situations, such as cardiopulmonary bypass, are illustrated. The velocity vector field obtained from LDA measurements reveals that the constraint-forced vortex provides pumping action in a restricted area in the core of the pump. In such situations, recirculating zones dominate the flow and consequently increase the damage to blood cells and raise the risk of thrombus formation in the device. Reynolds normal and shear stress fields were obtained in the entry flow for the channel formed by two rotating cones to illustrate the effects of flow disturbances on the potential for blood cell damage.
Pinotti, Marcos; Paone, Nicola
1996-05-01
A laser Doppler anemometer (LDA) was used to obtain the mean velocity and the Reynolds stress fields in the inner channels of a well-known centrifugal vaneless pump (Bio-pump). Effects of the excessive flow resistance against which an occlusive pump operates in some surgical situations, such as cardiopulmonary bypass, are illustrated. The velocity vector field obtained from LDA measurements reveals that the constraint-forced vortex provides pumping action in a restricted area in the core of the pump. In such situations, recirculating zones dominate the flow and consequently increase the damage to blood cells and raise the risk of thrombus formation in the device. Reynolds normal and shear stress fields were obtained in the entry flow for the channel formed by two rotating cones to illustrate the effects of flow disturbances on the potential for blood cell damage. © 1996 International Society for Artificial Organs.
Powertrain with powersplit pump input and method of use thereof
Johnson, Kris W.; Rose, Charles E.
2009-04-28
A powertrain includes an engine operatively connected to a primary power consuming device to transmit power thereto. The powertrain also includes a motor and a pump. The power output of the motor is independent of the power output of the engine. An epicyclic geartrain includes first, second and third members. The first member is operatively connected to the engine to receive power therefrom. The second member is operatively connected to the motor to receive power therefrom. The third member is operatively connected to the pump to transmit power thereto.
NASA Astrophysics Data System (ADS)
Yang, Weiqiang; Yin, Ke; Zhang, Bin; Xue, Guanghui; Hou, Jing
2014-07-01
We have experimentally investigated several hundred kHz repetition rate 1,550-nm nanosecond pulses amplification in Er-Yb co-doped fiber amplifier (EYDFA). The experimental setup has three stage fiber amplifiers. At the output of the second stage EYDFA, Yb3+ ions induced amplified spontaneous emission (Yb-ASE) is not observed owing to the low pump power. In the third stage EYDFA, a simultaneously seeded 1,064-nm continuous-wave laser is used to control Yb-ASE. Without any additional 1,064-nm signal, significantly backward Yb-ASE which caused loss-induced heat accumulation at the input port of the pump combiner can be observed. The monitored temperature at the input port of the pump combiner rapidly grows from 30 to 80 °C when the pump power is turned from 20 to 32 W. When a 196-mW forward 1,064-nm laser is added, the monitored backward Yb-ASE power is significantly declined, and the monitored temperature is kept below 35 °C. But, the additional signal caused a large power fraction at 1,064 nm in the output laser. In our experiment at the maximum pump power of 48.5 W, the total output power is 20 W with ~6.4-W 1,550-nm pulsed laser and ~13-W 1,064-nm continuous-wave laser.
Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields
NASA Astrophysics Data System (ADS)
Kim, S. H.; Hashi, S.; Ishiyama, K.
2011-01-01
This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.
Mean Line Pump Flow Model in Rocket Engine System Simulation
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Lavelle, Thomas M.
2000-01-01
A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.
Electromagnetic Pumps for Conductive-Propellant Feed Systems
NASA Technical Reports Server (NTRS)
Markusic, Thomas E.; Polzin, Kurt A.; Dehoyos, Amado
2005-01-01
Prototype electromagnetic pumps for use with lithium and bismuth propellants were constructed and tested. Such pumps may be used to pressurize future electric propulsion liquid metal feed systems, with the primary advantages being the compactness and simplicity versus alternative pressurization technologies. Design details for two different pumps are described: the first was designed to withstand (highly corrosive) lithium propellant, and t he second was designed to tolerate the high temperature required to pump liquid bismuth. Both qualitative and quantitative test results are presented. Open-loop tests demonstrated the capability of each device to electromagnetically pump its design propellant (lithium or bismuth). A second set of tests accurately quantified the pump pressure developed as a function of current. These experiments, which utilized a more easily handled material (gallium), demonstrated continuously-adjustable pump pressure levels ranging from 0-100 Torr for corresponding input current levels of 0-75 A. While the analysis and testing in this study specifically targeted lithium and bismuth propellants, the underlying design principles should be useful in implementing liquid metal pumps in any conductive-propellant feed system.
Do Arthroscopic Fluid Pumps Display True Surgical Site Pressure During Hip Arthroscopy?
Ross, Jeremy A; Marland, Jennifer D; Payne, Brayden; Whiting, Daniel R; West, Hugh S
2018-01-01
To report on the accuracy of 5 commercially available arthroscopic fluid pumps to measure fluid pressure at the surgical site during hip arthroscopy. Patients undergoing hip arthroscopy for femoroacetabular impingement were block randomized to the use of 1 of 5 arthroscopic fluid pumps. A spinal needle inserted into the operative field was used to measure surgical site pressure. Displayed pump pressures and surgical site pressures were recorded at 30-second intervals for the duration of the case. Mean differences between displayed pump pressures and surgical site pressures were obtained for each pump group. Of the 5 pumps studied, 3 (Crossflow, 24K, and Continuous Wave III) reflected the operative field fluid pressure within 11 mm Hg of the pressure readout. In contrast, 2 of the 5 pumps (Double Pump RF and FMS/DUO+) showed a difference of greater than 59 mm Hg between the operative field fluid pressure and the pressure readout. Joint-calibrated pumps more closely reflect true surgical site pressure than gravity-equivalent pumps. With a basic understanding of pump design, either type of pump can be used safely and efficiently. The risk of unfamiliarity with these differences is, on one end, the possibility of pump underperformance and, on the other, potentially dangerously high operating pressures. Level II, prospective block-randomized study. Copyright © 2017. Published by Elsevier Inc.
Thermal transpiration in zeolites: A mechanism for motionless gas pumps
NASA Astrophysics Data System (ADS)
Gupta, Naveen K.; Gianchandani, Yogesh B.
2008-11-01
We explore the use of a naturally occurring zeolite, clinoptilolite, for a chip-scale, thermal transpiration-based gas pump. The nanopores in clinoptilolite enable the required free-molecular flow, even at atmospheric pressure. The pump utilizes a foil heater located between zeolite disks in a plastic package. A 2.3mm thick zeolite disk generates a typical gas flow rate of 6.6×10-3 cc/min-cm2 with an input power of <300mW/cm2. The performance is constrained by imperfections in clinoptilolite, which provide estimated leakage apertures of 10.2-13.5μm/cm2 of flow cross section. The transient response of the pump is studied to quantify nonidealities.
A global design of high power Nd 3+-Yb 3+ co-doped fiber lasers
NASA Astrophysics Data System (ADS)
Fan, Zhang; Chuncan, Wang; Tigang, Ning
2008-09-01
A global optimization method - niche hybrid genetic algorithm (NHGA) based on fitness sharing and elite replacement is applied to optimize Nd3+-Yb3+ co-doped fiber lasers (NYDFLs) for obtaining maximum signal output power. With a objective function and different pumping powers, five critical parameters (the fiber length, L; the proportion of pump power for pumping Nd3+, η; Nd3+ and Yb3+ concentrations, NNd and NYb and output mirror reflectivity, Rout) of the given NYDFLs are optimized by solving the rate and power propagation equations. Results show that dividing equally the input pump power among 808 nm (Nd3+) and 940 nm (Yb3+) is not an optimal choice and the pump power of Nd3+ ions should be kept around 10-13.78% of the total pump power. Three optimal schemes are obtained by NHGA and the highest slope efficiency of the laser is able to reach 80.1%.
Application of an artificial neural network to pump card diagnosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashenayi, K.; Lea, J.F.; Kemp, F.
1994-12-01
Beam pumping is the most frequently used artificial-lift technique for oil production. Downhole pump cards are used to evaluate performance of the pumping unit. Pump cards can be generated from surface dynamometer cards using a 1D wave equation with viscous damping, as suggested by Gibbs and Neely. Pump cards contain significant information describing the behavior of the pump. However, interpretation of these cards is tedious and time-consuming; hence, an automated system capable of interpreting these cards could speed interpretation and warn of pump failures. This work presents the results of a DOS-based computer program capable of correctly classifying pump cards.more » The program uses a hybrid artificial neural network (ANN) to identify significant features of the pump card. The hybrid ANN uses classical and sinusoidal perceptrons. The network is trained using an error-back-propagation technique. The program correctly identified pump problems for more than 180 different training and test pump cards. The ANN takes a total of 80 data points as input. Sixty data points are collected from the pump card perimeter, and the remaining 20 data points represent the slope at selected points on the pump card perimeter. Pump problem conditions are grouped into 11 distinct classes. The network is capable of identifying one or more of these problem conditions for each pump card. Eight examples are presented and discussed.« less
Design and Integration of Hydrostatic Transmission in a 300-HP Marine Corps Amphibious Vehicle
1985-03-01
tests , and the control logic, micro- computer hardware , and electro-hydraulic actuators that transform operator inputs into drivetrain outputs. Also...actually the case based on manufacturers’ information. The use of swash plate pumps in this application presents no real problem and is in fact the ...industry norm. Although the swash plate pumps do suffer slightly from a decrease in
NASA Astrophysics Data System (ADS)
Touhidul Mustafa, Syed Md.; Nossent, Jiri; Ghysels, Gert; Huysmans, Marijke
2017-04-01
Transient numerical groundwater flow models have been used to understand and forecast groundwater flow systems under anthropogenic and climatic effects, but the reliability of the predictions is strongly influenced by different sources of uncertainty. Hence, researchers in hydrological sciences are developing and applying methods for uncertainty quantification. Nevertheless, spatially distributed flow models pose significant challenges for parameter and spatially distributed input estimation and uncertainty quantification. In this study, we present a general and flexible approach for input and parameter estimation and uncertainty analysis of groundwater models. The proposed approach combines a fully distributed groundwater flow model (MODFLOW) with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. To avoid over-parameterization, the uncertainty of the spatially distributed model input has been represented by multipliers. The posterior distributions of these multipliers and the regular model parameters were estimated using DREAM. The proposed methodology has been applied in an overexploited aquifer in Bangladesh where groundwater pumping and recharge data are highly uncertain. The results confirm that input uncertainty does have a considerable effect on the model predictions and parameter distributions. Additionally, our approach also provides a new way to optimize the spatially distributed recharge and pumping data along with the parameter values under uncertain input conditions. It can be concluded from our approach that considering model input uncertainty along with parameter uncertainty is important for obtaining realistic model predictions and a correct estimation of the uncertainty bounds.
Resonantly diode laser pumped 1.6-μm Er:YAG laser
NASA Astrophysics Data System (ADS)
Garbuzov, Dmitri; Kudryashov, Igor; Dubinskii, Mark
2005-06-01
We report what is believed to be the first demonstration of direct resonant diode pumping of a 1.6-mm Er3+-doped bulk solid-state laser (DPSSL). The most of the results is obtained with pumping Er:YAG by the single mode diode laser packaged in fibered modules. The fibered modules, emitting at 1470 nm and 1530 nm wavelength with and without fiber grating (FBG) stabilization, have been used in pumping experiments. The very first results on high power DPSSL operation achieved with diode array pumping also will be presented. The highest absorbed photon conversion efficiency of 26% has been obtained for Er:YAG DPSSL using the 1470-nm single-mode module. Analysis of the DPSSL input-output characteristics suggests that the obtained slope efficiency can be increased at least up to 40% through the reduction of intracavity losses and pumping efficiency improvement. Diode pumped SSL (DPSSL) operates at a wavelength of 1617 nm and 1645 nm.
Integrated photon sources for quantum information science applications
NASA Astrophysics Data System (ADS)
Fanto, M. L.; Tison, C. C.; Steidle, J. A.; Lu, T.; Wang, Z.; Mogent, N. A.; Rizzo, A.; Thomas, P. M.; Preble, S. F.; Alsing, P. M.; Englund, D. R.
2017-10-01
Ring resonators are used as photon pair sources by taking advantage of the materials second or third order non- linearities through the processes of spontaneous parametric downconversion and spontaneous four wave mixing respectively. Two materials of interest for these applications are silicon for the infrared and aluminum nitride for the ultraviolet through the infrared. When fabricated into ring type sources they are capable of producing pairs of indistinguishable photons but typically suffer from an effective 50% loss. By slightly decoupling the input waveguide from the ring, the drop port coincidence ratio can be significantly increased with the trade-off being that the pump is less efficiently coupled into the ring. Ring resonators with this design have been demonstrated having coincidence ratios of 96% but requiring a factor of 10 increase in the pump power. Through the modification of the coupling design that relies on additional spectral dependence, it is possible to achieve similar coincidence ratios without the increased pumping requirement. This can be achieved by coupling the input waveguide to the ring multiple times, thus creating a Mach-Zehnder interferometer. This coupler design can be used on both sides of the ring resonator so that resonances supported by one of the couplers are suppressed by the other. This is the ideal configuration for a photon-pair source as it can only support the pump photons at the input side while only allowing the generated photons to leave through the output side. Recently, this device has been realized with preliminary results exhibiting the desired spectral dependence and with a coincidence ratio as high as 97% while allowing the pump to be nearly critically coupled to the ring. The demonstrated near unity coincidence ratio infers a near maximal heralding efficiency from the fabricated device. This device has the potential to greatly improve the scalability and performance of quantum computing and communication systems.
Hutchinson, C.B.; Johnson, Dale M.; Gerhart, James M.
1981-01-01
A two-dimensional finite-difference model was developed for simulation of steady-state ground-water flow in the Floridan aquifer throughout a 932-square-mile area, which contains nine municipal well fields. The overlying surficial aquifer contains a constant-head water table and is coupled to the Floridan aquifer by a leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Utilization of the head-controlled flux condition allows head and flow to vary at the model-grid boundaries. Procedures are described to calibrate the model, test its sensitivity to input-parameter errors, and verify its accuracy for predictive purposes. Also included are attachments that describe setting up and running the model. An example model-interrogation run shows anticipated drawdowns that should result from pumping at the newly constructed Cross Bar Ranch and Morris Bridge well fields. (USGS)
Optomechanical transistor with mechanical gain
NASA Astrophysics Data System (ADS)
Zhang, X. Z.; Tian, Lin; Li, Yong
2018-04-01
We study an optomechanical transistor, where an input field can be transferred and amplified unidirectionally in a cyclic three-mode optomechanical system. In this system, the mechanical resonator is coupled simultaneously to two cavity modes. We show that it only requires a finite mechanical gain to achieve the nonreciprocal amplification. Here the nonreciprocity is caused by the phase difference between the linearized optomechanical couplings that breaks the time-reversal symmetry of this system. The amplification arises from the mechanical gain, which provides an effective phonon bath that pumps the mechanical mode coherently. This effect is analogous to the stimulated emission of atoms, where the probe field can be amplified when its frequency is in resonance with that of the anti-Stokes transition. We show that by choosing optimal parameters, this optomechanical transistor can reach perfect unidirectionality accompanied with strong amplification. In addition, the presence of the mechanical gain can result in ultralong delay in the phase of the probe field, which provides an alternative to controlling light transport in optomechanical systems.
All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers.
Mao, Dong; He, Zhiwen; Lu, Hua; Li, Mingkun; Zhang, Wending; Cui, Xiaoqi; Jiang, Biqiang; Zhao, Jianlin
2018-04-01
We demonstrate a mode converter with an insertion loss of 0.36 dB based on mode coupling of tapered single-mode and two-mode fibers, and realize all-fiber flexible cylindrical vector lasers at 1550 nm. Attributing to the continuous distribution of a tangential electric field at taper boundaries, the laser is switchable between the radially and azimuthally polarized states by adjusting the input polarization. In the temporal domain, the operation is controllable among continuous-wave, Q-switched, and mode-locked statuses by changing the saturable absorber or pump strength. The duration of Q-switched radially/azimuthally polarized laser spans from 10.4/10.8 to 6/6.4 μs at the pump range of 38 to 58 mW, while that of the mode-locked pulse varies from 39.2/31.9 to 5.6/5.2 ps by controlling the laser bandwidth. The proposed laser combines the features of a cylindrical vector beam, a fiber laser, and an ultrafast pulse, providing a special and cost-effective source for practical applications.
Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser
NASA Astrophysics Data System (ADS)
Bidin, Noriah; Pourmand, Seyed Ebrahim; Sidi Ahmad, Muhamad Fakaruddin; Khrisnan, Ganesan; Mohd Taib, Nur Athirah; Nadia Adnan, Nurul; Bakhtiar, Hazri
2013-02-01
The influence of temperature and pumping energy on stimulated emission cross section and the laser output of quasi-three level laser transition are reported. Flashlamp is used to pump Nd:YAG laser rod. Distilled water is mixed with ethylene glycol to vary the temperature of the cooling system between -30 and 60 °C. The capacitor voltage of flashlamp driver is verified to manipulate the input energy within the range of 10-70 J. The line of interest in quasi-three level laser comprised of 938.5 and 946 nm. The stimulated emission cross section of both lines is found to be inversely proportional to the temperature but directly proportional to the input energy. This is attributed from thermal broadening effect. The changes of stimulated emission cross section and the output laser with respect to the temperature and input energy on line 946 nm are realized to be more dominant in comparison to 938.5 nm.
Nguimdo, Romain Modeste; Lacot, Eric; Jacquin, Olivier; Hugon, Olivier; Van der Sande, Guy; Guillet de Chatellus, Hugues
2017-02-01
Reservoir computing (RC) systems are computational tools for information processing that can be fully implemented in optics. Here, we experimentally and numerically show that an optically pumped laser subject to optical delayed feedback can yield similar results to those obtained for electrically pumped lasers. Unlike with previous implementations, the input data are injected at a time interval that is much larger than the time-delay feedback. These data are directly coupled to the feedback light beam. Our results illustrate possible new avenues for RC implementations for prediction tasks.
Nonlinear femtosecond pump-probe spectroscopy using a power-encoded soliton delay line.
Saint-Jalm, Sarah; Andresen, Esben Ravn; Bendahmane, Abdelkrim; Kudlinski, Alexandre; Rigneault, Hervé
2016-01-01
We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the difference in accumulated group delay between trajectories converts a fast power sweep into a fast delay sweep. We demonstrate the concept by performing transient absorption spectroscopy in a test sample and validate it against a conventional pump-probe setup.
High power gas laser amplifier
Leland, Wallace T.; Stratton, Thomas F.
1981-01-01
A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.
Walker, Richard L.
2001-01-01
Since the 1970's, hexavalent chromium has been detected in concentrations as great as 1.0 milligram per liter in wells at the Puchack well field operated by the Camden City Department of Utilities, Water Division (Water Department), forcing the Water Department to progressively remove five of its six wells from service between 1975 and 1988. The wells in the Puchack well field range in depth from 140 to 220 feet and are screened in the Lower Potomac-Raritan-Magothy aquifer. The Water Department has continued to pump Puchack Well 1 to maintain a hydraulic gradient toward the well field in an attempt to limit contaminant migration. In late 1997, concerns about treating the water withdrawn from Puchack Well 1 led water managers to consider temporarily discontinuing the pumping. In the spring of 1998, the U.S. Geological Survey (USGS), in cooperation with the New Jersey Department of Environmental Protection, began a preliminary assessment of the potential effects of temporarily removing Puchack Well 1 from service. Water levels in the Lower Potomac-Raritan-Magothy aquifer were measured during both pumping and nonpumping conditions to determine the direction and velocity of ground-water flow and the results were compared. Data collected in late March and early April 1998 indicate the presence of a ground-water divide between the Puchack well field and the Morris and Delair well fields when Puchack Well 1 was being pumped. A similar divide also was present when the well was not being pumped. The position and persistence of this divide limits the probability that contaminants in the vicinity of the Puchack well field will reach the Delair and Morris well fields during either pumping condition. Another divide southeast of Puchack Well 1 while the well was being pumped was no longer evident when the pumping was stopped and water levels had recovered. Under non-pumping conditions, ground water between Puchack Well 1 and this divide could begin to migrate toward other large pumping centers to the southeast. The average linear ground-water velocity along an arbitrarily selected southeast-trending flow path was estimated to be from 221 to 332 feet per year. This estimate indicates that any contaminated ground water that may be present within the area influenced by pumping at Puchack Well 1 may begin to move toward the pumping centers less than 2 miles to the southeast if Puchack Well 1 is either temporarily or permanently removed from service.
NASA Astrophysics Data System (ADS)
Lang, Ye; Chen, Yanzhong; Liao, Lifen; Guo, Guangyan; He, Jianguo; Fan, Zhongwei
2018-03-01
In high power diode lasers, the input cooling water temperature would affect both output power and output spectrum. In double face pumped slab laser, the spectrum of two laser diode arrays (LDAs) must be optimized for efficiency reason. The spectrum mismatch of two LDAs would result in energy storing decline. In this work, thermal induced efficiency decline due to spectral overlap between high power LDAs and laser medium was investigated. A numerical model was developed to describe the energy storing variation with changing LDAs cooling water temperature and configuration (series/parallel connected). A confirmatory experiment was conducted using a double face pumped slab module. The experiment results show good agreements with simulations.
NASA Astrophysics Data System (ADS)
Xu, Gaohuan; Chen, Jianneng; Zhao, Huacheng
2018-06-01
The transmission systems of the differential velocity vane pumps (DVVP) have periodic vibrations under loads. And it is not easy to find the reason. In order to optimize the performance of the pump, the authors proposed DVVP driven by the hybrid Higher-order Fourier non-circular gears and tested it. There were also similar periodic vibrations and noises under loads. Taking into account this phenomenon, the paper proposes fluid mechanics and solid mechanics simulation methodology to analyze the coupling dynamics between fluid and transmission system and reveals the reason. The results show that the pump has the reverse drive phenomenon, which is that the blades drive the non-circular gears when the suction and discharge is alternating. The reverse drive phenomenon leads the sign of the shaft torque to be changed in positive and negative way. So the transmission system produces torsional vibrations. In order to confirm the simulation results, micro strains of the input shaft of the pump impeller are measured by the Wheatstone bridge and wireless sensor technology. The relationships between strain and torque are obtained by experimental calibration, and then the true torque of input shaft is calculated indirectly. The experimental results are consistent to the simulation results. It is proven that the periodic vibrations are mainly caused by fluid solid coupling, which leads to periodic torsional vibration of the transmission system.
Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance
NASA Astrophysics Data System (ADS)
Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.
2014-12-01
It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.
Klager, Brian J.; Kelly, Brian P.; Ziegler, Andrew C.
2014-01-01
The Equus Beds aquifer in south-central Kansas is a primary water-supply source for the city of Wichita. Water-level declines because of groundwater pumping for municipal and irrigation needs as well as sporadic drought conditions have caused concern about the adequacy of the Equus Beds aquifer as a future water supply for Wichita. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project, a plan to artificially recharge the aquifer with excess water from the Little Arkansas River. Artificial recharge will raise groundwater levels, increase storage volume in the aquifer, and deter or slow down a plume of chloride brine approaching the Wichita well field from the Burrton, Kansas area caused by oil production activities in the 1930s. Another source of high chloride water to the aquifer is the Arkansas River. This study was prepared in cooperation with the city of Wichita as part of the Equus Beds Aquifer Storage and Recovery project. Chloride transport in the Equus Beds aquifer was simulated between the Arkansas and Little Arkansas Rivers near the Wichita well field. Chloride transport was simulated for the Equus Beds aquifer using SEAWAT, a computer program that combines the groundwater-flow model MODFLOW-2000 and the solute-transport model MT3DMS. The chloride-transport model was used to simulate the period from 1990 through 2008 and the effects of five well pumping scenarios and one artificial recharge scenario. The chloride distribution in the aquifer for the beginning of 1990 was interpolated from groundwater samples from around that time, and the chloride concentrations in rivers for the study period were interpolated from surface water samples. Five well-pumping scenarios and one artificial-recharge scenario were assessed for their effects on simulated chloride transport and water levels in and around the Wichita well field. The scenarios were: (1) existing 1990 through 2008 pumping conditions, to serve as a baseline scenario for comparison with the hypothetical scenarios; (2) no pumping in the model area, to demonstrate the chloride movement without the influence of well pumping; (3) double municipal pumping from the Wichita well field with existing irrigation pumping; (4) existing municipal pumping with no irrigation pumping in the model area; (5) double municipal pumping in the Wichita well field and no irrigation pumping in the model area; and (6) increasing artificial recharge to the Phase 1 Artificial Storage and Recovery project sites by 2,300 acre-feet per year. The effects of the hypothetical pumping and artificial recharge scenarios on simulated chloride transport were measured by comparing the rate of movement of the 250-milligrams-per-liter-chloride front for each hypothetical scenario with the baseline scenario at the Arkansas River area near the southern part of the Wichita well field and the Burrton plume area. The scenarios that increased the rate of movement the most compared to the baseline scenario of existing pumping between the Arkansas River and the southern boundary of the well field were those that doubled the city of Wichita’s pumping from the well field (scenarios 3 and 5), increasing the rate of movement by 50 to 150 feet per year, with the highest rate increases in the shallow layer and the lowest rate increases in the deepest layer. The no pumping and no irrigation pumping scenarios (2 and 4) slowed the rate of movement in this area by 150 to 210 feet per year and 40 to 70 feet per year, respectively. In the double Wichita pumping scenario (3), the rate of movement in the shallow layer of the Burrton area decreased by about 50 feet per year. Simulated chloride rate of movement in the deeper layers of the Burrton area was decreased in the no pumping and no irrigation scenarios (2 and 4) by 80 to 120 feet per year and 50 feet per year, respectively, and increased in the scenarios that double Wichita’s pumping (3 and 5) from the well field by zero to 130 feet per year, with the largest increases in the deepest layer. In the increased Phase 1 artificial recharge scenario (6), the rate of chloride movement in the Burrton area increased in the shallow layer by about 30 feet per year, and decreased in the middle and deepest layer by about 10 and 60 feet per year, respectively. Comparisons of the rate of movement of the simulated 250-milligrams-per-liter-chloride front in the hypothetical scenarios to the baseline scenario indicated that, in general, increases to pumping in the well field area increased the rate of simulated chloride movement toward the well field area by as much as 150 feet per year. Reductions in pumping slowed the advance of chloride toward the well field by as much as 210 feet per year, although reductions did not stop the movement of chloride toward the well field, including when pumping rates were eliminated. If pumping is completely discontinued, the rate of chloride movement is about 500 to 600 feet per year in the area between the Arkansas River and the southern part of the Wichita well field, and 70 to 500 feet per year in the area near Burrton with the highest rate of movement in the shallow aquifer layer. The averages of simulated water-levels in index monitoring wells in the Wichita well field at the end of 2008 were calculated for each scenario. Compared to the baseline scenario, the average simulated water level was 5.05 feet higher for the no pumping scenario, 4.72 feet lower for the double Wichita pumping with existing irrigation scenario, 2.49 feet higher for the no irrigation pumping with existing Wichita pumping scenario, 1.53 feet lower for the double Wichita pumping with no irrigation scenario, and 0.48 feet higher for the increased Phase 1 artificial recharge scenario. The groundwater flow was simulated with a preexisting groundwater-flow model, which was not altered to calibrate the solute-transport model to observed chloride-concentration data. Therefore, some areas in the model had poor fit between simulated chloride concentrations and observed chloride concentrations, including the area between Arkansas River and the southern part of the Wichita well field, and the Hollow-Nikkel area about 6 miles north of Burrton. Compared to the interpreted location of the 250-milligrams per liter-chloride front based on data collected in 2011, in the Arkansas River area the simulated 250-milligrams per liter-chloride front moved from the river toward the well field about twice the rate of the actual 250-milligrams per liter-chloride front in the shallow layer and about four times the rate of the actual 250-milligrams per liter-chloride front in the deep layer. Future groundwater-flow and chloride-transport modeling efforts may achieve better agreement between observed and simulated chloride concentrations in these areas by taking the chloride-transport model fit into account when adjusting parameters such as hydraulic conductivity, riverbed conductance, and effective porosity during calibration. Results of the hypothetical scenarios simulated indicate that the Burrton chloride plume will continue moving toward the well field regardless of pumping in the area and that one alternative may be to increase pumping from within the plume area to reverse the groundwater-flow gradients and remove the plume. Additionally, the results of modeling these scenarios indicate that eastward movement of the Burrton plume could be slowed by the additional artificial recharge at the Phase 1 sites and that decreasing pumping along the Arkansas River or increasing water levels could retard the movement of chloride and may prevent further encroachment into the southern part of the well field area.
Dielectric elastomer peristaltic pump module with finite deformation
NASA Astrophysics Data System (ADS)
Mao, Guoyong; Huang, Xiaoqiang; Liu, Junjie; Li, Tiefeng; Qu, Shaoxing; Yang, Wei
2015-07-01
Inspired by various peristaltic structures existing in nature, several bionic peristaltic actuators have been developed. In this study, we propose a novel dielectric elastomer peristaltic pump consisting of short tubular modules, with the saline solution as the electrodes. We investigate the performance of this soft pump module under hydraulic pressure and voltage via experiments and an analytical model based on nonlinear field theory. It is observed that the individual pump module undergoes finite deformation and may experience electromechanical instability during operations. The driving pressure and displaced volume of the peristaltic pump module can be modulated by applied voltage. The efficiency of the pump module is enhanced by alternating current voltage, which can suppress the electromechanical pull-in instability. An analytical model is developed within the framework of the nonlinear field theory, and its predictive capacity is checked by experimental observations. The effects of the prestretch, aspect ratio, and voltage on the performance of the pump modules are characterized by the analytical model. This work can guide the designs of soft active peristaltic pumps in the field of artificial organs and industrial conveying systems.
Otsuka, Kenju; Chu, Shu-Chun
2013-05-01
We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.
Biological proton pumping in an oscillating electric field.
Kim, Young C; Furchtgott, Leon A; Hummer, Gerhard
2009-12-31
Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological "fuel cell," we show that the proton pumping efficiency and the electronic currents in steady state depend significantly on the frequency and amplitude of the applied field, allowing us to distinguish between different microscopic mechanisms of the machine. A spectral analysis reveals dominant reaction steps consistent with an electron-gated pumping mechanism.
Lu, Guo-Wei; Luís, Ruben S; Mendinueta, José Manuel Delgado; Sakamoto, Takahide; Yamamoto, Naokatsu
2018-01-22
As one of the promising multiplexing and multicarrier modulation technologies, Nyquist subcarrier multiplexing (Nyquist SCM) has recently attracted research attention to realize ultra-fast and ultra-spectral-efficient optical networks. In this paper, we propose and experimentally demonstrate optical subcarrier processing technologies for Nyquist SCM signals such as frequency conversion, multicast and data aggregation of subcarriers, through the coherent spectrum overlapping between subcarriers in four-wave mixing (FWM) with coherent multi-tone pump. The data aggregation is realized by coherently superposing or combining low-level subcarriers to yield high-level subcarriers in the optical field. Moreover, multiple replicas of the data-aggregated subcarriers and the subcarriers carrying the original data are obtained. In the experiment, two 5 Gbps quadrature phase-shift keying (QPSK) subcarriers are coherently combined to generate a 10 Gbps 16 quadrature amplitude modulation (QAM) subcarrier with frequency conversions through the FWM with coherent multi-tone pump. Less than 1 dB optical signal-to-noise ratio (OSNR) penalty variation is observed for the synthesized 16QAM subcarriers after the data aggregation. In addition, some subcarriers are kept in the original formats, QPSK, with a power penalty of less than 0.4 dB with respect to the original input subcarriers. The proposed subcarrier processing technology enables flexibility for spectral management in future dynamic optical networks.
NASA Technical Reports Server (NTRS)
Sieradski, L. M.; Giffin, C. E.; Nier, A. O. (Inventor)
1976-01-01
A mass spectrometer (MS) with unique magnetic pole pieces which provide a homogenous magnetic field across the gap of the MS magnetic sector as well as the magnetic field across an ion-type vacuum pump is disclosed. The pole pieces form the top and bottom sides of a housing. The housing is positioned so that portions of the pole pieces form part of the magnetic sector with the space between them defining the gap region of the magnetic sector, through which an ion beam passes. The pole pieces extend beyond the magnetic sector with the space between them being large enough to accommodate the electrical parts of an ion-type vacuum pump. The pole pieces which provide the magnetic field for the pump, together with the housing form the vacuum pump enclosure or housing.
A Relevance Vector Machine-Based Approach with Application to Oil Sand Pump Prognostics
Hu, Jinfei; Tse, Peter W.
2013-01-01
Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers. PMID:24051527
A relevance vector machine-based approach with application to oil sand pump prognostics.
Hu, Jinfei; Tse, Peter W
2013-09-18
Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers.
Clausell, Mathis; Fang, Zhihui; Chen, Wei
2014-07-01
Synchronization modulation (SM) electric field has been shown to effectively activate function of Na(+)/K(+) pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1-2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na(+) concentration gradient built by the Na(+)/K(+) pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.
Design and analysis of optically pumped submillimeter waveguide maser amplifiers and oscillators
NASA Technical Reports Server (NTRS)
Galantowicz, T. A.
1975-01-01
The design and experimental measurements are described of an optically pumped far-infrared (FIR) waveguide maser; preliminary measurements on a FIR waveguide amplifier are presented. The FIR maser was found to operate satisfactorily in a chopped CW mode using either methanol (CH3OH) or acetonitrile (CH3CN) as the active molecule. Two other gases, difluoroethane and difluoroethylene, produced an unstable output with high threshold and low output power when operated in the chopped CW mode. Experimental measurements include FIR output versus cavity length, output beam pattern, output power versus pressure, and input power. The FIR output was the input to an amplifier which was constructed similar to the oscillator. An increase of 10% in output power was noted on the 118.8 microns line of methanol.
A Bayesian approach to model structural error and input variability in groundwater modeling
NASA Astrophysics Data System (ADS)
Xu, T.; Valocchi, A. J.; Lin, Y. F. F.; Liang, F.
2015-12-01
Effective water resource management typically relies on numerical models to analyze groundwater flow and solute transport processes. Model structural error (due to simplification and/or misrepresentation of the "true" environmental system) and input forcing variability (which commonly arises since some inputs are uncontrolled or estimated with high uncertainty) are ubiquitous in groundwater models. Calibration that overlooks errors in model structure and input data can lead to biased parameter estimates and compromised predictions. We present a fully Bayesian approach for a complete assessment of uncertainty for spatially distributed groundwater models. The approach explicitly recognizes stochastic input and uses data-driven error models based on nonparametric kernel methods to account for model structural error. We employ exploratory data analysis to assist in specifying informative prior for error models to improve identifiability. The inference is facilitated by an efficient sampling algorithm based on DREAM-ZS and a parameter subspace multiple-try strategy to reduce the required number of forward simulations of the groundwater model. We demonstrate the Bayesian approach through a synthetic case study of surface-ground water interaction under changing pumping conditions. It is found that explicit treatment of errors in model structure and input data (groundwater pumping rate) has substantial impact on the posterior distribution of groundwater model parameters. Using error models reduces predictive bias caused by parameter compensation. In addition, input variability increases parametric and predictive uncertainty. The Bayesian approach allows for a comparison among the contributions from various error sources, which could inform future model improvement and data collection efforts on how to best direct resources towards reducing predictive uncertainty.
Nonlinear ultrasonic wave modulation for online fatigue crack detection
NASA Astrophysics Data System (ADS)
Sohn, Hoon; Lim, Hyung Jin; DeSimio, Martin P.; Brown, Kevin; Derriso, Mark
2014-02-01
This study presents a fatigue crack detection technique using nonlinear ultrasonic wave modulation. Ultrasonic waves at two distinctive driving frequencies are generated and corresponding ultrasonic responses are measured using permanently installed lead zirconate titanate (PZT) transducers with a potential for continuous monitoring. Here, the input signal at the lower driving frequency is often referred to as a 'pumping' signal, and the higher frequency input is referred to as a 'probing' signal. The presence of a system nonlinearity, such as a crack formation, can provide a mechanism for nonlinear wave modulation, and create spectral sidebands around the frequency of the probing signal. A signal processing technique combining linear response subtraction (LRS) and synchronous demodulation (SD) is developed specifically to extract the crack-induced spectral sidebands. The proposed crack detection method is successfully applied to identify actual fatigue cracks grown in metallic plate and complex fitting-lug specimens. Finally, the effect of pumping and probing frequencies on the amplitude of the first spectral sideband is investigated using the first sideband spectrogram (FSS) obtained by sweeping both pumping and probing signals over specified frequency ranges.
NASA Astrophysics Data System (ADS)
Fangxiong, Chen; Min, Lin; Heping, Ma; Hailong, Jia; Yin, Shi; Forster, Dai
2009-08-01
An asymmetric MOSFET-C band-pass filter (BPF) with on chip charge pump auto-tuning is presented. It is implemented in UMC (United Manufacturing Corporation) 0.18 μm CMOS process technology. The filter system with auto-tuning uses a master-slave technique for continuous tuning in which the charge pump outputs 2.663 V, much higher than the power supply voltage, to improve the linearity of the filter. The main filter with third order low-pass and second order high-pass properties is an asymmetric band-pass filter with bandwidth of 2.730-5.340 MHz. The in-band third order harmonic input intercept point (IIP3) is 16.621 dBm, with 50 Ω as the source impedance. The input referred noise is about 47.455 μVrms. The main filter dissipates 3.528 mW while the auto-tuning system dissipates 2.412 mW from a 1.8 V power supply. The filter with the auto-tuning system occupies 0.592 mm2 and it can be utilized in GPS (global positioning system) and Bluetooth systems.
A model of annular linear induction pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momozaki, Yoichi
2016-10-27
The present work explains how the magnetic field and the induced current are obtained when the distributed coils are powered by a 3 phase power supply. From the magnetic field and the induced current, the thrust and the induction losses in the pump can be calculated to estimate the pump performance.
NASA Astrophysics Data System (ADS)
Dalidet, Romain; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Koška, Pavel
2018-02-01
Ever extending applications of fiber lasers require energy efficient, high-power, small footprint and reliable fiber lasers and laser wavelength versatility. To meet these demands, next generation of active fibers for high-power fiber lasers is coming out that will eventually offer tailored spectroscopic properties, high robustness and reduced cooling requirements and improved efficiency through tailored pump absorption. We report on numerical modelling of the efficiency of the pump absorption in double clad active fibers with hexagonal shape of the inner cladding cross section and rare-earth-doped core. We analyze both the effect of different radii of the spool on which the fiber is coiled and different fiber twisting rates. Two different launching conditions were investigated: the Gaussian input pump beam and a speckle pattern that mimics the output of the pump laser diode pigtail. We have found that by asymmetric position of the rare-earth-doped core we can significantly improve the pump absorption.
2008-03-15
numbers make the observation of non -Poissonian features easier, which calls for higher pump power and better mode matching of the pump beam , more...heralded two-photon NOON states, we rely on the local photon- bunching effect of two heralded single photons at a beam splitter , as sketched in Fig. 1. Two...heralded single photons are sent to separate input ports of a 50:50 beam splitter (BS1). The photons bunch at the beam splitter , exiting together from
1976-09-01
1 dB into 50 ohm load, output VSWR less than 1.5. Phase variation relative to the optical pulse train less than +A.5 Rod Temperature...design of the PSQM laser. All phases of design, mechanical, electronic and optical , borrowed heavily from the EFM lamp pumped laser...opnical power input change for the germanium device is twice that for the silicon device, its random phase noise for a typical in- put of 1 mW optical
MEANS AND METHOD FOR PRODUCING A VACUUM
Otavka, M.A.
1960-08-01
A new method is given for starting the operation of evapor-ion vacuum pumps. Ordinarily this type of pump is started by inducing an electric field with the vacuum chamber; however, by placing such an electric field in the chamber at the outset, a glow discharge may be initiated which is harmful to the pump. The procedure consists of using a negative electric field during which time only gettering action takes place; subsequently when the field reverses after a sufficient reduction of the number of gaseous particles in the chamber both gettering and ionizing takes place.
Biological proton pumping in an oscillating electric field
Kim, Young C.; Furchtgott, Leon A.; Hummer, Gerhard
2010-01-01
Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological “fuel cell,” we show that the proton pumping efficiency and the electronic currents in steady state both depend significantly and distinctly on the frequency and amplitude of the applied field, allowing us to distinguish between different microscopic mechanisms of the machine. A spectral analysis reveals dominant kinetic modes that show reaction steps consistent with an electron-gated pumping mechanism. PMID:20366348
Rod pumping and proppant flowback at the Lost Hills Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, I.G.
1995-12-31
Proppant flowback from hydraulically fractured wells can lead to sand wear on the pump barrel and plunger and increased pulling costs on rod pumped wells. Two approaches for lengthening run times of the pumps were tried. One approach was to install pumps that will allow production of a sand laden fluid. Pressure actuated plunger (PAP) pumps were field tested and showed an average increase of 81.6% in run time. These split ring wiper pumps clean the barrel of sand prior to the passing of the plunger. The other approach was to keep the sand and from entering the pumps. Whenmore » down hole filters were utilized, run life of the pumps with the filters increases 135%. Well pulling cost savings of $11.91 per well-day and $9.24 per well-day are documented for the PAP pumps and filters, respectively. Application guidelines based on the sand loading rate and gross liquid production of the wells are presented, as well as some operational experiences.« less
Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.
2015-09-30
Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input tomore » the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test house been better insulated (more like the house used for the savings predictions noted above) and the IHP system nominal capacity been a bit lower that the energy savings estimate would have been closer to 45% or more (similar to the analytical prediction for the cold climate location of Chicago).« less
Research on High-Intensity Picosecond Pump Laser in Short Pulse Optical Parametric Amplification
NASA Astrophysics Data System (ADS)
Pan, Xue; Peng, Yu-Jie; Wang, Jiang-Feng; Lu, Xing-Hua; Ouyang, Xiao-Ping; Chen, Jia-Lin; Jiang, You-En; Fan, Wei; Li, Xue-Chun
2013-01-01
A 527 nm pump laser generating 1.7 mJ energy with peak power of more than 0.12 GW is demonstrated. The theoretical simulation result shows that it has 106 gain in the picosecond-pump optical parametric chirped pulse amplification when the pump laser peak power is 0.1 GW and the intensity is more than 5 GW/cm2, and that it can limit the parametric fluorescence in the picosecond time scale of pump duration. The pump laser system adopts a master-oscillator power amplifier, which integrates a more than 30 pJ fiber-based oscillator with a 150 μJ regenerative amplifier and a relay-imaged four-pass diode-pump Nd glass amplifier to generate a 1 Hz top hat spatial beam and about 14 ps temporal Guassian pulse with <2% pulse-to-pulse energy stability. The output energy of the power amplifier is limited to 4 mJ for B-integral concern, and the frequency doubling efficiency can reach 65% with input intensity 10 GW/cm2.
The influence of atmospheric turbulence on partially coherent two-photon entangled field
NASA Astrophysics Data System (ADS)
Qiu, Y.; She, W.
2012-09-01
The propagation of a two-photon field from down-conversion of a partially coherent Gaussian Schell-model (GSM) pump beam in free space has been reported. However, the propagation of this two-photon field through a turbulent atmosphere has not been investigated yet. In this paper, an analytical expression of the coincidence count rate of the two-photon entangled field is derived. Unlike what has been reported, the field is from a parameter down-conversion of a partially coherent dark hollow pump beam and propagates through a turbulent atmosphere. The effects of the propagation parameters on the coincidence count rate are evaluated and illustrated. The results show that the pump beam parameters and atmospheric turbulence can evidently affect the detection probability of the photon pair at two different positions. It is found that the detection probability of the two-photon field is higher, and thus less susceptible to turbulence, if the field is produced by a lower mode of partially coherent pump beam.
Enhancement of collective atomic recoil lasing due to pump phase modulation
NASA Astrophysics Data System (ADS)
Robb, G. R. M.; Burgess, R. T. L.; Firth, W. J.
