Latin Hypercube Sampling (LHS) UNIX Library/Standalone
DOE Office of Scientific and Technical Information (OSTI.GOV)
2004-05-13
The LHS UNIX Library/Standalone software provides the capability to draw random samples from over 30 distribution types. It performs the sampling by a stratified sampling method called Latin Hypercube Sampling (LHS). Multiple distributions can be sampled simultaneously, with user-specified correlations amongst the input distributions, LHS UNIX Library/ Standalone provides a way to generate multi-variate samples. The LHS samples can be generated either as a callable library (e.g., from within the DAKOTA software framework) or as a standalone capability. LHS UNIX Library/Standalone uses the Latin Hypercube Sampling method (LHS) to generate samples. LHS is a constrained Monte Carlo sampling scheme. Inmore » LHS, the range of each variable is divided into non-overlapping intervals on the basis of equal probability. A sample is selected at random with respect to the probability density in each interval, If multiple variables are sampled simultaneously, then values obtained for each are paired in a random manner with the n values of the other variables. In some cases, the pairing is restricted to obtain specified correlations amongst the input variables. Many simulation codes have input parameters that are uncertain and can be specified by a distribution, To perform uncertainty analysis and sensitivity analysis, random values are drawn from the input parameter distributions, and the simulation is run with these values to obtain output values. If this is done repeatedly, with many input samples drawn, one can build up a distribution of the output as well as examine correlations between input and output variables.« less
Optimal allocation of testing resources for statistical simulations
NASA Astrophysics Data System (ADS)
Quintana, Carolina; Millwater, Harry R.; Singh, Gulshan; Golden, Patrick
2015-07-01
Statistical estimates from simulation involve uncertainty caused by the variability in the input random variables due to limited data. Allocating resources to obtain more experimental data of the input variables to better characterize their probability distributions can reduce the variance of statistical estimates. The methodology proposed determines the optimal number of additional experiments required to minimize the variance of the output moments given single or multiple constraints. The method uses multivariate t-distribution and Wishart distribution to generate realizations of the population mean and covariance of the input variables, respectively, given an amount of available data. This method handles independent and correlated random variables. A particle swarm method is used for the optimization. The optimal number of additional experiments per variable depends on the number and variance of the initial data, the influence of the variable in the output function and the cost of each additional experiment. The methodology is demonstrated using a fretting fatigue example.
Input variable selection and calibration data selection for storm water quality regression models.
Sun, Siao; Bertrand-Krajewski, Jean-Luc
2013-01-01
Storm water quality models are useful tools in storm water management. Interest has been growing in analyzing existing data for developing models for urban storm water quality evaluations. It is important to select appropriate model inputs when many candidate explanatory variables are available. Model calibration and verification are essential steps in any storm water quality modeling. This study investigates input variable selection and calibration data selection in storm water quality regression models. The two selection problems are mutually interacted. A procedure is developed in order to fulfil the two selection tasks in order. The procedure firstly selects model input variables using a cross validation method. An appropriate number of variables are identified as model inputs to ensure that a model is neither overfitted nor underfitted. Based on the model input selection results, calibration data selection is studied. Uncertainty of model performances due to calibration data selection is investigated with a random selection method. An approach using the cluster method is applied in order to enhance model calibration practice based on the principle of selecting representative data for calibration. The comparison between results from the cluster selection method and random selection shows that the former can significantly improve performances of calibrated models. It is found that the information content in calibration data is important in addition to the size of calibration data.
Bottom-up and Top-down Input Augment the Variability of Cortical Neurons
Nassi, Jonathan J.; Kreiman, Gabriel; Born, Richard T.
2016-01-01
SUMMARY Neurons in the cerebral cortex respond inconsistently to a repeated sensory stimulus, yet they underlie our stable sensory experiences. Although the nature of this variability is unknown, its ubiquity has encouraged the general view that each cell produces random spike patterns that noisily represent its response rate. In contrast, here we show that reversibly inactivating distant sources of either bottom-up or top-down input to cortical visual areas in the alert primate reduces both the spike train irregularity and the trial-to-trial variability of single neurons. A simple model in which a fraction of the pre-synaptic input is silenced can reproduce this reduction in variability, provided that there exist temporal correlations primarily within, but not between, excitatory and inhibitory input pools. A large component of the variability of cortical neurons may therefore arise from synchronous input produced by signals arriving from multiple sources. PMID:27427459
NASA Astrophysics Data System (ADS)
El-Wakil, S. A.; Sallah, M.; El-Hanbaly, A. M.
2015-10-01
The stochastic radiative transfer problem is studied in a participating planar finite continuously fluctuating medium. The problem is considered for specular- and diffusly-reflecting boundaries with linear anisotropic scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions, that are represented by the probability-density function (PDF) of the solution process. In the RVT algorithm, a simple integral transformation to the input stochastic process (the extinction function of the medium) is applied. This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the transport equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity and transmissivity at the medium boundaries. In terms of the average reflectivity and transmissivity, the average of the partial heat fluxes for the generalized problem with internal source of radiation are obtained and represented graphically.
Multiplexer and time duration measuring circuit
Gray, Jr., James
1980-01-01
A multiplexer device is provided for multiplexing data in the form of randomly developed, variable width pulses from a plurality of pulse sources to a master storage. The device includes a first multiplexer unit which includes a plurality of input circuits each coupled to one of the pulse sources, with all input circuits being disabled when one input circuit receives an input pulse so that only one input pulse is multiplexed by the multiplexer unit at any one time.
Contextuality in canonical systems of random variables
NASA Astrophysics Data System (ADS)
Dzhafarov, Ehtibar N.; Cervantes, Víctor H.; Kujala, Janne V.
2017-10-01
Random variables representing measurements, broadly understood to include any responses to any inputs, form a system in which each of them is uniquely identified by its content (that which it measures) and its context (the conditions under which it is recorded). Two random variables are jointly distributed if and only if they share a context. In a canonical representation of a system, all random variables are binary, and every content-sharing pair of random variables has a unique maximal coupling (the joint distribution imposed on them so that they coincide with maximal possible probability). The system is contextual if these maximal couplings are incompatible with the joint distributions of the context-sharing random variables. We propose to represent any system of measurements in a canonical form and to consider the system contextual if and only if its canonical representation is contextual. As an illustration, we establish a criterion for contextuality of the canonical system consisting of all dichotomizations of a single pair of content-sharing categorical random variables. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Robustness-Based Design Optimization Under Data Uncertainty
NASA Technical Reports Server (NTRS)
Zaman, Kais; McDonald, Mark; Mahadevan, Sankaran; Green, Lawrence
2010-01-01
This paper proposes formulations and algorithms for design optimization under both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the perspective of system robustness. The proposed formulations deal with epistemic uncertainty arising from both sparse and interval data without any assumption about the probability distributions of the random variables. A decoupled approach is proposed in this paper to un-nest the robustness-based design from the analysis of non-design epistemic variables to achieve computational efficiency. The proposed methods are illustrated for the upper stage design problem of a two-stage-to-orbit (TSTO) vehicle, where the information on the random design inputs are only available as sparse point and/or interval data. As collecting more data reduces uncertainty but increases cost, the effect of sample size on the optimality and robustness of the solution is also studied. A method is developed to determine the optimal sample size for sparse point data that leads to the solutions of the design problem that are least sensitive to variations in the input random variables.
Estimation and classification by sigmoids based on mutual information
NASA Technical Reports Server (NTRS)
Baram, Yoram
1994-01-01
An estimate of the probability density function of a random vector is obtained by maximizing the mutual information between the input and the output of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's s method, applied to an estimated density, yields a recursive maximum likelihood estimator, consisting of a single internal layer of sigmoids, for a random variable or a random sequence. Applications to the diamond classification and to the prediction of a sun-spot process are demonstrated.
Poisson process stimulation of an excitable membrane cable model.
Goldfinger, M D
1986-01-01
The convergence of multiple inputs within a single-neuronal substrate is a common design feature of both peripheral and central nervous systems. Typically, the result of such convergence impinges upon an intracellularly contiguous axon, where it is encoded into a train of action potentials. The simplest representation of the result of convergence of multiple inputs is a Poisson process; a general representation of axonal excitability is the Hodgkin-Huxley/cable theory formalism. The present work addressed multiple input convergence upon an axon by applying Poisson process stimulation to the Hodgkin-Huxley axonal cable. The results showed that both absolute and relative refractory periods yielded in the axonal output a random but non-Poisson process. While smaller amplitude stimuli elicited a type of short-interval conditioning, larger amplitude stimuli elicited impulse trains approaching Poisson criteria except for the effects of refractoriness. These results were obtained for stimulus trains consisting of pulses of constant amplitude and constant or variable durations. By contrast, with or without stimulus pulse shape variability, the post-impulse conditional probability for impulse initiation in the steady-state was a Poisson-like process. For stimulus variability consisting of randomly smaller amplitudes or randomly longer durations, mean impulse frequency was attenuated or potentiated, respectively. Limitations and implications of these computations are discussed. PMID:3730505
Random Predictor Models for Rigorous Uncertainty Quantification: Part 2
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.
2015-01-01
This and a companion paper propose techniques for constructing parametric mathematical models describing key features of the distribution of an output variable given input-output data. By contrast to standard models, which yield a single output value at each value of the input, Random Predictors Models (RPMs) yield a random variable at each value of the input. Optimization-based strategies for calculating RPMs having a polynomial dependency on the input and a linear dependency on the parameters are proposed. These formulations yield RPMs having various levels of fidelity in which the mean, the variance, and the range of the model's parameter, thus of the output, are prescribed. As such they encompass all RPMs conforming to these prescriptions. The RPMs are optimal in the sense that they yield the tightest predictions for which all (or, depending on the formulation, most) of the observations are less than a fixed number of standard deviations from the mean prediction. When the data satisfies mild stochastic assumptions, and the optimization problem(s) used to calculate the RPM is convex (or, when its solution coincides with the solution to an auxiliary convex problem), the model's reliability, which is the probability that a future observation would be within the predicted ranges, is bounded rigorously.
Random Predictor Models for Rigorous Uncertainty Quantification: Part 1
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.
2015-01-01
This and a companion paper propose techniques for constructing parametric mathematical models describing key features of the distribution of an output variable given input-output data. By contrast to standard models, which yield a single output value at each value of the input, Random Predictors Models (RPMs) yield a random variable at each value of the input. Optimization-based strategies for calculating RPMs having a polynomial dependency on the input and a linear dependency on the parameters are proposed. These formulations yield RPMs having various levels of fidelity in which the mean and the variance of the model's parameters, thus of the predicted output, are prescribed. As such they encompass all RPMs conforming to these prescriptions. The RPMs are optimal in the sense that they yield the tightest predictions for which all (or, depending on the formulation, most) of the observations are less than a fixed number of standard deviations from the mean prediction. When the data satisfies mild stochastic assumptions, and the optimization problem(s) used to calculate the RPM is convex (or, when its solution coincides with the solution to an auxiliary convex problem), the model's reliability, which is the probability that a future observation would be within the predicted ranges, can be bounded tightly and rigorously.
NASA Astrophysics Data System (ADS)
Alvarez, Diego A.; Uribe, Felipe; Hurtado, Jorge E.
2018-02-01
Random set theory is a general framework which comprises uncertainty in the form of probability boxes, possibility distributions, cumulative distribution functions, Dempster-Shafer structures or intervals; in addition, the dependence between the input variables can be expressed using copulas. In this paper, the lower and upper bounds on the probability of failure are calculated by means of random set theory. In order to accelerate the calculation, a well-known and efficient probability-based reliability method known as subset simulation is employed. This method is especially useful for finding small failure probabilities in both low- and high-dimensional spaces, disjoint failure domains and nonlinear limit state functions. The proposed methodology represents a drastic reduction of the computational labor implied by plain Monte Carlo simulation for problems defined with a mixture of representations for the input variables, while delivering similar results. Numerical examples illustrate the efficiency of the proposed approach.
Statistics of optimal information flow in ensembles of regulatory motifs
NASA Astrophysics Data System (ADS)
Crisanti, Andrea; De Martino, Andrea; Fiorentino, Jonathan
2018-02-01
Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N , (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.
NASA Astrophysics Data System (ADS)
Mishra, H.; Karmakar, S.; Kumar, R.
2016-12-01
Risk assessment will not remain simple when it involves multiple uncertain variables. Uncertainties in risk assessment majorly results from (1) the lack of knowledge of input variable (mostly random), and (2) data obtained from expert judgment or subjective interpretation of available information (non-random). An integrated probabilistic-fuzzy health risk approach has been proposed for simultaneous treatment of random and non-random uncertainties associated with input parameters of health risk model. The LandSim 2.5, a landfill simulator, has been used to simulate the Turbhe landfill (Navi Mumbai, India) activities for various time horizons. Further the LandSim simulated six heavy metals concentration in ground water have been used in the health risk model. The water intake, exposure duration, exposure frequency, bioavailability and average time are treated as fuzzy variables, while the heavy metals concentration and body weight are considered as probabilistic variables. Identical alpha-cut and reliability level are considered for fuzzy and probabilistic variables respectively and further, uncertainty in non-carcinogenic human health risk is estimated using ten thousand Monte-Carlo simulations (MCS). This is the first effort in which all the health risk variables have been considered as non-deterministic for the estimation of uncertainty in risk output. The non-exceedance probability of Hazard Index (HI), summation of hazard quotients, of heavy metals of Co, Cu, Mn, Ni, Zn and Fe for male and female population have been quantified and found to be high (HI>1) for all the considered time horizon, which evidently shows possibility of adverse health effects on the population residing near Turbhe landfill.
Sedimentation in the chaparral: how do you handle unusual events?
Raymond M. Rice
1982-01-01
Abstract - Processes of erosion and sedimentation in steep chaparral drainage basins of southern California are described. The word ""hyperschedastic"" is coined to describe the sedimentation regime which is highly variable because of the interaction of marginally stable drainage basins, great variability in storm inputs, and the random occurrence...
A single-loop optimization method for reliability analysis with second order uncertainty
NASA Astrophysics Data System (ADS)
Xie, Shaojun; Pan, Baisong; Du, Xiaoping
2015-08-01
Reliability analysis may involve random variables and interval variables. In addition, some of the random variables may have interval distribution parameters owing to limited information. This kind of uncertainty is called second order uncertainty. This article develops an efficient reliability method for problems involving the three aforementioned types of uncertain input variables. The analysis produces the maximum and minimum reliability and is computationally demanding because two loops are needed: a reliability analysis loop with respect to random variables and an interval analysis loop for extreme responses with respect to interval variables. The first order reliability method and nonlinear optimization are used for the two loops, respectively. For computational efficiency, the two loops are combined into a single loop by treating the Karush-Kuhn-Tucker (KKT) optimal conditions of the interval analysis as constraints. Three examples are presented to demonstrate the proposed method.
NASA Astrophysics Data System (ADS)
Srinivas, Kadivendi; Vundavilli, Pandu R.; Manzoor Hussain, M.; Saiteja, M.
2016-09-01
Welding input parameters such as current, gas flow rate and torch angle play a significant role in determination of qualitative mechanical properties of weld joint. Traditionally, it is necessary to determine the weld input parameters for every new welded product to obtain a quality weld joint which is time consuming. In the present work, the effect of plasma arc welding parameters on mild steel was studied using a neural network approach. To obtain a response equation that governs the input-output relationships, conventional regression analysis was also performed. The experimental data was constructed based on Taguchi design and the training data required for neural networks were randomly generated, by varying the input variables within their respective ranges. The responses were calculated for each combination of input variables by using the response equations obtained through the conventional regression analysis. The performances in Levenberg-Marquardt back propagation neural network and radial basis neural network (RBNN) were compared on various randomly generated test cases, which are different from the training cases. From the results, it is interesting to note that for the above said test cases RBNN analysis gave improved training results compared to that of feed forward back propagation neural network analysis. Also, RBNN analysis proved a pattern of increasing performance as the data points moved away from the initial input values.
Fusion of Hard and Soft Information in Nonparametric Density Estimation
2015-06-10
and stochastic optimization models, in analysis of simulation output, and when instantiating probability models. We adopt a constrained maximum...particular, density estimation is needed for generation of input densities to simulation and stochastic optimization models, in analysis of simulation output...an essential step in simulation analysis and stochastic optimization is the generation of probability densities for input random variables; see for
Decision tree modeling using R.
Zhang, Zhongheng
2016-08-01
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
Corcoran, Jennifer M.; Knight, Joseph F.; Gallant, Alisa L.
2013-01-01
Wetland mapping at the landscape scale using remotely sensed data requires both affordable data and an efficient accurate classification method. Random forest classification offers several advantages over traditional land cover classification techniques, including a bootstrapping technique to generate robust estimations of outliers in the training data, as well as the capability of measuring classification confidence. Though the random forest classifier can generate complex decision trees with a multitude of input data and still not run a high risk of over fitting, there is a great need to reduce computational and operational costs by including only key input data sets without sacrificing a significant level of accuracy. Our main questions for this study site in Northern Minnesota were: (1) how does classification accuracy and confidence of mapping wetlands compare using different remote sensing platforms and sets of input data; (2) what are the key input variables for accurate differentiation of upland, water, and wetlands, including wetland type; and (3) which datasets and seasonal imagery yield the best accuracy for wetland classification. Our results show the key input variables include terrain (elevation and curvature) and soils descriptors (hydric), along with an assortment of remotely sensed data collected in the spring (satellite visible, near infrared, and thermal bands; satellite normalized vegetation index and Tasseled Cap greenness and wetness; and horizontal-horizontal (HH) and horizontal-vertical (HV) polarization using L-band satellite radar). We undertook this exploratory analysis to inform decisions by natural resource managers charged with monitoring wetland ecosystems and to aid in designing a system for consistent operational mapping of wetlands across landscapes similar to those found in Northern Minnesota.
Random vectors and spatial analysis by geostatistics for geotechnical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, D.S.
1987-08-01
Geostatistics is extended to the spatial analysis of vector variables by defining the estimation variance and vector variogram in terms of the magnitude of difference vectors. Many random variables in geotechnology are in vectorial terms rather than scalars, and its structural analysis requires those sample variable interpolations to construct and characterize structural models. A better local estimator will result in greater quality of input models; geostatistics can provide such estimators; kriging estimators. The efficiency of geostatistics for vector variables is demonstrated in a case study of rock joint orientations in geological formations. The positive cross-validation encourages application of geostatistics tomore » spatial analysis of random vectors in geoscience as well as various geotechnical fields including optimum site characterization, rock mechanics for mining and civil structures, cavability analysis of block cavings, petroleum engineering, and hydrologic and hydraulic modelings.« less
Approach for Input Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
NASA Technical Reports Server (NTRS)
Putko, Michele M.; Taylor, Arthur C., III; Newman, Perry A.; Green, Lawrence L.
2002-01-01
An implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for quasi 3-D Euler CFD code is presented. Given uncertainties in statistically independent, random, normally distributed input variables, first- and second-order statistical moment procedures are performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, these moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.
Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
NASA Astrophysics Data System (ADS)
Galelli, S.; Castelletti, A.
2013-02-01
Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modeling. In this paper we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modeling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalization property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally very efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analyzed on two real-world case studies (Marina catchment (Singapore) and Canning River (Western Australia)) representing two different morphoclimatic contexts comparatively with other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation.
Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
NASA Astrophysics Data System (ADS)
Galelli, S.; Castelletti, A.
2013-07-01
Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modelling. In this paper, we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modelling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalisation property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analysed on two real-world case studies - Marina catchment (Singapore) and Canning River (Western Australia) - representing two different morphoclimatic contexts. The evaluation is performed against other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation.
Multidimensional density shaping by sigmoids.
Roth, Z; Baram, Y
1996-01-01
An estimate of the probability density function of a random vector is obtained by maximizing the output entropy of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's optimization method, applied to the estimated density, yields a recursive estimator for a random variable or a random sequence. A constrained connectivity structure yields a linear estimator, which is particularly suitable for "real time" prediction. A Gaussian nonlinearity yields a closed-form solution for the network's parameters, which may also be used for initializing the optimization algorithm when other nonlinearities are employed. A triangular connectivity between the neurons and the input, which is naturally suggested by the statistical setting, reduces the number of parameters. Applications to classification and forecasting problems are demonstrated.
Probabilistic analysis of a materially nonlinear structure
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Wu, Y.-T.; Fossum, A. F.
1990-01-01
A probabilistic finite element program is used to perform probabilistic analysis of a materially nonlinear structure. The program used in this study is NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), under development at Southwest Research Institute. The cumulative distribution function (CDF) of the radial stress of a thick-walled cylinder under internal pressure is computed and compared with the analytical solution. In addition, sensitivity factors showing the relative importance of the input random variables are calculated. Significant plasticity is present in this problem and has a pronounced effect on the probabilistic results. The random input variables are the material yield stress and internal pressure with Weibull and normal distributions, respectively. The results verify the ability of NESSUS to compute the CDF and sensitivity factors of a materially nonlinear structure. In addition, the ability of the Advanced Mean Value (AMV) procedure to assess the probabilistic behavior of structures which exhibit a highly nonlinear response is shown. Thus, the AMV procedure can be applied with confidence to other structures which exhibit nonlinear behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ide, Toshiki; Hofmann, Holger F.; JST-CREST, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama 1-3-1, Higashi Hiroshima 739-8530
The information encoded in the polarization of a single photon can be transferred to a remote location by two-channel continuous-variable quantum teleportation. However, the finite entanglement used in the teleportation causes random changes in photon number. If more than one photon appears in the output, the continuous-variable teleportation accidentally produces clones of the original input photon. In this paper, we derive the polarization statistics of the N-photon output components and show that they can be decomposed into an optimal cloning term and completely unpolarized noise. We find that the accidental cloning of the input photon is nearly optimal at experimentallymore » feasible squeezing levels, indicating that the loss of polarization information is partially compensated by the availability of clones.« less
Biehler, J; Wall, W A
2018-02-01
If computational models are ever to be used in high-stakes decision making in clinical practice, the use of personalized models and predictive simulation techniques is a must. This entails rigorous quantification of uncertainties as well as harnessing available patient-specific data to the greatest extent possible. Although researchers are beginning to realize that taking uncertainty in model input parameters into account is a necessity, the predominantly used probabilistic description for these uncertain parameters is based on elementary random variable models. In this work, we set out for a comparison of different probabilistic models for uncertain input parameters using the example of an uncertain wall thickness in finite element models of abdominal aortic aneurysms. We provide the first comparison between a random variable and a random field model for the aortic wall and investigate the impact on the probability distribution of the computed peak wall stress. Moreover, we show that the uncertainty about the prevailing peak wall stress can be reduced if noninvasively available, patient-specific data are harnessed for the construction of the probabilistic wall thickness model. Copyright © 2017 John Wiley & Sons, Ltd.
CMOS-based Stochastically Spiking Neural Network for Optimization under Uncertainties
2017-03-01
inverse tangent characteristics at varying input voltage (VIN) [Fig. 3], thereby it is suitable for Kernel function implementation. By varying bias...cost function/constraint variables are generated based on inverse transform on CDF. In Fig. 5, F-1(u) for uniformly distributed random number u [0, 1...extracts random samples of x varying with CDF of F(x). In Fig. 6, we present a successive approximation (SA) circuit to evaluate inverse
NASA Astrophysics Data System (ADS)
Wang, Huiqin; Wang, Xue; Lynette, Kibe; Cao, Minghua
2018-06-01
The performance of multiple-input multiple-output wireless optical communication systems that adopt Q-ary pulse position modulation over spatial correlated log-normal fading channel is analyzed in terms of its un-coded bit error rate and ergodic channel capacity. The analysis is based on the Wilkinson's method which approximates the distribution of a sum of correlated log-normal random variables to a log-normal random variable. The analytical and simulation results corroborate the increment of correlation coefficients among sub-channels lead to system performance degradation. Moreover, the receiver diversity has better performance in resistance of spatial correlation caused channel fading.
A Non-Simulation Based Method for Inducing Pearson’s Correlation Between Input Random Variables
2008-04-23
Systems 500 Auxillary Systems 600 Outfit & Furnishings 700 Weapons 800 Integration & Engineering 900 Ship Assembly & Support Total SWBS Description...Upside Probable Downside 000 Administration 100 Hull 200 Propulsion 300 Electric Plant 400 Electonics Systems 500 Auxillary Systems 600 Outfit
Security of BB84 with weak randomness and imperfect qubit encoding
NASA Astrophysics Data System (ADS)
Zhao, Liang-Yuan; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Fang, Xi; Han, Zheng-Fu; Huang, Wei
2018-03-01
The main threats for the well-known Bennett-Brassard 1984 (BB84) practical quantum key distribution (QKD) systems are that its encoding is inaccurate and measurement device may be vulnerable to particular attacks. Thus, a general physical model or security proof to tackle these loopholes simultaneously and quantitatively is highly desired. Here we give a framework on the security of BB84 when imperfect qubit encoding and vulnerability of measurement device are both considered. In our analysis, the potential attacks to measurement device are generalized by the recently proposed weak randomness model which assumes the input random numbers are partially biased depending on a hidden variable planted by an eavesdropper. And the inevitable encoding inaccuracy is also introduced here. From a fundamental view, our work reveals the potential information leakage due to encoding inaccuracy and weak randomness input. For applications, our result can be viewed as a useful tool to quantitatively evaluate the security of a practical QKD system.
Uncertainty Quantification of the FUN3D-Predicted NASA CRM Flutter Boundary
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Massey, Steven J.
2017-01-01
A nonintrusive point collocation method is used to propagate parametric uncertainties of the flexible Common Research Model, a generic transport configuration, through the unsteady aeroelastic CFD solver FUN3D. A range of random input variables are considered, including atmospheric flow variables, structural variables, and inertial (lumped mass) variables. UQ results are explored for a range of output metrics (with a focus on dynamic flutter stability), for both subsonic and transonic Mach numbers, for two different CFD mesh refinements. A particular focus is placed on computing failure probabilities: the probability that the wing will flutter within the flight envelope.
Troyer, T W; Miller, K D
1997-07-01
To understand the interspike interval (ISI) variability displayed by visual cortical neurons (Softky & Koch, 1993), it is critical to examine the dynamics of their neuronal integration, as well as the variability in their synaptic input current. Most previous models have focused on the latter factor. We match a simple integrate-and-fire model to the experimentally measured integrative properties of cortical regular spiking cells (McCormick, Connors, Lighthall, & Prince, 1985). After setting RC parameters, the post-spike voltage reset is set to match experimental measurements of neuronal gain (obtained from in vitro plots of firing frequency versus injected current). Examination of the resulting model leads to an intuitive picture of neuronal integration that unifies the seemingly contradictory 1/square root of N and random walk pictures that have previously been proposed. When ISIs are dominated by postspike recovery, 1/square root of N arguments hold and spiking is regular; after the "memory" of the last spike becomes negligible, spike threshold crossing is caused by input variance around a steady state and spiking is Poisson. In integrate-and-fire neurons matched to cortical cell physiology, steady-state behavior is predominant, and ISIs are highly variable at all physiological firing rates and for a wide range of inhibitory and excitatory inputs.
Approach for Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
NASA Technical Reports Server (NTRS)
Putko, Michele M.; Newman, Perry A.; Taylor, Arthur C., III; Green, Lawrence L.
2001-01-01
This paper presents an implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for a quasi 1-D Euler CFD (computational fluid dynamics) code. Given uncertainties in statistically independent, random, normally distributed input variables, a first- and second-order statistical moment matching procedure is performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, the moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.
Time-variant random interval natural frequency analysis of structures
NASA Astrophysics Data System (ADS)
Wu, Binhua; Wu, Di; Gao, Wei; Song, Chongmin
2018-02-01
This paper presents a new robust method namely, unified interval Chebyshev-based random perturbation method, to tackle hybrid random interval structural natural frequency problem. In the proposed approach, random perturbation method is implemented to furnish the statistical features (i.e., mean and standard deviation) and Chebyshev surrogate model strategy is incorporated to formulate the statistical information of natural frequency with regards to the interval inputs. The comprehensive analysis framework combines the superiority of both methods in a way that computational cost is dramatically reduced. This presented method is thus capable of investigating the day-to-day based time-variant natural frequency of structures accurately and efficiently under concrete intrinsic creep effect with probabilistic and interval uncertain variables. The extreme bounds of the mean and standard deviation of natural frequency are captured through the embedded optimization strategy within the analysis procedure. Three particularly motivated numerical examples with progressive relationship in perspective of both structure type and uncertainty variables are demonstrated to justify the computational applicability, accuracy and efficiency of the proposed method.
Dummer, Benjamin; Wieland, Stefan; Lindner, Benjamin
2014-01-01
A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from being Poisson. This is inconsistent with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a recurrent network. Here we tackle this problem for the popular class of integrate-and-fire neurons and study a self-consistent statistics of input and output spectra of neural spike trains. Instead of actually using a large network, we use an iterative scheme, in which we simulate a single neuron over several generations. In each of these generations, the neuron is stimulated with surrogate stochastic input that has a similar statistics as the output of the previous generation. For the surrogate input, we employ two distinct approximations: (i) a superposition of renewal spike trains with the same interspike interval density as observed in the previous generation and (ii) a Gaussian current with a power spectrum proportional to that observed in the previous generation. For input parameters that correspond to balanced input in the network, both the renewal and the Gaussian iteration procedure converge quickly and yield comparable results for the self-consistent spike-train power spectrum. We compare our results to large-scale simulations of a random sparsely connected network of leaky integrate-and-fire neurons (Brunel, 2000) and show that in the asynchronous regime close to a state of balanced synaptic input from the network, our iterative schemes provide an excellent approximations to the autocorrelation of spike trains in the recurrent network.
NASA Astrophysics Data System (ADS)
Giraud, Francois
1999-10-01
This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as the sole sources of power, whose variations influence the system variables. Since both subsystems have different dynamics, their respective responses are expected to impact differently the whole system behavior. The dispatchability of the battery-supported system as well as its stability and reliability during gusts and/or cloud passage is also discussed. In the fifth step, the goal is to determine to what extent the overall power quality of the grid would be affected by a proliferation of Utility-interactive hybrid system and whether recourse to bulky or individual filtering and voltage controller is necessary. The final stage of the research includes a steady-state analysis of two-year operation (May 96--Apr 98) of the system, with a discussion on system reliability, on any loss of supply probability, and on the effects of the randomness in the wind and solar radiation upon the system design optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, April M; Piburn, Jesse O; McManamay, Ryan A
2017-01-01
Monte Carlo simulation is a popular numerical experimentation technique used in a range of scientific fields to obtain the statistics of unknown random output variables. Despite its widespread applicability, it can be difficult to infer required input probability distributions when they are related to population counts unknown at desired spatial resolutions. To overcome this challenge, we propose a framework that uses a dasymetric model to infer the probability distributions needed for a specific class of Monte Carlo simulations which depend on population counts.
A NARX damper model for virtual tuning of automotive suspension systems with high-frequency loading
NASA Astrophysics Data System (ADS)
Alghafir, M. N.; Dunne, J. F.
2012-02-01
A computationally efficient NARX-type neural network model is developed to characterise highly nonlinear frequency-dependent thermally sensitive hydraulic dampers for use in the virtual tuning of passive suspension systems with high-frequency loading. Three input variables are chosen to account for high-frequency kinematics and temperature variations arising from continuous vehicle operation over non-smooth surfaces such as stone-covered streets, rough or off-road conditions. Two additional input variables are chosen to represent tuneable valve parameters. To assist in the development of the NARX model, a highly accurate but computationally excessive physical damper model [originally proposed by S. Duym and K. Reybrouck, Physical characterization of non-linear shock absorber dynamics, Eur. J. Mech. Eng. M 43(4) (1998), pp. 181-188] is extended to allow for high-frequency input kinematics. Experimental verification of this extended version uses measured damper data obtained from an industrial damper test machine under near-isothermal conditions for fixed valve settings, with input kinematics corresponding to harmonic and random road profiles. The extended model is then used only for simulating data for training and testing the NARX model with specified temperature profiles and different valve parameters, both in isolation and within quarter-car vehicle simulations. A heat generation and dissipation model is also developed and experimentally verified for use within the simulations. Virtual tuning using the quarter-car simulation model then exploits the NARX damper to achieve a compromise between ride and handling under transient thermal conditions with harmonic and random road profiles. For quarter-car simulations, the paper shows that a single tuneable NARX damper makes virtual tuning computationally very attractive.
Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors.
Ali, Hany S M; Blagden, Nicholas; York, Peter; Amani, Amir; Brook, Toni
2009-06-28
This study employs artificial neural networks (ANNs) to create a model to identify relationships between variables affecting drug nanoprecipitation using microfluidic reactors. The input variables examined were saturation levels of prednisolone, solvent and antisolvent flow rates, microreactor inlet angles and internal diameters, while particle size was the single output. ANNs software was used to analyse a set of data obtained by random selection of the variables. The developed model was then assessed using a separate set of validation data and provided good agreement with the observed results. The antisolvent flow rate was found to have the dominant role on determining final particle size.
Variance-Based Sensitivity Analysis to Support Simulation-Based Design Under Uncertainty
Opgenoord, Max M. J.; Allaire, Douglas L.; Willcox, Karen E.
2016-09-12
Sensitivity analysis plays a critical role in quantifying uncertainty in the design of engineering systems. A variance-based global sensitivity analysis is often used to rank the importance of input factors, based on their contribution to the variance of the output quantity of interest. However, this analysis assumes that all input variability can be reduced to zero, which is typically not the case in a design setting. Distributional sensitivity analysis (DSA) instead treats the uncertainty reduction in the inputs as a random variable, and defines a variance-based sensitivity index function that characterizes the relative contribution to the output variance as amore » function of the amount of uncertainty reduction. This paper develops a computationally efficient implementation for the DSA formulation and extends it to include distributions commonly used in engineering design under uncertainty. Application of the DSA method to the conceptual design of a commercial jetliner demonstrates how the sensitivity analysis provides valuable information to designers and decision-makers on where and how to target uncertainty reduction efforts.« less
Variance-Based Sensitivity Analysis to Support Simulation-Based Design Under Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opgenoord, Max M. J.; Allaire, Douglas L.; Willcox, Karen E.
Sensitivity analysis plays a critical role in quantifying uncertainty in the design of engineering systems. A variance-based global sensitivity analysis is often used to rank the importance of input factors, based on their contribution to the variance of the output quantity of interest. However, this analysis assumes that all input variability can be reduced to zero, which is typically not the case in a design setting. Distributional sensitivity analysis (DSA) instead treats the uncertainty reduction in the inputs as a random variable, and defines a variance-based sensitivity index function that characterizes the relative contribution to the output variance as amore » function of the amount of uncertainty reduction. This paper develops a computationally efficient implementation for the DSA formulation and extends it to include distributions commonly used in engineering design under uncertainty. Application of the DSA method to the conceptual design of a commercial jetliner demonstrates how the sensitivity analysis provides valuable information to designers and decision-makers on where and how to target uncertainty reduction efforts.« less
Intelligent Fault Diagnosis of HVCB with Feature Space Optimization-Based Random Forest
Ma, Suliang; Wu, Jianwen; Wang, Yuhao; Jia, Bowen; Jiang, Yuan
2018-01-01
Mechanical faults of high-voltage circuit breakers (HVCBs) always happen over long-term operation, so extracting the fault features and identifying the fault type have become a key issue for ensuring the security and reliability of power supply. Based on wavelet packet decomposition technology and random forest algorithm, an effective identification system was developed in this paper. First, compared with the incomplete description of Shannon entropy, the wavelet packet time-frequency energy rate (WTFER) was adopted as the input vector for the classifier model in the feature selection procedure. Then, a random forest classifier was used to diagnose the HVCB fault, assess the importance of the feature variable and optimize the feature space. Finally, the approach was verified based on actual HVCB vibration signals by considering six typical fault classes. The comparative experiment results show that the classification accuracy of the proposed method with the origin feature space reached 93.33% and reached up to 95.56% with optimized input feature vector of classifier. This indicates that feature optimization procedure is successful, and the proposed diagnosis algorithm has higher efficiency and robustness than traditional methods. PMID:29659548
Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density
Smallwood, David O.
1997-01-01
The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs) of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power) spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general casemore » of matching a target probability density function using a zero memory nonlinear (ZMNL) function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV) are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.« less
Park, Hame; Lueckmann, Jan-Matthis; von Kriegstein, Katharina; Bitzer, Sebastian; Kiebel, Stefan J.
2016-01-01
Decisions in everyday life are prone to error. Standard models typically assume that errors during perceptual decisions are due to noise. However, it is unclear how noise in the sensory input affects the decision. Here we show that there are experimental tasks for which one can analyse the exact spatio-temporal details of a dynamic sensory noise and better understand variability in human perceptual decisions. Using a new experimental visual tracking task and a novel Bayesian decision making model, we found that the spatio-temporal noise fluctuations in the input of single trials explain a significant part of the observed responses. Our results show that modelling the precise internal representations of human participants helps predict when perceptual decisions go wrong. Furthermore, by modelling precisely the stimuli at the single-trial level, we were able to identify the underlying mechanism of perceptual decision making in more detail than standard models. PMID:26752272
Methods for Combining Payload Parameter Variations with Input Environment
NASA Technical Reports Server (NTRS)
Merchant, D. H.; Straayer, J. W.
1975-01-01
Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occuring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular value of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the methods are also presented.
Continuous-variable phase estimation with unitary and random linear disturbance
NASA Astrophysics Data System (ADS)
Delgado de Souza, Douglas; Genoni, Marco G.; Kim, M. S.
2014-10-01
We address the problem of continuous-variable quantum phase estimation in the presence of linear disturbance at the Hamiltonian level by means of Gaussian probe states. In particular we discuss both unitary and random disturbance by considering the parameter which characterizes the unwanted linear term present in the Hamiltonian as fixed (unitary disturbance) or random with a given probability distribution (random disturbance). We derive the optimal input Gaussian states at fixed energy, maximizing the quantum Fisher information over the squeezing angle and the squeezing energy fraction, and we discuss the scaling of the quantum Fisher information in terms of the output number of photons, nout. We observe that, in the case of unitary disturbance, the optimal state is a squeezed vacuum state and the quadratic scaling is conserved. As regards the random disturbance, we observe that the optimal squeezing fraction may not be equal to one and, for any nonzero value of the noise parameter, the quantum Fisher information scales linearly with the average number of photons. Finally, we discuss the performance of homodyne measurement by comparing the achievable precision with the ultimate limit imposed by the quantum Cramér-Rao bound.
Model's sparse representation based on reduced mixed GMsFE basis methods
NASA Astrophysics Data System (ADS)
Jiang, Lijian; Li, Qiuqi
2017-06-01
In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a large number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.
Model's sparse representation based on reduced mixed GMsFE basis methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Qiuqi, E-mail: qiuqili@hnu.edu.cn
2017-06-01
In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a largemore » number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.« less
Stability and dynamical properties of material flow systems on random networks
NASA Astrophysics Data System (ADS)
Anand, K.; Galla, T.
2009-04-01
The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.
Probabilistic dose-response modeling: case study using dichloromethane PBPK model results.
Marino, Dale J; Starr, Thomas B
2007-12-01
A revised assessment of dichloromethane (DCM) has recently been reported that examines the influence of human genetic polymorphisms on cancer risks using deterministic PBPK and dose-response modeling in the mouse combined with probabilistic PBPK modeling in humans. This assessment utilized Bayesian techniques to optimize kinetic variables in mice and humans with mean values from posterior distributions used in the deterministic modeling in the mouse. To supplement this research, a case study was undertaken to examine the potential impact of probabilistic rather than deterministic PBPK and dose-response modeling in mice on subsequent unit risk factor (URF) determinations. Four separate PBPK cases were examined based on the exposure regimen of the NTP DCM bioassay. These were (a) Same Mouse (single draw of all PBPK inputs for both treatment groups); (b) Correlated BW-Same Inputs (single draw of all PBPK inputs for both treatment groups except for bodyweights (BWs), which were entered as correlated variables); (c) Correlated BW-Different Inputs (separate draws of all PBPK inputs for both treatment groups except that BWs were entered as correlated variables); and (d) Different Mouse (separate draws of all PBPK inputs for both treatment groups). Monte Carlo PBPK inputs reflect posterior distributions from Bayesian calibration in the mouse that had been previously reported. A minimum of 12,500 PBPK iterations were undertaken, in which dose metrics, i.e., mg DCM metabolized by the GST pathway/L tissue/day for lung and liver were determined. For dose-response modeling, these metrics were combined with NTP tumor incidence data that were randomly selected from binomial distributions. Resultant potency factors (0.1/ED(10)) were coupled with probabilistic PBPK modeling in humans that incorporated genetic polymorphisms to derive URFs. Results show that there was relatively little difference, i.e., <10% in central tendency and upper percentile URFs, regardless of the case evaluated. Independent draws of PBPK inputs resulted in the slightly higher URFs. Results were also comparable to corresponding values from the previously reported deterministic mouse PBPK and dose-response modeling approach that used LED(10)s to derive potency factors. This finding indicated that the adjustment from ED(10) to LED(10) in the deterministic approach for DCM compensated for variability resulting from probabilistic PBPK and dose-response modeling in the mouse. Finally, results show a similar degree of variability in DCM risk estimates from a number of different sources including the current effort even though these estimates were developed using very different techniques. Given the variety of different approaches involved, 95th percentile-to-mean risk estimate ratios of 2.1-4.1 represent reasonable bounds on variability estimates regarding probabilistic assessments of DCM.
Synchronization properties of coupled chaotic neurons: The role of random shared input
NASA Astrophysics Data System (ADS)
Kumar, Rupesh; Bilal, Shakir; Ramaswamy, Ram
2016-06-01
Spike-time correlations of neighbouring neurons depend on their intrinsic firing properties as well as on the inputs they share. Studies have shown that periodically firing neurons, when subjected to random shared input, exhibit asynchronicity. Here, we study the effect of random shared input on the synchronization of weakly coupled chaotic neurons. The cases of so-called electrical and chemical coupling are both considered, and we observe a wide range of synchronization behaviour. When subjected to identical shared random input, there is a decrease in the threshold coupling strength needed for chaotic neurons to synchronize in-phase. The system also supports lag-synchronous states, and for these, we find that shared input can cause desynchronization. We carry out a master stability function analysis for a network of such neurons and show agreement with the numerical simulations. The contrasting role of shared random input for complete and lag synchronized neurons is useful in understanding spike-time correlations observed in many areas of the brain.
Synchronization properties of coupled chaotic neurons: The role of random shared input
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rupesh; Bilal, Shakir; Ramaswamy, Ram
Spike-time correlations of neighbouring neurons depend on their intrinsic firing properties as well as on the inputs they share. Studies have shown that periodically firing neurons, when subjected to random shared input, exhibit asynchronicity. Here, we study the effect of random shared input on the synchronization of weakly coupled chaotic neurons. The cases of so-called electrical and chemical coupling are both considered, and we observe a wide range of synchronization behaviour. When subjected to identical shared random input, there is a decrease in the threshold coupling strength needed for chaotic neurons to synchronize in-phase. The system also supports lag–synchronous states,more » and for these, we find that shared input can cause desynchronization. We carry out a master stability function analysis for a network of such neurons and show agreement with the numerical simulations. The contrasting role of shared random input for complete and lag synchronized neurons is useful in understanding spike-time correlations observed in many areas of the brain.« less
Uncertainty analysis of geothermal energy economics
NASA Astrophysics Data System (ADS)
Sener, Adil Caner
This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be captured in the valuation model. Finally, the study will compare the probability distributions of development cost and project value and discusses the market penetration potential of the geothermal power generation. There is a recent world wide interest in geothermal utilization projects. There are several reasons for the recent popularity of geothermal energy, including the increasing volatility of fossil fuel prices, need for domestic energy sources, approaching carbon emission limitations and state renewable energy standards, increasing need for baseload units, and new technology to make geothermal energy more attractive for power generation. It is our hope that this study will contribute to the recent progress of geothermal energy by shedding light on the uncertainty of geothermal energy project costs.
Stochastic reduced order models for inverse problems under uncertainty
Warner, James E.; Aquino, Wilkins; Grigoriu, Mircea D.
2014-01-01
This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well. PMID:25558115
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlfeld, R., E-mail: r.ahlfeld14@imperial.ac.uk; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrixmore » is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10 different input distributions or histograms.« less
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
NASA Astrophysics Data System (ADS)
Ahlfeld, R.; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10 different input distributions or histograms.
NASA Astrophysics Data System (ADS)
Fabianová, Jana; Kačmáry, Peter; Molnár, Vieroslav; Michalik, Peter
2016-10-01
Forecasting is one of the logistics activities and a sales forecast is the starting point for the elaboration of business plans. Forecast accuracy affects the business outcomes and ultimately may significantly affect the economic stability of the company. The accuracy of the prediction depends on the suitability of the use of forecasting methods, experience, quality of input data, time period and other factors. The input data are usually not deterministic but they are often of random nature. They are affected by uncertainties of the market environment, and many other factors. Taking into account the input data uncertainty, the forecast error can by reduced. This article deals with the use of the software tool for incorporating data uncertainty into forecasting. Proposals are presented of a forecasting approach and simulation of the impact of uncertain input parameters to the target forecasted value by this case study model. The statistical analysis and risk analysis of the forecast results is carried out including sensitivity analysis and variables impact analysis.
Extending existing structural identifiability analysis methods to mixed-effects models.
Janzén, David L I; Jirstrand, Mats; Chappell, Michael J; Evans, Neil D
2018-01-01
The concept of structural identifiability for state-space models is expanded to cover mixed-effects state-space models. Two methods applicable for the analytical study of the structural identifiability of mixed-effects models are presented. The two methods are based on previously established techniques for non-mixed-effects models; namely the Taylor series expansion and the input-output form approach. By generating an exhaustive summary, and by assuming an infinite number of subjects, functions of random variables can be derived which in turn determine the distribution of the system's observation function(s). By considering the uniqueness of the analytical statistical moments of the derived functions of the random variables, the structural identifiability of the corresponding mixed-effects model can be determined. The two methods are applied to a set of examples of mixed-effects models to illustrate how they work in practice. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao
2017-03-01
Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction.
Employing Sensitivity Derivatives for Robust Optimization under Uncertainty in CFD
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Putko, Michele M.; Taylor, Arthur C., III
2004-01-01
A robust optimization is demonstrated on a two-dimensional inviscid airfoil problem in subsonic flow. Given uncertainties in statistically independent, random, normally distributed flow parameters (input variables), an approximate first-order statistical moment method is employed to represent the Computational Fluid Dynamics (CFD) code outputs as expected values with variances. These output quantities are used to form the objective function and constraints. The constraints are cast in probabilistic terms; that is, the probability that a constraint is satisfied is greater than or equal to some desired target probability. Gradient-based robust optimization of this stochastic problem is accomplished through use of both first and second-order sensitivity derivatives. For each robust optimization, the effect of increasing both input standard deviations and target probability of constraint satisfaction are demonstrated. This method provides a means for incorporating uncertainty when considering small deviations from input mean values.
Soares, Marta O.; Palmer, Stephen; Ades, Anthony E.; Harrison, David; Shankar-Hari, Manu; Rowan, Kathy M.
2015-01-01
Cost-effectiveness analysis (CEA) models are routinely used to inform health care policy. Key model inputs include relative effectiveness of competing treatments, typically informed by meta-analysis. Heterogeneity is ubiquitous in meta-analysis, and random effects models are usually used when there is variability in effects across studies. In the absence of observed treatment effect modifiers, various summaries from the random effects distribution (random effects mean, predictive distribution, random effects distribution, or study-specific estimate [shrunken or independent of other studies]) can be used depending on the relationship between the setting for the decision (population characteristics, treatment definitions, and other contextual factors) and the included studies. If covariates have been measured that could potentially explain the heterogeneity, then these can be included in a meta-regression model. We describe how covariates can be included in a network meta-analysis model and how the output from such an analysis can be used in a CEA model. We outline a model selection procedure to help choose between competing models and stress the importance of clinical input. We illustrate the approach with a health technology assessment of intravenous immunoglobulin for the management of adult patients with severe sepsis in an intensive care setting, which exemplifies how risk of bias information can be incorporated into CEA models. We show that the results of the CEA and value-of-information analyses are sensitive to the model and highlight the importance of sensitivity analyses when conducting CEA in the presence of heterogeneity. The methods presented extend naturally to heterogeneity in other model inputs, such as baseline risk. PMID:25712447
Welton, Nicky J; Soares, Marta O; Palmer, Stephen; Ades, Anthony E; Harrison, David; Shankar-Hari, Manu; Rowan, Kathy M
2015-07-01
Cost-effectiveness analysis (CEA) models are routinely used to inform health care policy. Key model inputs include relative effectiveness of competing treatments, typically informed by meta-analysis. Heterogeneity is ubiquitous in meta-analysis, and random effects models are usually used when there is variability in effects across studies. In the absence of observed treatment effect modifiers, various summaries from the random effects distribution (random effects mean, predictive distribution, random effects distribution, or study-specific estimate [shrunken or independent of other studies]) can be used depending on the relationship between the setting for the decision (population characteristics, treatment definitions, and other contextual factors) and the included studies. If covariates have been measured that could potentially explain the heterogeneity, then these can be included in a meta-regression model. We describe how covariates can be included in a network meta-analysis model and how the output from such an analysis can be used in a CEA model. We outline a model selection procedure to help choose between competing models and stress the importance of clinical input. We illustrate the approach with a health technology assessment of intravenous immunoglobulin for the management of adult patients with severe sepsis in an intensive care setting, which exemplifies how risk of bias information can be incorporated into CEA models. We show that the results of the CEA and value-of-information analyses are sensitive to the model and highlight the importance of sensitivity analyses when conducting CEA in the presence of heterogeneity. The methods presented extend naturally to heterogeneity in other model inputs, such as baseline risk. © The Author(s) 2015.
ProMC: Input-output data format for HEP applications using varint encoding
NASA Astrophysics Data System (ADS)
Chekanov, S. V.; May, E.; Strand, K.; Van Gemmeren, P.
2014-10-01
A new data format for Monte Carlo (MC) events, or any structural data, including experimental data, is discussed. The format is designed to store data in a compact binary form using variable-size integer encoding as implemented in the Google's Protocol Buffers package. This approach is implemented in the PROMC library which produces smaller file sizes for MC records compared to the existing input-output libraries used in high-energy physics (HEP). Other important features of the proposed format are a separation of abstract data layouts from concrete programming implementations, self-description and random access. Data stored in PROMC files can be written, read and manipulated in a number of programming languages, such C++, JAVA, FORTRAN and PYTHON.
NASA Technical Reports Server (NTRS)
Millwater, Harry; Riha, David
1996-01-01
The NESSUS and NASTRAN computer codes were successfully integrated. The enhanced NESSUS code will use NASTRAN for the structural Analysis and NESSUS for the probabilistic analysis. Any quantities in the NASTRAN bulk data input can be random variables. Any NASTRAN result that is written to the output2 file can be returned to NESSUS as the finite element result. The interfacing between NESSUS and NASTRAN is handled automatically by NESSUS. NESSUS and NASTRAN can be run on different machines using the remote host option.
A random forest algorithm for nowcasting of intense precipitation events
NASA Astrophysics Data System (ADS)
Das, Saurabh; Chakraborty, Rohit; Maitra, Animesh
2017-09-01
Automatic nowcasting of convective initiation and thunderstorms has potential applications in several sectors including aviation planning and disaster management. In this paper, random forest based machine learning algorithm is tested for nowcasting of convective rain with a ground based radiometer. Brightness temperatures measured at 14 frequencies (7 frequencies in 22-31 GHz band and 7 frequencies in 51-58 GHz bands) are utilized as the inputs of the model. The lower frequency band is associated to the water vapor absorption whereas the upper frequency band relates to the oxygen absorption and hence, provide information on the temperature and humidity of the atmosphere. Synthetic minority over-sampling technique is used to balance the data set and 10-fold cross validation is used to assess the performance of the model. Results indicate that random forest algorithm with fixed alarm generation time of 30 min and 60 min performs quite well (probability of detection of all types of weather condition ∼90%) with low false alarms. It is, however, also observed that reducing the alarm generation time improves the threat score significantly and also decreases false alarms. The proposed model is found to be very sensitive to the boundary layer instability as indicated by the variable importance measure. The study shows the suitability of a random forest algorithm for nowcasting application utilizing a large number of input parameters from diverse sources and can be utilized in other forecasting problems.
Samad, Manar D; Ulloa, Alvaro; Wehner, Gregory J; Jing, Linyuan; Hartzel, Dustin; Good, Christopher W; Williams, Brent A; Haggerty, Christopher M; Fornwalt, Brandon K
2018-06-09
The goal of this study was to use machine learning to more accurately predict survival after echocardiography. Predicting patient outcomes (e.g., survival) following echocardiography is primarily based on ejection fraction (EF) and comorbidities. However, there may be significant predictive information within additional echocardiography-derived measurements combined with clinical electronic health record data. Mortality was studied in 171,510 unselected patients who underwent 331,317 echocardiograms in a large regional health system. We investigated the predictive performance of nonlinear machine learning models compared with that of linear logistic regression models using 3 different inputs: 1) clinical variables, including 90 cardiovascular-relevant International Classification of Diseases, Tenth Revision, codes, and age, sex, height, weight, heart rate, blood pressures, low-density lipoprotein, high-density lipoprotein, and smoking; 2) clinical variables plus physician-reported EF; and 3) clinical variables and EF, plus 57 additional echocardiographic measurements. Missing data were imputed with a multivariate imputation by using a chained equations algorithm (MICE). We compared models versus each other and baseline clinical scoring systems by using a mean area under the curve (AUC) over 10 cross-validation folds and across 10 survival durations (6 to 60 months). Machine learning models achieved significantly higher prediction accuracy (all AUC >0.82) over common clinical risk scores (AUC = 0.61 to 0.79), with the nonlinear random forest models outperforming logistic regression (p < 0.01). The random forest model including all echocardiographic measurements yielded the highest prediction accuracy (p < 0.01 across all models and survival durations). Only 10 variables were needed to achieve 96% of the maximum prediction accuracy, with 6 of these variables being derived from echocardiography. Tricuspid regurgitation velocity was more predictive of survival than LVEF. In a subset of studies with complete data for the top 10 variables, multivariate imputation by chained equations yielded slightly reduced predictive accuracies (difference in AUC of 0.003) compared with the original data. Machine learning can fully utilize large combinations of disparate input variables to predict survival after echocardiography with superior accuracy. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Merchant, D. H.
1976-01-01
Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occurring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the method are also presented.
Low rank approach to computing first and higher order derivatives using automatic differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, J. A.; Abdel-Khalik, H. S.; Utke, J.
2012-07-01
This manuscript outlines a new approach for increasing the efficiency of applying automatic differentiation (AD) to large scale computational models. By using the principles of the Efficient Subspace Method (ESM), low rank approximations of the derivatives for first and higher orders can be calculated using minimized computational resources. The output obtained from nuclear reactor calculations typically has a much smaller numerical rank compared to the number of inputs and outputs. This rank deficiency can be exploited to reduce the number of derivatives that need to be calculated using AD. The effective rank can be determined according to ESM by computingmore » derivatives with AD at random inputs. Reduced or pseudo variables are then defined and new derivatives are calculated with respect to the pseudo variables. Two different AD packages are used: OpenAD and Rapsodia. OpenAD is used to determine the effective rank and the subspace that contains the derivatives. Rapsodia is then used to calculate derivatives with respect to the pseudo variables for the desired order. The overall approach is applied to two simple problems and to MATWS, a safety code for sodium cooled reactors. (authors)« less
Spatial uncertainty analysis: Propagation of interpolation errors in spatially distributed models
Phillips, D.L.; Marks, D.G.
