Precision absolute-value amplifier for a precision voltmeter
Hearn, W.E.; Rondeau, D.J.
1982-10-19
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
Precision absolute value amplifier for a precision voltmeter
Hearn, William E.; Rondeau, Donald J.
1985-01-01
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
Electromagnetic interference filter for automotive electrical systems
Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D
2013-07-02
A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.
Bittner, J.W.; Biscardi, R.W.
1991-03-19
An electronic measurement circuit is disclosed for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals. 2 figures.
Bittner, John W.; Biscardi, Richard W.
1991-01-01
An electronic measurement circuit for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals.
Capacitive Trans-Impedance Amplifier Circuit with Charge Injection Compensation
NASA Technical Reports Server (NTRS)
Milkov, Mihail M. (Inventor); Gulbransen, David J. (Inventor)
2016-01-01
A capacitive trans-impedance amplifier circuit with charge injection compensation is provided. A feedback capacitor is connected between an inverting input port and an output port of an amplifier. A MOS reset switch has source and drain terminals connected between the inverting input and output ports of the amplifier, and a gate terminal controlled by a reset signal. The reset switch is open or inactive during an integration phase, and closed or active to electrically connect the inverting input port and output port of the amplifier during a reset phase. One or more compensation capacitors are provided that are not implemented as gate oxide or MOS capacitors. Each compensation capacitor has a first port connected to a compensation signal that is a static signal or a toggling compensation signal that toggles between two compensation voltage values, and a second port connected to the inverting input port of the amplifier.
Two terminal micropower radar sensor
McEwan, Thomas E.
1995-01-01
A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.
Two terminal micropower radar sensor
McEwan, T.E.
1995-11-07
A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.
Ferroresonant flux coupled battery charger
NASA Technical Reports Server (NTRS)
McLyman, Colonel W. T. (Inventor)
1987-01-01
A battery charger for incorporation into an electric-powered vehicle is disclosed. The charger includes a ferroresonant voltage-regulating circuit for providing an output voltage proportional to the frequency of an input AC voltage. A high frequency converter converts a DC voltage supplied, for example, from a rectifier connected to a standard AC outlet, to a controlled frequency AC voltage which is supplied to the input of the ferroresonant circuit. The ferroresonant circuit includes an output, a saturable core transformer connected across the output, and a first linear inductor and a capacitor connected in series across the saturable core transformer and tuned to resonate at the third harmonic of the AC voltage from the high frequency converter. The ferroresonant circuit further includes a second linear inductor connected between the input of the ferroresonant circuit and the saturable core transformer. The output voltage from the ferroresonant circuit is rectified and applied across a pair of output terminals adapted to be connected to the battery to be charged. A feedback circuit compares the voltage across the output terminals with a reference voltage and controls the frequency of the AC voltage produced by the high frequency converter to maintain the voltage across the output terminals at a predetermined value. The second linear inductor provides a highly reactive load in the event of a fault across the output terminals to render the charger short-circuit proof.
System and method for determining stator winding resistance in an AC motor
Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Theisen, Peter J [West Bend, WI
2011-05-31
A system and method for determining stator winding resistance in an AC motor is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of an AC motor. The circuit includes at least one contactor and at least one switch to control current flow and terminal voltages in the AC motor. The system also includes a controller connected to the circuit and configured to modify a switching time of the at least one switch to create a DC component in an output of the system corresponding to an input to the AC motor and determine a stator winding resistance of the AC motor based on the injected DC component of the voltage and current.
Solid state safety jumper cables
Kronberg, James W.
1993-01-01
Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating "positive" terminals, and one has a lower voltage than the reference voltage, indicating "negative" terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.
Solid state safety jumper cables
Kronberg, J.W.
1993-02-23
Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating negative'' terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.
Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI
2011-12-27
A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.
System and method for determining stator winding resistance in an AC motor using motor drives
Lu, Bin; Habetler, Thomas G; Zhang, Pinjia
2013-02-26
A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.
Amorphous silicon cell array powered solar tracking apparatus
Hanak, Joseph J.
1985-01-01
An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.
NASA Technical Reports Server (NTRS)
Pryor, Richard Lee (Inventor)
1977-01-01
A line driver including a pair of complementary transistors having their conduction paths serially connected between an operating and a reference potential and their bases connected through a first switch to a signal input terminal. A second switch is connected between the common base connection and the common connection of the conduction paths. With the second switch open and the first closed, an output voltage, responsive to the input signal, corresponding to first or second binary values is obtained. When the second switch is closed and the first opened, the transistor pair is turned off, disconnecting the line driver from its load, thereby providing tri-state logic operation.
Dual amplitude pulse generator for radiation detectors
Hoggan, Jerry M.; Kynaston, Ronnie L.; Johnson, Larry O.
2001-01-01
A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.
Logarithmic circuit with wide dynamic range
NASA Technical Reports Server (NTRS)
Wiley, P. H.; Manus, E. A. (Inventor)
1978-01-01
A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.
Chaotic behaviors of operational amplifiers.
Yim, Geo-Su; Ryu, Jung-Wan; Park, Young-Jai; Rim, Sunghwan; Lee, Soo-Young; Kye, Won-Ho; Kim, Chil-Min
2004-04-01
We investigate nonlinear dynamical behaviors of operational amplifiers. When the output terminal of an operational amplifier is connected to the inverting input terminal, the circuit exhibits period-doubling bifurcation, chaos, and periodic windows, depending on the voltages of the positive and the negative power supplies. We study these nonlinear dynamical characteristics of this electronic circuit experimentally.
1990-09-01
FORMULATION OF PROBLEM denoted by AZ and is given by With reference to a cylindrical polar coordinate 17-Z-Zs.- P, 1." * ()d. (4a) system (p,O,Z) the...without limit as a approaches zero. This formulation is not actually valid in this limiting case since one terminal of the generator would then be connected...current. APPE.IXx I Formulation of the input impedance. An expression is here for- mulated for the input impedance at the terminals of an antenna
System level latchup mitigation for single event and transient radiation effects on electronics
Kimbrough, J.R.; Colella, N.J.
1997-09-30
A ``blink`` technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements. 18 figs.
System level latchup mitigation for single event and transient radiation effects on electronics
Kimbrough, Joseph Robert; Colella, Nicholas John
1997-01-01
A "blink" technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements.
Active energy recovery clamping circuit to improve the performance of power converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, Bret; Barkley, Adam
2017-05-09
A regenerative clamping circuit for a power converter using clamping diodes to transfer charge to a clamping capacitor and a regenerative converter to transfer charge out of the clamping capacitor back to the power supply input connection. The regenerative converter uses a switch connected to the midpoint of a series connected inductor and capacitor. The ends of the inductor and capacitor series are connected across the terminals of the power supply to be in parallel with the power supply.
NASA Technical Reports Server (NTRS)
Stute, Robert A. (Inventor); Galloway, F. Houston (Inventor); Medelius, Pedro J. (Inventor); Swindle, Robert W. (Inventor); Bierman, Tracy A. (Inventor)
1996-01-01
A remote monitor alarm system monitors discrete alarm and analog power supply voltage conditions at remotely located communications terminal equipment. A central monitoring unit (CMU) is connected via serial data links to each of a plurality of remote terminal units (RTUS) that monitor the alarm and power supply conditions of the remote terminal equipment. Each RTU can monitor and store condition information of both discrete alarm points and analog power supply voltage points in its associated communications terminal equipment. The stored alarm information is periodically transmitted to the CMU in response to sequential polling of the RTUS. The number of monitored alarm inputs and permissible voltage ranges for the analog inputs can be remotely configured at the CMU and downloaded into programmable memory at each RTU. The CMU includes a video display, a hard disk memory, a line printer and an audio alarm for communicating and storing the alarm information received from each RTU.
Ghashghaei, H T; Hilgetag, C C; Barbas, H
2007-02-01
The prefrontal cortex and the amygdala have synergistic roles in regulating purposive behavior, effected through bidirectional pathways. Here we investigated the largely unknown extent and laminar relationship of prefrontal input-output zones linked with the amygdala using neural tracers injected in the amygdala in rhesus monkeys. Prefrontal areas varied vastly in their connections with the amygdala, with the densest connections found in posterior orbitofrontal and posterior medial cortices, and the sparsest in anterior lateral prefrontal areas, especially area 10. Prefrontal projection neurons directed to the amygdala originated in layer 5, but significant numbers were also found in layers 2 and 3 in posterior medial and orbitofrontal cortices. Amygdalar axonal terminations in prefrontal cortex were most frequently distributed in bilaminar bands in the superficial and deep layers, by columns spanning the entire cortical depth, and less frequently as small patches centered in the superficial or deep layers. Heavy terminations in layers 1-2 overlapped with calbindin-positive inhibitory neurons. A comparison of the relationship of input to output projections revealed that among the most heavily connected cortices, cingulate areas 25 and 24 issued comparatively more projections to the amygdala than they received, whereas caudal orbitofrontal areas were more receivers than senders. Further, there was a significant relationship between the proportion of 'feedforward' cortical projections from layers 2-3 to 'feedback' terminations innervating the superficial layers of prefrontal cortices. These findings indicate that the connections between prefrontal cortices and the amygdala follow similar patterns as corticocortical connections, and by analogy suggest pathways underlying the sequence of information processing for emotions.