2008-10-01
We investigate the effect of a phase-modulated pump beam on collective backscattering [also termed collective atomic recoil lasing (CARL)] by a cold, collisionless atomic gas. We show using a numerical analysis that different regimes can be identified in which the atomic dynamics evolves in a qualitatively different manner during the light-atom interaction, depending on the magnitude of the pump modulation frequency. Our results also demonstrate that phase-modulating the pump field can substantially enhance the backscattered field intensity relative to the case of a monochromatic pump which has been used in CARL experiments to date.
Hydromechanical transmission with hydrodynamic drive
Orshansky, Jr., deceased, Elias; Weseloh, William E.
1979-01-01
This transmission has a first planetary gear assembly having first input means connected to an input shaft, first output means, and first reaction means, and a second planetary gear assembly having second input means connected to the first input means, second output means, and second reaction means connected directly to the first reaction means by a reaction shaft. First clutch means, when engaged, connect the first output means to an output shaft in a high driving range. A hydrodynamic drive is used; for example, a torque converter, which may or may not have a stationary case, has a pump connected to the second output means, a stator grounded by an overrunning clutch to the case, and a turbine connected to an output member, and may be used in a starting phase. Alternatively, a fluid coupling or other type of hydrodynamic drive may be used. Second clutch means, when engaged, for connecting the output member to the output shaft in a low driving range. A variable-displacement hydraulic unit is mechanically connected to the input shaft, and a fixed-displacement hydraulic unit is mechanically connected to the reaction shaft. The hydraulic units are hydraulically connected together so that when one operates as a pump the other acts as a motor, and vice versa. Both clutch means are connected to the output shaft through a forward-reverse shift arrangement. It is possible to lock out the torque converter after the starting phase is over.
Gyssens, I C
2008-10-01
Despite many European Union (EU) conferences on fighting microbial resistance, rates of resistance in Europe continue to increase. Although research is catching up with discovery, the development of new antimicrobials is threatened by economic factors, in particular the need for a return of investment via high-volume sales. The EU should invest in independent research into the economic and business aspects of antibiotic development. Multidisciplinary input from the fields of finance, law, marketing, sociology and psychology will inform a broad agenda for change at the regulatory, academic and commercial levels and identify new options for novel anti-infective research and development, as recently recommended by the Science Academies of Europe (EASAC).
Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Y.; Roland, I.; Checoury, X.
We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χ{sub zxx}{sup (2)}, χ{sub zyy}{sup (2)} and the electric fields of the fundamentalmore » cavity mode.« less
Field emission microplasma actuation for microchannel flows
NASA Astrophysics Data System (ADS)
Sashank Tholeti, Siva; Shivkumar, Gayathri; Alexeenko, Alina A.
2016-06-01
Microplasmas offer attractive flow control methodology for gas transport in microsystems where large viscous losses make conventional pumping methods highly inefficient. We study microscale flow actuation by dielectric-barrier discharge (DBD) with field emission (FE) of electrons, which allows lowering the operational voltage from kV to a few hundred volts and below. A feasibility study of FE-DBD for flow actuation is performed using 2D particle-in-cell method with Monte Carlo collisions (PIC/MCC) at 10 MHz in nitrogen at atmospheric pressure. The free diffusion dominated, high velocity field emission electrons create a large positive space charge and a body force on the order of 106 N m-3. The body force and Joule heat decrease with increase in dielectric thickness and electrode thickness. The body force also decreases at lower pressures. The plasma body force distribution along with the Joule heating is then used in the Navier-Stokes simulations to quantify the flow actuation in a microchannel. Theoretical analysis and simulations for plasma actuated planar Poiseuille flow show that the gain in flow rate is inversely proportional to Reynolds number. This theoretical analysis is in good agreement with the simulations for a microchannel with closely placed actuators under incompressible conditions. Flow rate of FE-DBD driven 2D microchannel is around 100 ml min-1 mm-1 for an input power of 64 μW mm-1. The gas temperature rises by 1500 K due to the Joule heating, indicating FE-DBD’s potential for microcombustion, micropropulsion and chemical sensing in addition to microscale pumping and mixing applications.
Benefits of the rotary diaphragm pump.
Borstell, D
2005-03-01
The huge variety of applications in the medical field represents a challenge for the design of miniature pumps. There are well-known designs such as piston pumps, eccenter diaphragm pumps and peristaltic pumps. There are lesser-known types such as the rotary diaphragm pump, the subject of this article. Its design features, variants, and advantages and disadvantages are examined.
Experimental investigation on charcoal adsorption for cryogenic pump application
NASA Astrophysics Data System (ADS)
Scannapiego, Matthieu; Day, Christian
2017-12-01
Fusion reactors are generating energy by nuclear fusion between deuterium and tritium. In order to evacuate the high gas throughputs from the plasma exhaust, large pumping speed systems are required. Within the European Fusion Programme, the Karlsruhe Institute of Technology (KIT) has taken the lead to design a three-stage cryogenic pump that can provide a separation function of hydrogen isotopes from the remaining gases; hence limiting the tritium inventory in the machine. A primary input parameter for the detailed design of a cryopump is the sticking coefficient between the gas and the pumping surface. For this purpose, the so-called TIMO open panel pump experiment was conducted in the TIMO-2 test facility at KIT in order to measure pumping speeds on an activated carbon surface cooled at temperatures between 6 K and 22 K, for various pure gases and gas mixtures, under fusion relevant gas flow conditions, and for two different geometrical pump configurations. The influences of the panel temperature, the gas throughput and the intake gas temperature on the pumping speed have been characterized, providing valuable qualitative results for the design of the three-stage cryopump. In a future work, supporting Monte Carlo simulations should allow for derivation of the sticking coefficients.
Development of a pump-turbine runner based on multiobjective optimization
NASA Astrophysics Data System (ADS)
Xuhe, W.; Baoshan, Z.; Lei, T.; Jie, Z.; Shuliang, C.
2014-03-01
As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses.
Self-regenerating Nanotips: Indestructable Field-emission Cathodes for Low-power Electric Propulsion
2010-09-27
Field Emission Scanning Electron Microscope. The chamber was evacuated using a series of three ion pumps and vacuum pressure of 10-7 Torr was...backed by a 110-L/min dry scroll pump . The chamber is also equipped with a 300-L/s combination ion/sublimation pump that can maintain pressure of...Torr for 2 to 24 hours and then the ion pump was turned off to let the vacuum pressure slowly increase while observing the electron emission
Experimental Characterization of Piezoelectric Radial Field Diaphragms for Fluidic Control
NASA Technical Reports Server (NTRS)
Bryant, R. G.; Kavli, S. E.; Thomas, R. A., Jr.; Darji, K. J.; Mossi, K. M.
2004-01-01
NASA has recently developed a new piezoelectric actuator, the Radial Field Diaphragm or RFD. This actuator uses a radially-directed electric field to generate concentric out-of-plane (Z-axis) motion that allows this packaged device to be used as a pump or valve diaphragm. In order to efficiently use this new active device, experimental determination of pressure, flow rate, mechanical work, power consumption and overall efficiency needs to be determined by actually building a pump. However, without an optimized pump design, it is difficult to assess the quality of the data, as these results are inherent to the actual pump. Hence, separate experiments must be conducted in order to generate independent results to help guide the design criteria and pump quality. This paper focuses on the experiments used to generate the RFD's operational parameters and then compares these results to the experimentally determined results of several types of ball pumps. Also discussed are how errors are inherently introduced into the experiments, the pump design, experimental hardware and their effects on the overall system efficiency.
Solar-thermal jet pumping for irrigation
NASA Astrophysics Data System (ADS)
Clements, L. D.; Dellenback, P. A.; Bell, C. A.
1980-01-01
This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.
NASA Astrophysics Data System (ADS)
Yu, Rong; Ding, Chunling; Wang, Jiangpeng; Zhang, Duo
2017-12-01
We explore the possibility of using an active doubly resonant microtoroid resonator to produce high-efficiency third-harmonic generation (THG) by exploiting optical third-order nonlinearity. In a microresonator, the active fundamental mode is coherently driven with a continuous-wave input laser at the telecommunication wavelength (1550 nm), and then, the visible THG signal (517 nm) is monitored via an individual bus waveguide. We thoroughly compare our results with those obtained from the conventional passive (i.e., loss) microtoroid resonator by a systematic analysis and detailed numerical simulations based on the Heisenberg-Langevin equations of motion. It is shown that the achievable THG spectrum features an ultralow critical input power. The THG power transmission can be significantly enhanced by about three orders of magnitude at a low input power of 0.1 μ W as compared with the obtained results in the passive microtoroid resonator THG system. Moreover, the THG efficiency can reach up to 100% with optical critical input power as low as a few microwatts. In turn, the analytical expressions of the critical intracavity intensity of the light in the microcavity, the critical input pump power, and the maximum THG efficiency are obtained. The enhanced THG power transmission and high conversion efficiency are attributed to a gain-induced loss compensation in the microtoroid resonator, reducing the effective loss felt by the resonator photons. With state-of-the art technologies in the field of solid-state resonators, including but not limited to microtoroids, the proposed THG scheme is experimentally realizable.
Pumping Liquid Oxygen by Use of Pulsed Magnetic Fields
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Lane, John; Immer, Christopher; Simpson, James
2004-01-01
An effort is underway to develop a method of pumping small amounts of liquid oxygen by use of pulsed magnetic fields. This development is motivated by a desire to reduce corrosion and hazards of explosion and combustion by eliminating all moving pump parts in contact with the pumped oxygen. The method exploits the known paramagnetism of liquid oxygen. Since they both behave similarly, the existing theory of ferrofluids (liquids with colloidally suspended magnetic particles) is directly applicable to paramagnetic liquid oxygen. In general, the force density of the paramagnetic interaction is proportional to the magnetic susceptibility multiplied by the gradient of the square of the magnitude of the magnetic field. The local force is in the direction of intensifying magnetic field. In the case of liquid oxygen, the magnetic susceptibility is large enough that a strong magnetic-field gradient can lift the liquid in normal Earth gravitation.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1987-01-01
Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.
2016-01-01
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery. PMID:27193507
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes
NASA Astrophysics Data System (ADS)
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.
2016-05-01
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R
2016-05-19
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.
Tunable near- to mid-infrared pump terahertz probe spectroscopy in reflection geometry
NASA Astrophysics Data System (ADS)
Zhang, S. J.; Wang, Z. X.; Dong, T.; Wang, N. L.
2017-10-01
Strong-field mid-infrared pump-terahertz (THz) probe spectroscopy has been proven as a powerful tool for light control of different orders in strongly correlated materials. We report the construction of an ultrafast broadband infrared pump-THz probe system in reflection geometry. A two-output optical parametric amplifier is used for generating mid-infrared pulses with GaSe as the nonlinear crystal. The setup is capable of pumping bulk materials at wavelengths ranging from 1.2 μm to 15 μm and beyond, and detecting the subtle, transient photoinduced changes in the reflected electric field of the THz probe at different temperatures. As a demonstration, we present 15 μm pump-THz probe measurements of a bulk EuSbTe3 single crystal. A 0:5% transient change in the reflected THz electric field can be clearly resolved. The widely tuned pumping energy could be used in mode-selective excitation experiments and applied to many strongly correlated electron systems.
Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.
1989-08-22
A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.
Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.
1989-01-01
A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.
Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.
1989-01-01
An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.
Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.
1989-11-21
An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.
Three-dimensional wide-field pump-probe structured illumination microscopy
Kim, Yang-Hyo; So, Peter T.C.
2017-01-01
We propose a new structured illumination scheme for achieving depth resolved wide-field pump-probe microscopy with sub-diffraction limit resolution. By acquiring coherent pump-probe images using a set of 3D structured light illumination patterns, a 3D super-resolution pump-probe image can be reconstructed. We derive the theoretical framework to describe the coherent image formation and reconstruction scheme for this structured illumination pump-probe imaging system and carry out numerical simulations to investigate its imaging performance. The results demonstrate a lateral resolution improvement by a factor of three and providing 0.5 µm level axial optical sectioning. PMID:28380860
Instrument development and field application of the in situ pH Calibrator at the Ocean Observatory
NASA Astrophysics Data System (ADS)
Tan, C.; Ding, K.; Seyfried, W. E.
2012-12-01
A novel, self-calibrating instrument for in-situ measurement of pH in deep sea environments up to 4000 m has recently been developed. The device utilizes a compact fluid delivery system to perform measurement and two-point calibration of the solid state pH sensor array (Ir|IrOx| Ag|AgCl), which is sealed in a flow cell to enhance response time. The fluid delivery system is composed of a metering pump and valves, which periodically deliver seawater samples into the flow cell to perform measurements. Similarly, pH buffer solutions can be delivered into the flow cell to calibrate the electrodes under operational conditions. Sensor signals are acquired and processed by a high resolution (0.25 mV) datalogger circuit with a size of 114 mm×31 mm×25 mm. Eight input channels are available: two high impedance sensor input channels, two low impedance sensor input channel, two thermocouple input channels and two thermistor input channels. These eight channels provide adequate measurement flexibility to enhance applications in deep sea environments. The two high impedance channels of the datalogger are especially designed with the input impedance of 1016 Ω for YSZ (yittria-stabilized zirconia) ceramic electrodes characterized by the extremely low input bias current and high resistance. Field tests have been performed in 2008 by ROV at the depth up to 3200 m. Using the continuous power supply and TCP/IP network capability of the Monterey Accelerated Research System (MARS) ocean observatory, the so-called "pH Calibrator" has the capability of long term operation up to six months. In the observatory mode, the electronics are configured with DC-DC power converter modules and Ethernet to serial module to gain access to the science port of seafloor junction box. The pH Calibrator will be deployed at the ocean observatory in October and the in situ data will be on line on the internet. The pH Calibrator presents real time pH data at high pressures and variable temperatures, while the in situ calibration capability enhances the accuracy of electrochemical measurements of seawater pH, fulfilling the need for long term objectives for marine studies.
Wireless Sensor for Measuring Pump Efficiency: Small Business Voucher Project with KCF Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugate, David L.; Liu, Xiaobing; Gehl, Anthony C.
This document is to fulfill the final report requirements for the Small Business Voucher (SBV) CRADA project with ORNL and KCF Technologies (CRADA/NFE-16-06133). Pumping systems account for nearly 20% of the world’s electrical energy demand and range from 25-50% of the energy usage in many industrial and building power plants. The energy cost is the largest element in the total cost of owning a pump (~40%). In response to a recent DOE mandate for improved pump efficiency pump manufacturers are preparing for the changes that the impending regulations will bring, including design improvements. This mandate also establishes a need formore » new low cost pump efficiency measurement systems. The standard industry definition of pump efficiency is the mechanical water horsepower delivered divided by the electrical horsepower input to the motor. KCF Technologies has developed a new sensor measurement technique to estimate fluid pump efficiency using a thermodynamic approach. KCF Technologies applied for a SBV grant with ORNL as the research partner. KCF needed a research partner with the proper facilities to demonstrate the efficacy of its wireless sensor unit for measuring pump efficiency. The ORNL Building Technologies Research and Integration Center (BTRIC) test resources were used to test and demonstrate the successful measurement of pump efficiency with the KCF sensor technology. KCF is now working on next steps to commercialize this sensing technology.« less
Hutchinson, C.B.
1984-01-01
This report describes a quasi-three-dimensional finite-difference model for simulation of steady-state ground-water flow in the Floridan aquifer over a 932-square-mile area that contains 10 municipal well fields. The over-lying surficial aquifer contains a water table and is coupled to the Floridan aquifer by leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Use of the head-controlled flux condition allows simulated head and flow changes to occur in the Floridan aquifer at the model boundaries. Procedures used to calibrate the model, test its sensitivity to input-parameter errors, and validate its accuracy for predictive purposes are described. Also included are attachments that describe setting up and running the model. Example model-interrogation runs show anticipated drawdowns under high, average, and low recharge conditions with 10 well fields pumping simultaneously at the maximum annual permitted rates totaling 186.9 million gallons per day. (USGS)
IMPROVEMENTS IN PUMP INTAKE BASIN DESIGN
Pump intake basins (or wet wells or pump sumps) designed in accordance with accepted criteria often pose many operation and maintenance problems. The report summarizes field surveys of three trench-type pump intake basins representative of 29 such basins that have been in satisfa...
Amplified emission and lasing in a plasmonic nanolaser with many three-level molecules
NASA Astrophysics Data System (ADS)
Zhang, Yuan; Mølmer, Klaus
2018-01-01
Steady-state plasmonic lasing is studied theoretically for a system consisting of many dye molecules arranged regularly around a gold nanosphere. A three-level model with realistic molecular dissipation is employed to analyze the performance as a function of the pump field amplitude and number of molecules. Few molecules and moderate pumping produce a single narrow emission peak because the excited molecules transfer energy to a single dipole plasmon mode by amplified spontaneous emission. Under strong pumping, the single peak splits into broader and weaker emission peaks because two molecular excited levels interfere with each other through coherent coupling with the pump field and with the dipole plasmon field. A large number of molecules gives rise to a Poisson-like distribution of plasmon number states with a large mean number characteristic of lasing action. These characteristics of lasing, however, deteriorate under strong pumping because of the molecular interference effect.
Temperature field study of hot water circulation pump shaft system
NASA Astrophysics Data System (ADS)
Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.
2016-05-01
In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.
Thermal Control Utilizing an Thermal Control Utilizing an Two-Phase Loop with High Heat Flux Source
NASA Technical Reports Server (NTRS)
Jeong, Seong-Il; Didion, Jeffrey
2004-01-01
The electric field applied in dielectric fluids causes an imbalance in the dissociation-recombination reaction generated free space charges. The generated charges are redistributed by the applied electric field resulting in the heterocharge layers in the Vicinity of the electrodes. Proper design of the electrodes generates net axial flow motion pumping the fluid. The electrohydrodynamic (EHD) conduction pump is a new device that pumps dielectric fluids utilizing heterocharge layers formed by imposition of electrostatic fields. This paper evaluates the experimental performance of a two-phase breadboard thermal control loop consisting of an EHD conduction pump, condenser, pre-heater, high heat flux evaporator (HE), transport lines, and reservoir (accumulator). The generated pressure head and the maximum applicable heat flux are experimentally determined at various applied voltages and sink temperatures. Recovery from dryout condition by increasing the applied voltage to the pump is also demonstrated.
Electric field divertor plasma pump
Schaffer, Michael J.
1994-01-01
An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.
Electric field divertor plasma pump
Schaffer, M.J.
1994-10-04
An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.
NASA Astrophysics Data System (ADS)
Chu, Y. X.; Liang, X. Y.; Yu, L. H.; Xu, L.; Lu, X. M.; Liu, Y. Q.; Leng, Y. X.; Li, R. X.; Xu, Z. Z.
2013-05-01
Theoretical and experimental investigations are carried out to determine the influence of the time delay between the input seed pulse and pump pulses on transverse parasitic lasing in a Ti:sapphire amplifier with a diameter of 80 mm, which is clad by a refractive index-matched liquid doped with an absorber. When the time delay is optimized, a maximum output energy of 50.8 J is achieved at a pump energy of 105 J, which corresponds to a conversion efficiency of 47.5%. Based on the existing compressor, the laser system achieves a peak power of 1.26 PW with a 29.0 fs pulse duration.
NASA Astrophysics Data System (ADS)
Rushton, K. R.; Zaman, M. Asaduz
2017-01-01
Identifying flow processes in multi-aquifer flow systems is a considerable challenge, especially if substantial abstraction occurs. The Rajshahi Barind groundwater flow system in Bangladesh provides an example of the manner in which flow processes can change with time. At some locations there has been a decrease with time in groundwater heads and also in the magnitude of the seasonal fluctuations. This report describes the important stages in a detailed field and modelling study at a specific location in this groundwater flow system. To understand more about the changing conditions, piezometers were constructed in 2015 at different depths but the same location; water levels in these piezometers indicate the formation of an additional water table. Conceptual models are described which show how conditions have changed between the years 2000 and 2015. Following the formation of the additional water table, the aquifer system is conceptualised as two units. A pumping test is described with data collected during both the pumping and recovery phases. Pumping test data for the Lower Unit are analysed using a computational model with estimates of the aquifer parameters; the model also provided estimates of the quantity of water moving from the ground surface, through the Upper Unit, to provide an input to the Lower Unit. The reasons for the substantial changes in the groundwater heads are identified; monitoring of the recently formed additional water table provides a means of testing whether over-abstraction is occurring.
A Completely Solid-State Tunable Ti:Sapphire Laser System
NASA Technical Reports Server (NTRS)
Guerra, David V.; Coyle, D. Barry; Krebs, Danny J.
1994-01-01
Compact, completely solid-state tunable pulsed laser system passively cooled developed for potential employment in aircraft and sounding-rocket lidar experiments. Ti:sapphire based laser system pumped with frequency-doubled diode-pumped Nd:YAG. Rugged, self-contained system extremely flexible and provides pulsed output at specific frequencies with low input-power requirements. In-situ measurements enables scientists to study upper-atmosphere dynamics. Tuning range easily extended to bands between 650-950 nm in order to study other atmospheric constituents.
Prediction of overall and blade-element performance for axial-flow pump configurations
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Kavanagh, P.; Okiishi, T. H.; Miller, M. J.
1973-01-01
A method and a digital computer program for prediction of the distributions of fluid velocity and properties in axial flow pump configurations are described and evaluated. The method uses the blade-element flow model and an iterative numerical solution of the radial equilbrium and continuity conditions. Correlated experimental results are used to generate alternative methods for estimating blade-element turning and loss characteristics. Detailed descriptions of the computer program are included, with example input and typical computed results.
Diode-Pumped Long-Pulse-Length Ho:Tm:YLiF4 Laser at 10 Hz
NASA Technical Reports Server (NTRS)
Jani, Mahendra G.; Naranjo, Felipe L.; Barnes, Norman P.; Murray, Keith E.; Lockard, George E.
1995-01-01
An optical efficiency of 0.052 under normal mode operation for diode-pumped Ho:Tm:YLiF4 at a pulse repetition frequency of 10 Hz has been achieved. Laser output energy of 30 mJ in single Q-switched pulses with 600-ns pulse length were obtained for an input energy of 3 J. A diffusion-bonded birefringent laser rod consisting of Ho:Tm-doped and undoped pieces of YLF was utilized for 10-Hz operation.
A method for gear fatigue life prediction considering the internal flow field of the gear pump
NASA Astrophysics Data System (ADS)
Shen, Haidong; Li, Zhiqiang; Qi, Lele; Qiao, Liang
2018-01-01
Gear pump is the most widely used volume type hydraulic pump, and it is the main power source of the hydraulic system. Its performance is influenced by many factors, such as working environment, maintenance, fluid pressure and so on. It is different from the gear transmission system, the internal flow field of gear pump has a greater impact on the gear life, therefore it needs to consider the internal hydraulic system when predicting the gear fatigue life. In this paper, a certain aircraft gear pump as the research object, aim at the typical failure forms, gear contact fatigue, of gear pump, proposing the prediction method based on the virtual simulation. The method use CFD (Computational fluid dynamics) software to analyze pressure distribution of internal flow field of the gear pump, and constructed the unidirectional flow-solid coupling model of gear to acquire the contact stress of tooth surface on Ansys workbench software. Finally, employing nominal stress method and Miner cumulative damage theory to calculated the gear contact fatigue life based on modified material P-S-N curve. Engineering practice show that the method is feasible and efficient.
Determining the optimum solar water pumping system for domestic use, livestock water, or irrigation
USDA-ARS?s Scientific Manuscript database
For several years we have field tested many different types of solar powered water pumping systems. In this paper, several steps are given to select a solar-PV water pumping system. The steps for selection of stand-alone water pumping system were: deciding whether a wind or solar water pumping sys...
Diode pumped Nd:YAG laser development
NASA Technical Reports Server (NTRS)
Reno, C. W.; Herzog, D. G.
1976-01-01
A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.
NASA Astrophysics Data System (ADS)
Abbasabadi, Majid; Sahrai, Mostafa
2018-01-01
We investigated the propagation of an electromagnetic pulse through a one-dimensional photonic crystal doped with quantum-dot (QD) molecules in a defect layer. The QD molecules behave as a three-level quantum system and are driven by a coherent probe laser field and an incoherent pump field. No coherent coupling laser fields were introduced, and the coherence was created by the interdot tunnel effect. Further studied was the effect of tunneling and incoherent pumping on the group velocity of the transmitted and reflected probe pulse.
The Causes and Prevention Measures of Stuck Pump Phenomenon of Rod-pumped Well in CBM Field
NASA Astrophysics Data System (ADS)
Yonggui, Mei
2018-02-01
In the process of CBM field exploitation, in order to realize the drainage equipment to work continuous stably, the article pays attention to study and solve the stuck pump problem, and aim of reducing reservoir damage and lowing production costs. Through coal particles stuck pump experiment and sediment composition analysis, we find out five primary cause of stuck pump phenomenon: sand from coal seam, sediment from ground, iron corrosion, iron scrap caused by eccentric wear, coal cake. According to stuck pump mechanism, the article puts forward 8 measures to prevent stuck pump phenomenon, and the measures are focused on technology optimization, operation management and drainage process control. After 7 years production practice, the yearly stuck pump rate has dropped from 8.9% to 1.2%, and the pump inspection period has prolonged 2 times. The experiment result shows that pure coal particles cannot cause stuck pump, but sand, scrap iron, and iron corrosion are the primary cause of stuck pump. The article study and design the new pipe string structure that the bottom of the pipe string is open. This kind of pipe string applied the sedimentation terminal velocity theory to solve the stuck pump phenomenon, and it can be widely used in CBM drainage development.
Revisitation of the dipole tracer test for heterogeneous porous formations
NASA Astrophysics Data System (ADS)
Zech, Alraune; D'Angelo, Claudia; Attinger, Sabine; Fiori, Aldo
2018-05-01
In this paper, a new analytical solution for interpreting dipole tests in heterogeneous media is derived by associating the shape of the tracer breakthrough curve with the log-conductivity variance. It is presented how the solution can be used for interpretation of dipole field test in view of geostatistical aquifer characterization on three illustrative examples. The analytical solution for the tracer breakthrough curve at the pumping well in a dipole tracer test is developed by considering a perfectly stratified formation. The analysis is carried out making use of the travel time of a generic solute particle, from the injection to the pumping well. Injection conditions are adapted to different possible field setting. Solutions are presented for resident and flux proportional injection mode as well as for an instantaneous pulse of solute and continuous solute injections. The analytical form of the solution allows a detailed investigation on the impact of heterogeneity, the tracer input conditions and ergodicity conditions at the well. The impact of heterogeneity manifests in a significant spreading of solute particles that increases the natural tendency to spreading induced by the dipole setup. Furthermore, with increasing heterogeneity the number of layers needed to reach ergodic conditions become larger. Thus, dipole test in highly heterogeneous aquifers might take place under non-ergodic conditions giving that the log-conductivity variance is underestimated. The method is a promising geostatistical analyzing tool being the first analytical solution for dipole tracer test analysis taking heterogeneity of hydraulic conductivity into account.
Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets
NASA Astrophysics Data System (ADS)
Johansen, Øyvind; Brataas, Arne
2017-06-01
Dynamical antiferromagnets can pump spins into adjacent conductors. The high antiferromagnetic resonance frequencies represent a challenge for experimental detection, but magnetic fields can reduce these resonance frequencies. We compute the ac and dc inverse spin Hall voltages resulting from dynamical spin excitations as a function of a magnetic field along the easy axis and the polarization of the driving ac magnetic field perpendicular to the easy axis. We consider the insulating antiferromagnets MnF2,FeF2, and NiO. Near the spin-flop transition, there is a significant enhancement of the dc spin pumping and inverse spin Hall voltage for the uniaxial antiferromagnets MnF2 and FeF2. In the uniaxial antiferromagnets it is also found that the ac spin pumping is independent of the external magnetic field when the driving field has the optimal circular polarization. In the biaxial NiO, the voltages are much weaker, and there is no spin-flop enhancement of the dc component.
Specific Yields Estimated from Gravity Change during Pumping Test
NASA Astrophysics Data System (ADS)
Chen, K. H.; Hwang, C.; Chang, L. C.
2017-12-01
Specific yield (Sy) is the most important parameter to describe available groundwater capacity in an unconfined aquifer. When estimating Sy by a field pumping test, aquifer heterogeneity and well performers will cause a large uncertainty. In this study, we use a gravity-based method to estimate Sy. At the time of pumping test, amounts of mass (groundwater) are forced to be taken out. If drawdown corn is big and close enough to high precision gravimeter, the gravity change can be detected. The gravity-based method use gravity observations that are independent from traditional flow computation. Only the drawdown corn should be modeled with observed head and hydrogeology data. The gravity method can be used in most groundwater field tests, such as locally pumping/injection tests initiated by active man-made or annual variations due to natural sources. We apply our gravity method at few sites in Taiwan situated over different unconfined aquifer. Here pumping tests for Sy determinations were also carried out. We will discuss why the gravity method produces different results from traditional pumping test, field designs and limitations of the gravity method.
Wideband Electrically-Pumped 1050 nm MEMS-Tunable VCSEL for Ophthalmic Imaging.
John, Demis D; Burgner, Christopher B; Potsaid, Benjamin; Robertson, Martin E; Lee, Byung Kun; Choi, Woo Jhon; Cable, Alex E; Fujimoto, James G; Jayaraman, Vijaysekhar
2015-08-15
In this paper, we present a 1050 nm electrically-pumped micro-electro-mechanically-tunable vertical-cavity-surface-emitting-laser (MEMS-VCSEL) with a record dynamic tuning bandwidth of 63.8 nm, suitable for swept source optical coherence tomography (SS-OCT) imaging. These devices provide reduced cost & complexity relative to previously demonstrated optically pumped devices by obviating the need for a pump laser and associated hardware. We demonstrate ophthalmic SS-OCT imaging with the electrically-pumped MEMS-VCSEL at a 400 kHz axial scan rate for wide field imaging of the in vivo human retina over a 12 mm × 12 mm field and for OCT angiography of the macula over 6 mm × 6 mm & 3 mm × 3 mm fields to show retinal vasculature and capillary structure near the fovea. These results demonstrate the feasibility of electrically pumped MEMS-VCSELs in ophthalmic instrumentation, the largest clinical application of OCT. In addition, we estimate that the 3 dB coherence length in air is 225 meters ± 51 meters, far greater than required for ophthalmic SS-OCT and suggestive of other distance ranging applications.
Infrared x-ray pump-probe spectroscopy of the NO molecule
NASA Astrophysics Data System (ADS)
Guimarães, F. F.; Kimberg, V.; Felicíssimo, V. C.; Gel'Mukhanov, F.; Cesar, A.; Ågren, H.
2005-07-01
Two color infrared x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation.
NASA Astrophysics Data System (ADS)
Haghshenasfard, Zahra; Cottam, M. G.
2018-01-01
Theoretical studies are reported for the quantum-statistical properties of microwave-driven multi-mode magnon systems as represented by ferromagnetic nanowires with a stripe geometry. Effects of both the exchange and the dipole-dipole interactions, as well as a Zeeman term for an external applied field, are included in the magnetic Hamiltonian. The model also contains the time-dependent nonlinear effects due to parallel pumping with an electromagnetic field. Using a coherent magnon state representation in terms of creation and annihilation operators, we investigate the effects of parallel pumping on the temporal evolution of various nonclassical properties of the system. A focus is on the interbranch mixing produced by the pumping field when there are three or more modes. In particular, the occupation magnon number and the multi-mode cross correlations between magnon modes are studied. Manipulation of the collapse and revival phenomena of the average magnon occupation number and the control of the cross correlation between the magnon modes are demonstrated through tuning of the parallel pumping field amplitude and appropriate choices for the coherent magnon states. The cross correlations are a direct consequence of the interbranch pumping effects and do not appear in the corresponding one- or two-mode magnon systems.
NASA Technical Reports Server (NTRS)
Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)
1966-01-01
A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.
Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting.
Liu, Lan; Tong, Zhi; Wiberg, Andreas O J; Kuo, Bill P P; Myslivets, Evgeny; Alic, Nikola; Radic, Stojan
2014-07-28
Stable four-mode phase-sensitive (4MPS) process was investigated as a means to enhance two-pump driven parametric multicasting conversion efficiency (CE) and signal to noise ratio (SNR). Instability of multi-beam, phase sensitive (PS) device that inherently behaves as an interferometer, with output subject to ambient induced fluctuations, was addressed theoretically and experimentally. A new stabilization technique that controls phases of three input waves of the 4MPS multicaster and maximizes CE was developed and described. Stabilization relies on digital phase-locked loop (DPLL) specifically was developed to control pump phases to guarantee stable 4MPS operation that is independent of environmental fluctuations. The technique also controls a single (signal) input phase to optimize the PS-induced improvement of the CE and SNR. The new, continuous-operation DPLL has allowed for fully stabilized PS parametric broadband multicasting, demonstrating CE improvement over 20 signal copies in excess of 10 dB.
GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..
Vibration analysis of large centrifugal pump rotors
NASA Astrophysics Data System (ADS)
Y Zhao, W.; Ge, J. G.; Ma, D.; Li, C. M.; Bao, S. B.
2013-12-01
Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance.
NASA Astrophysics Data System (ADS)
Zhou, Yun-Qing; Wang, Rui-Qiang; Sheng, L.; Wang, Baigeng; Xing, D. Y.
2008-10-01
The evolution-operator approach is applied to studying photon-electron-pumping effects on a quantum dot connected to two magnetic leads in the presence of both via-dot and over-dot tunneling channels. It is found that a microwave field applied to the quantum dot may give rise to charge and spin pumpings at zero-bias voltage for asymmetric magnetic junctions. More interestingly, a pure spin current can be pumped for symmetric magnetic junctions in the antiparallel magnetization configuration, providing an idea for the design of spin batteries.
Electromagnetic induction pump for pumping liquid metals and other conductive liquids
Smither, R.K.
1993-05-11
An electromagnetic induction pump is described in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.
Electromagnetic induction pump for pumping liquid metals and other conductive liquids
Smither, Robert K.
1993-01-01
An electromagnetic induction pump in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.
Synchronous optical pumping of quantum revival beats for atomic magnetometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seltzer, S. J.; Meares, P. J.; Romalis, M. V.
2007-05-15
We observe quantum beats with periodic revivals due to nonlinear spacing of Zeeman levels in the ground state of potassium atoms, and demonstrate their synchronous optical pumping by double modulation of the pumping light at the Larmor frequency and the revival frequency. We show that synchronous pumping increases the degree of spin polarization by a factor of 4. As a practical example, we explore the application of this double-modulation technique to atomic magnetometers operating in the geomagnetic field range, and find that it can increase the sensitivity and reduce magnetic-field-orientation-dependent measurement errors endemic to alkali-metal magnetometers.
Hydraulic jet pumping in a remote location
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tjondrodiputro, B.; Gaul, R.B.; Gower, G.H.
1986-12-01
Hydraulic jet pumping equipment was installed in six Sembakung field (N.E. Kalimantan) wells by Atlantic Richfield Indonesia Inc., for Pertamina during 1983, and this article presents the experience acquired in the process of installing and operating this type of artificial-lift equipment in a remote location. Characteristics of the wells and equipment are reviewed, and possible future installations in similar circumstances are discussed. Sembakung oil field, discovered in late 1975, contained 17 wells after complete development. By 1983, some were flowing weakly and several zones were dead, indicating the need for some form of artificial lift. The choice of artificial liftmore » methods was limited by the lack of gas-lift gas, absence of a field-wide power distribution system, unavailability of a rod pumping well servicing unit, and lack of roads in the marshy environment. Thus, hydraulic (free-type) jet pumping was selected as the optimum technique. Jet pumps were installed in six of 17 wells in the field at the end of 1983. Downhole equipment was installed using a heli-rig, and all surface equipment was delivered to location using helicopters. Since startup, some operating problems occurred, but they have all been resolved. Well pumping rates range from 340 to 650 bpd gross, with 0 to 50% BSandW. The jet-pumped wells produced satisfactorily through July 1984, at which time operations were turned over to Pertamina Unit IV at the conclusion of the contractual term.« less
Bayindir, Ramazan; Cetinceviz, Yucel
2011-04-01
This paper describes a water pumping control system that is designed for production plants and implemented in an experimental setup in a laboratory. These plants contain harsh environments in which chemicals, vibrations or moving parts exist that could potentially damage the cabling or wires that are part of the control system. Furthermore, the data has to be transferred over paths that are accessible to the public. The control systems that it uses are a programmable logic controller (PLC) and industrial wireless local area network (IWLAN) technologies. It is implemented by a PLC, an communication processor (CP), two IWLAN modules, and a distributed input/output (I/O) module, as well as the water pump and sensors. Our system communication is based on an Industrial Ethernet and uses the standard Transport Control Protocol/Internet Protocol for parameterisation, configuration and diagnostics. The main function of the PLC is to send a digital signal to the water pump to turn it on or off, based on the tank level, using a pressure transmitter and inputs from limit switches that indicate the level of the water in the tank. This paper aims to provide a convenient solution in process plants where cabling is not possible. It also has lower installation and maintenance cost, provides reliable operation, and robust and flexible construction, suitable for industrial applications. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Nonlinearities of polymethine and squarylium molecules for optical limiting
NASA Astrophysics Data System (ADS)
Lim, Jin Hong
Optical limiting, a process that reduces transmittance at high laser input energies (irradiance, fluence), is of interest in applications where sensitive optical components, e.g. detectors, are vulnerable to damage by the laser beam. Polymethine and squarylium dyes show strong reverse saturable absorption (RSA) at 532 nm. RSA is a process by which weak linear absorption populates excited states which subsequently absorb strongly. Thus, low inputs are transmitted while high inputs are absorbed. This nonlinear absorption is determined by the ground and excited-state absorption cross sections as well as excited state lifetimes of the molecular system. We characterized a series of polymethine and squarine molecules in ethanol and polyurethane acrylate polymeric host (PUA) using Z-scan and pump-probe techniques at the second harmonic of the Nd:YAG laser system. A comparison of the properties in these two hosts is made. Some of these dyes show a large ratio of excited to ground state absorption cross section, ~200, which is larger than any previously reported values. In order to determine the wavelength dependence of the nonlinearities of these molecules, we also performed Z-scan and pump-probe experiments at wavelengths from 440 to 650 nm using a picosecond optical parametric oscillator (OPO) which is synchronously pumped by the third-harmonic of a modelocked train of Nd:YAG laser pulses. The OPO is continuously tunable from 400 to 700 nm using two critically phase-matched BBO crystals mounted for walkoff compensation. A polymethine dye in PUA (PD #3), which is one of the best polymethine dyes at 532 nm, shows strong RSA over a broad spectral range from 480 to 620 nm. while a squarylium dye shows RSA over a relatively narrow spectral range from 500 to 560 nm. However, the excited state lifetimes (~2.5 ns in PUA) are shorter than desirable for good nanosecond optical limiting (10 ns) and at high inputs (>=0.36 J/cm2) the limiting properties are reduced. Extensive measurements of these molecules along with computer modeling indicate that the reduced limiting at high inputs is due to molecular degradation induced after a trans-cis conformational change. Evidence for this and possible methods to eliminate this problem are presented.
ac electroosmotic pumping induced by noncontact external electrodes.
Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia
2007-09-21
Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1x1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mmsec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 mulsec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps.
Monolithic solid electrolyte oxygen pump
Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.
1989-01-01
A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.
NASA Astrophysics Data System (ADS)
Anchal, Abhishek; K, Pradeep Kumar; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal
2018-04-01
We present a scheme of frequency-degenerate mid-span spectral inversion (MSSI) for nonlinearity compensation in fiber-optic transmission systems. The spectral inversion is obtained by using counter-propagating dual pump four-wave mixing in a semiconductor optical amplifier (SOA). Frequency-degeneracy between signal and conjugate is achieved by keeping two pump frequencies symmetrical about the signal frequency. We simulate the performance of MSSI for nonlinearity compensation by scrutinizing the improvement of the Q-factor of a 200 Gbps QPSK signal transmitted over a standard single mode fiber, as a function of launch power for different span lengths and number of spans. We demonstrate a 7.5 dB improvement in the input power dynamic range and an almost 83% increase in the transmission length for optimum MSSI parameters of -2 dBm pump power and 400 mA SOA current.
NASA Astrophysics Data System (ADS)
Monfared, Yashar E.; Ponomarenko, Sergey A.
2017-10-01
We explore theoretically and numerically extreme event excitation in stimulated Raman scattering in gases. We consider gas-filled hollow-core photonic crystal fibers as a particular system realization. We show that moderate amplitude pump fluctuations obeying Gaussian statistics lead to the emergence of heavy-tailed non-Gaussian statistics as coherent seed Stokes pulses are amplified on propagation along the fiber. We reveal the crucial role that coherent memory effects play in causing non-Gaussian statistics of the system. We discover that extreme events can occur even at the initial stage of stimulated Raman scattering when one can neglect energy depletion of an intense, strongly fluctuating Gaussian pump source. Our analytical results in the undepleted pump approximation explicitly illustrate power-law probability density generation as the input pump noise is transferred to the output Stokes pulses.
Gonthier, Gerald J.
2009-01-01
A 24-hour aquifer test was conducted in Well Field 2 near Augusta, Georgia, October 21–22, 2009, to characterize the hydraulic properties of the Midville aquifer system. The selected well was pumped at a rate of 684 gallons per minute. At the initiation of aquifer-test pumping, water levels in each of eight wells monitored for the test were still recovering from the well-field production. Because water levels had not stabilized, data analyses were needed to account for the ongoing recovery. Hydraulic properties of the Midville aquifer system were estimated by an approach based on the Theis model and superposition. The Midville aquifer system was modeled as a Theis aquifer. The principle of superposition was used to sum the effects of multiple pumping and recovery events from a single pumped well and to sum the effects of all pumped wells as the estimated total drawdown at a monitored well. Simulated drawdown at each monitored well was determined by using a spreadsheet (SUMTheis) function of aquifer transmissivity and storativity. Simulated drawdown values were transformed into simulated water levels, accounting for longterm water-level trends. The transmissivity and storativity values that were used to calibrate the simulated water levels to measured water levels (roughly 4,000 square feet per day and 2E-04, respectively) provide estimates of the transmissivity and storativity of the Midville aquifer system in the vicinity of Well Field 2. The approach used in this study can be applied to similar well-field tests in which incomplete drawdown recovery or other known pumping is evident.
NASA Astrophysics Data System (ADS)
Zhao, Shun-Cai; Guo, Hong-Wei; Wei, Xiao-Jing
2017-10-01
The left-handedness was demonstrated by the simulation with a three-level quantum system in an Er3+ -dopped ZrF4-BaF2-LaF3- AlF3-NaF (ZBLAFN) optical fiber. And the left-handedness can be regulated by the incoherent pumping field. Our scheme may provide a solid candidate other than the coherent atomic vapor for left-handedness, and may extend the application of the rare-earth-ion-doped optical fiber in metamaterials and of the incoherent pumping light field in quantum optics.
Device and method for measuring the coefficient of performance of a heat pump
Brantley, V.R.; Miller, D.R.
1982-05-18
A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistane heaters. Temperature-sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive-heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct tempertures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional-frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electrons is required to operate the instrument.
Device and method for measuring the coefficient of performance of a heat pump
Brantley, Vanston R.; Miller, Donald R.
1984-01-01
A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistance heaters. Temperature sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct temperatures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electronics is required to operate the instrument.
NASA Astrophysics Data System (ADS)
Rzhanov, Yu A.; Grigor'yants, A. V.; Balkareĭ, Yu I.; Elinson, M. I.
1990-04-01
A detailed qualitative description is given of the formation and propagation of leading edges of transverse traveling pulses in a bistable semiconductor interferometer with competing concentration and thermal mechanisms of nonlinear refraction. It is shown that, depending on the laser pumping rate and the heat transfer conditions, two types of traveling pulses may exist with elevated and reduced transmission. Each of these may be initiated by a local change in the input intensity of any sign. When the interferometer is pumped by a spatially inhomogeneous, (for example, Gaussian) beam, periodic spontaneous initiation of both types of traveling pulses may take place at the periphery or in the center of a beam. Traveling pulses are modeled numerically under various interferometer pumping conditions.