1996-01-01
In simulation modelling, it is desirable to quantify model uncertainties and provide not only point estimates for output variables but confidence intervals as well. Spatially distributed physical and ecological process models are becoming widely used, with runs being made over a grid of points that represent the landscape. This requires input values at each grid point, which often have to be interpolated from irregularly scattered measurement sites, e.g., weather stations. Interpolation introduces spatially varying errors which propagate through the model We extended established uncertainty analysis methods to a spatial domain for quantifying spatial patterns of input variable interpolation errors and how they propagate through a model to affect the uncertainty of the model output. We applied this to a model of potential evapotranspiration (PET) as a demonstration. We modelled PET for three time periods in 1990 as a function of temperature, humidity, and wind on a 10-km grid across the U.S. portion of the Columbia River Basin. Temperature, humidity, and wind speed were interpolated using kriging from 700- 1000 supporting data points. Kriging standard deviations (SD) were used to quantify the spatially varying interpolation uncertainties. For each of 5693 grid points, 100 Monte Carlo simulations were done, using the kriged values of temperature, humidity, and wind, plus random error terms determined by the kriging SDs and the correlations of interpolation errors among the three variables. For the spring season example, kriging SDs averaged 2.6??C for temperature, 8.7% for relative humidity, and 0.38 m s-1 for wind. The resultant PET estimates had coefficients of variation (CVs) ranging from 14% to 27% for the 10-km grid cells. Maps of PET means and CVs showed the spatial patterns of PET with a measure of its uncertainty due to interpolation of the input variables. This methodology should be applicable to a variety of spatially distributed models using interpolated inputs.
The living Drake equation of the Tau Zero Foundation
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2011-03-01
The living Drake equation is our statistical generalization of the Drake equation such that it can take into account any number of factors. This new result opens up the possibility to enrich the equation by inserting more new factors as long as the scientific learning increases. The adjective "Living" refers just to this continuous enrichment of the Drake equation and is the goal of a new research project that the Tau Zero Foundation has entrusted to this author as the discoverer of the statistical Drake equation described hereafter. From a simple product of seven positive numbers, the Drake equation is now turned into the product of seven positive random variables. We call this "the Statistical Drake Equation". The mathematical consequences of this transformation are then derived. The proof of our results is based on the Central Limit Theorem (CLT) of Statistics. In loose terms, the CLT states that the sum of any number of independent random variables, each of which may be arbitrarily distributed, approaches a Gaussian (i.e. normal) random variable. This is called the Lyapunov form of the CLT, or the Lindeberg form of the CLT, depending on the mathematical constraints assumed on the third moments of the various probability distributions. In conclusion, we show that: The new random variable N, yielding the number of communicating civilizations in the Galaxy, follows the lognormal distribution. Then, the mean value, standard deviation, mode, median and all the moments of this lognormal N can be derived from the means and standard deviations of the seven input random variables. In fact, the seven factors in the ordinary Drake equation now become seven independent positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into our statistical Drake equation by allowing an arbitrary probability distribution for each factor. This is both physically realistic and practically very useful, of course. An application of our statistical Drake equation then follows. The (average) distance between any two neighbouring and communicating civilizations in the Galaxy may be shown to be inversely proportional to the cubic root of N. Then, this distance now becomes a new random variable. We derive the relevant probability density function, apparently previously unknown (dubbed "Maccone distribution" by Paul Davies). Data Enrichment Principle. It should be noticed that any positive number of random variables in the statistical Drake equation is compatible with the CLT. So, our generalization allows for many more factors to be added in the future as long as more refined scientific knowledge about each factor will be known to the scientists. This capability to make room for more future factors in the statistical Drake equation we call the "Data Enrichment Principle", and regard as the key to more profound, future results in Astrobiology and SETI.
When Can Information from Ordinal Scale Variables Be Integrated?
ERIC Educational Resources Information Center
Kemp, Simon; Grace, Randolph C.
2010-01-01
Many theoretical constructs of interest to psychologists are multidimensional and derive from the integration of several input variables. We show that input variables that are measured on ordinal scales cannot be combined to produce a stable weakly ordered output variable that allows trading off the input variables. Instead a partial order is…
STDP allows fast rate-modulated coding with Poisson-like spike trains.
Gilson, Matthieu; Masquelier, Timothée; Hugues, Etienne
2011-10-01
Spike timing-dependent plasticity (STDP) has been shown to enable single neurons to detect repeatedly presented spatiotemporal spike patterns. This holds even when such patterns are embedded in equally dense random spiking activity, that is, in the absence of external reference times such as a stimulus onset. Here we demonstrate, both analytically and numerically, that STDP can also learn repeating rate-modulated patterns, which have received more experimental evidence, for example, through post-stimulus time histograms (PSTHs). Each input spike train is generated from a rate function using a stochastic sampling mechanism, chosen to be an inhomogeneous Poisson process here. Learning is feasible provided significant covarying rate modulations occur within the typical timescale of STDP (~10-20 ms) for sufficiently many inputs (~100 among 1000 in our simulations), a condition that is met by many experimental PSTHs. Repeated pattern presentations induce spike-time correlations that are captured by STDP. Despite imprecise input spike times and even variable spike counts, a single trained neuron robustly detects the pattern just a few milliseconds after its presentation. Therefore, temporal imprecision and Poisson-like firing variability are not an obstacle to fast temporal coding. STDP provides an appealing mechanism to learn such rate patterns, which, beyond sensory processing, may also be involved in many cognitive tasks.
STDP Allows Fast Rate-Modulated Coding with Poisson-Like Spike Trains
Hugues, Etienne
2011-01-01
Spike timing-dependent plasticity (STDP) has been shown to enable single neurons to detect repeatedly presented spatiotemporal spike patterns. This holds even when such patterns are embedded in equally dense random spiking activity, that is, in the absence of external reference times such as a stimulus onset. Here we demonstrate, both analytically and numerically, that STDP can also learn repeating rate-modulated patterns, which have received more experimental evidence, for example, through post-stimulus time histograms (PSTHs). Each input spike train is generated from a rate function using a stochastic sampling mechanism, chosen to be an inhomogeneous Poisson process here. Learning is feasible provided significant covarying rate modulations occur within the typical timescale of STDP (∼10–20 ms) for sufficiently many inputs (∼100 among 1000 in our simulations), a condition that is met by many experimental PSTHs. Repeated pattern presentations induce spike-time correlations that are captured by STDP. Despite imprecise input spike times and even variable spike counts, a single trained neuron robustly detects the pattern just a few milliseconds after its presentation. Therefore, temporal imprecision and Poisson-like firing variability are not an obstacle to fast temporal coding. STDP provides an appealing mechanism to learn such rate patterns, which, beyond sensory processing, may also be involved in many cognitive tasks. PMID:22046113
Investigation of advanced UQ for CRUD prediction with VIPRE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Michael Scott
2011-09-01
This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. It demonstrates the application of 'advanced UQ,' in particular dimension-adaptive p-refinement for polynomial chaos and stochastic collocation. The study calculates statistics for several quantities of interest that are indicators for the formation of CRUD (Chalk River unidentified deposit), which can lead to CIPS (CRUD induced power shift). Stochastic expansion methods are attractive methods for uncertainty quantification due to their fast convergence properties. For smooth functions (i.e., analytic, infinitely-differentiable) in L{sup 2} (i.e., possessing finite variance), exponential convergence rates can be obtained under order refinementmore » for integrated statistical quantities of interest such as mean, variance, and probability. Two stochastic expansion methods are of interest: nonintrusive polynomial chaos expansion (PCE), which computes coefficients for a known basis of multivariate orthogonal polynomials, and stochastic collocation (SC), which forms multivariate interpolation polynomials for known coefficients. Within the DAKOTA project, recent research in stochastic expansion methods has focused on automated polynomial order refinement ('p-refinement') of expansions to support scalability to higher dimensional random input spaces [4, 3]. By preferentially refining only in the most important dimensions of the input space, the applicability of these methods can be extended from O(10{sup 0})-O(10{sup 1}) random variables to O(10{sup 2}) and beyond, depending on the degree of anisotropy (i.e., the extent to which randominput variables have differing degrees of influence on the statistical quantities of interest (QOIs)). Thus, the purpose of this study is to investigate the application of these adaptive stochastic expansion methods to the analysis of CRUD using the VIPRE simulation tools for two different plant models of differing random dimension, anisotropy, and smoothness.« less
Robustness analysis of an air heating plant and control law by using polynomial chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.
2014-12-10
This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputsmore » (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.« less
2012-03-01
0-486-41183-4. 15. Brown , Robert G. and Patrick Y. C. Hwang . Introduction to Random Signals and Applied Kalman Filtering. Wiley, New York, 1996. ISBN...stability and perfor- mance criteria. In the 1960’s, Kalman introduced the Linear Quadratic Regulator (LQR) method using an integral performance index...feedback of the state variables and was able to apply this method to time-varying and Multi-Input Multi-Output (MIMO) systems. Kalman further showed
2012-08-01
It suggests that a smart use of some a-priori information about the operating environment, when processing the received signal and designing the...random variable with the same variance of the backscattering target amplitude αT , and D ( αT , α G T ) is the Kullback − Leibler divergence, see [65...MI . Proof. See Appendix 3.6.6. Thus, we can use the optimization procedure of Algorithm 4 to optimize the Mutual Information between the target
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Wing, Kam Liu
1987-01-01
In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.
Sugarman, R.M.
1960-08-30
An oscilloscope is designed for displaying transient signal waveforms having random time and amplitude distributions. The oscilloscopc is a sampling device that selects for display a portion of only those waveforms having a particular range of amplitudes. For this purpose a pulse-height analyzer is provided to screen the pulses. A variable voltage-level shifter and a time-scale rampvoltage generator take the pulse height relative to the start of the waveform. The variable voltage shifter produces a voltage level raised one step for each sequential signal waveform to be sampled and this results in an unsmeared record of input signal waveforms. Appropriate delay devices permit each sample waveform to pass its peak amplitude before the circuit selects it for display.
Stochastic empirical loading and dilution model (SELDM) version 1.0.0
Granato, Gregory E.
2013-01-01
The Stochastic Empirical Loading and Dilution Model (SELDM) is designed to transform complex scientific data into meaningful information about the risk of adverse effects of runoff on receiving waters, the potential need for mitigation measures, and the potential effectiveness of such management measures for reducing these risks. The U.S. Geological Survey developed SELDM in cooperation with the Federal Highway Administration to help develop planning-level estimates of event mean concentrations, flows, and loads in stormwater from a site of interest and from an upstream basin. Planning-level estimates are defined as the results of analyses used to evaluate alternative management measures; planning-level estimates are recognized to include substantial uncertainties (commonly orders of magnitude). SELDM uses information about a highway site, the associated receiving-water basin, precipitation events, stormflow, water quality, and the performance of mitigation measures to produce a stochastic population of runoff-quality variables. SELDM provides input statistics for precipitation, prestorm flow, runoff coefficients, and concentrations of selected water-quality constituents from National datasets. Input statistics may be selected on the basis of the latitude, longitude, and physical characteristics of the site of interest and the upstream basin. The user also may derive and input statistics for each variable that are specific to a given site of interest or a given area. SELDM is a stochastic model because it uses Monte Carlo methods to produce the random combinations of input variable values needed to generate the stochastic population of values for each component variable. SELDM calculates the dilution of runoff in the receiving waters and the resulting downstream event mean concentrations and annual average lake concentrations. Results are ranked, and plotting positions are calculated, to indicate the level of risk of adverse effects caused by runoff concentrations, flows, and loads on receiving waters by storm and by year. Unlike deterministic hydrologic models, SELDM is not calibrated by changing values of input variables to match a historical record of values. Instead, input values for SELDM are based on site characteristics and representative statistics for each hydrologic variable. Thus, SELDM is an empirical model based on data and statistics rather than theoretical physiochemical equations. SELDM is a lumped parameter model because the highway site, the upstream basin, and the lake basin each are represented as a single homogeneous unit. Each of these source areas is represented by average basin properties, and results from SELDM are calculated as point estimates for the site of interest. Use of the lumped parameter approach facilitates rapid specification of model parameters to develop planning-level estimates with available data. The approach allows for parsimony in the required inputs to and outputs from the model and flexibility in the use of the model. For example, SELDM can be used to model runoff from various land covers or land uses by using the highway-site definition as long as representative water quality and impervious-fraction data are available.
NASA Technical Reports Server (NTRS)
Hadass, Z.
1974-01-01
The design procedure of feedback controllers was described and the considerations for the selection of the design parameters were given. The frequency domain properties of single-input single-output systems using state feedback controllers are analyzed, and desirable phase and gain margin properties are demonstrated. Special consideration is given to the design of controllers for tracking systems, especially those designed to track polynomial commands. As an example, a controller was designed for a tracking telescope with a polynomial tracking requirement and some special features such as actuator saturation and multiple measurements, one of which is sampled. The resulting system has a tracking performance comparing favorably with a much more complicated digital aided tracker. The parameter sensitivity reduction was treated by considering the variable parameters as random variables. A performance index is defined as a weighted sum of the state and control convariances that sum from both the random system disturbances and the parameter uncertainties, and is minimized numerically by adjusting a set of free parameters.
NASA Astrophysics Data System (ADS)
Liu, Meiling; Liu, Xiangnan; Li, Jin; Ding, Chao; Jiang, Jiale
2014-12-01
Satellites routinely provide frequent, large-scale, near-surface views of many oceanographic variables pertinent to plankton ecology. However, the nutrient fertility of water can be challenging to detect accurately using remote sensing technology. This research has explored an approach to estimate the nutrient fertility in coastal waters through the fusion of synthetic aperture radar (SAR) images and optical images using the random forest (RF) algorithm. The estimation of total inorganic nitrogen (TIN) in the Hong Kong Sea, China, was used as a case study. In March of 2009 and May and August of 2010, a sequence of multi-temporal in situ data and CCD images from China's HJ-1 satellite and RADARSAT-2 images were acquired. Four sensitive parameters were selected as input variables to evaluate TIN: single-band reflectance, a normalized difference spectral index (NDSI) and HV and VH polarizations. The RF algorithm was used to merge the different input variables from the SAR and optical imagery to generate a new dataset (i.e., the TIN outputs). The results showed the temporal-spatial distribution of TIN. The TIN values decreased from coastal waters to the open water areas, and TIN values in the northeast area were higher than those found in the southwest region of the study area. The maximum TIN values occurred in May. Additionally, the estimation accuracy for estimating TIN was significantly improved when the SAR and optical data were used in combination rather than a single data type alone. This study suggests that this method of estimating nutrient fertility in coastal waters by effectively fusing data from multiple sensors is very promising.
Bazzani, Armando; Castellani, Gastone C; Cooper, Leon N
2010-05-01
We analyze the effects of noise correlations in the input to, or among, Bienenstock-Cooper-Munro neurons using the Wigner semicircular law to construct random, positive-definite symmetric correlation matrices and compute their eigenvalue distributions. In the finite dimensional case, we compare our analytic results with numerical simulations and show the effects of correlations on the lifetimes of synaptic strengths in various visual environments. These correlations can be due either to correlations in the noise from the input lateral geniculate nucleus neurons, or correlations in the variability of lateral connections in a network of neurons. In particular, we find that for fixed dimensionality, a large noise variance can give rise to long lifetimes of synaptic strengths. This may be of physiological significance.
Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH.
Volk, Jochen; Herrmann, Torsten; Wüthrich, Kurt
2008-07-01
MATCH (Memetic Algorithm and Combinatorial Optimization Heuristics) is a new memetic algorithm for automated sequence-specific polypeptide backbone NMR assignment of proteins. MATCH employs local optimization for tracing partial sequence-specific assignments within a global, population-based search environment, where the simultaneous application of local and global optimization heuristics guarantees high efficiency and robustness. MATCH thus makes combined use of the two predominant concepts in use for automated NMR assignment of proteins. Dynamic transition and inherent mutation are new techniques that enable automatic adaptation to variable quality of the experimental input data. The concept of dynamic transition is incorporated in all major building blocks of the algorithm, where it enables switching between local and global optimization heuristics at any time during the assignment process. Inherent mutation restricts the intrinsically required randomness of the evolutionary algorithm to those regions of the conformation space that are compatible with the experimental input data. Using intact and artificially deteriorated APSY-NMR input data of proteins, MATCH performed sequence-specific resonance assignment with high efficiency and robustness.
Analysis of a Split-Plot Experimental Design Applied to a Low-Speed Wind Tunnel Investigation
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2013-01-01
A procedure to analyze a split-plot experimental design featuring two input factors, two levels of randomization, and two error structures in a low-speed wind tunnel investigation of a small-scale model of a fighter airplane configuration is described in this report. Standard commercially-available statistical software was used to analyze the test results obtained in a randomization-restricted environment often encountered in wind tunnel testing. The input factors were differential horizontal stabilizer incidence and the angle of attack. The response variables were the aerodynamic coefficients of lift, drag, and pitching moment. Using split-plot terminology, the whole plot, or difficult-to-change, factor was the differential horizontal stabilizer incidence, and the subplot, or easy-to-change, factor was the angle of attack. The whole plot and subplot factors were both tested at three levels. Degrees of freedom for the whole plot error were provided by replication in the form of three blocks, or replicates, which were intended to simulate three consecutive days of wind tunnel facility operation. The analysis was conducted in three stages, which yielded the estimated mean squares, multiple regression function coefficients, and corresponding tests of significance for all individual terms at the whole plot and subplot levels for the three aerodynamic response variables. The estimated regression functions included main effects and two-factor interaction for the lift coefficient, main effects, two-factor interaction, and quadratic effects for the drag coefficient, and only main effects for the pitching moment coefficient.
NASA Astrophysics Data System (ADS)
Mangla, Rohit; Kumar, Shashi; Nandy, Subrata
2016-05-01
SAR and LiDAR remote sensing have already shown the potential of active sensors for forest parameter retrieval. SAR sensor in its fully polarimetric mode has an advantage to retrieve scattering property of different component of forest structure and LiDAR has the capability to measure structural information with very high accuracy. This study was focused on retrieval of forest aboveground biomass (AGB) using Terrestrial Laser Scanner (TLS) based point clouds and scattering property of forest vegetation obtained from decomposition modelling of RISAT-1 fully polarimetric SAR data. TLS data was acquired for 14 plots of Timli forest range, Uttarakhand, India. The forest area is dominated by Sal trees and random sampling with plot size of 0.1 ha (31.62m*31.62m) was adopted for TLS and field data collection. RISAT-1 data was processed to retrieve SAR data based variables and TLS point clouds based 3D imaging was done to retrieve LiDAR based variables. Surface scattering, double-bounce scattering, volume scattering, helix and wire scattering were the SAR based variables retrieved from polarimetric decomposition. Tree heights and stem diameters were used as LiDAR based variables retrieved from single tree vertical height and least square circle fit methods respectively. All the variables obtained for forest plots were used as an input in a machine learning based Random Forest Regression Model, which was developed in this study for forest AGB estimation. Modelled output for forest AGB showed reliable accuracy (RMSE = 27.68 t/ha) and a good coefficient of determination (0.63) was obtained through the linear regression between modelled AGB and field-estimated AGB. The sensitivity analysis showed that the model was more sensitive for the major contributed variables (stem diameter and volume scattering) and these variables were measured from two different remote sensing techniques. This study strongly recommends the integration of SAR and LiDAR data for forest AGB estimation.
NASA Astrophysics Data System (ADS)
Shoaib, Syed Abu; Marshall, Lucy; Sharma, Ashish
2018-06-01
Every model to characterise a real world process is affected by uncertainty. Selecting a suitable model is a vital aspect of engineering planning and design. Observation or input errors make the prediction of modelled responses more uncertain. By way of a recently developed attribution metric, this study is aimed at developing a method for analysing variability in model inputs together with model structure variability to quantify their relative contributions in typical hydrological modelling applications. The Quantile Flow Deviation (QFD) metric is used to assess these alternate sources of uncertainty. The Australian Water Availability Project (AWAP) precipitation data for four different Australian catchments is used to analyse the impact of spatial rainfall variability on simulated streamflow variability via the QFD. The QFD metric attributes the variability in flow ensembles to uncertainty associated with the selection of a model structure and input time series. For the case study catchments, the relative contribution of input uncertainty due to rainfall is higher than that due to potential evapotranspiration, and overall input uncertainty is significant compared to model structure and parameter uncertainty. Overall, this study investigates the propagation of input uncertainty in a daily streamflow modelling scenario and demonstrates how input errors manifest across different streamflow magnitudes.
NASA Technical Reports Server (NTRS)
Brown, A. M.
1998-01-01
Accounting for the statistical geometric and material variability of structures in analysis has been a topic of considerable research for the last 30 years. The determination of quantifiable measures of statistical probability of a desired response variable, such as natural frequency, maximum displacement, or stress, to replace experience-based "safety factors" has been a primary goal of these studies. There are, however, several problems associated with their satisfactory application to realistic structures, such as bladed disks in turbomachinery. These include the accurate definition of the input random variables (rv's), the large size of the finite element models frequently used to simulate these structures, which makes even a single deterministic analysis expensive, and accurate generation of the cumulative distribution function (CDF) necessary to obtain the probability of the desired response variables. The research presented here applies a methodology called probabilistic dynamic synthesis (PDS) to solve these problems. The PDS method uses dynamic characteristics of substructures measured from modal test as the input rv's, rather than "primitive" rv's such as material or geometric uncertainties. These dynamic characteristics, which are the free-free eigenvalues, eigenvectors, and residual flexibility (RF), are readily measured and for many substructures, a reasonable sample set of these measurements can be obtained. The statistics for these rv's accurately account for the entire random character of the substructure. Using the RF method of component mode synthesis, these dynamic characteristics are used to generate reduced-size sample models of the substructures, which are then coupled to form system models. These sample models are used to obtain the CDF of the response variable by either applying Monte Carlo simulation or by generating data points for use in the response surface reliability method, which can perform the probabilistic analysis with an order of magnitude less computational effort. Both free- and forced-response analyses have been performed, and the results indicate that, while there is considerable room for improvement, the method produces usable and more representative solutions for the design of realistic structures with a substantial savings in computer time.
Yu, Haitao; Dhingra, Rishi R; Dick, Thomas E; Galán, Roberto F
2017-01-01
Neural activity generally displays irregular firing patterns even in circuits with apparently regular outputs, such as motor pattern generators, in which the output frequency fluctuates randomly around a mean value. This "circuit noise" is inherited from the random firing of single neurons, which emerges from stochastic ion channel gating (channel noise), spontaneous neurotransmitter release, and its diffusion and binding to synaptic receptors. Here we demonstrate how to expand conductance-based network models that are originally deterministic to include realistic, physiological noise, focusing on stochastic ion channel gating. We illustrate this procedure with a well-established conductance-based model of the respiratory pattern generator, which allows us to investigate how channel noise affects neural dynamics at the circuit level and, in particular, to understand the relationship between the respiratory pattern and its breath-to-breath variability. We show that as the channel number increases, the duration of inspiration and expiration varies, and so does the coefficient of variation of the breath-to-breath interval, which attains a minimum when the mean duration of expiration slightly exceeds that of inspiration. For small channel numbers, the variability of the expiratory phase dominates over that of the inspiratory phase, and vice versa for large channel numbers. Among the four different cell types in the respiratory pattern generator, pacemaker cells exhibit the highest sensitivity to channel noise. The model shows that suppressing input from the pons leads to longer inspiratory phases, a reduction in breathing frequency, and larger breath-to-breath variability, whereas enhanced input from the raphe nucleus increases breathing frequency without changing its pattern. A major source of noise in neuronal circuits is the "flickering" of ion currents passing through the neurons' membranes (channel noise), which cannot be suppressed experimentally. Computational simulations are therefore the best way to investigate the effects of this physiological noise by manipulating its level at will. We investigate the role of noise in the respiratory pattern generator and show that endogenous, breath-to-breath variability is tightly linked to the respiratory pattern. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Zi, Bin; Zhou, Bin
2016-07-01
For the prediction of dynamic response field of the luffing system of an automobile crane (LSOAAC) with random and interval parameters, a hybrid uncertain model is introduced. In the hybrid uncertain model, the parameters with certain probability distribution are modeled as random variables, whereas, the parameters with lower and upper bounds are modeled as interval variables instead of given precise values. Based on the hybrid uncertain model, the hybrid uncertain dynamic response equilibrium equation, in which different random and interval parameters are simultaneously included in input and output terms, is constructed. Then a modified hybrid uncertain analysis method (MHUAM) is proposed. In the MHUAM, based on random interval perturbation method, the first-order Taylor series expansion and the first-order Neumann series, the dynamic response expression of the LSOAAC is developed. Moreover, the mathematical characteristics of extrema of bounds of dynamic response are determined by random interval moment method and monotonic analysis technique. Compared with the hybrid Monte Carlo method (HMCM) and interval perturbation method (IPM), numerical results show the feasibility and efficiency of the MHUAM for solving the hybrid LSOAAC problems. The effects of different uncertain models and parameters on the LSOAAC response field are also investigated deeply, and numerical results indicate that the impact made by the randomness in the thrust of the luffing cylinder F is larger than that made by the gravity of the weight in suspension Q . In addition, the impact made by the uncertainty in the displacement between the lower end of the lifting arm and the luffing cylinder a is larger than that made by the length of the lifting arm L .
Stochastic Modeling of Radioactive Material Releases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrus, Jason; Pope, Chad
2015-09-01
Nonreactor nuclear facilities operated under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA was developed using the MATLAB coding framework. The software application has a graphical user input. SODA can be installed on both Windows and Mac computers and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC, rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The work was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less
Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouri, Drew Philip; Surowiec, Thomas M.
Uncertainty is ubiquitous in virtually all engineering applications, and, for such problems, it is inadequate to simulate the underlying physics without quantifying the uncertainty in unknown or random inputs, boundary and initial conditions, and modeling assumptions. Here in this paper, we introduce a general framework for analyzing risk-averse optimization problems constrained by partial differential equations (PDEs). In particular, we postulate conditions on the random variable objective function as well as the PDE solution that guarantee existence of minimizers. Furthermore, we derive optimality conditions and apply our results to the control of an environmental contaminant. Lastly, we introduce a new riskmore » measure, called the conditional entropic risk, that fuses desirable properties from both the conditional value-at-risk and the entropic risk measures.« less
Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization
Kouri, Drew Philip; Surowiec, Thomas M.
2018-06-05
Uncertainty is ubiquitous in virtually all engineering applications, and, for such problems, it is inadequate to simulate the underlying physics without quantifying the uncertainty in unknown or random inputs, boundary and initial conditions, and modeling assumptions. Here in this paper, we introduce a general framework for analyzing risk-averse optimization problems constrained by partial differential equations (PDEs). In particular, we postulate conditions on the random variable objective function as well as the PDE solution that guarantee existence of minimizers. Furthermore, we derive optimality conditions and apply our results to the control of an environmental contaminant. Lastly, we introduce a new riskmore » measure, called the conditional entropic risk, that fuses desirable properties from both the conditional value-at-risk and the entropic risk measures.« less
Scaling of Directed Dynamical Small-World Networks with Random Responses
NASA Astrophysics Data System (ADS)
Zhu, Chen-Ping; Xiong, Shi-Jie; Tian, Ying-Jie; Li, Nan; Jiang, Ke-Sheng
2004-05-01
A dynamical model of small-world networks, with directed links which describe various correlations in social and natural phenomena, is presented. Random responses of sites to the input message are introduced to simulate real systems. The interplay of these ingredients results in the collective dynamical evolution of a spinlike variable S(t) of the whole network. The global average spreading length
Regression-based adaptive sparse polynomial dimensional decomposition for sensitivity analysis
NASA Astrophysics Data System (ADS)
Tang, Kunkun; Congedo, Pietro; Abgrall, Remi
2014-11-01
Polynomial dimensional decomposition (PDD) is employed in this work for global sensitivity analysis and uncertainty quantification of stochastic systems subject to a large number of random input variables. Due to the intimate structure between PDD and Analysis-of-Variance, PDD is able to provide simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to polynomial chaos (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of the standard method unaffordable for real engineering applications. In order to address this problem of curse of dimensionality, this work proposes a variance-based adaptive strategy aiming to build a cheap meta-model by sparse-PDD with PDD coefficients computed by regression. During this adaptive procedure, the model representation by PDD only contains few terms, so that the cost to resolve repeatedly the linear system of the least-square regression problem is negligible. The size of the final sparse-PDD representation is much smaller than the full PDD, since only significant terms are eventually retained. Consequently, a much less number of calls to the deterministic model is required to compute the final PDD coefficients.
NASA Astrophysics Data System (ADS)
Zurita-Milla, R.; Laurent, V. C. E.; van Gijsel, J. A. E.
2015-12-01
Monitoring biophysical and biochemical vegetation variables in space and time is key to understand the earth system. Operational approaches using remote sensing imagery rely on the inversion of radiative transfer models, which describe the interactions between light and vegetation canopies. The inversion required to estimate vegetation variables is, however, an ill-posed problem because of variable compensation effects that can cause different combinations of soil and canopy variables to yield extremely similar spectral responses. In this contribution, we present a novel approach to visualise the ill-posed problem using self-organizing maps (SOM), which are a type of unsupervised neural network. The approach is demonstrated with simulations for Sentinel-2 data (13 bands) made with the Soil-Leaf-Canopy (SLC) radiative transfer model. A look-up table of 100,000 entries was built by randomly sampling 14 SLC model input variables between their minimum and maximum allowed values while using both a dark and a bright soil. The Sentinel-2 spectral simulations were used to train a SOM of 200 × 125 neurons. The training projected similar spectral signatures onto either the same, or contiguous, neuron(s). Tracing back the inputs that generated each spectral signature, we created a 200 × 125 map for each of the SLC variables. The lack of spatial patterns and the variability in these maps indicate ill-posed situations, where similar spectral signatures correspond to different canopy variables. For Sentinel-2, our results showed that leaf area index, crown cover and leaf chlorophyll, water and brown pigment content are less confused in the inversion than variables with noisier maps like fraction of brown canopy area, leaf dry matter content and the PROSPECT mesophyll parameter. This study supports both educational and on-going research activities on inversion algorithms and might be useful to evaluate the uncertainties of retrieved canopy biophysical and biochemical state variables.
A neural circuit mechanism for regulating vocal variability during song learning in zebra finches.
Garst-Orozco, Jonathan; Babadi, Baktash; Ölveczky, Bence P
2014-12-15
Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output. To probe the interplay between learning and variability, we made intracellular recordings from neurons in this area, characterizing how their inputs from the functionally distinct pathways change throughout song development. We found that inputs that drive stereotyped song-patterns are strengthened and pruned, while inputs that induce variability remain unchanged. A simple network model showed that strengthening and pruning of action-specific connections reduces the sensitivity of motor control circuits to variable input and neural 'noise'. This identifies a simple and general mechanism for learning-related regulation of motor variability.
Using the Quantile Mapping to improve a weather generator
NASA Astrophysics Data System (ADS)
Chen, Y.; Themessl, M.; Gobiet, A.
2012-04-01
We developed a weather generator (WG) by using statistical and stochastic methods, among them are quantile mapping (QM), Monte-Carlo, auto-regression, empirical orthogonal function (EOF). One of the important steps in the WG is using QM, through which all the variables, no matter what distribution they originally are, are transformed into normal distributed variables. Therefore, the WG can work on normally distributed variables, which greatly facilitates the treatment of random numbers in the WG. Monte-Carlo and auto-regression are used to generate the realization; EOFs are employed for preserving spatial relationships and the relationships between different meteorological variables. We have established a complete model named WGQM (weather generator and quantile mapping), which can be applied flexibly to generate daily or hourly time series. For example, with 30-year daily (hourly) data and 100-year monthly (daily) data as input, the 100-year daily (hourly) data would be relatively reasonably produced. Some evaluation experiments with WGQM have been carried out in the area of Austria and the evaluation results will be presented.
NASA Astrophysics Data System (ADS)
Kumar, V.; Nayagum, D.; Thornton, S.; Banwart, S.; Schuhmacher2, M.; Lerner, D.
2006-12-01
Characterization of uncertainty associated with groundwater quality models is often of critical importance, as for example in cases where environmental models are employed in risk assessment. Insufficient data, inherent variability and estimation errors of environmental model parameters introduce uncertainty into model predictions. However, uncertainty analysis using conventional methods such as standard Monte Carlo sampling (MCS) may not be efficient, or even suitable, for complex, computationally demanding models and involving different nature of parametric variability and uncertainty. General MCS or variant of MCS such as Latin Hypercube Sampling (LHS) assumes variability and uncertainty as a single random entity and the generated samples are treated as crisp assuming vagueness as randomness. Also when the models are used as purely predictive tools, uncertainty and variability lead to the need for assessment of the plausible range of model outputs. An improved systematic variability and uncertainty analysis can provide insight into the level of confidence in model estimates, and can aid in assessing how various possible model estimates should be weighed. The present study aims to introduce, Fuzzy Latin Hypercube Sampling (FLHS), a hybrid approach of incorporating cognitive and noncognitive uncertainties. The noncognitive uncertainty such as physical randomness, statistical uncertainty due to limited information, etc can be described by its own probability density function (PDF); whereas the cognitive uncertainty such estimation error etc can be described by the membership function for its fuzziness and confidence interval by ?-cuts. An important property of this theory is its ability to merge inexact generated data of LHS approach to increase the quality of information. The FLHS technique ensures that the entire range of each variable is sampled with proper incorporation of uncertainty and variability. A fuzzified statistical summary of the model results will produce indices of sensitivity and uncertainty that relate the effects of heterogeneity and uncertainty of input variables to model predictions. The feasibility of the method is validated to assess uncertainty propagation of parameter values for estimation of the contamination level of a drinking water supply well due to transport of dissolved phenolics from a contaminated site in the UK.
Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smallwood, David O.
2007-01-01
A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less
NASA Astrophysics Data System (ADS)
Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K.
2018-04-01
Sea level rise has already caused more frequent and severe coastal flooding and this trend will likely continue. Flood prediction is an essential part of a coastal city's capacity to adapt to and mitigate this growing problem. Complex coastal urban hydrological systems however, do not always lend themselves easily to physically-based flood prediction approaches. This paper presents a method for using a data-driven approach to estimate flood severity in an urban coastal setting using crowd-sourced data, a non-traditional but growing data source, along with environmental observation data. Two data-driven models, Poisson regression and Random Forest regression, are trained to predict the number of flood reports per storm event as a proxy for flood severity, given extensive environmental data (i.e., rainfall, tide, groundwater table level, and wind conditions) as input. The method is demonstrated using data from Norfolk, Virginia USA from September 2010 to October 2016. Quality-controlled, crowd-sourced street flooding reports ranging from 1 to 159 per storm event for 45 storm events are used to train and evaluate the models. Random Forest performed better than Poisson regression at predicting the number of flood reports and had a lower false negative rate. From the Random Forest model, total cumulative rainfall was by far the most dominant input variable in predicting flood severity, followed by low tide and lower low tide. These methods serve as a first step toward using data-driven methods for spatially and temporally detailed coastal urban flood prediction.
2014-04-09
Excited by Input Random Processes Igor Baseski1,2, Dorin Drignei3, Zissimos P. Mourelatos1, Monica Majcher1 Oakland University, Rochester MI 48309 1...CONTRACT NUMBER W56HZV-04-2-0001 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Igor Baseski; Dorin Drignei; Zissimos Mourelatos; Monica
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi; Jakeman, John; Gittelson, Claude
2015-01-08
In this paper we present a localized polynomial chaos expansion for partial differential equations (PDE) with random inputs. In particular, we focus on time independent linear stochastic problems with high dimensional random inputs, where the traditional polynomial chaos methods, and most of the existing methods, incur prohibitively high simulation cost. Furthermore, the local polynomial chaos method employs a domain decomposition technique to approximate the stochastic solution locally. In each subdomain, a subdomain problem is solved independently and, more importantly, in a much lower dimensional random space. In a postprocesing stage, accurate samples of the original stochastic problems are obtained frommore » the samples of the local solutions by enforcing the correct stochastic structure of the random inputs and the coupling conditions at the interfaces of the subdomains. Overall, the method is able to solve stochastic PDEs in very large dimensions by solving a collection of low dimensional local problems and can be highly efficient. In our paper we present the general mathematical framework of the methodology and use numerical examples to demonstrate the properties of the method.« less
Amplitude- and rise-time-compensated filters
Nowlin, Charles H.
1984-01-01
An amplitude-compensated rise-time-compensated filter for a pulse time-of-occurrence (TOOC) measurement system is disclosed. The filter converts an input pulse, having the characteristics of random amplitudes and random, non-zero rise times, to a bipolar output pulse wherein the output pulse has a zero-crossing time that is independent of the rise time and amplitude of the input pulse. The filter differentiates the input pulse, along the linear leading edge of the input pulse, and subtracts therefrom a pulse fractionally proportional to the input pulse. The filter of the present invention can use discrete circuit components and avoids the use of delay lines.
Modeling groundwater nitrate concentrations in private wells in Iowa
Wheeler, David C.; Nolan, Bernard T.; Flory, Abigail R.; DellaValle, Curt T.; Ward, Mary H.
2015-01-01
Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square = 0.77) and was acceptable in the testing set (r-square = 0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort.
Modeling groundwater nitrate concentrations in private wells in Iowa.
Wheeler, David C; Nolan, Bernard T; Flory, Abigail R; DellaValle, Curt T; Ward, Mary H
2015-12-01
Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square=0.77) and was acceptable in the testing set (r-square=0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort. Copyright © 2015 Elsevier B.V. All rights reserved.
Combined non-parametric and parametric approach for identification of time-variant systems
NASA Astrophysics Data System (ADS)
Dziedziech, Kajetan; Czop, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz
2018-03-01
Identification of systems, structures and machines with variable physical parameters is a challenging task especially when time-varying vibration modes are involved. The paper proposes a new combined, two-step - i.e. non-parametric and parametric - modelling approach in order to determine time-varying vibration modes based on input-output measurements. Single-degree-of-freedom (SDOF) vibration modes from multi-degree-of-freedom (MDOF) non-parametric system representation are extracted in the first step with the use of time-frequency wavelet-based filters. The second step involves time-varying parametric representation of extracted modes with the use of recursive linear autoregressive-moving-average with exogenous inputs (ARMAX) models. The combined approach is demonstrated using system identification analysis based on the experimental mass-varying MDOF frame-like structure subjected to random excitation. The results show that the proposed combined method correctly captures the dynamics of the analysed structure, using minimum a priori information on the model.
Incorporating User Input in Template-Based Segmentation
Vidal, Camille; Beggs, Dale; Younes, Laurent; Jain, Sanjay K.; Jedynak, Bruno
2015-01-01
We present a simple and elegant method to incorporate user input in a template-based segmentation method for diseased organs. The user provides a partial segmentation of the organ of interest, which is used to guide the template towards its target. The user also highlights some elements of the background that should be excluded from the final segmentation. We derive by likelihood maximization a registration algorithm from a simple statistical image model in which the user labels are modeled as Bernoulli random variables. The resulting registration algorithm minimizes the sum of square differences between the binary template and the user labels, while preventing the template from shrinking, and penalizing for the inclusion of background elements into the final segmentation. We assess the performance of the proposed algorithm on synthetic images in which the amount of user annotation is controlled. We demonstrate our algorithm on the segmentation of the lungs of Mycobacterium tuberculosis infected mice from μCT images. PMID:26146532
Sparse distributed memory and related models
NASA Technical Reports Server (NTRS)
Kanerva, Pentti
1992-01-01
Described here is sparse distributed memory (SDM) as a neural-net associative memory. It is characterized by two weight matrices and by a large internal dimension - the number of hidden units is much larger than the number of input or output units. The first matrix, A, is fixed and possibly random, and the second matrix, C, is modifiable. The SDM is compared and contrasted to (1) computer memory, (2) correlation-matrix memory, (3) feet-forward artificial neural network, (4) cortex of the cerebellum, (5) Marr and Albus models of the cerebellum, and (6) Albus' cerebellar model arithmetic computer (CMAC). Several variations of the basic SDM design are discussed: the selected-coordinate and hyperplane designs of Jaeckel, the pseudorandom associative neural memory of Hassoun, and SDM with real-valued input variables by Prager and Fallside. SDM research conducted mainly at the Research Institute for Advanced Computer Science (RIACS) in 1986-1991 is highlighted.
Effect of deep pressure input on parasympathetic system in patients with wisdom tooth surgery.
Chen, Hsin-Yung; Yang, Hsiang; Meng, Ling-Fu; Chan, Pei-Ying Sarah; Yang, Chia-Yen; Chen, Hsin-Ming
2016-10-01
Deep pressure input is used to normalize physiological arousal due to stress. Wisdom tooth surgery is an invasive dental procedure with high stress levels, and an alleviation strategy is rarely applied during extraction. In this study, we investigated the effects of deep pressure input on autonomic responses to wisdom tooth extraction in healthy adults. A randomized, controlled, crossover design was used for dental patients who were allocated to experimental and control groups that received treatment with or without deep pressure input, respectively. Autonomic indicators, namely the heart rate (HR), percentage of low-frequency (LF) HR variability (LF-HRV), percentage of high-frequency (HF) HRV (HF-HRV), and LF/HF HRV ratio (LF/HF-HRV), were assessed at the baseline, during wisdom tooth extraction, and in the posttreatment phase. Wisdom tooth extraction caused significant autonomic parameter changes in both groups; however, differential response patterns were observed between the two groups. In particular, deep pressure input in the experimental group was associated with higher HF-HRV and lower LF/HF-HRV during extraction compared with those in the control group. LF/HF-HRV measurement revealed balanced sympathovagal activation in response to deep pressure application. The results suggest that the application of deep pressure alters the response of HF-HRV and facilitates maintaining sympathovagal balance during wisdom tooth extraction. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Chadwick, C.
1984-01-01
This paper describes the development and use of an algorithm to compute approximate statistics of the magnitude of a single random trajectory correction maneuver (TCM) Delta v vector. The TCM Delta v vector is modeled as a three component Cartesian vector each of whose components is a random variable having a normal (Gaussian) distribution with zero mean and possibly unequal standard deviations. The algorithm uses these standard deviations as input to produce approximations to (1) the mean and standard deviation of the magnitude of Delta v, (2) points of the probability density function of the magnitude of Delta v, and (3) points of the cumulative and inverse cumulative distribution functions of Delta v. The approximates are based on Monte Carlo techniques developed in a previous paper by the author and extended here. The algorithm described is expected to be useful in both pre-flight planning and in-flight analysis of maneuver propellant requirements for space missions.
Stochastic Seismic Response of an Algiers Site with Random Depth to Bedrock
NASA Astrophysics Data System (ADS)
Badaoui, M.; Berrah, M. K.; Mébarki, A.
2010-05-01
Among the important effects of the Boumerdes earthquake (Algeria, May 21st 2003) was that, within the same zone, the destructions in certain parts were more important than in others. This phenomenon is due to site effects which alter the characteristics of seismic motions and cause concentration of damage during earthquakes. Local site effects such as thickness and mechanical properties of soil layers have important effects on the surface ground motions. This paper deals with the effect of the randomness aspect of the depth to bedrock (soil layers heights) which is assumed to be a random variable with lognormal distribution. This distribution is suitable for strictly non-negative random variables with large values of the coefficient of variation. In this case, Monte Carlo simulations are combined with the stiffness matrix method, used herein as a deterministic method, for evaluating the effect of the depth to bedrock uncertainty on the seismic response of a multilayered soil. This study considers a P and SV wave propagation pattern using input accelerations collected at Keddara station, located at 20 km from the epicenter, as it is located directly on the bedrock. A parametric study is conducted do derive the stochastic behavior of the peak ground acceleration and its response spectrum, the transfer function and the amplification factors. It is found that the soil height heterogeneity causes a widening of the frequency content and an increase in the fundamental frequency of the soil profile, indicating that the resonance phenomenon concerns a larger number of structures.
Vehicular traffic noise prediction using soft computing approach.
Singh, Daljeet; Nigam, S P; Agrawal, V P; Kumar, Maneek
2016-12-01
A new approach for the development of vehicular traffic noise prediction models is presented. Four different soft computing methods, namely, Generalized Linear Model, Decision Trees, Random Forests and Neural Networks, have been used to develop models to predict the hourly equivalent continuous sound pressure level, Leq, at different locations in the Patiala city in India. The input variables include the traffic volume per hour, percentage of heavy vehicles and average speed of vehicles. The performance of the four models is compared on the basis of performance criteria of coefficient of determination, mean square error and accuracy. 10-fold cross validation is done to check the stability of the Random Forest model, which gave the best results. A t-test is performed to check the fit of the model with the field data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Calibration of a universal indicated turbulence system
NASA Technical Reports Server (NTRS)
Chapin, W. G.
1977-01-01
Theoretical and experimental work on a Universal Indicated Turbulence Meter is described. A mathematical transfer function from turbulence input to output indication was developed. A random ergodic process and a Gaussian turbulence distribution were assumed. A calibration technique based on this transfer function was developed. The computer contains a variable gain amplifier to make the system output independent of average velocity. The range over which this independence holds was determined. An optimum dynamic response was obtained for the tubulation between the system pitot tube and pressure transducer by making dynamic response measurements for orifices of various lengths and diameters at the source end.
Variance-based interaction index measuring heteroscedasticity
NASA Astrophysics Data System (ADS)
Ito, Keiichi; Couckuyt, Ivo; Poles, Silvia; Dhaene, Tom
2016-06-01
This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices by Sobol'. The proposed interaction index can quantify the relative importance of input variables in interaction. Furthermore, detection of non-interaction for screening can be done with as low as 4 n + 2 function evaluations, where n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may be decomposed into a set of lower dimensional functions which may then be analyzed separately.
Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn; Lin, Guang, E-mail: guanglin@purdue.edu
2016-07-15
In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.
Input-variable sensitivity assessment for sediment transport relations
NASA Astrophysics Data System (ADS)
Fernández, Roberto; Garcia, Marcelo H.
2017-09-01
A methodology to assess input-variable sensitivity for sediment transport relations is presented. The Mean Value First Order Second Moment Method (MVFOSM) is applied to two bed load transport equations showing that it may be used to rank all input variables in terms of how their specific variance affects the overall variance of the sediment transport estimation. In sites where data are scarce or nonexistent, the results obtained may be used to (i) determine what variables would have the largest impact when estimating sediment loads in the absence of field observations and (ii) design field campaigns to specifically measure those variables for which a given transport equation is most sensitive; in sites where data are readily available, the results would allow quantifying the effect that the variance associated with each input variable has on the variance of the sediment transport estimates. An application of the method to two transport relations using data from a tropical mountain river in Costa Rica is implemented to exemplify the potential of the method in places where input data are limited. Results are compared against Monte Carlo simulations to assess the reliability of the method and validate its results. For both of the sediment transport relations used in the sensitivity analysis, accurate knowledge of sediment size was found to have more impact on sediment transport predictions than precise knowledge of other input variables such as channel slope and flow discharge.
A Multifactor Approach to Research in Instructional Technology.
ERIC Educational Resources Information Center
Ragan, Tillman J.
In a field such as instructional design, explanations of educational outcomes must necessarily consider multiple input variables. To adequately understand the contribution made by the independent variables, it is helpful to have a visual conception of how the input variables interrelate. Two variable models are adequately represented by a two…
Weight distributions for turbo codes using random and nonrandom permutations
NASA Technical Reports Server (NTRS)
Dolinar, S.; Divsalar, D.
1995-01-01
This article takes a preliminary look at the weight distributions achievable for turbo codes using random, nonrandom, and semirandom permutations. Due to the recursiveness of the encoders, it is important to distinguish between self-terminating and non-self-terminating input sequences. The non-self-terminating sequences have little effect on decoder performance, because they accumulate high encoded weight until they are artificially terminated at the end of the block. From probabilistic arguments based on selecting the permutations randomly, it is concluded that the self-terminating weight-2 data sequences are the most important consideration in the design of constituent codes; higher-weight self-terminating sequences have successively decreasing importance. Also, increasing the number of codes and, correspondingly, the number of permutations makes it more and more likely that the bad input sequences will be broken up by one or more of the permuters. It is possible to design nonrandom permutations that ensure that the minimum distance due to weight-2 input sequences grows roughly as the square root of (2N), where N is the block length. However, these nonrandom permutations amplify the bad effects of higher-weight inputs, and as a result they are inferior in performance to randomly selected permutations. But there are 'semirandom' permutations that perform nearly as well as the designed nonrandom permutations with respect to weight-2 input sequences and are not as susceptible to being foiled by higher-weight inputs.
Martin, Guillaume; Magne, Marie-Angélina; Cristobal, Magali San
2017-01-01
The need to adapt to decrease farm vulnerability to adverse contextual events has been extensively discussed on a theoretical basis. We developed an integrated and operational method to assess farm vulnerability to multiple and interacting contextual changes and explain how this vulnerability can best be reduced according to farm configurations and farmers' technical adaptations over time. Our method considers farm vulnerability as a function of the raw measurements of vulnerability variables (e.g., economic efficiency of production), the slope of the linear regression of these measurements over time, and the residuals of this linear regression. The last two are extracted from linear mixed models considering a random regression coefficient (an intercept common to all farms), a global trend (a slope common to all farms), a random deviation from the general mean for each farm, and a random deviation from the general trend for each farm. Among all possible combinations, the lowest farm vulnerability is obtained through a combination of high values of measurements, a stable or increasing trend and low variability for all vulnerability variables considered. Our method enables relating the measurements, trends and residuals of vulnerability variables to explanatory variables that illustrate farm exposure to climatic and economic variability, initial farm configurations and farmers' technical adaptations over time. We applied our method to 19 cattle (beef, dairy, and mixed) farms over the period 2008-2013. Selected vulnerability variables, i.e., farm productivity and economic efficiency, varied greatly among cattle farms and across years, with means ranging from 43.0 to 270.0 kg protein/ha and 29.4-66.0% efficiency, respectively. No farm had a high level, stable or increasing trend and low residuals for both farm productivity and economic efficiency of production. Thus, the least vulnerable farms represented a compromise among measurement value, trend, and variability of both performances. No specific combination of farmers' practices emerged for reducing cattle farm vulnerability to climatic and economic variability. In the least vulnerable farms, the practices implemented (stocking rate, input use…) were more consistent with the objective of developing the properties targeted (efficiency, robustness…). Our method can be used to support farmers with sector-specific and local insights about most promising farm adaptations.
Martin, Guillaume; Magne, Marie-Angélina; Cristobal, Magali San
2017-01-01
The need to adapt to decrease farm vulnerability to adverse contextual events has been extensively discussed on a theoretical basis. We developed an integrated and operational method to assess farm vulnerability to multiple and interacting contextual changes and explain how this vulnerability can best be reduced according to farm configurations and farmers’ technical adaptations over time. Our method considers farm vulnerability as a function of the raw measurements of vulnerability variables (e.g., economic efficiency of production), the slope of the linear regression of these measurements over time, and the residuals of this linear regression. The last two are extracted from linear mixed models considering a random regression coefficient (an intercept common to all farms), a global trend (a slope common to all farms), a random deviation from the general mean for each farm, and a random deviation from the general trend for each farm. Among all possible combinations, the lowest farm vulnerability is obtained through a combination of high values of measurements, a stable or increasing trend and low variability for all vulnerability variables considered. Our method enables relating the measurements, trends and residuals of vulnerability variables to explanatory variables that illustrate farm exposure to climatic and economic variability, initial farm configurations and farmers’ technical adaptations over time. We applied our method to 19 cattle (beef, dairy, and mixed) farms over the period 2008–2013. Selected vulnerability variables, i.e., farm productivity and economic efficiency, varied greatly among cattle farms and across years, with means ranging from 43.0 to 270.0 kg protein/ha and 29.4–66.0% efficiency, respectively. No farm had a high level, stable or increasing trend and low residuals for both farm productivity and economic efficiency of production. Thus, the least vulnerable farms represented a compromise among measurement value, trend, and variability of both performances. No specific combination of farmers’ practices emerged for reducing cattle farm vulnerability to climatic and economic variability. In the least vulnerable farms, the practices implemented (stocking rate, input use…) were more consistent with the objective of developing the properties targeted (efficiency, robustness…). Our method can be used to support farmers with sector-specific and local insights about most promising farm adaptations. PMID:28900435
NASA Astrophysics Data System (ADS)
Engeland, Kolbjorn; Steinsland, Ingelin
2016-04-01
The aim of this study is to investigate how the inclusion of uncertainties in inputs and observed streamflow influence the parameter estimation, streamflow predictions and model evaluation. In particular we wanted to answer the following research questions: • What is the effect of including a random error in the precipitation and temperature inputs? • What is the effect of decreased information about precipitation by excluding the nearest precipitation station? • What is the effect of the uncertainty in streamflow observations? • What is the effect of reduced information about the true streamflow by using a rating curve where the measurement of the highest and lowest streamflow is excluded when estimating the rating curve? To answer these questions, we designed a set of calibration experiments and evaluation strategies. We used the elevation distributed HBV model operating on daily time steps combined with a Bayesian formulation and the MCMC routine Dream for parameter inference. The uncertainties in inputs was represented by creating ensembles of precipitation and temperature. The precipitation ensemble were created using a meta-gaussian random field approach. The temperature ensembles were created using a 3D Bayesian kriging with random sampling of the temperature laps rate. The streamflow ensembles were generated by a Bayesian multi-segment rating curve model. Precipitation and temperatures were randomly sampled for every day, whereas the streamflow ensembles were generated from rating curve ensembles, and the same rating curve was always used for the whole time series in a calibration or evaluation run. We chose a catchment with a meteorological station measuring precipitation and temperature, and a rating curve of relatively high quality. This allowed us to investigate and further test the effect of having less information on precipitation and streamflow during model calibration, predictions and evaluation. The results showed that including uncertainty in the precipitation and temperature input has a negligible effect on the posterior distribution of parameters and for the Nash-Sutcliffe (NS) efficiency for the predicted flows, while the reliability and the continuous rank probability score (CRPS) improves. Reduced information in precipitation input resulted in a and a shift in the water balance parameter Pcorr, a model producing smoother streamflow predictions giving poorer NS and CRPS, but higher reliability. The effect of calibrating the hydrological model using wrong rating curves is mainly seen as variability in the water balance parameter Pcorr. When evaluating predictions obtained using a wrong rating curve, the evaluation scores varies depending on the true rating curve. Generally, the best evaluation scores were not achieved for the rating curve used for calibration, but for a rating curves giving low variance in streamflow observations. Reduced information in streamflow influenced the water balance parameter Pcorr, and increased the spread in evaluation scores giving both better and worse scores. This case study shows that estimating the water balance is challenging since both precipitation inputs and streamflow observations have pronounced systematic component in their uncertainties.
Flight dynamics analysis and simulation of heavy lift airships, volume 4. User's guide: Appendices
NASA Technical Reports Server (NTRS)
Emmen, R. D.; Tischler, M. B.
1982-01-01
This table contains all of the input variables to the three programs. The variables are arranged according to the name list groups in which they appear in the data files. The program name, subroutine name, definition and, where appropriate, a default input value and any restrictions are listed with each variable. The default input values are user supplied, not generated by the computer. These values remove a specific effect from the calculations, as explained in the table. The phrase "not used' indicates that a variable is not used in the calculations and are for identification purposes only. The engineering symbol, where it exists, is listed to assist the user in correlating these inputs with the discussion in the Technical Manual.
Production Function Geometry with "Knightian" Total Product
ERIC Educational Resources Information Center
Truett, Dale B.; Truett, Lila J.
2007-01-01
Authors of principles and price theory textbooks generally illustrate short-run production using a total product curve that displays first increasing and then diminishing marginal returns to employment of the variable input(s). Although it seems reasonable that a temporary range of increasing returns to variable inputs will likely occur as…
NASA Astrophysics Data System (ADS)
Shamkhali Chenar, S.; Deng, Z.