ELECTRONIC INTEGRATING CIRCUIT
Englemann, R.H.
1963-08-20
An electronic integrating circuit using a transistor with a capacitor connected between the emitter and collector through which the capacitor discharges at a rate proportional to the input current at the base is described. Means are provided for biasing the base with an operating bias and for applying a voltage pulse to the capacitor for charging to an initial voltage. A current dividing diode is connected between the base and emitter of the transistor, and signal input terminal means are coupled to the juncture of the capacitor and emitter and to the base of the transistor. At the end of the integration period, the residual voltage on said capacitor is less by an amount proportional to the integral of the input signal. Either continuous or intermittent periods of integration are provided. (AEC)
Gerhard, Stephan; Andrade, Ingrid; Fetter, Richard D; Cardona, Albert; Schneider-Mizell, Casey M
2017-10-23
During postembryonic development, the nervous system must adapt to a growing body. How changes in neuronal structure and connectivity contribute to the maintenance of appropriate circuit function remains unclear. Previously , we measured the cellular neuroanatomy underlying synaptic connectivity in Drosophila (Schneider-Mizell et al., 2016). Here, we examined how neuronal morphology and connectivity change between first instar and third instar larval stages using serial section electron microscopy. We reconstructed nociceptive circuits in a larva of each stage and found consistent topographically arranged connectivity between identified neurons. Five-fold increases in each size, number of terminal dendritic branches, and total number of synaptic inputs were accompanied by cell type-specific connectivity changes that preserved the fraction of total synaptic input associated with each pre-synaptic partner. We propose that precise patterns of structural growth act to conserve the computational function of a circuit, for example determining the location of a dangerous stimulus.
Direct current ballast circuit for metal halide lamp
NASA Technical Reports Server (NTRS)
Lutus, P. (Inventor)
1981-01-01
A direct current ballast circuit for a two electrode metal halide lamp is described. Said direct current ballast circuit includes a low voltage DC input and a high frequency power amplifier and power transformer for developing a high voltage output. The output voltage is rectified by diodes and filtered by inductor and capacitor to provide a regulated DC output through commutating diodes to one terminal of the lamp at the output terminal. A feedback path from the output of the filter capacitor through the bias resistor to power the high frequency circuit which includes the power amplifier and the power transformer for sustaining circuit operations during low voltage transients on the input DC supply is described. A current sensor connected to the output of the lamp through terminal for stabilizing lamp current following breakdown of the lamp is described.
Study of the dynamics of orbital assemblies including interactions with geometrical appendages
NASA Technical Reports Server (NTRS)
Ness, D. J.
1972-01-01
The complete equations for the Unified Flexible Spacecraft Simulation (UFSS) program developed for the NASA/MSFC are presented. This general purpose simulation program is based on an algorithm which utilizes the digital computer to synthesize the dynamic and kinematic equations for a topological tree configuration of N interconnected bodies (the interconnected system of bodies forms no closed loops), the terminal members of which may be flexible. Necessary input quantities to the dynamic subroutine include the mass and inertia properties of each body and the flexible characteristics of each terminal member in addition to the specification, for each body, of those bodies to which it connects. This latter description involves the specification of the number of rotational degrees of freedom at each interconnection along with the associated position vectors defining these connections relative to the mass centers of the bodies involved. These position vectors can be input as time-varying functions if desired, thus affording the capability of studying the effects of time-varying hinge locations. Springs and dampers are assumed to act at each interconnection and structural damping in the flexible terminal members is included in the form of equivalent viscous damping.
Peak holding circuit for extremely narrow pulses
NASA Technical Reports Server (NTRS)
Oneill, R. W. (Inventor)
1975-01-01
An improved pulse stretching circuit comprising: a high speed wide-band amplifier connected in a fast charge integrator configuration; a holding circuit including a capacitor connected in parallel with a discharging network which employs a resistor and an FET; and an output buffer amplifier. Input pulses of very short duration are applied to the integrator charging the capacitor to a value proportional to the input pulse amplitude. After a predetermined period of time, conventional circuitry generates a dump pulse which is applied to the gate of the FET making a low resistance path to ground which discharges the capacitor. When the dump pulse terminates, the circuit is ready to accept another pulse to be stretched. The very short input pulses are thus stretched in width so that they may be analyzed by conventional pulse height analyzers.
Zener diode controls switching of large direct currents
NASA Technical Reports Server (NTRS)
1965-01-01
High-current zener diode is connected in series with the positive input terminal of a dc supply to block the flow of direct current until a high-frequency control signal is applied across the zener diode. This circuit controls the switching of large dc signals.
Programmable electroacoustic filter apparatus and method for its manufacture
Nordquist, Christopher; Olsson, Roy H.; Scott, Sean Michael; Wojciechowski, Kenneth; Branch, Darren W.
2016-03-01
An acoustically coupled frequency selective radio frequency (RF) device is provided. The device includes a piezoelectric substrate overlain by a plurality of electrodes. The device further includes a pair of RF input terminals at least one of which is electrically connected to at least one of the electrodes, and a pair of output RF terminals, at least one of which is electrically connected to at least one other of the electrodes. At least one of the electrodes is electromechanically reconfigurable between a state in which it is closer to a face of the piezoelectric substrate and at least one state in which it is farther from the face of the piezoelectric substrate.
Thomas, R.E.
1959-01-20
An electronic circuit is presented for automatically computing the product of two selected variables by multiplying the voltage pulses proportional to the variables. The multiplier circuit has a plurality of parallel resistors of predetermined values connected through separate gate circults between a first input and the output terminal. One voltage pulse is applied to thc flrst input while the second voltage pulse is applied to control circuitry for the respective gate circuits. Thc magnitude of the second voltage pulse selects the resistors upon which the first voltage pulse is imprcssed, whereby the resultant output voltage is proportional to the product of the input voltage pulses
Raju, Dinesh V; Shah, Deep J; Wright, Terrence M; Hall, Randy A; Smith, Yoland
2006-11-10
The striatum is divided into two compartments named the patch (or striosome) and the matrix. Although these two compartments can be differentiated by their neurochemical content or afferent and efferent projections, the synaptology of inputs to these striatal regions remains poorly characterized. By using the vesicular glutamate transporters vGluT1 and vGluT2, as markers of corticostriatal and thalamostriatal projections, respectively, we demonstrate a differential pattern of synaptic connections of these two pathways between the patch and the matrix compartments. We also demonstrate that the majority of vGluT2-immunolabeled axon terminals form axospinous synapses, suggesting that thalamic afferents, like corticostriatal inputs, terminate preferentially onto spines in the striatum. Within both compartments, more than 90% of vGluT1-containing terminals formed axospinous synapses, whereas 87% of vGluT2-positive terminals within the patch innervated dendritic spines, but only 55% did so in the matrix. To characterize further the source of thalamic inputs that could account for the increase in axodendritic synapses in the matrix, we undertook an electron microscopic analysis of the synaptology of thalamostriatal afferents to the matrix compartments from specific intralaminar, midline, relay, and associative thalamic nuclei in rats. Approximately 95% of PHA-L-labeled terminals from the central lateral, midline, mediodorsal, lateral dorsal, anteroventral, and ventral anterior/ventral lateral nuclei formed axospinous synapses, a pattern reminiscent of corticostriatal afferents but strikingly different from thalamostriatal projections arising from the parafascicular nucleus (PF), which terminated onto dendritic shafts. These findings provide the first evidence for a differential pattern of synaptic organization of thalamostriatal glutamatergic inputs to the patch and matrix compartments. Furthermore, they demonstrate that the PF is the sole source of significant axodendritic thalamic inputs to striatal projection neurons. These observations pave the way for understanding differential regulatory mechanisms of striatal outflow from the patch and matrix compartments by thalamostriatal afferents. 2006 Wiley-Liss, Inc.
McEwan, T.E.
1995-11-28
A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing. 17 figs.
McEwan, Thomas E.
1995-01-01
A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing.
Holmes, William R; Huwe, Janice A; Williams, Barbara; Rowe, Michael H; Peterson, Ellengene H
2017-05-01
Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. J Neurophysiol 113: 2420-2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. Collecting area and hair cell density were used to estimate hair cell-to-afferent convergence. Nonmorphological features were held constant to isolate effects of afferent structure and connectivity. The models suggest that all four bouton afferent types are electrotonically compact and that excitatory postsynaptic potentials are two to four times larger in MES afferents than in other afferents, making MES afferents more responsive to low input levels. The models also predict that MES and LES terminal structures permit higher spontaneous firing rates than those in striola and juxtastriola. We found that differences in spike train regularity are not a consequence of differences in peripheral terminal structure, per se, but that a higher proportion of multiple contacts between afferents and individual hair cells increases afferent firing irregularity. The prediction that afferents having primarily one bouton contact per hair cell will fire more regularly than afferents making multiple bouton contacts per hair cell has implications for spike train regularity in dimorphic and calyx afferents. NEW & NOTEWORTHY Bouton afferents in different regions of turtle utricle have very different morphologies and afferent-hair cell connectivities. Highly detailed computational modeling provides insights into how morphology impacts excitability and also reveals a new explanation for spike train irregularity based on relative numbers of multiple bouton contacts per hair cell. This mechanism is independent of other proposed mechanisms for spike train irregularity based on ionic conductances and can explain irregularity in dimorphic units and calyx endings. Copyright © 2017 the American Physiological Society.