Compact intra-cavity frequency doubled line beam green laser by a laser diode array pumped
NASA Astrophysics Data System (ADS)
Yan, Boxia; Qi, Yan; Wang, Yanwei
2016-10-01
Compact, high power, and low-cost green laser light sources are needed in projection-related applications such as digital cinema, rear-projection television, simulators, and command and control stations. We report a LD array directly pumped intracavity SHG Nd:YVO4/PPMgLN laser without lens or waveguide in this letter. A compact 3.12 W green laser was demonstrated by intra-cavity frequency doubled using a PPMgLN bulk crystal by a 19-emitter LD array pumped(single bar), the conversion efficiency from input LD array was 9.2%. A line-beam output suitable for laser projectors was generated, which has the potential to be scalable to small volumes and low costs for laser projection displays.
Induced charge electroosmosis micropumps using arrays of Janus micropillars.
Paustian, Joel S; Pascall, Andrew J; Wilson, Neil M; Squires, Todd M
2014-09-07
We report on a microfluidic AC-driven electrokinetic pump that uses Induced Charge Electro-Osmosis (ICEO) to generate on-chip pressures. ICEO flows occur when a bulk electric field polarizes a metal object to induce double layer formation, then drives electroosmotic flow. A microfabricated array of metal-dielectric Janus micropillars breaks the symmetry of ICEO flow, so that an AC electric field applied across the array drives ICEO flow along the length of the pump. When pumping against an external load, a pressure gradient forms along the pump length. The design was analyzed theoretically with the reciprocal theorem. The analysis reveals a maximum pressure and flow rate that depend on the ICEO slip velocity and micropillar geometry. We then fabricate and test the pump, validating our design concept by demonstrating non-local pressure driven flow using local ICEO slip flows. We varied the voltage, frequency, and electrolyte composition, measuring pump pressures of 15-150 Pa. We use the pump to drive flows through a high-resistance microfluidic channel. We conclude by discussing optimization routes suggested by our theoretical analysis to enhance the pump pressure.
Detection of Damage in Hydraulic Components by Acoustic Emission Techniques.
1984-04-01
49 ".-4.- Vane Pumps 50 Piston Pumps 61 Gear Pumps 66 VI FIELD TESTS (GEAR PUMPS) 108 Pump Cavitation 108 Internal Mechanical Damage Test Procedure...with Bad Bearing 60 5.6 a Frequency Spectrum (0-100 KHz) of Piston Pump. Cavitation Test, Inlet Pressure =1.55 atm (Normal) 63 5.6 b Frequency Spectrum...0-100 KHz) of Piston Pump. Cavitation Test, Inlet Pressure =1.38 atm (Incipient) 64. vi i . .e 0" S.. j~ * .’ *"-.i’.-..N.?.. .. ° .,LIST OF FIGURES
NASA Technical Reports Server (NTRS)
Seyed-Yagoobi, J.; Didion, J.; Ochterbeck, J. M.; Allen, J.
2000-01-01
There are three kinds of electrohydrodynamics (EHD) pumping based on Coulomb force: induction pumping, ion-drag pumping, and pure conduction pumping. EHD induction pumping relies on the generation of induced charges. This charge induction in the presence of an electric field takes place due to a non-uniformity in the electrical conductivity of the fluid which can be caused by a non-uniform temperature distribution and/or an inhomogeneity of the fluid (e.g. a two-phase fluid). Therefore, induction pumping cannot be utilized in an isothermal homogeneous liquid. In order to generate Coulomb force, a space charge must be generated. There are two main mechanisms for generating a space charge in an isothermal liquid. The first one is associated with the ion injection at a metal/liquid interface and the related pumping is referred to as ion-drag pumping. Ion-drag pumping is not desirable because it can deteriorate the electrical properties of the working fluid. The second space charge generation mechanism is associated with the heterocharge layers of finite thickness in the vicinity of the electrodes. Heterocharge layers result from dissociation of the neutral electrolytic species and recombination of the generated ions. This type of pumping is referred to as pure conduction pumping. This project investigates the EHD pumping through pure conduction phenomenon. Very limited work has been conducted in this field and the majority of the published papers in this area have mistakenly assumed that the electrostriction force was responsible for the net flow generated in an isothermal liquid. The main motivation behind this study is to investigate an EHD conduction pump for a two-phase loop to be operated in the microgravity environment. The pump is installed in the liquid return passage (isothermal liquid) from the condenser section to the evaporator section. Unique high voltage and ground electrodes have been designed that generate sufficient pressure heads with very low electric power requirements making the EHD conduction pumping attractive to applications such as two-phase systems (e.g. capillary pumped loops and heat pipes). Currently, the EHD conduction pump performance is being tested on a two-phase loop under various operating conditions in the laboratory environment. The simple non-mechanical and lightweight design of the EHD pump combined with the rapid control of performance by varying the applied electric field, low power consumption, and reliability offer significant advantages over other pumping mechanisms; particularly in reduced gravity applications.
Efficient 7-J flashlamp-pumped dye laser at 500-nm wavelength
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everett, P.N.; Aldag, H.R.; Ehrlich, J.J.
1986-07-01
An existing transverse flow flashlamp-pumped dye laser capable of operation at 500 pps for extended periods of time has been modified and optimized for operation at 502 nm using coumarin 504. Energies of over 7 J/ pulse and efficiencies of over 1% have been demonstrated in single-shot operation. This has been achieved by using a spectral transfer dye in the flashlamp coolant to increase the useful output of the flashlamps. Flashlamps were tested at up to 400-J input per lamp for extended periods to develop lamp life data.
Apparatus and method for removing particle species from fusion-plasma-confinement devices
Hamilton, G.W.
1981-10-26
In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.
Four-wave mixing in an asymmetric double quantum dot molecule
NASA Astrophysics Data System (ADS)
Kosionis, Spyridon G.
2018-06-01
The four-wave mixing (FWM) effect of a weak probe field, in an asymmetric semiconductor double quantum dot (QD) structure driven by a strong pump field is theoretically studied. Similarly to the case of examining several other nonlinear optical processes, the nonlinear differential equations of the density matrix elements are used, under the rotating wave approximation. By suitably tuning the intensity and the frequency of the pump field as well as by changing the value of the applied bias voltage, a procedure used to properly adjust the electron tunneling coupling, we control the FWM in the same way as several other nonlinear optical processes of the system. While in the weak electron tunneling regime, the impact of the pump field intensity on the FWM is proven to be of crucial importance, for even higher rates of the electron tunneling it is evident that the intensity of the pump field has only a slight impact on the form of the FWM spectrum. The number of the spectral peaks, depends on the relation between specific parameters of the system.
NASA Technical Reports Server (NTRS)
Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.
1994-01-01
A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.
NASA Astrophysics Data System (ADS)
Wang, L.; Kinzelbach, W.; Yao, H.; Hagmann, A.; Li, N.; Steiner, J. F.
2017-12-01
The North China Plain is one of the most important agricultural regions which relies heavily on groundwater pumping for irrigation powered by electric energy. This region is also facing a severe problem of groundwater over-pumping. Stopping groundwater depletion by controlling pumping for irrigation may harm the agricultural production and affect the interests of the electricity utility who is a direct participant in the irrigation management. Water-saving infrastructures such as sprinklers can be effective means for water conservation but are often difficult to implement due to farmers' unwillingness to pay for the additional electricity consumption. Understanding this food-energy-water nexus is fundamental to implement effective and practical strategies for groundwater over-pumping control in the North China Plain. However, this understanding can be obscured by the missing groundwater pumping monitoring and a lack of access to specific energy data for irrigation use as well as the field observations of pump efficiency. Taking the example of a typical agricultural county (Guantao) in the North China Plain with irrigation pumps generally powered by electricity, this study is focused on the analysis of the energy requirement in the irrigation sector and its application in developing strategies for groundwater over-pumping control at the county scale. 1) Field measurements from pumping tests are used to adjust the pumps' theoretical characteristics. A simple empirical equation is derived to estimate the energy use rate for irrigation given the depth of the groundwater table. Field measurements show that pump efficiency is around 30% in the tested region. 2) We hypothesize that the inter-annual variability of rural energy consumption is caused by the randomness in annual precipitation. This assumption is examined and then applied to separate the energy consumption for irrigation from the total rural energy consumption. 3) Based on the groundwater pumping rate reconstructed from the energy use, the interaction of agricultural production, groundwater resources and energy requirement is analysed and will help in developing practical strategies for groundwater over-pumping control in Guantao County.
Field-effect Flow Control in Polymer Microchannel Networks
NASA Technical Reports Server (NTRS)
Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.
2003-01-01
A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.
NASA Astrophysics Data System (ADS)
Yoon, H.; Kim, Y.; Lee, S. H.; Ha, K.
2017-12-01
It is necessary to monitor the variation of freshwater-saltwater interface for the sustainable use of groundwater resources in coastal areas. In the present study, we developed a device to measure the location of the freshwater-saltwater interface based on the concept of the neutral buoyancy and installed it in a coastal aquifer of the western sea, South Korea. To evaluate the impact of pumping on the groundwater and saltwater-freshwater interface level, we designed nine different pumping scenarios and monitored the groundwater and saltwater-freshwater interface levels of pumping well and two observation wells. The result of monitoring groundwater level shows that the response of observation wells to the pumping is relatively fast and high, however, the response of freshwater-saltwater interface occurred when the pumping rate and duration are over 25m3/day and 48hours, respectively. For the prediction and simulation of the groundwater level fluctuation under groundwater pumping events, we designed a artificial neural network based time series model considering rainfall, tide, and pumping rate as input components. The result of the prediction shows that the correlation coefficient between observed and estimated groundwater levels is as high as 0.7. It is expected that the result of this research can provide useful information for the effective management of groundwater resources in the study area.
Phonon-Mediated Exciton Stark Effect Enhanced by a Static Electric Field
NASA Astrophysics Data System (ADS)
Ivanov, A. L.
1997-03-01
The optical properties of semiconductor QW's change in the presence of coherent pump light. The exciton (phonon-mediated, biexciton-mediated, etc.) optical Stark effect is an effective shift of the exciton level that follow dynamically the intensity I0 ~= 0.1 div 1 GW/cm^2 of the pump light. In the present work we develop a theory of a low-intensity electric-field enhanced phonon-mediated optical Stark effect in polar semiconductors and semiconductor microstructures. The main point is that the exciton - LO-phonon Fröhlich interaction can be strongly enhanced by a (quasi-) static electric field F which polarizes the exciton in the geometry F | k | p, where k and p are the wavevectors of the pump and probe light, respectively. The electric field enhancement of spontaneous Raman scattering has been already analyzed (E. Burstein et al., 1971). Even a moderate electric field F ~= 10^3 V/cm reduces the intensity of the pump light to I0 ~= 1 div 10 MW/cm^2. Moreover, the phonon-mediated Stark effect enhanced by a static electric field F allow us to realize the both red and blue dynamical shifts of the exciton level.
NASA Astrophysics Data System (ADS)
Moroney, Richard Morgan, III
We have observed numerous kinetic effects using ultrasonic flexural plate waves (FPWs) in 4mu -thick composite plates of low-stress silicon nitride, piezoelectric zinc oxide and aluminum. The wavelength is typically 100 mum, and the area 3 x 8 mm^2. A successful new surface micromachining fabrication process is presented here for the first time. FPWs have been used to move liquids and gasses with motion typically indicated by polysilicon blocks in air and polystyrene spheres in water; the velocity in air is 4.5 mm/s (with a zero-to-peak input of 3 V), and in water it is 100 mum/s (with an input of 7.8 V). Other observations include pumping of a liquid dye, and mixing near the FPW surface. All quantitative observations demonstrate that the kinetic effects of FPWs are proportional to the square of the wave amplitude. The amplitude for a typical device is 250 A at 9 V input; the power in a typical FPW is about 2 mW. The amplitude can be accurately measured using a laser diffraction technique. Experimental error is about +/-10%, and many of the results agree well with a simple theory to predict the FPW amplitude; extensions of the theory model the fluid loading of FPW devices, but experiment and theory disagree by about 15%. Pumping by flexural plate waves is an example of the phenomenon known as acoustic streaming. A common solution approach is the method of successive approximations, where the nonlinear equations are first linearized and solved. This "first-order" solution is then used to determine the inhomogeneous source terms in the linearized, "second -order" equations of motion. Theoretical predictions of streaming theory are in excellent agreement with experiment in the case where the FPW device contacts a half-space of fluid; predictions for flow in small channels encourage the development of integrated micropumps. Applications for microflow include thermal redistribution in integrated circuits and liquid movement in analytical instruments--particularly where a small dead volume is required. Capabilities of this technology and further applications are discussed. Microflow systems that integrate transport of fluids and solids with sensing, mixing and other useful tasks may become a new market-leading application for the sensor and actuator field.
ac electroosmotic pumping induced by noncontact external electrodes
Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia
2007-01-01
Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1×1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mm∕sec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 μl∕sec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps. PMID:19693362
Testing of Liquid Metal Components for Nuclear Surface Power Systems
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Godfroy, Thomas J.; Pearson, J. Boise
2010-01-01
The Early Flight Fission Test Facility (EFF-TF) was established by the Marshall Space Flight Center (MSFC) to provide a capability for performing hardware-directed activities to support multiple in-space nuclear reactor concepts by using a non-nuclear test methodology. This includes fabrication and testing at both the module/component level and near prototypic reactor configurations. The EFF-TF is currently supporting an effort to develop an affordable fission surface power (AFSP) system that could be deployed on the Lunar surface. The AFSP system is presently based on a pumped liquid metal-cooled (Sodium-Potassium eutectic, NaK-78) reactor design. This design was derived from the only fission system that the United States has deployed for space operation, the Systems for Nuclear Auxiliary Power (SNAP) 10A reactor, which was launched in 1965. Two prototypical components recently tested at MSFC were a pair of Stirling power conversion units that would be used in a reactor system to convert heat to electricity, and an annular linear induction pump (ALIP) that uses travelling electromagnetic fields to pump the liquid metal coolant through the reactor loop. First ever tests were conducted at MSFC to determine baseline performance of a pair of 1 kW Stirling convertors using NaK as the hot side working fluid. A special test rig was designed and constructed and testing was conducted inside a vacuum chamber at MSFC. This test rig delivered pumped NaK for the hot end temperature to the Stirlings and water as the working fluid on the cold end temperature. These test were conducted through a hot end temperature range between 400 to 550C in increments of 50 C and a cold end temperature range from 30 to 70 C in 20 C increments. Piston amplitudes were varied from 6 to 1 1mm in .5 mm increments. A maximum of 2240 Watts electric was produced at the design point of 550 hot end, 40 C cold end with a piston amplitude of 10.5mm. This power level was reached at a gross thermal efficiency of 28%. A baseline performance map was established for the pair of 1kW Stirling convertors. The performance data will then be used for design modification to the Stirling convertors. The ALIP tested at MSFC has no moving parts and no direct electrical connections to the liquid metal containing components. Pressure is developed by the interaction of the magnetic field produced by the stator and the current which flows as a result of the voltage induced in the liquid metal contained in the pump duct. Flow is controlled by variation of the voltage supplied to the pump windings. Under steady-state conditions, pump performance is measured for flow rates from 0.5-4.3 kg/s. The pressure rise developed by the pump to support these flow rates is roughly 5-65 kPa. The RMS input voltage (phase-to-phase voltage) ranges from 5-120 V, while the frequency can be varied arbitrarily up to 60 Hz. Performance is quantified at different loop temperature levels from 50 C up to 650 C, which is the peak operating temperature of the proposed AFSP reactor. The transient response of the pump is also evaluated to determine its behavior during startup and shut-down procedures.
Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid
NASA Technical Reports Server (NTRS)
Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.
2001-01-01
The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.
Nimick, David A.; McCarthy, Peter M.; Fields, Vanessa
2011-01-01
Benton Lake National Wildlife Refuge is an important area for waterfowl production and migratory stopover in west-central Montana. Eight wetland units covering about 5,600 acres are the essential features of the refuge. Water availability for the wetland units can be uncertain owing to the large natural variations in precipitation and runoff and the high cost of pumping supplemental water. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, has developed a digital model for planning water management. The model can simulate strategies for water transfers among the eight wetland units and account for variability in runoff and pumped water. This report describes this digital model, which uses a water-accounting spreadsheet to track inputs and outputs to each of the wetland units of Benton Lake National Wildlife Refuge. Inputs to the model include (1) monthly values for precipitation, pumped water, runoff, and evaporation; (2) water-level/capacity data for each wetland unit; and (3) the pan-evaporation coefficient. Outputs include monthly water volume and flooded surface area for each unit for as many as 5 consecutive years. The digital model was calibrated by comparing simulated and historical measured water volumes for specific test years.
Broadband continuous-variable entanglement source using a chirped poling nonlinear crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J. S.; Sun, L.; Yu, X. Q.
2010-01-15
Aperiodically poled nonlinear crystal can be used as a broadband continuous-variable entanglement source and has strong stability under perturbations. We study the conversion dynamics of the sum-frequency generation and the quantum correlation of the two pump fields in a chirped-structure nonlinear crystal using the quantum stochastic method. The results show that there exists a frequency window for the pumps where two optical fields can perform efficient upconversion. The two pump fields are demonstrated to be entangled in the window and the chirped-structure crystal can be used as a continuous-variable entanglement source with a broad response bandwidth.
Rivoire, Kelley; Lin, Ziliang; Hatami, Fariba; Masselink, W Ted; Vucković, Jelena
2009-12-07
We demonstrate second harmonic generation in photonic crystal nanocavities fabricated in the semiconductor gallium phosphide. We observe second harmonic radiation at 750 nm with input powers of only nanowatts coupled to the cavity and conversion effciency P(out)/P(2)(in,coupled)=430%/W. The large electronic band gap of GaP minimizes absorption loss, allowing effcient conversion. Our results are promising for integrated, low-power light sources and on-chip reduction of input power in other nonlinear processes.
AZ-101 Mixer Pump Test Qualification Test Procedures (QTP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
THOMAS, W.K.
2000-01-10
Describes the Qualification test procedure for the AZ-101 Mixer Pump Data Acquisition System (DAS). The purpose of this Qualification Test Procedure (QTP) is to confirm that the AZ-101 Mixer Pump System has been properly programmed and hardware configured correctly. This QTP will test the software setpoints for the alarms and also check the wiring configuration from the SIMcart to the HMI. An Acceptance Test Procedure (ATP), similar to this QTP will be performed to test field devices and connections from the field.
Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control.
Zhao, Jian; Guiraud, Germain; Floissat, Florian; Gouhier, Benoit; Rota-Rodrigo, Sergio; Traynor, Nicholas; Santarelli, Giorgio
2017-01-09
Gain dynamics study provides an attractive method to understand the intensity noise behavior in fiber amplifiers. Here, the gain dynamics of a medium power (5 W) clad-pumped Yb-fiber amplifier is experimentally evaluated by measuring the frequency domain transfer functions for the input seed and pump lasers from 10 Hz to 1 MHz. We study gain dynamic behavior of the fiber amplifier in the presence of significant residual pump power (compared to the seed power), showing that the seed transfer function is strongly saturated at low Fourier frequencies while the pump power modulation transfer function is nearly unaffected. The characterization of relative intensity noise (RIN) of the fiber amplifier is well explained by the gain dynamics analysis. Finally, a 600 kHz bandwidth feedback loop using an acoustic-optical modulator (AOM) controlling the seed intensity is successfully demonstrated to suppress the broadband laser intensity noise. A maximum noise reduction of about 30 dB is achieved leading to a RIN of -152 dBc/Hz (~1 kHz-10 MHz) at 2.5 W output power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Payne, W. Vance; Ling, Jiazhen
The IEA HPT Annex 40 "Heat pump concepts for Nearly Zero Energy Buildings" deals with the application of heat pumps as a core component of the HVAC system for Nearly or Net Zero energy buildings (nZEB). This report covers Task 2 on the system comparison and optimisation and Task 3 dedicated to the development of adapted technologies for nZEB and field monitoring results of heat pump systems in nZEB. In the US team three institutions are involved and have worked on the following projects: The Oak Ridge National Laboratory (ORNL) will summarize development activities through the field demonstration stage formore » several integrated heat pump (IHP) systems electric ground-source (GS-IHP) and air-source (AS-IHP) versions and an engine driven AS-IHP version. The first commercial GS-IHP product was just introduced to the market in December 2012. This work is a contribution to Task 3 of the Annex. The University of Maryland will contribute a software development project to Task 2 of the Annex. The software ThermCom evaluates occupied space thermal comfort conditions accounting for all radiative and convective heat transfer effects as well as local air properties. The National Institute of Standards and Technology (NIST) is working on a field study effort on the NIST Net Zero Energy Residential Test Facility (NZERTF). This residential building was constructed on the NIST campus and officially opened in summer 2013. During the first year, between July 2013 and June 2014, baseline performance of the NZERTF was monitored under a simulated occupancy protocol. The house was equipped with an air-to-air heat pump which included a dedicated dehumidification operating mode. Outdoor conditions, internal loads and modes of heat pump operation were monitored. Field study results with respect to heat pump operation will be reported and recommendations on heat pump optimization for a net zero energy building will be provided. This work is a contribution to Task 3 of the Annex.« less
Three Dimensional Imaging of Helicon Wave Fields Via Magnetic Induction Probes
2009-07-13
Elastomer Flange 50 The chamber is pumped by a Varian TV-300 HT turbomolecular vacuum pump with a pumping speed of 250 l/s backed by a dry scroll ... vacuum diffusion chamber with pump locations .................................................. 49 Figure 3.2. RF power delivery system...steel, 0.5 meter diameter by 1.0 meter long vacuum chamber. It has 24 access ports / flanges of varying diameter for diagnostic feed-throughs, pumping
NASA Astrophysics Data System (ADS)
Klockgether, J.; Kiessling, K. P.
1983-09-01
Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.
RF-DC converter for HF RFID sensing applications powered by a near-field loop antenna
NASA Astrophysics Data System (ADS)
Colella, R.; Pasca, M.; Catarinucci, L.; Tarricone, L.; D'Amico, S.
2016-07-01
In this paper, an RF-DC converter operating at 13.56 MHz (HF radio frequency identification (RFID) frequency band) is presented. Its architecture provides RF to load isolation, reducing the losses due to the reverse saturation current and improving the sensitivity. Fed by a loop antenna, the RF-DC converter is made by a Dickson's RF-DC rectifier and an additional Pelliconi's charge pump driven by a fully integrated 50 kHz ring oscillator realized using an application-specific integrated circuit (ASIC). The input RF signal from the reader is converted to DC supply voltage and stored on a 1 μF capacitor. Mathematical model of the converter is developed and verified through measurements. Silicon prototypes of the ASIC have been realized in 350 nm complementary metal-oxide semiconductor technology. Measurements have been done on 10 different samples showing an output voltage in the range of 0.5 V-3.11 V in correspondence of an RF input signal power in the range of -19 dBm-0 dBm. These output voltage levels are suitable to power HF RFID sensing platforms and sensor nodes of body sensor networks.
Method to produce American Thoracic Society flow-time waveforms using a mechanical pump.
Hankinson, J L; Reynolds, J S; Das, M K; Viola, J O
1997-03-01
The American Thoracic Society (ATS) recently adopted a new set of 26 standard flow-time waveforms for use in testing both diagnostic and monitoring devices. Some of these waveforms have a higher frequency content than present in the ATS-24 standard volume-time waveforms, which, when produced by a mechanical pump, may result in a pump flow output that is less than the desired flow due to gas compression losses within the pump. To investigate the effects of gas compression, a mechanical pump was used to generate the necessary flows to test mini-Wright and Assess peak expiratory flow (PEF) meters. Flow output from the pump was measured by two different independent methods, a pneumotachometer and a method based on piston displacement and pressure measured within the pump. Measuring output flow based on piston displacement and pressure has been validated using a pneumotachometer and mini-Wright PEF meter, and found to accurately measure pump output. This method introduces less resistance (lower back-pressure) and dead space volume than using a pneumotachometer in series with the meter under test. Pump output flow was found to be lower than the desired flow both with the mini-Wright and Assess meters (for waveform No. 26, PEFs 7.1 and 10.9% lower, respectively). To compensate for losses due to gas compression, we have developed a method of deriving new input waveforms, which, when used to drive a commercially available mechanical pump, accurately and reliably produces the 26 ATS flow-time waveforms, even those with the fastest rise-times.
Choi, Dae Sik; Rao, B Jayachander; Kim, Doyeon; Shim, Sang-Hee; Rhee, Hanju; Cho, Minhaeng
2018-06-14
Coherent Raman scattering spectroscopy and microscopy are useful methods for studying the chemical and biological structures of molecules with Raman-active modes. In particular, coherent anti-Stokes Raman scattering (CARS) microscopy, which is a label-free method capable of imaging structures by displaying the vibrational contrast of the molecules, has been widely used. However, the lack of a technique for switching-off the CARS signal has prevented the development of the super-resolution Raman imaging method. Here, we demonstrate that a selective suppression of the CARS signal is possible by using a three-beam double stimulated Raman scattering (SRS) scheme; the three beams are the pump, Stokes, and depletion lights in order of frequency. Both pump-Stokes and pump-depletion beam pairs can generate SRS processes by tuning their beat frequencies to match two different vibrational modes, then two CARS signals induced by pump-Stokes-pump and pump-depletion-pump interactions can be generated, where the two CARS signals are coupled with each other because they both involve interactions with the common pump beam. Herein, we show that as the intensity of the depletion beam is increased, one can selectively suppress the pump-Stokes-pump CARS signal because the pump-depletion SRS depletes the pump photons. A detailed theoretical description of the coupled differential equations for the three incident fields and the generated CARS signal fields is presented. Taking benzene as a molecular system, we obtained a maximum CARS suppression efficiency of about 97% with our experimental scheme, where the ring breathing mode of the benzene is associated with pump-Stokes-pump CARS, while the C-H stretching mode is associated with the competing pump-depletion SRS process. We anticipate that this selective switching-off scheme will be of use in developing super-resolution label-free CARS microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prince, K.R.; Schneider, B.J.
This study obtained estimates of the hydraulic properties of the upper glacial and Magothy aquifers in the East Meadow area for use in analyzing the movement of reclaimed waste water through the aquifer system. This report presents drawdown and recovery data form the two aquifer tests of 1978 and 1985, describes the six methods of analysis used, and summarizes the results of the analyses in tables and graphs. The drawdown and recovery data were analyzed through three simple analytical equations, two curve-matching techniques, and a finite-element radial-flow model. The resulting estimates of hydraulic conductivity, anisotropy, and storage characteristics were usedmore » as initial input values to the finite-element radial-flow model (Reilly, 1984). The flow model was then used to refine the estimates of the aquifer properties by more accurately representing the aquifer geometry and field conditions of the pumping tests.« less
Tuning the group delay of optical wave packets in liquid-crystal light valves
NASA Astrophysics Data System (ADS)
Bortolozzo, U.; Residori, S.; Huignard, J. P.
2009-05-01
By performing two-wave mixing experiments in a liquid-crystal light valve, optical pulses are slowed down to group velocities as slow as a few tenths of mm/s, corresponding to a very large group index. We present experiments and model of the slow-light process occurring in the liquid-crystal light valve, showing that this is characterized by multiple-beam diffraction in the Raman-Nath regime. Depending on the initial frequency detuning between pump and signal, the different output order beams are distinguished by different group delays. The group delay can be tuned by changing the main parameters of the experiment: the detuning between the pump and the input wave packet, the strength of the nonlinearity, and the intensity of the pump beam.
NASA Astrophysics Data System (ADS)
Saito, Norihito; Akagawa, Kazuyuki; Kato, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2006-12-01
We report an all-solid-state coherent 589 nm light source in single-pass sum-frequency generation (SFG) with actively mode-locked Nd:YAG lasers for the realization of sodium lidar and laser guide star adaptive optics. The Nd:YAG lasers are constructed as a LD-side-pumped configuration and are operated at 1064 and 1319 nm for 589 nm light generation in SFG. Output powers of 16.5 and 5.3 W at 1064 and 1319 nm are obtained with two pumping chambers. Each chamber consisted of three 80-W-LD arrays. Single transverse mode TEM 00; M2 ~1.1 is achieved with adjustment of cavity length considering thermal lens effect with increase of input LD power. The cavity length is set to approximately 1 m. Accordingly the mode-locked lasers are operated at a repetition rate of approximately 150 MHz. Synchronization of two pulse trains at 1064 and 1319 nm is accomplished by control of phase difference between two radio frequencies input in acousto-optic mode-lockers. Then temporal delay is controlled with a resolution of 37 ps/degree. Pump beams are mixed in periodically poled stoichiometric lithium tantalate (PPSLT) without an antireflection coating. The effective aperture and length of the crystal are 0.5 × 2 mm2 and 15 mm. When input intensity is set at 5.6 MW/cm , an average output power of 4.6 W is obtained at 589.159 nm. Precise tuning to the sodium D II line is accomplished by thermal control of etalons set in the Nd:YAG lasers. The output power at 589.159 nm is stably maintained within +/-1.2% for 8 hours.
Bronchart, Filip; De Paepe, Michel; Dewulf, Jo; Schrevens, Eddie; Demeyer, Peter
2013-04-15
In Flanders and the Netherlands greenhouse production systems produce economically important quantities of vegetables, fruit and ornamentals. Indoor environmental control has resulted in high primary energy use. Until now, the research on saving primary energy in greenhouse systems has been mainly based on analysis of energy balances. However, according to the thermodynamic theory, an analysis based on the concept of exergy (free energy) and energy can result in new insights and primary energy savings. Therefore in this paper, we analyse the exergy and energy of various processes, inputs and outputs of a general greenhouse system. Also a total system analysis is then performed by linking the exergy analysis with a dynamic greenhouse climate growth simulation model. The exergy analysis indicates that some processes ("Sources") lie at the origin of several other processes, both destroying the exergy of primary energy inputs. The exergy destruction of these Sources is caused primarily by heat and vapour loss. Their impact can be compensated by exergy input from heating, solar radiation, or both. If the exergy destruction of these Sources is reduced, the necessary compensation can also be reduced. This can be accomplished through insulating the greenhouse and making the building more airtight. Other necessary Sources, namely transpiration and loss of CO2, have a low exergy destruction compared to the other Sources. They are therefore the best candidate for "pump" technologies ("vapour heat pump" and "CO2 pump") designed to have a low primary energy use. The combination of these proposed technologies results in an exergy efficient greenhouse with the highest primary energy savings. It can be concluded that exergy analyses add additional information compared to only energy analyses and it supports the development of primary energy efficient greenhouse systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Load calculation on the nozzle in a flue gas desulphurization system
NASA Astrophysics Data System (ADS)
Róbert, Olšiak; Zoltán, Fuszko; Zoltán, Csuka
2017-09-01
The desulphurization system is used to remove sulfur oxides from exhaust, so-called flue gases through absorbing them via the sprayed suspension. The suspension delivered from the pump system to the atmospheric bi-directional double hollow cone nozzle has the prescribed working pressure. The unknown mechanical load on the solid body of the nozzle is present through the change of moment due to the flow of the suspension through the bi-directional outflow areas [1], [4]. The calculation of the acting forces and torques in the 3 directions was carried out with the methods of computational fluid dynamics (CFD) in the software ANSYS Fluent. The geometric model of the flow areas of the nozzle were created with the methods of reverse engineering. The computational mesh required by the CFD solver was created, and its quality verified with the standard criteria. The used boundary conditions were defined by the hydraulic parameters of the pump system, the properties of the suspension present in the hydraulic system were specified by sample analysis. The post-processed and analyzed results of the CFD calculation, the pressure-field and the velocity magnitudes in particular directions were further used as input parameters at the mechanical analysis of the load on the bi-directional nozzle.
Another expert system rule inference based on DNA molecule logic gates
NASA Astrophysics Data System (ADS)
WÄ siewicz, Piotr
2013-10-01
With the help of silicon industry microfluidic processors were invented utilizing nano membrane valves, pumps and microreactors. These so called lab-on-a-chips combined together with molecular computing create molecular-systems-ona- chips. This work presents a new approach to implementation of molecular inference systems. It requires the unique representation of signals by DNA molecules. The main part of this work includes the concept of logic gates based on typical genetic engineering reactions. The presented method allows for constructing logic gates with many inputs and for executing them at the same quantity of elementary operations, regardless of a number of input signals. Every microreactor of the lab-on-a-chip performs one unique operation on input molecules and can be connected by dataflow output-input connections to other ones.
Field Investigation of an Air-Source Cold Climate Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Abdelaziz, Omar; Rice, C Keith
In the U.S., there are approximately 2.6 million dwellings that use electricity for heating in cold and very cold regions with an annual energy consumption of 0.16 quads (0.17 EJ). A high performance cold climate heat pump (CCHP) would result in significant savings over current technologies (greater than 60% compared to electric resistance heating). We developed an air-source cold climate heat pump, which uses tandem compressors, with a single compressor rated for the building design cooling load, and running two compressors to provide, at -13 F (-25 C), 75% of rated heating capacity. The tandem compressors were optimized for heatingmore » operation and are able to tolerate discharge temperatures up to 280 F (138 C). A field investigation was conducted in the winter of 2015, in an occupied home in Ohio, USA. During the heating season, the seasonal COP was measured at 3.16, and the heat pump was able to operate down to -13 F (-25 C) and eliminate resistance heat use. The heat pump maintained an acceptable comfort level throughout the heating season. In comparison to a previous single-speed heat pump in the home, the CCHP demonstrated more than 40% energy savings in the peak heating load month. This paper illustrates the measured field performance, including compressor run time, frost/defrosting operations, distributions of building heating load and capacity delivery, comfort level, field measured COPs, etc.« less
Emissions-critical charge cooling using an organic rankine cycle
Ernst, Timothy C.; Nelson, Christopher R.
2014-07-15
The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.
Development and testing of aluminum micro channel heat sink
NASA Astrophysics Data System (ADS)
Kumaraguruparan, G.; Sornakumar, T.
2010-06-01
Microchannel heat sinks constitute an innovative cooling technology for the removal of a large amount of heat from a small area and are suitable for electronics cooling. In the present work, Tool Steel D2 grade milling slitting saw type plain milling cutter is fabricated The microchannels are machined in aluminum work pieces to form the microchannel heat sink using the fabricated milling cutter in an horizontal milling machine. A new experimental set-up is fabricated to conduct the tests on the microchannel heat sink. The heat carried by the water increases with mass flow rate and heat input. The heat transfer coefficient and Nusselt number increases with mass flow rate and increased heat input. The pressure drop increases with Reynolds number and decreases with input heat. The friction factor decreases with Reynolds number and decreases with input heat. The thermal resistance decreases with pumping power and decreases with input heat.
Optimization of ground-water withdrawal at the old O-Field area, Aberdeen Proving Ground, Maryland
Banks, William S.L.; Dillow, Jonathan J.A.
2001-01-01
The U.S. Army disposed of chemical agents, laboratory materials, and unexploded ordnance at the Old O-Field landfill at Aberdeen Proving Ground, Maryland, beginning prior to World War II and continuing until at least the 1950?s. Soil, ground water, surface water, and wetland sediments in the Old O-Field area were contaminated by the disposal of these materials. The site is in the Atlantic Coastal Plain, and is characterized by a complex series of Pleistocene and Holocene sediments formed in various fluvial, estuarine, and marine-marginal hydrogeologic environments. A previously constructed transient finite-difference ground-water-flow model was used to simulate ground-water flow and the effects of a pump-and-treat remediation system designed to prevent contaminated ground water from flowing into Watson Creek (a tidal estuary and a tributary to the Gunpowder River). The remediation system consists of 14 extraction wells located between the Old O-Field landfill and Watson Creek.Linear programming techniques were applied to the results of the flow-model simulations to identify optimal pumping strategies for the remediation system. The optimal management objective is to minimize total withdrawal from the water-table aquifer, while adhering to the following constraints: (1) ground-water flow from the landfill should be prevented from reaching Watson Creek, (2) no extraction pump should be operated at a rate that exceeds its capacity, and (3) no extraction pump should be operated at a rate below its minimum capacity, the minimum rate at which an Old O-Field pump can function. Water withdrawal is minimized by varying the rate and frequency of pumping at each of the 14 extraction wells over time. This minimizes the costs of both pumping and water treatment, thus providing the least-cost remediation alternative while simultaneously meeting all operating constraints.The optimal strategy identified using this objective and constraint set involved operating 13 of the 14 extraction wells at rates ranging from 0.4 to 4.9 gallons per minute.
2016-06-17
APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention relates to an impulse pump for generating...impulse pump 15. The sleeve bearings 98 are affixed to the head block 90 to ease axial motion while the plunger 72 is under torsional loads. [0041
Effects of pumping strategies on pesticide concentration of a drinking water well
NASA Astrophysics Data System (ADS)
Aisopou, A.; Bjerg, P. L.; Binning, P. J.; Albrechtsen, H.
2011-12-01
Groundwater is an important source of drinking water production in many countries including Denmark. This requires high quality groundwater that meets the standards of the European Water Framework Directive. Yet as a result of agricultural activitity, deposition and previous handling, pesticides are frequently found in groundwater and can raise a substantial problem for ground water abstraction. The concentration of this contamination may vary between different layers. The heterogeneity of the subsurface geology and the depth of the drinking water well's screen are important parameters that affect the resulting contamination of the abstracted groundwater. The pesticide concentration in wells may also be affected by the pumping strategy because pumping can alter the structure of the flow field, the flowpath of water going to the well and subsequently the age of water at the well. The purpose of this study was to examine numerically the effects of pumping on pesticide contamination of drinking water wells using a reactive transport model in a hypothetical aquifer system resembling a typical Danish well field. The application history of the pesticides is crucial. This can be taken into account by assessing the effects of pumping on water age distribution along the well. Three compounds with different application histories were considered: an old banned pesticide MCPP (Mecoprop) which is mobile and relatively persistent in deeper aquifers, and a highly applied, biodegradable and strongly sorbing pesticide glyphosate, and its degradation product AMPA. A steady state flow field was first computed. A well field was then introduced and different pumping regimes were applied for a period of 180 years; a low-rate pumping, a high-rate pumping and a varying pumping regime. A constant application rate at the surface was assumed for the application period of each pesticide. The pre-abstraction age distribution of the water in the system was first estimated using a steady-state flow and transport simulation. These water ages were then used as the initial conditions for the transient simulations. The results of the simulations showed that the range of water ages contributing to the well increased during pumping and was substantially affected by the pumping rate. High pesticide concentrations were persistent in the well 40 to 100 years after they were banned, due to the high residence times in the aquifer. Large changes in simulated pesticides concentrations at the well occurred during pumping. The pesticide concentration reaching the well was affected by the pumping regime and the pesticide application history and properties. A higher pumping rate induced a higher pesticide concentration peak at the well of shorter duration, while a lower pumping rate induced a lower concentration peak of longer duration. The long term scenarios revealed that at high pumping rates MCPP would disappear 40 years after its application end year, while glyphosate concentrations increase and reach a plateau, which is highly dependent on the pumping rate. The findings of the study help understand the results of groundwater monitoring programmes and can be used for the quantitative evaluation of management and pumping strategies for the long-term supply of safe potable groundwater.
Suss, Matthew E.; Mani, Ali; Zangle, Thomas A.; Santiago, Juan G.
2010-01-01
Current methods of optimizing electroosmotic (EO) pump performance include reducing pore diameter and reducing ionic strength of the pumped electrolyte. However, these approaches each increase the fraction of total ionic current carried by diffuse electric double layer (EDL) counterions. When this fraction becomes significant, concentration polarization (CP) effects become important, and traditional EO pump models are no longer valid. We here report on the first simultaneous concentration field measurements, pH visualizations, flow rate, and voltage measurements on such systems. Together, these measurements elucidate key parameters affecting EO pump performance in the CP dominated regime. Concentration field visualizations show propagating CP enrichment and depletion fronts sourced by our pump substrate and traveling at order mm/min velocities through millimeter-scale channels connected serially to our pump. The observed propagation in millimeter-scale channels is not explained by current propagating CP models. Additionally, visualizations show that CP fronts are sourced by and propagate from the electrodes of our system, and then interact with the EO pump-generated CP zones. With pH visualizations, we directly detect that electrolyte properties vary sharply across the anode enrichment front interface. Our observations lead us to hypothesize possible mechanisms for the propagation of both pump- and electrode-sourced CP zones. Lastly, our experiments show the dynamics associated with the interaction of electrode and membrane CP fronts, and we describe the effect of these phenomena on EO pump flow rates and applied voltages under galvanostatic conditions. PMID:21516230
Lai, Po-Yen; Chang, Chun-Lin; Huang, Sheng-Lung; Chen, Shih-Hung
2018-05-01
The multipass scheme for a diode-seeded fiber master oscillator power amplifier with a nanojoule-to-millijoule output energy level at a repetition rate of <100 kHz is numerically analyzed for comparison to an experimental benchmark. For a 6/125 single-mode preamplifier with a small input energy (<1 nJ), there is a significant improvement in the output energy from 0.7% to 80% and 95% of the maximum extractable energy using the double-pass and four-pass schemes, respectively. For a 30/250 large-mode-area power amplifier using the double-pass and forward pumping scheme, the required input energy is decreased from 100 μJ to 18 μJ for millijoule energy extraction with accompanying Stokes waves of less than 10% of the total energy. The system based on the full master oscillator power amplifier configuration with an output energy exceeding millijoule level can be optimally simplified to two stages for commercialization.
Ultrafast Study of Dynamic Exchange Coupling in Ferromagnet/Oxide/Semiconductor Heterostructures
NASA Astrophysics Data System (ADS)
Ou, Yu-Sheng
Spintronics is the area of research that aims at utilizing the quantum mechanical spin degree of freedom of electrons in solid-state materials for information processing and data storage application. Since the discovery of the giant magnetoresistance, the field of spintronics has attracted lots of attention for its numerous potential advantages over contemporary electronics, such as less power consumption, high integration density and non-volatility. The realization of a spin battery, defined by the ability to create spin current without associated charge current, has been a long-standing goal in the field of spintronics. The demonstration of pure spin current in ferromagnet/nonmagnetic material hybrid structures by ferromagnetic resonance spin pumping has defined a thrilling direction for this field. As such, this dissertation targets at exploring the spin and magnetization dynamics in ferromagnet/oxide/semiconductor heterostructures (Fe/MgO/GaAs) using time-resolved optical pump-probe spectroscopy with the long-range goal of understanding the fundamentals of FMR-driven spin pumping. Fe/GaAs heterostructures are complex systems that contain multiple spin species, including paramagnetic spins (GaAs electrons), nuclear spins (Ga and As nuclei) and ferromagnetic spins (Fe). Optical pump-probe studies on their interplay have revealed a number of novel phenomena that has not been explored before. As such they will be the major focus of this dissertation. First, I will discuss the effect of interfacial exchange coupling on the GaAs free-carrier spin relaxation. Temperature- and field-dependent spin-resolved pump-probe studies reveal a strong correlation of the electron spin relaxation with carrier freeze-out, in quantitative agreement with a theoretical interpretation that at low temperatures the free-carrier spin lifetime is dominated by inhomogeneity in the local hyperfine field due to carrier localization. Second, we investigate the impact of tunnel barrier thickness on GaAs electron spin dynamics in Fe/MgO/GaAs heterostructures. Comparison of the Larmor frequency between samples with thick and thin MgO barriers reveals a four-fold variation in exchange coupling strength, and investigation of the spin lifetimes argues that inhomogeneity in the local hyperfine field dominates free-carrier spin relaxation across the entire range of barrier thickness. These results provide additional evidence to support the theory of hyperfine-dominated spin relaxation in GaAs. Third, we investigated the origin and dynamics of an emergent spin population by pump power and magnetic field dependent spin-resolved pump-probe studies. Power dependent study confirms its origin to be filling of electronic states in GaAs, and further field dependent studies reveal the impact of contact hyperfine coupling on the dynamics of electron spins occupying distinct electronic states. Beyond above works, we also pursue optical detection of dynamic spin pumping in Fe/MgO/GaAs heterostructures in parallel. I will discuss the development and progress that we have made toward this goal. This project can be simply divided into two phases. In the first phase, we focused on microwave excitation and optical detection of spin pumping. In the second phase, we focused on all-optical excitation and detection of spin pumping. A number of measurement strategies have been developed and executed in both stages to hunt for a spin pumping signal. I will discuss the preliminary data based upon them.