2017-12-01
Pathogenic viruses pose a significant public health threat and economic losses to shellfish industry in the coastal environment. Norovirus is a contagious virus and the leading cause of epidemic gastroenteritis following consumption of oysters harvested from sewage-contaminated waters. While it is challenging to detect noroviruses in coastal waters due to the lack of sensitive and routine diagnostic methods, machine learning techniques are allowing us to prevent or at least reduce the risks by developing effective predictive models. This study attempts to develop an algorithm between historical norovirus outbreak reports and environmental parameters including water temperature, solar radiation, water level, salinity, precipitation, and wind. For this purpose, the Random Forests statistical technique was utilized to select relevant environmental parameters and their various combinations with different time lags controlling the virus distribution in oyster harvesting areas along the Louisiana Coast. An Artificial Neural Networks (ANN) approach was then presented to predict the outbreaks using a final set of input variables. Finally, a sensitivity analysis was conducted to evaluate relative importance and contribution of the input variables to the model output. Findings demonstrated that the developed model was capable of reproducing historical oyster norovirus outbreaks along the Louisiana Coast with the overall accuracy of than 99.83%, demonstrating the efficacy of the model. Moreover, the increase in water temperature, solar radiation, water level, and salinity, and the decrease in wind and rainfall are associated with the reduction in the model-predicted risk of norovirus outbreak according to sensitivity analysis results. In conclusion, the presented machine learning approach provided reliable tools for predicting potential norovirus outbreaks and could be used for early detection of possible outbreaks and reduce the risk of norovirus to public health and the seafood industry.
Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters
Liu, Fei; Heiner, Monika; Yang, Ming
2016-01-01
Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information. PMID:26910830
Applications of information theory, genetic algorithms, and neural models to predict oil flow
NASA Astrophysics Data System (ADS)
Ludwig, Oswaldo; Nunes, Urbano; Araújo, Rui; Schnitman, Leizer; Lepikson, Herman Augusto
2009-07-01
This work introduces a new information-theoretic methodology for choosing variables and their time lags in a prediction setting, particularly when neural networks are used in non-linear modeling. The first contribution of this work is the Cross Entropy Function (XEF) proposed to select input variables and their lags in order to compose the input vector of black-box prediction models. The proposed XEF method is more appropriate than the usually applied Cross Correlation Function (XCF) when the relationship among the input and output signals comes from a non-linear dynamic system. The second contribution is a method that minimizes the Joint Conditional Entropy (JCE) between the input and output variables by means of a Genetic Algorithm (GA). The aim is to take into account the dependence among the input variables when selecting the most appropriate set of inputs for a prediction problem. In short, theses methods can be used to assist the selection of input training data that have the necessary information to predict the target data. The proposed methods are applied to a petroleum engineering problem; predicting oil production. Experimental results obtained with a real-world dataset are presented demonstrating the feasibility and effectiveness of the method.
Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks
NASA Astrophysics Data System (ADS)
Gosangi, Rakesh; Gutierrez-Osuna, Ricardo
2011-09-01
We present a data-driven probabilistic framework to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Although building these models provides an insight into the sensor behavior, they also require a thorough understanding of the underlying operating principles. Here we propose a data-driven approach to characterize the dynamical relationship between sensor inputs and outputs. Namely, we use dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations between a set of random variables. We identify a set of control variables that influence the sensor responses, create a graphical representation that captures the causal relations between these variables, and finally train the model with experimental data. We validated the approach on experimental data in terms of predictive accuracy and classification performance. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well as capture the discriminatory information present in the sensor transients.
Nonequilibrium air radiation (Nequair) program: User's manual
NASA Technical Reports Server (NTRS)
Park, C.
1985-01-01
A supplement to the data relating to the calculation of nonequilibrium radiation in flight regimes of aeroassisted orbital transfer vehicles contains the listings of the computer code NEQAIR (Nonequilibrium Air Radiation), its primary input data, and explanation of the user-supplied input variables. The user-supplied input variables are the thermodynamic variables of air at a given point, i.e., number densities of various chemical species, translational temperatures of heavy particles and electrons, and vibrational temperature. These thermodynamic variables do not necessarily have to be in thermodynamic equilibrium. The code calculates emission and absorption characteristics of air under these given conditions.
Analytic uncertainty and sensitivity analysis of models with input correlations
NASA Astrophysics Data System (ADS)
Zhu, Yueying; Wang, Qiuping A.; Li, Wei; Cai, Xu
2018-03-01
Probabilistic uncertainty analysis is a common means of evaluating mathematical models. In mathematical modeling, the uncertainty in input variables is specified through distribution laws. Its contribution to the uncertainty in model response is usually analyzed by assuming that input variables are independent of each other. However, correlated parameters are often happened in practical applications. In the present paper, an analytic method is built for the uncertainty and sensitivity analysis of models in the presence of input correlations. With the method, it is straightforward to identify the importance of the independence and correlations of input variables in determining the model response. This allows one to decide whether or not the input correlations should be considered in practice. Numerical examples suggest the effectiveness and validation of our analytic method in the analysis of general models. A practical application of the method is also proposed to the uncertainty and sensitivity analysis of a deterministic HIV model.
Commercialization of NESSUS: Status
NASA Technical Reports Server (NTRS)
Thacker, Ben H.; Millwater, Harry R.
1991-01-01
A plan was initiated in 1988 to commercialize the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) probabilistic structural analysis software. The goal of the on-going commercialization effort is to begin the transfer of Probabilistic Structural Analysis Method (PSAM) developed technology into industry and to develop additional funding resources in the general area of structural reliability. The commercialization effort is summarized. The SwRI NESSUS Software System is a general purpose probabilistic finite element computer program using state of the art methods for predicting stochastic structural response due to random loads, material properties, part geometry, and boundary conditions. NESSUS can be used to assess structural reliability, to compute probability of failure, to rank the input random variables by importance, and to provide a more cost effective design than traditional methods. The goal is to develop a general probabilistic structural analysis methodology to assist in the certification of critical components in the next generation Space Shuttle Main Engine.
NASA Technical Reports Server (NTRS)
Feiveson, Alan H.; Wood, Scott J.; Jain, Varsha
2008-01-01
Astronauts show degraded balance control immediately after spaceflight. To assess this change, astronauts' ability to maintain a fixed stance under several challenging stimuli on a movable platform is quantified by "equilibrium" scores (EQs) on a scale of 0 to 100, where 100 represents perfect control (sway angle of 0) and 0 represents data loss where no sway angle is observed because the subject has to be restrained from falling. By comparing post- to pre-flight EQs for actual astronauts vs. controls, we built a classifier for deciding when an astronaut has recovered. Future diagnostic performance depends both on the sampling distribution of the classifier as well as the distribution of its input data. Taking this into consideration, we constructed a predictive ROC by simulation after modeling P(EQ = 0) in terms of a latent EQ-like beta-distributed random variable with random effects.
Harmonize input selection for sediment transport prediction
NASA Astrophysics Data System (ADS)
Afan, Haitham Abdulmohsin; Keshtegar, Behrooz; Mohtar, Wan Hanna Melini Wan; El-Shafie, Ahmed
2017-09-01
In this paper, three modeling approaches using a Neural Network (NN), Response Surface Method (RSM) and response surface method basis Global Harmony Search (GHS) are applied to predict the daily time series suspended sediment load. Generally, the input variables for forecasting the suspended sediment load are manually selected based on the maximum correlations of input variables in the modeling approaches based on NN and RSM. The RSM is improved to select the input variables by using the errors terms of training data based on the GHS, namely as response surface method and global harmony search (RSM-GHS) modeling method. The second-order polynomial function with cross terms is applied to calibrate the time series suspended sediment load with three, four and five input variables in the proposed RSM-GHS. The linear, square and cross corrections of twenty input variables of antecedent values of suspended sediment load and water discharge are investigated to achieve the best predictions of the RSM based on the GHS method. The performances of the NN, RSM and proposed RSM-GHS including both accuracy and simplicity are compared through several comparative predicted and error statistics. The results illustrated that the proposed RSM-GHS is as uncomplicated as the RSM but performed better, where fewer errors and better correlation was observed (R = 0.95, MAE = 18.09 (ton/day), RMSE = 25.16 (ton/day)) compared to the ANN (R = 0.91, MAE = 20.17 (ton/day), RMSE = 33.09 (ton/day)) and RSM (R = 0.91, MAE = 20.06 (ton/day), RMSE = 31.92 (ton/day)) for all types of input variables.
Akimoto, Yuki; Yugi, Katsuyuki; Uda, Shinsuke; Kudo, Takamasa; Komori, Yasunori; Kubota, Hiroyuki; Kuroda, Shinya
2013-01-01
Cells use common signaling molecules for the selective control of downstream gene expression and cell-fate decisions. The relationship between signaling molecules and downstream gene expression and cellular phenotypes is a multiple-input and multiple-output (MIMO) system and is difficult to understand due to its complexity. For example, it has been reported that, in PC12 cells, different types of growth factors activate MAP kinases (MAPKs) including ERK, JNK, and p38, and CREB, for selective protein expression of immediate early genes (IEGs) such as c-FOS, c-JUN, EGR1, JUNB, and FOSB, leading to cell differentiation, proliferation and cell death; however, how multiple-inputs such as MAPKs and CREB regulate multiple-outputs such as expression of the IEGs and cellular phenotypes remains unclear. To address this issue, we employed a statistical method called partial least squares (PLS) regression, which involves a reduction of the dimensionality of the inputs and outputs into latent variables and a linear regression between these latent variables. We measured 1,200 data points for MAPKs and CREB as the inputs and 1,900 data points for IEGs and cellular phenotypes as the outputs, and we constructed the PLS model from these data. The PLS model highlighted the complexity of the MIMO system and growth factor-specific input-output relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce the complexity, we applied a backward elimination method to the PLS regression, in which 60 input variables were reduced to 5 variables, including the phosphorylation of ERK at 10 min, CREB at 5 min and 60 min, AKT at 5 min and JNK at 30 min. The simple PLS model with only 5 input variables demonstrated a predictive ability comparable to that of the full PLS model. The 5 input variables effectively extracted the growth factor-specific simple relationships within the MIMO system in cell-fate decisions in PC12 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Shi, E-mail: sjin@wisc.edu; Institute of Natural Sciences, Department of Mathematics, MOE-LSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240; Lu, Hanqing, E-mail: hanqing@math.wisc.edu
2017-04-01
In this paper, we develop an Asymptotic-Preserving (AP) stochastic Galerkin scheme for the radiative heat transfer equations with random inputs and diffusive scalings. In this problem the random inputs arise due to uncertainties in cross section, initial data or boundary data. We use the generalized polynomial chaos based stochastic Galerkin (gPC-SG) method, which is combined with the micro–macro decomposition based deterministic AP framework in order to handle efficiently the diffusive regime. For linearized problem we prove the regularity of the solution in the random space and consequently the spectral accuracy of the gPC-SG method. We also prove the uniform (inmore » the mean free path) linear stability for the space-time discretizations. Several numerical tests are presented to show the efficiency and accuracy of proposed scheme, especially in the diffusive regime.« less
Jackson, B Scott
2004-10-01
Many different types of integrate-and-fire models have been designed in order to explain how it is possible for a cortical neuron to integrate over many independent inputs while still producing highly variable spike trains. Within this context, the variability of spike trains has been almost exclusively measured using the coefficient of variation of interspike intervals. However, another important statistical property that has been found in cortical spike trains and is closely associated with their high firing variability is long-range dependence. We investigate the conditions, if any, under which such models produce output spike trains with both interspike-interval variability and long-range dependence similar to those that have previously been measured from actual cortical neurons. We first show analytically that a large class of high-variability integrate-and-fire models is incapable of producing such outputs based on the fact that their output spike trains are always mathematically equivalent to renewal processes. This class of models subsumes a majority of previously published models, including those that use excitation-inhibition balance, correlated inputs, partial reset, or nonlinear leakage to produce outputs with high variability. Next, we study integrate-and-fire models that have (nonPoissonian) renewal point process inputs instead of the Poisson point process inputs used in the preceding class of models. The confluence of our analytical and simulation results implies that the renewal-input model is capable of producing high variability and long-range dependence comparable to that seen in spike trains recorded from cortical neurons, but only if the interspike intervals of the inputs have infinite variance, a physiologically unrealistic condition. Finally, we suggest a new integrate-and-fire model that does not suffer any of the previously mentioned shortcomings. By analyzing simulation results for this model, we show that it is capable of producing output spike trains with interspike-interval variability and long-range dependence that match empirical data from cortical spike trains. This model is similar to the other models in this study, except that its inputs are fractional-gaussian-noise-driven Poisson processes rather than renewal point processes. In addition to this model's success in producing realistic output spike trains, its inputs have long-range dependence similar to that found in most subcortical neurons in sensory pathways, including the inputs to cortex. Analysis of output spike trains from simulations of this model also shows that a tight balance between the amounts of excitation and inhibition at the inputs to cortical neurons is not necessary for high interspike-interval variability at their outputs. Furthermore, in our analysis of this model, we show that the superposition of many fractional-gaussian-noise-driven Poisson processes does not approximate a Poisson process, which challenges the common assumption that the total effect of a large number of inputs on a neuron is well represented by a Poisson process.
Stochastic Seismic Response of an Algiers Site with Random Depth to Bedrock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badaoui, M.; Mebarki, A.; Berrah, M. K.
2010-05-21
Among the important effects of the Boumerdes earthquake (Algeria, May 21{sup st} 2003) was that, within the same zone, the destructions in certain parts were more important than in others. This phenomenon is due to site effects which alter the characteristics of seismic motions and cause concentration of damage during earthquakes. Local site effects such as thickness and mechanical properties of soil layers have important effects on the surface ground motions.This paper deals with the effect of the randomness aspect of the depth to bedrock (soil layers heights) which is assumed to be a random variable with lognormal distribution. Thismore » distribution is suitable for strictly non-negative random variables with large values of the coefficient of variation. In this case, Monte Carlo simulations are combined with the stiffness matrix method, used herein as a deterministic method, for evaluating the effect of the depth to bedrock uncertainty on the seismic response of a multilayered soil. This study considers a P and SV wave propagation pattern using input accelerations collected at Keddara station, located at 20 km from the epicenter, as it is located directly on the bedrock.A parametric study is conducted do derive the stochastic behavior of the peak ground acceleration and its response spectrum, the transfer function and the amplification factors. It is found that the soil height heterogeneity causes a widening of the frequency content and an increase in the fundamental frequency of the soil profile, indicating that the resonance phenomenon concerns a larger number of structures.« less
Vomweg, T W; Buscema, M; Kauczor, H U; Teifke, A; Intraligi, M; Terzi, S; Heussel, C P; Achenbach, T; Rieker, O; Mayer, D; Thelen, M
2003-09-01
The aim of this study was to evaluate the capability of improved artificial neural networks (ANN) and additional novel training methods in distinguishing between benign and malignant breast lesions in contrast-enhanced magnetic resonance-mammography (MRM). A total of 604 histologically proven cases of contrast-enhanced lesions of the female breast at MRI were analyzed. Morphological, dynamic and clinical parameters were collected and stored in a database. The data set was divided into several groups using random or experimental methods [Training & Testing (T&T) algorithm] to train and test different ANNs. An additional novel computer program for input variable selection was applied. Sensitivity and specificity were calculated and compared with a statistical method and an expert radiologist. After optimization of the distribution of cases among the training and testing sets by the T & T algorithm and the reduction of input variables by the Input Selection procedure a highly sophisticated ANN achieved a sensitivity of 93.6% and a specificity of 91.9% in predicting malignancy of lesions within an independent prediction sample set. The best statistical method reached a sensitivity of 90.5% and a specificity of 68.9%. An expert radiologist performed better than the statistical method but worse than the ANN (sensitivity 92.1%, specificity 85.6%). Features extracted out of dynamic contrast-enhanced MRM and additional clinical data can be successfully analyzed by advanced ANNs. The quality of the resulting network strongly depends on the training methods, which are improved by the use of novel training tools. The best results of an improved ANN outperform expert radiologists.
On framing the research question and choosing the appropriate research design.
Parfrey, Patrick S; Ravani, Pietro
2015-01-01
Clinical epidemiology is the science of human disease investigation with a focus on diagnosis, prognosis, and treatment. The generation of a reasonable question requires definition of patients, interventions, controls, and outcomes. The goal of research design is to minimize error, to ensure adequate samples, to measure input and output variables appropriately, to consider external and internal validities, to limit bias, and to address clinical as well as statistical relevance. The hierarchy of evidence for clinical decision-making places randomized controlled trials (RCT) or systematic review of good quality RCTs at the top of the evidence pyramid. Prognostic and etiologic questions are best addressed with longitudinal cohort studies.
On framing the research question and choosing the appropriate research design.
Parfrey, Patrick; Ravani, Pietro
2009-01-01
Clinical epidemiology is the science of human disease investigation with a focus on diagnosis, prognosis, and treatment. The generation of a reasonable question requires the definition of patients, interventions, controls, and outcomes. The goal of research design is to minimize error, ensure adequate samples, measure input and output variables appropriately, consider external and internal validities, limit bias, and address clinical as well as statistical relevance. The hierarchy of evidence for clinical decision making places randomized controlled trials (RCT) or systematic review of good quality RCTs at the top of the evidence pyramid. Prognostic and etiologic questions are best addressed with longitudinal cohort studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Solis, A.; Demaziere, C.; Ekberg, C.
2012-07-01
In this paper, multi-group microscopic cross-section uncertainty is propagated through the DRAGON (Version 4) lattice code, in order to perform uncertainty analysis on k{infinity} and 2-group homogenized macroscopic cross-sections predictions. A statistical methodology is employed for such purposes, where cross-sections of certain isotopes of various elements belonging to the 172 groups DRAGLIB library format, are considered as normal random variables. This library is based on JENDL-4 data, because JENDL-4 contains the largest amount of isotopic covariance matrixes among the different major nuclear data libraries. The aim is to propagate multi-group nuclide uncertainty by running the DRAGONv4 code 500 times, andmore » to assess the output uncertainty of a test case corresponding to a 17 x 17 PWR fuel assembly segment without poison. The chosen sampling strategy for the current study is Latin Hypercube Sampling (LHS). The quasi-random LHS allows a much better coverage of the input uncertainties than simple random sampling (SRS) because it densely stratifies across the range of each input probability distribution. Output uncertainty assessment is based on the tolerance limits concept, where the sample formed by the code calculations infers to cover 95% of the output population with at least a 95% of confidence. This analysis is the first attempt to propagate parameter uncertainties of modern multi-group libraries, which are used to feed advanced lattice codes that perform state of the art resonant self-shielding calculations such as DRAGONv4. (authors)« less
Comparison of several maneuvering target tracking models
NASA Astrophysics Data System (ADS)
McIntyre, Gregory A.; Hintz, Kenneth J.
1998-07-01
The tracking of maneuvering targets is complicated by the fact that acceleration is not directly observable or measurable. Additionally, acceleration can be induced by a variety of sources including human input, autonomous guidance, or atmospheric disturbances. The approaches to tracking maneuvering targets can be divided into two categories both of which assume that the maneuver input command is unknown. One approach is to model the maneuver as a random process. The other approach assumes that the maneuver is not random and that it is either detected or estimated in real time. The random process models generally assume one of two statistical properties, either white noise or an autocorrelated noise. The multiple-model approach is generally used with the white noise model while a zero-mean, exponentially correlated acceleration approach is used with the autocorrelated noise model. The nonrandom approach uses maneuver detection to correct the state estimate or a variable dimension filter to augment the state estimate with an extra state component during a detected maneuver. Another issue with the tracking of maneuvering target is whether to perform the Kalman filter in Polar or Cartesian coordinates. This paper will examine and compare several exponentially correlated acceleration approaches in both Polar and Cartesian coordinates for accuracy and computational complexity. They include the Singer model in both Polar and Cartesian coordinates, the Singer model in Polar coordinates converted to Cartesian coordinates, Helferty's third order rational approximation of the Singer model and the Bar-Shalom and Fortmann model. This paper shows that these models all provide very accurate position estimates with only minor differences in velocity estimates and compares the computational complexity of the models.
Influential input classification in probabilistic multimedia models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddalena, Randy L.; McKone, Thomas E.; Hsieh, Dennis P.H.
1999-05-01
Monte Carlo analysis is a statistical simulation method that is often used to assess and quantify the outcome variance in complex environmental fate and effects models. Total outcome variance of these models is a function of (1) the uncertainty and/or variability associated with each model input and (2) the sensitivity of the model outcome to changes in the inputs. To propagate variance through a model using Monte Carlo techniques, each variable must be assigned a probability distribution. The validity of these distributions directly influences the accuracy and reliability of the model outcome. To efficiently allocate resources for constructing distributions onemore » should first identify the most influential set of variables in the model. Although existing sensitivity and uncertainty analysis methods can provide a relative ranking of the importance of model inputs, they fail to identify the minimum set of stochastic inputs necessary to sufficiently characterize the outcome variance. In this paper, we describe and demonstrate a novel sensitivity/uncertainty analysis method for assessing the importance of each variable in a multimedia environmental fate model. Our analyses show that for a given scenario, a relatively small number of input variables influence the central tendency of the model and an even smaller set determines the shape of the outcome distribution. For each input, the level of influence depends on the scenario under consideration. This information is useful for developing site specific models and improving our understanding of the processes that have the greatest influence on the variance in outcomes from multimedia models.« less
NASA Astrophysics Data System (ADS)
Zimoń, Małgorzata; Sawko, Robert; Emerson, David; Thompson, Christopher
2017-11-01
Uncertainty quantification (UQ) is increasingly becoming an indispensable tool for assessing the reliability of computational modelling. Efficient handling of stochastic inputs, such as boundary conditions, physical properties or geometry, increases the utility of model results significantly. We discuss the application of non-intrusive generalised polynomial chaos techniques in the context of fluid engineering simulations. Deterministic and Monte Carlo integration rules are applied to a set of problems, including ordinary differential equations and the computation of aerodynamic parameters subject to random perturbations. In particular, we analyse acoustic wave propagation in a heterogeneous medium to study the effects of mesh resolution, transients, number and variability of stochastic inputs. We consider variants of multi-level Monte Carlo and perform a novel comparison of the methods with respect to numerical and parametric errors, as well as computational cost. The results provide a comprehensive view of the necessary steps in UQ analysis and demonstrate some key features of stochastic fluid flow systems.
Multi-muscle FES force control of the human arm for arbitrary goals.
Schearer, Eric M; Liao, Yu-Wei; Perreault, Eric J; Tresch, Matthew C; Memberg, William D; Kirsch, Robert F; Lynch, Kevin M
2014-05-01
We present a method for controlling a neuroprosthesis for a paralyzed human arm using functional electrical stimulation (FES) and characterize the errors of the controller. The subject has surgically implanted electrodes for stimulating muscles in her shoulder and arm. Using input/output data, a model mapping muscle stimulations to isometric endpoint forces measured at the subject's hand was identified. We inverted the model of this redundant and coupled multiple-input multiple-output system by minimizing muscle activations and used this inverse for feedforward control. The magnitude of the total root mean square error over a grid in the volume of achievable isometric endpoint force targets was 11% of the total range of achievable forces. Major sources of error were random error due to trial-to-trial variability and model bias due to nonstationary system properties. Because the muscles working collectively are the actuators of the skeletal system, the quantification of errors in force control guides designs of motion controllers for multi-joint, multi-muscle FES systems that can achieve arbitrary goals.
Peer Educators and Close Friends as Predictors of Male College Students' Willingness to Prevent Rape
ERIC Educational Resources Information Center
Stein, Jerrold L.
2007-01-01
Astin's (1977, 1991, 1993) input-environment-outcome (I-E-O) model provided a conceptual framework for this study which measured 156 male college students' willingness to prevent rape (outcome variable). Predictor variables included personal attitudes (input variable), perceptions of close friends' attitudes toward rape and rape prevention…
Improved Neural Networks with Random Weights for Short-Term Load Forecasting
Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo
2015-01-01
An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting. PMID:26629825
Improved Neural Networks with Random Weights for Short-Term Load Forecasting.
Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo
2015-01-01
An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting.
NASA Astrophysics Data System (ADS)
Algrain, Marcelo C.; Powers, Richard M.
1997-05-01
A case study, written in a tutorial manner, is presented where a comprehensive computer simulation is developed to determine the driving factors contributing to spacecraft pointing accuracy and stability. Models for major system components are described. Among them are spacecraft bus, attitude controller, reaction wheel assembly, star-tracker unit, inertial reference unit, and gyro drift estimators (Kalman filter). The predicted spacecraft performance is analyzed for a variety of input commands and system disturbances. The primary deterministic inputs are the desired attitude angles and rate set points. The stochastic inputs include random torque disturbances acting on the spacecraft, random gyro bias noise, gyro random walk, and star-tracker noise. These inputs are varied over a wide range to determine their effects on pointing accuracy and stability. The results are presented in the form of trade- off curves designed to facilitate the proper selection of subsystems so that overall spacecraft pointing accuracy and stability requirements are met.
Li, Chunyan; Tripathi, Pradeep K; Armstrong, William E
2007-01-01
The firing pattern of magnocellular neurosecretory neurons is intimately related to hormone release, but the relative contribution of synaptic versus intrinsic factors to the temporal dispersion of spikes is unknown. In the present study, we examined the firing patterns of vasopressin (VP) and oxytocin (OT) supraoptic neurons in coronal slices from virgin female rats, with and without blockade of inhibitory and excitatory synaptic currents. Inhibitory postsynaptic currents (IPSCs) were twice as prevalent as their excitatory counterparts (EPSCs), and both were more prevalent in OT compared with VP neurons. Oxytocin neurons fired more slowly and irregularly than VP neurons near threshold. Blockade of Cl− currents (including tonic and synaptic currents) with picrotoxin reduced interspike interval (ISI) variability of continuously firing OT and VP neurons without altering input resistance or firing rate. Blockade of EPSCs did not affect firing pattern. Phasic bursting neurons (putative VP neurons) were inconsistently affected by broad synaptic blockade, suggesting that intrinsic factors may dominate the ISI distribution during this mode in the slice. Specific blockade of synaptic IPSCs with gabazine also reduced ISI variability, but only in OT neurons. In all cases, the effect of inhibitory blockade on firing pattern was independent of any consistent change in input resistance or firing rate. Since the great majority of IPSCs are randomly distributed, miniature events (mIPSCs) in the coronal slice, these findings imply that even mIPSCs can impart irregularity to the firing pattern of OT neurons in particular, and could be important in regulating spike patterning in vivo. For example, the increased firing variability that precedes bursting in OT neurons during lactation could be related to significant changes in synaptic activity. PMID:17332000
Torres, Elizabeth B; Cole, Jonathan; Poizner, Howard
2014-01-01
Parkinson's disease (PD) is a neurodegenerative disorder defined by motor impairments that include rigidity, systemic slowdown of movement (bradykinesia), postural problems, and tremor. While the progressive decline in motor output functions is well documented, less understood are impairments linked to the continuous kinesthetic sensation emerging from the flow of motions. There is growing evidence in recent years that kinesthetic problems are also part of the symptoms of PD, but objective methods to readily quantify continuously unfolding motions across different contexts have been lacking. Here we present evidence from a deafferented subject (IW) and a new statistical platform that enables new analyses of motor output variability measured as a continuous flow of kinesthetic reafferent input. Systematic increasing similarities between the patterns of motor output variability in IW and the participants with increasing degrees of PD severity suggest potential deficits in kinesthetic sensing in PD. We propose that these deficits may result from persistent, noisy, and random motor patterns as the disorder progresses. The stochastic signatures from the unfolding motions revealed levels of noise in the motor output fluctuations of these patients bound to decrease the kinesthetic signal's bandwidth. The results are interpreted in light of the concept of kinesthetic reafference ( Von Holst and Mittelstaedt, 1950). In this context, noisy motor output variability from voluntary movements in PD leads to a returning stream of noisy afference caused, in turn, by those faulty movements themselves. Faulty efferent output re-enters the CNS as corrupted sensory motor input. We find here that severity level in PD leads to the persistence of such patterns, thus bringing the statistical signatures of the subjects with PD systematically closer to those of the subject without proprioception.
Torres, Elizabeth B.; Cole, Jonathan; Poizner, Howard
2014-01-01
Parkinson’s disease (PD) is a neurodegenerative disorder defined by motor impairments that include rigidity, systemic slowdown of movement (bradykinesia), postural problems, and tremor. While the progressive decline in motor output functions is well documented, less understood are impairments linked to the continuous kinesthetic sensation emerging from the flow of motions. There is growing evidence in recent years that kinesthetic problems are also part of the symptoms of PD, but objective methods to readily quantify continuously unfolding motions across different contexts have been lacking. Here we present evidence from a deafferented subject (IW) and a new statistical platform that enables new analyses of motor output variability measured as a continuous flow of kinesthetic reafferent input. Systematic increasing similarities between the patterns of motor output variability in IW and the participants with increasing degrees of PD severity suggest potential deficits in kinesthetic sensing in PD. We propose that these deficits may result from persistent, noisy, and random motor patterns as the disorder progresses. The stochastic signatures from the unfolding motions revealed levels of noise in the motor output fluctuations of these patients bound to decrease the kinesthetic signal’s bandwidth. The results are interpreted in light of the concept of kinesthetic reafference ( Von Holst and Mittelstaedt, 1950). In this context, noisy motor output variability from voluntary movements in PD leads to a returning stream of noisy afference caused, in turn, by those faulty movements themselves. Faulty efferent output re-enters the CNS as corrupted sensory motor input. We find here that severity level in PD leads to the persistence of such patterns, thus bringing the statistical signatures of the subjects with PD systematically closer to those of the subject without proprioception. PMID:25374524
The Effects of a Change in the Variability of Irrigation Water
NASA Astrophysics Data System (ADS)
Lyon, Kenneth S.
1983-10-01
This paper examines the short-run effects upon several variables of an increase in the variability of an input. The measure of an increase in the variability is the "mean preserving spread" suggested by Rothschild and Stiglitz (1970). The variables examined are real income (utility), expected profits, expected output, the quantity used of the controllable input, and the shadow price of the stochastic input. Four striking features of the results follow: (1) The concepts that have been useful in summarizing deterministic comparative static results are nearly absent when an input is stochastic. (2) Most of the signs of the partial derivatives depend upon more than concavity of the utility and production functions. (3) If the utility function is not "too" risk averse, then the risk-neutral results hold for the risk-aversion case. (4) If the production function is Cobb-Douglas, then definite results are achieved if the utility function is linear or if the "degree of risk-aversion" is "small."
Quantum random number generator based on quantum nature of vacuum fluctuations
NASA Astrophysics Data System (ADS)
Ivanova, A. E.; Chivilikhin, S. A.; Gleim, A. V.
2017-11-01
Quantum random number generator (QRNG) allows obtaining true random bit sequences. In QRNG based on quantum nature of vacuum, optical beam splitter with two inputs and two outputs is normally used. We compare mathematical descriptions of spatial beam splitter and fiber Y-splitter in the quantum model for QRNG, based on homodyne detection. These descriptions were identical, that allows to use fiber Y-splitters in practical QRNG schemes, simplifying the setup. Also we receive relations between the input radiation and the resulting differential current in homodyne detector. We experimentally demonstrate possibility of true random bits generation by using QRNG based on homodyne detection with Y-splitter.
Generating variable and random schedules of reinforcement using Microsoft Excel macros.
Bancroft, Stacie L; Bourret, Jason C
2008-01-01
Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time. Generating schedule values for variable and random reinforcement schedules can be difficult. The present article describes the steps necessary to write macros in Microsoft Excel that will generate variable-ratio, variable-interval, variable-time, random-ratio, random-interval, and random-time reinforcement schedule values.
Brown, Helen; Clayards, Meghan
2017-01-01
Background High talker variability (i.e., multiple voices in the input) has been found effective in training nonnative phonetic contrasts in adults. A small number of studies suggest that children also benefit from high-variability phonetic training with some evidence that they show greater learning (more plasticity) than adults given matched input, although results are mixed. However, no study has directly compared the effectiveness of high versus low talker variability in children. Methods Native Greek-speaking eight-year-olds (N = 52), and adults (N = 41) were exposed to the English /i/-/ɪ/ contrast in 10 training sessions through a computerized word-learning game. Pre- and post-training tests examined discrimination of the contrast as well as lexical learning. Participants were randomly assigned to high (four talkers) or low (one talker) variability training conditions. Results Both age groups improved during training, and both improved more while trained with a single talker. Results of a three-interval oddity discrimination test did not show the predicted benefit of high-variability training in either age group. Instead, children showed an effect in the reverse direction—i.e., reliably greater improvements in discrimination following single talker training, even for untrained generalization items, although the result is qualified by (accidental) differences between participant groups at pre-test. Adults showed a numeric advantage for high-variability but were inconsistent with respect to voice and word novelty. In addition, no effect of variability was found for lexical learning. There was no evidence of greater plasticity for phonetic learning in child learners. Discussion This paper adds to the handful of studies demonstrating that, like adults, child learners can improve their discrimination of a phonetic contrast via computerized training. There was no evidence of a benefit of training with multiple talkers, either for discrimination or word learning. The results also do not support the findings of greater plasticity in child learners found in a previous paper (Giannakopoulou, Uther & Ylinen, 2013a). We discuss these results in terms of various differences between training and test tasks used in the current work compared with previous literature. PMID:28584698
Giannakopoulou, Anastasia; Brown, Helen; Clayards, Meghan; Wonnacott, Elizabeth
2017-01-01
High talker variability (i.e., multiple voices in the input) has been found effective in training nonnative phonetic contrasts in adults. A small number of studies suggest that children also benefit from high-variability phonetic training with some evidence that they show greater learning (more plasticity) than adults given matched input, although results are mixed. However, no study has directly compared the effectiveness of high versus low talker variability in children. Native Greek-speaking eight-year-olds ( N = 52), and adults ( N = 41) were exposed to the English /i/-/ɪ/ contrast in 10 training sessions through a computerized word-learning game. Pre- and post-training tests examined discrimination of the contrast as well as lexical learning. Participants were randomly assigned to high (four talkers) or low (one talker) variability training conditions. Both age groups improved during training, and both improved more while trained with a single talker. Results of a three-interval oddity discrimination test did not show the predicted benefit of high-variability training in either age group. Instead, children showed an effect in the reverse direction-i.e., reliably greater improvements in discrimination following single talker training, even for untrained generalization items, although the result is qualified by (accidental) differences between participant groups at pre-test. Adults showed a numeric advantage for high-variability but were inconsistent with respect to voice and word novelty. In addition, no effect of variability was found for lexical learning. There was no evidence of greater plasticity for phonetic learning in child learners. This paper adds to the handful of studies demonstrating that, like adults, child learners can improve their discrimination of a phonetic contrast via computerized training. There was no evidence of a benefit of training with multiple talkers, either for discrimination or word learning. The results also do not support the findings of greater plasticity in child learners found in a previous paper (Giannakopoulou, Uther & Ylinen, 2013a). We discuss these results in terms of various differences between training and test tasks used in the current work compared with previous literature.
Long period pseudo random number sequence generator
NASA Technical Reports Server (NTRS)
Wang, Charles C. (Inventor)
1989-01-01
A circuit for generating a sequence of pseudo random numbers, (A sub K). There is an exponentiator in GF(2 sup m) for the normal basis representation of elements in a finite field GF(2 sup m) each represented by m binary digits and having two inputs and an output from which the sequence (A sub K). Of pseudo random numbers is taken. One of the two inputs is connected to receive the outputs (E sub K) of maximal length shift register of n stages. There is a switch having a pair of inputs and an output. The switch outputs is connected to the other of the two inputs of the exponentiator. One of the switch inputs is connected for initially receiving a primitive element (A sub O) in GF(2 sup m). Finally, there is a delay circuit having an input and an output. The delay circuit output is connected to the other of the switch inputs and the delay circuit input is connected to the output of the exponentiator. Whereby after the exponentiator initially receives the primitive element (A sub O) in GF(2 sup m) through the switch, the switch can be switched to cause the exponentiator to receive as its input a delayed output A(K-1) from the exponentiator thereby generating (A sub K) continuously at the output of the exponentiator. The exponentiator in GF(2 sup m) is novel and comprises a cyclic-shift circuit; a Massey-Omura multiplier; and, a control logic circuit all operably connected together to perform the function U(sub i) = 92(sup i) (for n(sub i) = 1 or 1 (for n(subi) = 0).
NASA Astrophysics Data System (ADS)
Goodman, J. W.
This book is based on the thesis that some training in the area of statistical optics should be included as a standard part of any advanced optics curriculum. Random variables are discussed, taking into account definitions of probability and random variables, distribution functions and density functions, an extension to two or more random variables, statistical averages, transformations of random variables, sums of real random variables, Gaussian random variables, complex-valued random variables, and random phasor sums. Other subjects examined are related to random processes, some first-order properties of light waves, the coherence of optical waves, some problems involving high-order coherence, effects of partial coherence on imaging systems, imaging in the presence of randomly inhomogeneous media, and fundamental limits in photoelectric detection of light. Attention is given to deterministic versus statistical phenomena and models, the Fourier transform, and the fourth-order moment of the spectrum of a detected speckle image.
Generating Variable and Random Schedules of Reinforcement Using Microsoft Excel Macros
Bancroft, Stacie L; Bourret, Jason C
2008-01-01
Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time. Generating schedule values for variable and random reinforcement schedules can be difficult. The present article describes the steps necessary to write macros in Microsoft Excel that will generate variable-ratio, variable-interval, variable-time, random-ratio, random-interval, and random-time reinforcement schedule values. PMID:18595286
Random Deep Belief Networks for Recognizing Emotions from Speech Signals.
Wen, Guihua; Li, Huihui; Huang, Jubing; Li, Danyang; Xun, Eryang
2017-01-01
Now the human emotions can be recognized from speech signals using machine learning methods; however, they are challenged by the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN) can automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an ensemble of random deep belief networks (RDBN) method for speech emotion recognition. It firstly extracts the low level features of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for DBN to yield the higher level features as the input of the classifier to output an emotion label. All outputted emotion labels are then fused through the majority voting to decide the final emotion label for the input speech signal. The conducted experimental results on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion recognition.
Random Deep Belief Networks for Recognizing Emotions from Speech Signals
Li, Huihui; Huang, Jubing; Li, Danyang; Xun, Eryang
2017-01-01
Now the human emotions can be recognized from speech signals using machine learning methods; however, they are challenged by the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN) can automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an ensemble of random deep belief networks (RDBN) method for speech emotion recognition. It firstly extracts the low level features of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for DBN to yield the higher level features as the input of the classifier to output an emotion label. All outputted emotion labels are then fused through the majority voting to decide the final emotion label for the input speech signal. The conducted experimental results on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion recognition. PMID:28356908
Effects of input device and motion type on a cursor-positioning task.
Yau, Yi-Jan; Hwang, Sheue-Ling; Chao, Chin-Jung
2008-02-01
Many studies have investigated the performance of using nonkey-board input devices under static situations, but few have considered the effects of motion type on manipulating these input devices. In this study comparison of 12 mens' performance using four input devices (three trackballs: currently used, trackman wheel, and erectly held trackballs, as well as a touch screen) under five motion types of static, heave, roll, pitch, and random movements was conducted. The input device and motion type significantly affected movement speed and accuracy, and their interaction significantly affected the movement speed. The touch screen was the fastest but the least accurate input device. The erectly held trackball was the slowest, whereas the error rate of the currently used trackball was the lowest. Impairments of the random motion on movement time and error rate were larger than those of other motion types. Considering objective and subjective evaluations, the trackman wheel and currently used trackball were more efficient in operation than the erectly held trackball and touch screen under the motion environments.
Artificial neural network model for ozone concentration estimation and Monte Carlo analysis
NASA Astrophysics Data System (ADS)
Gao, Meng; Yin, Liting; Ning, Jicai
2018-07-01
Air pollution in urban atmosphere directly affects public-health; therefore, it is very essential to predict air pollutant concentrations. Air quality is a complex function of emissions, meteorology and topography, and artificial neural networks (ANNs) provide a sound framework for relating these variables. In this study, we investigated the feasibility of using ANN model with meteorological parameters as input variables to predict ozone concentration in the urban area of Jinan, a metropolis in Northern China. We firstly found that the architecture of network of neurons had little effect on the predicting capability of ANN model. A parsimonious ANN model with 6 routinely monitored meteorological parameters and one temporal covariate (the category of day, i.e. working day, legal holiday and regular weekend) as input variables was identified, where the 7 input variables were selected following the forward selection procedure. Compared with the benchmarking ANN model with 9 meteorological and photochemical parameters as input variables, the predicting capability of the parsimonious ANN model was acceptable. Its predicting capability was also verified in term of warming success ratio during the pollution episodes. Finally, uncertainty and sensitivity analysis were also performed based on Monte Carlo simulations (MCS). It was concluded that the ANN could properly predict the ambient ozone level. Maximum temperature, atmospheric pressure, sunshine duration and maximum wind speed were identified as the predominate input variables significantly influencing the prediction of ambient ozone concentrations.
Correction of I/Q channel errors without calibration
Doerry, Armin W.; Tise, Bertice L.
2002-01-01
A method of providing a balanced demodular output for a signal such as a Doppler radar having an analog pulsed input; includes adding a variable phase shift as a function of time to the input signal, applying the phase shifted input signal to a demodulator; and generating a baseband signal from the input signal. The baseband signal is low-pass filtered and converted to a digital output signal. By removing the variable phase shift from the digital output signal, a complex data output is formed that is representative of the output of a balanced demodulator.
Dynamic responses of railroad car models to vertical and lateral rail inputs
NASA Technical Reports Server (NTRS)
Sewall, J. L.; Parrish, R. V.; Durling, B. J.
1971-01-01
Simplified dynamic models were applied in a study of vibration in a high-speed railroad car. The mathematical models used were a four-degree-of-freedom model for vertical responses to vertical rail inputs and a ten-degree-of-freedom model for lateral response to lateral or rolling (cross-level) inputs from the rails. Elastic properties of the passenger car body were represented by bending and torsion of a uniform beam. Rail-to-car (truck) suspensions were modeled as spring-mass-dashpot oscillators. Lateral spring nonlinearities approximating certain complicated truck mechanisms were introduced. The models were excited by displacement and, in some cases, velocity inputs from the rails by both deterministic (including sinusoidal) and random input functions. Results were obtained both in the frequency and time domains. Solutions in the time domain for the lateral model were obtained for a wide variety of transient and random inputs generated on-line by an analog computer. Variations in one of the damping properties of the lateral car suspension gave large fluctuations in response over a range of car speeds for a given input. This damping coefficient was significant in reducing lateral car responses that were higher for nonlinear springs for three different inputs.
Hess, J A; Mootz, R D
1999-06-01
Resource-based relative value scales (RBRVS) have become a standard method for identifying costs and determining reimbursement for physician services. Development of RBRVS systems and methods are reviewed, and the RBRVS concept of physician "work" is defined. Results of work and time inputs from chiropractic physicians are compared with those reported by osteopathic and medical specialties. Last, implications for reimbursement of chiropractic fee services are discussed. Total work, intraservice work, and time inputs for clinical vignettes reported by chiropractic, osteopathic, and medical physicians are compared. Data for chiropractic work and time reports were drawn from a national random sample of chiropractors conducted as part of a 1997 workers' compensation chiropractic fee schedule development project. Medical and osteopathic inputs were drawn from RBRVS research conducted at Harvard University under a federal contract reported in 1990. Both data sets used the same or similar clinical vignettes and similar methods. Comparisons of work and time inputs are made for clinical vignettes to assess whether work reported by chiropractors is of similar magnitude and variability as work reported by other specialties. Chiropractic inputs for vignettes related to evaluation and management services are similar to those reported by medical specialists and osteopathic physicians. The range of variation between chiropractic work input and other specialties is of similar magnitude to that within other specialties. Chiropractors report greater work input for radiologic interpretation and lower work input for manipulation services. Chiropractors seem to perform similar total "work" for evaluation and management services as other specialties. No basis exists for excluding chiropractors from using evaluation and management codes for reimbursement purposes on grounds of dissimilar physician time or work estimates. Greater work input by chiropractors in radiology interpretation may be related to a greater importance placed on findings in care planning. Consistently higher reports for osteopathic work input on manipulation are likely attributable to differences in reference vignettes used in the respective populations. Research with a common reference vignette used for manipulation providers is recommended, as is development of a single generic approach to coding for manipulation services.
Delpierre, Nicolas; Berveiller, Daniel; Granda, Elena; Dufrêne, Eric
2016-04-01
Although the analysis of flux data has increased our understanding of the interannual variability of carbon inputs into forest ecosystems, we still know little about the determinants of wood growth. Here, we aimed to identify which drivers control the interannual variability of wood growth in a mesic temperate deciduous forest. We analysed a 9-yr time series of carbon fluxes and aboveground wood growth (AWG), reconstructed at a weekly time-scale through the combination of dendrometer and wood density data. Carbon inputs and AWG anomalies appeared to be uncorrelated from the seasonal to interannual scales. More than 90% of the interannual variability of AWG was explained by a combination of the growth intensity during a first 'critical period' of the wood growing season, occurring close to the seasonal maximum, and the timing of the first summer growth halt. Both atmospheric and soil water stress exerted a strong control on the interannual variability of AWG at the study site, despite its mesic conditions, whilst not affecting carbon inputs. Carbon sink activity, not carbon inputs, determined the interannual variations in wood growth at the study site. Our results provide a functional understanding of the dependence of radial growth on precipitation observed in dendrological studies. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Stylus/tablet user input device for MRI heart wall segmentation: efficiency and ease of use.
Taslakian, Bedros; Pires, Antonio; Halpern, Dan; Babb, James S; Axel, Leon
2018-05-02
To determine whether use of a stylus user input device (UID) would be superior to a mouse for CMR segmentation. Twenty-five consecutive clinical cardiac magnetic resonance (CMR) examinations were selected. Image analysis was independently performed by four observers. Manual tracing of left (LV) and right (RV) ventricular endocardial contours was performed twice in 10 randomly assigned sessions, each session using only one UID. Segmentation time and the ventricular function variables were recorded. The mean segmentation time and time reduction were calculated for each method. Intraclass correlation coefficients (ICC) and Bland-Altman plots of function variables were used to assess intra- and interobserver variability and agreement between methods. Observers completed a Likert-type questionnaire. The mean segmentation time (in seconds) was significantly less with the stylus compared to the mouse, averaging 206±108 versus 308±125 (p<0.001) and 225±140 versus 353±162 (p<0.001) for LV and RV segmentation, respectively. The intra- and interobserver agreement rates were excellent (ICC≥0.75) regardless of the UID. There was an excellent agreement between measurements derived from manual segmentation using different UIDs (ICC≥0.75), with few exceptions. Observers preferred the stylus. The study shows a significant reduction in segmentation time using the stylus, a subjective preference, and excellent agreement between the methods. • Using a stylus for MRI ventricular segmentation is faster compared to mouse • A stylus is easier to use and results in less fatigue • There is excellent agreement between stylus and mouse UIDs.
Input Variability Facilitates Unguided Subcategory Learning in Adults
Eidsvåg, Sunniva Sørhus; Austad, Margit; Asbjørnsen, Arve E.
2015-01-01
Purpose This experiment investigated whether input variability would affect initial learning of noun gender subcategories in an unfamiliar, natural language (Russian), as it is known to assist learning of other grammatical forms. Method Forty adults (20 men, 20 women) were familiarized with examples of masculine and feminine Russian words. Half of the participants were familiarized with 32 different root words in a high-variability condition. The other half were familiarized with 16 different root words, each repeated twice for a total of 32 presentations in a high-repetition condition. Participants were tested on untrained members of the category to assess generalization. Familiarization and testing was completed 2 additional times. Results Only participants in the high-variability group showed evidence of learning after an initial period of familiarization. Participants in the high-repetition group were able to learn after additional input. Both groups benefited when words included 2 cues to gender compared to a single cue. Conclusions The results demonstrate that the degree of input variability can influence learners' ability to generalize a grammatical subcategory (noun gender) from a natural language. In addition, the presence of multiple cues to linguistic subcategory facilitated learning independent of variability condition. PMID:25680081
Input Variability Facilitates Unguided Subcategory Learning in Adults.
Eidsvåg, Sunniva Sørhus; Austad, Margit; Plante, Elena; Asbjørnsen, Arve E
2015-06-01
This experiment investigated whether input variability would affect initial learning of noun gender subcategories in an unfamiliar, natural language (Russian), as it is known to assist learning of other grammatical forms. Forty adults (20 men, 20 women) were familiarized with examples of masculine and feminine Russian words. Half of the participants were familiarized with 32 different root words in a high-variability condition. The other half were familiarized with 16 different root words, each repeated twice for a total of 32 presentations in a high-repetition condition. Participants were tested on untrained members of the category to assess generalization. Familiarization and testing was completed 2 additional times. Only participants in the high-variability group showed evidence of learning after an initial period of familiarization. Participants in the high-repetition group were able to learn after additional input. Both groups benefited when words included 2 cues to gender compared to a single cue. The results demonstrate that the degree of input variability can influence learners' ability to generalize a grammatical subcategory (noun gender) from a natural language. In addition, the presence of multiple cues to linguistic subcategory facilitated learning independent of variability condition.
Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.
2016-01-01
Evapotranspiration (ET) is an important component of the water cycle – ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001–2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within the normal range. This finding implies that the simplified parameterization of the SSEBop model did not significantly affect the accuracy of the ET estimate while increasing the ease of model setup for operational applications. The sensitivity analysis indicated that the SSEBop model is most sensitive to input variables, land surface temperature (LST) and reference ET (ETo); and parameters, differential temperature (dT), and maximum ET scalar (Kmax), particularly during the non-growing season and in dry areas. In summary, the uncertainty assessment verifies that the SSEBop model is a reliable and robust method for large-area ET estimation. The SSEBop model estimates can be further improved by reducing errors in two input variables (ETo and LST) and two key parameters (Kmax and dT).
Bayesian Modeling for Identification and Estimation of the Learning Effects of Pointing Tasks
NASA Astrophysics Data System (ADS)
Kyo, Koki
Recently, in the field of human-computer interaction, a model containing the systematic factor and human factor has been proposed to evaluate the performance of the input devices of a computer. This is called the SH-model. In this paper, in order to extend the range of application of the SH-model, we propose some new models based on the Box-Cox transformation and apply a Bayesian modeling method for identification and estimation of the learning effects of pointing tasks. We consider the parameters describing the learning effect as random variables and introduce smoothness priors for them. Illustrative results show that the newly-proposed models work well.
B-737 Linear Autoland Simulink Model
NASA Technical Reports Server (NTRS)
Belcastro, Celeste (Technical Monitor); Hogge, Edward F.
2004-01-01
The Linear Autoland Simulink model was created to be a modular test environment for testing of control system components in commercial aircraft. The input variables, physical laws, and referenced frames used are summarized. The state space theory underlying the model is surveyed and the location of the control actuators described. The equations used to realize the Dryden gust model to simulate winds and gusts are derived. A description of the pseudo-random number generation method used in the wind gust model is included. The longitudinal autopilot, lateral autopilot, automatic throttle autopilot, engine model and automatic trim devices are considered as subsystems. The experience in converting the Airlabs FORTRAN aircraft control system simulation to a graphical simulation tool (Matlab/Simulink) is described.
NASA Astrophysics Data System (ADS)
Mita, Akifumi; Okamoto, Atsushi; Funakoshi, Hisatoshi
2004-06-01
We have proposed an all-optical authentic memory with the two-wave encryption method. In the recording process, the image data are encrypted to a white noise by the random phase masks added on the input beam with the image data and the reference beam. Only reading beam with the phase-conjugated distribution of the reference beam can decrypt the encrypted data. If the encrypted data are read out with an incorrect phase distribution, the output data are transformed into a white noise. Moreover, during read out, reconstructions of the encrypted data interfere destructively resulting in zero intensity. Therefore our memory has a merit that we can detect unlawful accesses easily by measuring the output beam intensity. In our encryption method, the random phase mask on the input plane plays important roles in transforming the input image into a white noise and prohibiting to decrypt a white noise to the input image by the blind deconvolution method. Without this mask, when unauthorized users observe the output beam by using CCD in the readout with the plane wave, the completely same intensity distribution as that of Fourier transform of the input image is obtained. Therefore the encrypted image will be decrypted easily by using the blind deconvolution method. However in using this mask, even if unauthorized users observe the output beam using the same method, the encrypted image cannot be decrypted because the observed intensity distribution is dispersed at random by this mask. Thus it can be said the robustness is increased by this mask. In this report, we compare two correlation coefficients, which represents the degree of a white noise of the output image, between the output image and the input image in using this mask or not. We show that the robustness of this encryption method is increased as the correlation coefficient is improved from 0.3 to 0.1 by using this mask.
Speed control system for an access gate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzorgi, Fariborz M
2012-03-20
An access control apparatus for an access gate. The access gate typically has a rotator that is configured to rotate around a rotator axis at a first variable speed in a forward direction. The access control apparatus may include a transmission that typically has an input element that is operatively connected to the rotator. The input element is generally configured to rotate at an input speed that is proportional to the first variable speed. The transmission typically also has an output element that has an output speed that is higher than the input speed. The input element and the outputmore » element may rotate around a common transmission axis. A retardation mechanism may be employed. The retardation mechanism is typically configured to rotate around a retardation mechanism axis. Generally the retardation mechanism is operatively connected to the output element of the transmission and is configured to retard motion of the access gate in the forward direction when the first variable speed is above a control-limit speed. In many embodiments the transmission axis and the retardation mechanism axis are substantially co-axial. Some embodiments include a freewheel/catch mechanism that has an input connection that is operatively connected to the rotator. The input connection may be configured to engage an output connection when the rotator is rotated at the first variable speed in a forward direction and configured for substantially unrestricted rotation when the rotator is rotated in a reverse direction opposite the forward direction. The input element of the transmission is typically operatively connected to the output connection of the freewheel/catch mechanism.« less
Lau, Billy T; Ji, Hanlee P
2017-09-21
RNA-Seq measures gene expression by counting sequence reads belonging to unique cDNA fragments. Molecular barcodes commonly in the form of random nucleotides were recently introduced to improve gene expression measures by detecting amplification duplicates, but are susceptible to errors generated during PCR and sequencing. This results in false positive counts, leading to inaccurate transcriptome quantification especially at low input and single-cell RNA amounts where the total number of molecules present is minuscule. To address this issue, we demonstrated the systematic identification of molecular species using transposable error-correcting barcodes that are exponentially expanded to tens of billions of unique labels. We experimentally showed random-mer molecular barcodes suffer from substantial and persistent errors that are difficult to resolve. To assess our method's performance, we applied it to the analysis of known reference RNA standards. By including an inline random-mer molecular barcode, we systematically characterized the presence of sequence errors in random-mer molecular barcodes. We observed that such errors are extensive and become more dominant at low input amounts. We described the first study to use transposable molecular barcodes and its use for studying random-mer molecular barcode errors. Extensive errors found in random-mer molecular barcodes may warrant the use of error correcting barcodes for transcriptome analysis as input amounts decrease.
[Discrimination of varieties of brake fluid using visual-near infrared spectra].
Jiang, Lu-lu; Tan, Li-hong; Qiu, Zheng-jun; Lu, Jiang-feng; He, Yong
2008-06-01
A new method was developed to fast discriminate brands of brake fluid by means of visual-near infrared spectroscopy. Five different brands of brake fluid were analyzed using a handheld near infrared spectrograph, manufactured by ASD Company, and 60 samples were gotten from each brand of brake fluid. The samples data were pretreated using average smoothing and standard normal variable method, and then analyzed using principal component analysis (PCA). A 2-dimensional plot was drawn based on the first and the second principal components, and the plot indicated that the clustering characteristic of different brake fluid is distinct. The foregoing 6 principal components were taken as input variable, and the band of brake fluid as output variable to build the discriminate model by stepwise discriminant analysis method. Two hundred twenty five samples selected randomly were used to create the model, and the rest 75 samples to verify the model. The result showed that the distinguishing rate was 94.67%, indicating that the method proposed in this paper has good performance in classification and discrimination. It provides a new way to fast discriminate different brands of brake fluid.
Prediction of hourly PM2.5 using a space-time support vector regression model
NASA Astrophysics Data System (ADS)
Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang
2018-05-01
Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.
Detection of chaotic determinism in time series from randomly forced maps
NASA Technical Reports Server (NTRS)
Chon, K. H.; Kanters, J. K.; Cohen, R. J.; Holstein-Rathlou, N. H.