Neural Networks For Demodulation Of Phase-Modulated Signals
NASA Technical Reports Server (NTRS)
Altes, Richard A.
1995-01-01
Hopfield neural networks proposed for demodulating quadrature phase-shift-keyed (QPSK) signals carrying digital information. Networks solve nonlinear integral equations prior demodulation circuits cannot solve. Consists of set of N operational amplifiers connected in parallel, with weighted feedback from output terminal of each amplifier to input terminals of other amplifiers. Used to solve signal processing problems. Implemented as analog very-large-scale integrated circuit that achieves rapid convergence. Alternatively, implemented as digital simulation of such circuit. Also used to improve phase estimation performance over that of phase-locked loop.
Complementary Paired G4FETs as Voltage-Controlled NDR Device
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad; Chen, Suheng; Blalock, Ben; Britton, Chuck; Prothro, Ben; Vandersand, James; Schrimph, Ron; Cristoloveanu, Sorin; Akavardar, Kerem; Gentil, P.
2009-01-01
It is possible to synthesize a voltage-controlled negative-differential-resistance (NDR) device or circuit by use of a pair of complementary G4FETs (four-gate field-effect transistors). [For more information about G4FETs, please see the immediately preceding article]. As shown in Figure 1, the present voltage-controlled NDR device or circuit is an updated version of a prior NDR device or circuit, known as a lambda diode, that contains a pair of complementary junction field-effect transistors (JFETs). (The lambda diode is so named because its current-versus- voltage plot bears some resemblance to an upper-case lambda.) The present version can be derived from the prior version by substituting G4FETs for the JFETs and connecting both JFET gates of each G4FET together. The front gate terminals of the G4FETs constitute additional terminals (that is, terminals not available in the older JFET version) to which one can apply control voltages VN and VP. Circuits in which NDR devices have been used include (1) Schmitt triggers and (2) oscillators containing inductance/ capacitance (LC) resonant circuits. Figure 2 depicts such circuits containing G4FET NDR devices like that of Figure 1. In the Schmitt trigger shown here, the G4FET NDR is loaded with an ordinary inversion-mode, p-channel, metal oxide/semiconductor field-effect transistor (inversion-mode PMOSFET), the VN terminal of the G4FET NDR device is used as an input terminal, and the input terminals of the PMOSFET and the G4FET NDR device are connected. VP can be used as an extra control voltage (that is, a control voltage not available in a typical prior Schmitt trigger) for adjusting the pinch-off voltage of the p-channel G4FET and thereby adjusting the trigger-voltage window. In the oscillator, a G4FET NDR device is loaded with a conventional LC tank circuit. As in other LC NDR oscillators, oscillation occurs because the NDR counteracts the resistance in the tank circuit. The advantage of this G4FET-NDR LC oscillator over a conventional LC NDR oscillator is that one can apply a time-varying signal to one of the extra control input terminals (VN or VP) to modulate the conductance of the NDR device and thereby amplitude-modulate the output signal.
Real-Time Acquisition and Processing System (RTAPS) Version 1.1 Installation and User’s Manual.
1986-08-01
The language is incrementally compiled and procedure-oriented. It is run on an 8088 processor with 56K of available user RAM. The master board features...RTAPS/PC computers. The wiring configuration is shown in figure 10. Switch Modem Port MAC P5 or P6* 2, B4 3 B8 1%7 1 B10 *P6 recommended Figure 10. $MAC...activated switch. The AXAC output port is physically connected to the modem input on the switch. The subchannels are the labeled terminal connections
Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan; May, Paul J
2017-01-01
The central mesencephalic reticular formation (cMRF) occupies much of the core of the midbrain tegmentum. Physiological studies indicate that it is involved in controlling gaze changes, particularly horizontal saccades. Anatomically, it receives input from the ipsilateral superior colliculus (SC) and it has downstream projections to the brainstem, including the horizontal gaze center located in the paramedian pontine reticular formation (PPRF). Consequently, it has been hypothesized that the cMRF plays a role in the spatiotemporal transformation needed to convert spatially coded collicular saccade signals into the temporally coded signals utilized by the premotor neurons of the horizontal gaze center. In this study, we used neuroanatomical tracers to examine the patterns of connectivity of the cMRF in macaque monkeys in order to determine whether the circuit organization supports this hypothesis. Since stimulation of the cMRF produces contraversive horizontal saccades and stimulation of the horizontal gaze center produces ipsiversive saccades, this would require an excitatory cMRF projection to the contralateral PPRF. Injections of anterograde tracers into the cMRF did produce labeled terminals within the PPRF. However, the terminations were denser ipsilaterally. Since the PPRF located contralateral to the movement direction is generally considered to be silent during a horizontal saccade, we then tested the hypothesis that this ipsilateral reticuloreticular pathway might be inhibitory. The ultrastructure of ipsilateral terminals was heterogeneous, with some displaying more extensive postsynaptic densities than others. Postembedding immunohistochemistry for gamma-aminobutyric acid (GABA) indicated that only a portion (35%) of these cMRF terminals are GABAergic. Dual tracer experiments were undertaken to determine whether the SC provides input to cMRF reticuloreticular neurons projecting to the ipsilateral pons. Retrogradely labeled reticuloreticular neurons were predominantly distributed in the ipsilateral cMRF. Anterogradely labeled tectal terminals were observed in close association with a portion of these retrogradely labeled reticuloreticular neurons. Taken together, these results suggest that the SC does have connections with reticuloreticular neurons in the cMRF. However, the predominantly excitatory nature of the ipsilateral reticuloreticular projection argues against the hypothesis that this cMRF pathway is solely responsible for producing a spatiotemporal transformation of the collicular saccade signal.
Structural Basis of Cerebellar Microcircuits in the Rat
Cerminara, Nadia L.; Aoki, Hanako; Loft, Michaela; Apps, Richard
2013-01-01
The topography of the cerebellar cortex is described by at least three different maps, with the basic units of each map termed “microzones,” “patches,” and “bands.” These are defined, respectively, by different patterns of climbing fiber input, mossy fiber input, and Purkinje cell (PC) phenotype. Based on embryological development, the “one-map” hypothesis proposes that the basic units of each map align in the adult animal and the aim of the present study was to test this possibility. In barbiturate anesthetized adult rats, nanoinjections of bidirectional tracer (Retrobeads and biotinylated dextran amine) were made into somatotopically identified regions within the hindlimb C1 zone in copula pyramidis. Injection sites were mapped relative to PC bands defined by the molecular marker zebrin II and were correlated with the pattern of retrograde cell labeling within the inferior olive and in the basilar pontine nuclei to determine connectivity of microzones and patches, respectively, and also with the distributions of biotinylated dextran amine-labeled PC terminals in the cerebellar nuclei. Zebrin bands were found to be related to both climbing fiber and mossy fiber inputs and also to cortical representation of different parts of the ipsilateral hindpaw, indicating a precise spatial organization within cerebellar microcircuitry. This precise connectivity extends to PC terminal fields in the cerebellar nuclei and olivonuclear projections. These findings strongly support the one-map hypothesis and suggest that, at the microcircuit level of resolution, the cerebellar cortex has a common plan of spatial organization for major inputs, outputs, and PC phenotype. PMID:24133249
Digital automatic gain amplifier
NASA Technical Reports Server (NTRS)
Holley, L. D.; Ward, J. O. (Inventor)
1978-01-01
A circuit is described for adjusting the amplitude of a reference signal to a predetermined level so as to permit subsequent data signals to be interpreted correctly. The circuit includes an operational amplifier having a feedback circuit connected between an output terminal and an input terminal; a bank of relays operably connected to a plurality of resistors; and a comparator comparing an output voltage of the amplifier with a reference voltage and generating a compared signal responsive thereto. Means is provided for selectively energizing the relays according to the compared signal from the comparator until the output signal from the amplifier equals to the reference signal. A second comparator is provided for comparing the output of the amplifier with a second voltage source so as to illuminate a lamp when the output signal from the amplifier exceeds the second voltage.
Circuit for measuring time differences among events
Romrell, Delwin M.
1977-01-01
An electronic circuit has a plurality of input terminals. Application of a first input signal to any one of the terminals initiates a timing sequence. Later inputs to the same terminal are ignored but a later input to any other terminal of the plurality generates a signal which can be used to measure the time difference between the later input and the first input signal. Also, such time differences may be measured between the first input signal and an input signal to any other terminal of the plurality or the circuit may be reset at any time by an external reset signal.
High voltage electrical amplifier having a short rise time
Christie, David J.; Dallum, Gregory E.