Laser pumping Cs atom magnetometer of theory research based on gradient tensor measuring
NASA Astrophysics Data System (ADS)
Yang, Zhang; Chong, Kang; Wang, Qingtao; Lei, Cheng; Zheng, Caiping
2011-02-01
At present, due to space exploration, military technology, geological exploration, magnetic navigation, medical diagnosis and biological magnetic fields study of the needs of research and development, the magnetometer is given strong driving force. In this paper, it will discuss the theoretical analysis and system design of laser pumping cesium magnetometer, cesium atomic energy level formed hyperfine structure with the I-J coupling, the hyperfine structure has been further split into Zeeman sublevels for the effects of magnetic field. To use laser pump and RF magnetic field make electrons transition in the hyperfine structure to produce the results of magneto-optical double resonance, and ultimately through the resonant frequency will be able to achieve accurate value of the external magnetic field. On this basis, we further have a discussion about magnetic gradient tensor measuring method. To a large extent, it increases the magnetic field measurement of information.
Simulation of optically pumped intersubband laser in magnetic field
NASA Astrophysics Data System (ADS)
Erić, Marko; Milanović, Vitomir; Ikonić, Zoran; Indjin, Dragan
2007-06-01
Simulations of an optically pumped intersubband laser in magnetic field up to 60 T are performed within the steady-state rate equations model. The electron-polar optical phonon scattering is calculated using the confined and interface phonon model. A strong oscillatory optical gain vs. magnetic field dependence is found, with two dominant gain peaks occurring at 20 and 40 T, the fields which bring appropriate states into resonance with optical phonons and thus open additional relaxation paths. The peak at 20 T exceeds the value of gain achieved at zero field.
Yang, Chao-Bo; He, Ping; Escofet-Martin, David; Peng, Jiang-Bo; Fan, Rong-Wei; Yu, Xin; Dunn-Rankin, Derek
2018-01-10
In this paper, three ultrashort-pulse coherent anti-Stokes Raman scattering (CARS) thermometry approaches are summarized with a theoretical time-domain model. The difference between the approaches can be attributed to variations in the input field characteristics of the time-domain model. That is, all three approaches of ultrashort-pulse (CARS) thermometry can be simulated with the unified model by only changing the input fields features. As a specific example, the hybrid femtosecond/picosecond CARS is assessed for its use in combustion flow diagnostics; thus, the examination of the input field has an impact on thermometry focuses on vibrational hybrid femtosecond/picosecond CARS. Beginning with the general model of ultrashort-pulse CARS, the spectra with different input field parameters are simulated. To analyze the temperature measurement error brought by the input field impacts, the spectra are fitted and compared to fits, with the model neglecting the influence introduced by the input fields. The results demonstrate that, however the input pulses are depicted, temperature errors still would be introduced during an experiment. With proper field characterization, however, the significance of the error can be reduced.
Internet-based interface for STRMDEPL08
Reeves, Howard W.; Asher, A. Jeremiah
2010-01-01
The core of the computer program STRMDEPL08 that estimates streamflow depletion by a pumping well with one of four analytical solutions was re-written in the Javascript software language and made available through an internet-based interface (web page). In the internet-based interface, the user enters data for one of the four analytical solutions, Glover and Balmer (1954), Hantush (1965), Hunt (1999), and Hunt (2003), and the solution is run for constant pumping for a desired number of simulation days. Results are returned in tabular form to the user. For intermittent pumping, the interface allows the user to request that the header information for an input file for the stand-alone executable STRMDEPL08 be created. The user would add the pumping information to this header information and run the STRMDEPL08 executable that is available for download through the U.S. Geological Survey. Results for the internet-based and stand-alone versions of STRMDEPL08 are shown to match.
NASA Technical Reports Server (NTRS)
Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)
1993-01-01
A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.
Electromagnetically-Actuated Reciprocating Pump for High-Flow-Rate Microfluidic Applications
Ke, Ming-Tsun; Zhong, Jian-Hao; Lee, Chia-Yen
2012-01-01
This study presents an electromagnetically-actuated reciprocating pump for high-flow-rate microfluidic applications. The pump comprises four major components, namely a lower glass plate containing a copper microcoil, a middle PMMA plate incorporating a PDMS diaphragm with a surface-mounted magnet, upper PMMA channel plates, and a ball-type check valve located at the channel inlet. When an AC current is passed through the microcoil, an alternating electromagnetic force is established between the coil and the magnet. The resulting bi-directional deflection of the PDMS diaphragm causes the check-valve to open and close; thereby creating a pumping effect. The experimental results show that a coil input current of 0.4 A generates an electromagnetic force of 47 mN and a diaphragm deflection of 108 μm. Given an actuating voltage of 3 V and a driving frequency of 15 Hz, the flow rate is found to be 13.2 mL/min under zero head pressure conditions. PMID:23201986
Magnetized Target Fusion - Field Reversed Configuration Formation and Injection (MTF-FRC)
2009-11-06
from accidental breakage and personnel from injury in that event. The pumps for the vacuum system included a Varian dry scroll pump that was...a dry scroll (oil-free) mechanical pump could be used, as mTorr pressures would be sufficient for the vacuum switch voltage hold-off and operation...56 FIGURE 46. ROUGHING PUMP AND VACUUM -GAUGE CONTROLLERS BENEATH THETA COIL CABLE HEADER
NASA Astrophysics Data System (ADS)
Weiser, D. A.; Jackson, D. D.
2015-12-01
In a tectonically active area, a definitive discrimination between geothermally-induced and tectonic earthquakes is difficult to achieve. We focus our study on California's 11 major geothermal fields: Amedee, Brawley, Casa Diablo, Coso, East Mesa, The Geysers, Heber, Litchfield, Salton Sea, Susanville, and Wendel. The Geysers geothermal field is the world's largest geothermal energy producer. California's Department of Oil Gas and Geothermal Resources provides field-wide monthly injection and production volumes for each of these sites, which allows us to study the relationship between geothermal pumping activities and seismicity. Since many of the geothermal fields began injecting and producing before nearby seismic stations were installed, we use smoothed seismicity since 1932 from the ANSS catalog as a proxy for tectonic earthquake rate. We examine both geothermal pumping and long-term earthquake rate as factors that may control earthquake rate. Rather than focusing only on the largest earthquake, which is essentially a random occurrence in time, we examine how M≥4 earthquake rate density (probability per unit area, time, and magnitude) varies for each field. We estimate relative contributions to the observed earthquake rate of M≥4 from both a long-term earthquake rate (Kagan and Jackson, 2010) and pumping activity. For each geothermal field, respective earthquake catalogs (NCEDC and SCSN) are complete above at least M3 during the test period (which we tailor to each site). We test the hypothesis that the observed earthquake rate at a geothermal site during the test period is a linear combination of the long-term seismicity and pumping rates. We use a grid search to determine the confidence interval of the weighting parameters.
NASA Technical Reports Server (NTRS)
Liu, Ansheng; Ning, Cun-Zheng
1999-01-01
Terahertz optical gain due to intersubband transitions in optically-pumped semiconductor quantum wells (QW's) is calculated nonperturbatively. We solve the pump- field-induced nonequilibrium distribution function for each subband of the QW system from a set of rate equations that include both intrasubband and intersubband relaxation processes. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. We show that the coherent pump and signal wave interactions contribute significantly to the THz gain. Because of the optical Stark effect and pump-induced population redistribution, optical gain saturation at larger pump intensities is predicted.
Robust modeling and performance analysis of high-power diode side-pumped solid-state laser systems.
Kashef, Tamer; Ghoniemy, Samy; Mokhtar, Ayman
2015-12-20
In this paper, we present an enhanced high-power extrinsic diode side-pumped solid-state laser (DPSSL) model to accurately predict the dynamic operations and pump distribution under different practical conditions. We introduce a new implementation technique for the proposed model that provides a compelling incentive for the performance assessment and enhancement of high-power diode side-pumped Nd:YAG lasers using cooperative agents and by relying on the MATLAB, GLAD, and Zemax ray tracing software packages. A large-signal laser model that includes thermal effects and a modified laser gain formulation and incorporates the geometrical pump distribution for three radially arranged arrays of laser diodes is presented. The design of a customized prototype diode side-pumped high-power laser head fabricated for the purpose of testing is discussed. A detailed comparative experimental and simulation study of the dynamic operation and the beam characteristics that are used to verify the accuracy of the proposed model for analyzing the performance of high-power DPSSLs under different conditions are discussed. The simulated and measured results of power, pump distribution, beam shape, and slope efficiency are shown under different conditions and for a specific case, where the targeted output power is 140 W, while the input pumping power is 400 W. The 95% output coupler reflectivity showed good agreement with the slope efficiency, which is approximately 35%; this assures the robustness of the proposed model to accurately predict the design parameters of practical, high-power DPSSLs.
Frazier, O H; Tuzun, Egemen; Cohn, William E; Conger, Jeffrey L; Kadipasaoglu, Kamuran A
2006-01-01
Continuous-flow pumps are small, simple, and respond physiologically to input variations, making them potentially ideal for total heart replacement. However, the physiological effects of complete pulseless flow during long-term circulatory support without a cardiac interface or with complete cardiac exclusion have not been well studied. We evaluated the feasibility of dual continuous-flow pumps as a total artificial heart (TAH) in a chronic bovine model. Both ventricles of a 6-month-old Corriente crossbred calf were excised and sewing rings attached to the reinforced atrioventricular junctions. The inlet portions of 2 Jarvik 2000 pumps were positioned through their respective sewing rings at the mid-atrial level and the pulseless atrial reservoir connected end-to-end to the pulmonary artery and aorta. Pulseless systemic and pulmonary circulations were thereby achieved. Volume status was controlled, and systemic and pulmonary resistance were managed pharmacologically to keep mean arterial pressures at 100+/-10 mmHg (systemic) and 20+/-5 mmHg (pulmonary) and both left and right atrial pressures at 15+/-5 mmHg. The left pump speed was maintained at 14,000 rpm and its output autoregulated in response to variations in right pump flow, systemic and pulmonary pressures, fluid status, and activity level. Hemodynamics, end-organ function, and neurohormonal status remained normal. These results suggest the feasibility of using dual continuous-flow pumps as a TAH.
Microfabricated optically pumped magnetometer arrays for biomedical imaging
NASA Astrophysics Data System (ADS)
Perry, A. R.; Sheng, D.; Krzyzewski, S. P.; Geller, S.; Knappe, S.
2017-02-01
Optically-pumped magnetometers have demonstrated magnetic field measurements as precise as the best superconducting quantum interference device magnetometers. Our group develops miniature alkali atom-based magnetic sensors using microfabrication technology. Our sensors do not require cryogenic cooling, and can be positioned very close to the sample, making these sensors an attractive option for development in the medical community. We will present our latest chip-scale optically-pumped gradiometer developed for array applications to image magnetic fields from the brain noninvasively. These developments should lead to improved spatial resolution, and potentially sensitive measurements in unshielded environments.
Astigmatism transfer phenomena in the optical parametric amplification process
NASA Astrophysics Data System (ADS)
Li, Wenkai; Chen, Yun; Li, Yanyan; Xu, Yi; Guo, Xiaoyang; Lu, Jun; Leng, Yuxin
2017-01-01
We numerically and experimentally investigate the astigmatism transfer phenomena in femtosecond optical parametric amplification (OPA). We model the OPA process based on the coupled second-order three-wave nonlinear propagation equations. The numerical and experimental results support that the input pump pulse astigmatism can be transferred into the idler pulse but not the signal pulse, and the idler pulse astigmatism originating from spatial walk-off is less than the idler pulse astigmatism received from the pump. Thus, we can provide a clear understanding of astigmatism transfer mechanisms in the OPA process, and make better use of broadband tunable OPA sources.
Control of Groundwater Remediation Process as Distributed Parameter System
NASA Astrophysics Data System (ADS)
Mendel, M.; Kovács, T.; Hulkó, G.
2014-12-01
Pollution of groundwater requires the implementation of appropriate solutions which can be deployed for several years. The case of local groundwater contamination and its subsequent spread may result in contamination of drinking water sources or other disasters. This publication aims to design and demonstrate control of pumping wells for a model task of groundwater remediation. The task consists of appropriately spaced soil with input parameters, pumping wells and control system. Model of controlled system is made in the program MODFLOW using the finitedifference method as distributed parameter system. Control problem is solved by DPS Blockset for MATLAB & Simulink.
Climate Change Feedbacks from Interactions Between New and Old Carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dukes, Jeffrey S.; Phillips, Richard P.
Priming effects, or responses of SOM decomposition rates to inputs of new, labile carbon (C), have the potential to dramatically alter projections of ecosystem C storage. Priming effects occur in most ecosystems, are significant in magnitude, and are highly sensitive to global changes. Nevertheless, our mechanistic understanding of priming effects remains poor, and this has prevented the inclusion of these dynamics into current Earth system models (ESMs). We conducted two manipulative experiments in the field to quantify how priming effects influence SOM dynamics. Specifically, we asked: To what extent do inputs of “new” root-derived carbon (C) influence “older” C inmore » SOM, and are the magnitude and direction of these effects sensitive to climate? We addressed these questions within the Boston-Area Climate Experiment - an old-field ecosystem that has been subjected to three precipitation treatments (ambient, -50%, and +50% of each precipitation event during the growing season) and four warming treatments (from ambient to +4°C) since 2008. In the first experiment, we installed root and fungal ingrowth cores into the plots. Each core was filled with SOM that had an isotopic signature (of its C compounds) that differed from the vegetation in the plots such that inputs of “new” C from roots/fungi could be quantified using the change in isotopic signatures of C in the cores. Further, we used cores with different mesh sizes to isolate root vs. mycorrhizal fungal inputs. We found that belowground C fluxes were dominated by root inputs (as opposed to mycorrhizal inputs), and that root-derived inputs were greatest in the plots subjected to experimental warming. Given that that the warming-induced increase in belowground C flux did not result in a net increase in soil C, we conclude that the warming treatment likely enhanced priming effects in these soils. In the second experiment, we experimentally dripped dissolved organic C compounds into soils in the BACE plots to simulate root-derived C fluxes. Specifically, we constructed artificial roots attached to an automated peristaltic pump to deliver the compounds to soil semi-continuously during the peak of the growing season. We found that changes in exudate quality had small but significant effects on microbial activities, often interacting with N availability and temperature-induced changes. These results further underscore the importance of priming effects, especially under warming conditions. Collectively, our results provide some of the first field-based estimates of how soil moisture and temperature can directly and indirectly alter root-induced changes in SOM dynamics. This exploratory project lays the groundwork for further research on priming that incorporates effects of plant species and microbial communities to global changes. Such information should enable the development of more mechanistic and better predictive models of SOM decomposition under increased greenhouse gas levels, with the ultimate goal of reducing the level of uncertainty in projections of future climate.« less
NASA Technical Reports Server (NTRS)
Benkowski, Robert J. (Inventor); Kiris, Cetin (Inventor); Kwak, Dochan (Inventor); Rosenbaum, Bernard J. (Inventor); Bacak, James W. (Inventor); DeBakey, Michael E. (Inventor)
1999-01-01
A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade. Blood flow stagnation and clot formation within the pump are minimized by, among other things, providing the inducer hub with a diameter greater than the diameter of the flow straightener hub; by optimizing the axial spacing between the flow straightener hub and the inducer hub, and between the impeller hub and the diffuser hub; by optimizing the inlet angle of the diffuser blades; and by providing fillets or curved transitions between the upstream end of the inducer hub and the shaft mounted therein, and between the impeller hub and the shaft mounted therein.
Hydrogeologic data from test drilling near Verna, Florida, 1978
Barker, Michael; Bowman, Geronia; Sutcliffe, Horace
1981-01-01
Four test wells were drilled in the vicinity of the city of Sarasota well field near Verna, Fla., to provide hydrologic and geologic information. An expedient and economical method of air lifting water samples from isolated water-producing zones while drilling was utilized. Lithologic logs of drill cuttings and geophysical logs, including point resistance and spontaneous potential electric logs, gamma-ray logs, and caliper logs, were made. Chemical quality of water was determined for principal producing zones at each well. Dissolved solids from composite water samples ranged from 313 milligrams per liter in test well 0-1 north of the well field to 728 milligrams per liter in test well 0-3 within the well field. Each test well was pumped to determine maximum discharge, water-level drawdown, and recovery time. A leaking pump column on test well 0-1 prevented accurate measurement of drawdown on the well. Test well 0-2, located east of the well field, had a pumping rate of 376 gallons per minute and 13.11 feet of drawdown after 3 hours and 50 minutes; test well 0-3 had a maximum yield of 320 gallons per minute, a drawdown of 31.91 feet after 2 hours and 35 minutes of pumping, had a recovery time of 20 minutes; and test well 0-4, south of the well field, had a pumping rate of 200 gallons per minute with 63.34 feet of drawdown after 2 hours and 35 minutes. (USGS)
Friesz, Paul J.
2004-01-01
Areas contributing recharge and sources of water to one proposed and seven present public-supply wells, screened in sand and gravel deposits and clustered in three study areas, were determined on the basis of calibrated, steady-state ground-water-flow models representing average hydrologic conditions. The area contributing recharge to a well is defined as the surface area where water recharges the ground water and then flows toward and discharges to the well. In Cumberland and Lincoln, public-supply well fields on opposite sides of the Blackstone River are in a narrow valley bordered by steep hillslopes. Ground-water-level and river-stage measurements indicated that river water was infiltrating the aquifer and flowing toward the wells during pumping conditions. Simulated areas contributing recharge to the Cumberland well field operating alone for both average (324 gallons per minute) and maximum (1,000 gallons per minute) pumping rates extend on both sides of the river to the lateral model boundaries, which is the contact between the valley and uplands. The area contributing recharge at the average pumping rate is about 0.05 square mile and the well field derives 72 percent of pumped water from upland runoff. At the maximum pumping rate, the area contributing recharge extends farther up and down the valley to 0.12 square mile and the primary source of water to the well field was infiltrated river water (53 percent). Upland areas draining toward the areas contributing recharge encompass 0.58 and 0.66 square mile for the average and maximum rates, respectively. By incorporating the backup Lincoln well-field withdrawals (2,083 gallons per minute) into the model, the area contributing recharge to the Cumberland well field operating at its maximum rate is reduced to 0.08 square mile; part of the simulated area which contributes recharge to the Cumberland well field when it is operating alone contributes instead to the Lincoln well field when both well fields are pumped. The Cumberland well field compensates by increasing the percentage of water it withdraws from the river by 11 percent. The upland area draining toward the Cumberland contributing area is 0.55 square mile. The area contributing recharge to the Lincoln well field is 0.08 square mile and infiltrated river water contributes 88 percent of the total water; the upland area draining toward the contributing area is 0.34 square mile. In North Smithfield, a public-supply well in a valley-fill setting is close to Trout Brook Pond, which is an extension of the Lower Slatersville Reservoir. A comparison of water levels from the pond and underlying sediments indicates that water is not infiltrated from Trout Brook Pond when the supply well is pumped at its maximum rate of 200 gallons per minute. Simulated areas contributing recharge for the maximum pumping rate and for the estimated maximum yield, 500 gallons per minute, of a proposed replacement well extend to the ground-water divides on both sides of Trout Brook Pond. For the 200 gallons-per-minute rate, the area contributing recharge is 0.23 square mile; the well derives almost all of its water from intercepted ground water that normally discharges to surface-water bodies. For the pumping rate of 500 gallons per minute, the area contributing recharge is 0.45 square mile. The increased pumping rate is balanced by additional intercepted ground water and by inducing 25 percent of the total withdrawn water from surface water. In Westerly, one public-supply well is in a watershed where the primarily hydrologic feature is a wetland. Water levels in piezometers surrounding the well site indicated a downward vertical gradient and the potential for water in the wetland to infiltrate the underlying aquifer. The simulated area contributing recharge for the average pumping rate (240 gallons per minute) and for the maximum pumping rate (700 gallons per minute) extends to the surrounding uplands (surficial materials not covered by t
Code of Federal Regulations, 2012 CFR
2012-07-01
... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...
Code of Federal Regulations, 2011 CFR
2011-07-01
... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...
Code of Federal Regulations, 2014 CFR
2014-07-01
... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...
Code of Federal Regulations, 2013 CFR
2013-07-01
... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...
Brady Geothermal Field Well Pumping Data During Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Feigl
Contains pumping data associated with the wells used in the 2016 Spring Campaign led partially by UW - Madison, LBNL, and LLNL scientists. The well coordinates and the depths to the pressure sensors used in the pumping wells can be found at the link "Coordinates and Sensor Depths" below.
Near-Infrared Laser Pumped Intersubband THz Laser Gain in InGaAs-AlAsSb-InP Quantum Wells
NASA Technical Reports Server (NTRS)
Liu, An-Sheng; Ning, Cun-Zheng
1999-01-01
We investigate the possibility of using InGaAs-AlAsSb-InP coupled quantum wells to generate THz radiation by means of intersubband optical pumping. We show that large conduction band offsets of these quantum wells make it possible to use conventional near-infrared diode lasers around 1.55 micron as pump sources. Taking into account the pump-probe coherent interaction and the optical nonlinearity for the pump field, we calculate the THz gain of the quantum well structure. We show that resonant Raman scattering enhances the THz gain at low and moderate optical pumping levels. When the pump intensity is strong, the THz gain is reduced by pump-induced population redistribution and pump-probe coherent interactions.
Augmentation of Performance of a Monogroove Heat Pipe with Electrohydrodynamic Conduction Pumping
NASA Astrophysics Data System (ADS)
Jeong, S. I.; Seyed-Yagoobi, J.
2002-11-01
The electrohydrodynamic (EHD) phenomena involve the interaction of electric fields and flow fields in a dielectric fluid medium. There are three types of EHD pumps; induction, ion-drag, and conduction. EHD conduction pump is a new concept which has been explored only recently. Net pumping is achieved by properly utilizing the heterocharge layers present in the vicinity of the electrodes. Several innovative electrode designs have been investigated. This paper presents an electrode design that generates pressure heads on the order of 600 Pa per one electrode pair at 20 kV with less than 0.08 W of electric power. The working fluid is the Refrigerant R-123. An EHD conduction pump consisting of six pairs of electrodes is installed in the liquid line of a mono-grove heat pipe. The heat transport capacity of the heat pipe is measured in the absence and presence of the EHD conduction pump. Significant enhancements in the heat transport capacity of the heat pipe is achieved with the EHD conduction pump operating. Furthermore, the EHD conduction pump provides immediate recovery from the dry-out condition. The EHD conduction pump has many advantages, especially in the micro-gravity environment. It is simple in design, non-mechanical, and lightweight. It provides a rapid control of heat transfer in single-phase and two-phase flows. The electric power consumption is minimal with the very low acoustic noise level.
Adiabatic Pumping Mechanism for Ion Motive ATPases
NASA Astrophysics Data System (ADS)
Astumian, R. Dean
2003-09-01
An ion motive ATPase is a membrane protein that pumps ions across the membrane at the expense of the chemical energy of adenosine triphosphate (ATP) hydrolysis. Here we describe how an external electric field, by inducing transitions between several protein configurations, can also power this pump. The underlying mechanism may be very similar to that of a recently constructed adiabatic electron pump [
Portable Intravenous Fluid Production Device For Ground Use Project
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J.
2014-01-01
Several medical conditions require the administration of intravenous (IV) fluids,but limitations of mass, volume, shelf-life, transportation, and local resources can restrict the availability of these important fluids. Such limitations are expected in long-duration space exploration missions and in remote or austere places on Earth. This design uses regular drinking water that is pumped through two filters to produce, in minutes, sterile, ultrapure water that meets the stringent quality standards of the United States Pharmacopeia for Water for Injection (Total Bacteria, Conductivity, Endo - toxins, Total Organic Carbon). The device weighs 2.2 lb (1 kg) and is 10 in. long, 5 in. wide, and 3 in. high (˜25, 13, and 7.5 cm, respectively) in its storage configuration. This handheld device produces one liter of medical-grade water in 21 minutes. Total production capacity for this innovation is expected to be in the hundreds of liters. The device contains one battery powered electric mini-pump. Alternatively, a manually powered pump can be attached and used. Drinking water enters the device from a source water bag, flows through two filters, and final sterile production water exits into a sealed, medical-grade collection bag. The collection bag contains pre-placed crystalline salts to mix with product water to form isotonic intravenous medical solutions. Alternatively, a hypertonic salt solution can be injected into a filled bag. The filled collection bag is detached from the device and is ready for use or storage. This device currently contains one collection bag, but a manifold of several pre-attached bags or replacement of single collection bags under sterile needle technique is possible for the production of multiple liters. The entire system will be flushed, sealed, and radiation-sterilized. Operation of the device is easy and requires minimal training. Drinking water is placed into the collection bag. Inline stopcock flow valves at the source and collection bags are opened, and the mini-pump is turned on by a switch to begin fluid flow. When the collection bag is completely filled with the medical- grade water, the pump can be turned off. The pump is designed so it cannot pump air, and overfilling of the collection bag with fluid is avoided by placing an equal amount of water in the source bag. Backflow is avoided by inline check valves. The filled collection bag is disconnected from its tubing and is ready for use. The source bag can be refilled for production of multiple liters, or the source bag can be replaced with an input tube that can be placed in a larger potable water source if the device is attended. The device functions in all orientations independent of any gravity fields. In addition to creating IV fluids, the device produces medical-grade water, which can be used for mixing with medications for injection, reconstituting freeze-dried blood products for injection, or for wound hydration or irrigation. Potential worldwide use is expected with medical activities in environments that have limited resources, storage, or resupply such as in military field operations, humanitarian relief efforts, submarines, commercial cruise ships, etc.
NASA Technical Reports Server (NTRS)
Liu, Ansheng; Ning, Cun-Zheng
2000-01-01
Optical intersubband response of a multiple quantum well (MQW)-embedded microcavity driven by a coherent pump field is studied theoretically. The n-type doped MQW structure with three subbands in the conduction band is sandwiched between a semi-infinite medium and a distributed Bragg reflector (DBR). A strong pump field couples the two upper subbands and a weak field probes the two lower subbands. To describe the optical response of the MQW-embedded microcavity, we adopt a semi-classical nonlocal response theory. Taking into account the pump-probe interaction, we derive the probe-induced current density associated with intersubband transitions from the single-particle density-matrix formalism. By incorporating the current density into the Maxwell equation, we solve the probe local field exactly by means of Green's function technique and the transfer-matrix method. We obtain an exact expression for the probe absorption coefficient of the microcavity. For a GaAs/Al(sub x)Ga(sub 1-x)As MQW structure sandwiched between a GaAs/AlAs DBR and vacuum, we performed numerical calculations of the probe absorption spectra for different parameters such as pump intensity, pump detuning, and cavity length. We find that the probe spectrum is strongly dependent on these parameters. In particular, we find that the combination of the cavity effect and the Autler-Townes effect results in a triplet in the optical spectrum of the MQW system. The optical absorption peak value and its location can be feasibly controlled by varying the pump intensity and detuning.
NASA Astrophysics Data System (ADS)
Ateto, M. S.
2017-11-01
The nonlinear time-dependent two-photon Hamiltonian of a couple of classically pumped independent qubits is analytically solved, and the corresponding time evolution unitary operator, in an exact form, is derived. Using the concurrence, entanglement dynamics between the qubits under the influence of a wide range of effective parameters are examined and, in detail, analyzed. Observations analysis is documented with aid of the field phase-space distribution Wigner function. A couple of initial qubit states is considered, namely similar excited states and a Bell-like pure state. It is demonstrated that an initial Bell-like pure state is as well typical initial qubits setting for robust, regular and a high degree of entanglement. Moreover, it is established that high-constant Kerr media represent an effective tool for generating periodical entanglement at fixed time cycles of maxima reach unity forever when qubits are initially in a Bell-like pure state. Further, it is showed that the medium strength of the classical pumping stimulates efficiently qubits entanglement, specially, when the interaction occurs off resonantly. However, the high-intensity pumping thermalizes the coherent distribution of photons, thus, the least photons number is used and, hence, the least minimum degree of qubits entanglement could be created. Furthermore, when the cavity field and external pumping are detuned, the external pumping acts like an auxiliary effective frequency for the cavity, as a result, the field Gaussian distribution acquires linear chirps, and consequently, more entanglement revivals appear in the same cycle during timescale.
NASA Astrophysics Data System (ADS)
Wang, Zhaolu; Liu, Hongjun; Huang, Nan; Sun, Qibing; Li, Xuefeng
2014-01-01
Raman amplification based on stimulated Stokes Raman scattering (SSRS) and wavelength conversion based on coherent anti-Stokes Raman scattering (CARS) are theoretically investigated in silicon-on-sapphire (SOS) waveguides in the mid-infrared (IR) region. When the linear phase mismatch Δk is close to zero, the Stokes gain and conversion efficiency drop down quickly due to the effect of parametric gain suppression when the Stokes-pump input ratio is sufficiently large. The Stokes gain increases with the increase of Δk, whereas efficient wavelength conversion needs appropriate Δk under different pump intensities. The conversion efficiency at exact linear phase matching (Δk = 0) is smaller than that at optimal linear phase mismatch by a factor of about 28 dB when the pump intensity is 2 GW cm-2.
Evidence of charge exchange pumping in calcium-xenon system
NASA Technical Reports Server (NTRS)
Chubb, D. L.
1973-01-01
Charge exchange between xenon ions and calcium atoms may produce an inversion between the 5s or 4d and 4p energy levels of the calcium ions. A low power flowing xenon plasma seeded with calcium was utilized to determine if charge exchange or electron collisions populate the 5s and 4d levels Ca(+). Line intensity ratios proportional to the density ratios n5s/n4p and n4d/n4p were measured. From the dependence of these intensity ratios on power input to the xenon plasma it was concluded that charge exchange pumping of the 5s and 4d levels predominates over electron collisional pumping of these levels. Also, by comparing intensity ratios obtained using argon and krypton in place of xenon with those obtained in xenon the same conclusion was made.
Tunable single-to-dual channel wavelength conversion in an ultra-wideband SC-PPLN.
Ahlawat, Meenu; Bostani, Ameneh; Tehranchi, Amirhossein; Kashyap, Raman
2013-11-18
We experimentally demonstrate tunable dual channel broadcasting of a signal over the C-band for wavelength division multiplexed (WDM) optical networks. This is based on cascaded χ(2) nonlinear mixing processes in a specially engineered, 20-mm-long step-chirped periodically poled lithium niobate with a broad 28-nm second harmonic (SH) bandwidth in the 1.55-μm spectral range. A 10-GHz picosecond mode-locked laser was used as a signal along with a CW pump to generate two pulsed idlers, which are simultaneously tuned across the C-band by detuning of the pump wavelength within the broad SH bandwidth. Variable-input, variable-output scheme of tuned idlers is successfully achieved by tuning the signal wavelength. Pump or signal wavelength tuning of ~10 nm results in the idlers spreading across 30 nm in the C-band.
Research on Power Loss of Continuously Variable Transmission Based on Driving Cycles
NASA Astrophysics Data System (ADS)
Fu, Bing; Zhou, Yunshan; Cao, Chenglong; Li, Quan; Zhang, Feitie
2018-01-01
In order to further enhance the fuel economy of vehicles with continuously variable transmission (CVT), a CVT power loss model under dynamic condition is established based on the power loss model of each transmission component and the vehicle dynamic model. With driving cycles 10-15, NEDC and US06 as input, the distribution of CVT power loss and the influence of the main losses to vehicle fuel economy are analysed. The results show that the variation loss, oil pump loss and torque converter loss are the main losses of CVT power loss under driving cycles, and the metal belt and oil pump have relatively larger fuel saving potential. At low speed reducing the pump loss is more effective to fuel saving, while at high speed reducing the variation loss is more effective.
Bayesian estimation of the transmissivity spatial structure from pumping test data
NASA Astrophysics Data System (ADS)
Demir, Mehmet Taner; Copty, Nadim K.; Trinchero, Paolo; Sanchez-Vila, Xavier
2017-06-01
Estimating the statistical parameters (mean, variance, and integral scale) that define the spatial structure of the transmissivity or hydraulic conductivity fields is a fundamental step for the accurate prediction of subsurface flow and contaminant transport. In practice, the determination of the spatial structure is a challenge because of spatial heterogeneity and data scarcity. In this paper, we describe a novel approach that uses time drawdown data from multiple pumping tests to determine the transmissivity statistical spatial structure. The method builds on the pumping test interpretation procedure of Copty et al. (2011) (Continuous Derivation method, CD), which uses the time-drawdown data and its time derivative to estimate apparent transmissivity values as a function of radial distance from the pumping well. A Bayesian approach is then used to infer the statistical parameters of the transmissivity field by combining prior information about the parameters and the likelihood function expressed in terms of radially-dependent apparent transmissivities determined from pumping tests. A major advantage of the proposed Bayesian approach is that the likelihood function is readily determined from randomly generated multiple realizations of the transmissivity field, without the need to solve the groundwater flow equation. Applying the method to synthetically-generated pumping test data, we demonstrate that, through a relatively simple procedure, information on the spatial structure of the transmissivity may be inferred from pumping tests data. It is also shown that the prior parameter distribution has a significant influence on the estimation procedure, given the non-uniqueness of the estimation procedure. Results also indicate that the reliability of the estimated transmissivity statistical parameters increases with the number of available pumping tests.
A two-stage rotary blood pump design with potentially lower blood trauma: a computational study.
Thamsen, Bente; Mevert, Ricardo; Lommel, Michael; Preikschat, Philip; Gaebler, Julia; Krabatsch, Thomas; Kertzscher, Ulrich; Hennig, Ewald; Affeld, Klaus
2016-06-15
In current rotary blood pumps, complications related to blood trauma due to shear stresses are still frequently observed clinically. Reducing the rotor tip speed might decrease blood trauma. Therefore, the aim of this project was to design a two-stage rotary blood pump leading to lower shear stresses. Using the principles of centrifugal pumps, two diagonal rotor stages were designed with an outer diameter of 22 mm. The first stage begins with a flow straightener and terminates with a diffusor, while a volute casing behind the second stage is utilized to guide fluid to the outlet. Both stages are combined into one rotating part which is pivoted by cup-socket ruby bearings. Details of the flow field were analyzed employing computational fluid dynamics (CFD). A functional model of the pump was fabricated and the pressure-flow dependency was experimentally assessed. Measured pressure-flow performance of the developed pump indicated its ability to generate adequate pressure heads and flows with characteristic curves similar to centrifugal pumps. According to the CFD results, a pressure of 70 mmHg was produced at a flow rate of 5 L/min and a rotational speed of 3200 rpm. Circumferential velocities could be reduced to 3.7 m/s as compared to 6.2 m/s in a clinically used axial rotary blood pump. Flow fields were smooth with well-distributed pressure fields and comparatively few recirculation or vortices. Substantially smaller volumes were exposed to high shear stresses >150 Pa. Hence, blood trauma might be reduced with this design. Based on these encouraging results, future in vitro investigations to investigate actual blood damage are intended.
Lefkoff, L.J.; Gorelick, S.M.
1987-01-01
A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)
Characterization of an induced pressure pumping force for microfluidics
NASA Astrophysics Data System (ADS)
Jiang, Hai; Fan, Na; Peng, Bei; Weng, Xuan
2017-05-01
The electro-osmotic pumping and pressure-driven manipulation of fluids are considered as the most common strategies in microfluidic devices. However, both of them exhibit major disadvantages such as hard integration and high reagent consumption, and they are destructive methods for detection and photo bleaching. In this paper, an electric field-effect flow control approach, combining the electro-osmotic pumping force and the pressure-driven pumping force, was developed to generate the induced pressure-driven flow in a T-shaped microfluidic chip. Electro-osmotic flow between the T-intersection and two reservoirs was demonstrated, and it provided a stable, continuous, and electric field-free flow in the section of the microchannel without the electrodes. The velocity of the induced pressure-driven flow was linearly proportional to the applied voltages. Both numerical and experimental investigations were conducted to prove the concept, and the experimental results showed good agreement with the numerical simulations. In comparison to other induced pressure pumping methods, this approach can induce a high and controllable pressure drop in the electric field-free segment, subsequently causing an induced pressure-driven flow for transporting particles or biological cells. In addition, the generation of bubbles and the blocking of the microchannel are avoided.
High-energy, tunable, mid-infrared, picosecond optical parametric generation in CdSiP2
NASA Astrophysics Data System (ADS)
Chaitanya Kumar, S.; Jelínek, M.; Baudisch, M.; Zawilski, K. T.; Schunemann, P. G.; Kubecek, V.; Biegert, J.; Ebrahim-Zadeh, M.
2012-06-01
We report a tunable, high-energy, single-pass, optical parametric generator (OPG) based on the new nonlinear material, cadmium silicon phosphide, CdSiP2. The OPG is pumped by a laboratory designed cavity-dumped passively mode-locked, diode-pumped, Nd:YAG oscillator, providing 25 μJ pulses in 20 ps at 5 Hz. The pump energy is further boosted by a flashlamp-pumped Nd:YAG amplifier to 2.5 mJ. The OPG is temperature tunable over 1263-1286 nm (23 nm) in the signal and 6153-6731 nm (578 nm) in the idler, corresponding to a total tuning range of 601 nm. Using the single-pass OPG configuration, we have generated signal energy as high as 636 μJ at 1283 nm, together with an idler energy of 33 μJ at 6234 nm, for 2.1 mJ of input pump energy. The signal pulses generated from the OPG have a Gaussian pulse duration of 24 ps and an FWHM spectral bandwidth of 10.4 nm at central wavelength of 1276 nm. The corresponding idler spectrum has an FWHM bandwidth of 140 nm centered at 6404 nm.
Seasonal performance for Heat pump with vertical ground heat exchanger in Riga
NASA Astrophysics Data System (ADS)
Jaundālders, S.; Stanka, P.; Rusovs, D.
2017-10-01
Experimental measurements of Seasonal Coefficient of Performance (SCOP) for heating of 160 m2 household in Riga were conducted for operation of brine-water heat pump with vertical ground heat exchangers (GHE). Data regarding heat and electrical power consumption were recorded during three-year period from 2013 to 2016. Vapor compression heat pump has heat energy output of 8 kW. GHE consists of three boreholes. Each borehole is 60 m deep. Data regarding brine temperature for borehole input and output were presented and discussed. As far as house had floor heating, there were presented data about COP for B0/W35 and its dependence from room and outdoor temperature during heating season. Empirical equation was created. Average heat energy consumption during one year for heating was 72 kWh/m2 measured by heat meter. Detected primary energy consumption (electrical energy from grid) was 21 kWh/m2 which resulted in SCOP=3.8. These data were compared with SCOP for air-to-water heat pump in Latvia and available configuration software for heat pumps operation. Good agreement between calculated performance and reported experimental data were founded.
Extension of the Vane Pump-Grinder Technology to Manufacture Finely Dispersed Meat Batters.
Irmscher, Stefan B; Gibis, Monika; Herrmann, Kurt; Oechsle, Anja Maria; Kohlus, Reinhard; Weiss, Jochen
2016-03-01
A vane pump-grinder system was extended to enable the manufacture of finely dispersed emulsion-type sausages by constructing and attaching a high-shear homogenizer at the outlet. We hypothesized that the dispersing capabilities of the extended system may be improved to the point of facilitating meat-fat emulsification due to an overall increased volumetric energy input EV . Coarsely ground raw material mixtures were processed to yield meat batters at varying volume flow rates (10 to 60 L/min) and rotational rotor speeds of the homogenizer nrotor (1000 to 3400 rpm). The normalized torques acting on pump, grinder, and homogenizer motors were recorded and unit power consumptions were calculated. The structure of the manufactured meat batters and sausages were analyzed via image analysis. Key physicochemical properties of unheated and heated batters, that is, texture, water-binding, color, and solubilized protein were determined. The mean diameter d10 of the visible lean meat particles varied between 352 and 406 μm whereas the mean volume-surface diameter d32 varied between 603 and 796 μm. The lightness L* ranged from 66.2 to 70.7 and correlated with the volumetric energy input and product structure. By contrast, varying process parameters did not impact color values a* (approximately 11) and b* (approximately 8). Interestingly, water-binding and protein solubilization were not affected. An exponential process-structure relationship was identified allowing manufacturers to predict product properties as a function of applied process parameters. Raw material mixtures can be continuously comminuted, emulsified, and subsequently filled into casings using an extended vane pump-grinder. © 2016 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Wang, Xiang; Cannon, Patrick; Zhou, Chen; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu
2016-04-01
Recent ionospheric modification experiments performed at Tromsø, Norway, have indicated that X-mode pump wave is capable of stimulating high-frequency enhanced plasma lines, which manifests the excitation of parametric instability. This paper investigates theoretically how the observation can be explained by the excitation of parametric instability driven by X-mode pump wave. The threshold of the parametric instability has been calculated for several recent experimental observations at Tromsø, illustrating that our derived equations for the excitation of parametric instability for X-mode heating can explain the experimental observations. According to our theoretical calculation, a minimum fraction of pump wave electric field needs to be directed along the geomagnetic field direction in order for the parametric instability threshold to be met. A full-wave finite difference time domain simulation has been performed to demonstrate that a small parallel component of pump wave electric field can be achieved during X-mode heating in the presence of inhomogeneous plasma.
Superradiant laser emission from rhodamine 6G and rhodamine B using a coaxial flashpump.
NASA Technical Reports Server (NTRS)
Mumola, P. B.
1972-01-01
Superradiant laser emission has been observed from ethanol solutions of rhodamine 6G and rhodamine B using a coaxial flashlamp pump. The dependence of input threshold energy on dye concentration is examined. The possibility of exciting other dyes to superradiance is discussed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... includes any non-heating season pilot input loss. Area of the space (A): the horizontal lighted area of a... doors of a building. Integrated part-load value (IPLV): a single-number figure of merit based on part-load EER or COP expressing part-load efficiency for air-conditioning and heat pump equipment on the...
The effect of safety factor profile on transport in steady-state, high-performance scenarios
Holcomb, C. T.; Ferron, J. R.; Luce, T. C.; ...
2012-03-09
In this study, an analysis of the dependence of transport on the safety factor profile in high-performance, steady-state scenario discharges is presented. This is based on experimental scans of q 95 and q min taken with fixed β N, toroidal field, double-null plasma shape, divertor pumping, and electron cyclotron current drive input. The temperature and thermal diffusivity profiles were found to vary considerably with the q-profile, and these variations were significantly different for electrons and ions. With fixed q 95, both temperature profiles increase and broaden as q min is increased and the magnetic shear becomes low or negative inmore » the inner half radius, but these temperature profile changes are stronger for the electrons. Power balance calculations show the peak in the ion thermal diffusivity (χ i) at ρ – 0.6 – 0.8 increases with q 95 or q min.« less
Electrical Counting and Sizing of Mammalian Cells in Suspension
Gregg, E. C.; Steidley, K. David
1965-01-01
A recently developed method of determining the number and size of particles suspended in a conducting solution is to pump the suspension through a small orifice having an immersed electrode on each side to supply electrical current. The current changes due to the passage of particles of resistivity different from that of the solution. Theoretical expressions are developed which relate the current change caused by such particles to their volume and shape. It is found that most biological cells may be treated as dielectric particles whose capacitive effects are negligible. Electrolytic tank measurements on models confirm the theoretical development, and electric field plots of model orifices are used to predict the observed pulse shapes. An equivalent circuit of the orifice-electrode system is analyzed and shows that the current pulse may be made conductivity-independent when observed with a zero input impedance amplifier. PMID:5861698
Vapor compression heat pump system field tests at the TECH complex
NASA Astrophysics Data System (ADS)
Baxter, V. D.
1985-07-01
The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance. However, its high cost makes it unlikely that it will achieve widespread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.