1997-01-01
Time series from biological system often display fluctuations in the measured variables. Much effort has been directed at determining whether this variability reflects deterministic chaos, or whether it is merely "noise". Despite this effort, it has been difficult to establish the presence of chaos in time series from biological sytems. The output from a biological system is probably the result of both its internal dynamics, and the input to the system from the surroundings. This implies that the system should be viewed as a mixed system with both stochastic and deterministic components. We present a method that appears to be useful in deciding whether determinism is present in a time series, and if this determinism has chaotic attributes, i.e., a positive characteristic exponent that leads to sensitivity to initial conditions. The method relies on fitting a nonlinear autoregressive model to the time series followed by an estimation of the characteristic exponents of the model over the observed probability distribution of states for the system. The method is tested by computer simulations, and applied to heart rate variability data.
NASA Astrophysics Data System (ADS)
Elshahaby, Fatma E. A.; Ghaly, Michael; Jha, Abhinav K.; Frey, Eric C.
2015-03-01
Model Observers are widely used in medical imaging for the optimization and evaluation of instrumentation, acquisition parameters and image reconstruction and processing methods. The channelized Hotelling observer (CHO) is a commonly used model observer in nuclear medicine and has seen increasing use in other modalities. An anthropmorphic CHO consists of a set of channels that model some aspects of the human visual system and the Hotelling Observer, which is the optimal linear discriminant. The optimality of the CHO is based on the assumption that the channel outputs for data with and without the signal present have a multivariate normal distribution with equal class covariance matrices. The channel outputs result from the dot product of channel templates with input images and are thus the sum of a large number of random variables. The central limit theorem is thus often used to justify the assumption that the channel outputs are normally distributed. In this work, we aim to examine this assumption for realistically simulated nuclear medicine images when various types of signal variability are present.
Line-of-sight pointing accuracy/stability analysis and computer simulation for small spacecraft
NASA Astrophysics Data System (ADS)
Algrain, Marcelo C.; Powers, Richard M.
1996-06-01
This paper presents a case study where a comprehensive computer simulation is developed to determine the driving factors contributing to spacecraft pointing accuracy and stability. The simulation is implemented using XMATH/SystemBuild software from Integrated Systems, Inc. The paper is written in a tutorial manner and models for major system components are described. Among them are spacecraft bus, attitude controller, reaction wheel assembly, star-tracker unit, inertial reference unit, and gyro drift estimators (Kalman filter). THe predicted spacecraft performance is analyzed for a variety of input commands and system disturbances. The primary deterministic inputs are desired attitude angles and rate setpoints. The stochastic inputs include random torque disturbances acting on the spacecraft, random gyro bias noise, gyro random walk, and star-tracker noise. These inputs are varied over a wide range to determine their effects on pointing accuracy and stability. The results are presented in the form of trade-off curves designed to facilitate the proper selection of subsystems so that overall spacecraft pointing accuracy and stability requirements are met.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karagiannis, Georgios; Lin, Guang
2014-02-15
Generalized polynomial chaos (gPC) expansions allow the representation of the solution of a stochastic system as a series of polynomial terms. The number of gPC terms increases dramatically with the dimension of the random input variables. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs if the evaluations of the system are expensive, the evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solution, both in spacial and random domains, by coupling Bayesianmore » model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spacial points via (1) Bayesian model average or (2) medial probability model, and their construction as functions on the spacial domain via spline interpolation. The former accounts the model uncertainty and provides Bayes-optimal predictions; while the latter, additionally, provides a sparse representation of the solution by evaluating the expansion on a subset of dominating gPC bases when represented as a gPC expansion. Moreover, the method quantifies the importance of the gPC bases through inclusion probabilities. We design an MCMC sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed method is suitable for, but not restricted to, problems whose stochastic solution is sparse at the stochastic level with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the good performance of the proposed method and make comparisons with others on 1D, 14D and 40D in random space elliptic stochastic partial differential equations.« less
Gupta, Himanshu; Schiros, Chun G; Sharifov, Oleg F; Jain, Apurva; Denney, Thomas S
2016-08-31
Recently released American College of Cardiology/American Heart Association (ACC/AHA) guideline recommends the Pooled Cohort equations for evaluating atherosclerotic cardiovascular risk of individuals. The impact of the clinical input variable uncertainties on the estimates of ten-year cardiovascular risk based on ACC/AHA guidelines is not known. Using a publicly available the National Health and Nutrition Examination Survey dataset (2005-2010), we computed maximum and minimum ten-year cardiovascular risks by assuming clinically relevant variations/uncertainties in input of age (0-1 year) and ±10 % variation in total-cholesterol, high density lipoprotein- cholesterol, and systolic blood pressure and by assuming uniform distribution of the variance of each variable. We analyzed the changes in risk category compared to the actual inputs at 5 % and 7.5 % risk limits as these limits define the thresholds for consideration of drug therapy in the new guidelines. The new-pooled cohort equations for risk estimation were implemented in a custom software package. Based on our input variances, changes in risk category were possible in up to 24 % of the population cohort at both 5 % and 7.5 % risk boundary limits. This trend was consistently noted across all subgroups except in African American males where most of the cohort had ≥7.5 % baseline risk regardless of the variation in the variables. The uncertainties in the input variables can alter the risk categorization. The impact of these variances on the ten-year risk needs to be incorporated into the patient/clinician discussion and clinical decision making. Incorporating good clinical practices for the measurement of critical clinical variables and robust standardization of laboratory parameters to more stringent reference standards is extremely important for successful implementation of the new guidelines. Furthermore, ability to customize the risk calculator inputs to better represent unique clinical circumstances specific to individual needs would be highly desirable in the future versions of the risk calculator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil
Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.
NASA Astrophysics Data System (ADS)
Alfano, M.; Bisagni, C.
2017-01-01
The objective of the running EU project DESICOS (New Robust DESign Guideline for Imperfection Sensitive COmposite Launcher Structures) is to formulate an improved shell design methodology in order to meet the demand of aerospace industry for lighter structures. Within the project, this article discusses the development of a probability-based methodology developed at Politecnico di Milano. It is based on the combination of the Stress-Strength Interference Method and the Latin Hypercube Method with the aim to predict the bucking response of three sandwich composite cylindrical shells, assuming a loading condition of pure compression. The three shells are made of the same material, but have different stacking sequence and geometric dimensions. One of them presents three circular cut-outs. Different types of input imperfections, treated as random variables, are taken into account independently and in combination: variability in longitudinal Young's modulus, ply misalignment, geometric imperfections, and boundary imperfections. The methodology enables a first assessment of the structural reliability of the shells through the calculation of a probabilistic buckling factor for a specified level of probability. The factor depends highly on the reliability level, on the number of adopted samples, and on the assumptions made in modeling the input imperfections. The main advantage of the developed procedure is the versatility, as it can be applied to the buckling analysis of laminated composite shells and sandwich composite shells including different types of imperfections.
Modeling road-cycling performance.
Olds, T S; Norton, K I; Lowe, E L; Olive, S; Reay, F; Ly, S
1995-04-01
This paper presents a complete set of equations for a "first principles" mathematical model of road-cycling performance, including corrections for the effect of winds, tire pressure and wheel radius, altitude, relative humidity, rotational kinetic energy, drafting, and changed drag. The relevant physiological, biophysical, and environmental variables were measured in 41 experienced cyclists completing a 26-km road time trial. The correlation between actual and predicted times was 0.89 (P < or = 0.0001), with a mean difference of 0.74 min (1.73% of mean performance time) and a mean absolute difference of 1.65 min (3.87%). Multiple simulations were performed where model inputs were randomly varied using a normal distribution about the measured values with a SD equivalent to the estimated day-to-day variability or technical error of measurement in each of the inputs. This analysis yielded 95% confidence limits for the predicted times. The model suggests that the main physiological factors contributing to road-cycling performance are maximal O2 consumption, fractional utilization of maximal O2 consumption, mechanical efficiency, and projected frontal area. The model is then applied to some practical problems in road cycling: the effect of drafting, the advantage of using smaller front wheels, the effects of added mass, the importance of rotational kinetic energy, the effect of changes in drag due to changes in bicycle configuration, the normalization of performances under different conditions, and the limits of human performance.
Aitkenhead, Matt J; Black, Helaina I J
2018-02-01
Using the International Centre for Research in Agroforestry-International Soil Reference and Information Centre (ICRAF-ISRIC) global soil spectroscopy database, models were developed to estimate a number of soil variables using different input data types. These input types included: (1) site data only; (2) visible-near-infrared (Vis-NIR) diffuse reflectance spectroscopy only; (3) combined site and Vis-NIR data; (4) red-green-blue (RGB) color data only; and (5) combined site and RGB color data. The models produced variable estimation accuracy, with RGB only being generally worst and spectroscopy plus site being best. However, we showed that for certain variables, estimation accuracy levels achieved with the "site plus RGB input data" were sufficiently good to provide useful estimates (r 2 > 0.7). These included major elements (Ca, Si, Al, Fe), organic carbon, and cation exchange capacity. Estimates for bulk density, contrast-to-noise (C/N), and P were moderately good, but K was not well estimated using this model type. For the "spectra plus site" model, many more variables were well estimated, including many that are important indicators for agricultural productivity and soil health. Sum of cation, electrical conductivity, Si, Ca, and Al oxides, and C/N ratio were estimated using this approach with r 2 values > 0.9. This work provides a mechanism for identifying the cost-effectiveness of using different model input data, with associated costs, for estimating soil variables to required levels of accuracy.
Uncertainty in predictions of oil spill trajectories in a coastal zone
NASA Astrophysics Data System (ADS)
Sebastião, P.; Guedes Soares, C.
2006-12-01
A method is introduced to determine the uncertainties in the predictions of oil spill trajectories using a classic oil spill model. The method considers the output of the oil spill model as a function of random variables, which are the input parameters, and calculates the standard deviation of the output results which provides a measure of the uncertainty of the model as a result of the uncertainties of the input parameters. In addition to a single trajectory that is calculated by the oil spill model using the mean values of the parameters, a band of trajectories can be defined when various simulations are done taking into account the uncertainties of the input parameters. This band of trajectories defines envelopes of the trajectories that are likely to be followed by the spill given the uncertainties of the input. The method was applied to an oil spill that occurred in 1989 near Sines in the southwestern coast of Portugal. This model represented well the distinction between a wind driven part that remained offshore, and a tide driven part that went ashore. For both parts, the method defined two trajectory envelopes, one calculated exclusively with the wind fields, and the other using wind and tidal currents. In both cases reasonable approximation to the observed results was obtained. The envelope of likely trajectories that is obtained with the uncertainty modelling proved to give a better interpretation of the trajectories that were simulated by the oil spill model.
Cryptographic Boolean Functions with Biased Inputs
2015-07-31
theory of random graphs developed by Erdős and Rényi [2]. The graph properties in a random graph expressed as such Boolean functions are used by...distributed Bernoulli variates with the parameter p. Since our scope is within the area of cryptography , we initiate an analysis of cryptographic...Boolean functions with biased inputs, which we refer to as µp-Boolean functions, is a common generalization of Boolean functions which stems from the
A non-linear dimension reduction methodology for generating data-driven stochastic input models
NASA Astrophysics Data System (ADS)
Ganapathysubramanian, Baskar; Zabaras, Nicholas
2008-06-01
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low-dimensional input stochastic models to represent thermal diffusivity in two-phase microstructures. This model is used in analyzing the effect of topological variations of two-phase microstructures on the evolution of temperature in heat conduction processes.
NLEdit: A generic graphical user interface for Fortran programs
NASA Technical Reports Server (NTRS)
Curlett, Brian P.
1994-01-01
NLEdit is a generic graphical user interface for the preprocessing of Fortran namelist input files. The interface consists of a menu system, a message window, a help system, and data entry forms. A form is generated for each namelist. The form has an input field for each namelist variable along with a one-line description of that variable. Detailed help information, default values, and minimum and maximum allowable values can all be displayed via menu picks. Inputs are processed through a scientific calculator program that allows complex equations to be used instead of simple numeric inputs. A custom user interface is generated simply by entering information about the namelist input variables into an ASCII file. There is no need to learn a new graphics system or programming language. NLEdit can be used as a stand-alone program or as part of a larger graphical user interface. Although NLEdit is intended for files using namelist format, it can be easily modified to handle other file formats.
Computing Shapes Of Cascade Diffuser Blades
NASA Technical Reports Server (NTRS)
Tran, Ken; Prueger, George H.
1993-01-01
Computer program generates sizes and shapes of cascade-type blades for use in axial or radial turbomachine diffusers. Generates shapes of blades rapidly, incorporating extensive cascade data to determine optimum incidence and deviation angle for blade design based on 65-series data base of National Advisory Commission for Aeronautics and Astronautics (NACA). Allows great variability in blade profile through input variables. Also provides for design of three-dimensional blades by allowing variable blade stacking. Enables designer to obtain computed blade-geometry data in various forms: as input for blade-loading analysis; as input for quasi-three-dimensional analysis of flow; or as points for transfer to computer-aided design.
Random vs. Combinatorial Methods for Discrete Event Simulation of a Grid Computer Network
NASA Technical Reports Server (NTRS)
Kuhn, D. Richard; Kacker, Raghu; Lei, Yu
2010-01-01
This study compared random and t-way combinatorial inputs of a network simulator, to determine if these two approaches produce significantly different deadlock detection for varying network configurations. Modeling deadlock detection is important for analyzing configuration changes that could inadvertently degrade network operations, or to determine modifications that could be made by attackers to deliberately induce deadlock. Discrete event simulation of a network may be conducted using random generation, of inputs. In this study, we compare random with combinatorial generation of inputs. Combinatorial (or t-way) testing requires every combination of any t parameter values to be covered by at least one test. Combinatorial methods can be highly effective because empirical data suggest that nearly all failures involve the interaction of a small number of parameters (1 to 6). Thus, for example, if all deadlocks involve at most 5-way interactions between n parameters, then exhaustive testing of all n-way interactions adds no additional information that would not be obtained by testing all 5-way interactions. While the maximum degree of interaction between parameters involved in the deadlocks clearly cannot be known in advance, covering all t-way interactions may be more efficient than using random generation of inputs. In this study we tested this hypothesis for t = 2, 3, and 4 for deadlock detection in a network simulation. Achieving the same degree of coverage provided by 4-way tests would have required approximately 3.2 times as many random tests; thus combinatorial methods were more efficient for detecting deadlocks involving a higher degree of interactions. The paper reviews explanations for these results and implications for modeling and simulation.
Does Input Enhancement Work for Learning Politeness Strategies?
ERIC Educational Resources Information Center
Khatib, Mohammad; Safari, Mahmood
2013-01-01
The present study investigated the effect of input enhancement on the acquisition of English politeness strategies by intermediate EFL learners. Two groups of freshman English majors were randomly assigned to the experimental (enhanced input) group and the control (mere exposure) group. Initially, a TOEFL test and a discourse completion test (DCT)…
Neural Network Machine Learning and Dimension Reduction for Data Visualization
NASA Technical Reports Server (NTRS)
Liles, Charles A.
2014-01-01
Neural network machine learning in computer science is a continuously developing field of study. Although neural network models have been developed which can accurately predict a numeric value or nominal classification, a general purpose method for constructing neural network architecture has yet to be developed. Computer scientists are often forced to rely on a trial-and-error process of developing and improving accurate neural network models. In many cases, models are constructed from a large number of input parameters. Understanding which input parameters have the greatest impact on the prediction of the model is often difficult to surmise, especially when the number of input variables is very high. This challenge is often labeled the "curse of dimensionality" in scientific fields. However, techniques exist for reducing the dimensionality of problems to just two dimensions. Once a problem's dimensions have been mapped to two dimensions, it can be easily plotted and understood by humans. The ability to visualize a multi-dimensional dataset can provide a means of identifying which input variables have the highest effect on determining a nominal or numeric output. Identifying these variables can provide a better means of training neural network models; models can be more easily and quickly trained using only input variables which appear to affect the outcome variable. The purpose of this project is to explore varying means of training neural networks and to utilize dimensional reduction for visualizing and understanding complex datasets.
NASA Astrophysics Data System (ADS)
Lu, Jianbo; Li, Dewei; Xi, Yugeng
2013-07-01
This article is concerned with probability-based constrained model predictive control (MPC) for systems with both structured uncertainties and time delays, where a random input delay and multiple fixed state delays are included. The process of input delay is governed by a discrete-time finite-state Markov chain. By invoking an appropriate augmented state, the system is transformed into a standard structured uncertain time-delay Markov jump linear system (MJLS). For the resulting system, a multi-step feedback control law is utilised to minimise an upper bound on the expected value of performance objective. The proposed design has been proved to stabilise the closed-loop system in the mean square sense and to guarantee constraints on control inputs and system states. Finally, a numerical example is given to illustrate the proposed results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFarge, R.A.
1990-05-01
MCPRAM (Monte Carlo PReprocessor for AMEER), a computer program that uses Monte Carlo techniques to create an input file for the AMEER trajectory code, has been developed for the Sandia National Laboratories VAX and Cray computers. Users can select the number of trajectories to compute, which AMEER variables to investigate, and the type of probability distribution for each variable. Any legal AMEER input variable can be investigated anywhere in the input run stream with either a normal, uniform, or Rayleigh distribution. Users also have the option to use covariance matrices for the investigation of certain correlated variables such as boostermore » pre-reentry errors and wind, axial force, and atmospheric models. In conjunction with MCPRAM, AMEER was modified to include the variables introduced by the covariance matrices and to include provisions for six types of fuze models. The new fuze models and the new AMEER variables are described in this report.« less
Sustainability of transport structures - some aspects of the nonlinear reliability assessment
NASA Astrophysics Data System (ADS)
Pukl, Radomír; Sajdlová, Tereza; Strauss, Alfred; Lehký, David; Novák, Drahomír
2017-09-01
Efficient techniques for both nonlinear numerical analysis of concrete structures and advanced stochastic simulation methods have been combined in order to offer an advanced tool for assessment of realistic behaviour, failure and safety assessment of transport structures. The utilized approach is based on randomization of the non-linear finite element analysis of the structural models. Degradation aspects such as carbonation of concrete can be accounted in order predict durability of the investigated structure and its sustainability. Results can serve as a rational basis for the performance and sustainability assessment based on advanced nonlinear computer analysis of the structures of transport infrastructure such as bridges or tunnels. In the stochastic simulation the input material parameters obtained from material tests including their randomness and uncertainty are represented as random variables or fields. Appropriate identification of material parameters is crucial for the virtual failure modelling of structures and structural elements. Inverse analysis using artificial neural networks and virtual stochastic simulations approach is applied to determine the fracture mechanical parameters of the structural material and its numerical model. Structural response, reliability and sustainability have been investigated on different types of transport structures made from various materials using the above mentioned methodology and tools.
Input Variability Facilitates Unguided Subcategory Learning in Adults
ERIC Educational Resources Information Center
Eidsvåg, Sunniva Sørhus; Austad, Margit; Plante, Elena; Asbjørnsen, Arve E.
2015-01-01
Purpose: This experiment investigated whether input variability would affect initial learning of noun gender subcategories in an unfamiliar, natural language (Russian), as it is known to assist learning of other grammatical forms. Method: Forty adults (20 men, 20 women) were familiarized with examples of masculine and feminine Russian words. Half…
Electrical Evaluation of RCA MWS5001D Random Access Memory, Volume 5, Appendix D
NASA Technical Reports Server (NTRS)
Klute, A.
1979-01-01
The electrical characterization and qualification test results are presented for the RCA MWS 5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. Average input high current, worst case input high current, output low current, and data setup time are some of the results presented.
Optimum systems design with random input and output applied to solar water heating
NASA Astrophysics Data System (ADS)
Abdel-Malek, L. L.
1980-03-01
Solar water heating systems are evaluated. Models were developed to estimate the percentage of energy supplied from the Sun to a household. Since solar water heating systems have random input and output queueing theory, birth and death processes were the major tools in developing the models of evaluation. Microeconomics methods help in determining the optimum size of the solar water heating system design parameters, i.e., the water tank volume and the collector area.
Effects of input uncertainty on cross-scale crop modeling
NASA Astrophysics Data System (ADS)
Waha, Katharina; Huth, Neil; Carberry, Peter
2014-05-01
The quality of data on climate, soils and agricultural management in the tropics is in general low or data is scarce leading to uncertainty in process-based modeling of cropping systems. Process-based crop models are common tools for simulating crop yields and crop production in climate change impact studies, studies on mitigation and adaptation options or food security studies. Crop modelers are concerned about input data accuracy as this, together with an adequate representation of plant physiology processes and choice of model parameters, are the key factors for a reliable simulation. For example, assuming an error in measurements of air temperature, radiation and precipitation of ± 0.2°C, ± 2 % and ± 3 % respectively, Fodor & Kovacs (2005) estimate that this translates into an uncertainty of 5-7 % in yield and biomass simulations. In our study we seek to answer the following questions: (1) are there important uncertainties in the spatial variability of simulated crop yields on the grid-cell level displayed on maps, (2) are there important uncertainties in the temporal variability of simulated crop yields on the aggregated, national level displayed in time-series, and (3) how does the accuracy of different soil, climate and management information influence the simulated crop yields in two crop models designed for use at different spatial scales? The study will help to determine whether more detailed information improves the simulations and to advise model users on the uncertainty related to input data. We analyse the performance of the point-scale crop model APSIM (Keating et al., 2003) and the global scale crop model LPJmL (Bondeau et al., 2007) with different climate information (monthly and daily) and soil conditions (global soil map and African soil map) under different agricultural management (uniform and variable sowing dates) for the low-input maize-growing areas in Burkina Faso/West Africa. We test the models' response to different levels of input data from very little to very detailed information, and compare the models' abilities to represent the spatial variability and temporal variability in crop yields. We display the uncertainty in crop yield simulations from different input data and crop models in Taylor diagrams which are a graphical summary of the similarity between simulations and observations (Taylor, 2001). The observed spatial variability can be represented well from both models (R=0.6-0.8) but APSIM predicts higher spatial variability than LPJmL due to its sensitivity to soil parameters. Simulations with the same crop model, climate and sowing dates have similar statistics and therefore similar skill to reproduce the observed spatial variability. Soil data is less important for the skill of a crop model to reproduce the observed spatial variability. However, the uncertainty in simulated spatial variability from the two crop models is larger than from input data settings and APSIM is more sensitive to input data then LPJmL. Even with a detailed, point-scale crop model and detailed input data it is difficult to capture the complexity and diversity in maize cropping systems.
Learning About Climate and Atmospheric Models Through Machine Learning
NASA Astrophysics Data System (ADS)
Lucas, D. D.
2017-12-01
From the analysis of ensemble variability to improving simulation performance, machine learning algorithms can play a powerful role in understanding the behavior of atmospheric and climate models. To learn about model behavior, we create training and testing data sets through ensemble techniques that sample different model configurations and values of input parameters, and then use supervised machine learning to map the relationships between the inputs and outputs. Following this procedure, we have used support vector machines, random forests, gradient boosting and other methods to investigate a variety of atmospheric and climate model phenomena. We have used machine learning to predict simulation crashes, estimate the probability density function of climate sensitivity, optimize simulations of the Madden Julian oscillation, assess the impacts of weather and emissions uncertainty on atmospheric dispersion, and quantify the effects of model resolution changes on precipitation. This presentation highlights recent examples of our applications of machine learning to improve the understanding of climate and atmospheric models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Palenčár, Rudolf; Sopkuliak, Peter; Palenčár, Jakub; Ďuriš, Stanislav; Suroviak, Emil; Halaj, Martin
2017-06-01
Evaluation of uncertainties of the temperature measurement by standard platinum resistance thermometer calibrated at the defining fixed points according to ITS-90 is a problem that can be solved in different ways. The paper presents a procedure based on the propagation of distributions using the Monte Carlo method. The procedure employs generation of pseudo-random numbers for the input variables of resistances at the defining fixed points, supposing the multivariate Gaussian distribution for input quantities. This allows taking into account the correlations among resistances at the defining fixed points. Assumption of Gaussian probability density function is acceptable, with respect to the several sources of uncertainties of resistances. In the case of uncorrelated resistances at the defining fixed points, the method is applicable to any probability density function. Validation of the law of propagation of uncertainty using the Monte Carlo method is presented on the example of specific data for 25 Ω standard platinum resistance thermometer in the temperature range from 0 to 660 °C. Using this example, we demonstrate suitability of the method by validation of its results.
Influences of system uncertainties on the numerical transfer path analysis of engine systems
NASA Astrophysics Data System (ADS)
Acri, A.; Nijman, E.; Acri, A.; Offner, G.
2017-10-01
Practical mechanical systems operate with some degree of uncertainty. In numerical models uncertainties can result from poorly known or variable parameters, from geometrical approximation, from discretization or numerical errors, from uncertain inputs or from rapidly changing forcing that can be best described in a stochastic framework. Recently, random matrix theory was introduced to take parameter uncertainties into account in numerical modeling problems. In particular in this paper, Wishart random matrix theory is applied on a multi-body dynamic system to generate random variations of the properties of system components. Multi-body dynamics is a powerful numerical tool largely implemented during the design of new engines. In this paper the influence of model parameter variability on the results obtained from the multi-body simulation of engine dynamics is investigated. The aim is to define a methodology to properly assess and rank system sources when dealing with uncertainties. Particular attention is paid to the influence of these uncertainties on the analysis and the assessment of the different engine vibration sources. Examples of the effects of different levels of uncertainties are illustrated by means of examples using a representative numerical powertrain model. A numerical transfer path analysis, based on system dynamic substructuring, is used to derive and assess the internal engine vibration sources. The results obtained from this analysis are used to derive correlations between parameter uncertainties and statistical distribution of results. The derived statistical information can be used to advance the knowledge of the multi-body analysis and the assessment of system sources when uncertainties in model parameters are considered.
Levine, M W
1991-01-01
Simulated neural impulse trains were generated by a digital realization of the integrate-and-fire model. The variability in these impulse trains had as its origin a random noise of specified distribution. Three different distributions were used: the normal (Gaussian) distribution (no skew, normokurtic), a first-order gamma distribution (positive skew, leptokurtic), and a uniform distribution (no skew, platykurtic). Despite these differences in the distribution of the variability, the distributions of the intervals between impulses were nearly indistinguishable. These inter-impulse distributions were better fit with a hyperbolic gamma distribution than a hyperbolic normal distribution, although one might expect a better approximation for normally distributed inverse intervals. Consideration of why the inter-impulse distribution is independent of the distribution of the causative noise suggests two putative interval distributions that do not depend on the assumed noise distribution: the log normal distribution, which is predicated on the assumption that long intervals occur with the joint probability of small input values, and the random walk equation, which is the diffusion equation applied to a random walk model of the impulse generating process. Either of these equations provides a more satisfactory fit to the simulated impulse trains than the hyperbolic normal or hyperbolic gamma distributions. These equations also provide better fits to impulse trains derived from the maintained discharges of ganglion cells in the retinae of cats or goldfish. It is noted that both equations are free from the constraint that the coefficient of variation (CV) have a maximum of unity.(ABSTRACT TRUNCATED AT 250 WORDS)
Cascaded analysis of signal and noise propagation through a heterogeneous breast model.
Mainprize, James G; Yaffe, Martin J
2010-10-01
The detectability of lesions in radiographic images can be impaired by patterns caused by the surrounding anatomic structures. The presence of such patterns is often referred to as anatomic noise. Others have previously extended signal and noise propagation theory to include variable background structure as an additional noise term and used in simulations for analysis by human and ideal observers. Here, the analytic forms of the signal and noise transfer are derived to obtain an exact expression for any input random distribution and the "power law" filter used to generate the texture of the tissue distribution. A cascaded analysis of propagation through a heterogeneous model is derived for x-ray projection through simulated heterogeneous backgrounds. This is achieved by considering transmission through the breast as a correlated amplification point process. The analytic forms of the cascaded analysis were compared to monoenergetic Monte Carlo simulations of x-ray propagation through power law structured backgrounds. As expected, it was found that although the quantum noise power component scales linearly with the x-ray signal, the anatomic noise will scale with the square of the x-ray signal. There was a good agreement between results obtained using analytic expressions for the noise power and those from Monte Carlo simulations for different background textures, random input functions, and x-ray fluence. Analytic equations for the signal and noise properties of heterogeneous backgrounds were derived. These may be used in direct analysis or as a tool to validate simulations in evaluating detectability.
Missing pulse detector for a variable frequency source
Ingram, Charles B.; Lawhorn, John H.
1979-01-01
A missing pulse detector is provided which has the capability of monitoring a varying frequency pulse source to detect the loss of a single pulse or total loss of signal from the source. A frequency-to-current converter is used to program the output pulse width of a variable period retriggerable one-shot to maintain a pulse width slightly longer than one-half the present monitored pulse period. The retriggerable one-shot is triggered at twice the input pulse rate by employing a frequency doubler circuit connected between the one-shot input and the variable frequency source being monitored. The one-shot remains in the triggered or unstable state under normal conditions even though the source period is varying. A loss of an input pulse or single period of a fluctuating signal input will cause the one-shot to revert to its stable state, changing the output signal level to indicate a missing pulse or signal.
Input and language development in bilingually developing children.
Hoff, Erika; Core, Cynthia
2013-11-01
Language skills in young bilingual children are highly varied as a result of the variability in their language experiences, making it difficult for speech-language pathologists to differentiate language disorder from language difference in bilingual children. Understanding the sources of variability in bilingual contexts and the resulting variability in children's skills will help improve language assessment practices by speech-language pathologists. In this article, we review literature on bilingual first language development for children under 5 years of age. We describe the rate of development in single and total language growth, we describe effects of quantity of input and quality of input on growth, and we describe effects of family composition on language input and language growth in bilingual children. We provide recommendations for language assessment of young bilingual children and consider implications for optimizing children's dual language development. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
NASA Astrophysics Data System (ADS)
Kondapalli, S. P.
2017-12-01
In the present work, pulsed current microplasma arc welding is carried out on AISI 321 austenitic stainless steel of 0.3 mm thickness. Peak current, Base current, Pulse rate and Pulse width are chosen as the input variables, whereas grain size and hardness are considered as output responses. Response surface method is adopted by using Box-Behnken Design, and in total 27 experiments are performed. Empirical relation between input and output response is developed using statistical software and analysis of variance (ANOVA) at 95% confidence level to check the adequacy. The main effect and interaction effect of input variables on output response are also studied.
Teoh, Andrew B J; Goh, Alwyn; Ngo, David C L
2006-12-01
Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the Random Multispace Quantization (RMQ) of biometric and external random inputs.
Modal identification of structures from the responses and random decrement signatures
NASA Technical Reports Server (NTRS)
Brahim, S. R.; Goglia, G. L.
1977-01-01
The theory and application of a method which utilizes the free response of a structure to determine its vibration parameters is described. The time-domain free response is digitized and used in a digital computer program to determine the number of modes excited, the natural frequencies, the damping factors, and the modal vectors. The technique is applied to a complex generalized payload model previously tested using sine sweep method and analyzed by NASTRAN. Ten modes of the payload model are identified. In case free decay response is not readily available, an algorithm is developed to obtain the free responses of a structure from its random responses, due to some unknown or known random input or inputs, using the random decrement technique without changing time correlation between signals. The algorithm is tested using random responses from a generalized payload model and from the space shuttle model.
Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan
2005-01-01
Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.
NASA Astrophysics Data System (ADS)
Korelin, Ivan A.; Porshnev, Sergey V.
2018-05-01
A model of the non-stationary queuing system (NQS) is described. The input of this model receives a flow of requests with input rate λ = λdet (t) + λrnd (t), where λdet (t) is a deterministic function depending on time; λrnd (t) is a random function. The parameters of functions λdet (t), λrnd (t) were identified on the basis of statistical information on visitor flows collected from various Russian football stadiums. The statistical modeling of NQS is carried out and the average statistical dependences are obtained: the length of the queue of requests waiting for service, the average wait time for the service, the number of visitors entered to the stadium on the time. It is shown that these dependencies can be characterized by the following parameters: the number of visitors who entered at the time of the match; time required to service all incoming visitors; the maximum value; the argument value when the studied dependence reaches its maximum value. The dependences of these parameters on the energy ratio of the deterministic and random component of the input rate are investigated.
Ventricular repolarization variability for hypoglycemia detection.
Ling, Steve; Nguyen, H T
2011-01-01
Hypoglycemia is the most acute and common complication of Type 1 diabetes and is a limiting factor in a glycemic management of diabetes. In this paper, two main contributions are presented; firstly, ventricular repolarization variabilities are introduced for hypoglycemia detection, and secondly, a swarm-based support vector machine (SVM) algorithm with the inputs of the repolarization variabilities is developed to detect hypoglycemia. By using the algorithm and including several repolarization variabilities as inputs, the best hypoglycemia detection performance is found with sensitivity and specificity of 82.14% and 60.19%, respectively.
The Role of Learner and Input Variables in Learning Inflectional Morphology
ERIC Educational Resources Information Center
Brooks, Patricia J.; Kempe, Vera; Sionov, Ariel
2006-01-01
To examine effects of input and learner characteristics on morphology acquisition, 60 adult English speakers learned to inflect masculine and feminine Russian nouns in nominative, dative, and genitive cases. By varying training vocabulary size (i.e., type variability), holding constant the number of learning trials, we tested whether learners…
Wideband low-noise variable-gain BiCMOS transimpedance amplifier
NASA Astrophysics Data System (ADS)
Meyer, Robert G.; Mack, William D.
1994-06-01
A new monolithic variable gain transimpedance amplifier is described. The circuit is realized in BiCMOS technology and has measured gain of 98 kilo ohms, bandwidth of 128 MHz, input noise current spectral density of 1.17 pA/square root of Hz and input signal-current handling capability of 3 mA.
Integrated controls design optimization
Lou, Xinsheng; Neuschaefer, Carl H.
2015-09-01
A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.
Stochastic Modeling of the Environmental Impacts of the Mingtang Tunneling Project
NASA Astrophysics Data System (ADS)
Li, Xiaojun; Li, Yandong; Chang, Ching-Fu; Chen, Ziyang; Tan, Benjamin Zhi Wen; Sege, Jon; Wang, Changhong; Rubin, Yoram
2017-04-01
This paper investigates the environmental impacts of a major tunneling project in China. Of particular interest is the drawdown of the water table, due to its potential impacts on ecosystem health and on agricultural activity. Due to scarcity of data, the study pursues a Bayesian stochastic approach, which is built around a numerical model. We adopted the Bayesian approach with the goal of deriving the posterior distributions of the dependent variables conditional on local data. The choice of the Bayesian approach for this study is somewhat non-trivial because of the scarcity of in-situ measurements. The thought guiding this selection is that prior distributions for the model input variables are valuable tools even if that all inputs are available, the Bayesian approach could provide a good starting point for further updates as and if additional data becomes available. To construct effective priors, a systematic approach was developed and implemented for constructing informative priors based on other, well-documented sites which bear geological and hydrological similarity to the target site (the Mingtang tunneling project). The approach is built around two classes of similarity criteria: a physically-based set of criteria and an additional set covering epistemic criteria. The prior construction strategy was implemented for the hydraulic conductivity of various types of rocks at the site (Granite and Gneiss) and for modeling the geometry and conductivity of the fault zones. Additional elements of our strategy include (1) modeling the water table through bounding surfaces representing upper and lower limits, and (2) modeling the effective conductivity as a random variable (varying between realizations, not in space). The approach was tested successfully against its ability to predict the tunnel infiltration fluxes and against observations of drying soils.
NASA Astrophysics Data System (ADS)
Kala, Zdeněk; Kala, Jiří
2011-09-01
The main focus of the paper is the analysis of the influence of residual stress on the ultimate limit state of a hot-rolled member in compression. The member was modelled using thin-walled elements of type SHELL 181 and meshed in the programme ANSYS. Geometrical and material non-linear analysis was used. The influence of residual stress was studied using variance-based sensitivity analysis. In order to obtain more general results, the non-dimensional slenderness was selected as a study parameter. Comparison of the influence of the residual stress with the influence of other dominant imperfections is illustrated in the conclusion of the paper. All input random variables were considered according to results of experimental research.
ERIC Educational Resources Information Center
Kong, Nan
2007-01-01
In multivariate statistics, the linear relationship among random variables has been fully explored in the past. This paper looks into the dependence of one group of random variables on another group of random variables using (conditional) entropy. A new measure, called the K-dependence coefficient or dependence coefficient, is defined using…
NASA Astrophysics Data System (ADS)
Creaco, E.; Berardi, L.; Sun, Siao; Giustolisi, O.; Savic, D.
2016-04-01
The growing availability of field data, from information and communication technologies (ICTs) in "smart" urban infrastructures, allows data modeling to understand complex phenomena and to support management decisions. Among the analyzed phenomena, those related to storm water quality modeling have recently been gaining interest in the scientific literature. Nonetheless, the large amount of available data poses the problem of selecting relevant variables to describe a phenomenon and enable robust data modeling. This paper presents a procedure for the selection of relevant input variables using the multiobjective evolutionary polynomial regression (EPR-MOGA) paradigm. The procedure is based on scrutinizing the explanatory variables that appear inside the set of EPR-MOGA symbolic model expressions of increasing complexity and goodness of fit to target output. The strategy also enables the selection to be validated by engineering judgement. In such context, the multiple case study extension of EPR-MOGA, called MCS-EPR-MOGA, is adopted. The application of the proposed procedure to modeling storm water quality parameters in two French catchments shows that it was able to significantly reduce the number of explanatory variables for successive analyses. Finally, the EPR-MOGA models obtained after the input selection are compared with those obtained by using the same technique without benefitting from input selection and with those obtained in previous works where other data-modeling techniques were used on the same data. The comparison highlights the effectiveness of both EPR-MOGA and the input selection procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrus, Jason P.; Pope, Chad; Toston, Mary
2016-12-01
Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The SODA development project was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrus, Jason P.; Pope, Chad; Toston, Mary
Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The SODA development project was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less
Chuang, Yung-Chung Matt; Shiu, Yi-Shiang
2016-01-01
Tea is an important but vulnerable economic crop in East Asia, highly impacted by climate change. This study attempts to interpret tea land use/land cover (LULC) using very high resolution WorldView-2 imagery of central Taiwan with both pixel and object-based approaches. A total of 80 variables derived from each WorldView-2 band with pan-sharpening, standardization, principal components and gray level co-occurrence matrix (GLCM) texture indices transformation, were set as the input variables. For pixel-based image analysis (PBIA), 34 variables were selected, including seven principal components, 21 GLCM texture indices and six original WorldView-2 bands. Results showed that support vector machine (SVM) had the highest tea crop classification accuracy (OA = 84.70% and KIA = 0.690), followed by random forest (RF), maximum likelihood algorithm (ML), and logistic regression analysis (LR). However, the ML classifier achieved the highest classification accuracy (OA = 96.04% and KIA = 0.887) in object-based image analysis (OBIA) using only six variables. The contribution of this study is to create a new framework for accurately identifying tea crops in a subtropical region with real-time high-resolution WorldView-2 imagery without field survey, which could further aid agriculture land management and a sustainable agricultural product supply. PMID:27128915
Chuang, Yung-Chung Matt; Shiu, Yi-Shiang
2016-04-26
Tea is an important but vulnerable economic crop in East Asia, highly impacted by climate change. This study attempts to interpret tea land use/land cover (LULC) using very high resolution WorldView-2 imagery of central Taiwan with both pixel and object-based approaches. A total of 80 variables derived from each WorldView-2 band with pan-sharpening, standardization, principal components and gray level co-occurrence matrix (GLCM) texture indices transformation, were set as the input variables. For pixel-based image analysis (PBIA), 34 variables were selected, including seven principal components, 21 GLCM texture indices and six original WorldView-2 bands. Results showed that support vector machine (SVM) had the highest tea crop classification accuracy (OA = 84.70% and KIA = 0.690), followed by random forest (RF), maximum likelihood algorithm (ML), and logistic regression analysis (LR). However, the ML classifier achieved the highest classification accuracy (OA = 96.04% and KIA = 0.887) in object-based image analysis (OBIA) using only six variables. The contribution of this study is to create a new framework for accurately identifying tea crops in a subtropical region with real-time high-resolution WorldView-2 imagery without field survey, which could further aid agriculture land management and a sustainable agricultural product supply.
ERIC Educational Resources Information Center
Okyar, Hatice; Yangin Eksi, Gonca
2017-01-01
This study compared the effectiveness of negative evidence and enriched input on learning the verb-noun collocations. There were 52 English as Foreign Language (EFL) learners in this research study and they were randomly assigned to the negative evidence or enriched input groups. While the negative evidence group (n = 27) was provided with…
A Predictor Analysis Framework for Surface Radiation Budget Reprocessing Using Design of Experiments
NASA Astrophysics Data System (ADS)
Quigley, Patricia Allison
Earth's Radiation Budget (ERB) is an accounting of all incoming energy from the sun and outgoing energy reflected and radiated to space by earth's surface and atmosphere. The National Aeronautics and Space Administration (NASA)/Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project produces and archives long-term datasets representative of this energy exchange system on a global scale. The data are comprised of the longwave and shortwave radiative components of the system and is algorithmically derived from satellite and atmospheric assimilation products, and acquired atmospheric data. It is stored as 3-hourly, daily, monthly/3-hourly, and monthly averages of 1° x 1° grid cells. Input parameters used by the algorithms are a key source of variability in the resulting output data sets. Sensitivity studies have been conducted to estimate the effects this variability has on the output data sets using linear techniques. This entails varying one input parameter at a time while keeping all others constant or by increasing all input parameters by equal random percentages, in effect changing input values for every cell for every three hour period and for every day in each month. This equates to almost 11 million independent changes without ever taking into consideration the interactions or dependencies among the input parameters. A more comprehensive method is proposed here for the evaluating the shortwave algorithm to identify both the input parameters and parameter interactions that most significantly affect the output data. This research utilized designed experiments that systematically and simultaneously varied all of the input parameters of the shortwave algorithm. A D-Optimal design of experiments (DOE) was chosen to accommodate the 14 types of atmospheric properties computed by the algorithm and to reduce the number of trials required by a full factorial study from millions to 128. A modified version of the algorithm was made available for testing such that global calculations of the algorithm were tuned to accept information for a single temporal and spatial point and for one month of averaged data. The points were from each of four atmospherically distinct regions to include the Amazon Rainforest, Sahara Desert, Indian Ocean and Mt. Everest. The same design was used for all of the regions. Least squares multiple regression analysis of the results of the modified algorithm identified those parameters and parameter interactions that most significantly affected the output products. It was found that Cosine solar zenith angle was the strongest influence on the output data in all four regions. The interaction of Cosine Solar Zenith Angle and Cloud Fraction had the strongest influence on the output data in the Amazon, Sahara Desert and Mt. Everest Regions, while the interaction of Cloud Fraction and Cloudy Shortwave Radiance most significantly affected output data in the Indian Ocean region. Second order response models were built using the resulting regression coefficients. A Monte Carlo simulation of each model extended the probability distribution beyond the initial design trials to quantify variability in the modeled output data.
Partial Granger causality--eliminating exogenous inputs and latent variables.
Guo, Shuixia; Seth, Anil K; Kendrick, Keith M; Zhou, Cong; Feng, Jianfeng
2008-07-15
Attempts to identify causal interactions in multivariable biological time series (e.g., gene data, protein data, physiological data) can be undermined by the confounding influence of environmental (exogenous) inputs. Compounding this problem, we are commonly only able to record a subset of all related variables in a system. These recorded variables are likely to be influenced by unrecorded (latent) variables. To address this problem, we introduce a novel variant of a widely used statistical measure of causality--Granger causality--that is inspired by the definition of partial correlation. Our 'partial Granger causality' measure is extensively tested with toy models, both linear and nonlinear, and is applied to experimental data: in vivo multielectrode array (MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of sheep. Our results demonstrate that partial Granger causality can reveal the underlying interactions among elements in a network in the presence of exogenous inputs and latent variables in many cases where the existing conditional Granger causality fails.
NASA Astrophysics Data System (ADS)
Wang, Tingting; Sun, Fubao; Xia, Jun; Liu, Wenbin; Sang, Yanfang
2017-04-01
In predicting how droughts and hydrological cycles would change in a warming climate, change of atmospheric evaporative demand measured by pan evaporation (Epan) is one crucial element to be understood. Over the last decade, the derived partial differential (PD) form of the PenPan equation is a prevailing attribution approach to attributing changes to Epan worldwide. However, the independency among climatic variables required by the PD approach cannot be met using long term observations. Here we designed a series of numerical experiments to attribute changes of Epan over China by detrending each climatic variable, i.e., an experimental detrending approach, to address the inter-correlation among climate variables, and made comparison with the traditional PD method. The results show that the detrending approach is superior not only to a complicate system with multi-variables and mixing algorithm like aerodynamic component (Ep,A) and Epan, but also to a simple case like radiative component (Ep,R), when compared with traditional PD method. The major reason for this is the strong and significant inter-correlation of input meteorological forcing. Very similar and fine attributing results have been achieved based on detrending approach and PD method after eliminating the inter-correlation of input through a randomize approach. The contribution of Rh and Ta in net radiation and thus Ep,R, which has been overlooked based on the PD method but successfully detected by detrending approach, provides some explanation to the comparing results. We adopted the control run from the detrending approach and applied it to made adjustment of PD method. Much improvement has been made and thus proven this adjustment an effective way in attributing changes to Epan. Hence, the detrending approach and the adjusted PD method are well recommended in attributing changes in hydrological models to better understand and predict water and energy cycle.
Decina, Stephen M; Templer, Pamela H; Hutyra, Lucy R; Gately, Conor K; Rao, Preeti
2017-12-31
Atmospheric deposition of nitrogen (N) is a major input of N to the biosphere and is elevated beyond preindustrial levels throughout many ecosystems. Deposition monitoring networks in the United States generally avoid urban areas in order to capture regional patterns of N deposition, and studies measuring N deposition in cities usually include only one or two urban sites in an urban-rural comparison or as an anchor along an urban-to-rural gradient. Describing patterns and drivers of atmospheric N inputs is crucial for understanding the effects of N deposition; however, little is known about the variability and drivers of atmospheric N inputs or their effects on soil biogeochemistry within urban ecosystems. We measured rates of canopy throughfall N as a measure of atmospheric N inputs, as well as soil net N mineralization and nitrification, soil solution N, and soil respiration at 15 sites across the greater Boston, Massachusetts area. Rates of throughfall N are 8.70±0.68kgNha -1 yr -1 , vary 3.5-fold across sites, and are positively correlated with rates of local vehicle N emissions. Ammonium (NH 4 + ) composes 69.9±2.2% of inorganic throughfall N inputs and is highest in late spring, suggesting a contribution from local fertilizer inputs. Soil solution NO 3 - is positively correlated with throughfall NO 3 - inputs. In contrast, soil solution NH 4 + , net N mineralization, nitrification, and soil respiration are not correlated with rates of throughfall N inputs. Rather, these processes are correlated with soil properties such as soil organic matter. Our results demonstrate high variability in rates of urban throughfall N inputs, correlation of throughfall N inputs with local vehicle N emissions, and a decoupling of urban soil biogeochemistry and throughfall N inputs. Copyright © 2017 Elsevier B.V. All rights reserved.
He, Yan-Lin; Xu, Yuan; Geng, Zhi-Qiang; Zhu, Qun-Xiong
2016-03-01
In this paper, a hybrid robust model based on an improved functional link neural network integrating with partial least square (IFLNN-PLS) is proposed. Firstly, an improved functional link neural network with small norm of expanded weights and high input-output correlation (SNEWHIOC-FLNN) was proposed for enhancing the generalization performance of FLNN. Unlike the traditional FLNN, the expanded variables of the original inputs are not directly used as the inputs in the proposed SNEWHIOC-FLNN model. The original inputs are attached to some small norm of expanded weights. As a result, the correlation coefficient between some of the expanded variables and the outputs is enhanced. The larger the correlation coefficient is, the more relevant the expanded variables tend to be. In the end, the expanded variables with larger correlation coefficient are selected as the inputs to improve the performance of the traditional FLNN. In order to test the proposed SNEWHIOC-FLNN model, three UCI (University of California, Irvine) regression datasets named Housing, Concrete Compressive Strength (CCS), and Yacht Hydro Dynamics (YHD) are selected. Then a hybrid model based on the improved FLNN integrating with partial least square (IFLNN-PLS) was built. In IFLNN-PLS model, the connection weights are calculated using the partial least square method but not the error back propagation algorithm. Lastly, IFLNN-PLS was developed as an intelligent measurement model for accurately predicting the key variables in the Purified Terephthalic Acid (PTA) process and the High Density Polyethylene (HDPE) process. Simulation results illustrated that the IFLNN-PLS could significant improve the prediction performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Experimental design and efficient parameter estimation in preclinical pharmacokinetic studies.
Ette, E I; Howie, C A; Kelman, A W; Whiting, B
1995-05-01
Monte Carlo simulation technique used to evaluate the effect of the arrangement of concentrations on the efficiency of estimation of population pharmacokinetic parameters in the preclinical setting is described. Although the simulations were restricted to the one compartment model with intravenous bolus input, they provide the basis of discussing some structural aspects involved in designing a destructive ("quantic") preclinical population pharmacokinetic study with a fixed sample size as is usually the case in such studies. The efficiency of parameter estimation obtained with sampling strategies based on the three and four time point designs were evaluated in terms of the percent prediction error, design number, individual and joint confidence intervals coverage for parameter estimates approaches, and correlation analysis. The data sets contained random terms for both inter- and residual intra-animal variability. The results showed that the typical population parameter estimates for clearance and volume were efficiently (accurately and precisely) estimated for both designs, while interanimal variability (the only random effect parameter that could be estimated) was inefficiently (inaccurately and imprecisely) estimated with most sampling schedules of the two designs. The exact location of the third and fourth time point for the three and four time point designs, respectively, was not critical to the efficiency of overall estimation of all population parameters of the model. However, some individual population pharmacokinetic parameters were sensitive to the location of these times.
Laufer, Yocheved; Elboim-Gabyzon, Michal
2011-01-01
Somatosensory input may lead to long-lasting cortical plasticity enhanced by motor recovery in patients with neurological impairments. Sensory transcutaneous electrical stimulation (TENS) is a relatively risk-free and easy-to-implement modality for rehabilitation. The authors systematically examine the effects of sensory TENS on motor recovery after stroke. Eligible randomized or quasi-randomized trials were identified via searches of computerized databases. Two assessors reviewed independently the eligibility and methodological quality of the retrieved articles. In all, 15 articles satisfied the inclusion criteria. Methodological quality was generally good, with a mean (standard deviation) PEDro score of 6.7/10 (1.2). Although the majority of studies reported significant effects on at least 1 outcome measure, effect sizes were generally small. Meta-analysis could not be performed for the majority of outcome measures because of variability between studies and insufficient data. A moderate effect was determined for force production of the ankle dorsiflexors and for the Timed Up and Go test. Sensory stimulation via TENS may be beneficial to enhance aspects of motor recovery following a stroke, particularly when used in combination with active training. Because of the great variability between studies, particularly in terms of the timing of the intervention after the stroke, the outcome measures used, and the stimulation protocols, insufficient data are available to provide guidelines about strategies and efficacy.
Desikan, Radhika
2016-01-01
Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction. PMID:27581482
Dynamic modal estimation using instrumental variables
NASA Technical Reports Server (NTRS)
Salzwedel, H.
1980-01-01
A method to determine the modes of dynamical systems is described. The inputs and outputs of a system are Fourier transformed and averaged to reduce the error level. An instrumental variable method that estimates modal parameters from multiple correlations between responses of single input, multiple output systems is applied to estimate aircraft, spacecraft, and off-shore platform modal parameters.
Urban vs. Rural CLIL: An Analysis of Input-Related Variables, Motivation and Language Attainment
ERIC Educational Resources Information Center
Alejo, Rafael; Piquer-Píriz, Ana
2016-01-01
The present article carries out an in-depth analysis of the differences in motivation, input-related variables and linguistic attainment of the students at two content and language integrated learning (CLIL) schools operating within the same institutional and educational context, the Spanish region of Extremadura, and differing only in terms of…
Variable Input and the Acquisition of Plural Morphology
ERIC Educational Resources Information Center
Miller, Karen L.; Schmitt, Cristina
2012-01-01
The present article examines the effect of variable input on the acquisition of plural morphology in two varieties of Spanish: Chilean Spanish, where the plural marker is sometimes omitted due to a phonological process of syllable final /s/ lenition, and Mexican Spanish (of Mexico City), with no such lenition process. The goal of the study is to…
Precision digital pulse phase generator
McEwan, T.E.
1996-10-08
A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.
Precision digital pulse phase generator
McEwan, Thomas E.
1996-01-01
A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.
Characterization of random scattering media and related information retrieval
NASA Astrophysics Data System (ADS)
Wang, Zhenyu
There has been substantial interest in optical imaging in and through random media in applications as diverse as environmental sensing and tumor detection. The rich scatter environment also leads to multiple paths or channels, which may provide higher capacity for communication. Coherent light passing through random media produces an intensity speckle pattern when imaged, as a result of multiple scatter and the imaging optics. When polarized coherent light is used, the speckle pattern is sensitive to the polarization state, depending on the amount of scatter, and such measurements provide information about the random medium. This may form the basis for enhanced imaging of random media and provide information on the scatterers themselves. Second and third order correlations over laser scan frequency are shown to lead to the ensemble averaged temporal impulse response, with sensitivity to the polarization state in the more weakly scattering regime. A new intensity interferometer is introduced that provides information about two signals incident on a scattering medium. The two coherent beams, which are not necessarily overlapping, interfere in a scattering medium. A sinusoidal modulation in the second order intensity correlation with laser scan frequency is shown to be related to the relative delay of the two incident beams. An intensity spatial correlation over input position reveals that decorrelation occurs over a length comparable to the incident beam size. Such decorrelation is also related to the amount of scatter. Remarkably, with two beams incident at different angles, the intensity correlation over the scan position has a sinusoidal modulation that is related to the incidence angle difference between the two input beams. This spatial correlation over input position thus provides information about input wavevectors.
A Monte Carlo investigation of thrust imbalance of solid rocket motor pairs
NASA Technical Reports Server (NTRS)
Sforzini, R. H.; Foster, W. A., Jr.; Johnson, J. S., Jr.
1974-01-01
A technique is described for theoretical, statistical evaluation of the thrust imbalance of pairs of solid-propellant rocket motors (SRMs) firing in parallel. Sets of the significant variables, determined as a part of the research, are selected using a random sampling technique and the imbalance calculated for a large number of motor pairs. The performance model is upgraded to include the effects of statistical variations in the ovality and alignment of the motor case and mandrel. Effects of cross-correlations of variables are minimized by selecting for the most part completely independent input variables, over forty in number. The imbalance is evaluated in terms of six time - varying parameters as well as eleven single valued ones which themselves are subject to statistical analysis. A sample study of the thrust imbalance of 50 pairs of 146 in. dia. SRMs of the type to be used on the space shuttle is presented. The FORTRAN IV computer program of the analysis and complete instructions for its use are included. Performance computation time for one pair of SRMs is approximately 35 seconds on the IBM 370/155 using the FORTRAN H compiler.
Regenerative braking device with rotationally mounted energy storage means
Hoppie, Lyle O.
1982-03-16
A regenerative braking device for an automotive vehicle includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (30) and an output shaft (32), clutches (50, 56) and brakes (52, 58) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. In a second embodiment the clutches and brakes are dispensed with and the variable ratio transmission is connected directly across the input and output shafts. In both embodiments the rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft rotates faster or relative to the output shaft and are torsionally relaxed to deliver energy to the vehicle when the output shaft rotates faster or relative to the input shaft.
NASA Technical Reports Server (NTRS)
Carlson, C. R.