1991-01-01
A circuit, comprising an amplifier and a transformer is disclosed that produces a high power pulse having a fast response time, and that responds to a digital control signal applied through a digital-to-analog converter. The present invention is suitable for driving a component such as an electro-optic modulator with a voltage in the kilovolt range. The circuit is stable at high frequencies and during pulse transients, and its impedance matching circuit matches the load impedance with the output impedance. The preferred embodiment comprises an input stage compatible with high-speed semiconductor components for amplifying the voltage of the input control signal, a buffer for isolating the input stage from the output stage; and a plurality of current amplifiers connected to the buffer. Each current amplifier is connected to a field effect transistor (FET), which switches a high voltage power supply to a transformer which then provides an output terminal for driving a load. The transformer comprises a plurality of transmission lines connected to the FETs and the load. The transformer changes the impedance and voltage of the output. The preferred embodiment also comprises a low voltage power supply for biasing the FETs at or near an operational voltage.
An alternative way to increase the power gain of resonant rings
NASA Astrophysics Data System (ADS)
Zhuang, Dehao; Liu, Yunqi; Wang, Fang; Lin, Lin; Feng, Liwen; Quan, Shengwen; Liu, Kexin
2018-03-01
Resonant rings which can amplify RF power through the coupling of waves are used for high power breakdown tests, unidirectional filters, or pulse-shaping techniques. Usually, the RF output terminal of a resonant ring is connected to a matched load. For the resonant ring at Peking University, the matched load has been replaced by a waveguide shorting plate to obtain higher conditioning power for the 1.3 GHz capacitive type power couplers. The power gain is increased significantly with this short termination with the same input RF power. Working mechanism analysis, experiments, and results of this modified resonant ring will be presented.
Low-Noise Large-Area Photoreceivers with Low Capacitance Photodiodes
NASA Technical Reports Server (NTRS)
Joshi, Abhay M. (Inventor); Datta, Shubhashish (Inventor)
2013-01-01
A quad photoreceiver includes a low capacitance quad InGaAs p-i-n photodiode structure formed on an InP (100) substrate. The photodiode includes a substrate providing a buffer layer having a metal contact on its bottom portion serving as a common cathode for receiving a bias voltage, and successive layers deposited on its top portion, the first layer being drift layer, the second being an absorption layer, the third being a cap layer divided into four quarter pie shaped sections spaced apart, with metal contacts being deposited on outermost top portions of each section to provide output terminals, the top portions being active regions for detecting light. Four transimpedance amplifiers have input terminals electrically connected to individual output terminals of each p-i-n photodiode.
Full wave modulator-demodulator amplifier apparatus. [for generating rectified output signal
NASA Technical Reports Server (NTRS)
Black, J. M. (Inventor)
1974-01-01
A full-wave modulator-demodulator apparatus is described including an operational amplifier having a first input terminal coupled to a circuit input terminal, and a second input terminal alternately coupled to the circuit input terminal. A circuit is ground by a switching circuit responsive to a phase reference signal and the operational amplifier is alternately switched between a non-inverting mode and an inverting mode. The switching circuit includes three field-effect transistors operatively associated to provide the desired switching function in response to an alternating reference signal of the same frequency as an AC input signal applied to the circuit input terminal.
Immunolocalization of vesicular glutamate transporters 1 and 2 in the rat inferior colliculus.
Altschuler, R A; Tong, L; Holt, A G; Oliver, D L
2008-06-12
The inferior colliculus is a major relay nucleus in the ascending auditory pathways that receives multiple glutamatergic inputs. Vesicular glutamate transporters 1 and 2 (VGLUT1, VGLUT2) most often have complementary non-overlapping distributions and can be used to differentiate glutamatergic inputs. The present study therefore examined co-immunolabeling of VGLUT1 and VGLUT2 in three divisions of the rat inferior colliculus. Additional co-immunolabeling of microtubule-associated protein 2 and neuronal class III beta-tubulin provided visualization of neuronal soma and processes and allowed identification of axo-somatic versus axo-dendritic contacts. Results showed numerous VGLUT1 and 2 immunolabeled terminals in the central nucleus, lateral cortex and dorsal cortex. In all three divisions there was little to no co-containment of the two vesicular glutamate transporters indicating a complementary distribution. VGLUT1 made predominantly axo-dendritic connections in the neuropil, while VGLUT2 had many axo-somatic contacts in addition to axo-dendritic contacts. VGLUT2 immunolabeled terminals were numerous on the soma and proximal dendrites of many medium-to-large and large neurons in the central nucleus and medium to large neurons in the dorsal cortex. There were more VGLUT2 terminals than VGLUT1 in all divisions and more VGLUT2 terminals in dorsal and lateral cortices than in the central nucleus. This study shows that VGLUT1 and VGLUT2 differentiate complementary patterns of glutamatergic inputs into the central nucleus, lateral and dorsal cortex of the inferior colliculus with VGLUT1 endings predominantly on the dendrites and VGLUT2 on both dendrites and somas.
Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan; May, Paul J.
2017-01-01
The central mesencephalic reticular formation (cMRF) occupies much of the core of the midbrain tegmentum. Physiological studies indicate that it is involved in controlling gaze changes, particularly horizontal saccades. Anatomically, it receives input from the ipsilateral superior colliculus (SC) and it has downstream projections to the brainstem, including the horizontal gaze center located in the paramedian pontine reticular formation (PPRF). Consequently, it has been hypothesized that the cMRF plays a role in the spatiotemporal transformation needed to convert spatially coded collicular saccade signals into the temporally coded signals utilized by the premotor neurons of the horizontal gaze center. In this study, we used neuroanatomical tracers to examine the patterns of connectivity of the cMRF in macaque monkeys in order to determine whether the circuit organization supports this hypothesis. Since stimulation of the cMRF produces contraversive horizontal saccades and stimulation of the horizontal gaze center produces ipsiversive saccades, this would require an excitatory cMRF projection to the contralateral PPRF. Injections of anterograde tracers into the cMRF did produce labeled terminals within the PPRF. However, the terminations were denser ipsilaterally. Since the PPRF located contralateral to the movement direction is generally considered to be silent during a horizontal saccade, we then tested the hypothesis that this ipsilateral reticuloreticular pathway might be inhibitory. The ultrastructure of ipsilateral terminals was heterogeneous, with some displaying more extensive postsynaptic densities than others. Postembedding immunohistochemistry for gamma-aminobutyric acid (GABA) indicated that only a portion (35%) of these cMRF terminals are GABAergic. Dual tracer experiments were undertaken to determine whether the SC provides input to cMRF reticuloreticular neurons projecting to the ipsilateral pons. Retrogradely labeled reticuloreticular neurons were predominantly distributed in the ipsilateral cMRF. Anterogradely labeled tectal terminals were observed in close association with a portion of these retrogradely labeled reticuloreticular neurons. Taken together, these results suggest that the SC does have connections with reticuloreticular neurons in the cMRF. However, the predominantly excitatory nature of the ipsilateral reticuloreticular projection argues against the hypothesis that this cMRF pathway is solely responsible for producing a spatiotemporal transformation of the collicular saccade signal. PMID:28487639
Rhythmogenic neuronal networks, emergent leaders, and k-cores.
Schwab, David J; Bruinsma, Robijn F; Feldman, Jack L; Levine, Alex J
2010-11-01
Neuronal network behavior results from a combination of the dynamics of individual neurons and the connectivity of the network that links them together. We study a simplified model, based on the proposal of Feldman and Del Negro (FDN) [Nat. Rev. Neurosci. 7, 232 (2006)], of the preBötzinger Complex, a small neuronal network that participates in the control of the mammalian breathing rhythm through periodic firing bursts. The dynamics of this randomly connected network of identical excitatory neurons differ from those of a uniformly connected one. Specifically, network connectivity determines the identity of emergent leader neurons that trigger the firing bursts. When neuronal desensitization is controlled by the number of input signals to the neurons (as proposed by FDN), the network's collective desensitization--required for successful burst termination--is mediated by k-core clusters of neurons.
Inexpensive Clock for Displaying Planetary or Sidereal Time
NASA Technical Reports Server (NTRS)
Lux, James
2007-01-01
An inexpensive wall clock has been devised for displaying solar time or sidereal time as it would be perceived on a planet other than the Earth, or for displaying sidereal time on the Earth. The concept of a wall clock synchronized to a period other than the terrestrial mean solar day is not new in itself. What is new here is that the clock is realized through a relatively simple electronic modification of a common battery-powered, quartz-crystal-oscillator-driven wall clock. The essence of the modification is to shut off the internal oscillator of the clock and replace the internal-oscillator output signal with a signal of the required frequency generated by an external oscillator. The unmodified clock electronic circuitry includes a quartz crystal connected to an integrated circuit (IC) that includes, among other parts, a buffer amplifier that conditions the oscillator output. The modification is effected by removing the quartz crystal and connecting the output terminal of the external oscillator, via a capacitor, to the input terminal of the buffer amplifier
Wang, Quanxin; Burkhalter, Andreas
2013-01-23
Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that challenge a simple grouping into "what/perception" and "where/action" streams known in primates. The superior colliculus (SC) is a major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided action, respectively.