Vapor compression heat pump system field tests at the tech complex
NASA Astrophysics Data System (ADS)
Baxter, Van D.
1985-11-01
The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.
2013-09-13
electric fields due to charge build up on the vacuum viewport. For some experiments a non-evaporable getter (NEG) pump is placed 3.3mm away from the...trap, between the trap and the solid aluminum ground shield, to reduce the vacuum pressure close to the ion. The vacuum chamber is constantly pumped by...an ion pump , a titanium sublimation pump and the NEG pump . The pressure of the vacuum system was below what is measurable by the ion gage used (ə.9
The Transformation of Oil; the Future of Pemex
2011-10-28
The Second Largest Oil Field in the World is Dying," Energy Bulletin, Aug 18, 2004:1 14 Manik Talwani, PhD, "Oil and Gas in Mexico: Geology ...fields and prospective fields. Pemex has been drilling in the Golden lane for years with both the Cerro Azul No. 4 and Poza Rica fields as...oil that is pumped from the ground, but the company is paid a fee for each barrel they pump. The IOCs in turn pick up a share of the cost to find and
NASA Astrophysics Data System (ADS)
Barrash, W.; Cardiff, M. A.; Kitanidis, P. K.
2012-12-01
The distribution of hydraulic conductivity (K) is a major control on groundwater flow and contaminant transport. Our limited ability to determine 3D heterogeneous distributions of K is a major reason for increased costs and uncertainties associated with virtually all aspects of groundwater contamination management (e.g., site investigations, risk assessments, remediation method selection/design/operation, monitoring system design/operation). Hydraulic tomography (HT) is an emerging method for directly estimating the spatially variable distribution of K - in a similar fashion to medical or geophysical imaging. Here we present results from 3D transient field-scale experiments (3DTHT) which capture the heterogeneous K distribution in a permeable, moderately heterogeneous, coarse fluvial unconfined aquifer at the Boise Hydrogeophysical Research Site (BHRS). The results are verified against high-resolution K profiles from multi-level slug tests at BHRS wells. The 3DTHT field system for well instrumentation and data acquisition/feedback is fully modular and portable, and the in-well packer-and-port system is easily assembled and disassembled without expensive support equipment or need for gas pressurization. Tests are run for 15-20 min and the aquifer is allowed to recover while the pumping equipment is repositioned between tests. The tomographic modeling software developed uses as input observations of temporal drawdown behavior from each of numerous zones isolated in numerous observation wells during a series of pumping tests conducted from numerous isolated intervals in one or more pumping wells. The software solves for distributed K (as well as storage parameters Ss and Sy, if desired) and estimates parameter uncertainties using: a transient 3D unconfined forward model in MODFLOW, the adjoint state method for calculating sensitivities (Clemo 2007), and the quasi-linear geostatistical inverse method (Kitanidis 1995) for the inversion. We solve for K at >100,000 sub-m3 (1m x 1m x 0.6m) locations in a 60m x 60m x 18m modeled volume of the BHRS, with the primary investigated volume approximately 12m x 8m x 16m. Computing times are reasonable on high-end desktop computers or small clusters; we are investigating additional efficiency improvements with massive parallelization. Results from complete coverage (1m-length zones) in one pumping well and five observation wells provide a basis for evaluating method resolution capabilities by comparing K statistics from solutions with all tests and observations against partial test and observation coverage, and against independent K measurements at wells with multi-level slug tests. From these analyses we show that 3DTHT compares well with slug test results, and high-resolution information on heterogeneity is lost rapidly with reduction in test or observation coverage.
Biswas, Subir; Chattopadhyay, Monobir; Pal, Rabindranath
2011-01-01
The turbo molecular pump of the Magnetized Plasma Linear Experimental device is protected from damage by a magnetic shield. As the pump runs continuously in a magnetic field environment during a plasma physics experiment, it may get damaged owing to eddy current effect. For design and testing of the shield, first we simulate in details various aspects of magnetic shield layouts using a readily available field design code. The performance of the shield made from two half cylinders of soft iron material, is experimentally observed to agree very well with the simulation results.
Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps
NASA Astrophysics Data System (ADS)
Zhurmilova, I.; Shtym, A.
2017-11-01
For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.
AnalyzeHOLE - An Integrated Wellbore Flow Analysis Tool
Halford, Keith
2009-01-01
Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically displaying pertinent results.
Fang, Jiancheng; Wang, Tao; Quan, Wei; Yuan, Heng; Zhang, Hong; Li, Yang; Zou, Sheng
2014-06-01
A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelength of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz(1/2), which was mainly dominated by the noise of the magnetic shield.
NASA Astrophysics Data System (ADS)
Barrash, Warren; Clemo, Tom; Fox, Jessica J.; Johnson, Timothy C.
2006-07-01
Understanding and quantification of wellbore skin improves our ability to accurately measure or estimate hydrologic parameters with tests at wells such as pumping tests, flowmeter tests, and slug tests. This paper presents observations and results from a series of field, laboratory, and modeling tests which, together, explain the source of wellbore skin at wells at a research wellfield and which support estimation of skin thickness ( ds) and skin hydraulic conductivity ( Ks). Positive wellbore skin effects were recognized at wells in the shallow, unconfined, coarse-grained fluvial aquifer at the Boise Hydrogeophysical Research Site (BHRS). Well development efforts at the BHRS removed residual drilling fines but only marginally reduced the skin effect. Likely causes for the remaining wellbore skin effect were examined; partial clogging of screen slots with sand is consistent with field observations and can account for the magnitude of wellbore skin effect observed. We then use the WTAQ code ( Barlow and Moench, 1999) with a redefinition of the term for delayed observation well response to include skin effects at observation wells (in addition to pumping wells) in order to analyze aquifer tests at the BHRS for average Ks values at individual wells. Systematic differences in Ks values are recognized in results at pumping ( Ks_Q) and observation ( Ks_obs) wells: larger values are seen at observation wells (average Ks_obs=0.0023 cm/s) than pumping wells. Two possible causes are recognized for the occurrence of higher Ks values at observation wells than pumping wells: (1) flow diversion between aquifer layers on approach to a pumping well with positive skin; and (2) larger portion of flow passing through lower-K zones in the heterogeneous aquifer near the pumping well than the observation wells due to strongly radially convergent flow near the pumping well. For the well-aquifer system at the BHRS, modeling analyses of drawdown vs time at observation wells provide better Ks estimates than those from pumping wells.
NASA Astrophysics Data System (ADS)
Karak, Bidya Binay; Cameron, Robert
2016-11-01
The key elements of the Babcock-Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock-Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.
Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct
NASA Technical Reports Server (NTRS)
Gashev, Anatoliy A.; Davis, Michael J.; Zawieja, David C.; Delp, M. D. (Principal Investigator)
2002-01-01
There are only a few reports of the influence of imposed flow on an active lymph pump under conditions of controlled intraluminal pressure. Thus, the mechanisms are not clearly defined. Rat mesenteric lymphatics and thoracic ducts were isolated, cannulated and pressurized. Input and output pressures were adjusted to impose various flows. Lymphatic systolic and diastolic diameters were measured and used to determine contraction frequency and pump flow indices. Imposed flow inhibited the active lymph pump in both mesenteric lymphatics and in the thoracic duct. The active pump of the thoracic duct appeared more sensitive to flow than did the active pump of the mesenteric lymphatics. Imposed flow reduced the frequency and amplitude of the contractions and accordingly the active pump flow. Flow-induced inhibition of the active lymph pump followed two temporal patterns. The first pattern was a rapidly developing inhibition of contraction frequency. Upon imposition of flow, the contraction frequency immediately fell and then partially recovered over time during continued flow. This effect was dependent on the magnitude of imposed flow, but did not depend on the direction of flow. The effect also depended upon the rate of change in the direction of flow. The second pattern was a slowly developing reduction of the amplitude of the lymphatic contractions, which increased over time during continued flow. The inhibition of contraction amplitude was dependent on the direction of the imposed flow, but independent of the magnitude of flow. Nitric oxide was partly but not completely responsible for the influence of flow on the mesenteric lymph pump. Exposure to NO mimicked the effects of flow, and inhibition of the NO synthase by N (G)-monomethyl-L-arginine attenuated but did not completely abolish the effects of flow.
Optical source and apparatus for remote sensing
NASA Technical Reports Server (NTRS)
Coyle, Donald Barry (Inventor)
2011-01-01
An optical amplifier is configured to amplify an injected seed optical pulse. The optical amplifier may include two or more gain sections coupled to form a continuous solid waveguide along a primary optical path. Each gain section may include: (i) an optical isolator forming an input to that gain section; (ii) a doped optical fiber having a first end coupled to the optical isolator and having a second end; (iii) a plurality of pump laser diodes; (iv) a controller providing drive signals to each of the plurality, the controller being configured to provide at least pulsed drive signals; and (v) an optical coupler having a first input port coupled to the second end, and a second input port coupled to the plurality and an output port.
Production optimization of sucker rod pumping wells producing viscous oil in Boscan field, Venezuela
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guirados, C.; Sandoval, J.; Rivas, O.
1995-12-31
Boscan field is located in the western coast of Maracaibo lake and is operated by Maraven S.A., affiliate of Petroleos de Venezuela S.A. It has 315 active wells, 252 of which are produced with sucker rod pumping. Other artificial lift methods currently applied in this field are hydraulic (piston) pumping (39 wells) and ESP (24 wells). This paper presents the results of the production optimization of two sucker rod pumping wells of Boscan field producing viscous oil. This optimization has been possible due to the development of a new production scheme and the application of system analysis in completion design.more » The new production scheme involves the utilization of a subsurface stuffing box assembly and a slotted housing, both designed and patented by Intevep S.A., affiliate of Petroleos de Venezuela S.A. The completion design method and software used in the optimization study were also developed by Intevep S.A. The new production scheme and design method proved to be effective in preventing the causes of the above mentioned problems, allowing the increase of oil production under better operating conditions.« less
Terahertz field-induced ionization and perturbed free induction decay of excitons in bulk GaAs
NASA Astrophysics Data System (ADS)
Murotani, Yuta; Takayama, Masayuki; Sekiguchi, Fumiya; Kim, Changsu; Akiyama, Hidefumi; Shimano, Ryo
2018-03-01
We investigated the interaction between an intense terahertz (THz) pulse and excitons in bulk GaAs by using THz pump near-infrared (NIR) optical probe spectroscopy. We observed a clear spectral oscillation in the NIR transient absorption spectra at low temperature, which is interpreted as the THz pump-induced perturbed free induction decay (PFID) of the excitonic interband polarization. We performed a numerical simulation based on a microscopic theory and identified that the observed PFID signal originates from the THz field-induced ionization of excitons. Using a real-space representation of the excitonic wave function, we visualized how the ionization of an exciton proceeds under the intense single-cycle THz electric field. We also calculated the nonlinear susceptibility with the lowest-order perturbation theory assuming a weak THz pump, which showed a similar spectral feature with that obtained by the full treatment to field-induced ionization process. This coincidence is attributed to the fact that 1s-excitonic interband polarization is modified predominantly through interactions with the p-wave component of the excitonic wave function. A simple phenomenological expression of the PFID signal is presented to discuss effects of the THz pump pulse duration on the spectral oscillation.
FMR-driven spin pumping in Y3Fe5O12-based structures
NASA Astrophysics Data System (ADS)
Yang, Fengyuan; Hammel, P. Chris
2018-06-01
Ferromagnetic resonance driven spin pumping, a topic of steadily increasing interest since its emergence over two decades ago, remains one of the most exciting research fields in condensed matter physics. Among the many materials that have been explored for spin pumping, yttrium iron garnet (YIG) is one of the most extensively studied because of its exceptionally low magnetic damping and insulating nature. There is a great amount of literature in the spin pumping and related research fields, too broad for this review to cover. In this Topical Review, we focus on the YIG-based spin pumping results carried out by our groups, including: the mechanism and technical details of our off-axis sputtering technique for the growth of single-crystalline YIG epitaxial films with a high degree ordering, experimental evidence for the high quality of the YIG films, spin pumping results from YIG into various transition metals and their heterostructures, dynamic spin transport in YIG/antiferromagnet hybrid structures, intralayer spin pumping by localized spin wave modes confined by a micromagnetic probe, dynamic spin coupling between YIG and nitrogen-vacancy centers in diamond, parametric spin pumping from high-wavevector spin waves in YIG, and localized spin wave mode behavior in broadly tunable spatially complex magnetic configurations. These results build on the power and versatility of YIG spin pumping to improve our understanding of spin dynamics, spin currents, spin Hall physics, spin–orbit coupling, dynamic magnetic coupling, and the relationship between these phenomena in a broad range of materials, geometries, and settings.
Kelly, Brian P.
2004-01-01
The Missouri River alluvial aquifer near Ft. Leavenworth, Kansas, supplies all or part of the drinking water for Ft. Leavenworth; Leavenworth, Kansas; Weston, Missouri; and cooling water for the Kansas City Power and Light, Iatan Power Plant. Ground water at three sites within the alluvial aquifer near the Ft. Leavenworth well field is contaminated with trace metals and organic compounds and concerns have been raised about the potential contamination of drinking-water supplies. In 2001, the U.S. Geological Survey, U.S. Army Corps of Engineers, and the U.S. Army began a study of ground-water flow in the Missouri River alluvial aquifer near Ft. Leavenworth. Hydrogeologic data from 173 locations in the study area was used to construct a ground-water flow model (MODFLOW-2000) and particle-tracking program (MODPATH) to determine the direction and travel time of ground-water flow and contributing recharge areas for water-supply well fields within the alluvial aquifer. The modeled area is 28.6 kilometers by 32.6 kilometers and contains the entire study area. The model uses a uniform grid size of 100 meters by 100 meters and contains 372,944 cells in 4 layers, 286 columns, and 326 rows. The model represents the alluvial aquifer using four layers of variable thickness with no intervening confining layers. The model was calibrated to both quasi-steady-state and transient hydraulic head data collected during the study and ground-water flow was simulated for five well-pumping/river-stage scenarios. The model accuracy was calculated using the root mean square error between actual measurements of hydraulic head and model generated hydraulic head at the end of each model run. The accepted error for the model calibrations were below the maximum measurement errors. The error for the quasi-steady-state calibration was 0.82 meter; for the transient calibration it was 0.33 meter. The shape, size, and ground-water travel time within the contributing recharge area for each well or well field is affected by changes in river stage and pumping rates and by the location of the well or well field with respect to the major rivers, alluvial valley walls, and other pumping wells. The shapes of the simulated contributing recharge areas for the well fields in the study area are elongated in the upstream direction for all well-pumping/river-stage scenarios. The capture of ground water by the pumping wells as it moved downgradient toward the Missouri River caused the long up-valley extent of the contributing recharge areas. Recharge to the Iatan and Weston well fields primarily is from precipitation and surface runoff from the surrounding uplands because the contributing recharge area does not intersect the Missouri River for any well-pumping/river-stage scenarios. Recharge to the Leavenworth and Ft. Leavenworth well fields is from precipitation, surface runoff from the surrounding uplands, and the Missouri River because the contributing recharge area intersects these boundaries for all well-pumping/river-stage scenarios. Particle tracking analysis indicated ground water from the three contaminated sites was captured by the Ft. Leavenworth well field for all well-pumping/river-stage scenarios. Ground-water travel times to the Ft. Leavenworth well field for average well-pumping/river-stage scenario ranged from about 33 years for the closest contamination site to about 71 years for the farthest contamination site. Ground-water flow was induced below the Missouri River by the Ft. Leavenworth and Leavenworth well fields for all well-pumping/river-stage scenarios.
NASA Astrophysics Data System (ADS)
Karak, Bidya Binay; Cameron, Robert
2016-05-01
We investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer. This allows the negative radial shear in the near-surface layer to effectively act on the radial field to produce a toroidal field. Consequently, we observe a clear equatorward migration of the toroidal field at low latitudes even when there is no meridional flow in the deep CZ. We show a case where the period of a dynamo wave solution is approximately 11 years. Flux transport models are also shown with periods close to 11 years. Both the dynamo wave and flux transport dynamo are thus able to reproduce some of the observed features of solar cycle. The main difference between the two types of dynamo is the value of $\\alpha$ required to produce dynamo action. In both types of dynamo, the surface meridional flow helps to advect and build the polar field in high latitudes, while in flux transport dynamo the equatorward flow near the bottom of CZ advects toroidal field to cause the equatorward migration in butterfly wings and this advection makes the dynamo easier by transporting strong toroidal field to low latitudes where $\\alpha$ effect works. Another conclusion of our study is that the magnetic pumping suppresses the diffusion of fields through the photospheric surface which helps to achieve the 11-year dynamo cycle at a moderately larger value of magnetic diffusivity than has previously been used.
1990-09-01
by damage. SHPREP When not zero, all parts repaired at an operating base are shipped to the base that is selected with the SEND logic in the CONTRL ...nominal (at rest) skin temperature when each MOPP is worn, the pumping factor (y), the insulation factor (CLO), and the permeability factor (IM). The...temiperature is taken to be 35 0C, and 36"C for MOPP #5; the pumping factor (y) ranges from 0.200 to 0.270, the insulation factor (CLO) from 1.70 to
NASA Technical Reports Server (NTRS)
Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.
1988-01-01
56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.
Space shuttle main engine high pressure fuel pump aft platform seal cavity flow analysis
NASA Technical Reports Server (NTRS)
Lowry, S. A.; Keeton, L. W.
1987-01-01
A general purpose, three-dimensional computational fluid dynamics code named PHOENICS, developed by CHAM Inc., is used to model the flow in the aft-platform seal cavity in the high pressure fuel pump of the space shuttle main engine. The model is used to predict the temperatures, velocities, and pressures in the cavity for six different sets of boundary conditions. The results are presented as input for further analysis of two known problems in the region, specifically: erratic pressures and temperatures in the adjacent coolant liner cavity and cracks in the blade shanks near the outer diameter of the aft-platform seal.
Design of a CO2 Twin Rotary Compressor for a Heat Pump Water Heater
NASA Astrophysics Data System (ADS)
Ahn, Jong Min; Kim, Woo Young; Kim, Hyun Jin; Cho, Sung Oug; Seo, Jong Cheun
2010-06-01
For a CO2 heat pump water heater, one-stage twin rotary compressor has been designed. As a design tool, computer simulation program for the compressor performance has been made. Validation of the simulation program has been carried out for a bench model compressor in a compressor calorimeter. Cooling capacity and the compressor input power were reasonably well compared between the simulation and the calorimeter test. Good agreement on P-V diagram between the simulation and the test was also obtained. With this validated compressor simulation program, parametric study has been performed to arrive at optimum dimensions for the compression chamber.
Photo-induced second-order nonlinearity in stoichiometric silicon nitride waveguides
NASA Astrophysics Data System (ADS)
Porcel, Marco A. G.; Mak, Jesse; Taballione, Caterina; Schermerhorn, Victoria K.; Epping, Jörn P.; van der Slot, Peter J. M.; Boller, Klaus-J.
2017-12-01
We report the observation of second-harmonic generation in stoichiometric silicon nitride waveguides grown via low-pressure chemical vapour deposition. Quasi-rectangular waveguides with a large cross section were used, with a height of 1 {\\mu}m and various different widths, from 0.6 to 1.2 {\\mu}m, and with various lengths from 22 to 74 mm. Using a mode-locked laser delivering 6-ps pulses at 1064 nm wavelength with a repetition rate of 20 MHz, 15% of the incoming power was coupled through the waveguide, making maximum average powers of up to 15 mW available in the waveguide. Second-harmonic output was observed with a delay of minutes to several hours after the initial turn-on of pump radiation, showing a fast growth rate between 10$^{-4}$ to 10$^{-2}$ s$^{-1}$, with the shortest delay and highest growth rate at the highest input power. After this first, initial build-up, the second-harmonic became generated instantly with each new turn-on of the pump laser power. Phase matching was found to be present independent of the used waveguide width, although the latter changes the fundamental and second-harmonic phase velocities. We address the presence of a second-order nonlinearity and phase matching, involving an initial, power-dependent build-up, to the coherent photogalvanic effect. The effect, via the third-order nonlinearity and multiphoton absorption leads to a spatially patterned charge separation, which generates a spatially periodic, semi-permanent, DC-field-induced second-order susceptibility with a period that is appropriate for quasi-phase matching. The maximum measured second-harmonic conversion efficiency amounts to 0.4% in a waveguide with 0.9 x 1 {\\mu}m$^2$ cross section and 36 mm length, corresponding to 53 {\\mu}W at 532 nm with 13 mW of IR input coupled into the waveguide. The according $\\chi^{(2)}$ amounts to 3.7 pm/V, as retrieved from the measured conversion efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-01
Major accomplishments during the second quarter of 1984 were completion of the Diaphragm Separation Seal clear liquid testing, and initiation of Phase III Field Testing. Diaphragm operational testing was conducted on a clear water test loop. The test goals were to ensure; mechanical reliability of the Diaphragm Seal, safe operation with simulated component failure, and proper operation of the Diaphragm Buffer Volume Control System. This latter system is essential in controlling the phasing of the diaphragm with its driving plunger. These tests were completed successfully. All operational problems were solved. However, it must be emphasized that the Diaphragm Seal wouldmore » be damaged by allowing the pump to operate in a cavitating condition for an extended period of time. A change in the Field Test phase of the program was made regarding choice of field test site. There is no operating Syn-Fuel pilot plant capable of inexpensively producing the slurry stream required for the reciprocating pump testing. The Field Tests will now be conducted by first testing the prototype pump and separation seals in an ambient temperature sand water slurry. This will determine resistence to abrasive wear and determine any operation problems at pressure over a lengthy period of time. After successful conclusion of these tests the pump and seals will be operated with a high temperature oil, but without solids, to identify any problems associated with thermal gradients, thermal shock and differential growth. After successful completion of the high temperature clean oil tests the pump will be deemed ready for in-line installation at a designated Syn-Fuel pilot plant. The above approach avoids the expense and complications of a separate hot slurry test loop. It also reduces risk of operational problems while in-line at the pilot plant. 5 figs.« less
Quantum behaviour of open pumped and damped Bose-Hubbard trimers
NASA Astrophysics Data System (ADS)
Chianca, C. V.; Olsen, M. K.
2018-01-01
We propose and analyse analogs of optical cavities for atoms using three-well inline Bose-Hubbard models with pumping and losses. With one well pumped and one damped, we find that both the mean-field dynamics and the quantum statistics show a qualitative dependence on the choice of damped well. The systems we analyse remain far from equilibrium, although most do enter a steady-state regime. We find quadrature squeezing, bipartite and tripartite inseparability and entanglement, and states exhibiting the EPR paradox, depending on the parameter regimes. We also discover situations where the mean-field solutions of our models are noticeably different from the quantum solutions for the mean fields. Due to recent experimental advances, it should be possible to demonstrate the effects we predict and investigate in this article.
Finalize field testing of cold climate heat pump (CCHP) based on tandem vapor injection compressors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Baxter, Van D.; Abdelaziz, Omar
2017-03-01
This report describes the system diagram and control algorithm of a prototype air-source cold climate heat pump (CCHP) using tandem vapor injection (VI) compressors. The prototype was installed in Fairbanks, Alaska and underwent field testing starting in 09/2016. The field testing results of the past six months, including compressor run time fractions, measured COPs and heating capacities, etc., are presented as a function of the ambient temperature. Two lessons learned are also reported.
Stochastic estimation of plant-available soil water under fluctuating water table depths
NASA Astrophysics Data System (ADS)
Or, Dani; Groeneveld, David P.
1994-12-01
Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.
Automatic alignment of double optical paths in excimer laser amplifier
NASA Astrophysics Data System (ADS)
Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun
2013-05-01
A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.
Bailey, Z.C.
1993-01-01
A comprehensive hydrologic investigation of the Jackson area in Madison County, Tennessee, was conducted to provide information for the development of a wellhead-protection program for two municipal well fields. The136-square-mile study area is between the Middle Fork Forked Deer and South Fork Forked Deer Rivers and includes the city of Jackson. The formations that underlie and crop out in the study area, in descending order, are the Memphis Sand, Fort Pillow Sand, and Porters Creek Clay. The saturated thickness of the Memphis Sand ranges from 0 to 270 feet; the Fort Pillow Sand, from 0 to 180 feet. The Porters Creek Clay, which ranges from 130 to 320 feet thick, separates a deeper formation, the McNairy Sand, from the shallower units. Estimates by other investigators of hydraulic conductivity for the Memphis Sand range from 80 to 202 feet per day. Estimates of transmissivity of the Memphis Sand range from 2,700 to 33,000 feet squared per day. Estimates of hydraulic conductivity for the Fort Pillow Sand range from 68 to 167 feet per day, and estimates of transmissivity of that unit range from 6,700 to 10,050 feet squared per day. A finite-difference, ground-water flow model was calibrated to steady-state hydrologic conditions of April 1989, and was used to simulate hypothetical pumping plans for the North and South Well Fields. The aquifers were represented as three layers in the model to simulate the ground-water flow system. Layer 1 is the saturated part of the Memphis Sand; layer 2 is the upper half of the Fort Pillow Sand; and layer 3 is the lower half of the Fort Pillow Sand. The steady-state water budget of the simulated system showed that more than half of the inflow to the ground-water system is underflow from the model boundaries. Most of this inflow is discharged as seepage to the rivers and to pumping wells. Slightly less than half of the inflow is from areal recharge and recharge from streams. About 75 percent of the discharge from the system is into the streams, lakes, and out of the model area through a small quantity of ground-water underflow. The remaining 25 percent is discharge to pumping wells. The calibrated model was modified to simulate the effects on the ground-water system of three hypothetical pumping plans that increased pumping from the North Well Field to up to 20 million gallons per day, and from the South Well Field, to up to 15 million gallons per day. Maximum drawdown resulting from the 20 million-gallons-per-day rate of simulated pumping was 44.7 feet in a node containing a pumping well, and maximum drawdown over an extended area was about 38 feet. Up to 34 percent of ground-water seepage to streams in the calibrated model was intercepted by pumping in the simulations. A maximum of 9 percent more water was induced through model boundaries. A particle-tracking program, MODPATH, was used to delineate areas contributing water to the North and South Well Fields for the calibrated model and the three pumping simulations, and to estimate distances for different times-of-travel to the wells. The size of the area contributing water to the North Well Field, defined by the 5-year time-of-travel capture zone, is about 0.8 by 1.8 miles for the calibrated model and pumping plan 1. The size of the area for pumping plan 2 is 1.1 by 2.0 miles and, for pumping plan 3, 1.6 by 2.2 miles. The range of distance for l-year time-of-travel to individual wells is 200 to 800 feet for the calibrated model and plan 1, and 350 to 950 feet for plans 2 and 3. The size of the area contributing water to the South Well Field, defined by the 5-year time-of-travel capture zone, is about 0.8 by 1.4 miles for the calibrated model. The size of the area for pumping plans 1 and 3 is 1.6 by 2.2 miles and, for pumping plan 2, 1.1 by 1.7 miles. The range of distance for l-year time-of-travel to individual wells is 120 to 530 feet for the calibrated model, 670 to 1,300 feet for pumping plans 1 and 3, and 260 to 850 feet
Modeling the use of a binary mixture as a control scheme for two-phase thermal systems
NASA Technical Reports Server (NTRS)
Benner, S. M.; Costello, Frederick A.
1990-01-01
Two-phase thermal loops using mechanical pumps, capillary pumps, or a combination of the two have been chosen as the main heat transfer systems for the space station. For these systems to operate optimally, the flow rate in the loop should be controlled in response to the vapor/liquid ratio leaving the evaporator. By substituting a mixture of two non-azeotropic fluids in place of the single fluid normally used in these systems, it may be possible to monitor the temperature of the exiting vapor and determine the vapor/liquid ratio. The flow rate would then be adjusted to maximize the load capability with minimum energy input. A FLUINT model was developed to study the system dynamics of a hybrid capillary pumped loop using this type of control and was found to be stable under all the test conditions.
Regenerative Fuel Cell Test Rig at Glenn Research Center
NASA Technical Reports Server (NTRS)
Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.; Scullin, Vincent J.; Bents, David J.
2003-01-01
The regenerative fuel cell development effort at Glenn Research Center (GRC) involves the integration of a dedicated fuel cell and electrolyzer into an energy storage system test rig. The test rig consists of a fuel cell stack, an electrolysis stack, cooling pumps, a water transfer pump, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, interconnecting tubing, nitrogen purge provisions, and instrumentation for control and monitoring purposes. The regenerative fuel cell (RFC) thus formed is a completely closed system which is capable of autonomous cyclic operation. The test rig provides direct current (DC) load and DC power supply to simulate power consumption and solar power input. In addition, chillers are used as the heat sink to dissipate the waste heat from the electrochemical stack operation. Various vents and nitrogen (N2) sources are included in case inert purging is necessary to safe the RFC test rig.
Artificial neural networks for the performance prediction of heat pump hot water heaters
NASA Astrophysics Data System (ADS)
Mathioulakis, E.; Panaras, G.; Belessiotis, V.
2018-02-01
The rapid progression in the use of heat pumps, due to the decrease in the equipment cost, together with the favourable economics of the consumed electrical energy, has been combined with the wide dissemination of air-to-water heat pumps (AWHPs) in the residential sector. The entrance of the respective systems in the commercial sector has made important the modelling of the processes. In this work, the suitability of artificial neural networks (ANN) in the modelling of AWHPs is investigated. The ambient air temperature in the evaporator inlet and the water temperature in the condenser inlet have been selected as the input variables; energy performance indices and quantities characterising the operation of the system have been selected as output variables. The results verify that the, easy-to-implement, trained ANN can represent an effective tool for the prediction of the AWHP performance in various operation conditions and the parametrical investigation of their behaviour.
Compact 151 W green laser with U-type resonator for prostate surgery
NASA Astrophysics Data System (ADS)
Bazyar, Hossein; Aghaie, Mohammad; Daemi, Mohammad Hossein; Bagherzadeh, Seyed Morteza
2013-04-01
We analyzed, designed and fabricated a U-type resonator for intra-cavity frequency doubling of a diode-side-pumped Q-switched Nd:YAG rod laser with high power and high stability for surgery of prostatic tissue. The resonator stability conditions were analyzed graphically in the various configurations for a U-type resonator. We obtained green light at 532 nm using a single KTP crystal, with average output power of 151 W at 10 kHz repetition rate, and with 113 ns pulse duration at 810 W input pump power. We achieved 1064-532 nm conversion efficiency of 75.8%, and pump-to-green optical-optical efficiency of 18.6%. The green power fluctuation was ±1.0% and pointing stability was better than 4 μrad. The green laser output was coupled to a side-firing medical fiber to transfer the laser beam to the prostatic tissue.
Application of fuzzy adaptive control to a MIMO nonlinear time-delay pump-valve system.
Lai, Zhounian; Wu, Peng; Wu, Dazhuan
2015-07-01
In this paper, a control strategy to balance the reliability against efficiency is introduced to overcome the common off-design operation problem in pump-valve systems. The pump-valve system is a nonlinear multi-input-multi-output (MIMO) system with time delays which cannot be accurately measured but can be approximately modeled using Bernoulli Principle. A fuzzy adaptive controller is applied to approximate system parameters and achieve the control of delay-free model since the system model is inaccurate and the direct feedback linearization method cannot be applied. An extended Smith predictor is introduced to compensate time delays of the system using the inaccurate system model. The experiment is carried out to verify the effectiveness of the control strategy whose results show that the control performance is well achieved. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ducariu, A.; Constantin, G. C.; Puscas, N. N.
2005-08-01
In the small gain approximation and the unsaturated regime in this paper we report some original results concerning the evaluation of the Fano factor, statistical fluctuation and spontaneous emission factor which characterize the photon statistics on the number of excited modes, dopant concentration and power pumping in the single and double pass Er3+ - doped LiNbO, straight waveguide amplifiers pumped near 1484 nm using erfc, Gaussian and constant profile of the Er3+ ions in LiNbO, crystal. We demonstrated that for 50 mW input pump power the Poisson photon statistics are maintained in the above mentioned amplifiers for concentrations of the Er ions smaller than l026 m-3 and also high gains and low noise figures are achievable. The obtained results can be used for the design of optoelectronic integrated circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K.K.
A Mather-type dense plasma focus (MDPF) system was designed, built, and tested specifically to study its luminescent characteristics and to assess its potential as a new light source of high-energy, short-wavelength lasers. The luminescence study of MDPF showed that the conversion efficiency from the electrical input to the optical output energies is at least 50%, up to the time the plasma compression is complete. Using the system, for the first time as an optical pump, laser activities were successfully obtained from a variety of liquid organic dyes. Diagnostic capabilities included an optical multichannel analyzer system complete with a computer control,more » a nitrogen-pumped tunable dye-laser system, a high-speed streak/framing camera, a digital laser energy meter, voltage and current probes, and a computer-based data-acquisition system.« less
Role of the sodium pump in pacemaker generation in dog colonic smooth muscle.
Barajas-López, C; Chow, E; Den Hertog, A; Huizinga, J D
1989-01-01
1. The role of the Na+ pump in the generation of slow wave activity in circular muscle of the dog colon was investigated using a partitioned 'Abe-Tomita' type chamber for voltage control. 2. Blockade of the Na+ pump by omission of extracellular K+, by ouabain, or the combination of 0 mM-Na+ and ouabain, depolarized the membrane up to approximately -40 mV and abolished the slow wave activity. Repolarization back to the control membrane potential by hyperpolarizing current restored the slow wave activity. 3. Slow waves continued to be present in 0 Na+, Li+ HEPES solution. 4. The depolarization induced by the procedures to block Na+ pump activity was associated with an increase in input membrane resistance. 5. Voltage-current relationships show the presence of an inward rectification. 6. Reduction of temperature depolarized the membrane, and decreased the slow wave frequency and amplitude. The slow wave amplitude was restored by repolarization of the membrane. 7. Brief depolarizing pulses evoked premature slow waves. Brief hyperpolarizing pulses terminated the slow waves. 8. We conclude that abolition of slow wave activity by Na+ pump blockade is a direct effect of membrane depolarization and that the Na+ pump is not responsible for the generation of the slow wave. 9. Our results are consistent with the hypothesis that pacemaker activity in smooth muscle is a consequence of membrane conductance changes which are metabolically dependent. PMID:2607455
Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control
NASA Astrophysics Data System (ADS)
Kim, Gi-Woo; Wang, K. W.
2007-04-01
The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.
60 V tolerance full symmetrical switch for battery monitor IC
NASA Astrophysics Data System (ADS)
Zhang, Qidong; Yang, Yintang; Chai, Changchun
2017-06-01
For stacked battery monitoring IC high speed and high precision voltage acquisition requirements, this paper introduces a kind of symmetrical type high voltage switch circuit. This kind of switch circuit uses the voltage following structure, which eliminates the leakage path of input signals. At the same time, this circuit adopts a high speed charge pump structure, in any case the input signal voltage is higher than the supply voltage, it can fast and accurately turn on high voltage MOS devices, and convert the battery voltage to an analog to digital converter. The proposed high voltage full symmetry switch has been implemented in a 0.18 μm BCD process; simulated and measured results show that the proposed switch can always work properly regardless of the polarity of the voltage difference between the input signal ports and an input signal higher than the power supply. Project supported by the National Natural Science Foundation of China (No. 61334003).
Dependence of sodium laser guide star photon return on the geomagnetic field
NASA Astrophysics Data System (ADS)
Moussaoui, N.; Holzlöhner, R.; Hackenberg, W.; Bonaccini Calia, D.
2009-07-01
Aims: The efficiency of optical pumping that increases the backscatter emission of mesospheric sodium atoms in continuous wave (cw) laser guide stars (LGSs) can be significantly reduced and, in the worst case, eliminated by the action of the geomagnetic field. Our goal is to present an estimation of this effect for several telescope sites. Methods: Sodium atoms precess around magnetic field lines that cycle the magnetic quantum number, reducing the effectiveness of optical pumping. Our method is based on calculating the sodium magnetic sublevel populations in the presence of the geomagnetic field and on experimental measurements of radiance return from sodium LGS conducted at the Starfire optical range (SOR). Results: We propose a relatively simple semi-empirical formula for estimating the effect of the geomagnetic field on enhancing the LGSs photon return due to optical pumping with a circularly polarized cw single-frequency laser beam. Starting from the good agreement between our calculations and the experimental measurements for the geomagnetic field effect, and in order to more realistically estimate the sodium LGSs photon return, we introduce the effect of the distance to the mesospheric sodium layer and the atmospheric attenuation. The combined effect of these three factors is calculated for several telescope sites. Conclusions: In calculating the return flux of LGSs, only the best return conditions are often assumed, relying on strong optical pumping with circularly polarized lasers. However, one can only obtain this optimal return along one specific laser orientation on the sky, where the geomagnetic field lines are parallel to the laser beam. For most of the telescopes, the optimum can be obtained at telescope orientations beyond the observation limit. For the telescopes located close to the geomagnetic pole, the benefit of the optical pumping is much more important than for telescopes located close to the geomagnetic equator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kfir, Ofer, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il; Bordo, Eliyahu; Ilan Haham, Gil
The recent demonstration of bright circularly polarized high-order harmonics of a bi-circular pump field gave rise to new opportunities in ultrafast chiral science. In previous works, the required nontrivial bi-circular pump field was produced using a relatively complicated and sensitive Mach-Zehnder-like interferometer. We propose a compact and stable in-line apparatus for converting a quasi-monochromatic linearly polarized ultrashort driving laser field into a bi-circular field and employ it for generation of helically polarized high-harmonics. Furthermore, utilizing the apparatus for a spectroscopic spin-mixing measurement, we identify the photon spins of the bi-circular weak component field that are annihilated during the high harmonicsmore » process.« less
AMTEC recirculating test cell component testing and operation
NASA Technical Reports Server (NTRS)
Underwood, M. L.; Sievers, R. K.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Bankston, C. P.
1989-01-01
Alkali metal thermoelectric converter operation in a recirculating test cell (RTC), which requires a small electromagnetic pump (EM) and a high-temperature beta-double-prime alumina-solid-electrolyte (BASE)-to-metal seal, is discussed. The design of a pump and an active metal braze seal and the initial operation of a cell using these components are described. The pump delivered 0.25 cu cm/min against a 28-psia head. A braze seal system was selected after shear strength tests of Ta or Nb brazed to BASE by a variety of fillers including TiCuNi, TiNi, and TiNiCr. The TiCuNi filler was chosen for environment cell testing and showed no failure or observable degradation after short-term tests up to 1055 K. The pump and the Nb/TiCuNi/BASE seal were used in a test that demonstrated all the operational functions of the RTC for the first time. An increase in the radiation reduction factor at constant input power was observed, indicating that the condenser was being wet by sodium resulting in an increased reflectivity.
Dynamics and acoustics of a cavitating Venturi flow using a homogeneous air-propylene glycol mixture
NASA Astrophysics Data System (ADS)
Navarrete, M.; Naude, J.; Mendez, F.; Godínez, F. A.
2015-12-01
Dynamics and acoustics generated in a cavitating Venturi tube are followed up as a function of the input power of a centrifugal pump. The pump of 5 hp with a modified impeller to produce uniform bubbly flow, pumps 70 liters of propylene glycol in a closed loop (with a water cooling system), in which the Venturi is arranged. The goal was to obtain correlations among acoustical emission, dynamics of the shock waves and the light emission from cavitation bubbles. The instrumentation includes: two piezoelectric transducers, a digital camera, a high-speed video camera, and photomultipliers. As results, we show the cavitation patterns as function of the pump power, and a graphical template of the distribution of the Venturi conditions as a function of the cavitation parameter. Our observations show for the first time the sudden formation of bubble clouds in the straight portion of the pipe after the diverging section of the Venturi. We assume that this is due to pre-existing of nuclei-cloud structures which suddenly grow up by the tensile tails of propagating shock waves (producing a sudden drop in pressure).
Distributed parametric amplifier for RZ-DPSK signal transmission system.
Xu, Xing; Zhang, Chi; Yuk, T I; Wong, Kenneth K Y
2012-08-13
We have experimentally demonstrated a single pump distributed parametric amplification (DPA) system for differential phase shift keying (DPSK) signal in a spool of dispersion-shifted fiber (DSF). The gain spectrum of single pump DPA is thoroughly investigated by both simulation and experiment, and a possible reference for optimal input pump power and fiber length relationship is provided to DPA based applications. Furthermore, DPSK format is compared with on-off keying (OOK) within DPA scheme. Eight WDM signal channels at 10-Gb/s are utilized, and approximately 0.5-dB power penalties at the bit-error rate (BER) of 10(-9) are achieved for return-to-zero DPSK (RZ-DPSK), comparing to larger than 1.5-dB with OOK format. In order to improve the system power efficiency, at the receiver, the pump is recycled by a photovoltaic cell and the converted energy can be used by potential low-power-consuming devices, i.e sensors or small-scale electronic circuits. Additionally, with suitable components, the whole DPA concept could be directly applied to the 1.3-μm telecommunication window along the most commonly used single-mode fiber (SMF).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragone, A; /SLAC; Pratte, J.F.
An ASIC for the readout of signals from X-ray Active Matrix Pixel Sensor (XAMPS) detectors to be used at the Linac Coherent Light Source (LCLS) is presented. The X-ray Pump Probe (XPP) instrument, for which the ASIC has been designed, requires a large input dynamic range on the order of 104 photons at 8 keV with a resolution of half a photon FWHM. Due to the size of the pixel and the length of the readout line, large input capacitance is expected, leading to stringent requirement on the noise optimization. Furthermore, the large number of pixels needed for a goodmore » position resolution and the fixed LCLS beam period impose limitations on the time available for the single pixel readout. Considering the periodic nature of the LCLS beam, the ASIC developed for this application is a time-variant system providing low-noise charge integration, filtering and correlated double sampling. In order to cope with the large input dynamic range a charge pump scheme implementing a zero-balance measurement method has been introduced. It provides an on chip 3-bit coarse digital conversion of the integrated charge. The residual charge is sampled using correlated double sampling into analog memory and measured with the required resolution. The first 64 channel prototype of the ASIC has been fabricated in TSMC CMOS 0.25 {micro}m technology. In this paper, the ASIC architecture and performances are presented.« less
Ozbilgin, M.M.; Dickerman, D.C.
1984-01-01
The two-dimensional finite-difference model for simulation of groundwater flow was modified to enable simulation of surface-water/groundwater interactions during periods of low streamflow. Changes were made to the program code in order to calculate surface-water heads for, and flow either to or from, contiguous surface-water bodies; and to allow for more convenient data input. Methods of data input and output were modified and entries (RSORT and HDRIVER) were added to the COEF and CHECKI subroutines to calculate surface-water heads. A new subroutine CALC was added to the program which initiates surface-water calculations. If CALC is not specified as a simulation option, the program runs the original version. The subroutines which solve the ground-water flow equations were not changed. Recharge, evapotranspiration, surface-water inflow, number of wells, pumping rate, and pumping duration can be varied for any time period. The Manning formula was used to relate stream depth and discharge in surface-water streams. Interactions between surface water and ground water are represented by the leakage term in the ground-water flow and surface-water mass balance equations. Documentation includes a flow chart, data deck instructions, input data, output summary, and program listing. Numerical results from the modified program are in good agreement with published analytical results. (USGS)
Quasi-phase-matching of only even-order high harmonics.
Diskin, Tzvi; Cohen, Oren
2014-03-24
High harmonic spectrum of a quasi-monochromatic pump that interacts with isotropic media consists of only odd-order harmonics. Addition of a secondary pump, e.g. a static field or the second harmonic of the primary pump, can results with generation of both odd and even harmonics of the primary pump. We propose a method for quasi-phase matching of only the even-order harmonics of the primary pump. We formulate a theory for this process and demonstrate it numerically. We also show that it leads to attosecond pulse trains with constant carrier envelop phase and high repetition rate.