1981-01-01
The user documentation of the SYSGEN model and its links with other simulations is described. The SYSGEN is a production costing and reliability model of electric utility systems. Hydroelectric, storage, and time dependent generating units are modeled in addition to conventional generating plants. Input variables, modeling options, output variables, and reports formats are explained. SYSGEN also can be run interactively by using a program called FEPS (Front End Program for SYSGEN). A format for SYSGEN input variables which is designed for use with FEPS is presented.
12 CFR Appendix A to Subpart B of... - Risk-Based Capital Test Methodology and Specifications
Code of Federal Regulations, 2013 CFR
2013-01-01
....3.2, Mortgage Amortization Schedule Inputs 3-32, Loan Group Inputs for Mortgage Amortization... Prepayment Explanatory Variables F 3.6.3.5.2, Multifamily Default and Prepayment Inputs 3-38, Loan Group... Group inputs for Gross Loss Severity F 3.3.4, Interest Rates Outputs3.6.3.3.4, Mortgage Amortization...
12 CFR Appendix A to Subpart B of... - Risk-Based Capital Test Methodology and Specifications
Code of Federal Regulations, 2011 CFR
2011-01-01
....3.2, Mortgage Amortization Schedule Inputs 3-32, Loan Group Inputs for Mortgage Amortization... Prepayment Explanatory Variables F 3.6.3.5.2, Multifamily Default and Prepayment Inputs 3-38, Loan Group... Group inputs for Gross Loss Severity F 3.3.4, Interest Rates Outputs3.6.3.3.4, Mortgage Amortization...
12 CFR Appendix A to Subpart B of... - Risk-Based Capital Test Methodology and Specifications
Code of Federal Regulations, 2012 CFR
2012-01-01
....3.2, Mortgage Amortization Schedule Inputs 3-32, Loan Group Inputs for Mortgage Amortization... Prepayment Explanatory Variables F 3.6.3.5.2, Multifamily Default and Prepayment Inputs 3-38, Loan Group... Group inputs for Gross Loss Severity F 3.3.4, Interest Rates Outputs3.6.3.3.4, Mortgage Amortization...
12 CFR Appendix A to Subpart B of... - Risk-Based Capital Test Methodology and Specifications
Code of Federal Regulations, 2014 CFR
2014-01-01
....3.2, Mortgage Amortization Schedule Inputs 3-32, Loan Group Inputs for Mortgage Amortization... Prepayment Explanatory Variables F 3.6.3.5.2, Multifamily Default and Prepayment Inputs 3-38, Loan Group... Group inputs for Gross Loss Severity F 3.3.4, Interest Rates Outputs3.6.3.3.4, Mortgage Amortization...
Effect of climate data on simulated carbon and nitrogen balances for Europe
NASA Astrophysics Data System (ADS)
Blanke, Jan Hendrik; Lindeskog, Mats; Lindström, Johan; Lehsten, Veiko
2016-05-01
In this study, we systematically assess the spatial variability in carbon and nitrogen balance simulations related to the choice of global circulation models (GCMs), representative concentration pathways (RCPs), spatial resolutions, and the downscaling methods used as calculated with LPJ-GUESS. We employed a complete factorial design and performed 24 simulations for Europe with different climate input data sets and different combinations of these four factors. Our results reveal that the variability in simulated output in Europe is moderate with 35.6%-93.5% of the total variability being common among all combinations of factors. The spatial resolution is the most important factor among the examined factors, explaining 1.5%-10.7% of the total variability followed by GCMs (0.3%-7.6%), RCPs (0%-6.3%), and downscaling methods (0.1%-4.6%). The higher-order interactions effect that captures nonlinear relations between the factors and random effects is pronounced and accounts for 1.6%-45.8% to the total variability. The most distinct hot spots of variability include the mountain ranges in North Scandinavia and the Alps, and the Iberian Peninsula. Based on our findings, we advise to conduct the application of models such as LPJ-GUESS at a reasonably high spatial resolution which is supported by the model structure. There is no notable gain in simulations of ecosystem carbon and nitrogen stocks and fluxes from using regionally downscaled climate in preference to bias-corrected, bilinearly interpolated CMIP5 projections.
The Effect of Visual Variability on the Learning of Academic Concepts.
Bourgoyne, Ashley; Alt, Mary
2017-06-10
The purpose of this study was to identify effects of variability of visual input on development of conceptual representations of academic concepts for college-age students with normal language (NL) and those with language-learning disabilities (LLD). Students with NL (n = 11) and LLD (n = 11) participated in a computer-based training for introductory biology course concepts. Participants were trained on half the concepts under a low-variability condition and half under a high-variability condition. Participants completed a posttest in which they were asked to identify and rate the accuracy of novel and trained visual representations of the concepts. We performed separate repeated measures analyses of variance to examine the accuracy of identification and ratings. Participants were equally accurate on trained and novel items in the high-variability condition, but were less accurate on novel items only in the low-variability condition. The LLD group showed the same pattern as the NL group; they were just less accurate. Results indicated that high-variability visual input may facilitate the acquisition of academic concepts in college students with NL and LLD. High-variability visual input may be especially beneficial for generalization to novel representations of concepts. Implicit learning methods may be harnessed by college courses to provide students with basic conceptual knowledge when they are entering courses or beginning new units.
Whiteway, Matthew R; Butts, Daniel A
2017-03-01
The activity of sensory cortical neurons is not only driven by external stimuli but also shaped by other sources of input to the cortex. Unlike external stimuli, these other sources of input are challenging to experimentally control, or even observe, and as a result contribute to variability of neural responses to sensory stimuli. However, such sources of input are likely not "noise" and may play an integral role in sensory cortex function. Here we introduce the rectified latent variable model (RLVM) in order to identify these sources of input using simultaneously recorded cortical neuron populations. The RLVM is novel in that it employs nonnegative (rectified) latent variables and is much less restrictive in the mathematical constraints on solutions because of the use of an autoencoder neural network to initialize model parameters. We show that the RLVM outperforms principal component analysis, factor analysis, and independent component analysis, using simulated data across a range of conditions. We then apply this model to two-photon imaging of hundreds of simultaneously recorded neurons in mouse primary somatosensory cortex during a tactile discrimination task. Across many experiments, the RLVM identifies latent variables related to both the tactile stimulation as well as nonstimulus aspects of the behavioral task, with a majority of activity explained by the latter. These results suggest that properly identifying such latent variables is necessary for a full understanding of sensory cortical function and demonstrate novel methods for leveraging large population recordings to this end. NEW & NOTEWORTHY The rapid development of neural recording technologies presents new opportunities for understanding patterns of activity across neural populations. Here we show how a latent variable model with appropriate nonlinear form can be used to identify sources of input to a neural population and infer their time courses. Furthermore, we demonstrate how these sources are related to behavioral contexts outside of direct experimental control. Copyright © 2017 the American Physiological Society.
Not All Children Agree: Acquisition of Agreement when the Input Is Variable
ERIC Educational Resources Information Center
Miller, Karen
2012-01-01
In this paper we investigate the effect of variable input on the acquisition of grammar. More specifically, we examine the acquisition of the third person singular marker -s on the auxiliary "do" in comprehension and production in two groups of children who are exposed to similar varieties of English but that differ with respect to adult…
Boonjing, Veera; Intakosum, Sarun
2016-01-01
This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span. PMID:27974883
Inthachot, Montri; Boonjing, Veera; Intakosum, Sarun
2016-01-01
This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span.
Maximum-entropy probability distributions under Lp-norm constraints
NASA Technical Reports Server (NTRS)
Dolinar, S.
1991-01-01
Continuous probability density functions and discrete probability mass functions are tabulated which maximize the differential entropy or absolute entropy, respectively, among all probability distributions with a given L sub p norm (i.e., a given pth absolute moment when p is a finite integer) and unconstrained or constrained value set. Expressions for the maximum entropy are evaluated as functions of the L sub p norm. The most interesting results are obtained and plotted for unconstrained (real valued) continuous random variables and for integer valued discrete random variables. The maximum entropy expressions are obtained in closed form for unconstrained continuous random variables, and in this case there is a simple straight line relationship between the maximum differential entropy and the logarithm of the L sub p norm. Corresponding expressions for arbitrary discrete and constrained continuous random variables are given parametrically; closed form expressions are available only for special cases. However, simpler alternative bounds on the maximum entropy of integer valued discrete random variables are obtained by applying the differential entropy results to continuous random variables which approximate the integer valued random variables in a natural manner. All the results are presented in an integrated framework that includes continuous and discrete random variables, constraints on the permissible value set, and all possible values of p. Understanding such as this is useful in evaluating the performance of data compression schemes.
INFANT HEALTH PRODUCTION FUNCTIONS: WHAT A DIFFERENCE THE DATA MAKE
Reichman, Nancy E.; Corman, Hope; Noonan, Kelly; Dave, Dhaval
2008-01-01
SUMMARY We examine the extent to which infant health production functions are sensitive to model specification and measurement error. We focus on the importance of typically unobserved but theoretically important variables (typically unobserved variables, TUVs), other non-standard covariates (NSCs), input reporting, and characterization of infant health. The TUVs represent wantedness, taste for risky behavior, and maternal health endowment. The NSCs include father characteristics. We estimate the effects of prenatal drug use, prenatal cigarette smoking, and First trimester prenatal care on birth weight, low birth weight, and a measure of abnormal infant health conditions. We compare estimates using self-reported inputs versus input measures that combine information from medical records and self-reports. We find that TUVs and NSCs are significantly associated with both inputs and outcomes, but that excluding them from infant health production functions does not appreciably affect the input estimates. However, using self-reported inputs leads to overestimated effects of inputs, particularly prenatal care, on outcomes, and using a direct measure of infant health does not always yield input estimates similar to those when using birth weight outcomes. The findings have implications for research, data collection, and public health policy. PMID:18792077
A non-linear dimension reduction methodology for generating data-driven stochastic input models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganapathysubramanian, Baskar; Zabaras, Nicholas
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem ofmore » manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R{sup n}. An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R{sup d}(d<
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Silcox, Richard (Technical Monitor)
2001-01-01
A location and positioning system was developed and implemented in the anechoic chamber of the Structural Acoustics Loads and Transmission (SALT) facility to accurately determine the coordinates of points in three-dimensional space. Transfer functions were measured between a shaker source at two different panel locations and the vibrational response distributed over the panel surface using a scanning laser vibrometer. The binaural simulation test matrix included test runs for several locations of the measuring microphones, various attitudes of the mannequin, two locations of the shaker excitation and three different shaker inputs including pulse, broadband random, and pseudo-random. Transfer functions, auto spectra, and coherence functions were acquired for the pseudo-random excitation. Time histories were acquired for the pulse and broadband random input to the shaker. The tests were repeated with a reflective surface installed. Binary data files were converted to universal format and archived on compact disk.
Thomas, R.E.
1959-01-20
An electronic circuit is presented for automatically computing the product of two selected variables by multiplying the voltage pulses proportional to the variables. The multiplier circuit has a plurality of parallel resistors of predetermined values connected through separate gate circults between a first input and the output terminal. One voltage pulse is applied to thc flrst input while the second voltage pulse is applied to control circuitry for the respective gate circuits. Thc magnitude of the second voltage pulse selects the resistors upon which the first voltage pulse is imprcssed, whereby the resultant output voltage is proportional to the product of the input voltage pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Kunkun, E-mail: ktg@illinois.edu; Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence; Congedo, Pietro M.
The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable formore » real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.« less
Structurally Dynamic Spin Market Networks
NASA Astrophysics Data System (ADS)
Horváth, Denis; Kuscsik, Zoltán
The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.
A new approach for the description of discharge extremes in small catchments
NASA Astrophysics Data System (ADS)
Pavia Santolamazza, Daniela; Lebrenz, Henning; Bárdossy, András
2017-04-01
Small catchment basins in Northwestern Switzerland, characterized by small concentration times, are frequently targeted by floods. The peak and the volume of these floods are commonly estimated by a frequency analysis of occurrence and described by a random variable, assuming a uniform distributed probability and stationary input drivers (e.g. precipitation, temperature). For these small catchments, we attempt to describe and identify the underlying mechanisms and dynamics at the occurrence of extremes by means of available high temporal resolution (10 min) observations and to explore the possibilities to regionalize hydrological parameters for short intervals. Therefore, we investigate new concepts for the flood description such as entropy as a measure of disorder and dispersion of precipitation. First findings and conclusions of this ongoing research are presented.
Rispoli, Matthew; Holt, Janet K.
2017-01-01
Purpose This follow-up study examined whether a parent intervention that increased the diversity of lexical noun phrase subjects in parent input and accelerated children's sentence diversity (Hadley et al., 2017) had indirect benefits on tense/agreement (T/A) morphemes in parent input and children's spontaneous speech. Method Differences in input variables related to T/A marking were compared for parents who received toy talk instruction and a quasi-control group: input informativeness and full is declaratives. Language growth on tense agreement productivity (TAP) was modeled for 38 children from language samples obtained at 21, 24, 27, and 30 months. Parent input properties following instruction and children's growth in lexical diversity and sentence diversity were examined as predictors of TAP growth. Results Instruction increased parent use of full is declaratives (ηp 2 ≥ .25) but not input informativeness. Children's sentence diversity was also a significant time-varying predictor of TAP growth. Two input variables, lexical noun phrase subject diversity and full is declaratives, were also significant predictors, even after controlling for children's sentence diversity. Conclusions These findings establish a link between children's sentence diversity and the development of T/A morphemes and provide evidence about characteristics of input that facilitate growth in this grammatical system. PMID:28892819
Wesolowski, Edwin A.
1996-01-01
Two separate studies to simulate the effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota, have been completed. In the first study, the Red River at Fargo Water-Quality Model was calibrated and verified for icefree conditions. In the second study, the Red River at Fargo Ice-Cover Water-Quality Model was verified for ice-cover conditions.To better understand and apply the Red River at Fargo Water-Quality Model and the Red River at Fargo Ice-Cover Water-Quality Model, the uncertainty associated with simulated constituent concentrations and property values was analyzed and quantified using the Enhanced Stream Water Quality Model-Uncertainty Analysis. The Monte Carlo simulation and first-order error analysis methods were used to analyze the uncertainty in simulated values for six constituents and properties at sites 5, 10, and 14 (upstream to downstream order). The constituents and properties analyzed for uncertainty are specific conductance, total organic nitrogen (reported as nitrogen), total ammonia (reported as nitrogen), total nitrite plus nitrate (reported as nitrogen), 5-day carbonaceous biochemical oxygen demand for ice-cover conditions and ultimate carbonaceous biochemical oxygen demand for ice-free conditions, and dissolved oxygen. Results are given in detail for both the ice-cover and ice-free conditions for specific conductance, total ammonia, and dissolved oxygen.The sensitivity and uncertainty of the simulated constituent concentrations and property values to input variables differ substantially between ice-cover and ice-free conditions. During ice-cover conditions, simulated specific-conductance values are most sensitive to the headwatersource specific-conductance values upstream of site 10 and the point-source specific-conductance values downstream of site 10. These headwater-source and point-source specific-conductance values also are the key sources of uncertainty. Simulated total ammonia concentrations are most sensitive to the point-source total ammonia concentrations at all three sites. Other input variables that contribute substantially to the variability of simulated total ammonia concentrations are the headwater-source total ammonia and the instream reaction coefficient for biological decay of total ammonia to total nitrite. Simulated dissolved-oxygen concentrations at all three sites are most sensitive to headwater-source dissolved-oxygen concentration. This input variable is the key source of variability for simulated dissolved-oxygen concentrations at sites 5 and 10. Headwatersource and point-source dissolved-oxygen concentrations are the key sources of variability for simulated dissolved-oxygen concentrations at site 14.During ice-free conditions, simulated specific-conductance values at all three sites are most sensitive to the headwater-source specific-conductance values. Headwater-source specificconductance values also are the key source of uncertainty. The input variables to which total ammonia and dissolved oxygen are most sensitive vary from site to site and may or may not correspond to the input variables that contribute the most to the variability. The input variables that contribute the most to the variability of simulated total ammonia concentrations are pointsource total ammonia, instream reaction coefficient for biological decay of total ammonia to total nitrite, and Manning's roughness coefficient. The input variables that contribute the most to the variability of simulated dissolved-oxygen concentrations are reaeration rate, sediment oxygen demand rate, and headwater-source algae as chlorophyll a.
Global sensitivity analysis in wind energy assessment
NASA Astrophysics Data System (ADS)
Tsvetkova, O.; Ouarda, T. B.
2012-12-01
Wind energy is one of the most promising renewable energy sources. Nevertheless, it is not yet a common source of energy, although there is enough wind potential to supply world's energy demand. One of the most prominent obstacles on the way of employing wind energy is the uncertainty associated with wind energy assessment. Global sensitivity analysis (SA) studies how the variation of input parameters in an abstract model effects the variation of the variable of interest or the output variable. It also provides ways to calculate explicit measures of importance of input variables (first order and total effect sensitivity indices) in regard to influence on the variation of the output variable. Two methods of determining the above mentioned indices were applied and compared: the brute force method and the best practice estimation procedure In this study a methodology for conducting global SA of wind energy assessment at a planning stage is proposed. Three sampling strategies which are a part of SA procedure were compared: sampling based on Sobol' sequences (SBSS), Latin hypercube sampling (LHS) and pseudo-random sampling (PRS). A case study of Masdar City, a showcase of sustainable living in the UAE, is used to exemplify application of the proposed methodology. Sources of uncertainty in wind energy assessment are very diverse. In the case study the following were identified as uncertain input parameters: the Weibull shape parameter, the Weibull scale parameter, availability of a wind turbine, lifetime of a turbine, air density, electrical losses, blade losses, ineffective time losses. Ineffective time losses are defined as losses during the time when the actual wind speed is lower than the cut-in speed or higher than the cut-out speed. The output variable in the case study is the lifetime energy production. Most influential factors for lifetime energy production are identified with the ranking of the total effect sensitivity indices. The results of the present research show that the brute force method is best for wind assessment purpose, SBSS outperforms other sampling strategies in the majority of cases. The results indicate that the Weibull scale parameter, turbine lifetime and Weibull shape parameter are the three most influential variables in the case study setting. The following conclusions can be drawn from these results: 1) SBSS should be recommended for use in Monte Carlo experiments, 2) The brute force method should be recommended for conducting sensitivity analysis in wind resource assessment, and 3) Little variation in the Weibull scale causes significant variation in energy production. The presence of the two distribution parameters in the top three influential variables (the Weibull shape and scale) emphasizes the importance of accuracy of (a) choosing the distribution to model wind regime at a site and (b) estimating probability distribution parameters. This can be labeled as the most important conclusion of this research because it opens a field for further research, which the authors see could change the wind energy field tremendously.
Kernel-PCA data integration with enhanced interpretability
2014-01-01
Background Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task. Results We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher/lower values of the variables analyzed. Conclusions The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge. PMID:25032747
NASA Astrophysics Data System (ADS)
Forsythe, N.; Blenkinsop, S.; Fowler, H. J.
2015-05-01
A three-step climate classification was applied to a spatial domain covering the Himalayan arc and adjacent plains regions using input data from four global meteorological reanalyses. Input variables were selected based on an understanding of the climatic drivers of regional water resource variability and crop yields. Principal component analysis (PCA) of those variables and k-means clustering on the PCA outputs revealed a reanalysis ensemble consensus for eight macro-climate zones. Spatial statistics of input variables for each zone revealed consistent, distinct climatologies. This climate classification approach has potential for enhancing assessment of climatic influences on water resources and food security as well as for characterising the skill and bias of gridded data sets, both meteorological reanalyses and climate models, for reproducing subregional climatologies. Through their spatial descriptors (area, geographic centroid, elevation mean range), climate classifications also provide metrics, beyond simple changes in individual variables, with which to assess the magnitude of projected climate change. Such sophisticated metrics are of particular interest for regions, including mountainous areas, where natural and anthropogenic systems are expected to be sensitive to incremental climate shifts.
NASA Astrophysics Data System (ADS)
Hao, Wenrui; Lu, Zhenzhou; Li, Luyi
2013-05-01
In order to explore the contributions by correlated input variables to the variance of the output, a novel interpretation framework of importance measure indices is proposed for a model with correlated inputs, which includes the indices of the total correlated contribution and the total uncorrelated contribution. The proposed indices accurately describe the connotations of the contributions by the correlated input to the variance of output, and they can be viewed as the complement and correction of the interpretation about the contributions by the correlated inputs presented in "Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, 183 (2012) 937-946". Both of them contain the independent contribution by an individual input. Taking the general form of quadratic polynomial as an illustration, the total correlated contribution and the independent contribution by an individual input are derived analytically, from which the components and their origins of both contributions of correlated input can be clarified without any ambiguity. In the special case that no square term is included in the quadratic polynomial model, the total correlated contribution by the input can be further decomposed into the variance contribution related to the correlation of the input with other inputs and the independent contribution by the input itself, and the total uncorrelated contribution can be further decomposed into the independent part by interaction between the input and others and the independent part by the input itself. Numerical examples are employed and their results demonstrate that the derived analytical expressions of the variance-based importance measure are correct, and the clarification of the correlated input contribution to model output by the analytical derivation is very important for expanding the theory and solutions of uncorrelated input to those of the correlated one.
On the minimum of independent geometrically distributed random variables
NASA Technical Reports Server (NTRS)
Ciardo, Gianfranco; Leemis, Lawrence M.; Nicol, David
1994-01-01
The expectations E(X(sub 1)), E(Z(sub 1)), and E(Y(sub 1)) of the minimum of n independent geometric, modifies geometric, or exponential random variables with matching expectations differ. We show how this is accounted for by stochastic variability and how E(X(sub 1))/E(Y(sub 1)) equals the expected number of ties at the minimum for the geometric random variables. We then introduce the 'shifted geometric distribution' and show that there is a unique value of the shift for which the individual shifted geometric and exponential random variables match expectations both individually and in the minimums.
Students' Misconceptions about Random Variables
ERIC Educational Resources Information Center
Kachapova, Farida; Kachapov, Ilias
2012-01-01
This article describes some misconceptions about random variables and related counter-examples, and makes suggestions about teaching initial topics on random variables in general form instead of doing it separately for discrete and continuous cases. The focus is on post-calculus probability courses. (Contains 2 figures.)
NASA Astrophysics Data System (ADS)
Hawes, D. H.; Langley, R. S.
2018-01-01
Random excitation of mechanical systems occurs in a wide variety of structures and, in some applications, calculation of the power dissipated by such a system will be of interest. In this paper, using the Wiener series, a general methodology is developed for calculating the power dissipated by a general nonlinear multi-degree-of freedom oscillatory system excited by random Gaussian base motion of any spectrum. The Wiener series method is most commonly applied to systems with white noise inputs, but can be extended to encompass a general non-white input. From the extended series a simple expression for the power dissipated can be derived in terms of the first term, or kernel, of the series and the spectrum of the input. Calculation of the first kernel can be performed either via numerical simulations or from experimental data and a useful property of the kernel, namely that the integral over its frequency domain representation is proportional to the oscillating mass, is derived. The resulting equations offer a simple conceptual analysis of the power flow in nonlinear randomly excited systems and hence assist the design of any system where power dissipation is a consideration. The results are validated both numerically and experimentally using a base-excited cantilever beam with a nonlinear restoring force produced by magnets.
* Minimum # Experimental Samples DNA Volume (ul) Genomic DNA Concentration (ng/ul) Low Input DNA Volume (ul . **Please inquire about additional cost for low input option. Genotyping Minimum # Experimental Samples DNA sample quality. If you do submit WGA samples, you should anticipate a higher non-random missing data rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karagiannis, Georgios, E-mail: georgios.karagiannis@pnnl.gov; Lin, Guang, E-mail: guang.lin@pnnl.gov
2014-02-15
Generalized polynomial chaos (gPC) expansions allow us to represent the solution of a stochastic system using a series of polynomial chaos basis functions. The number of gPC terms increases dramatically as the dimension of the random input variables increases. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs when the corresponding deterministic solver is computationally expensive, evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solutions, in both spatial and random domains, bymore » coupling Bayesian model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spatial points, via (1) the Bayesian model average (BMA) or (2) the median probability model, and their construction as spatial functions on the spatial domain via spline interpolation. The former accounts for the model uncertainty and provides Bayes-optimal predictions; while the latter provides a sparse representation of the stochastic solutions by evaluating the expansion on a subset of dominating gPC bases. Moreover, the proposed methods quantify the importance of the gPC bases in the probabilistic sense through inclusion probabilities. We design a Markov chain Monte Carlo (MCMC) sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed methods are suitable for, but not restricted to, problems whose stochastic solutions are sparse in the stochastic space with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the accuracy and performance of the proposed methods and make comparisons with other approaches on solving elliptic SPDEs with 1-, 14- and 40-random dimensions.« less
Single-image super-resolution based on Markov random field and contourlet transform
NASA Astrophysics Data System (ADS)
Wu, Wei; Liu, Zheng; Gueaieb, Wail; He, Xiaohai
2011-04-01
Learning-based methods are well adopted in image super-resolution. In this paper, we propose a new learning-based approach using contourlet transform and Markov random field. The proposed algorithm employs contourlet transform rather than the conventional wavelet to represent image features and takes into account the correlation between adjacent pixels or image patches through the Markov random field (MRF) model. The input low-resolution (LR) image is decomposed with the contourlet transform and fed to the MRF model together with the contourlet transform coefficients from the low- and high-resolution image pairs in the training set. The unknown high-frequency components/coefficients for the input low-resolution image are inferred by a belief propagation algorithm. Finally, the inverse contourlet transform converts the LR input and the inferred high-frequency coefficients into the super-resolved image. The effectiveness of the proposed method is demonstrated with the experiments on facial, vehicle plate, and real scene images. A better visual quality is achieved in terms of peak signal to noise ratio and the image structural similarity measurement.
Blade loss transient dynamics analysis. Volume 3: User's manual for TETRA program
NASA Technical Reports Server (NTRS)
Black, G. R.; Gallardo, V. C.; Storace, A. S.; Sagendorph, F.
1981-01-01
The users manual for TETRA contains program logic, flow charts, error messages, input sheets, modeling instructions, option descriptions, input variable descriptions, and demonstration problems. The process of obtaining a NASTRAN 17.5 generated modal input file for TETRA is also described with a worked sample.
The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model resp...
The impact of 14-nm photomask uncertainties on computational lithography solutions
NASA Astrophysics Data System (ADS)
Sturtevant, John; Tejnil, Edita; Lin, Tim; Schultze, Steffen; Buck, Peter; Kalk, Franklin; Nakagawa, Kent; Ning, Guoxiang; Ackmann, Paul; Gans, Fritz; Buergel, Christian
2013-04-01
Computational lithography solutions rely upon accurate process models to faithfully represent the imaging system output for a defined set of process and design inputs. These models, which must balance accuracy demands with simulation runtime boundary conditions, rely upon the accurate representation of multiple parameters associated with the scanner and the photomask. While certain system input variables, such as scanner numerical aperture, can be empirically tuned to wafer CD data over a small range around the presumed set point, it can be dangerous to do so since CD errors can alias across multiple input variables. Therefore, many input variables for simulation are based upon designed or recipe-requested values or independent measurements. It is known, however, that certain measurement methodologies, while precise, can have significant inaccuracies. Additionally, there are known errors associated with the representation of certain system parameters. With shrinking total CD control budgets, appropriate accounting for all sources of error becomes more important, and the cumulative consequence of input errors to the computational lithography model can become significant. In this work, we examine with a simulation sensitivity study, the impact of errors in the representation of photomask properties including CD bias, corner rounding, refractive index, thickness, and sidewall angle. The factors that are most critical to be accurately represented in the model are cataloged. CD Bias values are based on state of the art mask manufacturing data and other variables changes are speculated, highlighting the need for improved metrology and awareness.
NASA Technical Reports Server (NTRS)
Boyce, Lola; Lovelace, Thomas B.
1989-01-01
FORTRAN programs RANDOM3 and RANDOM4 are documented in the form of a user's manual. Both programs are based on fatigue strength reduction, using a probabilistic constitutive model. The programs predict the random lifetime of an engine component to reach a given fatigue strength. The theoretical backgrounds, input data instructions, and sample problems illustrating the use of the programs are included.
Prediction of problematic wine fermentations using artificial neural networks.
Román, R César; Hernández, O Gonzalo; Urtubia, U Alejandra
2011-11-01
Artificial neural networks (ANNs) have been used for the recognition of non-linear patterns, a characteristic of bioprocesses like wine production. In this work, ANNs were tested to predict problems of wine fermentation. A database of about 20,000 data from industrial fermentations of Cabernet Sauvignon and 33 variables was used. Two different ways of inputting data into the model were studied, by points and by fermentation. Additionally, different sub-cases were studied by varying the predictor variables (total sugar, alcohol, glycerol, density, organic acids and nitrogen compounds) and the time of fermentation (72, 96 and 256 h). The input of data by fermentations gave better results than the input of data by points. In fact, it was possible to predict 100% of normal and problematic fermentations using three predictor variables: sugars, density and alcohol at 72 h (3 days). Overall, ANNs were capable of obtaining 80% of prediction using only one predictor variable at 72 h; however, it is recommended to add more fermentations to confirm this promising result.
Amiryousefi, Mohammad Reza; Mohebbi, Mohebbat; Khodaiyan, Faramarz
2014-01-01
The objectives of this study were to use image analysis and artificial neural network (ANN) to predict mass transfer kinetics as well as color changes and shrinkage of deep-fat fried ostrich meat cubes. Two generalized feedforward networks were separately developed by using the operation conditions as inputs. Results based on the highest numerical quantities of the correlation coefficients between the experimental versus predicted values, showed proper fitting. Sensitivity analysis results of selected ANNs showed that among the input variables, frying temperature was the most sensitive to moisture content (MC) and fat content (FC) compared to other variables. Sensitivity analysis results of selected ANNs showed that MC and FC were the most sensitive to frying temperature compared to other input variables. Similarly, for the second ANN architecture, microwave power density was the most impressive variable having the maximum influence on both shrinkage percentage and color changes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA
NASA Astrophysics Data System (ADS)
Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.
2018-04-01
Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3-) input functions by characterizing unsaturated zone NO3- transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous "vertical flux method" (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3- source concentration factor (which determines the local NO3- input concentration); unsaturated zone travel time; NO3- concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3- "extinction depth", the eventual steady state depth of the NO3- front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 - 0.86 and 0.22 - 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing performance was reasonable, considering that we limited the metamodel predictor variables to mappable factors as opposed to using all available VFM input variables. Relationships between metamodel predictor variables and mapped outputs were generally consistent with expectations, e.g. with greater source concentrations and NO3- at the groundwater table in areas of intensive crop use and well drained soils. Shorter unsaturated zone travel times in poorly drained areas likely indicated preferential flow through clay soils, and a tendency for fine grained deposits to collocate with areas of shallower water table. Numerical estimates of groundwater recharge were important in the metamodels and may have been a proxy for N input and redox conditions in the northern FWP, which had shallow predicted NO3- extinction depth. The metamodel results provide proof-of-concept for regional characterization of unsaturated zone NO3- transport processes in a statistical framework based on readily mappable GIS input variables.
Two-Stage Variable Sample-Rate Conversion System
NASA Technical Reports Server (NTRS)
Tkacenko, Andre
2009-01-01
A two-stage variable sample-rate conversion (SRC) system has been pro posed as part of a digital signal-processing system in a digital com munication radio receiver that utilizes a variety of data rates. The proposed system would be used as an interface between (1) an analog- todigital converter used in the front end of the receiver to sample an intermediatefrequency signal at a fixed input rate and (2) digita lly implemented tracking loops in subsequent stages that operate at v arious sample rates that are generally lower than the input sample r ate. This Two-Stage System would be capable of converting from an input sample rate to a desired lower output sample rate that could be var iable and not necessarily a rational fraction of the input rate.
Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli
2017-10-01
Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (r C , Mg C ha -1 yr -1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.
Ensemble Bayesian forecasting system Part I: Theory and algorithms
NASA Astrophysics Data System (ADS)
Herr, Henry D.; Krzysztofowicz, Roman
2015-05-01
The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of predictand, possesses a Bayesian coherence property, constitutes a random sample of the predictand, and has an acceptable sampling error-which makes it suitable for rational decision making under uncertainty.
Estimates of Storage Capacity of Multilayer Perceptron with Threshold Logic Hidden Units.
Kowalczyk, Adam
1997-11-01
We estimate the storage capacity of multilayer perceptron with n inputs, h(1) threshold logic units in the first hidden layer and 1 output. We show that if the network can memorize 50% of all dichotomies of a randomly selected N-tuple of points of R(n) with probability 1, then N=2(nh(1)+1), while at 100% memorization N=nh(1)+1. Furthermore, if the bounds are reached, then the first hidden layer must be fully connected to the input. It is shown that such a network has memory capacity (in the sense of Cover) between nh(1)+1 and 2(nh(1)+1) input patterns and for the most efficient networks in this class between 1 and 2 input patterns per connection. Comparing these results with the recent estimates of VC-dimension we find that in contrast to a single neuron case, the VC-dimension exceeds the capacity for a sufficiently large n and h(1). The results are based on the derivation of an explicit expression for the number of dichotomies which can be implemented by such a network for a special class of N-tuples of input patterns which has a positive probability of being randomly chosen.
A Multivariate Randomization Text of Association Applied to Cognitive Test Results
NASA Technical Reports Server (NTRS)
Ahumada, Albert; Beard, Bettina
2009-01-01
Randomization tests provide a conceptually simple, distribution-free way to implement significance testing. We have applied this method to the problem of evaluating the significance of the association among a number (k) of variables. The randomization method was the random re-ordering of k-1 of the variables. The criterion variable was the value of the largest eigenvalue of the correlation matrix.
NASA Astrophysics Data System (ADS)
Fedrigo, Melissa; Newnham, Glenn J.; Coops, Nicholas C.; Culvenor, Darius S.; Bolton, Douglas K.; Nitschke, Craig R.
2018-02-01
Light detection and ranging (lidar) data have been increasingly used for forest classification due to its ability to penetrate the forest canopy and provide detail about the structure of the lower strata. In this study we demonstrate forest classification approaches using airborne lidar data as inputs to random forest and linear unmixing classification algorithms. Our results demonstrated that both random forest and linear unmixing models identified a distribution of rainforest and eucalypt stands that was comparable to existing ecological vegetation class (EVC) maps based primarily on manual interpretation of high resolution aerial imagery. Rainforest stands were also identified in the region that have not previously been identified in the EVC maps. The transition between stand types was better characterised by the random forest modelling approach. In contrast, the linear unmixing model placed greater emphasis on field plots selected as endmembers which may not have captured the variability in stand structure within a single stand type. The random forest model had the highest overall accuracy (84%) and Cohen's kappa coefficient (0.62). However, the classification accuracy was only marginally better than linear unmixing. The random forest model was applied to a region in the Central Highlands of south-eastern Australia to produce maps of stand type probability, including areas of transition (the 'ecotone') between rainforest and eucalypt forest. The resulting map provided a detailed delineation of forest classes, which specifically recognised the coalescing of stand types at the landscape scale. This represents a key step towards mapping the structural and spatial complexity of these ecosystems, which is important for both their management and conservation.
Abbott, Rebecca A; Smith, Anne J; Howie, Erin K; Pollock, Clare; Straker, Leon
2014-08-01
Active-input videogames could provide a useful conduit for increasing physical activity by improving a child's self-confidence, physical activity enjoyment, and reducing anxiety. Therefore this study evaluated the impact of (a) the removal of home access to traditional electronic games or (b) their replacement with active-input videogames, on child self-perception, enjoyment of physical activity, and electronic game use anxiety. This was a crossover, randomized controlled trial, conducted over a 6-month period in participants' family homes in metropolitan Perth, Australia, from 2007 to 2010. Children 10-12 years old were recruited through school and community media. Of 210 children who were eligible, 74 met inclusion criteria, and 8 withdrew, leaving 66 children (33 girls) for analysis. A counterbalanced randomized order of three conditions sustained for 8 weeks each: No home access to electronic games, home access to traditional electronic games, and home access to active-input electronic games. Perception of self-esteem (Harter's Self Perception Profile for Children), enjoyment of physical activity (Physical Activity Enjoyment Scale questionnaire), and anxiety toward electronic game use (modified Loyd and Gressard Computer Anxiety Subscale) were assessed. Compared with home access to traditional electronic games, neither removal of all electronic games nor replacement with active-input games resulted in any significant change to child self-esteem, enjoyment of physical activity, or anxiety related to electronic games. Although active-input videogames have been shown to be enjoyable in the short term, their ability to impact on psychological outcomes is yet to be established.
Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network
Del Papa, Bruno; Priesemann, Viola
2017-01-01
Many experiments have suggested that the brain operates close to a critical state, based on signatures of criticality such as power-law distributed neuronal avalanches. In neural network models, criticality is a dynamical state that maximizes information processing capacities, e.g. sensitivity to input, dynamical range and storage capacity, which makes it a favorable candidate state for brain function. Although models that self-organize towards a critical state have been proposed, the relation between criticality signatures and learning is still unclear. Here, we investigate signatures of criticality in a self-organizing recurrent neural network (SORN). Investigating criticality in the SORN is of particular interest because it has not been developed to show criticality. Instead, the SORN has been shown to exhibit spatio-temporal pattern learning through a combination of neural plasticity mechanisms and it reproduces a number of biological findings on neural variability and the statistics and fluctuations of synaptic efficacies. We show that, after a transient, the SORN spontaneously self-organizes into a dynamical state that shows criticality signatures comparable to those found in experiments. The plasticity mechanisms are necessary to attain that dynamical state, but not to maintain it. Furthermore, onset of external input transiently changes the slope of the avalanche distributions – matching recent experimental findings. Interestingly, the membrane noise level necessary for the occurrence of the criticality signatures reduces the model’s performance in simple learning tasks. Overall, our work shows that the biologically inspired plasticity and homeostasis mechanisms responsible for the SORN’s spatio-temporal learning abilities can give rise to criticality signatures in its activity when driven by random input, but these break down under the structured input of short repeating sequences. PMID:28552964
Random unitary evolution model of quantum Darwinism with pure decoherence
NASA Astrophysics Data System (ADS)
Balanesković, Nenad
2015-10-01
We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.
Innovations in Basic Flight Training for the Indonesian Air Force
1990-12-01
microeconomic theory that could approximate the optimum mix of training hours between an aircraft and simulator, and therefore improve cost effectiveness...The microeconomic theory being used is normally employed when showing production with two variable inputs. An example of variable inputs would be labor...NAS Corpus Christi, Texas, Aerodynamics of the T-34C, 1989. 26. Naval Air Training Command, NAS Corpus Christi, Texas, Meteorological Theory Workbook
A Bayesian approach to model structural error and input variability in groundwater modeling
NASA Astrophysics Data System (ADS)
Xu, T.; Valocchi, A. J.; Lin, Y. F. F.; Liang, F.
2015-12-01
Effective water resource management typically relies on numerical models to analyze groundwater flow and solute transport processes. Model structural error (due to simplification and/or misrepresentation of the "true" environmental system) and input forcing variability (which commonly arises since some inputs are uncontrolled or estimated with high uncertainty) are ubiquitous in groundwater models. Calibration that overlooks errors in model structure and input data can lead to biased parameter estimates and compromised predictions. We present a fully Bayesian approach for a complete assessment of uncertainty for spatially distributed groundwater models. The approach explicitly recognizes stochastic input and uses data-driven error models based on nonparametric kernel methods to account for model structural error. We employ exploratory data analysis to assist in specifying informative prior for error models to improve identifiability. The inference is facilitated by an efficient sampling algorithm based on DREAM-ZS and a parameter subspace multiple-try strategy to reduce the required number of forward simulations of the groundwater model. We demonstrate the Bayesian approach through a synthetic case study of surface-ground water interaction under changing pumping conditions. It is found that explicit treatment of errors in model structure and input data (groundwater pumping rate) has substantial impact on the posterior distribution of groundwater model parameters. Using error models reduces predictive bias caused by parameter compensation. In addition, input variability increases parametric and predictive uncertainty. The Bayesian approach allows for a comparison among the contributions from various error sources, which could inform future model improvement and data collection efforts on how to best direct resources towards reducing predictive uncertainty.
NASA Astrophysics Data System (ADS)
Zounemat-Kermani, Mohammad
2012-08-01
In this study, the ability of two models of multi linear regression (MLR) and Levenberg-Marquardt (LM) feed-forward neural network was examined to estimate the hourly dew point temperature. Dew point temperature is the temperature at which water vapor in the air condenses into liquid. This temperature can be useful in estimating meteorological variables such as fog, rain, snow, dew, and evapotranspiration and in investigating agronomical issues as stomatal closure in plants. The availability of hourly records of climatic data (air temperature, relative humidity and pressure) which could be used to predict dew point temperature initiated the practice of modeling. Additionally, the wind vector (wind speed magnitude and direction) and conceptual input of weather condition were employed as other input variables. The three quantitative standard statistical performance evaluation measures, i.e. the root mean squared error, mean absolute error, and absolute logarithmic Nash-Sutcliffe efficiency coefficient ( {| {{{Log}}({{NS}})} |} ) were employed to evaluate the performances of the developed models. The results showed that applying wind vector and weather condition as input vectors along with meteorological variables could slightly increase the ANN and MLR predictive accuracy. The results also revealed that LM-NN was superior to MLR model and the best performance was obtained by considering all potential input variables in terms of different evaluation criteria.
NASA Technical Reports Server (NTRS)
Meyn, Larry A.
2018-01-01
One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use
Intrusive Method for Uncertainty Quantification in a Multiphase Flow Solver
NASA Astrophysics Data System (ADS)
Turnquist, Brian; Owkes, Mark
2016-11-01
Uncertainty quantification (UQ) is a necessary, interesting, and often neglected aspect of fluid flow simulations. To determine the significance of uncertain initial and boundary conditions, a multiphase flow solver is being created which extends a single phase, intrusive, polynomial chaos scheme into multiphase flows. Reliably estimating the impact of input uncertainty on design criteria can help identify and minimize unwanted variability in critical areas, and has the potential to help advance knowledge in atomizing jets, jet engines, pharmaceuticals, and food processing. Use of an intrusive polynomial chaos method has been shown to significantly reduce computational cost over non-intrusive collocation methods such as Monte-Carlo. This method requires transforming the model equations into a weak form through substitution of stochastic (random) variables. Ultimately, the model deploys a stochastic Navier Stokes equation, a stochastic conservative level set approach including reinitialization, as well as stochastic normals and curvature. By implementing these approaches together in one framework, basic problems may be investigated which shed light on model expansion, uncertainty theory, and fluid flow in general. NSF Grant Number 1511325.
Ji, Guoli; Ye, Pengchao; Shi, Yijian; Yuan, Leiming; Chen, Xiaojing; Yuan, Mingshun; Zhu, Dehua; Chen, Xi; Hu, Xinyu; Jiang, Jing
2017-01-01
Tegillarca granosa samples contaminated artificially by three kinds of toxic heavy metals including zinc (Zn), cadmium (Cd), and lead (Pb) were attempted to be distinguished using laser-induced breakdown spectroscopy (LIBS) technology and pattern recognition methods in this study. The measured spectra were firstly processed by a wavelet transform algorithm (WTA), then the generated characteristic information was subsequently expressed by an information gain algorithm (IGA). As a result, 30 variables obtained were used as input variables for three classifiers: partial least square discriminant analysis (PLS-DA), support vector machine (SVM), and random forest (RF), among which the RF model exhibited the best performance, with 93.3% discrimination accuracy among those classifiers. Besides, the extracted characteristic information was used to reconstruct the original spectra by inverse WTA, and the corresponding attribution of the reconstructed spectra was then discussed. This work indicates that the healthy shellfish samples of Tegillarca granosa could be distinguished from the toxic heavy-metal-contaminated ones by pattern recognition analysis combined with LIBS technology, which only requires minimal pretreatments. PMID:29149053
NASA Astrophysics Data System (ADS)
Graham, Wendy D.; Neff, Christina R.
1994-05-01
The first-order analytical solution of the inverse problem for estimating spatially variable recharge and transmissivity under steady-state groundwater flow, developed in Part 1 is applied to the Upper Floridan Aquifer in NE Florida. Parameters characterizing the statistical structure of the log-transmissivity and head fields are estimated from 152 measurements of transmissivity and 146 measurements of hydraulic head available in the study region. Optimal estimates of the recharge, transmissivity and head fields are produced throughout the study region by conditioning on the nearest 10 available transmissivity measurements and the nearest 10 available head measurements. Head observations are shown to provide valuable information for estimating both the transmissivity and the recharge fields. Accurate numerical groundwater model predictions of the aquifer flow system are obtained using the optimal transmissivity and recharge fields as input parameters, and the optimal head field to define boundary conditions. For this case study, both the transmissivity field and the uncertainty of the transmissivity field prediction are poorly estimated, when the effects of random recharge are neglected.
Population coding in sparsely connected networks of noisy neurons.
Tripp, Bryan P; Orchard, Jeff
2012-01-01
This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behavior. However, population coding theory has often ignored network structure, or assumed discrete, fully connected populations (in contrast with the sparsely connected, continuous sheet of the cortex). In this study, we modeled a sheet of cortical neurons with sparse, primarily local connections, and found that a network with this structure could encode multiple internal state variables with high signal-to-noise ratio. However, we were unable to create high-fidelity networks by instantiating connections at random according to spatial connection probabilities. In our models, high-fidelity networks required additional structure, with higher cluster factors and correlations between the inputs to nearby neurons.
Soft Mixer Assignment in a Hierarchical Generative Model of Natural Scene Statistics
Schwartz, Odelia; Sejnowski, Terrence J.; Dayan, Peter
2010-01-01
Gaussian scale mixture models offer a top-down description of signal generation that captures key bottom-up statistical characteristics of filter responses to images. However, the pattern of dependence among the filters for this class of models is prespecified. We propose a novel extension to the gaussian scale mixture model that learns the pattern of dependence from observed inputs and thereby induces a hierarchical representation of these inputs. Specifically, we propose that inputs are generated by gaussian variables (modeling local filter structure), multiplied by a mixer variable that is assigned probabilistically to each input from a set of possible mixers. We demonstrate inference of both components of the generative model, for synthesized data and for different classes of natural images, such as a generic ensemble and faces. For natural images, the mixer variable assignments show invariances resembling those of complex cells in visual cortex; the statistics of the gaussian components of the model are in accord with the outputs of divisive normalization models. We also show how our model helps interrelate a wide range of models of image statistics and cortical processing. PMID:16999575
Rowe, Meredith L; Levine, Susan C; Fisher, Joan A; Goldin-Meadow, Susan
2009-01-01
Children with unilateral pre- or perinatal brain injury (BI) show remarkable plasticity for language learning. Previous work highlights the important role that lesion characteristics play in explaining individual variation in plasticity in the language development of children with BI. The current study examines whether the linguistic input that children with BI receive from their caregivers also contributes to this early plasticity, and whether linguistic input plays a similar role in children with BI as it does in typically developing (TD) children. Growth in vocabulary and syntactic production is modeled for 80 children (53 TD, 27 BI) between 14 and 46 months. Findings indicate that caregiver input is an equally potent predictor of vocabulary growth in children with BI and in TD children. In contrast, input is a more potent predictor of syntactic growth for children with BI than for TD children. Controlling for input, lesion characteristics (lesion size, type, seizure history) also affect the language trajectories of children with BI. Thus, findings illustrate how both variability in the environment (linguistic input) and variability in the organism (lesion characteristics) work together to contribute to plasticity in language learning.
Predicting Coastal Flood Severity using Random Forest Algorithm
NASA Astrophysics Data System (ADS)
Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K.
2017-12-01
Coastal floods have become more common recently and are predicted to further increase in frequency and severity due to sea level rise. Predicting floods in coastal cities can be difficult due to the number of environmental and geographic factors which can influence flooding events. Built stormwater infrastructure and irregular urban landscapes add further complexity. This paper demonstrates the use of machine learning algorithms in predicting street flood occurrence in an urban coastal setting. The model is trained and evaluated using data from Norfolk, Virginia USA from September 2010 - October 2016. Rainfall, tide levels, water table levels, and wind conditions are used as input variables. Street flooding reports made by city workers after named and unnamed storm events, ranging from 1-159 reports per event, are the model output. Results show that Random Forest provides predictive power in estimating the number of flood occurrences given a set of environmental conditions with an out-of-bag root mean squared error of 4.3 flood reports and a mean absolute error of 0.82 flood reports. The Random Forest algorithm performed much better than Poisson regression. From the Random Forest model, total daily rainfall was by far the most important factor in flood occurrence prediction, followed by daily low tide and daily higher high tide. The model demonstrated here could be used to predict flood severity based on forecast rainfall and tide conditions and could be further enhanced using more complete street flooding data for model training.
A Comparison of Agent-Based Models and the Parametric G-Formula for Causal Inference.
Murray, Eleanor J; Robins, James M; Seage, George R; Freedberg, Kenneth A; Hernán, Miguel A
2017-07-15
Decision-making requires choosing from treatments on the basis of correctly estimated outcome distributions under each treatment. In the absence of randomized trials, 2 possible approaches are the parametric g-formula and agent-based models (ABMs). The g-formula has been used exclusively to estimate effects in the population from which data were collected, whereas ABMs are commonly used to estimate effects in multiple populations, necessitating stronger assumptions. Here, we describe potential biases that arise when ABM assumptions do not hold. To do so, we estimated 12-month mortality risk in simulated populations differing in prevalence of an unknown common cause of mortality and a time-varying confounder. The ABM and g-formula correctly estimated mortality and causal effects when all inputs were from the target population. However, whenever any inputs came from another population, the ABM gave biased estimates of mortality-and often of causal effects even when the true effect was null. In the absence of unmeasured confounding and model misspecification, both methods produce valid causal inferences for a given population when all inputs are from that population. However, ABMs may result in bias when extrapolated to populations that differ on the distribution of unmeasured outcome determinants, even when the causal network linking variables is identical. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Variable input observer for state estimation of high-rate dynamics
NASA Astrophysics Data System (ADS)
Hong, Jonathan; Cao, Liang; Laflamme, Simon; Dodson, Jacob
2017-04-01
High-rate systems operating in the 10 μs to 10 ms timescale are likely to experience damaging effects due to rapid environmental changes (e.g., turbulence, ballistic impact). Some of these systems could benefit from real-time state estimation to enable their full potential. Examples of such systems include blast mitigation strategies, automotive airbag technologies, and hypersonic vehicles. Particular challenges in high-rate state estimation include: 1) complex time varying nonlinearities of system (e.g. noise, uncertainty, and disturbance); 2) rapid environmental changes; 3) requirement of high convergence rate. Here, we propose using a Variable Input Observer (VIO) concept to vary the input space as the event unfolds. When systems experience high-rate dynamics, rapid changes in the system occur. To investigate the VIO's potential, a VIO-based neuro-observer is constructed and studied using experimental data collected from a laboratory impact test. Results demonstrate that the input space is unique to different impact conditions, and that adjusting the input space throughout the dynamic event produces better estimations than using a traditional fixed input space strategy.
Sugimoto, Masahiro; Takada, Masahiro; Toi, Masakazu
2014-12-09
Nomograms are a standard computational tool to predict the likelihood of an outcome using multiple available patient features. We have developed a more powerful data mining methodology, to predict axillary lymph node (AxLN) metastasis and response to neoadjuvant chemotherapy (NAC) in primary breast cancer patients. We developed websites to use these tools. The tools calculate the probability of AxLN metastasis (AxLN model) and pathological complete response to NAC (NAC model). As a calculation algorithm, we employed a decision tree-based prediction model known as the alternative decision tree (ADTree), which is an analog development of if-then type decision trees. An ensemble technique was used to combine multiple ADTree predictions, resulting in higher generalization abilities and robustness against missing values. The AxLN model was developed with training datasets (n=148) and test datasets (n=143), and validated using an independent cohort (n=174), yielding an area under the receiver operating characteristic curve (AUC) of 0.768. The NAC model was developed and validated with n=150 and n=173 datasets from a randomized controlled trial, yielding an AUC of 0.787. AxLN and NAC models require users to input up to 17 and 16 variables, respectively. These include pathological features, including human epidermal growth factor receptor 2 (HER2) status and imaging findings. Each input variable has an option of "unknown," to facilitate prediction for cases with missing values. The websites developed facilitate the use of these tools, and serve as a database for accumulating new datasets.
Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T
2013-01-01
Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in "intermediate" regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns.
Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T.
2014-01-01
Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in “intermediate” regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns. PMID:24501591
NASA Astrophysics Data System (ADS)
Sung, S.; Kim, H. G.; Lee, D. K.; Park, J. H.; Mo, Y.; Kil, S.; Park, C.
2016-12-01
The impact of climate change has been observed throughout the globe. The ecosystem experiences rapid changes such as vegetation shift, species extinction. In these context, Species Distribution Model (SDM) is one of the popular method to project impact of climate change on the ecosystem. SDM basically based on the niche of certain species with means to run SDM present point data is essential to find biological niche of species. To run SDM for plants, there are certain considerations on the characteristics of vegetation. Normally, to make vegetation data in large area, remote sensing techniques are used. In other words, the exact point of presence data has high uncertainties as we select presence data set from polygons and raster dataset. Thus, sampling methods for modeling vegetation presence data should be carefully selected. In this study, we used three different sampling methods for selection of presence data of vegetation: Random sampling, Stratified sampling and Site index based sampling. We used one of the R package BIOMOD2 to access uncertainty from modeling. At the same time, we included BioCLIM variables and other environmental variables as input data. As a result of this study, despite of differences among the 10 SDMs, the sampling methods showed differences in ROC values, random sampling methods showed the lowest ROC value while site index based sampling methods showed the highest ROC value. As a result of this study the uncertainties from presence data sampling methods and SDM can be quantified.
NASA Astrophysics Data System (ADS)
Daliakopoulos, Ioannis; Tsanis, Ioannis
2017-04-01
Mitigating the vulnerability of Mediterranean rangelands against degradation is limited by our ability to understand and accurately characterize those impacts in space and time. The Normalized Difference Vegetation Index (NDVI) is a radiometric measure of the photosynthetically active radiation absorbed by green vegetation canopy chlorophyll and is therefore a good surrogate measure of vegetation dynamics. On the other hand, meteorological indices such as the drought assessing Standardised Precipitation Index (SPI) are can be easily estimated from historical and projected datasets at the global scale. This work investigates the potential of driving Random Forest (RF) models with meteorological indices to approximate NDVI-based vegetation dynamics. A sufficiently large number of RF models are trained using random subsets of the dataset as predictors, in a bootstrapping approach to account for the uncertainty introduced by the subset selection. The updated E-OBS-v13.1 dataset of the ENSEMBLES EU FP6 program provides observed monthly meteorological input to estimate SPI over the Mediterranean rangelands. RF models are trained to depict vegetation dynamics using the latest version (3g.v1) of the third generation GIMMS NDVI generated from NOAA's Advanced Very High Resolution Radiometer (AVHRR) sensors. Analysis is conducted for the period 1981-2015 at a gridded spatial resolution of 25 km. Preliminary results demonstrate the potential of machine learning algorithms to effectively mimic the underlying physical relationship of drought and Earth Observation vegetation indices to provide estimates based on precipitation variability.
Hu, Qinglei
2007-10-01
This paper presents a dual-stage control system design method for the flexible spacecraft attitude maneuvering control by use of on-off thrusters and active vibration control by input shaper. In this design approach, attitude control system and vibration suppression were designed separately using lower order model. As a stepping stone, an integral variable structure controller with the assumption of knowing the upper bounds of the mismatched lumped perturbation has been designed which ensures exponential convergence of attitude angle and angular velocity in the presence of bounded uncertainty/disturbances. To reconstruct estimates of the system states for use in a full information variable structure control law, an asymptotic variable structure observer is also employed. In addition, the thruster output is modulated in pulse-width pulse-frequency so that the output profile is similar to the continuous control histories. For actively suppressing the induced vibration, the input shaping technique is used to modify the existing command so that less vibration will be caused by the command itself, which only requires information about the vibration frequency and damping of the closed-loop system. The rationale behind this hybrid control scheme is that the integral variable structure controller can achieve good precision pointing, even in the presence of uncertainties/disturbances, whereas the shaped input attenuator is applied to actively suppress the undesirable vibrations excited by the rapid maneuvers. Simulation results for the spacecraft model show precise attitude control and vibration suppression.