Solid-state image sensor with focal-plane digital photon-counting pixel array
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)
1995-01-01
A photosensitive layer such as a-Si for a UV/visible wavelength band is provided for low light level imaging with at least a separate CMOS amplifier directly connected to each PIN photodetector diode to provide a focal-plane array of NxN pixels, and preferably a separate photon-counting CMOS circuit directly connected to each CMOS amplifier, although one row of counters may be time shared for reading out the photon flux rate of each diode in the array, together with a buffer memory for storing all rows of the NxN image frame before transfer to suitable storage. All CMOS circuitry is preferably fabricated in the same silicon layer as the PIN photodetector diode for a monolithic structure, but when the wavelength band of interest requires photosensitive material different from silicon, the focal-plane array may be fabricated separately on a different semiconductor layer bump-bonded or otherwise bonded for a virtually monolithic structure with one free terminal of each diode directly connected to the input terminal of its CMOS amplifier and digital counter for integration of the photon flux rate at each photodetector of the array.
The Evolution and Development of Neural Superposition
Agi, Egemen; Langen, Marion; Altschuler, Steven J.; Wu, Lani F.; Zimmermann, Timo
2014-01-01
Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically “hard-wired” synaptic connectivity in the brain. PMID:24912630
The evolution and development of neural superposition.
Agi, Egemen; Langen, Marion; Altschuler, Steven J; Wu, Lani F; Zimmermann, Timo; Hiesinger, Peter Robin
2014-01-01
Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically "hard-wired" synaptic connectivity in the brain.
Differentiating Cerebellar Impact on Thalamic Nuclei.
Gornati, Simona V; Schäfer, Carmen B; Eelkman Rooda, Oscar H J; Nigg, Alex L; De Zeeuw, Chris I; Hoebeek, Freek E
2018-05-29
The cerebellum plays a role in coordination of movements and non-motor functions. Cerebellar nuclei (CN) axons connect to various parts of the thalamo-cortical network, but detailed information on the characteristics of cerebello-thalamic connections is lacking. Here, we assessed the cerebellar input to the ventrolateral (VL), ventromedial (VM), and centrolateral (CL) thalamus. Confocal and electron microscopy showed an increased density and size of CN axon terminals in VL compared to VM or CL. Electrophysiological recordings in vitro revealed that optogenetic CN stimulation resulted in enhanced charge transfer and action potential firing in VL neurons compared to VM or CL neurons, despite that the paired-pulse ratio was not significantly different. Together, these findings indicate that the impact of CN input onto neurons of different thalamic nuclei varies substantially, which highlights the possibility that cerebellar output differentially controls various parts of the thalamo-cortical network. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
DESIGN OF CIRCUITS FOR THE PATTERN ARTICULATION UNIT. Report No. 127
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, K.C.
1962-08-31
The Pattern Articulation Unit embodies a central core of 1024 identical processing modules called stalactites'' arranged in a two-dimensional array with only local connectivity. Two possible complete circuit realizations of the stalactite are described. Stalactites of either design contain about 50 transistors, 250 diodes, 250 resistors, and 50 capacitors. Stalactite organization, signal flow, the bubbling register connection, the requirements of a working register, design of stacking logic, mode of operation, circuit design, direct and conditional input, design of bubbling logic, complement circuits, output and circuit, up and down drivers, and cable diivers and terminators are described. Experimental verification of variousmore » components is discussed. (M.C.G.)« less
Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan
2013-01-01
Omnipause neurons (OPNs) within the nucleus raphe interpositus (RIP) help gate the transition between fixation and saccadic eye movements by monosynaptically suppressing activity in premotor burst neurons during fixation, and releasing them during saccades. Premotor neuron activity is initiated by excitatory input from the superior colliculus (SC), but how the tectum's saccade-related activity turns off OPNs is not known. Since the central mesencephalic reticular formation (cMRF) is a major SC target, we explored whether this nucleus has the appropriate connections to support tectal gating of OPN activity. In dual-tracer experiments undertaken in macaque monkeys (Macaca fascicularis), cMRF neurons labeled retrogradely from injections into RIP had numerous anterogradely labeled terminals closely associated with them following SC injections. This suggested the presence of an SC–cMRF–RIP pathway. Furthermore, anterograde tracers injected into the cMRF of other macaques labeled axonal terminals in RIP, confirming this cMRF projection. To determine whether the cMRF projections gate OPN activity, postembedding electron microscopic immunochemistry was performed on anterogradely labeled cMRF terminals with antibody to GABA or glycine. Of the terminals analyzed, 51.4% were GABA positive, 35.5% were GABA negative, and most contacted glycinergic cells. In summary, a trans-cMRF pathway connecting the SC to the RIP is present. This pathway contains inhibitory elements that could help gate omnipause activity and allow other tectal drives to induce the bursts of firing in premotor neurons that are necessary for saccades. The non-GABAergic cMRF terminals may derive from fixation units in the cMRF. PMID:24107960
Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan; May, Paul J
2013-10-09
Omnipause neurons (OPNs) within the nucleus raphe interpositus (RIP) help gate the transition between fixation and saccadic eye movements by monosynaptically suppressing activity in premotor burst neurons during fixation, and releasing them during saccades. Premotor neuron activity is initiated by excitatory input from the superior colliculus (SC), but how the tectum's saccade-related activity turns off OPNs is not known. Since the central mesencephalic reticular formation (cMRF) is a major SC target, we explored whether this nucleus has the appropriate connections to support tectal gating of OPN activity. In dual-tracer experiments undertaken in macaque monkeys (Macaca fascicularis), cMRF neurons labeled retrogradely from injections into RIP had numerous anterogradely labeled terminals closely associated with them following SC injections. This suggested the presence of an SC-cMRF-RIP pathway. Furthermore, anterograde tracers injected into the cMRF of other macaques labeled axonal terminals in RIP, confirming this cMRF projection. To determine whether the cMRF projections gate OPN activity, postembedding electron microscopic immunochemistry was performed on anterogradely labeled cMRF terminals with antibody to GABA or glycine. Of the terminals analyzed, 51.4% were GABA positive, 35.5% were GABA negative, and most contacted glycinergic cells. In summary, a trans-cMRF pathway connecting the SC to the RIP is present. This pathway contains inhibitory elements that could help gate omnipause activity and allow other tectal drives to induce the bursts of firing in premotor neurons that are necessary for saccades. The non-GABAergic cMRF terminals may derive from fixation units in the cMRF.
Optimization of thrie beam terminal end shoe connection.
DOT National Transportation Integrated Search
2017-04-01
Terminal thrie end shoes connect nested thrie beams to parapets or other bridge rail structure to provide a robust connectivity between a transition section and a rigid railing section. When connecting terminal end shoe to thrie beam transitions, the...
Li, Gang; Song, Xueqing; Xia, Jiyi; Li, Jing; Jia, Peng; Chen, Pengyuan; Zhao, Jian; Liu, Bin
2017-01-01
The aim of this study was to assess the diagnostic value of plasma N-terminal connective tissue growth factor in children with heart failure. Methods and results Plasma N-terminal connective tissue growth factor was determined in 61 children, including 41 children with heart failure, 20 children without heart failure, and 30 healthy volunteers. The correlations between plasma N-terminal connective tissue growth factor levels and clinical parameters were investigated. Moreover, the diagnostic value of N-terminal connective tissue growth factor levels was evaluated. Compared with healthy volunteers and children without heart failure, plasma N-terminal connective tissue growth factor levels were significantly elevated in those with heart failure (p0.05), but it obviously improved the ability of diagnosing heart failure in children, as demonstrated by the integrated discrimination improvement (6.2%, p=0.013) and net re-classification improvement (13.2%, p=0.017) indices. Plasma N-terminal connective tissue growth factor is a promising diagnostic biomarker for heart failure in children.
Sha, Fern; Johenning, Friedrich W.; Schreiter, Eric R.; Looger, Loren L.; Larkum, Matthew E.
2016-01-01
Key points The genetically encoded fluorescent calcium integrator calcium‐modulated photoactivatable ratiobetric integrator (CaMPARI) reports calcium influx induced by synaptic and neural activity. Its fluorescence is converted from green to red in the presence of violet light and calcium.The rate of conversion – the sensitivity to activity – is tunable and depends on the intensity of violet light.Synaptic activity and action potentials can independently initiate significant CaMPARI conversion.The level of conversion by subthreshold synaptic inputs is correlated to the strength of input, enabling optical readout of relative synaptic strength.When combined with optogenetic activation of defined presynaptic neurons, CaMPARI provides an all‐optical method to map synaptic connectivity. Abstract The calcium‐modulated photoactivatable ratiometric integrator (CaMPARI) is a genetically encoded calcium integrator that facilitates the study of neural circuits by permanently marking cells active during user‐specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labelling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all‐optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and subthreshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed CaMPARI and optogenetics for functional circuit mapping in ex vivo acute brain slices, which preserve in vivo‐like connectivity of axon terminals. With a single light source, we stimulated channelrhodopsin‐2‐expressing long‐range posteromedial (POm) thalamic axon terminals in cortex and induced CaMPARI conversion in recipient cortical neurons. We found that POm stimulation triggers robust photoconversion of layer 5 cortical neurons and weaker conversion of layer 2/3 neurons. Thus, CaMPARI enables network‐wide, tunable, all‐optical functional circuit mapping that captures supra‐ and subthreshold depolarization. PMID:27861906
Inferior parietal lobule projections to anterior inferotemporal cortex (area TE) in macaque monkey.