Method and system for small scale pumping
Insepov, Zeke [Darien, IL; Hassanein, Ahmed [Bolingbrook, IL
2010-01-26
The present invention relates generally to the field of small scale pumping and, more specifically, to a method and system for very small scale pumping media through microtubes. One preferred embodiment of the invention generally comprises: method for small scale pumping, comprising the following steps: providing one or more media; providing one or more microtubes, the one or more tubes having a first end and a second end, wherein said first end of one or more tubes is in contact with the media; and creating surface waves on the tubes, wherein at least a portion of the media is pumped through the tube.
Design of a multistep phase mask for high-energy THz pulse generation in ZnTe crystal
NASA Astrophysics Data System (ADS)
Avetisyan, Yuri H.; Makaryan, Armen; Tadevosyan, Vahe
2017-08-01
A new scheme for generating high-energy terahertz (THz) pulses by optical rectification of tilted pulse front (TPF) femtosecond laser pulses in ZnTe crystal is proposed and analyzed. The TPF laser pulses are originated due to propagation through a multistep phase mask (MSPM) attached to the entrance surface of the nonlinear crystal. Similar to the case of contacting optical grating the necessity of the imaging optics is avoided. In addition, introduction of large amounts of angular dispersion is also eliminated. The operation principle is based on the fact that the MSPM splits a single input beam into many smaller time-delayed "beamlets", which together form a discretely TPF in the nonlinear crystal. The dimensions of the mask's steps required for high-energy THz-pulse generation in ZnTe and widely used lithium niobate (LN) crystals are calculated. The optimal number of steps is estimated taking into account individual beamlet's spatial broadening and problems related to the mask fabrication. The THz field in no pump depletion approximation is analytically calculated using radiating antenna model. The analysis shows that application of ZnTe crystal allows obtaining higher THz-pulse energy than that of LN crystal, especially when long-wavelength pump sources are used. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THzpulse source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glassmeyer, Cathy; Hooten, Gwen; Hertel, Bill
The Fernald Preserve, a former uranium processing facility that produced high-purity uranium metal products during the Cold War, is located in southwest Ohio. The facility became a US Department of Energy Office of Legacy Management (LM) site in November 2006, following completion of the Comprehensive Environmental Response, Compensation, and Liability Act environmental remediation and site restoration (with the exception of groundwater). When the site was turned over to LM, approximately 76.5 ha of the Great Miami Aquifer remained contaminated with uranium above the final remediation level of 30 μg/L. Here, uranium contamination is being removed from groundwater in the Greatmore » Miami Aquifer through a pump-and-treat operation, which is predicted to continue until 2033. Twenty extraction wells pump about 30 million liters per day. Operation of the system is impacted by iron in the groundwater that promotes iron fouling of the well pumps, motors, and screens. The design of the well field evolved over 21 years and reflected a conservative system that could respond to a wide range of pumping conditions. For instance, some of the extraction wells were sized with pumps and motors that would allow the well to pump up to 1890 L/min (500 gpm) if warranted. The added flexibility, though, came at the cost of operational efficiency. We describe the efforts that have been taken by LM since the Fernald site was transferred to LM to mitigate the operational impacts from the iron fouling aquifer conditions and improve the efficiency of the well-field operation. Variable-frequency drives were installed at six wells to replace flow control valves. Several wells with oversized pumps and motors were changed from 24-hour per day operation to 8-hour per day operation to allow the pumps to operate closer to their design flow rates. Pumps and motors were “right-sized” at many wells to improve pumping efficiency. The process used to rehabilitate (or clean) well screens was improved, and a process was developed to clean pumps without having to pull them from the well. To reduce pressure drops, improvements were also made to the configuration of the discharge piping. A new control system was installed for each well to allow local control and local tracking of energy used. The amount of energy used daily compared to number of gallons pumped provides a method to assess pump performance and determine when action is necessary to restore well pump efficiency. Additionally, the metrics being employed to help quantify well-field efficiency improvements are described, and the benefits achieved by proactively managing the pump-and-treat operation are presented.« less
Esplandiu, Maria J; Farniya, Ali Afshar; Bachtold, Adrian
2015-11-24
We report a simple yet highly efficient chemical motor that can be controlled with visible light. The motor made from a noble metal and doped silicon acts as a pump, which is driven through a light-activated catalytic reaction process. We show that the actuation is based on electro-osmosis with the electric field generated by chemical reactions at the metal and silicon surfaces, whereas the contribution of diffusio-osmosis to the actuation is negligible. Surprisingly, the pump can be operated using water as fuel. This is possible because of the large ζ-potential of silicon, which makes the electro-osmotic fluid motion sizable even though the electric field generated by the reaction is weak. The electro-hydrodynamic process is greatly amplified with the addition of reactive species, such as hydrogen peroxide, which generates higher electric fields. Another remarkable finding is the tunability of silicon-based pumps. That is, it is possible to control the speed of the fluid with light. We take advantage of this property to manipulate the spatial distribution of colloidal microparticles in the liquid and to pattern colloidal microparticle structures at specific locations on a wafer surface. Silicon-based pumps hold great promise for controlled mass transport in fluids.
Transient Analysis of a Magnetic Heat Pump
NASA Technical Reports Server (NTRS)
Schroeder, E. A.
1985-01-01
An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.
Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM
2012-07-03
An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.
Interaction of Aquifer and River-Canal Network near Well Field.
Ghosh, Narayan C; Mishra, Govinda C; Sandhu, Cornelius S S; Grischek, Thomas; Singh, Vikrant V
2015-01-01
The article presents semi-analytical mathematical models to asses (1) enhancements of seepage from a canal and (2) induced flow from a partially penetrating river in an unconfined aquifer consequent to groundwater withdrawal in a well field in the vicinity of the river and canal. The nonlinear exponential relation between seepage from a canal reach and hydraulic head in the aquifer beneath the canal reach is used for quantifying seepage from the canal reach. Hantush's (1967) basic solution for water table rise due to recharge from a rectangular spreading basin in absence of pumping well is used for generating unit pulse response function coefficients for water table rise in the aquifer. Duhamel's convolution theory and method of superposition are applied to obtain water table position due to pumping and recharge from different canal reaches. Hunt's (1999) basic solution for river depletion due to constant pumping from a well in the vicinity of a partially penetrating river is used to generate unit pulse response function coefficients. Applying convolution technique and superposition, treating the recharge from canal reaches as recharge through conceptual injection wells, river depletion consequent to variable pumping and recharge is quantified. The integrated model is applied to a case study in Haridwar (India). The well field consists of 22 pumping wells located in the vicinity of a perennial river and a canal network. The river bank filtrate portion consequent to pumping is quantified. © 2014, National GroundWater Association.
Enhanced second-harmonic generation from resonant GaAs gratings.
de Ceglia, D; D'Aguanno, G; Mattiucci, N; Vincenti, M A; Scalora, M
2011-03-01
We theoretically study second harmonic generation in nonlinear, GaAs gratings. We find large enhancement of conversion efficiency when the pump field excites the guided mode resonances of the grating. Under these circumstances the spectrum near the pump wavelength displays sharp resonances characterized by dramatic enhancements of local fields and favorable conditions for second-harmonic generation, even in regimes of strong linear absorption at the harmonic wavelength. In particular, in a GaAs grating pumped at 1064 nm, we predict second-harmonic conversion efficiencies approximately 5 orders of magnitude larger than conversion rates achievable in either bulk or etalon structures of the same material.
2009-06-09
ER D C/ CE R L TR -0 9 -1 0 Natural Gas Engine-Driven Heat Pump Demonstration at DoD Installations Performance and Reliability Summary...L ab or at or y Approved for public release; distribution is unlimited. ERDC/CERL TR-09-10 June 2009 Natural Gas Engine-Driven Heat Pump ...CERL TR-09-10 ii Abstract: Results of field testing natural gas engine-driven heat pumps (GHP) at six southwestern U.S. Department of Defense (DoD
Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy.
Hudson, Darren D; Dekker, Stephen A; Mägi, Eric C; Judge, Alexander C; Jackson, Stuart D; Li, Enbang; Sanghera, J S; Shaw, L B; Aggarwal, I D; Eggleton, Benjamin J
2011-04-01
An octave spanning spectrum is generated in an As₂S₃ taper via 77 pJ pulses from an ultrafast fiber laser. Using a previously developed tapering method, we construct a 1.3 μm taper that has a zero-dispersion wavelength around 1.4 μm. The low two-photon absorption of sulfide-based chalcogenide fiber allows for higher input powers than previous efforts in selenium-based chalcogenide tapered fibers. This higher power handling capability combined with input pulse chirp compensation allows an octave spanning spectrum to be generated directly from the taper using the unamplified laser output.
Beach, R.J.; Benett, W.J.
1994-04-26
A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raftery, M. Daniel
1991-11-01
Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to highmore » magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raftery, M.D.
1991-11-01
Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas tomore » high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Jiancheng; Wang, Tao, E-mail: wangtaowt@aspe.buaa.edu.cn; Quan, Wei
2014-06-15
A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelengthmore » of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz{sup 1/2}, which was mainly dominated by the noise of the magnetic shield.« less
Lowry, Marlin E.
1973-01-01
The lithologic equivalents of the Fox Hills Sandstone, Lance Formation, and the Tullock member of the Fort Union Formation, as mapped on the east side of the Powder River Basin, can be recognized throughout the basin; however, the formations are in hydraulic connection and cannot be treated as separate aquifers. Recharge to the Lance-Fox Hills aquifer in the Hilight oil field is largely by vertical movement; there is no recharge from the Lance and Fox Hills outcrops on the east side of the basin to the formations in the Hilight area. At the and of the central Hilight water-flood project, the maximum possible drawdown resulting from the pumping of any one well at a distance of l0 miles from the pumped well, would be about 15 feet, if the projected pumping were evenly distributed among the project wells. Within a few years after pumping has ceased, water in the project wells will approach the levels present before pumping began. The only irreversible effect of pumping will be the compaction of shale, with attendant subsidence, because the water derived from the shale probably will not be replaced.
Rovere, Andrea; Jeong, Young-Gyun; Piccoli, Riccardo; Lee, Seung-Heon; Lee, Seung-Chul; Kwon, O-Pil; Jazbinsek, Mojca; Morandotti, Roberto; Razzari, Luca
2018-02-05
We present the generation of high-peak-electric-field terahertz pulses via collinear optical rectification in a 2-(4-hydroxy-3-methoxystyryl)-1-methilquinolinium-2,4,6-trimethylbenzenesulfonate (HMQ-TMS) organic crystal. The crystal is pumped by an amplified ytterbium laser system, emitting 170-fs-long pulses centered at 1030 nm. A terahertz peak electric field greater than 200 kV/cm is obtained for 420 µJ of optical pump energy, with an energy conversion efficiency of 0.26% - about two orders of magnitude higher than in common inorganic crystals collinearly pumped by amplified femtosecond lasers. An open-aperture Z-scan measurement performed on an n-doped InGaAs thin film using such terahertz source shows a nonlinear increase in the terahertz transmission of about 2.2 times. Our findings demonstrate the potential of this terahertz generation scheme, based on ytterbium laser technology, as a simple and efficient alternative to the existing intense table-top terahertz sources. In particular, we show that it can be readily used to explore nonlinear effects at terahertz frequencies.
NASA Technical Reports Server (NTRS)
Fuller, R. A.; Schnacke, A. W.
1974-01-01
An electromagnetic pump, in which pressure is developed in mercury because of the interaction of the magnetic field and current which flows as a result of the voltage induced in the mercury contained in the pump duct, was developed for the SNAP-8 refractory boiler test facility. Pump performance results are presented for ten duct configurations and two stator sizes. These test results were used to design and fabricate a pump which met the SNAP-8 criteria of 530 psi developed pressure at 12,500 lb/hr. The pump operated continuously for over 13,000 hours without failure or performance degradation. Included in this report are descriptions of the experimental equipment, measurement techniques, all experimental data, and an analysis of the electrical losses in the pump.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karak, Bidya Binay; Cameron, Robert, E-mail: bkarak@ucar.edu
The key elements of the Babcock–Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock–Leighton model. We find that the pumping causes the poloidal field to become predominately radial inmore » the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock–Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.« less
Simulating water-quality trends in public-supply wells in transient flow systems
Starn, J. Jeffrey; Green, Christopher T.; Hinkle, Stephen R.; Bagtzoglou, Amvrossios C.; Stolp, Bernard J.
2014-01-01
Models need not be complex to be useful. An existing groundwater-flow model of Salt Lake Valley, Utah, was adapted for use with convolution-based advective particle tracking to explain broad spatial trends in dissolved solids. This model supports the hypothesis that water produced from wells is increasingly younger with higher proportions of surface sources as pumping changes in the basin over time. At individual wells, however, predicting specific water-quality changes remains challenging. The influence of pumping-induced transient groundwater flow on changes in mean age and source areas is significant. Mean age and source areas were mapped across the model domain to extend the results from observation wells to the entire aquifer to see where changes in concentrations of dissolved solids are expected to occur. The timing of these changes depends on accurate estimates of groundwater velocity. Calibration to tritium concentrations was used to estimate effective porosity and improve correlation between source area changes, age changes, and measured dissolved solids trends. Uncertainty in the model is due in part to spatial and temporal variations in tracer inputs, estimated tracer transport parameters, and in pumping stresses at sampling points. For tracers such as tritium, the presence of two-limbed input curves can be problematic because a single concentration can be associated with multiple disparate travel times. These shortcomings can be ameliorated by adding hydrologic and geologic detail to the model and by adding additional calibration data. However, the Salt Lake Valley model is useful even without such small-scale detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quarrie, L., E-mail: Lindsay.Quarrie@l-3com.com, E-mail: lindsay.o.quarrie@gmail.com; Air Force Research Laboratory, AFRL/RDLC Laser CoE, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776
The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and outputmore » laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.« less
Liu, Jian-Hua; Jing, Dong-Yang; Wang, Liang-Liang; Li, Yang; Quan, Wei; Fang, Jian-Cheng; Liu, Wu-Ming
2017-07-28
The hybrid optical pumping spin exchange relaxation free (SERF) atomic magnetometers can realize ultrahigh sensitivity measurement of magnetic field and inertia. We have studied the 85 Rb polarization of two types of hybrid optical pumping SERF magnetometers based on 39 K- 85 Rb- 4 He and 133 Cs- 85 Rb- 4 He respectively. Then we found that 85 Rb polarization varies with the number density of buffer gas 4 He and quench gas N 2 , pumping rate of pump beam and cell temperature respectively, which will provide an experimental guide for the design of the magnetometer. We obtain a general formula on the fundamental sensitivity of the hybrid optical pumping SERF magnetometer due to shot-noise. The formula describes that the fundamental sensitivity of the magnetometer varies with the number density of buffer gas and quench gas, the pumping rate of pump beam, external magnetic field, cell effective radius, measurement volume, cell temperature and measurement time. We obtain a highest fundamental sensitivity of 1.5073 aT/Hz 1/2 (1 aT = 10 -18 T) with 39 K- 85 Rb- 4 He magnetometer between above two types of magnetometers when 85 Rb polarization is 0.1116. We estimate the fundamental sensitivity limit of the hybrid optical pumping SERF magnetometer to be superior to 1.8359 × 10 -2 aT/Hz 1/2 , which is higher than the shot-noise-limited sensitivity of 1 aT/Hz 1/2 of K SERF atomic magnetometer.
Long-term in vivo left ventricular assist device study with a titanium centrifugal pump.
Ohtsuka, G; Nakata, K; Yoshikawa, M; Mueller, J; Takano, T; Yamane, S; Gronau, N; Glueck, J; Takami, Y; Sueoka, A; Letsou, G; Schima, H; Schmallegger, H; Wolner, E; Koyanagi, H; Fujisawa, A; Baldwin, J C; Nosé, Y
1998-01-01
A totally implantable centrifugal artificial heart has been developed. The plastic prototype, Gyro PI 601, passed 2 day hemodynamic tests as a functional total artificial heart, 2 week screening tests for antithrombogenicity, and 1 month system feasibility. Based on these results, a metallic prototype, Gyro PI 702, was subjected to in vivo left ventricular assist device (LVAD) studies. The pump system employed the Gyro PI 702, which has the same inner dimensions and the same characteristics as the Gyro PI 601, including an eccentric inlet port, a double pivot bearing system, and a magnet coupling system. The PI 702 is driven with the Vienna DC brushless motor actuator. For the in vivo LVAD study, the pump actuator package was implanted in the preperitoneal space in two calves, from the left ventricular apex to the descending aorta. Case 1 achieved greater than 9 month survival without any complications, at an average flow rate of 6.6 L/min with 10.2 W input power. Case 2 was killed early due to the excessive growth of the calf, which caused functional obstruction of the inlet port. There was no blood clot inside the pump. During these periods, neither case exhibited any physiologic abnormalities. The PI 702 pump gives excellent results as a long-term implantable LVAD.
Energy dashboard for real-time evaluation of a heat pump assisted solar thermal system
NASA Astrophysics Data System (ADS)
Lotz, David Allen
The emergence of net-zero energy buildings, buildings that generate at least as much energy as they consume, has lead to greater use of renewable energy sources such as solar thermal energy. One example is a heat pump assisted solar thermal system, which uses solar thermal collectors with an electrical heat pump backup to supply space heating and domestic hot water. The complexity of such a system can be somewhat problematic for monitoring and maintaining a high level of performance. Therefore, an energy dashboard was developed to provide comprehensive and user friendly performance metrics for a solar heat pump system. Once developed, the energy dashboard was tested over a two-week period in order to determine the functionality of the dashboard program as well as the performance of the heating system itself. The results showed the importance of a user friendly display and how each metric could be used to better maintain and evaluate an energy system. In particular, Energy Factor (EF), which is the ratio of output energy (collected energy) to input energy (consumed energy), was a key metric for summarizing the performance of the heating system. Furthermore, the average EF of the solar heat pump system was 2.29, indicating an efficiency significantly higher than traditional electrical heating systems.
Coherent Pump-Probe Interactions and Terahertz Intersubband Gain in Semiconductor Quantum Wells
NASA Technical Reports Server (NTRS)
Liu, Ansheng; Ning, Cun-Zheng
1999-01-01
In recent years there has been considerable interest in intersubband-transition-based infrared semiconductor quantum well (QW) lasers because of their potential applications. In the mid-infrared range, both electrically-injected quantum cascade lasers [1] and optically-pumped multiple QW lasers [2] have been experimentally realized. In these studies, optical gain is due to population inversion between the lasing subbands. It was also proposed that stimulated Raman scattering in QW systems can produce net infrared optical gain [3j. In such a nonlinear optical scheme, the appearance of optical gain that may lead to intersubband Raman lasers does not rely on the population inversion. Since, in tile resonant Raman process (Raman gain is the largest in this case), the pump field induces population redistribution among subbands in the QW s ystem, it seems that a realistic estimate of the optical gain has to include this effect. Perturbative calculations used in the previous work [3] may overestimate the Raman gain. In this paper we present a nonperturbative calculation of terahertz gain of optically-pumped semiconductor step quantum wells. Limiting optical transitions within the conduction band of QW, we solve the pump-field-induced nonequilibrium distribution function for each subband of the QW system from a set of coupled rate equations. Both intrasubband and intersubband relaxation processes in the quantum well system are included. Taking into account the coherent interactions between pump and THz (signal) waves, we we derive the susceptibility of the QW system for the THz field. For a GaAs/AlGaAs step QW, we calculate the Thz gain spectrum for different pump frequencies and intensities. Under moderately strong pumping (approximately 0.3 MW/sq cm), a significant THz gain (approximately 300/m) is predicted. It is also shown that the coherent wave interactions (resonant stimulated Raman processes) contribute significantly to the THz gain.
Cardiac dysfunction in heart failure: the cardiologist's love affair with time.
Brutsaert, Dirk L
2006-01-01
Translating research into clinical practice has been a challenge throughout medical history. From the present review, it should be clear that this is particularly the case for heart failure. As a consequence, public awareness of this disease has been disillusionedly low, despite its prognosis being worse than that of most cancers and many other chronic diseases. We explore how over the past 150 years since Ludwig and Marey concepts about the evaluation of cardiac performance in patients with heart failure have emerged. From this historical-physiologic perspective, we have seen how 3 increasingly reductionist approaches or schools of thought have evolved in parallel, that is, an input-output approach, a hemodynamic pump approach, and a muscular pump approach. Each one of these has provided complementary insights into the pathophysiology of heart failure and has resulted in measurements or derived indices, some of which still being in use in present-day cardiology. From the third, most reductionist muscular pump approach, we have learned that myocardial and ventricular relaxation properties as well as temporal and spatial nonuniformities have been largely overlooked in the 2 other, input-output and hemodynamic pump, approaches. A key message from the present review is that relaxation and nonuniformities can be fully understood only from within the time-space continuum of cardiac pumping. As cyclicity and rhythm are, in some way, the most basic aspects of cardiac function, considerations of time should dominate over any measurement of cardiac performance as a muscular pump. Any measurement that is blind for the arrow of cardiac time should therefore be interpreted with caution. We have seen how the escape from the time domain-as with the calculation of LV ejection fraction-fascinating though as it may be, has undoubtedly served to hinder a rational scientific debate on the recent, so-called systolic-diastolic heart failure controversy. Lacking appreciation of early relaxation abnormalities and inappropriate degrees of nonuniformities has, indeed, led to some unfortunate misunderstandings about the pathophysiologic time progression of heart failure, in particular, heart failure with compensated hemodynamic pump function (ie, with normal or preserved LV ejection fraction). We have seen that with the introduction of newer powerful diagnostic techniques, as, for example, TDI and MRI, to evaluate ventricular "muscular pump" function, this debate can now be held in a more serene physiologic context. These aspects will be elaborated further in subsequent chapter papers of this symposium. With ongoing stem and other cell-based therapies and future reductionistic insights into cardiac cellular performance, we foresee the emergence of a fourth simple-parallel school of thought viewing the heart as a network of communicating different cell types, that is, cardiomyocytes, endothelial cells, fibroblasts, neurons. In this postgenomic age with the introduction of the rapidly evolving discipline of in vivo molecular imaging techniques, we anticipate that novel measurements of cardiac performance in patients with heart failure will soon become available and complement biopsy and other already available cardiac cellular biomarkers (cardiac troponin I; creatine kinase-MB; myoglobin; BNP). Through the use of these novel biomarkers as a fourth diagnostic track in the evaluation of cardiac performance in patients with heart failure, we will soon be able to increasingly understand the behavior of the heart as a complex biologic system-in other words, how these "low-level" biologic functions and signal transduction pathways at a cellular level contribute to the above "high-level" or system-level approach of cardiac performance at the muscular, the hemodynamic, and the input-output pump system levels and, hopefully, how they could contribute to an early diagnosis of chronic heart failure, in patients.
Temporal evolution of the spin-wave intensity and phase in a local parametric amplifier
NASA Astrophysics Data System (ADS)
Brächer, T.; Heussner, F.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Hillebrands, B.; Pirro, P.
2018-03-01
We present a time-resolved study of the evolution of the spin-wave intensity and phase in a local parametric spin-wave amplifier at pumping powers close to the threshold of parametric generation. We show that the phase of the amplified spin waves is determined by the phase of the incoming signal-carrying spin waves and that it can be preserved on long time scales as long as the energy input by the input spin waves is provided. In contrast, the phase-information is lost in such a local spin-wave amplifier as soon as the input spin-wave is switched off. These findings are an important benchmark for the use of parametric amplifiers in logic circuits relying on the spin-wave phase as information carrier.
Field Effect Flow Control in a Polymer T-Intersection Microfluidic Network
NASA Technical Reports Server (NTRS)
Sniadecki, Nathan J.; Chang, Richard; Beamesderfer, Mike; Lee, Cheng S.; DeVoe, Don L.
2003-01-01
We present a study of induced pressure pumping in a polymer microchannel due to differential electroosmotic flow @OF) rates via field-effect flow control (FEFC). The experimental results demonstrate that the induced pressure pumping is dependent on the distance of the FEFC gate from the cathodic gate. A proposed flow model based on a linearly-decaying zeta potential profile is found to successfully predict experimental trends.
Simultaneous parametric generation and up-conversion of entangled optical images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saygin, M. Yu., E-mail: mihasyu@gmail.com; Chirkin, A. S., E-mail: aschirkin@rambler.r
A quantum theory of parametric amplification and frequency conversion of an optical image in coupled nonlinear optical processes that include one parametric amplification process at high-frequency pumping and two up-conversion processes in the same pump field is developed. The field momentum operator that takes into account the diffraction and group velocities of the waves is used to derive the quantum equations related to the spatial dynamics of the images during the interaction. An optical scheme for the amplification and conversion of a close image is considered. The mean photon number density and signal-to-noise ratio are calculated in the fixed-pump-field approximationmore » for images at various frequencies. It has been established that the signal-to-noise ratio decreases with increasing interaction length in the amplified image and increases in the images at the generated frequencies, tending to asymptotic values for all interacting waves. The variance of the difference of the numbers of photons is calculated for various pairs of frequencies. The quantum entanglement of the optical images formed in a high-frequency pump field is shown to be converted to higher frequencies during the generation of sum frequencies. Thus, two pairs of entangled optical images are produced in the process considered.« less
NASA Astrophysics Data System (ADS)
Kosch, M. J.; Vickers, H.; Ogawa, Y.; Senior, A.; Blagoveshchenskaya, N.
2014-11-01
We have developed an active ground-based technique to estimate the steady state field-aligned anomalous electric field (E*) in the topside ionosphere, up to ~600 km, using the European Incoherent Scatter (EISCAT) ionospheric modification facility and UHF incoherent scatter radar. When pumping the ionosphere with high-power high-frequency radio waves, the F region electron temperature is significantly raised, increasing the plasma pressure gradient in the topside ionosphere, resulting in ion upflow along the magnetic field line. We estimate E* using a modified ion momentum equation and the Mass Spectrometer Incoherent Scatter model. From an experiment on 23 October 2013, E* points downward with an average amplitude of ~1.6 μV/m, becoming weaker at higher altitudes. The mechanism for anomalous resistivity is thought to be low-frequency ion acoustic waves generated by the pump-induced flux of suprathermal electrons. These high-energy electrons are produced near the pump wave reflection altitude by plasma resonance and also result in observed artificially induced optical emissions.
Parallel pumping of a ferromagnetic nanostripe: Confinement quantization and off-resonant driving
NASA Astrophysics Data System (ADS)
Yarbrough, P. M.; Livesey, K. L.
2018-01-01
The parametric excitation of spin waves in a rectangular, ferromagnetic nanowire in the parallel pump configuration and with an applied field along the long axis of the wire is studied theoretically, using a semi-classical and semi-analytic Hamiltonian approach. We find that as a function of static applied field strength, there are jumps in the pump power needed to excite thermal spin waves. At these jumps, there is the possibility to non-resonantly excite spin waves near kz = 0. Spin waves with negative or positive group velocity and with different standing wave structures across the wire width can be excited by tuning the applied field. By using a magnetostatic Green's function that depends on both the nanowire's width and thickness—rather than just its aspect ratio—we also find that the threshold field strength varies considerably for nanowires with the same aspect ratio but of different sizes. Comparisons between different methods of calculations are made and the advantages and disadvantages of each are discussed.
NASA Astrophysics Data System (ADS)
Burdin, D. A.; Chashin, D. V.; Ekonomov, N. A.; Fetisov, Y. K.; Stashkevich, A.
2018-03-01
Low-frequency nonlinear magnetoelectric effects in a composite structure comprised of a piezoelectric langatate slab sandwiched between two Metglas amorphous alloy magnetostrictive layers under simultaneous harmonic and noise magnetic pumping have been investigated. It is shown that the frequency fp of harmonic pumping is linearly reproduced in the piezoelectric voltage spectrum accompanied by its higher harmonics. Similarly, narrow-band magnetic noise with a central frequency fN is present in the output piezoelectric voltage along with two noise peaks in the vicinity of a double 2fN and zero frequency. Simultaneous application of harmonic and noise magnetic fields produces a noticeably more complex output voltage spectrum containing additional noise satellite lines at frequencies fp ±fN , 2fp ±fN etc. as well as a noise "pedestal". Amplitudes of voltage spectral components depend on the applied constant bias magnetic field, scaling as magnetostriction derivatives with respect to this field. The effects observed are well described by the theory of magnetic field mixing in magnetoelectric composites with nonlinear dependence of magnetostriction on applied fields.
Novel pump head design for high energy 1064 nm oscillator amplifier system for lidar applications
NASA Astrophysics Data System (ADS)
Willis, Christina C. C.; Witt, Greg; Martin, Nigel; Albert, Michael; Culpepper, Charles; Burnham, Ralph
2017-02-01
Many scientific endeavors are benefitted by the development of increasingly high energy laser sources for lidar applications. Space-based applications for lidar require compact, efficient and high energy sources, and we have designed a novel gain head that is compatible with these requirements. The gain medium for the novel design consists of a composite Nd:YAG/Sm:YAG slab, wherein the Sm:YAG portion absorbs any parasitic 1064 nm oscillations that might occur in the main pump axis. A pump cavity is built around the slab, consisting of angled gold-coated reflectors which allow for five pump passes from each of the four pumping locations around the slab. Pumping is performed with off-axis diode bars, allowing for highly compact conductively cooled design. Optical and thermal modeling of this design was done to verify and predict its performance. In order to ultimately achieve 50 W average power at a repetition rate of 500 Hz, three heads of this design will be used in a MOPA configuration with two stages of amplification. To demonstrate the pump head we built it into a 1064 nm laser cavity and performed initial amplification experiments. Modeling and design of the system is presented along with the initial oscillator and amplifier results. The greatest pulse energy produced from the seeded q-switched linear oscillator was an output of 25 mJ at 500 Hz. With an input of 25 mJ and two planned stages of amplification, we expect to readily reach 100 mJ or more per pulse.
Adiabatic pumping solutions in global AdS
NASA Astrophysics Data System (ADS)
Carracedo, Pablo; Mas, Javier; Musso, Daniele; Serantes, Alexandre
2017-05-01
We construct a family of very simple stationary solutions to gravity coupled to a massless scalar field in global AdS. They involve a constantly rising source for the scalar field at the boundary and thereby we name them pumping solutions. We construct them numerically in D = 4. They are regular and, generically, have negative mass. We perform a study of linear and nonlinear stability and find both stable and unstable branches. In the latter case, solutions belonging to different sub-branches can either decay to black holes or to limiting cycles. This observation motivates the search for non-stationary exactly timeperiodic solutions which we actually construct. We clarify the role of pumping solutions in the context of quasistatic adiabatic quenches. In D = 3 the pumping solutions can be related to other previously known solutions, like magnetic or translationally-breaking backgrounds. From this we derive an analytic expression.
Pumping of magnons in a Dzyaloshinskii-Moriya ferromagnet
NASA Astrophysics Data System (ADS)
Kovalev, Alexey A.; Zyuzin, Vladimir A.; Li, Bo
2017-04-01
We formulate a microscopic linear response theory of magnon pumping applicable to multiple-magnonic-band uniform ferromagnets with Dzyaloshinskii-Moriya interactions. From the linear response theory, we identify the extrinsic and intrinsic contributions where the latter is expressed via the Berry curvature of magnonic bands. We observe that in the presence of a time-dependent magnetization Dzyaloshinskii-Moriya interactions can act as fictitious electric fields acting on magnons. We study various current responses to this fictitious field and analyze the role of Berry curvature. In particular, we obtain an analog of the Hall-like response in systems with nontrivial Berry curvature of magnon bands. After identifying the magnon-mediated contribution to the equilibrium Dzyaloshinskii-Moriya interaction, we also establish the Onsager reciprocity between the magnon mediated thermal torques and heat pumping. We apply our theory to the magnonic heat pumping and torque responses in honeycomb and kagome lattice ferromagnets.
Co-development of climate smart flooded rice farming systems
NASA Astrophysics Data System (ADS)
de Neergaard, Andreas; Stoumann Jensen, Lars; Ly, Proyuth; Pandey, Arjun; Duong Vu, Quynh; Tariq, Azeem; Islam, Syed; van Groenigen, Jan Willem; Sander, Bjoern Ole; de Tourdonnet, Stephane; Van Mai, Trinh; Wassmann, Reiner
2017-04-01
Mid-season drainage in flooded rice is known to reduce CH4 emission, while effects on N2O emission are more variable. Banning of crop-residue burning, and growing markets for organically fertilized rice, are resulting in systems with larger reactive C input, and potentially larger methane emissions. Tight farming systems with 2 or 3 annual crops are effective in mitigating emissions, in that the land sparing value is high, but put serious constraints on mitigation options under increased C input scenarios. In a series of field (Cambodia, Philippines and Vietnam) and greenhouse experiments, we investigated the effect of a variety of organic amendments and wetting and drying cycles on yield and GHG emissions. Specifically we have tested the effect of inserting very early, or even-pre-planting drainage, as a means to accelerate turnover of straw or other C sources, and reduce methane emission later in the season. Overall, our results showed that drying periods had minimal impact on yields, while reducing overall GHG emission. Methane emission was strongly controlled by C availability in the substrate (on equal total C-input basis), increasing in the order: biochar-composts-animal manure-fresh material. Nitrous oxide emissions generally increased with draining cycles, but did not lead to overall increase in GHG emissions as its contribution was balanced by lowered CH4 emissions. Growth chamber experiments showed that methane emission was significantly reduced for extended periods after re-flooding, hence the idea of early drainage was developed. Meanwhile, Cambodian farmers expressed concerns over re-supply of water after drainage. In response to that, we tested if early-season drainage could replace mid-season drainage. With addition of labile carbon substrates (straw) duration of early season drainage was more important for reducing GHG emissions, than duration of mid-season drainage, and had the highest potential for total emission reduction. In a farmers-field trial in Vietnam, pre-planting and early season drainage was tested in spring and summer rice, under individual and community water management regimes, and at 2 straw application levels. Pre-season drainage was difficult for farmers to implement, due to the short duration of fallow between cropping seasons. Early season drainage was most effective in lowering methane emissions at both straw application levels. Unsurprisingly, the well-managed drainage control (community system) was significantly more effective in mitigating emissions, than the individually water management. Surveys among farming communities in Philippines, subject to agricultural campaigns on alternate-wetting-and-drying showed higher adoption among farmers who actively pumped water to their fields, compared to gravity-fed water supply, due to the direct savings experienced by farmers pumping water. Several other factors positively influenced adoption of mitigation techniques, including education level, access to extension services, wealth and farm size, and age of farmer (negatively correlated to adoption rate). In conclusion, drainage periods are even more important to mitigate emissions when including organic manures or residues in flooded rice, and early-season drainage should be further explored as a more safe and convenient option for smallholders. Participatory development of climate smart prototypes will be essential, and a model for such is presented.
Subwavelength atom localization via coherent manipulation of the Raman gain process
NASA Astrophysics Data System (ADS)
Qamar, Sajid; Mehmood, Asad; Qamar, Shahid
2009-03-01
We present a simple scheme of atom localization in a subwavelength domain via manipulation of Raman gain process. We consider a four-level system with a pump and a weak probe field. In addition, we apply a coherent field to control the gain process. The system is similar to the one used by Agarwal and Dasgupta [Phys. Rev. A 70, 023802 (2004)] for the superluminal pulse propagation through Raman gain medium. For atom localization, we consider both pump and control fields to be the standing-wave fields of the cavity. We show that a much precise position of an atom passing through the standing-wave fields can be determined by measuring the gain spectrum of the probe field.
1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J.
We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.
Energy pumping analysis of skating motion in a half pipe and on a level surface
NASA Astrophysics Data System (ADS)
Feng, Z. C.; Xin, Ming
2015-01-01
In this paper, an energy pumping mechanism for locomotion is analysed. The pumping is accomplished by exerting forces perpendicular to the direction of motion. The paper attempts to demonstrate an interesting application of the classical mechanics to two sporting events: a person skating in a half pipe and a person travelling on a level surface on a skateboard. The equations of motion based on simplified mechanical models are derived using the Lagrange mechanics. The energy-pumping phenomenon is revealed through numerical simulations with simple pumping actions. The result presented in this paper can be used as an interesting class project in undergraduate mechanics or physics courses. It also motivates potential new applications of energy pumping in many engineering fields.
Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency
2016-11-21
This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid
A Generic analytical solution for modelling pumping tests in wells intersecting fractures
NASA Astrophysics Data System (ADS)
Dewandel, Benoît; Lanini, Sandra; Lachassagne, Patrick; Maréchal, Jean-Christophe
2018-04-01
The behaviour of transient flow due to pumping in fractured rocks has been studied for at least the past 80 years. Analytical solutions were proposed for solving the issue of a well intersecting and pumping from one vertical, horizontal or inclined fracture in homogeneous aquifers, but their domain of application-even if covering various fracture geometries-was restricted to isotropic or anisotropic aquifers, whose potential boundaries had to be parallel or orthogonal to the fracture direction. The issue thus remains unsolved for many field cases. For example, a well intersecting and pumping a fracture in a multilayer or a dual-porosity aquifer, where intersected fractures are not necessarily parallel or orthogonal to aquifer boundaries, where several fractures with various orientations intersect the well, or the effect of pumping not only in fractures, but also in the aquifer through the screened interval of the well. Using a mathematical demonstration, we show that integrating the well-known Theis analytical solution (Theis, 1935) along the fracture axis is identical to the equally well-known analytical solution of Gringarten et al. (1974) for a uniform-flux fracture fully penetrating a homogeneous aquifer. This result implies that any existing line- or point-source solution can be used for implementing one or more discrete fractures that are intersected by the well. Several theoretical examples are presented and discussed: a single vertical fracture in a dual-porosity aquifer or in a multi-layer system (with a partially intersecting fracture); one and two inclined fractures in a leaky-aquifer system with pumping either only from the fracture(s), or also from the aquifer between fracture(s) in the screened interval of the well. For the cases with several pumping sources, analytical solutions of flowrate contribution from each individual source (fractures and well) are presented, and the drawdown behaviour according to the length of the pumped screened interval of the well is discussed. Other advantages of this proposed generic analytical solution are also given. The application of this solution to field data should provide additional field information on fracture geometry, as well as identifying the connectivity between the pumped fractures and other aquifers.
Measurement of characteristic parameters of 10 Gb/s bidirectional optical amplifier for XG-PON
NASA Astrophysics Data System (ADS)
Rakkammee, Suchaj; Boriboon, Budsara; Worasucheep, Duang-rudee; Wada, Naoya
2018-03-01
This research experimentally measured the characteristic parameters of 10 Gb/s bidirectional optical amplifier: (1) operating wavelength range, (2) small signal gain, (3) Polarization Dependent Loss (PDL), and (4) power consumption. Bidirectional amplifiers are the key component to extend coverage area as well as increase a number of users in Passive Optical Networks (PON). According to 10-Gigabit-capable PON or XG-PON standard, the downstream and upstream wavelengths are 1577 nm and 1270 nm respectively. Thus, our bidirectional amplifier consists of an Erbium Doped Fiber Amplifier (EDFA) and a Semiconductor Optical Amplifier (SOA) for downstream and upstream wavelength transmissions respectively. The operating wavelengths of EDFA and SOA are measured to be from 1570 nm to 1588 nm and 1263 nm to 1280 nm respectively. To measure gain, the input wavelengths of EDFA and SOA were fixed at 1577 nm and 1271 nm respectively, while their input powers were reduced by a variable optical attenuator. The small signal gain of EDFA is 22.5 dB at 0.15 Ampere pump current, whereas the small signal gain of SOA is 7.06 dB at 0.325 Ampere pump current. To measure PDL, which is a difference in output powers at various State of Polarization (SoP) of input signal, a polarization controller was inserted before amplifier to alter input SoP. The measured PDL of EDFA is insignificant with less than 0.1 dB. In contrast, the measured PDL of SOA is as large as 33 dB, indicating its strong polarization dependence. The total power consumptions were measured to be 1.5675 Watt.
Free-piston Stirling Engine system considerations for various space power applications
NASA Technical Reports Server (NTRS)
Dochat, George R.; Dhar, Manmohan
1991-01-01
Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (ac, dc, high or low voltage, and fixed or variable load). This paper reviews potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. This paper briefly outlines the program and recent progress.
Diode lasers optimized in brightness for fiber laser pumping
NASA Astrophysics Data System (ADS)
Kelemen, M.; Gilly, J.; Friedmann, P.; Hilzensauer, S.; Ogrodowski, L.; Kissel, H.; Biesenbach, J.
2018-02-01
In diode laser applications for fiber laser pumping and fiber-coupled direct diode laser systems high brightness becomes essential in the last years. Fiber coupled modules benefit from continuous improvements of high-power diode lasers on chip level regarding output power, efficiency and beam characteristics resulting in record highbrightness values and increased pump power. To gain high brightness not only output power must be increased, but also near field widths and far field angles have to be below a certain value for higher power levels because brightness is proportional to output power divided by beam quality. While fast axis far fields typically show a current independent behaviour, for broadarea lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness and therefore their use in fibre coupled modules. These limitations can be overcome by carefully optimizing chip temperature, thermal lensing and lateral mode structure by epitaxial and lateral resonator designs and processing. We present our latest results for InGaAs/AlGaAs broad-area single emitters with resonator lengths of 4mm emitting at 976nm and illustrate the improvements in beam quality over the last years. By optimizing the diode laser design a record value of the brightness for broad-area lasers with 4mm resonator length of 126 MW/cm2sr has been demonstrated with a maximum wall-plug efficiency of more than 70%. From these design also pump modules based on 9 mini-bars consisting of 5 emitters each have been realized with 360W pump power.
NASA Astrophysics Data System (ADS)
Fischer, P.; Jardani, A.; Cardiff, M.; Lecoq, N.; Jourde, H.
2018-04-01
In a karstic field, the flow paths are very complex as they globally follow the conduit network. The responses generated from an investigation in this type of aquifer can be spatially highly variable. Therefore, the aim of the investigation in this case is to define a degree of connectivity between points of the field, in order to understand these flow paths. Harmonic pumping tests represent a possible investigation method for characterizing the subsurface flow of groundwater. They have several advantages compared to a constant-rate pumping (more signal possibilities, ease of extracting the signal in the responses and possibility of closed loop investigation). We show in this work that interpreting the responses from a harmonic pumping test is very useful for delineating a degree of connectivity between measurement points. We have firstly studied the amplitude and phase offset of responses from a harmonic pumping test in a theoretical synthetic modeling case in order to define a qualitative interpretation method in the time and frequency domains. Three different type of responses have been separated: a conduit connectivity response, a matrix connectivity, and a dual connectivity (response of a point in the matrix, but close to a conduit). We have then applied this method to measured responses at a field research site. Our interpretation method permits a quick and easy reconstruction of the main flow paths, and the whole set of field responses appear to give a similar range of responses to those seen in the theoretical synthetic case.
16 CFR 305.8 - Submission of data.
Code of Federal Regulations, 2010 CFR
2010-01-01
... input voltage and frequency; (vi) Ballast efficacy factor; and (vii) Type (F40T12, F96T12 or F96T12HO..., heat pumps, furnaces, ceiling fans, and pool heaters) for each basic model in current production..., for each basic model in current production: the brand name; the model numbers for each basic model...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.
The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.
Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, K. A.; Speirs, D. C.; Trines, R. M. G. M.
2013-10-15
We report on particle in cell simulations of energy transfer between a laser pump beam and a counter-propagating seed beam using the Brillouin scattering process in uniform plasma including collisions. The results presented show that the ion acoustic waves excited through naturally occurring Brillouin scattering of the pump field are preferentially damped without affecting the driven Brillouin scattering process resulting from the beating of the pump and seed fields together. We find that collisions, including the effects of Landau damping, allow for a more efficient transfer of energy between the laser beams, and a significant reduction in the amount ofmore » seed pre-pulse produced.« less
NASA Astrophysics Data System (ADS)
Kim, Sungho; Ahn, Jae-Hyuk; Park, Tae Jung; Lee, Sang Yup; Choi, Yang-Kyu
2009-06-01
A unique direct electrical detection method of biomolecules, charge pumping, was demonstrated using a nanogap embedded field-effect-transistor (FET). With aid of a charge pumping method, sensitivity can fall below the 1 ng/ml concentration regime in antigen-antibody binding of an avian influenza case. Biomolecules immobilized in the nanogap are mainly responsible for the acute changes of the interface trap density due to modulation of the energy level of the trap. This finding is supported by a numerical simulation. The proposed detection method for biomolecules using a nanogap embedded FET represents a foundation for a chip-based biosensor capable of high sensitivity.