A waste characterisation procedure for ADM1 implementation based on degradation kinetics.
Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Steyer, J-P; Sadowski, A G; Béline, F
2012-09-01
In this study, a procedure accounting for degradation kinetics was developed to split the total COD of a substrate into each input state variable required for Anaerobic Digestion Model n°1. The procedure is based on the combination of batch experimental degradation tests ("anaerobic respirometry") and numerical interpretation of the results obtained (optimisation of the ADM1 input state variable set). The effects of the main operating parameters, such as the substrate to inoculum ratio in batch experiments and the origin of the inoculum, were investigated. Combined with biochemical fractionation of the total COD of substrates, this method enabled determination of an ADM1-consistent input state variable set for each substrate with affordable identifiability. The substrate to inoculum ratio in the batch experiments and the origin of the inoculum influenced input state variables. However, based on results modelled for a CSTR fed with the substrate concerned, these effects were not significant. Indeed, if the optimal ranges of these operational parameters are respected, uncertainty in COD fractionation is mainly limited to temporal variability of the properties of the substrates. As the method is based on kinetics and is easy to implement for a wide range of substrates, it is a very promising way to numerically predict the effect of design parameters on the efficiency of an anaerobic CSTR. This method thus promotes the use of modelling for the design and optimisation of anaerobic processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.; Chiang, T.; Badgley, R. H.
1973-01-01
The random vibration response of a gas bearing rotor support system has been experimentally and analytically investigated in the amplitude and frequency domains. The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10 KWe turbogenerator had previously been subjected in the laboratory to external random vibrations, and the response data recorded on magnetic tape. This data has now been experimentally analyzed for amplitude distribution and magnetic tape. This data has now been experimentally analyzed for amplitude distribution and frequency content. The results of the power spectral density analysis indicate strong vibration responses for the major rotor-bearing system components at frequencies which correspond closely to their resonant frequencies obtained under periodic vibration testing. The results of amplitude analysis indicate an increasing shift towards non-Gaussian distributions as the input level of external vibrations is raised. Analysis of axial random vibration response of the BRU was performed by using a linear three-mass model. Power spectral densities, the root-mean-square value of the thrust bearing surface contact were calculated for specified input random excitation.
Variable Delay Element For Jitter Control In High Speed Data Links
Livolsi, Robert R.
2002-06-11
A circuit and method for decreasing the amount of jitter present at the receiver input of high speed data links which uses a driver circuit for input from a high speed data link which comprises a logic circuit having a first section (1) which provides data latches, a second section (2) which provides a circuit generates a pre-destorted output and for compensating for level dependent jitter having an OR function element and a NOR function element each of which is coupled to two inputs and to a variable delay element as an input which provides a bi-modal delay for pulse width pre-distortion, a third section (3) which provides a muxing circuit, and a forth section (4) for clock distribution in the driver circuit. A fifth section is used for logic testing the driver circuit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano
Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has mademore » piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing requirements by increasing harvested power, shifting optimal conditioning impedance, inducing significant voltage supply fluctuations and ultimately rendering idealized sinusoidal and random analyses insufficient.« less
A liquid lens switching-based motionless variable fiber-optic delay line
NASA Astrophysics Data System (ADS)
Khwaja, Tariq Shamim; Reza, Syed Azer; Sheikh, Mumtaz
2018-05-01
We present a Variable Fiber-Optic Delay Line (VFODL) module capable of imparting long variable delays by switching an input optical/RF signal between Single Mode Fiber (SMF) patch cords of different lengths through a pair of Electronically Controlled Tunable Lenses (ECTLs) resulting in a polarization-independent operation. Depending on intended application, the lengths of the SMFs can be chosen accordingly to achieve the desired VFODL operation dynamic range. If so desired, the state of the input signal polarization can be preserved with the use of commercially available polarization-independent ECTLs along with polarization-maintaining SMFs (PM-SMFs), resulting in an output polarization that is identical to the input. An ECTL-based design also improves power consumption and repeatability. The delay switching mechanism is electronically-controlled, involves no bulk moving parts, and can be fully-automated. The VFODL module is compact due to the use of small optical components and SMFs that can be packaged compactly.
Sensitivity analysis and nonlinearity assessment of steam cracking furnace process
NASA Astrophysics Data System (ADS)
Rosli, M. N.; Sudibyo, Aziz, N.
2017-11-01
In this paper, sensitivity analysis and nonlinearity assessment of cracking furnace process are presented. For the sensitivity analysis, the fractional factorial design method is employed as a method to analyze the effect of input parameters, which consist of four manipulated variables and two disturbance variables, to the output variables and to identify the interaction between each parameter. The result of the factorial design method is used as a screening method to reduce the number of parameters, and subsequently, reducing the complexity of the model. It shows that out of six input parameters, four parameters are significant. After the screening is completed, step test is performed on the significant input parameters to assess the degree of nonlinearity of the system. The result shows that the system is highly nonlinear with respect to changes in an air-to-fuel ratio (AFR) and feed composition.
Gedamke, Jason; Gales, Nick; Frydman, Sascha
2011-01-01
The potential for seismic airgun "shots" to cause acoustic trauma in marine mammals is poorly understood. There are just two empirical measurements of temporary threshold shift (TTS) onset levels from airgun-like sounds in odontocetes. Considering these limited data, a model was developed examining the impact of individual variability and uncertainty on risk assessment of baleen whale TTS from seismic surveys. In each of 100 simulations: 10000 "whales" are assigned TTS onset levels accounting for: inter-individual variation; uncertainty over the population's mean; and uncertainty over weighting of odontocete data to obtain baleen whale onset levels. Randomly distributed whales are exposed to one seismic survey passage with cumulative exposure level calculated. In the base scenario, 29% of whales (5th/95th percentiles of 10%/62%) approached to 1-1.2 km range were exposed to levels sufficient for TTS onset. By comparison, no whales are at risk outside 0.6 km when uncertainty and variability are not considered. Potentially "exposure altering" parameters (movement, avoidance, surfacing, and effective quiet) were also simulated. Until more research refines model inputs, the results suggest a reasonable likelihood that whales at a kilometer or more from seismic surveys could potentially be susceptible to TTS and demonstrate that the large impact uncertainty and variability can have on risk assessment.
Shiokawa, Yuka; Date, Yasuhiro; Kikuchi, Jun
2018-02-21
Computer-based technological innovation provides advancements in sophisticated and diverse analytical instruments, enabling massive amounts of data collection with relative ease. This is accompanied by a fast-growing demand for technological progress in data mining methods for analysis of big data derived from chemical and biological systems. From this perspective, use of a general "linear" multivariate analysis alone limits interpretations due to "non-linear" variations in metabolic data from living organisms. Here we describe a kernel principal component analysis (KPCA)-incorporated analytical approach for extracting useful information from metabolic profiling data. To overcome the limitation of important variable (metabolite) determinations, we incorporated a random forest conditional variable importance measure into our KPCA-based analytical approach to demonstrate the relative importance of metabolites. Using a market basket analysis, hippurate, the most important variable detected in the importance measure, was associated with high levels of some vitamins and minerals present in foods eaten the previous day, suggesting a relationship between increased hippurate and intake of a wide variety of vegetables and fruits. Therefore, the KPCA-incorporated analytical approach described herein enabled us to capture input-output responses, and should be useful not only for metabolic profiling but also for profiling in other areas of biological and environmental systems.
Random Testing and Model Checking: Building a Common Framework for Nondeterministic Exploration
NASA Technical Reports Server (NTRS)
Groce, Alex; Joshi, Rajeev
2008-01-01
Two popular forms of dynamic analysis, random testing and explicit-state software model checking, are perhaps best viewed as search strategies for exploring the state spaces introduced by nondeterminism in program inputs. We present an approach that enables this nondeterminism to be expressed in the SPIN model checker's PROMELA language, and then lets users generate either model checkers or random testers from a single harness for a tested C program. Our approach makes it easy to compare model checking and random testing for models with precisely the same input ranges and probabilities and allows us to mix random testing with model checking's exhaustive exploration of non-determinism. The PROMELA language, as intended in its design, serves as a convenient notation for expressing nondeterminism and mixing random choices with nondeterministic choices. We present and discuss a comparison of random testing and model checking. The results derive from using our framework to test a C program with an effectively infinite state space, a module in JPL's next Mars rover mission. More generally, we show how the ability of the SPIN model checker to call C code can be used to extend SPIN's features, and hope to inspire others to use the same methods to implement dynamic analyses that can make use of efficient state storage, matching, and backtracking.
Road simulation for four-wheel vehicle whole input power spectral density
NASA Astrophysics Data System (ADS)
Wang, Jiangbo; Qiang, Baomin
2017-05-01
As the vibration of running vehicle mainly comes from road and influence vehicle ride performance. So the road roughness power spectral density simulation has great significance to analyze automobile suspension vibration system parameters and evaluate ride comfort. Firstly, this paper based on the mathematical model of road roughness power spectral density, established the integral white noise road random method. Then in the MATLAB/Simulink environment, according to the research method of automobile suspension frame from simple two degree of freedom single-wheel vehicle model to complex multiple degrees of freedom vehicle model, this paper built the simple single incentive input simulation model. Finally the spectrum matrix was used to build whole vehicle incentive input simulation model. This simulation method based on reliable and accurate mathematical theory and can be applied to the random road simulation of any specified spectral which provides pavement incentive model and foundation to vehicle ride performance research and vibration simulation.
Ichinokawa, Momoko; Okamura, Hiroshi; Watanabe, Chikako; Kawabata, Atsushi; Oozeki, Yoshioki
2015-09-01
Restricting human access to a specific wildlife species, community, or ecosystem, i.e., input control, is one of the most popular tools to control human impacts for natural resource management and wildlife conservation. However, quantitative evaluations of input control are generally difficult, because it is unclear how much human impacts can actually be reduced by the control. We present a model framework to quantify the effectiveness of input control using day closures to reduce actual fishing impact by considering the observed fishery dynamics. The model framework was applied to the management of the Pacific stock of the chub mackerel (Scomber japonicus) fishery, in which fishing was suspended for one day following any day when the total mackerel catch exceeded a threshold level. We evaluated the management measure according to the following steps: (1) we fitted the daily observed catch and fishing effort data to a generalized linear model (GLM) or generalized autoregressive state-space model (GASSM), (2) we conducted population dynamics simulations based on annual catches randomly generated from the parameters estimated in the first step, (3) we quantified the effectiveness of day closures by comparing the results of two simulation scenarios with and without day closures, and (4) we conducted additional simulations based on different sets of explanatory variables and statistical models (sensitivity analysis). In the first step, we found that the GASSM explained the observed data far better than the simple GLM. The model parameterized with the estimates from the GASSM demonstrated that the day closures implemented from 2004 to 2009 would have decreased exploitation fractions by ~10% every year and increased the 2009 stock biomass by 37-46% (median), relative to the values without day closures. The sensitivity analysis revealed that the effectiveness of day closures was particularly influenced by autoregressive processes in the fishery data and by positive relationships between fishing effort and total biomass. Those results indicated the importance of human behavioral dynamics under input control in quantifying the conservation benefit of natural resource management and the applicability of our model framework to the evaluation of the input controls that are actually implemented.
Fast self contained exponential random deviate algorithm
NASA Astrophysics Data System (ADS)
Fernández, Julio F.
1997-03-01
An algorithm that generates random numbers with an exponential distribution and is about ten times faster than other well known algorithms has been reported before (J. F. Fernández and J. Rivero, Comput. Phys. 10), 83 (1996). That algorithm requires input of uniform random deviates. We now report a new version of it that needs no input and is nearly as fast. The only limitation we predict thus far for the quality of the output is the amount of computer memory available. Performance results under various tests will be reported. The algorithm works in close analogy to the set up that is often used in statistical physics in order to obtain the Gibb's distribution. N numbers, that are are stored in N registers, change with time according to the rules of the algorithm, keeping their sum constant. Further details will be given.
Spin-the-bottle Sort and Annealing Sort: Oblivious Sorting via Round-robin Random Comparisons
Goodrich, Michael T.
2013-01-01
We study sorting algorithms based on randomized round-robin comparisons. Specifically, we study Spin-the-bottle sort, where comparisons are unrestricted, and Annealing sort, where comparisons are restricted to a distance bounded by a temperature parameter. Both algorithms are simple, randomized, data-oblivious sorting algorithms, which are useful in privacy-preserving computations, but, as we show, Annealing sort is much more efficient. We show that there is an input permutation that causes Spin-the-bottle sort to require Ω(n2 log n) expected time in order to succeed, and that in O(n2 log n) time this algorithm succeeds with high probability for any input. We also show there is a specification of Annealing sort that runs in O(n log n) time and succeeds with very high probability. PMID:24550575
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, D.G.; Eubanks, L.
1998-03-01
This software assists the engineering designer in characterizing the statistical uncertainty in the performance of complex systems as a result of variations in manufacturing processes, material properties, system geometry or operating environment. The software is composed of a graphical user interface that provides the user with easy access to Cassandra uncertainty analysis routines. Together this interface and the Cassandra routines are referred to as CRAX (CassandRA eXoskeleton). The software is flexible enough, that with minor modification, it is able to interface with large modeling and analysis codes such as heat transfer or finite element analysis software. The current version permitsmore » the user to manually input a performance function, the number of random variables and their associated statistical characteristics: density function, mean, coefficients of variation. Additional uncertainity analysis modules are continuously being added to the Cassandra core.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robiinson, David G.
1999-02-20
This software assists the engineering designer in characterizing the statistical uncertainty in the performance of complex systems as a result of variations in manufacturing processes, material properties, system geometry or operating environment. The software is composed of a graphical user interface that provides the user with easy access to Cassandra uncertainty analysis routines. Together this interface and the Cassandra routines are referred to as CRAX (CassandRA eXoskeleton). The software is flexible enough, that with minor modification, it is able to interface with large modeling and analysis codes such as heat transfer or finite element analysis software. The current version permitsmore » the user to manually input a performance function, the number of random variables and their associated statistical characteristics: density function, mean, coefficients of variation. Additional uncertainity analysis modules are continuously being added to the Cassandra core.« less
NASA Technical Reports Server (NTRS)
Wickens, C.; Gill, R.; Kramer, A.; Ross, W.; Donchin, E.
1981-01-01
Three experiments are described in which tracking difficulty is varied in the presence of a covert tone discrimination task. Event related brain potentials (ERPs) elicited by the tones are employed as an index of the resource demands of tracking. The ERP measure reflected the control order variation, and this variable was thereby assumed to compete for perceptual/central processing resources. A fine-grained analysis of the results suggested that the primary demands of second order tracking involve the central processing operations of maintaining a more complex internal model of the dynamic system, rather than the perceptual demands of higher derivative perception. Experiment 3 varied tracking bandwidth in random input tracking, and the ERP was unaffected. Bandwidth was then inferred to compete for response-related processing resources that are independent of the ERP.
Probabilistic Structural Analysis Methods (PSAM) for Select Space Propulsion System Components
NASA Technical Reports Server (NTRS)
1999-01-01
Probabilistic Structural Analysis Methods (PSAM) are described for the probabilistic structural analysis of engine components for current and future space propulsion systems. Components for these systems are subjected to stochastic thermomechanical launch loads. Uncertainties or randomness also occurs in material properties, structural geometry, and boundary conditions. Material property stochasticity, such as in modulus of elasticity or yield strength, exists in every structure and is a consequence of variations in material composition and manufacturing processes. Procedures are outlined for computing the probabilistic structural response or reliability of the structural components. The response variables include static or dynamic deflections, strains, and stresses at one or several locations, natural frequencies, fatigue or creep life, etc. Sample cases illustrates how the PSAM methods and codes simulate input uncertainties and compute probabilistic response or reliability using a finite element model with probabilistic methods.
Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant
Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa
2013-09-17
System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.
Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA
Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.
2018-01-01
Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3−) input functions by characterizing unsaturated zone NO3− transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous “vertical flux method” (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3− source concentration factor (which determines the local NO3− input concentration); unsaturated zone travel time; NO3− concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3− “extinction depth”, the eventual steady state depth of the NO3−front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 – 0.86 and 0.22 – 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing performance was reasonable, considering that we limited the metamodel predictor variables to mappable factors as opposed to using all available VFM input variables. Relationships between metamodel predictor variables and mapped outputs were generally consistent with expectations, e.g. with greater source concentrations and NO3− at the groundwater table in areas of intensive crop use and well drained soils. Shorter unsaturated zone travel times in poorly drained areas likely indicated preferential flow through clay soils, and a tendency for fine grained deposits to collocate with areas of shallower water table. Numerical estimates of groundwater recharge were important in the metamodels and may have been a proxy for N input and redox conditions in the northern FWP, which had shallow predicted NO3− extinction depth. The metamodel results provide proof-of-concept for regional characterization of unsaturated zone NO3− transport processes in a statistical framework based on readily mappable GIS input variables.
Fichez, R; Chifflet, S; Douillet, P; Gérard, P; Gutierrez, F; Jouon, A; Ouillon, S; Grenz, C
2010-01-01
Considering the growing concern about the impact of anthropogenic inputs on coral reefs and coral reef lagoons, surprisingly little attention has been given to the relationship between those inputs and the trophic status of lagoon waters. The present paper describes the distribution of biogeochemical parameters in the coral reef lagoon of New Caledonia where environmental conditions allegedly range from pristine oligotrophic to anthropogenically influenced. The study objectives were to: (i) identify terrigeneous and anthropogenic inputs and propose a typology of lagoon waters, (ii) determine temporal variability of water biogeochemical parameters at time-scales ranging from hours to seasons. Combined ACP-cluster analyses revealed that over the 2000 km(2) lagoon area around the city of Nouméa, "natural" terrigeneous versus oceanic influences affecting all stations only accounted for less than 20% of the spatial variability whereas 60% of that spatial variability could be attributed to significant eutrophication of a limited number of inshore stations. ACP analysis allowed to unambiguously discriminating between the natural trophic enrichment along the offshore-inshore gradient and anthropogenically induced eutrophication. High temporal variability in dissolved inorganic nutrients concentrations strongly hindered their use as indicators of environmental status. Due to longer turn over time, particulate organic material and more specifically chlorophyll a appeared as more reliable nonconservative tracer of trophic status. Results further provided evidence that ENSO occurrences might temporarily lower the trophic status of the New Caledonia lagoon. It is concluded that, due to such high frequency temporal variability, the use of biogeochemical parameters in environmental surveys require adapted sampling strategies, data management and environmental alert methods. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Boyce, Lola; Lovelace, Thomas B.
1989-01-01
FORTRAN program RANDOM2 is presented in the form of a user's manual. RANDOM2 is based on fracture mechanics using a probabilistic fatigue crack growth model. It predicts the random lifetime of an engine component to reach a given crack size. Details of the theoretical background, input data instructions, and a sample problem illustrating the use of the program are included.
Time reversibility of intracranial human EEG recordings in mesial temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
van der Heyden, M. J.; Diks, C.; Pijn, J. P. M.; Velis, D. N.
1996-02-01
Intracranial electroencephalograms from patients suffering from mesial temporal lobe epilepsy were tested for time reversibility. If the recorded time series is irreversible, the input of the recording system cannot be a realisation of a linear Gaussian random process. We confirmed experimentally that the measurement equipment did not introduce irreversibility in the recorded output when the input was a realisation of a linear Gaussian random process. In general, the non-seizure recordings are reversible, whereas the seizure recordings are irreversible. These results suggest that time reversibility is a useful property for the characterisation of human intracranial EEG recordings in mesial temporal lobe epilepsy.
Dotov, D G; Bayard, S; Cochen de Cock, V; Geny, C; Driss, V; Garrigue, G; Bardy, B; Dalla Bella, S
2017-01-01
Rhythmic auditory cueing improves certain gait symptoms of Parkinson's disease (PD). Cues are typically stimuli or beats with a fixed inter-beat interval. We show that isochronous cueing has an unwanted side-effect in that it exacerbates one of the motor symptoms characteristic of advanced PD. Whereas the parameters of the stride cycle of healthy walkers and early patients possess a persistent correlation in time, or long-range correlation (LRC), isochronous cueing renders stride-to-stride variability random. Random stride cycle variability is also associated with reduced gait stability and lack of flexibility. To investigate how to prevent patients from acquiring a random stride cycle pattern, we tested rhythmic cueing which mimics the properties of variability found in healthy gait (biological variability). PD patients (n=19) and age-matched healthy participants (n=19) walked with three rhythmic cueing stimuli: isochronous, with random variability, and with biological variability (LRC). Synchronization was not instructed. The persistent correlation in gait was preserved only with stimuli with biological variability, equally for patients and controls (p's<0.05). In contrast, cueing with isochronous or randomly varying inter-stimulus/beat intervals removed the LRC in the stride cycle. Notably, the individual's tendency to synchronize steps with beats determined the amount of negative effects of isochronous and random cues (p's<0.05) but not the positive effect of biological variability. Stimulus variability and patients' propensity to synchronize play a critical role in fostering healthier gait dynamics during cueing. The beneficial effects of biological variability provide useful guidelines for improving existing cueing treatments. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shauly, Eitan N.; Levi, Shimon; Schwarzband, Ishai; Adan, Ofer; Latinsky, Sergey
2015-04-01
A fully automated silicon-based methodology for systematic analysis of electrical features is shown. The system was developed for process monitoring and electrical variability reduction. A mapping step was created by dedicated structures such as static-random-access-memory (SRAM) array or standard cell library, or by using a simple design rule checking run-set. The resulting database was then used as an input for choosing locations for critical dimension scanning electron microscope images and for specific layout parameter extraction then was input to SPICE compact modeling simulation. Based on the experimental data, we identified two items that must be checked and monitored using the method described here: transistor's sensitivity to the distance between the poly end cap and edge of active area (AA) due to AA rounding, and SRAM leakage due to a too close N-well to P-well. Based on this example, for process monitoring and variability analyses, we extensively used this method to analyze transistor gates having different shapes. In addition, analysis for a large area of high density standard cell library was done. Another set of monitoring focused on a high density SRAM array is also presented. These examples provided information on the poly and AA layers, using transistor parameters such as leakage current and drive current. We successfully define "robust" and "less-robust" transistor configurations included in the library and identified unsymmetrical transistors in the SRAM bit-cells. These data were compared to data extracted from the same devices at the end of the line. Another set of analyses was done to samples after Cu M1 etch. Process monitoring information on M1 enclosed contact was extracted based on contact resistance as a feedback. Guidelines for the optimal M1 space for different layout configurations were also extracted. All these data showed the successful in-field implementation of our methodology as a useful process monitoring method.
Binary full adder, made of fusion gates, in a subexcitable Belousov-Zhabotinsky system
NASA Astrophysics Data System (ADS)
Adamatzky, Andrew
2015-09-01
In an excitable thin-layer Belousov-Zhabotinsky (BZ) medium a localized perturbation leads to the formation of omnidirectional target or spiral waves of excitation. A subexcitable BZ medium responds to asymmetric local perturbation by producing traveling localized excitation wave-fragments, distant relatives of dissipative solitons. The size and life span of an excitation wave-fragment depend on the illumination level of the medium. Under the right conditions the wave-fragments conserve their shape and velocity vectors for extended time periods. I interpret the wave-fragments as values of Boolean variables. When two or more wave-fragments collide they annihilate or merge into a new wave-fragment. States of the logic variables, represented by the wave-fragments, are changed in the result of the collision between the wave-fragments. Thus, a logical gate is implemented. Several theoretical designs and experimental laboratory implementations of Boolean logic gates have been proposed in the past but little has been done cascading the gates into binary arithmetical circuits. I propose a unique design of a binary one-bit full adder based on a fusion gate. A fusion gate is a two-input three-output logical device which calculates the conjunction of the input variables and the conjunction of one input variable with the negation of another input variable. The gate is made of three channels: two channels cross each other at an angle, a third channel starts at the junction. The channels contain a BZ medium. When two excitation wave-fragments, traveling towards each other along input channels, collide at the junction they merge into a single wave-front traveling along the third channel. If there is just one wave-front in the input channel, the front continues its propagation undisturbed. I make a one-bit full adder by cascading two fusion gates. I show how to cascade the adder blocks into a many-bit full adder. I evaluate the feasibility of my designs by simulating the evolution of excitation in the gates and adders using the numerical integration of Oregonator equations.
Yasui, S; Young, L R
1984-01-01
Smooth pursuit and saccadic components of foveal visual tracking as well as more involuntary ocular movements of optokinetic (o.k.n.) and vestibular nystagmus slow phase components were investigated in man, with particular attention given to their possible input-adaptive or predictive behaviour. Each component in question was isolated from the eye movement records through a computer-aided procedure. The frequency response method was used with sinusoidal (predictable) and pseudo-random (unpredictable) stimuli. When the target motion was pseudo-random, the frequency response of pursuit eye movements revealed a large phase lead (up to about 90 degrees) at low stimulus frequencies. It is possible to interpret this result as a predictive effect, even though the stimulation was pseudo-random and thus 'unpredictable'. The pseudo-random-input frequency response intrinsic to the saccadic system was estimated in an indirect way from the pursuit and composite (pursuit + saccade) frequency response data. The result was fitted well by a servo-mechanism model, which has a simple anticipatory mechanism to compensate for the inherent neuromuscular saccadic delay by utilizing the retinal slip velocity signal. The o.k.n. slow phase also exhibited a predictive effect with sinusoidal inputs; however, pseudo-random stimuli did not produce such phase lead as found in the pursuit case. The vestibular nystagmus slow phase showed no noticeable sign of prediction in the frequency range examined (0 approximately 0.7 Hz), in contrast to the results of the visually driven eye movements (i.e. saccade, pursuit and o.k.n. slow phase) at comparable stimulus frequencies. PMID:6707954
An instrumental variable random-coefficients model for binary outcomes
Chesher, Andrew; Rosen, Adam M
2014-01-01
In this paper, we study a random-coefficients model for a binary outcome. We allow for the possibility that some or even all of the explanatory variables are arbitrarily correlated with the random coefficients, thus permitting endogeneity. We assume the existence of observed instrumental variables Z that are jointly independent with the random coefficients, although we place no structure on the joint determination of the endogenous variable X and instruments Z, as would be required for a control function approach. The model fits within the spectrum of generalized instrumental variable models, and we thus apply identification results from our previous studies of such models to the present context, demonstrating their use. Specifically, we characterize the identified set for the distribution of random coefficients in the binary response model with endogeneity via a collection of conditional moment inequalities, and we investigate the structure of these sets by way of numerical illustration. PMID:25798048
Polynomial chaos expansion with random and fuzzy variables
NASA Astrophysics Data System (ADS)
Jacquelin, E.; Friswell, M. I.; Adhikari, S.; Dessombz, O.; Sinou, J.-J.
2016-06-01
A dynamical uncertain system is studied in this paper. Two kinds of uncertainties are addressed, where the uncertain parameters are described through random variables and/or fuzzy variables. A general framework is proposed to deal with both kinds of uncertainty using a polynomial chaos expansion (PCE). It is shown that fuzzy variables may be expanded in terms of polynomial chaos when Legendre polynomials are used. The components of the PCE are a solution of an equation that does not depend on the nature of uncertainty. Once this equation is solved, the post-processing of the data gives the moments of the random response when the uncertainties are random or gives the response interval when the variables are fuzzy. With the PCE approach, it is also possible to deal with mixed uncertainty, when some parameters are random and others are fuzzy. The results provide a fuzzy description of the response statistical moments.
ShipMo3D Version 1.0 User Manual for Frequency Domain Analysis of Ship Seakeeping in a Seaway
2007-11-01
Atlantic TM 2007-171 ; R & D pour la défense Canada – Atlantique ; novembre 2007. Introduction : ShipMo3D est une bibliothèque orientée objet dotée...12 9 Inputs for Rudder Autopilot . . . . . . . . . . . . . . . . . . . . . . . . . . 13 10 Inputs for Ship Motion Predictions in...DRDC Atlantic TM 2007-171 13 10 Inputs for Ship Motion Predictions in Random Seas This section gives background information that is useful when running
Kanerva's sparse distributed memory with multiple hamming thresholds
NASA Technical Reports Server (NTRS)
Pohja, Seppo; Kaski, Kimmo
1992-01-01
If the stored input patterns of Kanerva's Sparse Distributed Memory (SDM) are highly correlated, utilization of the storage capacity is very low compared to the case of uniformly distributed random input patterns. We consider a variation of SDM that has a better storage capacity utilization for correlated input patterns. This approach uses a separate selection threshold for each physical storage address or hard location. The selection of the hard locations for reading or writing can be done in parallel of which SDM implementations can benefit.
UWB delay and multiply receiver
Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.
2013-09-10
An ultra-wideband (UWB) delay and multiply receiver is formed of a receive antenna; a variable gain attenuator connected to the receive antenna; a signal splitter connected to the variable gain attenuator; a multiplier having one input connected to an undelayed signal from the signal splitter and another input connected to a delayed signal from the signal splitter, the delay between the splitter signals being equal to the spacing between pulses from a transmitter whose pulses are being received by the receive antenna; a peak detection circuit connected to the output of the multiplier and connected to the variable gain attenuator to control the variable gain attenuator to maintain a constant amplitude output from the multiplier; and a digital output circuit connected to the output of the multiplier.
Computer simulation of random variables and vectors with arbitrary probability distribution laws
NASA Technical Reports Server (NTRS)
Bogdan, V. M.
1981-01-01
Assume that there is given an arbitrary n-dimensional probability distribution F. A recursive construction is found for a sequence of functions x sub 1 = f sub 1 (U sub 1, ..., U sub n), ..., x sub n = f sub n (U sub 1, ..., U sub n) such that if U sub 1, ..., U sub n are independent random variables having uniform distribution over the open interval (0,1), then the joint distribution of the variables x sub 1, ..., x sub n coincides with the distribution F. Since uniform independent random variables can be well simulated by means of a computer, this result allows one to simulate arbitrary n-random variables if their joint probability distribution is known.
NASA Astrophysics Data System (ADS)
Tang, Kunkun; Congedo, Pietro M.; Abgrall, Rémi
2016-06-01
The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.
ERIC Educational Resources Information Center
Felce, David; Perry, Jonathan
2004-01-01
Background: The aims were to: (i) explore the association between age and size of setting and staffing per resident; and (ii) report resident and setting characteristics, and indicators of service process and resident activity for a national random sample of staffed housing provision. Methods: Sixty settings were selected randomly from those…
Alpha1 LASSO data bundles Lamont, OK
Gustafson, William Jr; Vogelmann, Andrew; Endo, Satoshi; Toto, Tami; Xiao, Heng; Li, Zhijin; Cheng, Xiaoping; Krishna, Bhargavi (ORCID:000000018828528X)
2016-08-03
A data bundle is a unified package consisting of LASSO LES input and output, observations, evaluation diagnostics, and model skill scores. LES input includes model configuration information and forcing data. LES output includes profile statistics and full domain fields of cloud and environmental variables. Model evaluation data consists of LES output and ARM observations co-registered on the same grid and sampling frequency. Model performance is quantified by skill scores and diagnostics in terms of cloud and environmental variables.
A Multivariate Analysis of the Early Dropout Process
ERIC Educational Resources Information Center
Fiester, Alan R.; Rudestam, Kjell E.
1975-01-01
Principal-component factor analyses were performed on patient input (demographic and pretherapy expectations), therapist input (demographic), and patient perspective therapy process variables that significantly differentiated early dropout from nondropout outpatients at two community mental health centers. (Author)
Variable ratio regenerative braking device
Hoppie, Lyle O.
1981-12-15
Disclosed is a regenerative braking device (10) for an automotive vehicle. The device includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (36) and an output shaft (42), clutches (38, 46) and brakes (40, 48) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. The rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft is clutched to the transmission while the brake on the output shaft is applied, and are torsionally relaxed to deliver energy to the vehicle when the output shaft is clutched to the transmission while the brake on the input shaft is applied. The transmission ratio is varied to control the rate of energy accumulation and delivery for a given rotational speed of the vehicle drivetrain.
NASA Technical Reports Server (NTRS)
Chen, B. M.; Saber, A.
1993-01-01
A simple and noniterative procedure for the computation of the exact value of the infimum in the singular H(infinity)-optimization problem is presented, as a continuation of our earlier work. Our problem formulation is general and we do not place any restrictions in the finite and infinite zero structures of the system, and the direct feedthrough terms between the control input and the controlled output variables and between the disturbance input and the measurement output variables. Our method is applicable to a class of singular H(infinity)-optimization problems for which the transfer functions from the control input to the controlled output and from the disturbance input to the measurement output satisfy certain geometric conditions. In particular, the paper extends the result of earlier work by allowing these two transfer functions to have invariant zeros on the j(omega) axis.
NASA Astrophysics Data System (ADS)
Yadav, D.; Upadhyay, H. C.
1992-07-01
Vehicles obtain track-induced input through the wheels, which commonly number more than one. Analysis available for the vehicle response in a variable velocity run on a non-homogeneously profiled flexible track supported by compliant inertial foundation is for a linear heave model having a single ground input. This analysis is being extended to two point input models with heave-pitch and heave-roll degrees of freedom. Closed form expressions have been developed for the system response statistics. Results are presented for a railway coach and track/foundation problem, and the performances of heave, heave-pitch and heave-roll models have been compared. The three models are found to agree in describing the track response. However, the vehicle sprung mass behaviour is predicted to be different by these models, indicating the strong effect of coupling on the vehicle vibration.
2015-01-07
vector that helps to manage , predict, and mitigate the risk in the original variable. Residual risk can be exemplified as a quantification of the improved... the random variable of interest is viewed in concert with a related random vector that helps to manage , predict, and mitigate the risk in the original...measures of risk. They view a random variable of interest in concert with an auxiliary random vector that helps to manage , predict and mitigate the risk
Raw and Central Moments of Binomial Random Variables via Stirling Numbers
ERIC Educational Resources Information Center
Griffiths, Martin
2013-01-01
We consider here the problem of calculating the moments of binomial random variables. It is shown how formulae for both the raw and the central moments of such random variables may be obtained in a recursive manner utilizing Stirling numbers of the first kind. Suggestions are also provided as to how students might be encouraged to explore this…
Electrical Advantages of Dendritic Spines
Gulledge, Allan T.; Carnevale, Nicholas T.; Stuart, Greg J.
2012-01-01
Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs) at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations. PMID:22532875
Nonlinear Dynamic Models in Advanced Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry
2002-01-01
To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.
Predicting language outcomes for children learning AAC: Child and environmental factors
Brady, Nancy C.; Thiemann-Bourque, Kathy; Fleming, Kandace; Matthews, Kris
2014-01-01
Purpose To investigate a model of language development for nonverbal preschool age children learning to communicate with AAC. Method Ninety-three preschool children with intellectual disabilities were assessed at Time 1, and 82 of these children were assessed one year later at Time 2. The outcome variable was the number of different words the children produced (with speech, sign or SGD). Children’s intrinsic predictor for language was modeled as a latent variable consisting of cognitive development, comprehension, play, and nonverbal communication complexity. Adult input at school and home, and amount of AAC instruction were proposed mediators of vocabulary acquisition. Results A confirmatory factor analysis revealed that measures converged as a coherent construct and an SEM model indicated that the intrinsic child predictor construct predicted different words children produced. The amount of input received at home but not at school was a significant mediator. Conclusions Our hypothesized model accurately reflected a latent construct of Intrinsic Symbolic Factor (ISF). Children who evidenced higher initial levels of ISF and more adult input at home produced more words one year later. Findings support the need to assess multiple child variables, and suggest interventions directed to the indicators of ISF and input. PMID:23785187
The Effects of Practice Modality on Pragmatic Development in L2 Chinese
ERIC Educational Resources Information Center
Li, Shuai; Taguchi, Naoko
2014-01-01
This study investigated the effects of input-based and output-based practice on the development of accuracy and speed in recognizing and producing request-making forms in L2 Chinese. Fifty American learners of Chinese with intermediate level proficiency were randomly assigned to an input-based training group, an output-based training group, or a…
Statistical linearization for multi-input/multi-output nonlinearities
NASA Technical Reports Server (NTRS)
Lin, Ching-An; Cheng, Victor H. L.
1991-01-01
Formulas are derived for the computation of the random input-describing functions for MIMO nonlinearities; these straightforward and rigorous derivations are based on the optimal mean square linear approximation. The computations involve evaluations of multiple integrals. It is shown that, for certain classes of nonlinearities, multiple-integral evaluations are obviated and the computations are significantly simplified.
Zuhtuogullari, Kursat; Allahverdi, Novruz; Arikan, Nihat
2013-01-01
The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes) with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data.
Zuhtuogullari, Kursat; Allahverdi, Novruz; Arikan, Nihat
2013-01-01
The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes) with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data. PMID:23573172
To twist, roll, stroke or poke? A study of input devices for menu navigation in the cockpit.
Stanton, Neville A; Harvey, Catherine; Plant, Katherine L; Bolton, Luke
2013-01-01
Modern interfaces within the aircraft cockpit integrate many flight management system (FMS) functions into a single system. The success of a user's interaction with an interface depends upon the optimisation between the input device, tasks and environment within which the system is used. In this study, four input devices were evaluated using a range of Human Factors methods, in order to assess aspects of usability including task interaction times, error rates, workload, subjective usability and physical discomfort. The performance of the four input devices was compared using a holistic approach and the findings showed that no single input device produced consistently high performance scores across all of the variables evaluated. The touch screen produced the highest number of 'best' scores; however, discomfort ratings for this device were high, suggesting that it is not an ideal solution as both physical and cognitive aspects of performance must be accounted for in design. This study evaluated four input devices for control of a screen-based flight management system. A holistic approach was used to evaluate both cognitive and physical performance. Performance varied across the dependent variables and between the devices; however, the touch screen produced the largest number of 'best' scores.
Interacting with notebook input devices: an analysis of motor performance and users' expertise.
Sutter, Christine; Ziefle, Martina
2005-01-01
In the present study the usability of two different types of notebook input devices was examined. The independent variables were input device (touchpad vs. mini-joystick) and user expertise (expert vs. novice state). There were 30 participants, of whom 15 were touchpad experts and the other 15 were mini-joystick experts. The experimental tasks were a point-click task (Experiment 1) and a point-drag-drop task (Experiment 2). Dependent variables were the time and accuracy of cursor control. To assess carryover effects, we had the participants complete both experiments, using not only the input device for which they were experts but also the device for which they were novices. Results showed the touchpad performance to be clearly superior to mini-joystick performance. Overall, experts showed better performance than did novices. The significant interaction of input device and expertise showed that the use of an unknown device is difficult, but only for touchpad experts, who were remarkably slower and less accurate when using a mini-joystick. Actual and potential applications of this research include an evaluation of current notebook input devices. The outcomes allow ergonomic guidelines to be derived for optimized usage and design of the mini-joystick and touchpad devices.
Stochastic Models for Laser Propagation in Atmospheric Turbulence.
NASA Astrophysics Data System (ADS)
Leland, Robert Patton
In this dissertation, stochastic models for laser propagation in atmospheric turbulence are considered. A review of the existing literature on laser propagation in the atmosphere and white noise theory is presented, with a view toward relating the white noise integral and Ito integral approaches. The laser beam intensity is considered as the solution to a random Schroedinger equation, or forward scattering equation. This model is formulated in a Hilbert space context as an abstract bilinear system with a multiplicative white noise input, as in the literature. The model is also modeled in the Banach space of Fresnel class functions to allow the plane wave case and the application of path integrals. Approximate solutions to the Schroedinger equation of the Trotter-Kato product form are shown to converge for each white noise sample path. The product forms are shown to be physical random variables, allowing an Ito integral representation. The corresponding Ito integrals are shown to converge in mean square, providing a white noise basis for the Stratonovich correction term associated with this equation. Product form solutions for Ornstein -Uhlenbeck process inputs were shown to converge in mean square as the input bandwidth was expanded. A digital simulation of laser propagation in strong turbulence was used to study properties of the beam. Empirical distributions for the irradiance function were estimated from simulated data, and the log-normal and Rice-Nakagami distributions predicted by the classical perturbation methods were seen to be inadequate. A gamma distribution fit the simulated irradiance distribution well in the vicinity of the boresight. Statistics of the beam were seen to converge rapidly as the bandwidth of an Ornstein-Uhlenbeck process was expanded to its white noise limit. Individual trajectories of the beam were presented to illustrate the distortion and bending of the beam due to turbulence. Feynman path integrals were used to calculate an approximate expression for the mean of the beam intensity without using the Markov, or white noise, assumption, and to relate local variations in the turbulence field to the behavior of the beam by means of two approximations.
A Random Variable Related to the Inversion Vector of a Partial Random Permutation
ERIC Educational Resources Information Center
Laghate, Kavita; Deshpande, M. N.
2005-01-01
In this article, we define the inversion vector of a permutation of the integers 1, 2,..., n. We set up a particular kind of permutation, called a partial random permutation. The sum of the elements of the inversion vector of such a permutation is a random variable of interest.
Routing in Networks with Random Topologies
NASA Technical Reports Server (NTRS)
Bambos, Nicholas
1997-01-01
We examine the problems of routing and server assignment in networks with random connectivities. In such a network the basic topology is fixed, but during each time slot and for each of tis input queues, each server (node) is either connected to or disconnected from each of its queues with some probability.
USDA-ARS?s Scientific Manuscript database
Palmer amaranth (Amaranthus palmeri S. Wats.) invasion negatively impacts cotton (Gossypium hirsutum L.) production systems throughout the United States. The objective of this study was to evaluate canopy hyperspectral narrowband data as input into the random forest machine learning algorithm to dis...
NASA Astrophysics Data System (ADS)
Taverniers, Søren; Tartakovsky, Daniel M.
2017-11-01
Predictions of the total energy deposited into a brain tumor through X-ray irradiation are notoriously error-prone. We investigate how this predictive uncertainty is affected by uncertainty in both the location of the region occupied by a dose-enhancing iodinated contrast agent and the agent's concentration. This is done within the probabilistic framework in which these uncertain parameters are modeled as random variables. We employ the stochastic collocation (SC) method to estimate statistical moments of the deposited energy in terms of statistical moments of the random inputs, and the global sensitivity analysis (GSA) to quantify the relative importance of uncertainty in these parameters on the overall predictive uncertainty. A nonlinear radiation-diffusion equation dramatically magnifies the coefficient of variation of the uncertain parameters, yielding a large coefficient of variation for the predicted energy deposition. This demonstrates that accurate prediction of the energy deposition requires a proper treatment of even small parametric uncertainty. Our analysis also reveals that SC outperforms standard Monte Carlo, but its relative efficiency decreases as the number of uncertain parameters increases from one to three. A robust GSA ameliorates this problem by reducing this number.
PCEMCAN - Probabilistic Ceramic Matrix Composites Analyzer: User's Guide, Version 1.0
NASA Technical Reports Server (NTRS)
Shah, Ashwin R.; Mital, Subodh K.; Murthy, Pappu L. N.
1998-01-01
PCEMCAN (Probabalistic CEramic Matrix Composites ANalyzer) is an integrated computer code developed at NASA Lewis Research Center that simulates uncertainties associated with the constituent properties, manufacturing process, and geometric parameters of fiber reinforced ceramic matrix composites and quantifies their random thermomechanical behavior. The PCEMCAN code can perform the deterministic as well as probabilistic analyses to predict thermomechanical properties. This User's guide details the step-by-step procedure to create input file and update/modify the material properties database required to run PCEMCAN computer code. An overview of the geometric conventions, micromechanical unit cell, nonlinear constitutive relationship and probabilistic simulation methodology is also provided in the manual. Fast probability integration as well as Monte-Carlo simulation methods are available for the uncertainty simulation. Various options available in the code to simulate probabilistic material properties and quantify sensitivity of the primitive random variables have been described. The description of deterministic as well as probabilistic results have been described using demonstration problems. For detailed theoretical description of deterministic and probabilistic analyses, the user is referred to the companion documents "Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composite Behavior," NASA TP-3602, 1996 and "Probabilistic Micromechanics and Macromechanics for Ceramic Matrix Composites", NASA TM 4766, June 1997.
NASA Astrophysics Data System (ADS)
Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban
2017-01-01
Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is required in order to get results that could be directly applied in practice.
A Geometrical Framework for Covariance Matrices of Continuous and Categorical Variables
ERIC Educational Resources Information Center
Vernizzi, Graziano; Nakai, Miki
2015-01-01
It is well known that a categorical random variable can be represented geometrically by a simplex. Accordingly, several measures of association between categorical variables have been proposed and discussed in the literature. Moreover, the standard definitions of covariance and correlation coefficient for continuous random variables have been…
Robust image retrieval from noisy inputs using lattice associative memories
NASA Astrophysics Data System (ADS)
Urcid, Gonzalo; Nieves-V., José Angel; García-A., Anmi; Valdiviezo-N., Juan Carlos
2009-02-01
Lattice associative memories also known as morphological associative memories are fully connected feedforward neural networks with no hidden layers, whose computation at each node is carried out with lattice algebra operations. These networks are a relatively recent development in the field of associative memories that has proven to be an alternative way to work with sets of pattern pairs for which the storage and retrieval stages use minimax algebra. Different associative memory models have been proposed to cope with the problem of pattern recall under input degradations, such as occlusions or random noise, where input patterns can be composed of binary or real valued entries. In comparison to these and other artificial neural network memories, lattice algebra based memories display better performance for storage and recall capability; however, the computational techniques devised to achieve that purpose require additional processing or provide partial success when inputs are presented with undetermined noise levels. Robust retrieval capability of an associative memory model is usually expressed by a high percentage of perfect recalls from non-perfect input. The procedure described here uses noise masking defined by simple lattice operations together with appropriate metrics, such as the normalized mean squared error or signal to noise ratio, to boost the recall performance of either the min or max lattice auto-associative memories. Using a single lattice associative memory, illustrative examples are given that demonstrate the enhanced retrieval of correct gray-scale image associations from inputs corrupted with random noise.
Using a Bayesian network to predict barrier island geomorphologic characteristics
Gutierrez, Ben; Plant, Nathaniel G.; Thieler, E. Robert; Turecek, Aaron
2015-01-01
Quantifying geomorphic variability of coastal environments is important for understanding and describing the vulnerability of coastal topography, infrastructure, and ecosystems to future storms and sea level rise. Here we use a Bayesian network (BN) to test the importance of multiple interactions between barrier island geomorphic variables. This approach models complex interactions and handles uncertainty, which is intrinsic to future sea level rise, storminess, or anthropogenic processes (e.g., beach nourishment and other forms of coastal management). The BN was developed and tested at Assateague Island, Maryland/Virginia, USA, a barrier island with sufficient geomorphic and temporal variability to evaluate our approach. We tested the ability to predict dune height, beach width, and beach height variables using inputs that included longer-term, larger-scale, or external variables (historical shoreline change rates, distances to inlets, barrier width, mean barrier elevation, and anthropogenic modification). Data sets from three different years spanning nearly a decade sampled substantial temporal variability and serve as a proxy for analysis of future conditions. We show that distinct geomorphic conditions are associated with different long-term shoreline change rates and that the most skillful predictions of dune height, beach width, and beach height depend on including multiple input variables simultaneously. The predictive relationships are robust to variations in the amount of input data and to variations in model complexity. The resulting model can be used to evaluate scenarios related to coastal management plans and/or future scenarios where shoreline change rates may differ from those observed historically.
Symbolic PathFinder: Symbolic Execution of Java Bytecode
NASA Technical Reports Server (NTRS)
Pasareanu, Corina S.; Rungta, Neha
2010-01-01
Symbolic Pathfinder (SPF) combines symbolic execution with model checking and constraint solving for automated test case generation and error detection in Java programs with unspecified inputs. In this tool, programs are executed on symbolic inputs representing multiple concrete inputs. Values of variables are represented as constraints generated from the analysis of Java bytecode. The constraints are solved using off-the shelf solvers to generate test inputs guaranteed to achieve complex coverage criteria. SPF has been used successfully at NASA, in academia, and in industry.
Role of Updraft Velocity in Temporal Variability of Global Cloud Hydrometeor Number
NASA Technical Reports Server (NTRS)
Sullivan, Sylvia C.; Lee, Dong Min; Oreopoulos, Lazaros; Nenes, Athanasios
2016-01-01
Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.
Role of updraft velocity in temporal variability of global cloud hydrometeor number
Sullivan, Sylvia C.; Lee, Dongmin; Oreopoulos, Lazaros; ...
2016-05-16
Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Communitymore » Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Finally, coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.« less
Role of updraft velocity in temporal variability of global cloud hydrometeor number
NASA Astrophysics Data System (ADS)
Sullivan, Sylvia C.; Lee, Dongmin; Oreopoulos, Lazaros; Nenes, Athanasios
2016-05-01
Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.
ERIC Educational Resources Information Center
Frees, Edward W.; Kim, Jee-Seon
2006-01-01
Multilevel models are proven tools in social research for modeling complex, hierarchical systems. In multilevel modeling, statistical inference is based largely on quantification of random variables. This paper distinguishes among three types of random variables in multilevel modeling--model disturbances, random coefficients, and future response…
Chakraborty, Bibhas; Davidson, Karina W.
2015-01-01
Summary Implementation study is an important tool for deploying state-of-the-art treatments from clinical efficacy studies into a treatment program, with the dual goals of learning about effectiveness of the treatments and improving the quality of care for patients enrolled into the program. In this article, we deal with the design of a treatment program of dynamic treatment regimens (DTRs) for patients with depression post acute coronary syndrome. We introduce a novel adaptive randomization scheme for a sequential multiple assignment randomized trial of DTRs. Our approach adapts the randomization probabilities to favor treatment sequences having comparatively superior Q-functions used in Q-learning. The proposed approach addresses three main concerns of an implementation study: it allows incorporation of historical data or opinions, it includes randomization for learning purposes, and it aims to improve care via adaptation throughout the program. We demonstrate how to apply our method to design a depression treatment program using data from a previous study. By simulation, we illustrate that the inputs from historical data are important for the program performance measured by the expected outcomes of the enrollees, but also show that the adaptive randomization scheme is able to compensate poorly specified historical inputs by improving patient outcomes within a reasonable horizon. The simulation results also confirm that the proposed design allows efficient learning of the treatments by alleviating the curse of dimensionality. PMID:25354029
NASA Astrophysics Data System (ADS)
Sauer, Donald J.; Shallcross, Frank V.; Hseuh, Fu-Lung; Meray, Grazyna M.; Levine, Peter A.; Gilmartin, Harvey R.; Villani, Thomas S.; Esposito, Benjamin J.; Tower, John R.
1991-12-01
The design of a 1st and 2nd generation 640(H) X 480(V) element PtSi Schottky-barrier infrared image sensor employing a low-noise MOS X-Y addressable readout multiplexer and on-chip low-noise output amplifier is described. Measured performance characteristics for Gen 1 devices are presented along with calculated performance for the Gen 2 design. A multiplexed horizontal/vertical input address port and on-chip decoding is used to load scan data into CMOS horizontal and vertical scanning registers. This allows random access to any sub-frame in the 640 X 480 element focal plane array. By changing the digital pattern applied to the vertical scan register, the FPA can be operated in either an interlaced or non- interlaced format, and the integration time may be varied over a wide range (60 microsecond(s) to > 30 ms, for RS170 operation) resulting in a form of 'electronic shutter,' or variable exposure control. The pixel size of 24-micrometers X 24-micrometers results in a fill factor of 38% for 1.5-micrometers process design rules. The overall die size for the IR imager is 13.7 mm X 17.2 mm. All digital inputs to the chip are TTL compatible and include ESD protection.
An Efficient Deterministic Approach to Model-based Prediction Uncertainty Estimation
NASA Technical Reports Server (NTRS)
Daigle, Matthew J.; Saxena, Abhinav; Goebel, Kai
2012-01-01
Prognostics deals with the prediction of the end of life (EOL) of a system. EOL is a random variable, due to the presence of process noise and uncertainty in the future inputs to the system. Prognostics algorithm must account for this inherent uncertainty. In addition, these algorithms never know exactly the state of the system at the desired time of prediction, or the exact model describing the future evolution of the system, accumulating additional uncertainty into the predicted EOL. Prediction algorithms that do not account for these sources of uncertainty are misrepresenting the EOL and can lead to poor decisions based on their results. In this paper, we explore the impact of uncertainty in the prediction problem. We develop a general model-based prediction algorithm that incorporates these sources of uncertainty, and propose a novel approach to efficiently handle uncertainty in the future input trajectories of a system by using the unscented transformation. Using this approach, we are not only able to reduce the computational load but also estimate the bounds of uncertainty in a deterministic manner, which can be useful to consider during decision-making. Using a lithium-ion battery as a case study, we perform several simulation-based experiments to explore these issues, and validate the overall approach using experimental data from a battery testbed.
Soft sensor modeling based on variable partition ensemble method for nonlinear batch processes
NASA Astrophysics Data System (ADS)
Wang, Li; Chen, Xiangguang; Yang, Kai; Jin, Huaiping
2017-01-01
Batch processes are always characterized by nonlinear and system uncertain properties, therefore, the conventional single model may be ill-suited. A local learning strategy soft sensor based on variable partition ensemble method is developed for the quality prediction of nonlinear and non-Gaussian batch processes. A set of input variable sets are obtained by bootstrapping and PMI criterion. Then, multiple local GPR models are developed based on each local input variable set. When a new test data is coming, the posterior probability of each best performance local model is estimated based on Bayesian inference and used to combine these local GPR models to get the final prediction result. The proposed soft sensor is demonstrated by applying to an industrial fed-batch chlortetracycline fermentation process.
Using SMAP Data to Investigate the Role of Soil Moisture Variability on Realtime Flood Forecasting
NASA Astrophysics Data System (ADS)
Krajewski, W. F.; Jadidoleslam, N.; Mantilla, R.
2017-12-01
The Iowa Flood Center has developed a regional high-resolution flood-forecasting model for the state of Iowa that decomposes the landscape into hillslopes of about 0.1 km2. For the model to benefit, through data assimilation, from SMAP observations of soil moisture (SM) at scales of approximately 100 km2, we are testing a framework to connect SMAP-scale observations to the small-scale SM variability calculated by our rainfall-runoff models. As a step in this direction, we performed data analyses of 15-min point SM observations using a network of about 30 TDR instruments spread throughout the state. We developed a stochastic point-scale SM model that captures 1) SM increases due to rainfall inputs, and 2) SM decay during dry periods. We use a power law model to describe soil moisture decay during dry periods, and a single parameter logistic curve to describe precipitation feedback on soil moisture. We find that the parameters of the models behave as time-independent random variables with stationary distributions. Using data-based simulation, we explore differences in the dynamical range of variability of hillslope and SMAP-scale domains. The simulations allow us to predict the runoff field and streamflow hydrographs for the state of Iowa during the three largest flooding periods (2008, 2014, and 2016). We also use the results to determine the reduction in forecast uncertainty from assimilation of unbiased SMAP-scale soil moisture observations.
Kantún-Manzano, C A; Herrera-Silveira, J A; Arcega-Cabrera, F
2018-01-01
The influence of coastal submarine groundwater discharges (SGD) on the distribution and abundance of seagrass meadows was investigated. In 2012, hydrological variability, nutrient variability in sediments and the biotic characteristics of two seagrass beds, one with SGD present and one without, were studied. Findings showed that SGD inputs were related with one dominant seagrass species. To further understand this, a generalized additive model (GAM) was used to explore the relationship between seagrass biomass and environment conditions (water and sediment variables). Salinity range (21-35.5 PSU) was the most influential variable (85%), explaining why H. wrightii was the sole plant species present at the SGD site. At the site without SGD, GAM could not be performed since environmental variables could not explain a total variance of > 60%. This research shows the relevance of monitoring SGD inputs in coastal karstic areas since they significantly affect biotic characteristics of seagrass beds.
Zawbaa, Hossam M; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander
2016-01-01
Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven.