Zhong, Yong-Mei; Rockland, Kathleen S
2003-05-01
Parietal cortical areas have generally been considered as part of the dorsal stream and, as such, only indirectly connected with inferotemporal cortex. In this report we demonstrate, by using the anterograde tracer BDA, that much of the inferior parietal lobule (IPL) has direct connections to anterior-ventral TE (TEav) around the anterior middle temporal sulcus (amts). Connections from area PG terminate in layers 1 and 5 as well as 4; and those from area PF, target layer 6 of TEav, with a small secondary focus in layer 4 of anterior-dorsal TE. Connections from areas PG and PF are relatively sparse; but those from the mid-IPL region (approximately area PFG), which terminate in layer 4, are light to moderate. In confirmation of these results, injections of retrograde tracers in TEav produce labeled neurons in the IPL. These are most numerous in layer 3 at the border of areas PG and PFG, but also occur in layer 5/6. These laminar patterns are more complex than the classical 'feedforward' or 'feedback' patterns associated with early sensory areas. Branched collaterals are common; and three of seven reconstructed axons branched to both TEav and to the lateral bank of the occipito-temporal sulcus, itself a major source of inputs to TEav. The existence of connections from the IPL preferentially to TEav and the amts provides another example where direct 'bypass' connections operate in parallel with multiple indirect routes. It provides further evidence for the differential connectivity of subdivisions within anterior TE and is consistent with recent evidence from functional magnetic resonance imaging studies that the region around the amts may be part of a network involved in three- dimensional shape, which is distributed across both 'what' and 'where' processing streams.
Lesicko, Alexandria M.H.; Hristova, Teodora S.; Maigler, Kathleen C.
2016-01-01
The lateral cortex of the inferior colliculus receives information from both auditory and somatosensory structures and is thought to play a role in multisensory integration. Previous studies in the rat have shown that this nucleus contains a series of distinct anatomical modules that stain for GAD-67 as well as other neurochemical markers. In the present study, we sought to better characterize these modules in the mouse inferior colliculus and determine whether the connectivity of other neural structures with the lateral cortex is spatially related to the distribution of these neurochemical modules. Staining for GAD-67 and other markers revealed a single modular network throughout the rostrocaudal extent of the mouse lateral cortex. Somatosensory inputs from the somatosensory cortex and dorsal column nuclei were found to terminate almost exclusively within these modular zones. However, projections from the auditory cortex and central nucleus of the inferior colliculus formed patches that interdigitate with the GAD-67-positive modules. These results suggest that the lateral cortex of the mouse inferior colliculus exhibits connectional as well as neurochemical modularity and may contain multiple segregated processing streams. This finding is discussed in the context of other brain structures in which neuroanatomical and connectional modularity have functional consequences. SIGNIFICANCE STATEMENT Many brain regions contain subnuclear microarchitectures, such as the matrix-striosome organization of the basal ganglia or the patch-interpatch organization of the visual cortex, that shed light on circuit complexities. In the present study, we demonstrate the presence of one such micro-organization in the rodent inferior colliculus. While this structure is typically viewed as an auditory integration center, its lateral cortex appears to be involved in multisensory operations and receives input from somatosensory brain regions. We show here that the lateral cortex can be further subdivided into multiple processing streams: modular regions, which are targeted by somatosensory inputs, and extramodular zones that receive auditory information. PMID:27798184
Gas tube-switched high voltage DC power converter
She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul
2018-05-15
A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.
Hole-assisted fiber based fiber fuse terminator supporting 22 W input
NASA Astrophysics Data System (ADS)
Tsujikawa, Kyozo; Kurokawa, Kenji; Hanzawa, Nobutomo; Nozoe, Saki; Matsui, Takashi; Nakajima, Kazuhide
2018-05-01
We investigated the air hole structure in hole-assisted fiber (HAF) with the aim of terminating fiber fuse propagation. We focused on two structural parameters c/MFD and S1/S2, which are related respectively to the position and area of the air holes, and mapped their appropriate values for terminating fiber fuse propagation. Here, MFD is the mode field diameter, c is the diameter of an inscribed circle linking the air holes, S1 is the total area of the air holes, and S2 is the area of a circumscribed circle linking the air holes. On the basis of these results, we successfully realized a compact fiber fuse terminator consisting of a 1.35 mm-long HAF, which can terminate fiber fuse propagation even with a 22 W input. In addition, we observed fiber fuse termination using a high-speed camera. We additionally confirmed that the HAF-based fiber fuse terminator is effective under various input power conditions. The penetration length of the optical discharge in the HAF was only less than 300 μm when the input power was from 2 to 22 W.
Aberrant excitatory rewiring of layer V pyramidal neurons early after neocortical trauma
Takahashi, D. Koji; Isabel, Feng Gu; Parada, Shri Vyas; Prince, David A.
2016-01-01
Lesioned neuronal circuits form new functional connections after a traumatic brain injury (TBI). In humans and animal models, aberrant excitatory connections that form after TBI may contribute to the pathogenesis of post-traumatic epilepsy. Partial neocortical isolation (“undercut” or “UC”) leads to altered neuronal circuitry and network hyperexcitability recorded in vivo and in brain slices from chronically lesioned neocortex. Recent data suggest a critical period for maladaptive excitatory circuit formation within the first 3 days post UC injury (Graber and Prince, 1999, 2004; Li et al., 2011, 2012b). The present study focuses on alterations in excitatory connectivity within this critical period. Immunoreactivity (IR) for growth-associated protein (GAP)-43 was increased in the UC cortex 3 days after injury. Some GAP-43-expressing excitatory terminals targeted the somata of layer V pyramidal (Pyr) neurons, a domain usually innervated predominantly by inhibitory terminals. Immunocytochemical analysis of pre- and postsynaptic markers showed that putative excitatory synapses were present on somata of these neurons in UC neocortex. Excitatory postsynaptic currents from UC layer V Pyr cells displayed properties consistent with perisomatic inputs and also reflected an increase in the number of synaptic contacts. Laser scanning photostimulation (LSPS) experiments demonstrated reorganized excitatory connectivity after injury within the UC. Concurrent with these changes, spontaneous epileptiform bursts developed in UC slices. Results suggest that aberrant reorganization of excitatory connectivity contributes to early neocortical hyperexcitability in this model. The findings are relevant for understanding the pathophysiology of neocortical post-traumatic epileptogenesis and are important in terms of the timing of potential prophylactic treatments. PMID:26956396
Aberrant excitatory rewiring of layer V pyramidal neurons early after neocortical trauma.
Takahashi, D Koji; Gu, Feng; Parada, Isabel; Vyas, Shri; Prince, David A
2016-07-01
Lesioned neuronal circuits form new functional connections after a traumatic brain injury (TBI). In humans and animal models, aberrant excitatory connections that form after TBI may contribute to the pathogenesis of post-traumatic epilepsy. Partial neocortical isolation ("undercut" or "UC") leads to altered neuronal circuitry and network hyperexcitability recorded in vivo and in brain slices from chronically lesioned neocortex. Recent data suggest a critical period for maladaptive excitatory circuit formation within the first 3days post UC injury (Graber and Prince 1999, 2004; Li et al. 2011, 2012b). The present study focuses on alterations in excitatory connectivity within this critical period. Immunoreactivity (IR) for growth-associated protein (GAP)-43 was increased in the UC cortex 3days after injury. Some GAP-43-expressing excitatory terminals targeted the somata of layer V pyramidal (Pyr) neurons, a domain usually innervated predominantly by inhibitory terminals. Immunocytochemical analysis of pre- and postsynaptic markers showed that putative excitatory synapses were present on somata of these neurons in UC neocortex. Excitatory postsynaptic currents from UC layer V Pyr cells displayed properties consistent with perisomatic inputs and also reflected an increase in the number of synaptic contacts. Laser scanning photostimulation (LSPS) experiments demonstrated reorganized excitatory connectivity after injury within the UC. Concurrent with these changes, spontaneous epileptiform bursts developed in UC slices. Results suggest that aberrant reorganization of excitatory connectivity contributes to early neocortical hyperexcitability in this model. The findings are relevant for understanding the pathophysiology of neocortical post-traumatic epileptogenesis and are important in terms of the timing of potential prophylactic treatments. Copyright © 2016 Elsevier Inc. All rights reserved.
Internet Connections: Understanding Your Access Options.
ERIC Educational Resources Information Center
Notess, Greg R.