Mathematical modelling of flow in disc friction LVAD pump
NASA Astrophysics Data System (ADS)
Medvedev, A. E.; Fomin, V. M.; Prikhodko, Yu. M.; Cherniavskiy, A. M.; Fomichev, V. P.; Fomichev, A. V.; Chekhov, V. P.; Ruzmatov, T. M.
2017-10-01
The need for blood circulation support systems in the treatment of chronic heart failure is constantly increasing as 20% of patients on the waiting list die every year. Despite the great need for mechanical heart support systems the use of available systems is limited by the high cost. Therefore, further research in the field of circulatory support systems is appropriate taking into account medical and technical requirements. One of the new research areas is viscous friction disk pumps for transporting liquids based on the Tesla pump principle. The experimental model of LVAD disk pump is developed. Analytical dependencies are obtained to optimize the hydraulic parameters of the pump. On their basis, the experimental model of LVAD disk pump was designed and created. The results of analytical and experimental studies of such a pump are presented.
DIRECT CURRENT ELECTROMAGNETIC PUMP
Barnes, A.H.
1957-11-01
An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.
Diode-Laser Pumped Far-Infrared Local Oscillator Based on Semiconductor Quantum Wells
NASA Technical Reports Server (NTRS)
Kolokolov, K.; Li, J.; Ning, C. Z.; Larrabee, D. C.; Tang, J.; Khodaparast, G.; Kono, J.; Sasa, S.; Inoue, M.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
The contents include: 1) Tetrahertz Field: A Technology Gap; 2) Existing THZ Sources and Shortcomings; 3) Applications of A THZ Laser; 4) Previous Optical Pumped LW Generations; 5) Optically Pumped Sb based Intersubband Generation Whys; 6) InGaAs/InP/AlAsSb QWs; 7) Raman Enhanced Optical Gain; 8) Pump Intensity Dependence of THZ Gain; 9) Pump-Probe Interaction Induced Raman Shift; 10) THZ Laser Gain in InGaAs/InP/AlAsSb QWs; 11) Diode-Laser Pumped Difference Frequency Generation (InGaAs/InP/AlAsSb QWs); 12) 6.1 Angstrom Semiconductor Quantum Wells; 13) InAs/GaSb/AlSb Nanostructures; 14) InAs/AlSb Double QWs: DFG Scheme; 15) Sb-Based Triple QWs: Laser Scheme; and 16) Exciton State Pumped THZ Generation. This paper is presented in viewgraph form.
Computer fluid dynamics (CFD) study of a micro annular gear pump
NASA Astrophysics Data System (ADS)
Stan, Liviu-Constantin; Cǎlimǎnescu, Ioan
2016-12-01
Micro technology makes it possible to design products simply, efficiently and sustainably and at the same time, opens up the creation of new functionalities. The field of application of the micro annular gear pumps lies in analytical instrumentation, mechanical and plant engineering, chemical and pharmaceutical process engineering as well as in new markets like fuel cells or biotechnology, organic electronics or aerospace. The purpose of this paper is to investigate by using the powerful ANSYS 16 CFX module the hydrodynamic behavior of an 8/9 teeth annular gear pump. The solving of solids evolving inside fluids was very cumbersome until the advent of the Ansys immersed solid technology. By deploying this technology for very special topics like the CFD analysis of Micro annular gear pumps, credible and reliable results may be pulled leading thus the way for more in depth studies like geometrical a functional optimization of the existing devices. This paper is a valuable guide for the professionals working in the design field of micro pumps handing them a new and powerful design tool.
Houliston, Bryan; Parry, David; Webster, Craig S; Merry, Alan F
2009-06-19
To replicate electromagnetic interference (EMI) with a common drug infusion device resulting from the use of radio frequency identification (RFID) technology in a simulated operating theatre environment. An infusion pump, of a type previously reported as having failed due to RFID EMI, was placed in radio frequency (RF) fields of various strengths, and its operation observed. Different strength RF fields were created by varying the number of RFID readers, the use of a high-gain RFID antenna, the distance between the reader(s) and the infusion pump, and the presence of an RFID tag on the infusion pump. The infusion pump was not affected by low-power RFID readers, even when in direct contact. The pump was disrupted by a high-power reader at 10 cm distance when an RFID tag was attached, and by a combination of high-power and low-power readers at 10 cm distance. Electronic medical devices may fail in the presence of high-power RFID readers, especially if the device is tagged. However, low-power RFID readers appear to be safer.
Hourly simulation of a Ground-Coupled Heat Pump system
NASA Astrophysics Data System (ADS)
Naldi, C.; Zanchini, E.
2017-01-01
In this paper, we present a MATLAB code for the hourly simulation of a whole Ground-Coupled Heat Pump (GCHP) system, based on the g-functions previously obtained by Zanchini and Lazzari. The code applies both to on-off heat pumps and to inverter-driven ones. It is employed to analyse the effects of the inverter and of the total length of the Borehole Heat Exchanger (BHE) field on the mean seasonal COP (SCOP) and on the mean seasonal EER (SEER) of a GCHP system designed for a residential house with 6 apartments in Bologna, North-Center Italy, with dominant heating loads. A BHE field with 3 in line boreholes is considered, with length of each BHE either 75 m or 105 m. The results show that the increase of the BHE length yields a SCOP enhancement of about 7%, while the SEER remains nearly unchanged. The replacement of the on-off heat pump by an inverter-driven one yields a SCOP enhancement of about 30% and a SEER enhancement of about 50%. The results demonstrate the importance of employing inverter-driven heat pumps for GCHP systems.
NASA Astrophysics Data System (ADS)
Alemany, A.; Marty, Ph.; Plunian, F.; Soto, J.
2000-01-01
The fast breeder reactors (FBR) BN600 (Russia) and Phenix (France) have been the subject of several experimental studies aimed at the observation of dynamo action. Though no dynamo effect has been identified, the possibility was raised for the FBR Superphenix (France) which has an electric power twice that of BN600 and five times larger than Phenix. We present the results of a series of experimental investigations on the secondary pumps of Superphenix. The helical sodium flow inside one pump corresponds to a maximum magnetic Reynolds number (Rm) of 25 in the experimental conditions (low temperature). The magnetic field was recorded in the vicinity of the pumps and no dynamo action has been identified. An estimate of the critical flow rate necessary to reach dynamo action has been found, showing that the pumps are far from producing dynamo action. The magnetic energy spectrum was also recorded and analysed. It is of the form k[minus sign]11/3, suggesting the existence of a large-scale magnetic field. Following Moffatt (1978), this spectrum slope is also justified by a phenomenological approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Rui; Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045; Jacobs, Paul
2013-06-24
The Dynamic Franz Keldysh Effect (DFKE) is produced and controlled in bulk gallium arsenide by quantum interference without the aid of externally applied fields and is spatially and temporally resolved using ellipsometric pump-probe techniques. The {approx}3 THz internal driving field for the DFKE is a transient space-charge field that is associated with a critically damped coherent plasma oscillation produced by oppositely traveling ballistic electron and hole currents that are injected by two-color quantum interference techniques. The relative phase and polarization of the two pump pulses can be used to control the DFKE.
NASA Astrophysics Data System (ADS)
Wang, Rui; Jacobs, Paul; Zhao, Hui; Smirl, Arthur L.
2013-06-01
The Dynamic Franz Keldysh Effect (DFKE) is produced and controlled in bulk gallium arsenide by quantum interference without the aid of externally applied fields and is spatially and temporally resolved using ellipsometric pump-probe techniques. The ˜3 THz internal driving field for the DFKE is a transient space-charge field that is associated with a critically damped coherent plasma oscillation produced by oppositely traveling ballistic electron and hole currents that are injected by two-color quantum interference techniques. The relative phase and polarization of the two pump pulses can be used to control the DFKE.
Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power
NASA Astrophysics Data System (ADS)
Wagner, Gerd; Shiler, Max; Wulfmeyer, Volker
2005-10-01
A detailed 3-dimensional calculation of the temperature field of a laser crystal pumped with high average power is presented. The pump configuration, the anisotropy of a Brewster-angle-cut Ti:Sapphire crystal, and the temperature dependence of the thermal conductivity are taken into account. The corresponding focal length of the thermal lens is calculated for pump levels up to 100 W. This refined thermal model is the basis for a optimized resonator design of a high-average power differential absorption lidar system transmitter.
Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power.
Wagner, Gerd; Shiler, Max; Wulfmeyer, Volker
2005-10-03
A detailed 3-dimensional calculation of the temperature field of a laser crystal pumped with high average power is presented. The pump configuration, the anisotropy of a Brewster-angle-cut Ti:Sapphire crystal, and the temperature dependence of the thermal conductivity are taken into account. The corresponding focal length of the thermal lens is calculated for pump levels up to 100 W. This refined thermal model is the basis for a optimized resonator design of a high-average power differential absorption lidar system transmitter.
Frequency conversion of structured light.
Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P
2016-02-15
Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.
NASA Astrophysics Data System (ADS)
Bunn, M. I.; Jones, J.; Endres, A. L.
2009-05-01
Unconfined aquifers are in direct contact with the earth's surface; hence, they are an important focus in groundwater recharge and contaminant transport studies. While pumping tests have long been used to quantify aquifer properties, the contribution of drainage from the vadose zone during pumping has been the subject of debate for decades. In 2001, a highly detailed data set was collected during a seven-day pumping test in the unconfined aquifer at CFB Borden, Ontario (Bevan et al., 2005). The frequent observation of moisture content profiles during the test has initiated a closer examination of the vadose zone response to pumping. The moisture profiles collected during the test were obtained using a neutron probe. The neutron data depicts a capillary fringe thickness that increases with both proximity to the pumping well and duration of pumping. This capillary fringe extension results in delayed drainage that persists to the end of the seven-day test with the shape of the transition zone remaining constant (Bevan et al., 2005). Simulations of the pumping test were conducted using Hydrogeosphere (Therrien et al., 2006). Initial simulations were completed based on the conceptual model of a homogeneous and slightly anisotropic aquifer. The simulation results replicated the observed piezometric response, but were unable to produce any change in the thickness of the capillary fringe. It was hypothesized that the discrepancy between observations and simulation results may be the result of assumptions such as the homogeneity of the hydraulic conductivity field. In an effort to replicate this potential mechanism for the observed extension, the conceptual model was updated to better reflect the mildly heterogeneous hydraulic conductivity field of the Borden aquifer. Conductivity fields were generated using the statistical description of the Borden aquifer given by Sudicky (1986) with an adjusted mean log conductivity to better approximate the observed piezometric response. The inclusion of heterogeneity appears to have little effect on the hydraulic head drawdown, or the thickness of the capillary fringe. Heterogeneity does lead to delayed drainage in the drier portion of the vadose zone, where volumetric water content is less than 0.13 m3/m3. This effect is more pronounced with proximity to the pumping well, and is negligible at 15 m from the well. The amount of excess moisture in the vadose zone does not appear to be a function of pumping duration.
The mechanism performance of improved oil pump with micro-structured vanes
NASA Astrophysics Data System (ADS)
Li, Ping; Xie, Jin; Qi, Dongtao; Li, Houbu
2017-09-01
The wear of oil pump vanes easily leads to the noise and vibration, even results the decrease of volume efficiency and total efficiency. In order to reduce the friction and improve the lubrication between the vane and the pump inner wall, the micro-machining of micro-structure on the oil pump vanes is proposed. First, the micro-V-grooves with the depth ranging from 500μm to 50μm were micro-grinding on the top of the vanes by a diamond grinding wheel. Secondly, the experiments were conducted to test the actual flow rate, the output power and the overall efficiency of the oil pump with and without the micro-groove vanes. Then, the computational fluid dynamics (CFD) method was adopted to simulate the pump internal flow field. Finally, the micro-flow field between the internal wall of the oil pump and the top of micro-grooved vanes was analyzed. The results shows that the pump overall efficiency increased as the decrease of micro-groove depth from 500 μm to 50μm and not be affected by the rotate speed and working frequency of the pump rotator. Especially the micro-groove with depth of 50μm, the actual flow rate, the output power and the overall efficiency reached to the maximum. From CFD simulation, the velocity of the micro-flow between the surfaces of the vane and inner wall was larger than the pump linear velocity when the microstructure depth is larger than 50μm, leading to an internal leakage. When the micro-groove depth is between10-50μm, the velocity of the micro-flow was less than the pump linear velocity and no internal leakage was found, but the oil film thickness is too small to be beneficial to lubrication according to the fluid dynamic characteristics. Thus, for the oil pump equipping with micro-grooved vane with the depth of 50 μm, the internal leakage not only is avoided but the lubrication efficiency is improved and the oil pump efficiency is also enhanced.
Effects of discrete-electrode arrangement on traveling-wave electroosmotic pumping
NASA Astrophysics Data System (ADS)
Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Wu, Yupan; Wang, Chunhui; Ding, Haitao; Jiang, Hongyuan; Ding, Yucheng
2016-09-01
Traveling-wave electroosmotic (TWEO) pumping arises from the action of an imposed traveling-wave (TW) electric field on its own induced charge in the diffuse double layer, which is formed on top of an electrode array immersed in electrolyte solutions. Such a traveling field can be merely realized in practice by a discrete electrode array upon which the corresponding voltages of correct phase are imposed. By employing the theory of linear and weakly nonlinear double-layer charging dynamics, a physical model incorporating both the nonlinear surface capacitance of diffuse layer and Faradaic current injection is developed herein in order to quantify the changes in TWEO pumping performance from a single-mode TW to discrete electrode configuration. Benefiting from the linear analysis, we investigate the influence of using discrete electrode array to create the TW signal on the resulting fluid motion, and several approaches are suggested to improve the pumping performance. In the nonlinear regime, our full numerical analysis considering the intervening isolation spacing indicates that a practical four-phase discrete electrode configuration of equal electrode and gap width exhibits stronger nonlinearity than expected from the idealized pump applied with a single-mode TW in terms of voltage-dependence of the ideal pumping frequency and peak flow rate, though it has a much lower pumping performance. For model validation, pumping of electrolytes by TWEO is achieved over a confocal spiral four-phase electrode array covered by an insulating microchannel; measurement of flow velocity indicates the modified nonlinear theory considering moderate Faradaic conductance is indeed a more accurate physical description of TWEO. These results offer useful guidelines for designing high-performance TWEO microfluidic pumps with discrete electrode array.
Study on dynamic characteristics of hydraulic pumping unit on offshore platform
NASA Astrophysics Data System (ADS)
Chang, Zong-yu; Yu, Yan-qun; Qi, Yao-guang
2017-12-01
A new technology of offshore oil rod pumping production is developed for offshore heavy oil recovery. A new type of miniature hydraulic pumping unit with long-stroke, low pumping speed and compact structure is designed based on the spatial characteristics of offshore platforms. By combining the strengths of sinusoidal velocity curve and trapezoidal velocity curve, a kinematical model of the acceleration, the velocity and displacement of the pumping unit's hanging point is established. The results show that the pumping unit has good kinematic characteristics of smooth motion and small dynamic load. The multi-degree-of-freedom dynamic model of the single-well pumping unit is established. The first and second order natural frequencies of the sucker rod string subsystem and the pumping unit subsystem are studied. The results show that the first and the second order natural frequencies among the pumping rod string, pumping unit-platform subsystem and the dynamic excitation have differences over 5 times from each other, indicating that resonance phenomenon will not appear during the operation and the dynamic requirements for field use are met in the system.
Slow and fast light via SBS in optical fibers for short pulses and broadband pump
NASA Astrophysics Data System (ADS)
Kalosha, V. P.; Chen, Liang; Bao, Xiaoyi
2006-12-01
Slow-light effect via stimulated Brillouin scattering (SBS) in single-mode optical fibers was considered for short probe pulses of nanosecond duration relevant to Gb/s data streams. Unlike recent estimations of delay versus pump based on steady-state small-signal approximation we have used numerical solution of three-wave equations describing SBS for a realistic fiber length. Both regimes of small signal and pump depletion (gain saturation) were considered. The physical origin of Stokes pulse distortion is revealed which is related to excitation of long-living acoustic field behind the pulse and prevents effective delay control by pump power increase at cw pumping. We have shown different slope of the gain-dependent delay for different pulse durations. Spectrally broadened pumping by multiple cw components, frequency-modulated pump and pulse train were studied for short pulses which allow to obtain large delay and suppress pulse distortion. In the pump-depletion regime of pumping by pulse train, both pulse delay and distortion decrease with increasing pump, and the pulse achieves advancement.
Parks, W.S.; Carmichael, J.K.
1990-01-01
Recharge to the Fort Pillow aquifer of Tertiary age in Tennessee is from precipitation on the outcrop, which forms a narrow belt across western Tennessee, and by downward infiltration of water from the overlying fluvial deposits of Tertiary and Quaternary age and alluvium of Quaternary age or, where the upper confining unit is absent, from the overlying Memphis aquifer of Tertiary age. The potentiometric surface in the Fort Pillow aquifer slopes gently westward from the outcrop-recharge area, and the water moves slowly in that direction. A depression in the potentiometric surface in the Memphis area is the result of past pumping at Memphis Light, Gas and Water Division (MLGW) well fields (1924-74), and past and present pumping at an industrial well field at Memphis, and the municipal well field at West Memphis, Ark. Water levels in areas affected by pumping have declined at average rates ranging from 0.4 to 0. 9 ft/year during the period 1945-85. The greatest rate of decline was as much as 4.0 ft/year between 1945 and 1954 in an observation well in a well field of MLGW at Memphis. In 1971, MLGW ceased pumping from the Fort Pillow aquifer at this well field, and between 1972 and 1976, water levels rose about 28 ft in this well. Withdrawals from the Fort Pillow aquifer in western Tennessee in 1985 averaged about 12 million gal/day. (USGS)
Steam-jet Chiller for Army Field Kitchens
2009-08-01
Steam-Jet Test-Loop Schematic A vacuum pump removes air from the entire system on startup, and is occasionally used to expel air during...delivered to the tube and shell condenser. The steam is condensed and drains to the vacuum sump tank. 11 Periodically, the condensate pump ... Vacuum Roughing Pump The condenser must be held at vacuum to prevent air from insulating the condenser tubes or create a back-pressure that would
GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.
Laser Space Propulsion Overview (Postprint)
2006-09-01
meet with currently fielded thruster technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a...with Cm = 56µN/W and ηAB = 100%. These two units will be combined in a single device using low-mass diode-pumped glass fiber laser amplifiers to...advantage of extremely lightweight diode-pumped glass fiber lasers onboard the spacecraft to provide thrust with variable Isp and unmatched thrust
NASA Astrophysics Data System (ADS)
Wang, L.; Wolfgang, K.; Steiner, J. F.
2016-12-01
Groundwater has been over-pumped for irrigation in the North China Plain in the past decades causing a drastic decrease in the groundwater level. Shallow groundwater can be recharged by rainfall, and the aquifer could be rehabilitated for sustainable use. However, understanding and maintaining the balance of the aquifer - including climatic as well as anthropogenic influences - are fundamental to enable such a sustainable groundwater management. This is still severely obstructed by a lack of measurements of recharge and exploitation. A project to measure groundwater pumping rate at the distributed scale based on monitoring electric energy consumption is going on in Guantao County (456 km2) located in the southern part of the North China Plain. Considerably less costly than direct measurements of the pumping rate, this approach enables us to (a) cover a larger area and (b) use historic electricity data to reconstruct water use in the past. Pumping tests have been carried out to establish a relation between energy consumption and groundwater exploitation. Based on the results of the pumping tests, the time series of the pumping rate can be estimated from the historical energy consumption and serves as the input for a box model to reconstruct the water balance of the shallow aquifer for recent years. This helps us to determine the relative contribution of recharge due to rainfall as well as drawdown due to groundwater pumping for irrigation. Additionally, 100 electric meters have been installed at the electric transformers supplying power for irrigation. With insights gained from the pumping tests, real-time monitoring of the groundwater exploitation is achieved by converting the measured energy consumption to the water use, and pumping control can also be achieved by limiting the energy use. A monitoring and controlling system can then be set up to implement the strategy of sustainable groundwater use.
Principles and Design of a Zeeman–Sisyphus Decelerator for Molecular Beams
Tarbutt, M. R.
2016-01-01
Abstract We explore a technique for decelerating molecules using a static magnetic field and optical pumping. Molecules travel through a spatially varying magnetic field and are repeatedly pumped into a weak‐field seeking state as they move towards each strong field region, and into a strong‐field seeking state as they move towards weak field. The method is time‐independent and so is suitable for decelerating both pulsed and continuous molecular beams. By using guiding magnets at each weak field region, the beam can be simultaneously guided and decelerated. By tapering the magnetic field strength in the strong field regions, and exploiting the Doppler shift, the velocity distribution can be compressed during deceleration. We develop the principles of this deceleration technique, provide a realistic design, use numerical simulations to evaluate its performance for a beam of CaF, and compare this performance to other deceleration methods. PMID:27629547
Land subsidence in Yunlin, Taiwan, due to Agricultural and Domestic Water Use
NASA Astrophysics Data System (ADS)
Hsu, K.; Lin, P.; Lin, Z.
2013-12-01
Subsidence in a layered aquifer is caused by groundwater excess extraction and results in complicated problems in Taiwan. Commonly, responsibility to subsidence for agricultural and domestic water users is difficulty to identify due to the lack of quantitative evidences. An integrated model was proposed to analyze subsidence problem. The flow field utilizes analytical solution for pumping in a layered system from Neuman and Witherspoon (1969) to calculate the head drawdown variation. The subsidence estimation applies Terzaghi (1943) one-dimensional consolidation theory to calculate the deformation in each layer. The proposed model was applied to estimate land subsidence and drawdown variation at the Yuanchang Township of Yunlin County in Taiwan. Groundwater data for dry-season periods were used for calibration and validation. Seasonal effect in groundwater variation was first filtered out. Dry-season pumping effect on land subsidence was analyzed. The results show that multi-layer pumping contributes more in subsidence than single-layer pumping on the response of drawdown and land subsidence in aquifer 2 with a contribution of 97% total change at Yuanchang station. Pumping in aquifer 2 contributes more significant than pumping in aquifer 3 to cause change in drawdown and land subsidence in aquifer 2 with a contribution of 70% total change at Yuanchang station. Larger area of subsidence in Yuanchang Township was attributed pumping at aquifer 2 while pumping at aquifer 3 results in significant subsidence near the well field. The single-layer user contributes most area of subsidence but the multi-layer user generates more serious subsidence.
NASA Astrophysics Data System (ADS)
Wang, Jianxiu; Liu, Xiaotian; Wu, Yuanbin; Liu, Shaoli; Wu, Lingao; Lou, Rongxiang; Lu, Jiansheng; Yin, Yao
2017-06-01
High-velocity non-Darcy flow produced larger drawdown than Darcy flow under the same pumping rate. When the non-Darcy flow caused by curtain met non-Darcy flow caused by pumping wells, superposition and amplification effect occurred in the coupling area, the non-Darcy flow was defined as coupling non-Darcy flow. The coupling non-Darcy flow can be produced and controlled using different combination of curtain and pumping wells in foundation pit dewatering to obtain the maximum drawdown using the minimum pumping rate. The Qianjiang Century City Station foundation pit of Hangzhou subway, China, was selected as background. Field experiments were performed to observe the coupling non-Darcy flow in round gravel. A generalized conceptual model was established to study the coupling effect under different combination of curtain and pumping wells. Numerical simulations of the coupling non-Darcy flow in foundation pit dewatering were carried out based on the Forchheimer equation. The non-Darcy flow area and flow velocity were influenced by the coupling effect. Short filter tube, large pumping rate, small horizontal distance between filter tube and diaphragm wall, and small vertical distance between the filter tube and confined aquifer roof effectively strengthened the coupling effect and obtained a large drawdown. The pumping wells installed close to a curtain was an intentional choice designed to create coupling non-Darcy flow and obtain the maximize drawdown. It can be used in the dewatering of a long and narrow foundation pit, such as a subway foundation pit.
Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.
2000-01-01
A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.
A thermo-physical analysis of the proton pump vacuolar-ATPase: the constructal approach.
Lucia, Umberto; Ponzetto, Antonio; Deisboeck, Thomas S
2014-10-24
Pumping protons across a membrane was a critical step at the origin of life on earth, and it is still performed in all living organisms, including in human cells. Proton pumping is paramount to keep normal cells alive, e.g. for lysosomal digestion and for preparing peptides for immune recognition, but it goes awry in cancer cells. They acidify their microenvironment hence membrane voltage is lowered, which in turn induces cell proliferation, a hallmark of cancer. Proton pumping is achieved by means of rotary motors, namely vacuolar ATPases (V-ATPase), which are present at many of the multiple cellular interfaces. Therefore, we undertook an examination of the thermodynamic properties of V-ATPases. The principal result is that the V-ATPase-mediated control of the cell membrane potential and the related and consequent environmental pH can potentially represent a valuable support strategy for anticancer therapies. A constructal theory approach is used as a new viewpoint to study how V-ATPase can be modulated for therapeutic purposes. In particular, V-ATPase can be regulated by using external fields, such as electromagnetic fields, and a theoretical approach has been introduced to quantify the appropriate field strength and frequency for this new adjuvant therapeutic strategy.
Electroosmotic flow of biorheological micropolar fluids through microfluidic channels
NASA Astrophysics Data System (ADS)
Chaube, Mithilesh Kumar; Yadav, Ashu; Tripathi, Dharmendra; Bég, O. Anwar
2018-05-01
An analytical analysis is presented in this work to assess the influence of micropolar nature of fluids in fully developed flow induced by electrokinetically driven peristaltic pumping through a parallel plate microchannel. The walls of the channel are assumed as sinusoidal wavy to analyze the peristaltic flow nature. We consider that the wavelength of the wall motion is much larger as compared to the channel width to validate the lubrication theory. To simplify the Poisson Boltzmann equation, we also use the Debye-Hückel linearization. We consider governing equation for micropolar fluid in absence of body force and couple effects however external electric field is employed. The solutions for axial velocity, spin velocity, flow rate, pressure rise, and stream functions subjected to given physical boundary conditions are computed. The effects of pertinent parameters like Debye length and Helmholtz-Smoluchowski velocity which characterize the EDL phenomenon and external electric field, coupling number and micropolar parameter which characterize the micropolar fluid behavior, on peristaltic pumping are discussed through the illustrations. The results show that peristaltic pumping may alter by applying external electric fields. This model can be used to design and engineer the peristalsis-lab-on-chip and micro peristaltic syringe pumps for biomedical applications.
Dual-stroke heat pump field performance
NASA Astrophysics Data System (ADS)
Veyo, S. E.
1984-11-01
Two nearly identical proprototype systems, each employing a unique dual-stroke compressor, were built and tested. One was installed in an occupied residence in Jeannette, Pa. It has provided the heating and cooling required from that time to the present. The system has functioned without failure of any prototypical advanced components, although early field experience did suffer from deficiencies in the software for the breadboard micro processor control system. Analysis of field performance data indicates a heating performance factor (HSPF) of 8.13 Stu/Wa, and a cooling energy efficiency (SEER) of 8.35 Scu/Wh. Data indicate that the beat pump is oversized for the test house since the observed lower balance point is 3 F whereas 17 F La optimum. Oversizing coupled with the use of resistance heat ot maintain delivered air temperature warmer than 90 F results in the consumption of more resistance heat than expected, more unit cycling, and therefore lower than expected energy efficiency. Our analysis indicates that with optimal mixing the dual stroke heat pump will yield as HSFF 30% better than a single capacity heat pump representative of high efficiency units in the market place today for the observed weather profile.
A novel high temperature superconducting magnetic flux pump for MRI magnets
NASA Astrophysics Data System (ADS)
Bai, Zhiming; Yan, Guo; Wu, Chunli; Ding, Shufang; Chen, Chuan
2010-10-01
This paper presents a kind of minitype magnetic flux pump made of high temperature superconductor. This kind of novel high temperature superconducting (HTS) flux pump has not any mechanical revolving parts or thermal switches. The excitation current of copper coils in magnetic pole system is controlled by a singlechip. The structure design and operational principle have been described. The operating performance of the new model magnetic flux pump has been preliminarily tested. The experiments show that the maximum pumping current is approximately 200 A for Bi2223 flux pump and 80 A for MgB 2 flux pump operating at 20 K. By comparison, it is discovered that the operating temperature range is wider, the ripple is smaller and the pumping frequency is higher in Bi2223 flux pump than those in MgB 2 flux pump. These results indicate that the newly developed Bi2223 magnetic flux pump may efficiently compensate the magnetic field decay in HTS magnet and make the magnet operate in persistent current mode, this point is significant to the magnetic resonance imaging (MRI) magnets. This new flux pump is under construction presently. It is expected that the Bi2223 flux pump would be applied to the superconducting MRI magnets by further optimizing structure and improving working process.
New Strainmeters used to Monitor Deformation During Injection and Withdrawal
NASA Astrophysics Data System (ADS)
DeWolf, S.; Murdoch, L. C.; Germanovich, L. N.; Moysey, S. M.; Hanna, A. C.; Hu, J.; Blais, R.; Plunkett, G.; Johnson, W.
2017-12-01
Injecting or removing fluids from reservoirs or aquifers causes deformation that can be used as a diagnostic signal in some cases, while it can interfere with geodetic interpretations in other cases. This has motivated us to develop instrumentation and methods to characterize the strain field resulting from injection and pumping. Three new instruments have been deployed at our field stations near Clemson University and at the Avant Field north of Tulsa, OK. Two use non-contact eddy current transducers configured to measure four components of strain and two tilts to 1 part-per-billion. One system is designed for permanent installation, the other is removable for short term deployments. Another system is a low cost volumetric strainmeter consisting of an embedded optical fiber that is interrogated using laser interferometry. This strainmeter is designed to be a permanently installed and has a resolution of several parts-per-trillion. The field sites are designed to characterize strains during pumping or injection over different scales and in different geologic settings. The Clemson field station is underlain by biotite gneiss, a low permeability crystalline rock overlain by moderate permeability, soft saprolite above 30m depth. The water table is at approximately 9m depth. The strainmeters are in the crystalline rock at approximately 40m depth, and pumping occurs in the overlying saprolite. In contrast, wells at the Avant Field site are much deeper. They are approximately 500m deep and completed in a 25-m-thick oil-bearing sandstone. Strainmeters at the Avant Field are at 30m depth. These two sites provide contrasting approaches to characterizing strain at 30-40m depth. Water is pumped from an overlying formation at the Clemson site, whereas it is pumped from a much deeper underlying formation at the Avant Field. Preliminary results are available from a brief injection test, and from a longer shut-in test at the Avant Field. Injection is characterized by an increase in tensile strains in both the radial and circumferential directions approximately 220m from the well. The shut-in was characterized by radial tension and circumferential compression in response to a well approximately 1km from the strainmeter. These are the expected signals caused by injection and shut-in according to poroelastic simulations.
Multimode four-wave mixing in an unresolved sideband optomechanical system
NASA Astrophysics Data System (ADS)
Li, Zongyang; You, Xiang; Li, Yongmin; Liu, Yong-Chun; Peng, Kunchi
2018-03-01
We have studied multimode four-wave mixing (FWM) in an unresolved sideband cavity optomechanical system. The radiation pressure coupling between the cavity fields and multiple mechanical modes results in the formation of a series of tripod-type energy-level systems, which induce the multimode FWM phenomenon. The FWM mechanism enables remarkable amplification of a weak signal field accompanied by the generation of an FWM field when only a microwatt-level pump field is applied. For proper system parameters, the amplified signal and FWM fields have equal intensity with opposite phases. The gain and frequency response bandwidth of the signal field can be dynamically tuned by varying the pump intensity, optomechanical coupling strength, and additional feedback control. Under certain conditions, the frequency response bandwidth can be very narrow and reaches the level of hertz.
Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures
Aines, Roger D.; Bourcier, William L.
2014-08-19
A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.
Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures
Aines, Roger D.; Bourcier, William L.
2010-11-09
A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.
Detection of pure inverse spin-Hall effect induced by spin pumping at various excitation
NASA Astrophysics Data System (ADS)
Inoue, H. Y.; Harii, K.; Ando, K.; Sasage, K.; Saitoh, E.
2007-10-01
Electric-field generation due to the inverse spin-Hall effect (ISHE) driven by spin pumping was detected and separated experimentally from the extrinsic magnetogalvanic effects in a Ni81Fe19/Pt film. By applying a sample-cavity configuration in which the extrinsic effects are suppressed, the spin pumping using ferromagnetic resonance gives rise to a symmetric spectral shape in the electromotive force spectrum, indicating that the motive force is due entirely to ISHE. This method allows the quantitative analysis of the ISHE and the spin-pumping effect. The microwave-power dependence of the ISHE amplitude is consistent with the prediction of a direct current-spin-pumping scenario.
Verification of a VRF Heat Pump Computer Model in EnergyPlus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigusse, Bereket; Raustad, Richard
2013-06-15
This paper provides verification results of the EnergyPlus variable refrigerant flow (VRF) heat pump computer model using manufacturer's performance data. The paper provides an overview of the VRF model, presents the verification methodology, and discusses the results. The verification provides quantitative comparison of full and part-load performance to manufacturer's data in cooling-only and heating-only modes of operation. The VRF heat pump computer model uses dual range bi-quadratic performance curves to represent capacity and Energy Input Ratio (EIR) as a function of indoor and outdoor air temperatures, and dual range quadratic performance curves as a function of part-load-ratio for modeling part-loadmore » performance. These performance curves are generated directly from manufacturer's published performance data. The verification compared the simulation output directly to manufacturer's performance data, and found that the dual range equation fit VRF heat pump computer model predicts the manufacturer's performance data very well over a wide range of indoor and outdoor temperatures and part-load conditions. The predicted capacity and electric power deviations are comparbale to equation-fit HVAC computer models commonly used for packaged and split unitary HVAC equipment.« less
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Briggs, Maxwell H.; Penswick, L. Barry; Pearson, J. Boise; Godfroy, Thomas J.
2011-01-01
As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1-kW-class free-piston Stirling convertors were modified to operate with a NaK (sodium (Na) and potassium (K)) liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The convertors were successfully tested at the Marshall Space Flight Center (MSFC) from June 6 through July 14, 2009. The convertors were operated for a total test time of 66 hr and 16 min. The tests included (a) performance mapping the convertors over various hot- and cold-end temperatures, piston amplitudes, and NaK flow rates and (b) transient test conditions to simulate various startup (i.e., low-, medium-, and high-temperature startups) and fault scenarios (i.e., loss of heat source, loss of NaK pump, convertor stall, etc.). This report documents the results of this testing
Megawatt Electromagnetic Plasma Propulsion
NASA Technical Reports Server (NTRS)
Gilland, James; Lapointe, Michael; Mikellides, Pavlos
2003-01-01
The NASA Glenn Research Center program in megawatt level electric propulsion is centered on electromagnetic acceleration of quasi-neutral plasmas. Specific concepts currently being examined are the Magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT). In the case of the MPD thruster, a multifaceted approach of experiments, computational modeling, and systems-level models of self field MPD thrusters is underway. The MPD thruster experimental research consists of a 1-10 MWe, 2 ms pulse-forming-network, a vacuum chamber with two 32 diffusion pumps, and voltage, current, mass flow rate, and thrust stand diagnostics. Current focus is on obtaining repeatable thrust measurements of a Princeton Benchmark type self field thruster operating at 0.5-1 gls of argon. Operation with hydrogen is the ultimate goal to realize the increased efficiency anticipated using the lighter gas. Computational modeling is done using the MACH2 MHD code, which can include real gas effects for propellants of interest to MPD operation. The MACH2 code has been benchmarked against other MPD thruster data, and has been used to create a point design for a 3000 second specific impulse (Isp) MPD thruster. This design is awaiting testing in the experimental facility. For the PIT, a computational investigation using MACH2 has been initiated, with experiments awaiting further funding. Although the calculated results have been found to be sensitive to the initial ionization assumptions, recent results have agreed well with experimental data. Finally, a systems level self-field MPD thruster model has been developed that allows for a mission planner or system designer to input Isp and power level into the model equations and obtain values for efficiency, mass flow rate, and input current and voltage. This model emphasizes algebraic simplicity to allow its incorporation into larger trajectory or system optimization codes. The systems level approach will be extended to the pulsed inductive thruster and other electrodeless thrusters at a future date.
Paper pump for passive and programmable transport
Wang, Xiao; Hagen, Joshua A.; Papautsky, Ian
2013-01-01
In microfluidic systems, a pump for fluid-driving is often necessary. To keep the size of microfluidic systems small, a pump that is small in size, light-weight and needs no external power source is advantageous. In this work, we present a passive, simple, ultra-low-cost, and easily controlled pumping method based on capillary action of paper that pumps fluid through conventional polymer-based microfluidic channels with steady flow rate. By using inexpensive cutting tools, paper can be shaped and placed at the outlet port of a conventional microfluidic channel, providing a wide range of pumping rates. A theoretical model was developed to describe the pumping mechanism and aid in the design of paper pumps. As we show, paper pumps can provide steady flow rates from 0.3 μl/s to 1.7 μl/s and can be cascaded to achieve programmable flow-rate tuning during the pumping process. We also successfully demonstrate transport of the most common biofluids (urine, serum, and blood). With these capabilities, the paper pump has the potential to become a powerful fluid-driving approach that will benefit the fielding of microfluidic systems for point-of-care applications. PMID:24403999
Baxter, Van D.; Munk, Jeffrey D.
2017-11-08
By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.
Voigt spectral profiles in two-photon resonance fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexanian, Moorad; Bose, Subir K.; Department of Physics, University of Central Florida, Orlando, Florida 32816
2007-11-15
A recent work on two-photon fluorescence is extended by considering the pump field to be a coherent state, which represents a laser field operating well above threshold. The dynamical conditions are investigated under which the two-photon spectrum gives rise, in addition to a Lorentzian line shape at the pump frequency, to two Voigt spectral sideband profiles. Additional conditions are found under which the Voigt profile behaves like either a Gaussian or a Lorentzian line shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Munk, Jeffrey D.
By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.
Experimental Observation of a Generalized Thouless Pump with a Single Spin
NASA Astrophysics Data System (ADS)
Ma, Wenchao; Zhou, Longwen; Zhang, Qi; Li, Min; Cheng, Chunyang; Geng, Jianpei; Rong, Xing; Shi, Fazhan; Gong, Jiangbin; Du, Jiangfeng
2018-03-01
Adiabatic cyclic modulation of a one-dimensional periodic potential will result in quantized charge transport, which is termed the Thouless pump. In contrast to the original Thouless pump restricted by the topology of the energy band, here we experimentally observe a generalized Thouless pump that can be extensively and continuously controlled. The extraordinary features of the new pump originate from interband coherence in nonequilibrium initial states, and this fact indicates that a quantum superposition of different eigenstates individually undergoing quantum adiabatic following can also be an important ingredient unavailable in classical physics. The quantum simulation of this generalized Thouless pump in a two-band insulator is achieved by applying delicate control fields to a single spin in diamond. The experimental results demonstrate all principal characteristics of the generalized Thouless pump. Because the pumping in our system is most pronounced around a band-touching point, this work also suggests an alternative means to detect quantum or topological phase transitions.
Ductless Mini-Split Heat Pump Comfort Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, K.; Sehgal, N.; Akers, C.
2013-03-01
Field tests were conducted in two homes in Austin, TX, to evaluate the comfort performance of ductless minisplit heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.
Ductless Mini-Split Heat Pump Comfort Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, K.; Sehgal, N.; Akers, C.
2013-03-01
Field tests were conducted in two homes in Austin, TX to evaluate the comfort performance of ductless mini-split heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.
Aquifer pumping test report for the burn site groundwater area of concern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skelly, Michael; Ferry, Robert
The Aquifer Pumping Test Report for the Burn Site Groundwater (BSG) Area of Concern is being submitted by National Technology and Engineering Solutions of Sandia, LLC and the U.S. Department of Energy (DOE)/National Nuclear Security Administration to describe the results of the aquifer pumping test program and related field activities that were completed at the BSG Area of Concern. This report summarizes the results of the field work and data analyses, and is being submitted to the New Mexico Environment Department (NMED) Hazardous Waste Bureau, as required by the April 14, 2016 letter, Summary of Agreements and Proposed Milestones Pursuantmore » to the Meeting of July 20, 2015, (NMED April 2016).« less
Bomble, L; Lavorel, B; Remacle, F; Desouter-Lecomte, M
2008-05-21
Following the scheme recently proposed by Remacle and Levine [Phys. Rev. A 73, 033820 (2006)], we investigate the concrete implementation of a classical full adder on two electronic states (X 1A1 and C 1B2) of the SO2 molecule by optical pump-probe laser pulses using intuitive and counterintuitive (stimulated Raman adiabatic passage) excitation schemes. The resources needed for providing the inputs and reading out are discussed, as well as the conditions for achieving robustness in both the intuitive and counterintuitive pump-dump sequences. The fidelity of the scheme is analyzed with respect to experimental noise and two kinds of perturbations: The coupling to the neighboring rovibrational states and a finite rotational temperature that leads to a mixture for the initial state. It is shown that the logic processing of a full addition cycle can be realistically experimentally implemented on a picosecond time scale while the readout takes a few nanoseconds.
UHF front-end feeding RFID-based body sensor networks by exploiting the reader signal
NASA Astrophysics Data System (ADS)
Pasca, M.; Colella, R.; Catarinucci, L.; Tarricone, L.; D'Amico, S.; Baschirotto, A.
2016-05-01
This paper presents an integrated, high-sensitivity UHF radio frequency identification (RFID) power management circuit for body sensor network applications. The circuit consists of a two-stage RF-DC Dickson's rectifier followed by an integrated five-stage DC-DC Pelliconi's charge pump driven by an ultralow start-up voltage LC oscillator. The DC-DC charge pump interposed between the RF-DC rectifier and the output load provides the RF to load isolation avoiding losses due to the diodes reverse saturation current. The RF-DC rectifier has been realized on FR4 substrate, while the charge pump and the oscillator have been realized in 180 nm complementary metal oxide semiconductor (CMOS) technology. Outdoor measurements demonstrate the ability of the power management circuit to provide 400 mV output voltage at 14 m distance from the UHF reader, in correspondence of -25 dBm input signal power. As demonstrated in the literature, such output voltage level is suitable to supply body sensor network nodes.
NASA Astrophysics Data System (ADS)
Jayaweera, H. M. P. C.; Muhtaroğlu, Ali
2016-11-01
A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.
Noise and loss in balanced and subharmonically pumped mixers. I - Theory. II - Application
NASA Technical Reports Server (NTRS)
Kerr, A. R.
1979-01-01
The theory of noise and frequency conversion for two-diode balanced and subharmonically pumped mixers is presented. The analysis is based on the equivalent circuit of the Schottky diode, having nonlinear capacitance, series resistance, and shot and thermal noise. Expressions for the conversion loss, noise temperature, and input and output impedances are determined in a form suitable for numerical analysis. In Part II, the application of the theory to practical mixers is demonstrated, and the properties of some two-diode mixers are examined. The subharmonically pumped mixer is found to be much more strongly affected by the loop inductance than the balanced mixer, and the ideal two-diode mixer using exponential diodes has a multiport noise-equivalent network (attenuator) similar to that of the ideal single-diode mixer. It is concluded that the theory can be extended to mixers with more than two diodes and will be useful for their design and analysis, provided a suitable nonlinear analysis is available to determine the diode waveforms.
THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves.
Akiba, Takuya; Kaneko, Naoya; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige
2013-09-15
We report a novel sensing technique that uses an evanescent terahertz (THz) wave, without detecting the THz wave directly. When a THz wave generated by Cherenkov phase matching via difference frequency generation undergoes total internal reflection, the evanescent THz wave is subject to a phase change and an amplitude decrease. The reflected THz wave, under the influence of the sample, interferes with the propagating THz wave and the changing electric field of the THz wave interacts with the electric field of the pump waves. We demonstrate a sensing technique for detecting changes in the electric field of near-infrared light, transcribed from changes in the electric field of a THz wave.