Recovery trajectories of vestibulopathic subjects after perturbations during locomotion
NASA Technical Reports Server (NTRS)
Wall, C. 3rd; Oddsson, L. I.; Patronik, N.; Sienko, K.; Kentala, E.
2002-01-01
We compared the mediolateral (M/L) responses to perturbations during locomotion of vestibulopathic (VP) subjects to those of controls. Eight subjects with unilateral vestibular loss (100% Reduced Vestibular Response from the caloric test) resulting from surgery for vestibular schwannoma and 11 controls were selected for this study. Despite their known vestibulopathy, all VP subjects scored within the normal range on computerized dynamic posturography Sensory Organization Tests. During gait, subjects were given surface perturbations of the right support-phase foot in two possible directions (forward-right and backward-left) at two possible magnitudes (5 and 10 cm) that were randomly mixed with trials having no perturbations. M/L stability was quantified by estimating the length of the M/L moment arm between the support foot and the trunk, and the M/L accelerations of the sternum and the head. The VP group had greater changes (p < 0.05) in their moment arm responses compared to controls. The number of steps that it took for the moment arm oscillations to return to normal and the variability in the moment arms were greater for the VP group. Differences in the sternum and head accelerations between VP and control groups were not as consistent, but there was a trend toward greater response deviations in the VP group for all 4 perturbation types. Increased response magnitude and variability of the VP group is consistent with an increase in their sensory noise of vestibular inputs due to the surgical lesion. Another possibility is a reduced sensitivity to motion inputs. This perturbation approach may prove useful for characterizing subtle vestibulopathies and similar changes in the human orientation mechanism after exposure to microgravity.
The application of a decision tree to establish the parameters associated with hypertension.
Tayefi, Maryam; Esmaeili, Habibollah; Saberi Karimian, Maryam; Amirabadi Zadeh, Alireza; Ebrahimi, Mahmoud; Safarian, Mohammad; Nematy, Mohsen; Parizadeh, Seyed Mohammad Reza; Ferns, Gordon A; Ghayour-Mobarhan, Majid
2017-02-01
Hypertension is an important risk factor for cardiovascular disease (CVD). The goal of this study was to establish the factors associated with hypertension by using a decision-tree algorithm as a supervised classification method of data mining. Data from a cross-sectional study were used in this study. A total of 9078 subjects who met the inclusion criteria were recruited. 70% of these subjects (6358 cases) were randomly allocated to the training dataset for the constructing of the decision-tree. The remaining 30% (2720 cases) were used as the testing dataset to evaluate the performance of decision-tree. Two models were evaluated in this study. In model I, age, gender, body mass index, marital status, level of education, occupation status, depression and anxiety status, physical activity level, smoking status, LDL, TG, TC, FBG, uric acid and hs-CRP were considered as input variables and in model II, age, gender, WBC, RBC, HGB, HCT MCV, MCH, PLT, RDW and PDW were considered as input variables. The validation of the model was assessed by constructing a receiver operating characteristic (ROC) curve. The prevalence rates of hypertension were 32% in our population. For the decision-tree model I, the accuracy, sensitivity, specificity and area under the ROC curve (AUC) value for identifying the related risk factors of hypertension were 73%, 63%, 77% and 0.72, respectively. The corresponding values for model II were 70%, 61%, 74% and 0.68, respectively. We have developed a decision tree model to identify the risk factors associated with hypertension that maybe used to develop programs for hypertension management. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zawbaa, Hossam M.; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander
2016-01-01
Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven. PMID:27315205
Multiple-input multiple-output causal strategies for gene selection.
Bontempi, Gianluca; Haibe-Kains, Benjamin; Desmedt, Christine; Sotiriou, Christos; Quackenbush, John
2011-11-25
Traditional strategies for selecting variables in high dimensional classification problems aim to find sets of maximally relevant variables able to explain the target variations. If these techniques may be effective in generalization accuracy they often do not reveal direct causes. The latter is essentially related to the fact that high correlation (or relevance) does not imply causation. In this study, we show how to efficiently incorporate causal information into gene selection by moving from a single-input single-output to a multiple-input multiple-output setting. We show in synthetic case study that a better prioritization of causal variables can be obtained by considering a relevance score which incorporates a causal term. In addition we show, in a meta-analysis study of six publicly available breast cancer microarray datasets, that the improvement occurs also in terms of accuracy. The biological interpretation of the results confirms the potential of a causal approach to gene selection. Integrating causal information into gene selection algorithms is effective both in terms of prediction accuracy and biological interpretation.
Hammerstrom, Donald J.
2013-10-15
A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger is connected to a power supply. A plurality of controllers in communication with one and another are provided, each of the controllers monitoring a subset of input variables. A set of charging constraints may then generated for each controller as a function of the subset of input variables. A set of objectives for each controller may also be generated. A preferred charge rate for each controller is generated as a function of either the set of objectives, the charging constraints, or both, using an algorithm that accounts for each of the preferred charge rates for each of the controllers and/or that does not violate any of the charging constraints. A current flow between the battery and the battery charger is then provided at the actual charge rate.
Estimation of Rice Crop Yields Using Random Forests in Taiwan
NASA Astrophysics Data System (ADS)
Chen, C. F.; Lin, H. S.; Nguyen, S. T.; Chen, C. R.
2017-12-01
Rice is globally one of the most important food crops, directly feeding more people than any other crops. Rice is not only the most important commodity, but also plays a critical role in the economy of Taiwan because it provides employment and income for large rural populations. The rice harvested area and production are thus monitored yearly due to the government's initiatives. Agronomic planners need such information for more precise assessment of food production to tackle issues of national food security and policymaking. This study aimed to develop a machine-learning approach using physical parameters to estimate rice crop yields in Taiwan. We processed the data for 2014 cropping seasons, following three main steps: (1) data pre-processing to construct input layers, including soil types and weather parameters (e.g., maxima and minima air temperature, precipitation, and solar radiation) obtained from meteorological stations across the country; (2) crop yield estimation using the random forests owing to its merits as it can process thousands of variables, estimate missing data, maintain the accuracy level when a large proportion of the data is missing, overcome most of over-fitting problems, and run fast and efficiently when handling large datasets; and (3) error verification. To execute the model, we separated the datasets into two groups of pixels: group-1 (70% of pixels) for training the model and group-2 (30% of pixels) for testing the model. Once the model is trained to produce small and stable out-of-bag error (i.e., the mean squared error between predicted and actual values), it can be used for estimating rice yields of cropping seasons. The results obtained from the random forests-based regression were compared with the actual yield statistics indicated the values of root mean square error (RMSE) and mean absolute error (MAE) achieved for the first rice crop were respectively 6.2% and 2.7%, while those for the second rice crop were 5.3% and 2.9%, respectively. Although there are several uncertainties attributed to the data quality of input layers, our study demonstrates the promising application of random forests for estimating rice crop yields at the national level in Taiwan. This approach could be transferable to other regions of the world for improving large-scale estimation of rice crop yields.
ERIC Educational Resources Information Center
van der Kloot, Willem A.; Spaans, Alexander M. J.; Heiser, Willem J.
2005-01-01
Hierarchical agglomerative cluster analysis (HACA) may yield different solutions under permutations of the input order of the data. This instability is caused by ties, either in the initial proximity matrix or arising during agglomeration. The authors recommend to repeat the analysis on a large number of random permutations of the rows and columns…
ERIC Educational Resources Information Center
Storkel, Holly L.; Bontempo, Daniel E.; Pak, Natalie S.
2014-01-01
Purpose: In this study, the authors investigated adult word learning to determine how neighborhood density and practice across phonologically related training sets influence online learning from input during training versus offline memory evolution during no-training gaps. Method: Sixty-one adults were randomly assigned to learn low- or…
NASA Astrophysics Data System (ADS)
Ordóñez Cabrera, Manuel; Volodin, Andrei I.
2005-05-01
From the classical notion of uniform integrability of a sequence of random variables, a new concept of integrability (called h-integrability) is introduced for an array of random variables, concerning an array of constantsE We prove that this concept is weaker than other previous related notions of integrability, such as Cesàro uniform integrability [Chandra, Sankhya Ser. A 51 (1989) 309-317], uniform integrability concerning the weights [Ordóñez Cabrera, Collect. Math. 45 (1994) 121-132] and Cesàro [alpha]-integrability [Chandra and Goswami, J. Theoret. ProbabE 16 (2003) 655-669]. Under this condition of integrability and appropriate conditions on the array of weights, mean convergence theorems and weak laws of large numbers for weighted sums of an array of random variables are obtained when the random variables are subject to some special kinds of dependence: (a) rowwise pairwise negative dependence, (b) rowwise pairwise non-positive correlation, (c) when the sequence of random variables in every row is [phi]-mixing. Finally, we consider the general weak law of large numbers in the sense of Gut [Statist. Probab. Lett. 14 (1992) 49-52] under this new condition of integrability for a Banach space setting.
Structural applications of metal foams considering material and geometrical uncertainty
NASA Astrophysics Data System (ADS)
Moradi, Mohammadreza
Metal foam is a relatively new and potentially revolutionary material that allows for components to be replaced with elements capable of large energy dissipation, or components to be stiffened with elements which will generate significant supplementary energy dissipation when buckling occurs. Metal foams provide a means to explore reconfiguring steel structures to mitigate cross-section buckling in many cases and dramatically increase energy dissipation in all cases. The microstructure of metal foams consists of solid and void phases. These voids have random shape and size. Therefore, randomness ,which is introduced into metal foams during the manufacturing processes, creating more uncertainty in the behavior of metal foams compared to solid steel. Therefore, studying uncertainty in the performance metrics of structures which have metal foams is more crucial than for conventional structures. Therefore, in this study, structural application of metal foams considering material and geometrical uncertainty is presented. This study applies the Sobol' decomposition of a function of many random variables to different problem in structural mechanics. First, the Sobol' decomposition itself is reviewed and extended to cover the case in which the input random variables have Gaussian distribution. Then two examples are given for a polynomial function of 3 random variables and the collapse load of a two story frame. In the structural example, the Sobol' decomposition is used to decompose the variance of the response, the collapse load, into contributions from the individual input variables. This decomposition reveals the relative importance of the individual member yield stresses in determining the collapse load of the frame. In applying the Sobol' decomposition to this structural problem the following issues are addressed: calculation of the components of the Sobol' decomposition by Monte Carlo simulation; the effect of input distribution on the Sobol' decomposition; convergence of estimates of the Sobol' decomposition with sample size using various sampling schemes; the possibility of model reduction guided by the results of the Sobol' decomposition. For the rest of the study the different structural applications of metal foam is investigated. In the first application, it is shown that metal foams have the potential to serve as hysteric dampers in the braces of braced building frames. Using metal foams in the structural braces decreases different dynamic responses such as roof drift, base shear and maximum moment in the columns. Optimum metal foam strengths are different for different earthquakes. In order to use metal foam in the structural braces, metal foams need to have stable cyclic response which might be achievable for metal foams with high relative density. The second application is to improve strength and ductility of a steel tube by filling it with steel foam. Steel tube beams and columns are able to provide significant strength for structures. They have an efficient shape with large second moment of inertia which leads to light elements with high bending strength. Steel foams with high strength to weight ratio are used to fill the steel tube to improves its mechanical behavior. The linear eigenvalue and plastic collapse finite element (FE) analysis are performed on steel foam filled tube under pure compression and three point bending simulation. It is shown that foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior are investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve due to the change of the failure mode from local buckling to yielding. Moreover, the Sobol' decomposition is used to investigate uncertainty in the strength and ductility of the composite tube, including the sensitivity of the strength to input parameters such as the foam density, tube wall thickness, steel properties etc. Monte Carlo simulation is performed on aluminum foam filled tubes under three point bending conditions. The simulation method is nonlinear finite element analysis. Results show that the steel foam properties have a greater effect on ductility of the steel foam filled tube than its strength. Moreover, flexural strength is more sensitive to steel properties than to aluminum foam properties. Finally, the properties of hypothetical structural steel foam C-channels foamed are investigated via simulations. In thin-walled structural members, stability of the walls is the primary driver of structural limit states. Moreover, having a light weight is one of the main advantages of the thin-walled structural members. Therefore, thin-walled structural members made of steel foam exhibit improved strength while maintaining their low weight. Linear eigenvalue, finite strip method (FSM) and plastic collapse FE analysis is used to evaluate the strength and ductility of steel foam C-channels under uniform compression and bending. It is found that replacing steel walls of the C-channel with steel foam walls increases the local buckling resistance and decreases the global buckling resistance of the C-channel. By using the Sobol' decomposition, an optimum configuration for the variable density steel foam C-channel can be found. For high relative density, replacing solid steel of the lips and flange elements with steel foam increases the buckling strength. On the other hand, for low relative density replacing solid steel of the lips and flange elements with steel foam deceases the buckling strength. Moreover, it is shown that buckling strength of the steel foam C-channel is sensitive to the second order Sobol' indices. In summary, it is shown in this research that the metal foams have a great potential to improve different types of structural responses, and there are many promising application for metal foam in civil structures.
Ambrose, Sophie E; Walker, Elizabeth A; Unflat-Berry, Lauren M; Oleson, Jacob J; Moeller, Mary Pat
2015-01-01
The primary objective of this study was to examine the quantity and quality of caregiver talk directed to children who are hard of hearing (CHH) compared with children with normal hearing (CNH). For the CHH only, the study explored how caregiver input changed as a function of child age (18 months versus 3 years), which child and family factors contributed to variance in caregiver linguistic input at 18 months and 3 years, and how caregiver talk at 18 months related to child language outcomes at 3 years. Participants were 59 CNH and 156 children with bilateral, mild-to-severe hearing loss. When children were approximately 18 months and/or 3 years of age, caregivers and children participated in a 5-min semistructured, conversational interaction. Interactions were transcribed and coded for two features of caregiver input representing quantity (number of total utterances and number of total words) and four features representing quality (number of different words, mean length of utterance in morphemes, proportion of utterances that were high level, and proportion of utterances that were directing). In addition, at the 18-month visit, parents completed a standardized questionnaire regarding their child's communication development. At the 3-year visit, a clinician administered a standardized language measure. At the 18-month visit, the CHH were exposed to a greater proportion of directing utterances than the CNH. At the 3-year visit, there were significant differences between the CNH and CHH for number of total words and all four of the quality variables, with the CHH being exposed to fewer words and lower quality input. Caregivers generally provided higher quality input to CHH at the 3-year visit compared with the 18-month visit. At the 18-month visit, quantity variables, but not quality variables, were related to several child and family factors. At the 3-year visit, the variable most strongly related to caregiver input was child language. Longitudinal analyses indicated that quality, but not quantity, of caregiver linguistic input at 18 months was related to child language abilities at 3 years, with directing utterances accounting for significant unique variance in child language outcomes. Although caregivers of CHH increased their use of quality features of linguistic input over time, the differences when compared with CNH suggest that some caregivers may need additional support to provide their children with optimal language learning environments. This is particularly important given the relationships that were identified between quality features of caregivers' linguistic input and children's language abilities. Family supports should include a focus on developing a style that is conversational eliciting as opposed to directive.
Stochastic Controls on Nitrate Transport and Cycling
NASA Astrophysics Data System (ADS)
Botter, G.; Settin, T.; Alessi Celegon, E.; Marani, M.; Rinaldo, A.
2005-12-01
In this paper, the impact of nutrient inputs on basin-scale nitrates losses is investigated in a probabilistic framework by means of a continuous, geomorphologically based, Montecarlo approach, which explicitly tackles the random character of the processes controlling nitrates generation, transformation and transport in river basins. This is obtained by coupling the stochastic generation of climatic and rainfall series with simplified hydrologic and biogeochemical models operating at the hillslope scale. Special attention is devoted to the spatial and temporal variability of nitrogen sources of agricultural origin and to the effect of temporally distributed rainfall fields on the ensuing nitrates leaching. The influence of random climatic variables on bio-geochemical processes affecting the nitrogen cycle in the soil-water system (e.g. plant uptake, nitrification and denitrification, mineralization), is also considered. The approach developed has been applied to a catchment located in North-Eastern Italy and is used to provide probabilistic estimates of the NO_3 load transferred downstream, which is received and accumulated in the Venice lagoon. We found that the nitrogen load introduced by fertilizations significantly affects the pdf of the nitrates content in the soil moisture, leading to prolonged risks of increased nitrates leaching from soil. The model allowed the estimation of the impact of different practices on the probabilistic structure of the basin-scale hydrologic and chemical response. As a result, the return period of the water volumes and of the nitrates loads released into the Venice lagoon has been linked directly to the ongoing climatic, pluviometric and agricultural regimes, with relevant implications for environmental planning activities aimed at achieving sustainable management practices.
A Framework to Guide the Assessment of Human-Machine Systems.
Stowers, Kimberly; Oglesby, James; Sonesh, Shirley; Leyva, Kevin; Iwig, Chelsea; Salas, Eduardo
2017-03-01
We have developed a framework for guiding measurement in human-machine systems. The assessment of safety and performance in human-machine systems often relies on direct measurement, such as tracking reaction time and accidents. However, safety and performance emerge from the combination of several variables. The assessment of precursors to safety and performance are thus an important part of predicting and improving outcomes in human-machine systems. As part of an in-depth literature analysis involving peer-reviewed, empirical articles, we located and classified variables important to human-machine systems, giving a snapshot of the state of science on human-machine system safety and performance. Using this information, we created a framework of safety and performance in human-machine systems. This framework details several inputs and processes that collectively influence safety and performance. Inputs are divided according to human, machine, and environmental inputs. Processes are divided into attitudes, behaviors, and cognitive variables. Each class of inputs influences the processes and, subsequently, outcomes that emerge in human-machine systems. This framework offers a useful starting point for understanding the current state of the science and measuring many of the complex variables relating to safety and performance in human-machine systems. This framework can be applied to the design, development, and implementation of automated machines in spaceflight, military, and health care settings. We present a hypothetical example in our write-up of how it can be used to aid in project success.
Creating a non-linear total sediment load formula using polynomial best subset regression model
NASA Astrophysics Data System (ADS)
Okcu, Davut; Pektas, Ali Osman; Uyumaz, Ali
2016-08-01
The aim of this study is to derive a new total sediment load formula which is more accurate and which has less application constraints than the well-known formulae of the literature. 5 most known stream power concept sediment formulae which are approved by ASCE are used for benchmarking on a wide range of datasets that includes both field and flume (lab) observations. The dimensionless parameters of these widely used formulae are used as inputs in a new regression approach. The new approach is called Polynomial Best subset regression (PBSR) analysis. The aim of the PBRS analysis is fitting and testing all possible combinations of the input variables and selecting the best subset. Whole the input variables with their second and third powers are included in the regression to test the possible relation between the explanatory variables and the dependent variable. While selecting the best subset a multistep approach is used that depends on significance values and also the multicollinearity degrees of inputs. The new formula is compared to others in a holdout dataset and detailed performance investigations are conducted for field and lab datasets within this holdout data. Different goodness of fit statistics are used as they represent different perspectives of the model accuracy. After the detailed comparisons are carried out we figured out the most accurate equation that is also applicable on both flume and river data. Especially, on field dataset the prediction performance of the proposed formula outperformed the benchmark formulations.
Sobol' sensitivity analysis for stressor impacts on honeybee ...
We employ Monte Carlo simulation and nonlinear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed of hive population trajectories, taking into account queen strength, foraging success, mite impacts, weather, colony resources, population structure, and other important variables. This allows us to test the effects of defined pesticide exposure scenarios versus controlled simulations that lack pesticide exposure. The daily resolution of the model also allows us to conditionally identify sensitivity metrics. We use the variancebased global decomposition sensitivity analysis method, Sobol’, to assess firstand secondorder parameter sensitivities within VarroaPop, allowing us to determine how variance in the output is attributed to each of the input variables across different exposure scenarios. Simulations with VarroaPop indicate queen strength, forager life span and pesticide toxicity parameters are consistent, critical inputs for colony dynamics. Further analysis also reveals that the relative importance of these parameters fluctuates throughout the simulation period according to the status of other inputs. Our preliminary results show that model variability is conditional and can be attributed to different parameters depending on different timescales. By using sensitivity analysis to assess model output and variability, calibrations of simulation models can be better informed to yield more
Selvaraj, P; Sakthivel, R; Kwon, O M
2018-06-07
This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.
Application of the Probabilistic Dynamic Synthesis Method to the Analysis of a Realistic Structure
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a new technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. A previous work verified the feasibility of the PDS method on a simple seven degree-of-freedom spring-mass system. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation.
Wang, Runchun; Cohen, Gregory; Stiefel, Klaus M; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, André
2013-01-01
We present an FPGA implementation of a re-configurable, polychronous spiking neural network with a large capacity for spatial-temporal patterns. The proposed neural network generates delay paths de novo, so that only connections that actually appear in the training patterns will be created. This allows the proposed network to use all the axons (variables) to store information. Spike Timing Dependent Delay Plasticity is used to fine-tune and add dynamics to the network. We use a time multiplexing approach allowing us to achieve 4096 (4k) neurons and up to 1.15 million programmable delay axons on a Virtex 6 FPGA. Test results show that the proposed neural network is capable of successfully recalling more than 95% of all spikes for 96% of the stored patterns. The tests also show that the neural network is robust to noise from random input spikes.
Application of the Probabilistic Dynamic Synthesis Method to Realistic Structures
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. In previous work, the feasibility of the PDS method applied to a simple seven degree-of-freedom spring-mass system was verified. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
On the probabilistic structure of water age
NASA Astrophysics Data System (ADS)
Porporato, Amilcare; Calabrese, Salvatore
2015-05-01
The age distribution of water in hydrologic systems has received renewed interest recently, especially in relation to watershed response to rainfall inputs. The purpose of this contribution is first to draw attention to existing theories of age distributions in population dynamics, fluid mechanics and stochastic groundwater, and in particular to the McKendrick-von Foerster equation and its generalizations and solutions. A second and more important goal is to clarify that, when hydrologic fluxes are modeled by means of time-varying stochastic processes, the age distributions must themselves be treated as random functions. Once their probabilistic structure is obtained, it can be used to characterize the variability of age distributions in real systems and thus help quantify the inherent uncertainty in the field determination of water age. We illustrate these concepts with reference to a stochastic storage model, which has been used as a minimalist model of soil moisture and streamflow dynamics.
Improving permafrost distribution modelling using feature selection algorithms
NASA Astrophysics Data System (ADS)
Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail
2016-04-01
The availability of an increasing number of spatial data on the occurrence of mountain permafrost allows the employment of machine learning (ML) classification algorithms for modelling the distribution of the phenomenon. One of the major problems when dealing with high-dimensional dataset is the number of input features (variables) involved. Application of ML classification algorithms to this large number of variables leads to the risk of overfitting, with the consequence of a poor generalization/prediction. For this reason, applying feature selection (FS) techniques helps simplifying the amount of factors required and improves the knowledge on adopted features and their relation with the studied phenomenon. Moreover, taking away irrelevant or redundant variables from the dataset effectively improves the quality of the ML prediction. This research deals with a comparative analysis of permafrost distribution models supported by FS variable importance assessment. The input dataset (dimension = 20-25, 10 m spatial resolution) was constructed using landcover maps, climate data and DEM derived variables (altitude, aspect, slope, terrain curvature, solar radiation, etc.). It was completed with permafrost evidences (geophysical and thermal data and rock glacier inventories) that serve as training permafrost data. Used FS algorithms informed about variables that appeared less statistically important for permafrost presence/absence. Three different algorithms were compared: Information Gain (IG), Correlation-based Feature Selection (CFS) and Random Forest (RF). IG is a filter technique that evaluates the worth of a predictor by measuring the information gain with respect to the permafrost presence/absence. Conversely, CFS is a wrapper technique that evaluates the worth of a subset of predictors by considering the individual predictive ability of each variable along with the degree of redundancy between them. Finally, RF is a ML algorithm that performs FS as part of its overall operation. It operates by constructing a large collection of decorrelated classification trees, and then predicts the permafrost occurrence through a majority vote. With the so-called out-of-bag (OOB) error estimate, the classification of permafrost data can be validated as well as the contribution of each predictor can be assessed. The performances of compared permafrost distribution models (computed on independent testing sets) increased with the application of FS algorithms on the original dataset and irrelevant or redundant variables were removed. As a consequence, the process provided faster and more cost-effective predictors and a better understanding of the underlying structures residing in permafrost data. Our work demonstrates the usefulness of a feature selection step prior to applying a machine learning algorithm. In fact, permafrost predictors could be ranked not only based on their heuristic and subjective importance (expert knowledge), but also based on their statistical relevance in relation of the permafrost distribution.
NASA Astrophysics Data System (ADS)
Rahmati, Mehdi
2017-08-01
Developing accurate and reliable pedo-transfer functions (PTFs) to predict soil non-readily available characteristics is one of the most concerned topic in soil science and selecting more appropriate predictors is a crucial factor in PTFs' development. Group method of data handling (GMDH), which finds an approximate relationship between a set of input and output variables, not only provide an explicit procedure to select the most essential PTF input variables, but also results in more accurate and reliable estimates than other mostly applied methodologies. Therefore, the current research was aimed to apply GMDH in comparison with multivariate linear regression (MLR) and artificial neural network (ANN) to develop several PTFs to predict soil cumulative infiltration point-basely at specific time intervals (0.5-45 min) using soil readily available characteristics (RACs). In this regard, soil infiltration curves as well as several soil RACs including soil primary particles (clay (CC), silt (Si), and sand (Sa)), saturated hydraulic conductivity (Ks), bulk (Db) and particle (Dp) densities, organic carbon (OC), wet-aggregate stability (WAS), electrical conductivity (EC), and soil antecedent (θi) and field saturated (θfs) water contents were measured at 134 different points in Lighvan watershed, northwest of Iran. Then, applying GMDH, MLR, and ANN methodologies, several PTFs have been developed to predict cumulative infiltrations using two sets of selected soil RACs including and excluding Ks. According to the test data, results showed that developed PTFs by GMDH and MLR procedures using all soil RACs including Ks resulted in more accurate (with E values of 0.673-0.963) and reliable (with CV values lower than 11 percent) predictions of cumulative infiltrations at different specific time steps. In contrast, ANN procedure had lower accuracy (with E values of 0.356-0.890) and reliability (with CV values up to 50 percent) compared to GMDH and MLR. The results also revealed that Ks exclusion from input variables list caused around 30 percent decrease in PTFs accuracy for all applied procedures. However, it seems that Ks exclusion resulted in more practical PTFs especially in the case of GMDH network applying input variables which are less time consuming than Ks. In general, it is concluded that GMDH provides more accurate and reliable estimates of cumulative infiltration (a non-readily available characteristic of soil) with a minimum set of input variables (2-4 input variables) and can be promising strategy to model soil infiltration combining the advantages of ANN and MLR methodologies.
Randomness Amplification under Minimal Fundamental Assumptions on the Devices
NASA Astrophysics Data System (ADS)
Ramanathan, Ravishankar; Brandão, Fernando G. S. L.; Horodecki, Karol; Horodecki, Michał; Horodecki, Paweł; Wojewódka, Hanna
2016-12-01
Recently, the physically realistic protocol amplifying the randomness of Santha-Vazirani sources producing cryptographically secure random bits was proposed; however, for reasons of practical relevance, the crucial question remained open regarding whether this can be accomplished under the minimal conditions necessary for the task. Namely, is it possible to achieve randomness amplification using only two no-signaling components and in a situation where the violation of a Bell inequality only guarantees that some outcomes of the device for specific inputs exhibit randomness? Here, we solve this question and present a device-independent protocol for randomness amplification of Santha-Vazirani sources using a device consisting of two nonsignaling components. We show that the protocol can amplify any such source that is not fully deterministic into a fully random source while tolerating a constant noise rate and prove the composable security of the protocol against general no-signaling adversaries. Our main innovation is the proof that even the partial randomness certified by the two-party Bell test [a single input-output pair (u* , x* ) for which the conditional probability P (x*|u*) is bounded away from 1 for all no-signaling strategies that optimally violate the Bell inequality] can be used for amplification. We introduce the methodology of a partial tomographic procedure on the empirical statistics obtained in the Bell test that ensures that the outputs constitute a linear min-entropy source of randomness. As a technical novelty that may be of independent interest, we prove that the Santha-Vazirani source satisfies an exponential concentration property given by a recently discovered generalized Chernoff bound.
How model and input uncertainty impact maize yield simulations in West Africa
NASA Astrophysics Data System (ADS)
Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli
2015-02-01
Crop models are common tools for simulating crop yields and crop production in studies on food security and global change. Various uncertainties however exist, not only in the model design and model parameters, but also and maybe even more important in soil, climate and management input data. We analyze the performance of the point-scale crop model APSIM and the global scale crop model LPJmL with different climate and soil conditions under different agricultural management in the low-input maize-growing areas of Burkina Faso, West Africa. We test the models’ response to different levels of input information from little to detailed information on soil, climate (1961-2000) and agricultural management and compare the models’ ability to represent the observed spatial (between locations) and temporal variability (between years) in crop yields. We found that the resolution of different soil, climate and management information influences the simulated crop yields in both models. However, the difference between models is larger than between input data and larger between simulations with different climate and management information than between simulations with different soil information. The observed spatial variability can be represented well from both models even with little information on soils and management but APSIM simulates a higher variation between single locations than LPJmL. The agreement of simulated and observed temporal variability is lower due to non-climatic factors e.g. investment in agricultural research and development between 1987 and 1991 in Burkina Faso which resulted in a doubling of maize yields. The findings of our study highlight the importance of scale and model choice and show that the most detailed input data does not necessarily improve model performance.
Konstantinidis, Spyridon; Titchener-Hooker, Nigel; Velayudhan, Ajoy
2017-08-01
Bioprocess development studies often involve the investigation of numerical and categorical inputs via the adoption of Design of Experiments (DoE) techniques. An attractive alternative is the deployment of a grid compatible Simplex variant which has been shown to yield optima rapidly and consistently. In this work, the method is combined with dummy variables and it is deployed in three case studies wherein spaces are comprised of both categorical and numerical inputs, a situation intractable by traditional Simplex methods. The first study employs in silico data and lays out the dummy variable methodology. The latter two employ experimental data from chromatography based studies performed with the filter-plate and miniature column High Throughput (HT) techniques. The solute of interest in the former case study was a monoclonal antibody whereas the latter dealt with the separation of a binary system of model proteins. The implemented approach prevented the stranding of the Simplex method at local optima, due to the arbitrary handling of the categorical inputs, and allowed for the concurrent optimization of numerical and categorical, multilevel and/or dichotomous, inputs. The deployment of the Simplex method, combined with dummy variables, was therefore entirely successful in identifying and characterizing global optima in all three case studies. The Simplex-based method was further shown to be of equivalent efficiency to a DoE-based approach, represented here by D-Optimal designs. Such an approach failed, however, to both capture trends and identify optima, and led to poor operating conditions. It is suggested that the Simplex-variant is suited to development activities involving numerical and categorical inputs in early bioprocess development. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biagiotti, R; Desii, C; Vanzi, E; Gacci, G
1999-02-01
To compare the performance of artificial neural networks (ANNs) with that of multiple logistic regression (MLR) models for predicting ovarian malignancy in patients with adnexal masses by using transvaginal B-mode and color Doppler flow ultrasonography (US). A total of 226 adnexal masses were examined before surgery: Fifty-one were malignant and 175 were benign. The data were divided into training and testing subsets by using a "leave n out method." The training subsets were used to compute the optimum MLR equations and to train the ANNs. The cross-validation subsets were used to estimate the performance of each of the two models in predicting ovarian malignancy. At testing, three-layer back-propagation networks, based on the same input variables selected by using MLR (i.e., women's ages, papillary projections, random echogenicity, peak systolic velocity, and resistance index), had a significantly higher sensitivity than did MLR (96% vs 84%; McNemar test, p = .04). The Brier scores for ANNs were significantly lower than those calculated for MLR (Student t test for paired samples, P = .004). ANNs might have potential for categorizing adnexal masses as either malignant or benign on the basis of multiple variables related to demographic and US features.
Observers Exploit Stochastic Models of Sensory Change to Help Judge the Passage of Time
Ahrens, Misha B.; Sahani, Maneesh
2011-01-01
Summary Sensory stimulation can systematically bias the perceived passage of time [1–5], but why and how this happens is mysterious. In this report, we provide evidence that such biases may ultimately derive from an innate and adaptive use of stochastically evolving dynamic stimuli to help refine estimates derived from internal timekeeping mechanisms [6–15]. A simplified statistical model based on probabilistic expectations of stimulus change derived from the second-order temporal statistics of the natural environment [16, 17] makes three predictions. First, random noise-like stimuli whose statistics violate natural expectations should induce timing bias. Second, a previously unexplored obverse of this effect is that similar noise stimuli with natural statistics should reduce the variability of timing estimates. Finally, this reduction in variability should scale with the interval being timed, so as to preserve the overall Weber law of interval timing. All three predictions are borne out experimentally. Thus, in the context of our novel theoretical framework, these results suggest that observers routinely rely on sensory input to augment their sense of the passage of time, through a process of Bayesian inference based on expectations of change in the natural environment. PMID:21256018
Time perspective and well-being: Swedish survey questionnaires and data.
Garcia, Danilo; Nima, Ali Al; Lindskär, Erik
2016-12-01
The data pertains 448 Swedes' responses to questionnaires on time perspective (Zimbardo Time Perspective Inventory), temporal life satisfaction (Temporal Satisfaction with Life Scale), affect (Positive Affect and Negative Affect Schedule), and psychological well-being (Ryff׳s Scales of Psychological Well-Being-short version). The data was collected among university students and individuals at a training facility (see U. Sailer, P. Rosenberg, A.A. Nima, A. Gamble, T. Gärling, T. Archer, D. Garcia, 2014; [1]). Since there were no differences in any of the other background variables, but exercise frequency, all subsequent analyses were conducted on the 448 participants as one single sample. In this article we include the Swedish versions of the questionnaires used to operationalize the time perspective and well-being variables. The data is available, SPSS file, as Supplementary material in this article. We used the Expectation-Maximization Algorithm to input missing values. Little׳s Chi-Square test for Missing Completely at Random showed a χ (2)=67.25 (df=53, p=.09) for men and χ (2)=77.65 (df=72, p=.31) for women. These values suggested that the Expectation-Maximization Algorithm was suitable to use on this data for missing data imputation.
Assessing patient risk of central line-associated bacteremia via machine learning.
Beeler, Cole; Dbeibo, Lana; Kelley, Kristen; Thatcher, Levi; Webb, Douglas; Bah, Amadou; Monahan, Patrick; Fowler, Nicole R; Nicol, Spencer; Judy-Malcolm, Alisa; Azar, Jose
2018-04-13
Central line-associated bloodstream infections (CLABSIs) contribute to increased morbidity, length of hospital stay, and cost. Despite progress in understanding the risk factors, there remains a need to accurately predict the risk of CLABSIs and, in real time, prevent them from occurring. A predictive model was developed using retrospective data from a large academic healthcare system. Models were developed with machine learning via construction of random forests using validated input variables. Fifteen variables accounted for the most significant effect on CLABSI prediction based on a retrospective study of 70,218 unique patient encounters between January 1, 2013, and May 31, 2016. The area under the receiver operating characteristic curve for the best-performing model was 0.82 in production. This model has multiple applications for resource allocation for CLABSI prevention, including serving as a tool to target patients at highest risk for potentially cost-effective but otherwise time-limited interventions. Machine learning can be used to develop accurate models to predict the risk of CLABSI in real time prior to the development of infection. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Keller, J. Y.; Chabir, K.; Sauter, D.
2016-03-01
State estimation of stochastic discrete-time linear systems subject to unknown inputs or constant biases has been widely studied but no work has been dedicated to the case where a disturbance switches between unknown input and constant bias. We show that such disturbance can affect a networked control system subject to deception attacks and data losses on the control signals transmitted by the controller to the plant. This paper proposes to estimate the switching disturbance from an augmented state version of the intermittent unknown input Kalman filter recently developed by the authors. Sufficient stochastic stability conditions are established when the arrival binary sequence of data losses follows a Bernoulli random process.
Qualitatively Assessing Randomness in SVD Results
NASA Astrophysics Data System (ADS)
Lamb, K. W.; Miller, W. P.; Kalra, A.; Anderson, S.; Rodriguez, A.
2012-12-01
Singular Value Decomposition (SVD) is a powerful tool for identifying regions of significant co-variability between two spatially distributed datasets. SVD has been widely used in atmospheric research to define relationships between sea surface temperatures, geopotential height, wind, precipitation and streamflow data for myriad regions across the globe. A typical application for SVD is to identify leading climate drivers (as observed in the wind or pressure data) for a particular hydrologic response variable such as precipitation, streamflow, or soil moisture. One can also investigate the lagged relationship between a climate variable and the hydrologic response variable using SVD. When performing these studies it is important to limit the spatial bounds of the climate variable to reduce the chance of random co-variance relationships being identified. On the other hand, a climate region that is too small may ignore climate signals which have more than a statistical relationship to a hydrologic response variable. The proposed research seeks to identify a qualitative method of identifying random co-variability relationships between two data sets. The research identifies the heterogeneous correlation maps from several past results and compares these results with correlation maps produced using purely random and quasi-random climate data. The comparison identifies a methodology to determine if a particular region on a correlation map may be explained by a physical mechanism or is simply statistical chance.
Sympathovagal imbalance in hyperthyroidism.
Burggraaf, J; Tulen, J H; Lalezari, S; Schoemaker, R C; De Meyer, P H; Meinders, A E; Cohen, A F; Pijl, H
2001-07-01
We assessed sympathovagal balance in thyrotoxicosis. Fourteen patients with Graves' hyperthyroidism were studied before and after 7 days of treatment with propranolol (40 mg 3 times a day) and in the euthyroid state. Data were compared with those obtained in a group of age-, sex-, and weight-matched controls. Autonomic inputs to the heart were assessed by power spectral analysis of heart rate variability. Systemic exposure to sympathetic neurohormones was estimated on the basis of 24-h urinary catecholamine excretion. The spectral power in the high-frequency domain was considerably reduced in hyperthyroid patients, indicating diminished vagal inputs to the heart. Increased heart rate and mid-frequency/high-frequency power ratio in the presence of reduced total spectral power and increased urinary catecholamine excretion strongly suggest enhanced sympathetic inputs in thyrotoxicosis. All abnormal features of autonomic balance were completely restored to normal in the euthyroid state. beta-Adrenoceptor antagonism reduced heart rate in hyperthyroid patients but did not significantly affect heart rate variability or catecholamine excretion. This is in keeping with the concept of a joint disruption of sympathetic and vagal inputs to the heart underlying changes in heart rate variability. Thus thyrotoxicosis is characterized by profound sympathovagal imbalance, brought about by increased sympathetic activity in the presence of diminished vagal tone.
Sensitivity and uncertainty of input sensor accuracy for grass-based reference evapotranspiration
USDA-ARS?s Scientific Manuscript database
Quantification of evapotranspiration (ET) in agricultural environments is becoming of increasing importance throughout the world, thus understanding input variability of relevant sensors is of paramount importance as well. The Colorado Agricultural and Meteorological Network (CoAgMet) and the Florid...
Assessment of input uncertainty by seasonally categorized latent variables using SWAT
USDA-ARS?s Scientific Manuscript database
Watershed processes have been explored with sophisticated simulation models for the past few decades. It has been stated that uncertainty attributed to alternative sources such as model parameters, forcing inputs, and measured data should be incorporated during the simulation process. Among varyin...
Robinson, John D; Wares, John P; Drake, John M
2013-01-01
Extinction is ubiquitous in natural systems and the ultimate fate of all biological populations. However, the factors that contribute to population extinction are still poorly understood, particularly genetic diversity and composition. A laboratory experiment was conducted to examine the influences of environmental variation and genotype diversity on persistence in experimental Daphnia magna populations. Populations were initiated in two blocks with one, two, three, or six randomly selected and equally represented genotypes, fed and checked for extinction daily, and censused twice weekly over a period of 170 days. Our results show no evidence for an effect of the number of genotypes in a population on extinction hazard. Environmental variation had a strong effect on hazards in both experimental blocks, but the direction of the effect differed between blocks. In the first block, variable environments hastened extinction, while in the second block, hazards were reduced under variable food input. This occurred despite greater fluctuations in population size in variable environments in the second block of our experiment. Our results conflict with previous studies, where environmental variation consistently increased extinction risk. They are also at odds with previous studies in other systems that documented significant effects of genetic diversity on population persistence. We speculate that the lack of sexual reproduction, or the phenotypic similarity among our experimental lines, might underlie the lack of a significant effect of genotype diversity in our study. PMID:23467276
Ritschl, Lucas M; Rau, Andrea; Güll, Florian D; diBora, Benjamin; Wolff, Klaus-Dietrich; Schönberger, Markus; Bauer, Franz X; Wintermantel, Erich; Loeffelbein, Denys J
2016-04-01
Computer-assisted design and computer-aided manufacturing (CAD/CAM) technology in nasoalveolar molding (NAM) should save time and manpower and reduce family input in cases of cleft lip and palate. Intraoral casts from 12 infants with complete unilateral cleft lip and palate were taken immediately after birth (T1) and after (T2) NAM treatment, digitalized, and transformed into STL data. The infants were randomized into Group 1 (n = 6) receiving conventional NAM treatment or Group 2 receiving CAD/CAM NAM (n = 6). We analyzed the following variables by using Geomagic software: intersegmental alveolar distance (ISAD); intersegmental lip distance (ISLD); nostril height cleft/noncleft (NHc/nc); nasal width cleft/noncleft (NWn/nc); and columella deviation angle (CDA). In both groups, all variables except NHnc and NWnc were changed significantly between T1 and T2. The analysis of the mean differences of the variables in Group 1 and 2 showed no significant differences, with a comparable incidence of clinical alterations such as skin or mucosal irritations. NAM plates can be produced virtually by using CAD/CAM technology. The CAD/CAM NAM results show no significant differences from the conventional technique. We present our clinically usable virtual CAD/CAM workflow for producing a basic NAM plate. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Speaker Invariance for Phonetic Information: an fMRI Investigation
Salvata, Caden; Blumstein, Sheila E.; Myers, Emily B.
2012-01-01
The current study explored how listeners map the variable acoustic input onto a common sound structure representation while being able to retain phonetic detail to distinguish among the identity of talkers. An adaptation paradigm was utilized to examine areas which showed an equal neural response (equal release from adaptation) to phonetic change when spoken by the same speaker and when spoken by two different speakers, and insensitivity (failure to show release from adaptation) when the same phonetic input was spoken by a different speaker. Neural areas which showed speaker invariance were located in the anterior portion of the middle superior temporal gyrus bilaterally. These findings provide support for the view that speaker normalization processes allow for the translation of a variable speech input to a common abstract sound structure. That this process appears to occur early in the processing stream, recruiting temporal structures, suggests that this mapping takes place prelexically, before sound structure input is mapped on to lexical representations. PMID:23264714
The input and output management of solid waste using DEA models: A case study at Jengka, Pahang
NASA Astrophysics Data System (ADS)
Mohamed, Siti Rosiah; Ghazali, Nur Fadzrina Mohd; Mohd, Ainun Hafizah
2017-08-01
Data Envelopment Analysis (DEA) as a tool for obtaining performance indices has been used extensively in several of organizations sector. The ways to improve the efficiency of Decision Making Units (DMUs) is impractical because some of inputs and outputs are uncontrollable and in certain situation its produce weak efficiency which often reflect the impact for operating environment. Based on the data from Alam Flora Sdn. Bhd Jengka, the researcher wants to determine the efficiency of solid waste management (SWM) in town Jengka Pahang using CCRI and CCRO model of DEA and duality formulation with vector average input and output. Three input variables (length collection in meter, frequency time per week in hour and number of garbage truck) and 2 outputs variables (frequency collection and the total solid waste collection in kilogram) are analyzed. As a conclusion, it shows only three roads from 23 roads are efficient that achieve efficiency score 1. Meanwhile, 20 other roads are in an inefficient management.
Data-driven process decomposition and robust online distributed modelling for large-scale processes
NASA Astrophysics Data System (ADS)
Shu, Zhang; Lijuan, Li; Lijuan, Yao; Shipin, Yang; Tao, Zou
2018-02-01
With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.
NASA Technical Reports Server (NTRS)
Fortenbaugh, R. L.
1980-01-01
Equations incorporated in a VATOL six degree of freedom off-line digital simulation program and data for the Vought SF-121 VATOL aircraft concept which served as the baseline for the development of this program are presented. The equations and data are intended to facilitate the development of a piloted VATOL simulation. The equation presentation format is to state the equations which define a particular model segment. Listings of constants required to quantify the model segment, input variables required to exercise the model segment, and output variables required by other model segments are included. In several instances a series of input or output variables are followed by a section number in parentheses which identifies the model segment of origination or termination of those variables.
Mathematical models of the simplest fuzzy PI/PD controllers with skewed input and output fuzzy sets.
Mohan, B M; Sinha, Arpita
2008-07-01
This paper unveils mathematical models for fuzzy PI/PD controllers which employ two skewed fuzzy sets for each of the two-input variables and three skewed fuzzy sets for the output variable. The basic constituents of these models are Gamma-type and L-type membership functions for each input, trapezoidal/triangular membership functions for output, intersection/algebraic product triangular norm, maximum/drastic sum triangular conorm, Mamdani minimum/Larsen product/drastic product inference method, and center of sums defuzzification method. The existing simplest fuzzy PI/PD controller structures derived via symmetrical fuzzy sets become special cases of the mathematical models revealed in this paper. Finally, a numerical example along with its simulation results are included to demonstrate the effectiveness of the simplest fuzzy PI controllers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrang, M.A.; Assareh, E.; Ghanbarzadeh, A.
2010-08-15
The main objective of present study is to predict daily global solar radiation (GSR) on a horizontal surface, based on meteorological variables, using different artificial neural network (ANN) techniques. Daily mean air temperature, relative humidity, sunshine hours, evaporation, and wind speed values between 2002 and 2006 for Dezful city in Iran (32 16'N, 48 25'E), are used in this study. In order to consider the effect of each meteorological variable on daily GSR prediction, six following combinations of input variables are considered: (I)Day of the year, daily mean air temperature and relative humidity as inputs and daily GSR as output.more » (II)Day of the year, daily mean air temperature and sunshine hours as inputs and daily GSR as output. (III)Day of the year, daily mean air temperature, relative humidity and sunshine hours as inputs and daily GSR as output. (IV)Day of the year, daily mean air temperature, relative humidity, sunshine hours and evaporation as inputs and daily GSR as output. (V)Day of the year, daily mean air temperature, relative humidity, sunshine hours and wind speed as inputs and daily GSR as output. (VI)Day of the year, daily mean air temperature, relative humidity, sunshine hours, evaporation and wind speed as inputs and daily GSR as output. Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are applied for daily GSR modeling based on six proposed combinations. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data. The comparison of obtained results from ANNs and different conventional GSR prediction (CGSRP) models shows very good improvements (i.e. the predicted values of best ANN model (MLP-V) has a mean absolute percentage error (MAPE) about 5.21% versus 10.02% for best CGSRP model (CGSRP 5)). (author)« less
Fuzzy Neuron: Method and Hardware Realization
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.; Prokop, Norman F.
2014-01-01
This innovation represents a method by which single-to-multi-input, single-to-many-output system transfer functions can be estimated from input/output data sets. This innovation can be run in the background while a system is operating under other means (e.g., through human operator effort), or may be utilized offline using data sets created from observations of the estimated system. It utilizes a set of fuzzy membership functions spanning the input space for each input variable. Linear combiners associated with combinations of input membership functions are used to create the output(s) of the estimator. Coefficients are adjusted online through the use of learning algorithms.
Group interaction and flight crew performance
NASA Technical Reports Server (NTRS)
Foushee, H. Clayton; Helmreich, Robert L.
1988-01-01
The application of human-factors analysis to the performance of aircraft-operation tasks by the crew as a group is discussed in an introductory review and illustrated with anecdotal material. Topics addressed include the function of a group in the operational environment, the classification of group performance factors (input, process, and output parameters), input variables and the flight crew process, and the effect of process variables on performance. Consideration is given to aviation safety issues, techniques for altering group norms, ways of increasing crew effort and coordination, and the optimization of group composition.
ERIC Educational Resources Information Center
Nahavandi, Naemeh; Mukundan, Jayakaran
2013-01-01
The present study investigated the impact of textual input enhancement and explicit rule presentation on 93 Iranian EFL learners' intake of simple past tense. Three intact general English classes in Tabriz Azad University were randomly assigned to: 1) a control group; 2) a TIE group; and 3) a TIE plus explicit rule presentation group. All…
Maximizing lipocalin prediction through balanced and diversified training set and decision fusion.
Nath, Abhigyan; Subbiah, Karthikeyan
2015-12-01
Lipocalins are short in sequence length and perform several important biological functions. These proteins are having less than 20% sequence similarity among paralogs. Experimentally identifying them is an expensive and time consuming process. The computational methods based on the sequence similarity for allocating putative members to this family are also far elusive due to the low sequence similarity existing among the members of this family. Consequently, the machine learning methods become a viable alternative for their prediction by using the underlying sequence/structurally derived features as the input. Ideally, any machine learning based prediction method must be trained with all possible variations in the input feature vector (all the sub-class input patterns) to achieve perfect learning. A near perfect learning can be achieved by training the model with diverse types of input instances belonging to the different regions of the entire input space. Furthermore, the prediction performance can be improved through balancing the training set as the imbalanced data sets will tend to produce the prediction bias towards majority class and its sub-classes. This paper is aimed to achieve (i) the high generalization ability without any classification bias through the diversified and balanced training sets as well as (ii) enhanced the prediction accuracy by combining the results of individual classifiers with an appropriate fusion scheme. Instead of creating the training set randomly, we have first used the unsupervised Kmeans clustering algorithm to create diversified clusters of input patterns and created the diversified and balanced training set by selecting an equal number of patterns from each of these clusters. Finally, probability based classifier fusion scheme was applied on boosted random forest algorithm (which produced greater sensitivity) and K nearest neighbour algorithm (which produced greater specificity) to achieve the enhanced predictive performance than that of individual base classifiers. The performance of the learned models trained on Kmeans preprocessed training set is far better than the randomly generated training sets. The proposed method achieved a sensitivity of 90.6%, specificity of 91.4% and accuracy of 91.0% on the first test set and sensitivity of 92.9%, specificity of 96.2% and accuracy of 94.7% on the second blind test set. These results have established that diversifying training set improves the performance of predictive models through superior generalization ability and balancing the training set improves prediction accuracy. For smaller data sets, unsupervised Kmeans based sampling can be an effective technique to increase generalization than that of the usual random splitting method. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design approaches to experimental mediation☆
Pirlott, Angela G.; MacKinnon, David P.
2016-01-01
Identifying causal mechanisms has become a cornerstone of experimental social psychology, and editors in top social psychology journals champion the use of mediation methods, particularly innovative ones when possible (e.g. Halberstadt, 2010, Smith, 2012). Commonly, studies in experimental social psychology randomly assign participants to levels of the independent variable and measure the mediating and dependent variables, and the mediator is assumed to causally affect the dependent variable. However, participants are not randomly assigned to levels of the mediating variable(s), i.e., the relationship between the mediating and dependent variables is correlational. Although researchers likely know that correlational studies pose a risk of confounding, this problem seems forgotten when thinking about experimental designs randomly assigning participants to levels of the independent variable and measuring the mediator (i.e., “measurement-of-mediation” designs). Experimentally manipulating the mediator provides an approach to solving these problems, yet these methods contain their own set of challenges (e.g., Bullock, Green, & Ha, 2010). We describe types of experimental manipulations targeting the mediator (manipulations demonstrating a causal effect of the mediator on the dependent variable and manipulations targeting the strength of the causal effect of the mediator) and types of experimental designs (double randomization, concurrent double randomization, and parallel), provide published examples of the designs, and discuss the strengths and challenges of each design. Therefore, the goals of this paper include providing a practical guide to manipulation-of-mediator designs in light of their challenges and encouraging researchers to use more rigorous approaches to mediation because manipulation-of-mediator designs strengthen the ability to infer causality of the mediating variable on the dependent variable. PMID:27570259
Design approaches to experimental mediation.
Pirlott, Angela G; MacKinnon, David P
2016-09-01
Identifying causal mechanisms has become a cornerstone of experimental social psychology, and editors in top social psychology journals champion the use of mediation methods, particularly innovative ones when possible (e.g. Halberstadt, 2010, Smith, 2012). Commonly, studies in experimental social psychology randomly assign participants to levels of the independent variable and measure the mediating and dependent variables, and the mediator is assumed to causally affect the dependent variable. However, participants are not randomly assigned to levels of the mediating variable(s), i.e., the relationship between the mediating and dependent variables is correlational. Although researchers likely know that correlational studies pose a risk of confounding, this problem seems forgotten when thinking about experimental designs randomly assigning participants to levels of the independent variable and measuring the mediator (i.e., "measurement-of-mediation" designs). Experimentally manipulating the mediator provides an approach to solving these problems, yet these methods contain their own set of challenges (e.g., Bullock, Green, & Ha, 2010). We describe types of experimental manipulations targeting the mediator (manipulations demonstrating a causal effect of the mediator on the dependent variable and manipulations targeting the strength of the causal effect of the mediator) and types of experimental designs (double randomization, concurrent double randomization, and parallel), provide published examples of the designs, and discuss the strengths and challenges of each design. Therefore, the goals of this paper include providing a practical guide to manipulation-of-mediator designs in light of their challenges and encouraging researchers to use more rigorous approaches to mediation because manipulation-of-mediator designs strengthen the ability to infer causality of the mediating variable on the dependent variable.
Stochastic analysis of multiphase flow in porous media: II. Numerical simulations
NASA Astrophysics Data System (ADS)
Abin, A.; Kalurachchi, J. J.; Kemblowski, M. W.; Chang, C.-M.
1996-08-01
The first paper (Chang et al., 1995b) of this two-part series described the stochastic analysis using spectral/perturbation approach to analyze steady state two-phase (water and oil) flow in a, liquid-unsaturated, three fluid-phase porous medium. In this paper, the results between the numerical simulations and closed-form expressions obtained using the perturbation approach are compared. We present the solution to the one-dimensional, steady-state oil and water flow equations. The stochastic input processes are the spatially correlated logk where k is the intrinsic permeability and the soil retention parameter, α. These solutions are subsequently used in the numerical simulations to estimate the statistical properties of the key output processes. The comparison between the results of the perturbation analysis and numerical simulations showed a good agreement between the two methods over a wide range of logk variability with three different combinations of input stochastic processes of logk and soil parameter α. The results clearly demonstrated the importance of considering the spatial variability of key subsurface properties under a variety of physical scenarios. The variability of both capillary pressure and saturation is affected by the type of input stochastic process used to represent the spatial variability. The results also demonstrated the applicability of perturbation theory in predicting the system variability and defining effective fluid properties through the ergodic assumption.
Simulating maize yield and biomass with spatial variability of soil field capacity
USDA-ARS?s Scientific Manuscript database
Spatial variability in field soil water and other properties is a challenge for system modelers who use only representative values for model inputs, rather than their distributions. In this study, we compared simulation results from a calibrated model with spatial variability of soil field capacity ...