1994-01-01
Describes levels of Internet connectivity, physical connections, and connection speeds. Compares options for connecting to the Internet, including terminal accounts, dial-up terminal accounts, direct connections through a local area network, and direct connections using SLIP (Serial Line Internet Protocol) or PPP (Point-to-Point Protocol). (eight…
Reprogrammable read only variable threshold transistor memory with isolated addressing buffer
Lodi, Robert J.
1976-01-01
A monolithic integrated circuit, fully decoded memory comprises a rectangular array of variable threshold field effect transistors organized into a plurality of multi-bit words. Binary address inputs to the memory are decoded by a field effect transistor decoder into a plurality of word selection lines each of which activates an address buffer circuit. Each address buffer circuit, in turn, drives a word line of the memory array. In accordance with the word line selected by the decoder the activated buffer circuit directs reading or writing voltages to the transistors comprising the memory words. All of the buffer circuits additionally are connected to a common terminal for clearing all of the memory transistors to a predetermined state by the application to the common terminal of a large magnitude voltage of a predetermined polarity. The address decoder, the buffer and the memory array, as well as control and input/output control and buffer field effect transistor circuits, are fabricated on a common substrate with means provided to isolate the substrate of the address buffer transistors from the remainder of the substrate so that the bulk clearing function of simultaneously placing all of the memory transistors into a predetermined state can be performed.
47 CFR 68.201 - Connection to the public switched telephone network.
Code of Federal Regulations, 2010 CFR
2010-10-01
... network. 68.201 Section 68.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Terminal Equipment Approval Procedures § 68.201 Connection to the public switched telephone network. Terminal equipment may...
47 CFR 68.201 - Connection to the public switched telephone network.
Code of Federal Regulations, 2011 CFR
2011-10-01
... network. 68.201 Section 68.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Terminal Equipment Approval Procedures § 68.201 Connection to the public switched telephone network. Terminal equipment may...
Pinto, Aline; Fuentes, Cesar; Paré, Denis
2006-04-20
The rhinal cortices constitute the main route for impulse traffic to and from the hippocampus. Tracing studies have revealed that the perirhinal cortex forms strong reciprocal connections with the neo- and entorhinal cortex (EC). However, physiological investigations indicate that perirhinal transmission of neocortical and EC inputs occurs with a low probability. In search of an explanation for these contradictory findings, we have analyzed synaptic connections in this network by combining injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHAL) into the neocortex, area 36, or area 35 with gamma-aminobutyric acid (GABA) immunocytochemistry and electron microscopic observations. Within area 36, neocortical axon terminals formed only asymmetric synapses, usually with GABA-negative spines (87%), and less frequently with GABA-immunopositive (GABA+) dendrites (13%). A similar synaptic distribution was observed within area 35 except that asymmetric synapses onto GABA+ dendrites were more frequent (23% of synapses). Examination of the projections from area 36 to area 35 and from both regions to the EC revealed an even higher incidence of asymmetric synapses onto GABA+ dendrites (35 and 32%, respectively) than what was observed in the neocortical projection to areas 36 and 35. Furthermore, some of the neocortical and perirhinal terminals containing PHAL and GABA immunolabeling formed symmetric synapses onto GABA-negative dendrites in their projection sites (neocortex to area 35, 16%; area 36 to 35, 7%; areas 36-35 to EC, 12%). Taken together, these findings suggest that impulse transmission through the rhinal circuit is subjected to strong inhibitory influences, reconciling anatomical and physiological data about this network.
Pinto, Aline; Fuentes, Cesar; Paré, Denis
2008-01-01
The rhinal cortices constitute the main route for impulse traffic to and from the hippocampus. Tracing studies have revealed that the perirhinal cortex forms strong reciprocal connections with the neo- and entorhinal cortex (EC). Yet, physiological investigations indicate that perirhinal transmission of neocortical and EC inputs occurs with a low probability. In search of an explanation for these contradictory findings, we have analyzed synaptic connections in this network by combining injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHAL) into the neocortex, area 36, or area 35 with GABA immunocytochemistry and electron microscopic observations. Within area 36, neocortical axon terminals formed only asymmetric synapses, usually with GABA negative spines (87%), and less frequently with GABA immunopositive (GABA+) dendrites (13%). A similar synaptic distribution was observed within area 35 except that asymmetric synapses onto GABA+ dendrites were more frequent (23% of synapses). Examination of the projections from area 36 to area 35 and from both regions to the EC revealed an even higher incidence of asymmetric synapses onto GABA+ dendrites (35% and 32% respectively) than what was observed in the neocortical projection to areas 36 and 35. Furthermore, a proportion of neocortical and perirhinal terminals containing PHAL and GABA immunolabeling formed symmetric synapses onto GABA negative dendrites in their projection sites (neocortex to area 35, 16%; area 36 to 35, 7%; areas 36–35 to EC, 12%). Taken together, these findings suggest that impulse transmission through the rhinal circuit is subjected to strong inhibitory influences, reconciling anatomical and physiological data about this network. PMID:16506192
Weight distributions for turbo codes using random and nonrandom permutations
NASA Technical Reports Server (NTRS)
Dolinar, S.; Divsalar, D.
1995-01-01
This article takes a preliminary look at the weight distributions achievable for turbo codes using random, nonrandom, and semirandom permutations. Due to the recursiveness of the encoders, it is important to distinguish between self-terminating and non-self-terminating input sequences. The non-self-terminating sequences have little effect on decoder performance, because they accumulate high encoded weight until they are artificially terminated at the end of the block. From probabilistic arguments based on selecting the permutations randomly, it is concluded that the self-terminating weight-2 data sequences are the most important consideration in the design of constituent codes; higher-weight self-terminating sequences have successively decreasing importance. Also, increasing the number of codes and, correspondingly, the number of permutations makes it more and more likely that the bad input sequences will be broken up by one or more of the permuters. It is possible to design nonrandom permutations that ensure that the minimum distance due to weight-2 input sequences grows roughly as the square root of (2N), where N is the block length. However, these nonrandom permutations amplify the bad effects of higher-weight inputs, and as a result they are inferior in performance to randomly selected permutations. But there are 'semirandom' permutations that perform nearly as well as the designed nonrandom permutations with respect to weight-2 input sequences and are not as susceptible to being foiled by higher-weight inputs.
46 CFR 111.60-17 - Connections and terminations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Connections and terminations. 111.60-17 Section 111.60-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC... general, connections and terminations to all conductors must retain the original electrical, mechanical...
46 CFR 111.60-17 - Connections and terminations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Connections and terminations. 111.60-17 Section 111.60-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC... general, connections and terminations to all conductors must retain the original electrical, mechanical...
46 CFR 111.60-17 - Connections and terminations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Connections and terminations. 111.60-17 Section 111.60-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC... general, connections and terminations to all conductors must retain the original electrical, mechanical...
Diode-quad bridge circuit means
NASA Technical Reports Server (NTRS)
Harrison, D. R.; Dimeff, J. (Inventor)
1975-01-01
Diode-quad bridge circuit means is described for use as a transducer circuit or as a discriminator circuit. It includes: (1) a diode bridge having first, second, third, and fourth bridge terminals consecutively coupled together by four diodes polarized in circulating relationship; (2) a first impedance connected between the second bridge terminal and a circuit ground; (3) a second impedance connected between the fourth bridge terminal and the circuit ground; (4) a signal source having a first source terminal capacitively coupled to the first and third bridge terminals, and a second source terminal connected to the circuit ground; and (5) an output terminal coupled to the first bridge terminal and at which an output signal may be taken.
Integrated circuits for accurate linear analogue electric signal processing
NASA Astrophysics Data System (ADS)
Huijsing, J. H.
1981-11-01
The main lines in the design of integrated circuits for accurate analog linear electric signal processing in a frequency range including DC are investigated. A categorization of universal active electronic devices is presented on the basis of the connections of one of the terminals of the input and output ports to the common ground potential. The means for quantifying the attributes of four types of universal active electronic devices are included. The design of integrated operational voltage amplifiers (OVA) is discussed. Several important applications in the field of general instrumentation are numerically evaluated, and the design of operatinal floating amplifiers is presented.
46 CFR 525.3 - Availability of marine terminal operator schedules.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Availability of terminal schedules—(1) Availability to the Commission. A complete and current set of terminal... computer (PC) by: (1) Dial-up connection via public switched telephone networks (PSTN); or (2) The Internet (Web) by: (i) Web browser; or (ii) Telnet session. (c) Dial-up connection via PSTN. (1) This connection...
46 CFR 525.3 - Availability of marine terminal operator schedules.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Availability of terminal schedules—(1) Availability to the Commission. A complete and current set of terminal... computer (PC) by: (1) Dial-up connection via public switched telephone networks (PSTN); or (2) The Internet (Web) by: (i) Web browser; or (ii) Telnet session. (c) Dial-up connection via PSTN. (1) This connection...