DPSSL pumped 20-TW Ti:sapphire laser system for DD fusion experiment
NASA Astrophysics Data System (ADS)
Sekine, T.; Hatano, Y.; Takeuchi, Y.; Kawashima, T.
2016-03-01
A diode-pumped solid-state laser (DPSSL) pumped 20-TW output Ti:sapphire laser system has been developed. A diode-pumped Nd:glass laser with output energy of 12.7 J in 527 nm was used as a pump source for a 20-TW Ti:sapphire amplifier. A CeLiB6O10 nonlinear optical crystal was used as a frequency doubler of the Nd:glass DPSSL[1]. Figure 1 shows typical output pulse energy of the 20-TW amplifier as a function of pumping energy and a near field pattern. A 1.65 J pulse energy was obtained by 4.5 J pump energy. The amplified seed pulse is compressed to typically 60 fs as shown in Fig. 1 by a vacuumed pulse compressor with 80% of transmissivity. Encircled energy ratio, into a circled with 8 μm diameter area, of far field pattern focused by off-axis parabolic mirror with F# of 3 is numerically evaluated to 40% at TW class output condition. Then focal intensity would reach to 1018W/cm2. This all- DPSSL system contributes for stable and continual investigation of laser induced plasma experiment. We have succeeded continual and high efficient generation of DD fusion neutron from CD nano-particles by cluster fusion scheme using the 20-TW laser. A yield of ∼105 neutrons per shot was stably observed during continuous 100 shots with repetition rate of 0.1Hz.
Gondhalekar, Ravi; Dassau, Eyal; Doyle, Francis J.
2016-01-01
The design of a Model Predictive Control (MPC) strategy for the closed-loop operation of an Artificial Pancreas (AP) for treating Type 1 Diabetes Mellitus (T1DM) is considered in this paper. The contribution of this paper is to propose two changes to the usual structure of the MPC problems typically considered for control of an AP. The first proposed change is to replace the symmetric, quadratic input cost function with an asymmetric, quadratic function, allowing negative control inputs to be penalized less than positive ones. This facilitates rapid pump-suspensions in response to predicted hypoglycemia, while simultaneously permitting the design of a conservative response to hyperglycemia. The second proposed change is to penalize the velocity of the predicted glucose level, where this velocity penalty is based on a cost function that is again asymmetric, but additionally state-dependent. This facilitates the accelerated response to acute, persistent hyperglycemic events, e.g., as induced by unannounced meals. The novel functionality is demonstrated by numerical examples, and the efficacy of the proposed MPC strategy verified using the University of Padova/Virginia metabolic simulator. PMID:28479660
NASA Astrophysics Data System (ADS)
Lee, Seungmin; Rhee, Bum Ku
2015-02-01
The pump laser was a cw-diode-pumped, acousto-optically Q-switched Nd:YAG laser. The laser had a pulse width of ~85 ns when operating at 10 kHz repetition rates. For infrared output of 2300 nm, we used 35-mm-long PPMgSLT which has a grating period of 32.7 μm for the first-order quasi-phase matching, resulting in the signal wavelength of 1980 nm at the crystal temperature of 76.5oC. Our optical parametric oscillator (OPO) was of a simple linear extra-cavity structure, formed by two flat dichroic mirrors with a separation of ~45 mm. The input coupling mirror had a high transmission of 98% for the pump, high reflectance of 98% at the signal and idler wavelengths, whereas the output coupler had a high reflectance of 98% at the pump wavelength. Hence, the OPO can be considered as singly resonant with double-pass pumping. In order to find an optimum reflectance for the efficient generation of infrared radiation of 2300 nm, we used the three different output mirrors whose reflectivity are ranging from 90% to 38% at the signal wavelength. We measured the signal and idler power as a function of the pumping power of Nd:YAG laser for three different output couplers. A maximum extraction efficiency with an optimum reflectance of output mirror was 27% for the idler, corresponding to 5.6 W of average output power. The fluctuations in the idler root-mean-square output power were measured to be below 1.5%. Our result is comparable with the recent one based on PPLN even with a simple cavity.
Intrinsic increase in lymphangion muscle contractility in response to elevated afterload
Scallan, Joshua P.; Wolpers, John H.; Muthuchamy, Mariappan; Gashev, Anatoliy A.; Zawieja, David C.
2012-01-01
Collecting lymphatic vessels share functional and biochemical characteristics with cardiac muscle; thus, we hypothesized that the lymphatic vessel pump would exhibit behavior analogous to homeometric regulation of the cardiac pump in its adaptation to elevated afterload, i.e., an increase in contractility. Single lymphangions containing two valves were isolated from the rat mesenteric microcirculation, cannulated, and pressurized for in vitro study. Pressures at either end of the lymphangion [input pressure (Pin), preload; output pressure (Pout), afterload] were set by a servo controller. Intralymphangion pressure (PL) was measured using a servo-null micropipette while internal diameter and valve positions were monitored using video methods. The responses to step- and ramp-wise increases in Pout (at low, constant Pin) were determined. PL and diameter data recorded during single contraction cycles were used to generate pressure-volume (P-V) relationships for the subsequent analysis of lymphangion pump behavior. Ramp-wise Pout elevation led to progressive vessel constriction, a rise in end-systolic diameter, and an increase in contraction frequency. Step-wise Pout elevation produced initial vessel distention followed by time-dependent declines in end-systolic and end-diastolic diameters. Significantly, a 30% leftward shift in the end-systolic P-V relationship accompanied an 84% increase in dP/dt after a step increase in Pout, consistent with an increase in contractility. Calculations of stroke work from the P-V loop area revealed that robust pumps produced net positive work to expel fluid throughout the entire afterload range, whereas weaker pumps exhibited progressively more negative work as gradual afterload elevation led to pump failure. We conclude that lymphatic muscle adapts to output pressure elevation with an intrinsic increase in contractility and that this compensatory mechanism facilitates the maintenance of lymph pump output in the face of edemagenic and/or gravitational loads. PMID:22886407
NASA Astrophysics Data System (ADS)
Prakash, Roopa; Choudhury, Vishal; Arun, S.; Supradeepa, V. R.
2018-02-01
Continuous-wave(CW) supercontinuum sources find applications in various domains such as imaging, spectroscopy, test and measurement. They are generated by pumping an optical fiber with a CW laser in the anomalous-dispersion region close to its zero-dispersion wavelength. Modulation instability(MI) sidebands are created, and further broadened and equalized by additional nonlinear processes generating the supercontinuum. This necessitates high optical powers and at lower powers, only MI sidebands can be seen without the formation of the supercontinuum. Obtaining a supercontinuum at low, easily manageable optical powers is attractive for many applications, but current techniques cannot achieve this. In this work, we propose a new mechanism for low power supercontinuum generation utilizing the modified MI gain spectrum for a line-broadened, decorrelated pump. A novel two-stage generation mechanism is demonstrated, where the first stage constituting standard telecom fiber slightly broadens the input pump linewidth. However, this process in the presence of dispersion, acts to de-correlate the different spectral components of the pump signal. When this is sent through highly nonlinear fiber near its zero-dispersion wavelength, the shape of the MI gain spectrum is modified, and this process naturally results in the generation of a broadband, equalized supercontinuum source at much lower powers than possible using conventional single stage spectral broadening. Here, we demonstrate a 0.5W supercontinuum source pumped using a 4W Erbium-Ytterbium co-doped fiber laser with a bandwidth spanning from 1300nm to 2000nm. We also demonstrate an interesting behaviour of this technique of relative insensitivity to the pump wavelength vis-a-vis zero-dispersion wavelength of the fiber.
NASA Astrophysics Data System (ADS)
Yastremskii, A. G.; Ivanov, N. G.; Losev, V. F.
2018-03-01
Energy characteristics of laser radiation with a pulse width of 50 ps at an elevated pump energy of the XeF(C – A) amplifier of a hybrid THL-100 laser system are analysed numerically. The dynamics of the change in the energy and maximum intensity of laser radiation with an increase in the pump energy of the XeF(C – A) amplifier from 270 to 400 J is investigated. The results of studying the influence of the input beam divergence on the energy characteristics of the output beam are presented. It is shown that, for the existing system of mirrors, an increase in the pump energy to 400 J leads to an increase in the output energy from 3.2 to 5.5 J at a maximum radiation intensity of 57 GW cm-2. A system of amplifier mirrors with 27 laser beam passes and enlarged divergence angle of the amplified beam is considered. Theoretically, the proposed system of mirrors allows one to increase the laser pulse energy to 7.5 J at a maximum intensity of no more than 14.8 GW cm-2. The calculated efficiency of the conversion of the pump energy absorbed in the amplifier gas chamber into the lasing energy exceeds 3% in this regime.
NASA Technical Reports Server (NTRS)
Ku, Jen-Tung; Hoang, Triem T.
1998-01-01
The heat transport capability of a capillary pumped loop (CPL) is limited by the pressure drop that its evaporator wick can sustain. The pressure drop in a CPL is not constant even under seemingly steady operation, but rather exhibits an oscillatory behavior. A hydrodynamic theory based on a mass-spring-dashpot model was previously developed to predict the pressure oscillation in a CPL with a single evaporator and a single condenser. The theory states that the pressure oscillation is a function of physical dimensions of the CPL components and operating conditions. Experimental data agreed very well with theoretical predictions. The hydrodynamic stability theory has recently been extended to predict the pressure oscillations in CPLs with multiple evaporators and multiple condensers. Concurrently, an experimental study was conducted to verify the theory and to investigate the effects of various parameters on the pressure oscillation. Four evaporators with different wick properties were tested using a test loop containing two condenser plates. The test loop allowed the four evaporators to be tested in a single-pump, two-pump or four-pump configuration, and the two condenser plates to be plumbed either in parallel or in series. Test conditions included varying the power input, the reservoir set point temperature, the condenser sink temperature, and the flow resistance between the reservoir and the loop. Experimental results agreed well with theoretical predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, R.H.; Schaffers, K.I.; Waide, P.A.
We discuss the upconversion luminescence efficiencies of phosphors that generate red, green, and blue light. The phosphors studied are single crystals and powders co-doped with Er{sup 3+} and Yb{sup 3+}, and with Tm{sup 3+} and Yb{sup 3+}. The Yb ions are pumped near 980 nm; transfers of two or three quanta to the co-doped rare earth ion generate visible luminescence. The main contribution embodied in this work is the quantitative measurement of this upconversion efficiency, based on the use of a calibrated integrating sphere, determination of the fraction of pump light absorbed, and careful control of the pump laser beammore » profile. The green phosphors are the most efficient, yielding efficiency values as high as 4 %, with the red and blue materials giving 1 - 2 %. Saturation was observed in all cases, suggesting that populations of upconversion steps of the ions are maximized at higher power. Quasi-CW modeling of the intensity- dependent upconversion efficiency was attempted; input data included level lifetimes, transition cross sections, and cross-relaxation rate coefficients. The saturation of the Yb,Er:fluoride media is explained as the pumping of Er{sup 3+} ions into a bottleneck (long-lived state)- the {sup 4}I{sub 13/2} metastable level, making them unavailable for further excitation transfer. 32 refs., 5 figs., 3 tabs.« less
Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump
Dall’Olmo, Giorgio; Dingle, James; Polimene, Luca; Brewin, Robert J.W.; Claustre, Hervé
2016-01-01
The “mesopelagic” is the region of the ocean between about 100 and 1000 m that harbours one of the largest ecosystems and fish stocks on the planet1,2. This vastly unexplored ecosystem is believed to be mostly sustained by chemical energy, in the form of fast-sinking particulate organic carbon, supplied by the biological carbon pump3. Yet, this supply appears insufficient to match mesopelagic metabolic demands4–6. The mixed-layer pump is a physically-driven biogeochemical process7–11 that could further contribute to meet these energetic requirements. However, little is known about the magnitude and spatial distribution of this process at the global scale. Here we show that the mixed-layer pump supplies an important seasonal flux of organic carbon to the mesopelagic. By combining mixed-layer depths from Argo floats with satellite retrievals of particulate organic carbon, we estimate that this pump exports a global flux of about 0.3 Pg C yr−1 (range 0.1 – 0.5 Pg C yr−1). In high-latitude regions where mixed-layers are deep, this flux is on average 23%, but can be greater than 100% of the carbon supplied by fast sinking particles. Our results imply that a relatively large flux of organic carbon is missing from current energy budgets of the mesopelagic. PMID:27857779
Thermal lensing effects in rod-based Tm3+: YLF amplifiers versus pump and cooling conditions
NASA Astrophysics Data System (ADS)
Jolly, A.; Vidal, S.; Boullet, J.
2018-06-01
We report on a comprehensive study of the thermal-lensing penalties in rod-based, end-pumped amplifiers made of thulium-doped YLF. Aiming to optimize the beam quality under optimized pump and cooling conditions, this applies to the definition of highly efficient laser designs with operation up to the saturation of the gain. Single-pass and double-pass pump schemes are benchmarked by means of an innovative modeling process, to determine the appropriate rod’s length and the complete set of input data which determines the spatial transfer function of a given rod. This is done in the form of an equivalent, pump-dependent, thick GRIN lens. The characteristics of this highly astigmatic and basically divergent lens are computed thanks to complementary 3D-FEM thermo-mechanical modeling. To benchmark the different contributors to natural thermal-lensing phenomena, we refer to the situation of uniform side-cooling. The computational results are parameterized in a broad range of operating conditions. Then we suggest non-uniform side-cooling, as a possible option of interest for cancelling the astigmatism. The development of YLF-based amplifiers of a new generation taking advantage of a highly stable and easily controllable beam quality, either using rod-based or slab-based architectures, will be part of the potential applications of this fairly generic modeling approach.
Insulin Patch Pumps: Their Development and Future in Closed-Loop Systems
Bohannon, Nancy J.V.
2010-01-01
Abstract Steady progress is being made toward the development of a so-called “artificial pancreas,” which may ultimately be a fully automated, closed-loop, glucose control system comprising a continuous glucose monitor, an insulin pump, and a controller. The controller will use individualized algorithms to direct delivery of insulin without user input. A major factor propelling artificial pancreas development is the substantial incidence of—and attendant patient, parental, and physician concerns about—hypoglycemia and extreme hyperglycemia associated with current means of insulin delivery for type 1 diabetes mellitus (T1DM). A successful fully automated artificial pancreas would likely reduce the frequency of and anxiety about hypoglycemia and marked hyperglycemia. Patch-pump systems (“patch pumps”) are likely to be used increasingly in the control of T1DM and may be incorporated into the artificial pancreas systems of tomorrow. Patch pumps are free of tubing, small, lightweight, and unobtrusive. This article describes features of patch pumps that have been approved for U.S. marketing or are under development. Included in the review is an introduction to control algorithms driving insulin delivery, particularly the two major types: proportional integrative derivative and model predictive control. The use of advanced algorithms in the clinical development of closed-loop systems is reviewed along with projected next steps in artificial pancreas development. PMID:20515308
High-power diode laser bars as pump sources for fiber lasers and amplifiers (Invited Paper)
NASA Astrophysics Data System (ADS)
Bonati, G.; Hennig, P.; Wolff, D.; Voelckel, H.; Gabler, T.; Krause, U.; T'nnermann, A.; Reich, M.; Limpert, J.; Werner, E.; Liem, A.
2005-04-01
Fiber lasers are pumped by fibercoupled, multimode single chip devices at 915nm. That"s what everybody assumes when asked for the type of fiber laser pumps and it was like this for many years. Coming up as an amplifier for telecom applications, the amount of pump power needed was in the range of several watts. Highest pump powers for a limited market entered the ten watts range. This is a range of power that can be covered by highly reliable multimode chips, that have to survive up to 25 years, e.g. in submarine applications. With fiber lasers entering the power range and the application fields of rod and thin disc lasers, the amount of pump power needed raised into the area of several hundred watts. In this area of pump power, usually bar based pumps are used. This is due to the much higher cost pressure of the industrial customers compared to telecom customers. We expect more then 70% of all industrial systems to be pumped by diode laser bars. Predictions that bar based pumps survive for just a thousand hours in cw-operation and fractions of this if pulsed are wrong. Bar based pumps have to perform on full power for 10.000h on Micro channel heat sinks and 20.000h on passive heatsinks in industrial applications, and they do. We will show a variety of data, "real" long time tests and statistics from the JENOPTIK Laserdiode as well as data of thousands of bars in the field, showing that bar based pumps are not just well suitable for industrial applications on high power levels, but even showing benefits compared to chip based pumps. And it"s reasonable, that the same objectives of cost effectiveness, power and lifetime apply as well to thin disc, rod and slab lasers as to fiber lasers. Due to the pumping of fiber lasers, examples will be shown, how to utilize bars for high brightness fiber coupling. In this area, the automation is on its way to reduce the costs on the fibercoupling, similar to what had been done in the single chip business. All these efforts are part of the JENOPTIK Laserdiode"s LongLifeTechnologie.
Propulsive Efficiencies of Magnetohydrodynamic Submerged Vehicular Propulsors
1990-04-01
TERMS (Con’we on mrae . neoaay and kWerty by back nLt.) FIELD GROUP SUB-GROUP Magnetohydrodynamic propulsion, marine propulsion, seawater pump ...propelling a vehicular structure by a seawater elec- tromagnetic pump . This propulsion system can be applied to a surface ship or a submerged vehicle; however...structure by a seawater electromagnetic pump . This propulsion system can be applied to a surface ship or a submerged vehicle; however, in this work only
Yobbi, Dann K.
2002-01-01
Tampa Bay depends on ground water for most of the water supply. Numerous wetlands and lakes in Pasco County have been impacted by the high demand for ground water. Central Pasco County, particularly the area within the Cypress Creek well field, has been greatly affected. Probable causes for the decline in surface-water levels are well-field pumpage and a decade-long drought. Efforts are underway to increase surface-water levels by developing alternative sources of water supply, thus reducing the quantity of well-field pumpage. Numerical ground-water flow simulations coupled with an optimization routine were used in a series of simulations to test the sensitivity of optimal pumpage to desired increases in surficial aquifer system heads in the Cypress Creek well field. The ground-water system was simulated using the central northern Tampa Bay ground-water flow model. Pumping solutions for 1987 equilibrium conditions and for a transient 6-month timeframe were determined for five test cases, each reflecting a range of desired target recovery heads at different head control sites in the surficial aquifer system. Results are presented in the form of curves relating average head recovery to total optimal pumpage. Pumping solutions are sensitive to the location of head control sites formulated in the optimization problem and as expected, total optimal pumpage decreased when desired target head increased. The distribution of optimal pumpage for individual production wells also was significantly affected by the location of head control sites. A pumping advantage was gained for test-case formulations where hydraulic heads were maximized in cells near the production wells, in cells within the steady-state pumping center cone of depression, and in cells within the area of the well field where confining-unit leakance is the highest. More water was pumped and the ratio of head recovery per unit decrease in optimal pumpage was more than double for test cases where hydraulic heads are maximized in cells located at or near the production wells. Additionally, the ratio of head recovery per unit decrease in pumpage was about three times more for the area where confining-unit leakance is the highest than for other leakance zone areas of the well field. For many head control sites, optimal heads corresponding to optimal pumpage deviated from the desired target recovery heads. Overall, pumping solutions were constrained by the limiting recovery values, initial head conditions, and by upper boundary conditions of the ground-water flow model.
Method for nano-pumping using carbon nanotubes
Insepov, Zeke [Darien, IL; Hassanein, Ahmed [Bolingbrook, IL
2009-12-15
The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.
Optical pumping of electron and nuclear spin in a negatively-charged quantum dot
NASA Astrophysics Data System (ADS)
Bracker, Allan; Gershoni, David; Korenev, Vladimir
2005-03-01
We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.
Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots.
Bracker, A S; Stinaff, E A; Gammon, D; Ware, M E; Tischler, J G; Shabaev, A; Efros, Al L; Park, D; Gershoni, D; Korenev, V L; Merkulov, I A
2005-02-04
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots
NASA Astrophysics Data System (ADS)
Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.
2005-02-01
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line.
Audier, Xavier; Balla, Naveen; Rigneault, Hervé
2017-01-15
We demonstrate femtosecond pump-probe transient absorption spectroscopy using a programmable dispersive filter as an ultra-fast delay line. Combined with fast synchronous detection, this delay line allows for recording of 6 ps decay traces at 34 kHz. With such acquisition speed, we perform single point pump-probe spectroscopy on bulk samples in 80 μs and hyperspectral pump-probe imaging over a field of view of 100 μm in less than a second. The usability of the method is illustrated in a showcase experiment to image and discriminate between two pigments in a mixture.
Electrical controllable spin pump based on a zigzag silicene nanoribbon junction.
Zhang, Lin; Tong, Peiqing
2017-12-13
We propose a possible electrical controllable spin pump based on a zigzag silicene nanoribbon ferromagnetic junction by applying two time-dependent perpendicular electric fields. By using the Keldysh Green's function method, we derive the analytic expression of the spin-resolved current at the adiabatic approximation and demonstrate that two asymmetric spin up and spin down currents can be pumped out in the device without an external bias. The pumped currents mainly come from the interplay between the photon-assisted spin pump effect and the electrically-modulated energy band structure of the tunneling junction. The spin valve phenomena are not only related to the energy gap opened by two perpendicular staggered potentials, but also dependent on the system parameters such as the pumping frequency, the pumping phase difference, the spin-orbit coupling and the Fermi level, which can be tuned by the electrical methods. The proposed device can also be used to produce a pure spin current and a 100% polarized spin current through the photon-assisted pumping process. Our investigations may provide an electrical manipulation of spin-polarized electrons in graphene-like pumping devices.
New methods for the development of pneumatic displacement pumps for cardiac assist.
Knierbein, B; Rosarius, N; Reul, H; Rau, G
1990-11-01
The primary goal of the presented project was to develop a pump family with stroke volumes of 20, 50, 70 and 90 ml, which could be produced at low cost but with sufficient quality. The housing parts of the pump were thermoformed from technical semifinished materials. All blood contacting surfaces of the pump were coated with biomaterials in a controlled dipping process. During the design and fabrication process a professional CAD-system was used. This facilitated spatial presentations of pump components for first evaluations at the initial draft stages. The CAD-design data were then transformed to CNC-controlled lathes and mill's for the fabrication of pump tools. The stresses and strains of the moving blood pump components, such as membranes and valves, were precalculated by means of Finite-Element-Analysis (FEM). After completion of the pump, the internal flow fields were investigated by flow-visualization techniques using non-Newtonian test fluids, and the pump characteristics (function curves) were investigated in appropriate circulatory mock loops. The paper covers all above aspects from first draft to final fabrication and testing.
Nonlinear Bloch waves in metallic photonic band-gap filaments
NASA Astrophysics Data System (ADS)
Kaso, Artan; John, Sajeev
2007-11-01
We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10 50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell’s equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.
NASA Astrophysics Data System (ADS)
AlAnezi, Ghunaim; Kasahara, Junzo; AlDamegh, Khaled S.; Lafouza, Omar; AlYousef, Khaled; Almalki, Fahad; Nishiyama, Eichiro
2015-04-01
We have developed the time lapse technology for EOR (enhanced oil recovery) and CCS (Carbon Capture and Storage) using a very stable and continuous seismic source called ACROSS (Accurately Controlled Routinely Operated Signal System) with multi-geophones. Since 2011, we have tested this technology in the context of carbonate rocks in Saudi Arabia. The Al Wasee water pumping site approximately 120 km east of Riyadh city has been selected as a trail-site. The intention is to observe the changes in aquifers induced by pumping operations. One ACROSS source unit was installed at the Al Wasee site in December 2011 and we are continuing the field test. The instrument has been operated from 10 to 50 Hz with 40 tons-f at 50 Hz. Using alternatively clockwise and counter-clockwise rotations we can synthesize vertical and horizontal forces, respectively. 31 3C-geophones in 2 km x 3 km area and four nearby 3Cgeophones have been used to monitor the seismic changes from pumping the water. The one and half month data between December 2012 and February 2013 show continuous and clear change of observed waveforms for all 31 stations while the source signature did not change. The change is closest and fastest at the station #42. The cause of continuous change with time is interpreted as pumping of water by 64 wells located in this field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BEVINS, R.R.
This document has been updated during the definitive design portion of the first phase of the W-314 Project to capture additional software requirements and is planned to be updated during the second phase of the W-314 Project to cover the second phase of the Project's scope. The objective is to provide requirement traceability by recording the analysis/basis for the functional descriptions of the master pump shutdown system. This document identifies the sources of the requirements and/or how these were derived. Each requirement is validated either by quoting the source or an analysis process involving the required functionality, performance characteristics, operationsmore » input or engineering judgment.« less
Method and apparatus for second-rank tensor generation
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor)
1991-01-01
A method and apparatus are disclosed for generation of second-rank tensors using a photorefractive crystal to perform the outer-product between two vectors via four-wave mixing, thereby taking 2n input data to a control n squared output data points. Two orthogonal amplitude modulated coherent vector beams x and y are expanded and then parallel sides of the photorefractive crystal in exact opposition. A beamsplitter is used to direct a coherent pumping beam onto the crystal at an appropriate angle so as to produce a conjugate beam that is the matrix product of the vector beam that propagates in the exact opposite direction from the pumping beam. The conjugate beam thus separated is the tensor output xy (sup T).
Transient enhancement of magnetization damping in CoFeB film via pulsed laser excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bo; Ruan, Xuezhong, E-mail: xzruan@nju.edu.cn, E-mail: ybxu@nju.edu.cn; Wu, Zhenyao
2016-07-25
Laser-induced spin dynamics of in-plane magnetized CoFeB films has been studied by using time-resolved magneto-optical Kerr effect measurements. While the effective demagnetization field shows little dependence on the pump laser fluence, the intrinsic damping constant has been found to be increased from 0.008 to 0.076 with the increase in the pump fluence from 2 mJ/cm{sup 2} to 20 mJ/cm{sup 2}. This sharp enhancement has been shown to be transient and ascribed to the heating effect induced by the pump laser excitation, as the damping constant is almost unchanged when the pump-probe measurements are performed at a fixed pump fluence ofmore » 5 mJ/cm{sup 2} after irradiation by high power pump pulses.« less
Diesel-fired self-pumping water heater
NASA Astrophysics Data System (ADS)
Gertsmann, Joseph
1994-07-01
The object of this project was to study the feasibility of pumping and heating water by sustained oscillatory vaporization and condensation in a fired heat exchanger. Portable field liquid fueled water heaters would facilitate heating water for sanitation, personal hygiene, food service, laundry, equipment maintenance, and decontamination presently available only from larger, less portable, motorized pumping units. The technical tasks consisted of: development of an analytical model, operation of proof-of-principal prototypes, and determination of the thermal and mechanical relationships to evaluate operating range and control characteristics. Four successive pump models were analyzed and tested. The final analytical model gave reasonable agreement with the experimental results, indicating that the actual pumping effect was an order of magnitude lower than originally anticipated. It was concluded that a thermally-activated self pumping water heater based on the proposed principle is not feasible.
NASA Astrophysics Data System (ADS)
Saini, Abhishek; Ahmad, Dilshad; Patra, Karali
2016-04-01
Dielectric elastomers have received a great deal of attention recently as potential materials for many new types of sensors, actuators and future energy generators. When subjected to high electric field, dielectric elastomer membrane sandwiched between compliant electrodes undergoes large deformation with a fast response speed. Moreover, dielectric elastomers have high specific energy density, toughness, flexibility and shape processability. Therefore, dielectric elastomer membranes have gained importance to be applied as micro pumps for microfluidics and biomedical applications. This work intends to extend the electromechanical performance analysis of inflated dielectric elastomer membranes to be applied as micro pumps. Mechanical burst test and cyclic tests were performed to investigate the mechanical breakdown and hysteresis loss of the dielectric membrane, respectively. Varying high electric field was applied on the inflated membrane under different static pressure to determine the electromechanical behavior and nonplanar actuation of the membrane. These tests were repeated for membranes with different pre-stretch values. Results show that pre-stretching improves the electromechanical performance of the inflated membrane. The present work will help to select suitable parameters for designing micro pumps using dielectric elastomer membrane. However this material lacks durability in operation.This issue also needs to be investigated further for realizing practical micro pumps.
CFD Design and Analysis of a Passively Suspended Tesla Pump Left Ventricular Assist Device
Medvitz, Richard B.; Boger, David A.; Izraelev, Valentin; Rosenberg, Gerson; Paterson, Eric G.
2012-01-01
This paper summarizes the use of computational fluid dynamics (CFD) to design a novelly suspended Tesla LVAD. Several design variants were analyzed to study the parameters affecting device performance. CFD was performed at pump speeds of 6500, 6750 and 7000 RPM and at flow rates varying from 3 to 7 liter-per-minute (LPM). The CFD showed that shortening the plates nearest the pump inlet reduced the separations formed beneath the upper plate leading edges and provided a more uniform flow distribution through the rotor gaps, both of which positively affected the device hydrodynamic performance. The final pump design was found to produce a head rise of 77 mmHg with a hydraulic efficiency of 16% at the design conditions of 6 LPM throughflow and a 6750 RPM rotation rate. To assess the device hemodynamics the strain rate fields were evaluated. The wall shear stresses demonstrated that the pump wall shear stresses were likely adequate to inhibit thrombus deposition. Finally, an integrated field hemolysis model was applied to the CFD results to assess the effects of design variation and operating conditions on the device hemolytic performance. PMID:21595722
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oloff, L.-P., E-mail: oloff@physik.uni-kiel.de; Hanff, K.; Stange, A.
With the advent of ultrashort-pulsed extreme ultraviolet sources, such as free-electron lasers or high-harmonic-generation (HHG) sources, a new research field for photoelectron spectroscopy has opened up in terms of femtosecond time-resolved pump-probe experiments. The impact of the high peak brilliance of these novel sources on photoemission spectra, so-called vacuum space-charge effects caused by the Coulomb interaction among the photoemitted probe electrons, has been studied extensively. However, possible distortions of the energy and momentum distributions of the probe photoelectrons caused by the low photon energy pump pulse due to the nonlinear emission of electrons have not been studied in detail yet.more » Here, we systematically investigate these pump laser-induced space-charge effects in a HHG-based experiment for the test case of highly oriented pyrolytic graphite. Specifically, we determine how the key parameters of the pump pulse—the excitation density, wavelength, spot size, and emitted electron energy distribution—affect the measured time-dependent energy and momentum distributions of the probe photoelectrons. The results are well reproduced by a simple mean-field model, which could open a path for the correction of pump laser-induced space-charge effects and thus toward probing ultrafast electron dynamics in strongly excited materials.« less
A high-sensitivity push-pull magnetometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breschi, E.; Grujić, Z. D.; Knowles, P.
2014-01-13
We describe our approach to atomic magnetometry based on the push-pull optical pumping technique. Cesium vapor is pumped and probed by a resonant laser beam whose circular polarization is modulated synchronously with the spin evolution dynamics induced by a static magnetic field. The magnetometer is operated in a phase-locked loop, and it has an intrinsic sensitivity below 20fT/√(Hz), using a room temperature paraffin-coated cell. We use the magnetometer to monitor magnetic field fluctuations with a sensitivity of 300fT/√(Hz)
NASA Astrophysics Data System (ADS)
Apruzese, J. P.; Umstadter, D.
1996-02-01
The gain achieved in lasing to the ground state following short-pulse field ionization by a pump laser is highly transient. It will usually persist for only tens of picoseconds because of the rapid filling and negligible emptying of the ground state. Employing a detailed atomic model of lasing in hydrogen, we show that the removal of ground-state population by an appropriate broadband ionizing radiation field can enhance and prolong the gain in such a laser.
Filamentation instability of magnetosonic waves in the solar wind environment
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Lee, M. C.
1989-01-01
Intense magnetosonic waves, originally propagating at the right angle with the interplanetary magnetic field, can excite a purely growing mode along the interplanetary magnetic field together with two symmetric magnetosonic sidebands propagating obliquely across the magnetic field. This instability process leads to the filamentation of the magnetosonic pump waves. These two excited magnetosonic sideband modes propagate together perpendicularly across the magnetic field and, meanwhile, form a standing wave pattern along the magnetic field. The thresholds of this filamentation instability can be exceeded in the solar wind environment. It is predicted that the density fluctuations produced by the filamentation instability along the interplanetary magnetic field have wavelengths greater than, at least, a few earth radii. The polarization of the obliquely propagating magnetosonic waves excited by the filamentation instability is determined by the characteristics of the magnetosonic pump waves and the environmental plasmas.
NASA Astrophysics Data System (ADS)
Mudunuru, M. K.; Karra, S.; Vesselinov, V. V.
2017-12-01
The efficiency of many hydrogeological applications such as reactive-transport and contaminant remediation vastly depends on the macroscopic mixing occurring in the aquifer. In the case of remediation activities, it is fundamental to enhancement and control of the mixing through impact of the structure of flow field which is impacted by groundwater pumping/extraction, heterogeneity, and anisotropy of the flow medium. However, the relative importance of these hydrogeological parameters to understand mixing process is not well studied. This is partially because to understand and quantify mixing, one needs to perform multiple runs of high-fidelity numerical simulations for various subsurface model inputs. Typically, high-fidelity simulations of existing subsurface models take hours to complete on several thousands of processors. As a result, they may not be feasible to study the importance and impact of model inputs on mixing. Hence, there is a pressing need to develop computationally efficient models to accurately predict the desired QoIs for remediation and reactive-transport applications. An attractive way to construct computationally efficient models is through reduced-order modeling using machine learning. These approaches can substantially improve our capabilities to model and predict remediation process. Reduced-Order Models (ROMs) are similar to analytical solutions or lookup tables. However, the method in which ROMs are constructed is different. Here, we present a physics-informed ML framework to construct ROMs based on high-fidelity numerical simulations. First, random forests, F-test, and mutual information are used to evaluate the importance of model inputs. Second, SVMs are used to construct ROMs based on these inputs. These ROMs are then used to understand mixing under perturbed vortex flows. Finally, we construct scaling laws for certain important QoIs such as degree of mixing and product yield. Scaling law parameters dependence on model inputs are evaluated using cluster analysis. We demonstrate application of the developed method for model analyses of reactive-transport and contaminant remediation at the Los Alamos National Laboratory (LANL) chromium contamination sites. The developed method is directly applicable for analyses of alternative site remediation scenarios.
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.
2001-01-01
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.
2003-06-03
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
Hydraulic concentration of magnetic fields in the solar photosphere. I - Turbulent pumping
NASA Technical Reports Server (NTRS)
Parker, E. N.
1974-01-01
Observations suggest that most of the magnetic flux through the solar photosphere is concentrated in vertical filaments in the supergranule boundaries. Each filament appears to contain about 3 times 10 to the 18-th power maxwells, in the form of a field of 500 gauss or more, over a diameter of 700 km or less. The magnetic energy density in the filaments is 100 times the observed kinetic energy density of the observed supergranule motions, but comparable to the kinetic energy density of the granules. Force-free field configurations cannot duplicate the observational numbers, nor can such cooling effects as are believed responsible for the intense fields in sunspot umbrae. We point out a simple hydraulic mechanism (turbulent pumping) that appears to account for the observed concentration of fields.
Feinstein, Daniel T.; Kauffman, Leon J.; Haserodt, Megan J.; Clark, Brian R.; Juckem, Paul F.
2018-06-22
The U.S. Geological Survey developed a regional model of Lake Michigan Basin (LMB). This report describes the construction of five MODFLOW inset models extracted from the LMB regional model and their application using the particle-tracking code MODPATH to simulate the groundwater age distribution of discharge to wells pumping from glacial deposits. The five study areas of the inset model correspond to 8-digit hydrologic unit code (HUC8) basins. Two of the basins are tributary to Lake Michigan from the east, two are tributary to the lake from the west, and one is just west of the western boundary of the Lake Michigan topographic basin. The inset models inherited many of the inputs to the parent LMB model, including the hydrostratigraphy and layering scheme, the hydraulic conductivity assigned to bedrock layers, recharge distribution, and water use in the form of pumping rates from glacial and bedrock wells. The construction of the inset models entailed modifying some inputs, most notably the grid spacing (reduced from cells 5,000 feet on a side in the parent LMB model to 500 feet on a side in the inset models). The refined grid spacing allowed for more precise location of pumped wells and more detailed simulation of groundwater/surface-water interactions. The glacial hydraulic conductivity values, the top bedrock surface elevation, and the surface-water network input to the inset models also were modified. The inset models are solved using the MODFLOW–NWT code, which allows for more robust handling of conditions in unconfined aquifers than previous versions of MODFLOW. Comparison of the MODFLOW inset models reveals that they incorporate a range of hydrogeologic conditions relative to the glacial part of the flow system, demonstrated by visualization and analysis of model inputs and outputs and reflected in the range of ages generated by MODPATH for existing and hypothetical glacial wells. Certain inputs and outputs are judged to be candidate predictors that, if treated statistically, may be capable of explaining much of the variance in the simulated age metrics. One example of a predictor that model results indicate strongly affects simulated age is the depth of the well open interval below the simulated water table. The strength of this example variable as an overall predictor of groundwater age and its relation to other predictors can be statistically tested through the metamodeling process. In this way the inset models are designed to serve as a training area for metamodels that estimate groundwater age in glacial wells, which in turn will contribute to ongoing studies, under the direction of the U.S. Geological Survey National Water Quality Assessment, of contaminant susceptibility of shallow groundwater across the glacial aquifer system.
Stöcklmayer, C; Dorffner, G; Schmidt, C; Schima, H
1995-07-01
Rotary blood pumps are used in clinical applications to assist circulation via pumping blood from the left atrium to the aorta. Negative inflow pressures at high flow rates can cause suction of the cannula in the left atrium with deleterious effects on the atrial wall, the blood, and the lung. Therefore, stable and reliable detection of suction and the prediction of the left atrium pressure (LAP) would be of major interest for the control of these pumps. This work reports about an in vitro study of such a detector based on artificial neural networks (ANN). In the first project phase, an ANN was used to estimate the LAP based on pump speed, pump flow, and aortic pressure, obtained from a mock circulation. The inputs for the ANN were 11 characteristic values computed from these three parameters. In the second phase, another ANN was trained to classify various system states, such as suction, danger of suction (a state close to actual suction), and no suction. The first ANN was able to estimate the LAP with an accuracy of +/- 1.8 mm Hg. The discrimination of suction versus the other two states could be performed with a sensitivity and specificity of about 95% while the more interesting task of distinguishing danger of suction from no suction reached a sensitivity and specificity of about 65% (leaving 25% of each class unclassified and 10% of each class incorrectly classified).(ABSTRACT TRUNCATED AT 250 WORDS)
Resonance magnetoplasticity in ultralow magnetic fields
NASA Astrophysics Data System (ADS)
Alshits, V. I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E. A.
2016-09-01
Resonance relaxation displacements of dislocations in NaCl crystals placed in crossed static and alternating ultralow magnetic fields in the electron paramagnetic resonance scheme are discussed. The Earth's magnetic field B Earth ≈ 50μT and other fields in the range of 26-261 μT are used as the static field. New strongly anisotropic properties of the effect have been revealed. Frequency spectra including numerous peaks of paths at low pump frequencies beginning with 10 kHz, as well as the quartet of equidistant peaks at high frequencies ( 1.4 MHz at B= B Earth), have been measured. The effect is also observed in the pulsed pump field with a resonance duration of 0.5 μs. Resonance changes have been detected in the microhardness of ZnO, triglycine sulfate, and potassium hydrogen phthalate crystals after their exposure in the Earth's magnetic field in the same electron paramagnetic resonance scheme.
Microcapillary-Based Flow-Through Immunosensor and Displacement Immunoassay Using the Same.
1997-04-28
an antibody. If desired, an electroosmotic 24 pump may be used to flow fluid through the microcapillary or 25 microcapillaries in the chip...8 for field use. 9 Fig. 1C shows a flow immunosensor chip 100. Buffer flow 10 through microcapillary passage 102 by virtue of an electroosmotic ...Power for an 23 electroosmotic pump or other fluid pump, as well as any other on- 24 chip components, may be provided by a battery incorporated into
Hencken, Kenneth R.; Sartor, George B.
2004-08-03
An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.
Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi
2015-02-21
We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.
Designing Input Fields for Non-Narrative Open-Ended Responses in Web Surveys
Couper, Mick P.; Kennedy, Courtney; Conrad, Frederick G.; Tourangeau, Roger
2012-01-01
Web surveys often collect information such as frequencies, currency amounts, dates, or other items requiring short structured answers in an open-ended format, typically using text boxes for input. We report on several experiments exploring design features of such input fields. We find little effect of the size of the input field on whether frequency or dollar amount answers are well-formed or not. By contrast, the use of templates to guide formatting significantly improves the well-formedness of responses to questions eliciting currency amounts. For date questions (whether month/year or month/day/year), we find that separate input fields improve the quality of responses over single input fields, while drop boxes further reduce the proportion of ill-formed answers. Drop boxes also reduce completion time when the list of responses is short (e.g., months), but marginally increases completion time when the list is long (e.g., birth dates). These results suggest that non-narrative open questions can be designed to help guide respondents to provide answers in the desired format. PMID:23411468
White-light parametric instabilities in plasmas.
Santos, J E; Silva, L O; Bingham, R
2007-06-08
Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for stimulated Raman scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width sigma of the radiation field, scaling with 1/sigma for backscattering (three-wave process), and with 1/sigma1/2 for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.
NASA Astrophysics Data System (ADS)
Seyyed, Hossein Asadpour; G, Solookinejad; M, Panahi; E Ahmadi, Sangachin
2016-03-01
Role of Fano interference and incoherent pumping field on optical bistability in a four-level designed InGaN/GaN quantum dot nanostructure embedded in a unidirectional ring cavity are analyzed. It is found that intensity threshold of optical bistability can be manipulated by Fano interference. It is shown that incoherent pumping fields make the threshold of optical bistability behave differently by Fano interference. Moreover, in the presence of Fano interference the medium becomes phase-dependent. Therefore, the relative phase of applied fields can affect the behaviors of optical bistability and intensity threshold can be controlled easily.
Recent progress in the development of Terumo implantable left ventricular assist system.
Nojiri, C; Kijima, T; Maekawa, J; Horiuchi, K; Kido, T; Sugiyama, T; Mori, T; Sugiura, N; Asada, T; Shimane, H; Ozaki, T; Suzuki, M; Akamatsu, T; Akutsu, T
1999-01-01
The research group of the Terumo Corporation, the NTN Corporation, and Setsunan University (T. Akamatsu) has been developing an implantable left ventricular assist system (ILVAS) featuring a centrifugal blood pump with a magnetically suspended impeller (MSCP). The impeller of the MSCP is suspended by a magnetic bearing, providing contact-free rotation of the impeller inside the pump housing. Thus the MSCP is expected to provide years of long-term durability. Ex vivo chronic sheep experiments using the extracorporeal model (Model I) demonstrated long-term durability, nonthrombogenicity, and a low hemolysis rate (plasma free Hb <6 mg/dl) for more than 2 years. The prototype implantable model (Model II; 196 ml, 400 g) was evaluated ex vivo in 2 sheep and intrathoracically implanted in a small sheep (45 kg). These experiments were terminated at 70, 79, and 17 days, respectively, because of blood leakage through the connector system within the housing of Model II. There was no thrombus formation on the retrieved pump surfaces. A new connector system was introduced to the Model II pump (modified Model II), and the pump was intrathoracically implanted in a sheep. Pump flow rate was maintained at 3-7 L/min at 1700-1800 rpm. The temperature elevation on the surfaces of the motor and the electromagnet inside the pump casing was kept less than 6 degrees C. The temperature of the tissue adjacent to the pump casing became normal 10 days postoperatively. The sheep survived for more than 5 months without any sign of mechanical failure or thromboembolic complication. In vitro real-time endurance tests of motor bearings made of stainless steel and silicone nitride have been conducted for more than 1 year without any sign of bearing wear. The next prototype system (Model III), with an implantable controller and a new MSCP with reduced input power, has been developed with a view toward a totally implantable LVAS.