Automated Knowledge Discovery From Simulators
NASA Technical Reports Server (NTRS)
Burl, Michael; DeCoste, Dennis; Mazzoni, Dominic; Scharenbroich, Lucas; Enke, Brian; Merline, William
2007-01-01
A computational method, SimLearn, has been devised to facilitate efficient knowledge discovery from simulators. Simulators are complex computer programs used in science and engineering to model diverse phenomena such as fluid flow, gravitational interactions, coupled mechanical systems, and nuclear, chemical, and biological processes. SimLearn uses active-learning techniques to efficiently address the "landscape characterization problem." In particular, SimLearn tries to determine which regions in "input space" lead to a given output from the simulator, where "input space" refers to an abstraction of all the variables going into the simulator, e.g., initial conditions, parameters, and interaction equations. Landscape characterization can be viewed as an attempt to invert the forward mapping of the simulator and recover the inputs that produce a particular output. Given that a single simulation run can take days or weeks to complete even on a large computing cluster, SimLearn attempts to reduce costs by reducing the number of simulations needed to effect discoveries. Unlike conventional data-mining methods that are applied to static predefined datasets, SimLearn involves an iterative process in which a most informative dataset is constructed dynamically by using the simulator as an oracle. On each iteration, the algorithm models the knowledge it has gained through previous simulation trials and then chooses which simulation trials to run next. Running these trials through the simulator produces new data in the form of input-output pairs. The overall process is embodied in an algorithm that combines support vector machines (SVMs) with active learning. SVMs use learning from examples (the examples are the input-output pairs generated by running the simulator) and a principle called maximum margin to derive predictors that generalize well to new inputs. In SimLearn, the SVM plays the role of modeling the knowledge that has been gained through previous simulation trials. Active learning is used to determine which new input points would be most informative if their output were known. The selected input points are run through the simulator to generate new information that can be used to refine the SVM. The process is then repeated. SimLearn carefully balances exploration (semi-randomly searching around the input space) versus exploitation (using the current state of knowledge to conduct a tightly focused search). During each iteration, SimLearn uses not one, but an ensemble of SVMs. Each SVM in the ensemble is characterized by different hyper-parameters that control various aspects of the learned predictor - for example, whether the predictor is constrained to be very smooth (nearby points in input space lead to similar output predictions) or whether the predictor is allowed to be "bumpy." The various SVMs will have different preferences about which input points they would like to run through the simulator next. SimLearn includes a formal mechanism for balancing the ensemble SVM preferences so that a single choice can be made for the next set of trials.
Using Dynamic Sensitivity Analysis to Assess Testability
NASA Technical Reports Server (NTRS)
Voas, Jeffrey; Morell, Larry; Miller, Keith
1990-01-01
This paper discusses sensitivity analysis and its relationship to random black box testing. Sensitivity analysis estimates the impact that a programming fault at a particular location would have on the program's input/output behavior. Locations that are relatively \\"insensitive" to faults can render random black box testing unlikely to uncover programming faults. Therefore, sensitivity analysis gives new insight when interpreting random black box testing results. Although sensitivity analysis is computationally intensive, it requires no oracle and no human intervention.
'spup' - an R package for uncertainty propagation in spatial environmental modelling
NASA Astrophysics Data System (ADS)
Sawicka, Kasia; Heuvelink, Gerard
2016-04-01
Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Currently, advances in uncertainty propagation and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability, including case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the 'spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques, as well as several uncertainty visualization functions. Uncertain environmental variables are represented in the package as objects whose attribute values may be uncertain and described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is also accommodated for. For uncertainty propagation the package has implemented the MC approach with efficient sampling algorithms, i.e. stratified random sampling and Latin hypercube sampling. The design includes facilitation of parallel computing to speed up MC computation. The MC realizations may be used as an input to the environmental models called from R, or externally. Selected static and interactive visualization methods that are understandable by non-experts with limited background in statistics can be used to summarize and visualize uncertainty about the measured input, model parameters and output of the uncertainty propagation. We demonstrate that the 'spup' package is an effective and easy tool to apply and can be used in multi-disciplinary research and model-based decision support.
'spup' - an R package for uncertainty propagation analysis in spatial environmental modelling
NASA Astrophysics Data System (ADS)
Sawicka, Kasia; Heuvelink, Gerard
2017-04-01
Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Currently, advances in uncertainty propagation and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability and being able to deal with case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the 'spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques, as well as several uncertainty visualization functions. Uncertain environmental variables are represented in the package as objects whose attribute values may be uncertain and described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is also accommodated for. For uncertainty propagation the package has implemented the MC approach with efficient sampling algorithms, i.e. stratified random sampling and Latin hypercube sampling. The design includes facilitation of parallel computing to speed up MC computation. The MC realizations may be used as an input to the environmental models called from R, or externally. Selected visualization methods that are understandable by non-experts with limited background in statistics can be used to summarize and visualize uncertainty about the measured input, model parameters and output of the uncertainty propagation. We demonstrate that the 'spup' package is an effective and easy tool to apply and can be used in multi-disciplinary research and model-based decision support.
ERIC Educational Resources Information Center
Fryer, Roland G., Jr.
2010-01-01
This paper describes a series of school-based randomized trials in over 250 urban schools designed to test the impact of financial incentives on student achievement. In stark contrast to simple economic models, our results suggest that student incentives increase achievement when the rewards are given for inputs to the educational production…
ERIC Educational Resources Information Center
Huang, Hung-Yu; Wang, Wen-Chung
2014-01-01
The DINA (deterministic input, noisy, and gate) model has been widely used in cognitive diagnosis tests and in the process of test development. The outcomes known as slip and guess are included in the DINA model function representing the responses to the items. This study aimed to extend the DINA model by using the random-effect approach to allow…
Simulated lumped-parameter system reduced-order adaptive control studies
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.; Lawrence, D. A.; Taylor, T.; Malakooti, M. V.
1981-01-01
Two methods of interpreting the misbehavior of reduced order adaptive controllers are discussed. The first method is based on system input-output description and the second is based on state variable description. The implementation of the single input, single output, autoregressive, moving average system is considered.
Time domain simulation of the response of geometrically nonlinear panels subjected to random loading
NASA Technical Reports Server (NTRS)
Moyer, E. Thomas, Jr.
1988-01-01
The response of composite panels subjected to random pressure loads large enough to cause geometrically nonlinear responses is studied. A time domain simulation is employed to solve the equations of motion. An adaptive time stepping algorithm is employed to minimize intermittent transients. A modified algorithm for the prediction of response spectral density is presented which predicts smooth spectral peaks for discrete time histories. Results are presented for a number of input pressure levels and damping coefficients. Response distributions are calculated and compared with the analytical solution of the Fokker-Planck equations. RMS response is reported as a function of input pressure level and damping coefficient. Spectral densities are calculated for a number of examples.
A new polytopic approach for the unknown input functional observer design
NASA Astrophysics Data System (ADS)
Bezzaoucha, Souad; Voos, Holger; Darouach, Mohamed
2018-03-01
In this paper, a constructive procedure to design Functional Unknown Input Observers for nonlinear continuous time systems is proposed under the Polytopic Takagi-Sugeno framework. An equivalent representation for the nonlinear model is achieved using the sector nonlinearity transformation. Applying the Lyapunov theory and the ? attenuation, linear matrix inequalities conditions are deduced which are solved for feasibility to obtain the observer design matrices. To cope with the effect of unknown inputs, classical approach of decoupling the unknown input for the linear case is used. Both algebraic and solver-based solutions are proposed (relaxed conditions). Necessary and sufficient conditions for the existence of the functional polytopic observer are given. For both approaches, the general and particular cases (measurable premise variables, full state estimation with full and reduced order cases) are considered and it is shown that the proposed conditions correspond to the one presented for standard linear case. To illustrate the proposed theoretical results, detailed numerical simulations are presented for a Quadrotor Aerial Robots Landing and a Waste Water Treatment Plant. Both systems are highly nonlinear and represented in a T-S polytopic form with unmeasurable premise variables and unknown inputs.
NASA Astrophysics Data System (ADS)
Zhuo, L.; Mekonnen, M. M.; Hoekstra, A. Y.
2014-06-01
Water Footprint Assessment is a fast-growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of and uncertainty in crop water footprint (in m3 t-1) estimates related to uncertainties in important input variables. The study focuses on the green (from rainfall) and blue (from irrigation) water footprint of producing maize, soybean, rice, and wheat at the scale of the Yellow River basin in the period 1996-2005. A grid-based daily water balance model at a 5 by 5 arcmin resolution was applied to compute green and blue water footprints of the four crops in the Yellow River basin in the period considered. The one-at-a-time method was carried out to analyse the sensitivity of the crop water footprint to fractional changes of seven individual input variables and parameters: precipitation (PR), reference evapotranspiration (ET0), crop coefficient (Kc), crop calendar (planting date with constant growing degree days), soil water content at field capacity (Smax), yield response factor (Ky) and maximum yield (Ym). Uncertainties in crop water footprint estimates related to uncertainties in four key input variables: PR, ET0, Kc, and crop calendar were quantified through Monte Carlo simulations. The results show that the sensitivities and uncertainties differ across crop types. In general, the water footprint of crops is most sensitive to ET0 and Kc, followed by the crop calendar. Blue water footprints were more sensitive to input variability than green water footprints. The smaller the annual blue water footprint is, the higher its sensitivity to changes in PR, ET0, and Kc. The uncertainties in the total water footprint of a crop due to combined uncertainties in climatic inputs (PR and ET0) were about ±20% (at 95% confidence interval). The effect of uncertainties in ET0was dominant compared to that of PR. The uncertainties in the total water footprint of a crop as a result of combined key input uncertainties were on average ±30% (at 95% confidence level).
Compliance-Effect Correlation Bias in Instrumental Variables Estimators
ERIC Educational Resources Information Center
Reardon, Sean F.
2010-01-01
Instrumental variable estimators hold the promise of enabling researchers to estimate the effects of educational treatments that are not (or cannot be) randomly assigned but that may be affected by randomly assigned interventions. Examples of the use of instrumental variables in such cases are increasingly common in educational and social science…
Gravity dependence of the effect of optokinetic stimulation on the subjective visual vertical.
Ward, Bryan K; Bockisch, Christopher J; Caramia, Nicoletta; Bertolini, Giovanni; Tarnutzer, Alexander Andrea
2017-05-01
Accurate and precise estimates of direction of gravity are essential for spatial orientation. According to Bayesian theory, multisensory vestibular, visual, and proprioceptive input is centrally integrated in a weighted fashion based on the reliability of the component sensory signals. For otolithic input, a decreasing signal-to-noise ratio was demonstrated with increasing roll angle. We hypothesized that the weights of vestibular (otolithic) and extravestibular (visual/proprioceptive) sensors are roll-angle dependent and predicted an increased weight of extravestibular cues with increasing roll angle, potentially following the Bayesian hypothesis. To probe this concept, the subjective visual vertical (SVV) was assessed in different roll positions (≤ ± 120°, steps = 30°, n = 10) with/without presenting an optokinetic stimulus (velocity = ± 60°/s). The optokinetic stimulus biased the SVV toward the direction of stimulus rotation for roll angles ≥ ± 30° ( P < 0.005). Offsets grew from 3.9 ± 1.8° (upright) to 22.1 ± 11.8° (±120° roll tilt, P < 0.001). Trial-to-trial variability increased with roll angle, demonstrating a nonsignificant increase when providing optokinetic stimulation. Variability and optokinetic bias were correlated ( R 2 = 0.71, slope = 0.71, 95% confidence interval = 0.57-0.86). An optimal-observer model combining an optokinetic bias with vestibular input reproduced measured errors closely. These findings support the hypothesis of a weighted multisensory integration when estimating direction of gravity with optokinetic stimulation. Visual input was weighted more when vestibular input became less reliable, i.e., at larger roll-tilt angles. However, according to Bayesian theory, the variability of combined cues is always lower than the variability of each source cue. If the observed increase in variability, although nonsignificant, is true, either it must depend on an additional source of variability, added after SVV computation, or it would conflict with the Bayesian hypothesis. NEW & NOTEWORTHY Applying a rotating optokinetic stimulus while recording the subjective visual vertical in different whole body roll angles, we noted the optokinetic-induced bias to correlate with the roll angle. These findings allow the hypothesis that the established optimal weighting of single-sensory cues depending on their reliability to estimate direction of gravity could be extended to a bias caused by visual self-motion stimuli. Copyright © 2017 the American Physiological Society.
Compensation for Lithography Induced Process Variations during Physical Design
NASA Astrophysics Data System (ADS)
Chin, Eric Yiow-Bing
This dissertation addresses the challenge of designing robust integrated circuits in the deep sub micron regime in the presence of lithography process variability. By extending and combining existing process and circuit analysis techniques, flexible software frameworks are developed to provide detailed studies of circuit performance in the presence of lithography variations such as focus and exposure. Applications of these software frameworks to select circuits demonstrate the electrical impact of these variations and provide insight into variability aware compact models that capture the process dependent circuit behavior. These variability aware timing models abstract lithography variability from the process level to the circuit level and are used to estimate path level circuit performance with high accuracy with very little overhead in runtime. The Interconnect Variability Characterization (IVC) framework maps lithography induced geometrical variations at the interconnect level to electrical delay variations. This framework is applied to one dimensional repeater circuits patterned with both 90nm single patterning and 32nm double patterning technologies, under the presence of focus, exposure, and overlay variability. Studies indicate that single and double patterning layouts generally exhibit small variations in delay (between 1--3%) due to self compensating RC effects associated with dense layouts and overlay errors for layouts without self-compensating RC effects. The delay response of each double patterned interconnect structure is fit with a second order polynomial model with focus, exposure, and misalignment parameters with 12 coefficients and residuals of less than 0.1ps. The IVC framework is also applied to a repeater circuit with cascaded interconnect structures to emulate more complex layout scenarios, and it is observed that the variations on each segment average out to reduce the overall delay variation. The Standard Cell Variability Characterization (SCVC) framework advances existing layout-level lithography aware circuit analysis by extending it to cell-level applications utilizing a physically accurate approach that integrates process simulation, compact transistor models, and circuit simulation to characterize electrical cell behavior. This framework is applied to combinational and sequential cells in the Nangate 45nm Open Cell Library, and the timing response of these cells to lithography focus and exposure variations demonstrate Bossung like behavior. This behavior permits the process parameter dependent response to be captured in a nine term variability aware compact model based on Bossung fitting equations. For a two input NAND gate, the variability aware compact model captures the simulated response to an accuracy of 0.3%. The SCVC framework is also applied to investigate advanced process effects including misalignment and layout proximity. The abstraction of process variability from the layout level to the cell level opens up an entire new realm of circuit analysis and optimization and provides a foundation for path level variability analysis without the computationally expensive costs associated with joint process and circuit simulation. The SCVC framework is used with slight modification to illustrate the speedup and accuracy tradeoffs of using compact models. With variability aware compact models, the process dependent performance of a three stage logic circuit can be estimated to an accuracy of 0.7% with a speedup of over 50,000. Path level variability analysis also provides an accurate estimate (within 1%) of ring oscillator period in well under a second. Another significant advantage of variability aware compact models is that they can be easily incorporated into existing design methodologies for design optimization. This is demonstrated by applying cell swapping on a logic circuit to reduce the overall delay variability along a circuit path. By including these variability aware compact models in cell characterization libraries, design metrics such as circuit timing, power, area, and delay variability can be quickly assessed to optimize for the correct balance of all design metrics, including delay variability. Deterministic lithography variations can be easily captured using the variability aware compact models described in this dissertation. However, another prominent source of variability is random dopant fluctuations, which affect transistor threshold voltage and in turn circuit performance. The SCVC framework is utilized to investigate the interactions between deterministic lithography variations and random dopant fluctuations. Monte Carlo studies show that the output delay distribution in the presence of random dopant fluctuations is dependent on lithography focus and exposure conditions, with a 3.6 ps change in standard deviation across the focus exposure process window. This indicates that the electrical impact of random variations is dependent on systematic lithography variations, and this dependency should be included for precise analysis.
Confidence Intervals from Realizations of Simulated Nuclear Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, W.; Ratkiewicz, A.; Ressler, J. J.
2017-09-28
Various statistical techniques are discussed that can be used to assign a level of confidence in the prediction of models that depend on input data with known uncertainties and correlations. The particular techniques reviewed in this paper are: 1) random realizations of the input data using Monte-Carlo methods, 2) the construction of confidence intervals to assess the reliability of model predictions, and 3) resampling techniques to impose statistical constraints on the input data based on additional information. These techniques are illustrated with a calculation of the keff value, based on the 235U(n, f) and 239Pu (n, f) cross sections.
NASA Astrophysics Data System (ADS)
Radons, Günter
2008-06-01
The Preisach model with symmetric elementary hysteresis loops and uncorrelated input is treated analytically in detail. It is shown that the appearance of long-time tails in the output correlations is a quite general feature of this model. The exponent η of the algebraic decay t-η , which may take any positive value, is determined by the tails of the input and the Preisach density. We identify the system classes leading to identical algebraic tails. These results imply the occurrence of 1/f noise for a large class of hysteretic systems.
Reliability Coupled Sensitivity Based Design Approach for Gravity Retaining Walls
NASA Astrophysics Data System (ADS)
Guha Ray, A.; Baidya, D. K.
2012-09-01
Sensitivity analysis involving different random variables and different potential failure modes of a gravity retaining wall focuses on the fact that high sensitivity of a particular variable on a particular mode of failure does not necessarily imply a remarkable contribution to the overall failure probability. The present paper aims at identifying a probabilistic risk factor ( R f ) for each random variable based on the combined effects of failure probability ( P f ) of each mode of failure of a gravity retaining wall and sensitivity of each of the random variables on these failure modes. P f is calculated by Monte Carlo simulation and sensitivity analysis of each random variable is carried out by F-test analysis. The structure, redesigned by modifying the original random variables with the risk factors, is safe against all the variations of random variables. It is observed that R f for friction angle of backfill soil ( φ 1 ) increases and cohesion of foundation soil ( c 2 ) decreases with an increase of variation of φ 1 , while R f for unit weights ( γ 1 and γ 2 ) for both soil and friction angle of foundation soil ( φ 2 ) remains almost constant for variation of soil properties. The results compared well with some of the existing deterministic and probabilistic methods and found to be cost-effective. It is seen that if variation of φ 1 remains within 5 %, significant reduction in cross-sectional area can be achieved. But if the variation is more than 7-8 %, the structure needs to be modified. Finally design guidelines for different wall dimensions, based on the present approach, are proposed.
Evaluating variable rate fungicide applications for control of Sclerotinia
USDA-ARS?s Scientific Manuscript database
Oklahoma peanut growers continue to try to increase yields and reduce input costs. Perhaps the largest input in a peanut crop is fungicide applications. This is especially true for areas in the state that have high disease pressure from Sclerotinia. On average, a single fungicide application cost...
Human encroachment on the coastal zone has led to a rise in the delivery of nitrogen (N) to estuarine and near-shore waters. Potential routes of anthropogenic N inputs include export from estuaries, atmospheric deposition, and dissolved N inputs from groundwater outflow. Stable...
Learning a Novel Pattern through Balanced and Skewed Input
ERIC Educational Resources Information Center
McDonough, Kim; Trofimovich, Pavel
2013-01-01
This study compared the effectiveness of balanced and skewed input at facilitating the acquisition of the transitive construction in Esperanto, characterized by the accusative suffix "-n" and variable word order (SVO, OVS). Thai university students (N = 98) listened to 24 sentences under skewed (one noun with high token frequency) or…
Code of Federal Regulations, 2014 CFR
2014-10-01
... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...
Code of Federal Regulations, 2013 CFR
2013-10-01
... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...
Code of Federal Regulations, 2012 CFR
2012-10-01
... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...
Code of Federal Regulations, 2011 CFR
2011-10-01
... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...
Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti
2014-01-01
Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.
Anderson localization for radial tree-like random quantum graphs
NASA Astrophysics Data System (ADS)
Hislop, Peter D.; Post, Olaf
We prove that certain random models associated with radial, tree-like, rooted quantum graphs exhibit Anderson localization at all energies. The two main examples are the random length model (RLM) and the random Kirchhoff model (RKM). In the RLM, the lengths of each generation of edges form a family of independent, identically distributed random variables (iid). For the RKM, the iid random variables are associated with each generation of vertices and moderate the current flow through the vertex. We consider extensions to various families of decorated graphs and prove stability of localization with respect to decoration. In particular, we prove Anderson localization for the random necklace model.
Sensitivity analysis of a sound absorption model with correlated inputs
NASA Astrophysics Data System (ADS)
Chai, W.; Christen, J.-L.; Zine, A.-M.; Ichchou, M.
2017-04-01
Sound absorption in porous media is a complex phenomenon, which is usually addressed with homogenized models, depending on macroscopic parameters. Since these parameters emerge from the structure at microscopic scale, they may be correlated. This paper deals with sensitivity analysis methods of a sound absorption model with correlated inputs. Specifically, the Johnson-Champoux-Allard model (JCA) is chosen as the objective model with correlation effects generated by a secondary micro-macro semi-empirical model. To deal with this case, a relatively new sensitivity analysis method Fourier Amplitude Sensitivity Test with Correlation design (FASTC), based on Iman's transform, is taken into application. This method requires a priori information such as variables' marginal distribution functions and their correlation matrix. The results are compared to the Correlation Ratio Method (CRM) for reference and validation. The distribution of the macroscopic variables arising from the microstructure, as well as their correlation matrix are studied. Finally the results of tests shows that the correlation has a very important impact on the results of sensitivity analysis. Assessment of correlation strength among input variables on the sensitivity analysis is also achieved.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Demand Side Variability, and Network Variability studies, including input data, processing programs, and... should include the product or product groups carried under each listed contract; (k) Spreadsheets and...
A two-stage Monte Carlo approach to the expression of uncertainty with finite sample sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowder, Stephen Vernon; Moyer, Robert D.
2005-05-01
Proposed supplement I to the GUM outlines a 'propagation of distributions' approach to deriving the distribution of a measurand for any non-linear function and for any set of random inputs. The supplement's proposed Monte Carlo approach assumes that the distributions of the random inputs are known exactly. This implies that the sample sizes are effectively infinite. In this case, the mean of the measurand can be determined precisely using a large number of Monte Carlo simulations. In practice, however, the distributions of the inputs will rarely be known exactly, but must be estimated using possibly small samples. If these approximatedmore » distributions are treated as exact, the uncertainty in estimating the mean is not properly taken into account. In this paper, we propose a two-stage Monte Carlo procedure that explicitly takes into account the finite sample sizes used to estimate parameters of the input distributions. We will illustrate the approach with a case study involving the efficiency of a thermistor mount power sensor. The performance of the proposed approach will be compared to the standard GUM approach for finite samples using simple non-linear measurement equations. We will investigate performance in terms of coverage probabilities of derived confidence intervals.« less
Investigation of energy management strategies for photovoltaic systems - An analysis technique
NASA Technical Reports Server (NTRS)
Cull, R. C.; Eltimsahy, A. H.
1982-01-01
Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.
Investigation of energy management strategies for photovoltaic systems - An analysis technique
NASA Astrophysics Data System (ADS)
Cull, R. C.; Eltimsahy, A. H.
Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.
Wright, Marvin N; Dankowski, Theresa; Ziegler, Andreas
2017-04-15
The most popular approach for analyzing survival data is the Cox regression model. The Cox model may, however, be misspecified, and its proportionality assumption may not always be fulfilled. An alternative approach for survival prediction is random forests for survival outcomes. The standard split criterion for random survival forests is the log-rank test statistic, which favors splitting variables with many possible split points. Conditional inference forests avoid this split variable selection bias. However, linear rank statistics are utilized by default in conditional inference forests to select the optimal splitting variable, which cannot detect non-linear effects in the independent variables. An alternative is to use maximally selected rank statistics for the split point selection. As in conditional inference forests, splitting variables are compared on the p-value scale. However, instead of the conditional Monte-Carlo approach used in conditional inference forests, p-value approximations are employed. We describe several p-value approximations and the implementation of the proposed random forest approach. A simulation study demonstrates that unbiased split variable selection is possible. However, there is a trade-off between unbiased split variable selection and runtime. In benchmark studies of prediction performance on simulated and real datasets, the new method performs better than random survival forests if informative dichotomous variables are combined with uninformative variables with more categories and better than conditional inference forests if non-linear covariate effects are included. In a runtime comparison, the method proves to be computationally faster than both alternatives, if a simple p-value approximation is used. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Analysis on electronic control unit of continuously variable transmission
NASA Astrophysics Data System (ADS)
Cao, Shuanggui
Continuously variable transmission system can ensure that the engine work along the line of best fuel economy, improve fuel economy, save fuel and reduce harmful gas emissions. At the same time, continuously variable transmission allows the vehicle speed is more smooth and improves the ride comfort. Although the CVT technology has made great development, but there are many shortcomings in the CVT. The CVT system of ordinary vehicles now is still low efficiency, poor starting performance, low transmission power, and is not ideal controlling, high cost and other issues. Therefore, many scholars began to study some new type of continuously variable transmission. The transmission system with electronic systems control can achieve automatic control of power transmission, give full play to the characteristics of the engine to achieve optimal control of powertrain, so the vehicle is always traveling around the best condition. Electronic control unit is composed of the core processor, input and output circuit module and other auxiliary circuit module. Input module collects and process many signals sent by sensor and , such as throttle angle, brake signals, engine speed signal, speed signal of input and output shaft of transmission, manual shift signals, mode selection signals, gear position signal and the speed ratio signal, so as to provide its corresponding processing for the controller core.
Simple Sensitivity Analysis for Orion GNC
NASA Technical Reports Server (NTRS)
Pressburger, Tom; Hoelscher, Brian; Martin, Rodney; Sricharan, Kumar
2013-01-01
The performance of Orion flight software, especially its GNC software, is being analyzed by running Monte Carlo simulations of Orion spacecraft flights. The simulated performance is analyzed for conformance with flight requirements, expressed as performance constraints. Flight requirements include guidance (e.g. touchdown distance from target) and control (e.g., control saturation) as well as performance (e.g., heat load constraints). The Monte Carlo simulations disperse hundreds of simulation input variables, for everything from mass properties to date of launch.We describe in this paper a sensitivity analysis tool (Critical Factors Tool or CFT) developed to find the input variables or pairs of variables which by themselves significantly influence satisfaction of requirements or significantly affect key performance metrics (e.g., touchdown distance from target). Knowing these factors can inform robustness analysis, can inform where engineering resources are most needed, and could even affect operations. The contributions of this paper include the introduction of novel sensitivity measures, such as estimating success probability, and a technique for determining whether pairs of factors are interacting dependently or independently. The tool found that input variables such as moments, mass, thrust dispersions, and date of launch were found to be significant factors for success of various requirements. Examples are shown in this paper as well as a summary and physics discussion of EFT-1 driving factors that the tool found.
Robustness, evolvability, and the logic of genetic regulation.
Payne, Joshua L; Moore, Jason H; Wagner, Andreas
2014-01-01
In gene regulatory circuits, the expression of individual genes is commonly modulated by a set of regulating gene products, which bind to a gene's cis-regulatory region. This region encodes an input-output function, referred to as signal-integration logic, that maps a specific combination of regulatory signals (inputs) to a particular expression state (output) of a gene. The space of all possible signal-integration functions is vast and the mapping from input to output is many-to-one: For the same set of inputs, many functions (genotypes) yield the same expression output (phenotype). Here, we exhaustively enumerate the set of signal-integration functions that yield identical gene expression patterns within a computational model of gene regulatory circuits. Our goal is to characterize the relationship between robustness and evolvability in the signal-integration space of regulatory circuits, and to understand how these properties vary between the genotypic and phenotypic scales. Among other results, we find that the distributions of genotypic robustness are skewed, so that the majority of signal-integration functions are robust to perturbation. We show that the connected set of genotypes that make up a given phenotype are constrained to specific regions of the space of all possible signal-integration functions, but that as the distance between genotypes increases, so does their capacity for unique innovations. In addition, we find that robust phenotypes are (i) evolvable, (ii) easily identified by random mutation, and (iii) mutationally biased toward other robust phenotypes. We explore the implications of these latter observations for mutation-based evolution by conducting random walks between randomly chosen source and target phenotypes. We demonstrate that the time required to identify the target phenotype is independent of the properties of the source phenotype.
NASA Astrophysics Data System (ADS)
Xu, Chong-yu; Tunemar, Liselotte; Chen, Yongqin David; Singh, V. P.
2006-06-01
Sensitivity of hydrological models to input data errors have been reported in the literature for particular models on a single or a few catchments. A more important issue, i.e. how model's response to input data error changes as the catchment conditions change has not been addressed previously. This study investigates the seasonal and spatial effects of precipitation data errors on the performance of conceptual hydrological models. For this study, a monthly conceptual water balance model, NOPEX-6, was applied to 26 catchments in the Mälaren basin in Central Sweden. Both systematic and random errors were considered. For the systematic errors, 5-15% of mean monthly precipitation values were added to the original precipitation to form the corrupted input scenarios. Random values were generated by Monte Carlo simulation and were assumed to be (1) independent between months, and (2) distributed according to a Gaussian law of zero mean and constant standard deviation that were taken as 5, 10, 15, 20, and 25% of the mean monthly standard deviation of precipitation. The results show that the response of the model parameters and model performance depends, among others, on the type of the error, the magnitude of the error, physical characteristics of the catchment, and the season of the year. In particular, the model appears less sensitive to the random error than to the systematic error. The catchments with smaller values of runoff coefficients were more influenced by input data errors than were the catchments with higher values. Dry months were more sensitive to precipitation errors than were wet months. Recalibration of the model with erroneous data compensated in part for the data errors by altering the model parameters.
Robustness, Evolvability, and the Logic of Genetic Regulation
Moore, Jason H.; Wagner, Andreas
2014-01-01
In gene regulatory circuits, the expression of individual genes is commonly modulated by a set of regulating gene products, which bind to a gene’s cis-regulatory region. This region encodes an input-output function, referred to as signal-integration logic, that maps a specific combination of regulatory signals (inputs) to a particular expression state (output) of a gene. The space of all possible signal-integration functions is vast and the mapping from input to output is many-to-one: for the same set of inputs, many functions (genotypes) yield the same expression output (phenotype). Here, we exhaustively enumerate the set of signal-integration functions that yield idential gene expression patterns within a computational model of gene regulatory circuits. Our goal is to characterize the relationship between robustness and evolvability in the signal-integration space of regulatory circuits, and to understand how these properties vary between the genotypic and phenotypic scales. Among other results, we find that the distributions of genotypic robustness are skewed, such that the majority of signal-integration functions are robust to perturbation. We show that the connected set of genotypes that make up a given phenotype are constrained to specific regions of the space of all possible signal-integration functions, but that as the distance between genotypes increases, so does their capacity for unique innovations. In addition, we find that robust phenotypes are (i) evolvable, (ii) easily identified by random mutation, and (iii) mutationally biased toward other robust phenotypes. We explore the implications of these latter observations for mutation-based evolution by conducting random walks between randomly chosen source and target phenotypes. We demonstrate that the time required to identify the target phenotype is independent of the properties of the source phenotype. PMID:23373974
NASA Astrophysics Data System (ADS)
Liu, Zhangjun; Liu, Zenghui; Peng, Yongbo
2018-03-01
In view of the Fourier-Stieltjes integral formula of multivariate stationary stochastic processes, a unified formulation accommodating spectral representation method (SRM) and proper orthogonal decomposition (POD) is deduced. By introducing random functions as constraints correlating the orthogonal random variables involved in the unified formulation, the dimension-reduction spectral representation method (DR-SRM) and the dimension-reduction proper orthogonal decomposition (DR-POD) are addressed. The proposed schemes are capable of representing the multivariate stationary stochastic process with a few elementary random variables, bypassing the challenges of high-dimensional random variables inherent in the conventional Monte Carlo methods. In order to accelerate the numerical simulation, the technique of Fast Fourier Transform (FFT) is integrated with the proposed schemes. For illustrative purposes, the simulation of horizontal wind velocity field along the deck of a large-span bridge is proceeded using the proposed methods containing 2 and 3 elementary random variables. Numerical simulation reveals the usefulness of the dimension-reduction representation methods.
Spatial patterns of throughfall isotopic composition at the event and seasonal timescales
Scott T. Allen; Richard F. Keim; Jeffrey J. McDonnell
2015-01-01
Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability...
Generating Variable and Random Schedules of Reinforcement Using Microsoft Excel Macros
ERIC Educational Resources Information Center
Bancroft, Stacie L.; Bourret, Jason C.
2008-01-01
Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time.…
NASA Astrophysics Data System (ADS)
Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.
2017-12-01
Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.
Optimization Of Mean-Semivariance-Skewness Portfolio Selection Model In Fuzzy Random Environment
NASA Astrophysics Data System (ADS)
Chatterjee, Amitava; Bhattacharyya, Rupak; Mukherjee, Supratim; Kar, Samarjit
2010-10-01
The purpose of the paper is to construct a mean-semivariance-skewness portfolio selection model in fuzzy random environment. The objective is to maximize the skewness with predefined maximum risk tolerance and minimum expected return. Here the security returns in the objectives and constraints are assumed to be fuzzy random variables in nature and then the vagueness of the fuzzy random variables in the objectives and constraints are transformed into fuzzy variables which are similar to trapezoidal numbers. The newly formed fuzzy model is then converted into a deterministic optimization model. The feasibility and effectiveness of the proposed method is verified by numerical example extracted from Bombay Stock Exchange (BSE). The exact parameters of fuzzy membership function and probability density function are obtained through fuzzy random simulating the past dates.
Random Variables: Simulations and Surprising Connections.
ERIC Educational Resources Information Center
Quinn, Robert J.; Tomlinson, Stephen
1999-01-01
Features activities for advanced second-year algebra students in grades 11 and 12. Introduces three random variables and considers an empirical and theoretical probability for each. Uses coins, regular dice, decahedral dice, and calculators. (ASK)
Binomial leap methods for simulating stochastic chemical kinetics.
Tian, Tianhai; Burrage, Kevin
2004-12-01
This paper discusses efficient simulation methods for stochastic chemical kinetics. Based on the tau-leap and midpoint tau-leap methods of Gillespie [D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001)], binomial random variables are used in these leap methods rather than Poisson random variables. The motivation for this approach is to improve the efficiency of the Poisson leap methods by using larger stepsizes. Unlike Poisson random variables whose range of sample values is from zero to infinity, binomial random variables have a finite range of sample values. This probabilistic property has been used to restrict possible reaction numbers and to avoid negative molecular numbers in stochastic simulations when larger stepsize is used. In this approach a binomial random variable is defined for a single reaction channel in order to keep the reaction number of this channel below the numbers of molecules that undergo this reaction channel. A sampling technique is also designed for the total reaction number of a reactant species that undergoes two or more reaction channels. Samples for the total reaction number are not greater than the molecular number of this species. In addition, probability properties of the binomial random variables provide stepsize conditions for restricting reaction numbers in a chosen time interval. These stepsize conditions are important properties of robust leap control strategies. Numerical results indicate that the proposed binomial leap methods can be applied to a wide range of chemical reaction systems with very good accuracy and significant improvement on efficiency over existing approaches. (c) 2004 American Institute of Physics.
ERIC Educational Resources Information Center
Sebro, Negusse Yohannes; Goshu, Ayele Taye
2017-01-01
This study aims to explore Bayesian multilevel modeling to investigate variations of average academic achievement of grade eight school students. A sample of 636 students is randomly selected from 26 private and government schools by a two-stage stratified sampling design. Bayesian method is used to estimate the fixed and random effects. Input and…
Hernandez, Oscar; Hernandez, Lilibeth; Vera, David; Santander, Alcides; Zurek, Eduardo
2015-01-01
The neurons of the Thalamic Reticular Nucleus (TRNn) respond to inputs in two activity modes called burst and tonic firing and both can be observed in different physiological states. The functional states of the thalamus depend in part on the properties of synaptic transmission between the TRNn and the thalamocortical and corticothalamic neurons. A dendrite can receive inhibitory and excitatory postsynaptic potentials. The novelties presented in this paper can be summarized as follows: First, it shows, through a computational simulation, that the burst and tonic firings observed in the TRNn soma could be explained as a product of random synaptic inputs on the distal dendrites, the tonic firings are generated by random excitatory stimuli, and the burst firings are generated by two different types of stimuli: inhibitory random stimuli, and a combination of inhibitory (from TRNn) and excitatory (from corticothalamic and thalamocortical neurons) random stimuli; second, according to in vivo recordings, we have found that the burst observed in the TRNn soma has graduate properties that are proportional to the stimuli frequency; and third, a novel method for showing in a quantitative manner the accelerando-decelerando pattern is proposed.
MODELING OF HUMAN EXPOSURE TO IN-VEHICLE PM2.5 FROM ENVIRONMENTAL TOBACCO SMOKE
Cao, Ye; Frey, H. Christopher
2012-01-01
Environmental tobacco smoke (ETS) is estimated to be a significant contributor to in-vehicle human exposure to fine particulate matter of 2.5 µm or smaller (PM2.5). A critical assessment was conducted of a mass balance model for estimating PM2.5 concentration with smoking in a motor vehicle. Recommendations for the range of inputs to the mass-balance model are given based on literature review. Sensitivity analysis was used to determine which inputs should be prioritized for data collection. Air exchange rate (ACH) and the deposition rate have wider relative ranges of variation than other inputs, representing inter-individual variability in operations, and inter-vehicle variability in performance, respectively. Cigarette smoking and emission rates, and vehicle interior volume, are also key inputs. The in-vehicle ETS mass balance model was incorporated into the Stochastic Human Exposure and Dose Simulation for Particulate Matter (SHEDS-PM) model to quantify the potential magnitude and variability of in-vehicle exposures to ETS. The in-vehicle exposure also takes into account near-road incremental PM2.5 concentration from on-road emissions. Results of probabilistic study indicate that ETS is a key contributor to the in-vehicle average and high-end exposure. Factors that mitigate in-vehicle ambient PM2.5 exposure lead to higher in-vehicle ETS exposure, and vice versa. PMID:23060732
Computing the structural influence matrix for biological systems.
Giordano, Giulia; Cuba Samaniego, Christian; Franco, Elisa; Blanchini, Franco
2016-06-01
We consider the problem of identifying structural influences of external inputs on steady-state outputs in a biological network model. We speak of a structural influence if, upon a perturbation due to a constant input, the ensuing variation of the steady-state output value has the same sign as the input (positive influence), the opposite sign (negative influence), or is zero (perfect adaptation), for any feasible choice of the model parameters. All these signs and zeros can constitute a structural influence matrix, whose (i, j) entry indicates the sign of steady-state influence of the jth system variable on the ith variable (the output caused by an external persistent input applied to the jth variable). Each entry is structurally determinate if the sign does not depend on the choice of the parameters, but is indeterminate otherwise. In principle, determining the influence matrix requires exhaustive testing of the system steady-state behaviour in the widest range of parameter values. Here we show that, in a broad class of biological networks, the influence matrix can be evaluated with an algorithm that tests the system steady-state behaviour only at a finite number of points. This algorithm also allows us to assess the structural effect of any perturbation, such as variations of relevant parameters. Our method is applied to nontrivial models of biochemical reaction networks and population dynamics drawn from the literature, providing a parameter-free insight into the system dynamics.
Do bioclimate variables improve performance of climate envelope models?
Watling, James I.; Romañach, Stephanie S.; Bucklin, David N.; Speroterra, Carolina; Brandt, Laura A.; Pearlstine, Leonard G.; Mazzotti, Frank J.
2012-01-01
Climate envelope models are widely used to forecast potential effects of climate change on species distributions. A key issue in climate envelope modeling is the selection of predictor variables that most directly influence species. To determine whether model performance and spatial predictions were related to the selection of predictor variables, we compared models using bioclimate variables with models constructed from monthly climate data for twelve terrestrial vertebrate species in the southeastern USA using two different algorithms (random forests or generalized linear models), and two model selection techniques (using uncorrelated predictors or a subset of user-defined biologically relevant predictor variables). There were no differences in performance between models created with bioclimate or monthly variables, but one metric of model performance was significantly greater using the random forest algorithm compared with generalized linear models. Spatial predictions between maps using bioclimate and monthly variables were very consistent using the random forest algorithm with uncorrelated predictors, whereas we observed greater variability in predictions using generalized linear models.
Widaman, Keith F.; Grimm, Kevin J.; Early, Dawnté R.; Robins, Richard W.; Conger, Rand D.
2013-01-01
Difficulties arise in multiple-group evaluations of factorial invariance if particular manifest variables are missing completely in certain groups. Ad hoc analytic alternatives can be used in such situations (e.g., deleting manifest variables), but some common approaches, such as multiple imputation, are not viable. At least 3 solutions to this problem are viable: analyzing differing sets of variables across groups, using pattern mixture approaches, and a new method using random number generation. The latter solution, proposed in this article, is to generate pseudo-random normal deviates for all observations for manifest variables that are missing completely in a given sample and then to specify multiple-group models in a way that respects the random nature of these values. An empirical example is presented in detail comparing the 3 approaches. The proposed solution can enable quantitative comparisons at the latent variable level between groups using programs that require the same number of manifest variables in each group. PMID:24019738
Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network.
Ponzi, Adam; Wickens, Jeff
2012-01-01
The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior.
Input Dependent Cell Assembly Dynamics in a Model of the Striatal Medium Spiny Neuron Network
Ponzi, Adam; Wickens, Jeff
2012-01-01
The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior. PMID:22438838
NASA Astrophysics Data System (ADS)
Huang, Ya; Ferguson, Neil S.
2018-04-01
The study implements a classic signal analysis technique, typically applied to structural dynamics, to examine the nonlinear characteristics seen in the apparent mass of a recumbent person during whole-body horizontal random vibration. The nonlinearity in the present context refers to the amount of 'output' that is not correlated or coherent to the 'input', usually indicated by values of the coherence function that are less than unity. The analysis is based on the longitudinal horizontal inline and vertical cross-axis apparent mass of twelve human subjects exposed to 0.25-20 Hz random acceleration vibration at 0.125 and 1.0 ms-2 r.m.s. The conditioned reverse path frequency response functions (FRF) reveal that the uncorrelated 'linear' relationship between physical input (acceleration) and outputs (inline and cross-axis forces) has much greater variation around the primary resonance frequency between 0.5 and 5 Hz. By reversing the input and outputs of the physical system, it is possible to assemble additional mathematical inputs from the physical output forces and mathematical constructs (e.g. square root of inline force). Depending on the specific construct, this can improve the summed multiple coherence at frequencies where the response magnitude is low. In the present case this is between 6 and 20 Hz. The statistical measures of the response force time histories of each of the twelve subjects indicate that there are potential anatomical 'end-stops' for the sprung mass in the inline axis. No previous study has applied this reverse path multi-input-single-output approach to human vibration kinematic and kinetic data before. The implementation demonstrated in the present study will allow new and existing data to be examined using this different analytical tool.
NASA Astrophysics Data System (ADS)
Azimi, Ehsan; Behrad, Alireza; Ghaznavi-Ghoushchi, Mohammad Bagher; Shanbehzadeh, Jamshid
2016-11-01
The projective model is an important mapping function for the calculation of global transformation between two images. However, its hardware implementation is challenging because of a large number of coefficients with different required precisions for fixed point representation. A VLSI hardware architecture is proposed for the calculation of a global projective model between input and reference images and refining false matches using random sample consensus (RANSAC) algorithm. To make the hardware implementation feasible, it is proved that the calculation of the projective model can be divided into four submodels comprising two translations, an affine model and a simpler projective mapping. This approach makes the hardware implementation feasible and considerably reduces the required number of bits for fixed point representation of model coefficients and intermediate variables. The proposed hardware architecture for the calculation of a global projective model using the RANSAC algorithm was implemented using Verilog hardware description language and the functionality of the design was validated through several experiments. The proposed architecture was synthesized by using an application-specific integrated circuit digital design flow utilizing 180-nm CMOS technology as well as a Virtex-6 field programmable gate array. Experimental results confirm the efficiency of the proposed hardware architecture in comparison with software implementation.
NASA Astrophysics Data System (ADS)
Sui, Liansheng; Xu, Minjie; Tian, Ailing
2017-04-01
A novel optical image encryption scheme is proposed based on quick response code and high dimension chaotic system, where only the intensity distribution of encoded information is recorded as ciphertext. Initially, the quick response code is engendered from the plain image and placed in the input plane of the double random phase encoding architecture. Then, the code is encrypted to the ciphertext with noise-like distribution by using two cascaded gyrator transforms. In the process of encryption, the parameters such as rotation angles and random phase masks are generated as interim variables and functions based on Chen system. A new phase retrieval algorithm is designed to reconstruct the initial quick response code in the process of decryption, in which a priori information such as three position detection patterns is used as the support constraint. The original image can be obtained without any energy loss by scanning the decrypted code with mobile devices. The ciphertext image is the real-valued function which is more convenient for storing and transmitting. Meanwhile, the security of the proposed scheme is enhanced greatly due to high sensitivity of initial values of Chen system. Extensive cryptanalysis and simulation have performed to demonstrate the feasibility and effectiveness of the proposed scheme.
NASA Astrophysics Data System (ADS)
Validi, AbdoulAhad
2014-03-01
This study introduces a non-intrusive approach in the context of low-rank separated representation to construct a surrogate of high-dimensional stochastic functions, e.g., PDEs/ODEs, in order to decrease the computational cost of Markov Chain Monte Carlo simulations in Bayesian inference. The surrogate model is constructed via a regularized alternative least-square regression with Tikhonov regularization using a roughening matrix computing the gradient of the solution, in conjunction with a perturbation-based error indicator to detect optimal model complexities. The model approximates a vector of a continuous solution at discrete values of a physical variable. The required number of random realizations to achieve a successful approximation linearly depends on the function dimensionality. The computational cost of the model construction is quadratic in the number of random inputs, which potentially tackles the curse of dimensionality in high-dimensional stochastic functions. Furthermore, this vector-valued separated representation-based model, in comparison to the available scalar-valued case, leads to a significant reduction in the cost of approximation by an order of magnitude equal to the vector size. The performance of the method is studied through its application to three numerical examples including a 41-dimensional elliptic PDE and a 21-dimensional cavity flow.
Modeling nitrate at domestic and public-supply well depths in the Central Valley, California
Nolan, Bernard T.; Gronberg, JoAnn M.; Faunt, Claudia C.; Eberts, Sandra M.; Belitz, Ken
2014-01-01
Aquifer vulnerability models were developed to map groundwater nitrate concentration at domestic and public-supply well depths in the Central Valley, California. We compared three modeling methods for ability to predict nitrate concentration >4 mg/L: logistic regression (LR), random forest classification (RFC), and random forest regression (RFR). All three models indicated processes of nitrogen fertilizer input at the land surface, transmission through coarse-textured, well-drained soils, and transport in the aquifer to the well screen. The total percent correct predictions were similar among the three models (69–82%), but RFR had greater sensitivity (84% for shallow wells and 51% for deep wells). The results suggest that RFR can better identify areas with high nitrate concentration but that LR and RFC may better describe bulk conditions in the aquifer. A unique aspect of the modeling approach was inclusion of outputs from previous, physically based hydrologic and textural models as predictor variables, which were important to the models. Vertical water fluxes in the aquifer and percent coarse material above the well screen were ranked moderately high-to-high in the RFR models, and the average vertical water flux during the irrigation season was highly significant (p < 0.0001) in logistic regression.
NASA Astrophysics Data System (ADS)
Sokołowski, Damian; Kamiński, Marcin
2018-01-01
This study proposes a framework for determination of basic probabilistic characteristics of the orthotropic homogenized elastic properties of the periodic composite reinforced with ellipsoidal particles and a high stiffness contrast between the reinforcement and the matrix. Homogenization problem, solved by the Iterative Stochastic Finite Element Method (ISFEM) is implemented according to the stochastic perturbation, Monte Carlo simulation and semi-analytical techniques with the use of cubic Representative Volume Element (RVE) of this composite containing single particle. The given input Gaussian random variable is Young modulus of the matrix, while 3D homogenization scheme is based on numerical determination of the strain energy of the RVE under uniform unit stretches carried out in the FEM system ABAQUS. The entire series of several deterministic solutions with varying Young modulus of the matrix serves for the Weighted Least Squares Method (WLSM) recovery of polynomial response functions finally used in stochastic Taylor expansions inherent for the ISFEM. A numerical example consists of the High Density Polyurethane (HDPU) reinforced with the Carbon Black particle. It is numerically investigated (1) if the resulting homogenized characteristics are also Gaussian and (2) how the uncertainty in matrix Young modulus affects the effective stiffness tensor components and their PDF (Probability Density Function).
NASA Astrophysics Data System (ADS)
Ciriello, V.; Lauriola, I.; Bonvicini, S.; Cozzani, V.; Di Federico, V.; Tartakovsky, Daniel M.
2017-11-01
Ubiquitous hydrogeological uncertainty undermines the veracity of quantitative predictions of soil and groundwater contamination due to accidental hydrocarbon spills from onshore pipelines. Such predictions, therefore, must be accompanied by quantification of predictive uncertainty, especially when they are used for environmental risk assessment. We quantify the impact of parametric uncertainty on quantitative forecasting of temporal evolution of two key risk indices, volumes of unsaturated and saturated soil contaminated by a surface spill of light nonaqueous-phase liquids. This is accomplished by treating the relevant uncertain parameters as random variables and deploying two alternative probabilistic models to estimate their effect on predictive uncertainty. A physics-based model is solved with a stochastic collocation method and is supplemented by a global sensitivity analysis. A second model represents the quantities of interest as polynomials of random inputs and has a virtually negligible computational cost, which enables one to explore any number of risk-related contamination scenarios. For a typical oil-spill scenario, our method can be used to identify key flow and transport parameters affecting the risk indices, to elucidate texture-dependent behavior of different soils, and to evaluate, with a degree of confidence specified by the decision-maker, the extent of contamination and the correspondent remediation costs.
Propagation of variability in railway dynamic simulations: application to virtual homologation
NASA Astrophysics Data System (ADS)
Funfschilling, Christine; Perrin, Guillaume; Kraft, Sönke
2012-01-01
Railway dynamic simulations are increasingly used to predict and analyse the behaviour of the vehicle and of the track during their whole life cycle. Up to now however, no simulation has been used in the certification procedure even if the expected benefits are important: cheaper and shorter procedures, more objectivity, better knowledge of the behaviour around critical situations. Deterministic simulations are nevertheless too poor to represent the whole physical of the track/vehicle system which contains several sources of variability: variability of the mechanical parameters of a train among a class of vehicles (mass, stiffness and damping of different suspensions), variability of the contact parameters (friction coefficient, wheel and rail profiles) and variability of the track design and quality. This variability plays an important role on the safety, on the ride quality, and thus on the certification criteria. When using the simulation for certification purposes, it seems therefore crucial to take into account the variability of the different inputs. The main goal of this article is thus to propose a method to introduce the variability in railway dynamics. A four-step method is described namely the definition of the stochastic problem, the modelling of the inputs variability, the propagation and the analysis of the output. Each step is illustrated with railway examples.
A tool for the calculation of rockfall fragility curves for masonry buildings
NASA Astrophysics Data System (ADS)
Mavrouli, Olga
2017-04-01
Masonries are common structures in mountainous and coastal areas and they exhibit substantial vulnerability to rockfalls. For big rockfall events or precarious structures the damage is very high and the repair is not cost-effective. Nonetheless, for small or moderate rockfalls, the damage may vary in function of the characteristics of the impacting rock blocks and of the buildings. The evaluation of the expected damage for masonry buildings, and for different small and moderate rockfall scenarios, is useful for assessing the expected direct loss at constructed areas, and its implications for life safety. A tool for the calculation of fragility curves for masonry buildings which are impacted by rock blocks is presented. The fragility curves provide the probability of exceeding a given damage state (low, moderate and high) for increasing impact energies of the rock blocks on the walls. The damage states are defined according to a damage index equal to the percentage of the damaged area of a wall, as being proportional to the repair cost. Aleatoric and epistemic uncertainties are incorporated with respect to the (i) rock block velocity, (ii) rock block size, (iii) masonry width, and (iv) masonry resistance. The calculation of the fragility curves is applied using a Monte Carlo simulation. Given user-defined data for the average value of these four parameters and their variability, random scenarios are developed, the respective damage index is assessed for each scenario, and the probability of exceedance of each damage state is calculated. For the assessment of the damage index, a database developed by the results of 576 analytical simulations is used. The variables range is: wall width 0.4 - 1.0 m, wall tensile strength 0.1 - 0.6 MPa, rock velocity 1-20 m/s, rock size 1-20 m3. Nonetheless this tool permits the use of alternative databases, on the condition that they contain data that correlate the damage with the four aforementioned variables. The fragility curves can be calculated using this tool either for single or for groups of buildings, as long as their characteristics are properly reflected in the variability of the input parameters. Selected examples of fragility curves sets are presented demonstrating the effect of the input parameters on the calculated probability of exceeding a given damage state, for different masonry typologies (stone and brick).
NASA Astrophysics Data System (ADS)
Lü, Hui; Shangguan, Wen-Bin; Yu, Dejie
2017-09-01
Automotive brake systems are always subjected to various types of uncertainties and two types of random-fuzzy uncertainties may exist in the brakes. In this paper, a unified approach is proposed for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties. In the proposed approach, two uncertainty analysis models with mixed variables are introduced to model the random-fuzzy uncertainties. The first one is the random and fuzzy model, in which random variables and fuzzy variables exist simultaneously and independently. The second one is the fuzzy random model, in which uncertain parameters are all treated as random variables while their distribution parameters are expressed as fuzzy numbers. Firstly, the fuzziness is discretized by using α-cut technique and the two uncertainty analysis models are simplified into random-interval models. Afterwards, by temporarily neglecting interval uncertainties, the random-interval models are degraded into random models, in which the expectations, variances, reliability indexes and reliability probabilities of system stability functions are calculated. And then, by reconsidering the interval uncertainties, the bounds of the expectations, variances, reliability indexes and reliability probabilities are computed based on Taylor series expansion. Finally, by recomposing the analysis results at each α-cut level, the fuzzy reliability indexes and probabilities can be obtained, by which the brake squeal instability can be evaluated. The proposed approach gives a general framework to deal with both types of random-fuzzy uncertainties that may exist in the brakes and its effectiveness is demonstrated by numerical examples. It will be a valuable supplement to the systematic study of brake squeal considering uncertainty.
African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption
NASA Astrophysics Data System (ADS)
van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep
2014-05-01
The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.
640 X 480 PtSi MOS infrared imager
NASA Astrophysics Data System (ADS)
Sauer, Donald J.; Shallcross, Frank V.; Hseuh, Fu-Lung; Meray, Grazyna M.; Levine, Peter A.; Gilmartin, Harvey R.; Villani, Thomas S.; Esposito, Benjamin J.; Tower, John R.
1992-09-01
The design and performance of a 640 (H) X 480 (V) element PtSi Schottky-barrier infrared image sensor employing a low-noise MOS X-Y addressable readout multiplexer and on-chip low-noise output amplifier is described. The imager achieves an NEDT equals 0.10 K at 30 Hz frame rates with f/1.5 optics (300 K background). The MOS design provides a measured saturation level of 1.5 X 10(superscript 6) electrons (5 V bias) and a noise floor of 300 rms electrons per pixel. A multiplexed horizontal/vertical input address port and on-chip decoding is used to load scan data into CMOS horizontal and vertical scanning registers. This allows random access to any sub-frame in the 640 X 480 element focal plane array. By changing the digital pattern applied to the vertical scan register, the FPA can be operated in either an interlaced or non-interlaced format, and the integration time may be varied over a wide range (60 microsecond(s) to > 30 ms, for RS 170 operation) resulting in `electronic shutter' variable exposure control. The pixel size of 24 micrometers X 24 micrometers results in a fill factor of 38% for 1.5 micrometers process design rules. The overall die size for the IR imager is 13.7 mm X 17.2 mm. All digital inputs to the chip are TTL compatible and include ESD protection.
Remote Sensing/gis Integration for Site Planning and Resource Management
NASA Technical Reports Server (NTRS)
Fellows, J. D.
1982-01-01
The development of an interactive/batch gridded information system (array of cells georeferenced to USGS quad sheets) and interfacing application programs (e.g., hydrologic models) is discussed. This system allows non-programer users to request any data set(s) stored in the data base by inputing any random polygon's (watershed, political zone) boundary points. The data base information contained within this polygon can be used to produce maps, statistics, and define model parameters for the area. Present/proposed conditions for the area may be compared by inputing future usage (land cover, soils, slope, etc.). This system, known as the Hydrologic Analysis Program (HAP), is especially effective in the real time analysis of proposed land cover changes on runoff hydrographs and graphics/statistics resource inventories of random study area/watersheds.