Happel, Max F K; Jeschke, Marcus; Ohl, Frank W
2010-08-18
Primary sensory cortex integrates sensory information from afferent feedforward thalamocortical projection systems and convergent intracortical microcircuits. Both input systems have been demonstrated to provide different aspects of sensory information. Here we have used high-density recordings of laminar current source density (CSD) distributions in primary auditory cortex of Mongolian gerbils in combination with pharmacological silencing of cortical activity and analysis of the residual CSD, to dissociate the feedforward thalamocortical contribution and the intracortical contribution to spectral integration. We found a temporally highly precise integration of both types of inputs when the stimulation frequency was in close spectral neighborhood of the best frequency of the measurement site, in which the overlap between both inputs is maximal. Local intracortical connections provide both directly feedforward excitatory and modulatory input from adjacent cortical sites, which determine how concurrent afferent inputs are integrated. Through separate excitatory horizontal projections, terminating in cortical layers II/III, information about stimulus energy in greater spectral distance is provided even over long cortical distances. These projections effectively broaden spectral tuning width. Based on these data, we suggest a mechanism of spectral integration in primary auditory cortex that is based on temporally precise interactions of afferent thalamocortical inputs and different short- and long-range intracortical networks. The proposed conceptual framework allows integration of different and partly controversial anatomical and physiological models of spectral integration in the literature.
46 CFR 111.60-17 - Connections and terminations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... general, connections and terminations to all conductors must retain the original electrical, mechanical, flame-retarding, and, where necessary, fire-resisting properties of the cable. All connecting devices...
46 CFR 111.60-17 - Connections and terminations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... general, connections and terminations to all conductors must retain the original electrical, mechanical, flame-retarding, and, where necessary, fire-resisting properties of the cable. All connecting devices...
Cholinergic Mesopontine Signals Govern Locomotion and Reward Through Dissociable Midbrain Pathways
Xiao, Cheng; Cho, Jounhong Ryan; Zhou, Chunyi; Treweek, Jennifer B.; Chan, Ken; McKinney, Sheri L.; Yang, Bin; Gradinaru, Viviana
2016-01-01
The mesopontine tegmentum, including the pedunculopontine and laterodorsal tegmental nuclei (PPN and LDT), provides major cholinergic inputs to midbrain and regulates locomotion and reward. To delineate the underlying projection-specific circuit mechanisms we employed optogenetics to control mesopontine cholinergic neurons at somata and at divergent projections within distinct midbrain areas. Bidirectional manipulation of PPN cholinergic cell bodies exerted opposing effects on locomotor behavior and reinforcement learning. These motor and reward effects were separable via limiting photostimulation to PPN cholinergic terminals in the ventral substantia nigra pars compacta (vSNc) or to the ventral tegmental area (VTA), respectively. LDT cholinergic neurons also form connections with vSNc and VTA neurons, however although photo-excitation of LDT cholinergic terminals in the VTA caused positive reinforcement, LDT-to-vSNc modulation did not alter locomotion or reward. Therefore, the selective targeting of projection-specific mesopontine cholinergic pathways may offer increased benefit in treating movement and addiction disorders. PMID:27100197
Constant flow-driven microfluidic oscillator for different duty cycles
Kim, Sung-Jin; Yokokawa, Ryuji; Lesher-Perez, Sasha Cai; Takayama, Shuichi
2012-01-01
This paper presents microfluidic devices that autonomously convert two constant flow inputs into an alternating oscillatory flow output. We accomplish this hardware embedded self-control programming using normally closed membrane valves that have an inlet, an outlet, and a membrane-pressurization chamber connected to a third terminal. Adjustment of threshold opening pressures in these 3-terminal flow switching valves enabled adjustment of oscillation periods to between 57–360 s with duty cycles of 0.2–0.5. These values are in relatively good agreement with theoretical values, providing the way for rational design of an even wider range of different waveform oscillations. We also demonstrate the ability to use these oscillators to perform temporally patterned delivery of chemicals to living cells. The device only needs a syringe pump, thus removing the use of complex, expensive external actuators. These tunable waveform microfluidic oscillators are envisioned to facilitate cell-based studies that require temporal stimulation. PMID:22206453
A High Resolution Graphic Input System for Interactive Graphic Display Terminals. Appendix B.
ERIC Educational Resources Information Center
Van Arsdall, Paul Jon
The search for a satisfactory computer graphics input system led to this version of an analog sheet encoder which is transparent and requires no special probes. The goal of the research was to provide high resolution touch input capabilities for an experimental minicomputer based intelligent terminal system. The technique explored is compatible…
47 CFR 68.7 - Technical criteria for terminal equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK General § 68.7 Technical criteria for... switched telephone network. (b) Technical criteria published by the Administrative Council for Terminal... network from harms caused by the connection of terminal equipment, subject to the appeal procedures in...
47 CFR 68.7 - Technical criteria for terminal equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK General § 68.7 Technical criteria for... switched telephone network. (b) Technical criteria published by the Administrative Council for Terminal... network from harms caused by the connection of terminal equipment, subject to the appeal procedures in...
Sjöstrand, F S
2002-01-01
Each rod is connected to one depolarizing and one hyperpolarizing bipolar cell. The synaptic connections of cone processes to each bipolar cell and presynaptically to the two rod-bipolar cell synapses establishes conditions for lateral interaction at this level. Thus, the cones raise the threshold for bipolar cell depolarization which is the basis for spatial brightness contrast enhancement and consequently for high visual acuity (Sjöstrand, 2001a). The cones facilitate ganglion cell depolarization by the bipolar cells and cone input prevents horizontal cell blocking of depolarization of the depolarizing bipolar cell, extending rod vision to low illumination. The combination of reduced cone input and transient hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus facilitates ganglion cell depolarization extensively at onset of the stimulus while no corresponding enhancement applies to the ganglion cell response at cessation of the stimulus, possibly establishing conditions for discrimination between on- vs. off-signals in the visual centre. Reduced cone input and hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus accounts for Granit's (1941) 'preexcitatory inhibition'. Presynaptic inhibition maintains transmitter concentration low in the synaptic gap at rod-bipolar cell and bipolar cell-ganglion cell synapses, securing proportional and amplified postsynaptic responses at these synapses. Perfect timing of variations in facilitatory and inhibitory input to the ganglion cell confines the duration of ganglion cell depolarization at onset and at cessation of a light stimulus to that of a single synaptic transmission.
Kameda, Hiroshi; Hioki, Hiroyuki; Tanaka, Yasuyo H; Tanaka, Takuma; Sohn, Jaerin; Sonomura, Takahiro; Furuta, Takahiro; Fujiyama, Fumino; Kaneko, Takeshi
2012-03-01
To examine inputs to parvalbumin (PV)-producing interneurons, we generated transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein specifically in the interneurons, and completely visualized their dendrites and somata. Using immunolabeling for vesicular glutamate transporter (VGluT)1, VGluT2, and vesicular GABA transporter, we found that VGluT1-positive terminals made contacts 4- and 3.1-fold more frequently with PV-producing interneurons than VGluT2-positive and GABAergic terminals, respectively, in the primary somatosensory cortex. Even in layer 4, where VGluT2-positive terminals were most densely distributed, VGluT1-positive inputs to PV-producing interneurons were 2.4-fold more frequent than VGluT2-positive inputs. Furthermore, although GABAergic inputs to PV-producing interneurons were as numerous as VGluT2-positive inputs in most cortical layers, GABAergic inputs clearly preferred the proximal dendrites and somata of the interneurons, indicating that the sites of GABAergic inputs were more optimized than those of VGluT2-positive inputs. Simulation analysis with a PV-producing interneuron model compatible with the present morphological data revealed a plausible reason for this observation, by showing that GABAergic and glutamatergic postsynaptic potentials evoked by inputs to distal dendrites were attenuated to 60 and 87%, respectively, of those evoked by somatic inputs. As VGluT1-positive and VGluT2-positive axon terminals were presumed to be cortical and thalamic glutamatergic inputs, respectively, cortical excitatory inputs to PV-producing interneurons outnumbered the thalamic excitatory and intrinsic inhibitory inputs more than two-fold in any cortical layer. Although thalamic inputs are known to evoke about two-fold larger unitary excitatory postsynaptic potentials than cortical ones, the present results suggest that cortical inputs control PV-producing interneurons at least as strongly as thalamic inputs. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Parallel processing of afferent olfactory sensory information
Vaaga, Christopher E.
2016-01-01
Key points The functional synaptic connectivity between olfactory receptor neurons and principal cells within the olfactory bulb is not well understood.One view suggests that mitral cells, the primary output neuron of the olfactory bulb, are solely activated by feedforward excitation.Using focal, single glomerular stimulation, we demonstrate that mitral cells receive direct, monosynaptic input from olfactory receptor neurons.Compared to external tufted cells, mitral cells have a prolonged afferent‐evoked EPSC, which serves to amplify the synaptic input.The properties of presynaptic glutamate release from olfactory receptor neurons are similar between mitral and external tufted cells.Our data suggest that afferent input enters the olfactory bulb in a parallel fashion. Abstract Primary olfactory receptor neurons terminate in anatomically and functionally discrete cortical modules known as olfactory bulb glomeruli. The synaptic connectivity and postsynaptic responses of mitral and external tufted cells within the glomerulus may involve both direct and indirect components. For example, it has been suggested that sensory input to mitral cells is indirect through feedforward excitation from external tufted cells. We also observed feedforward excitation of mitral cells with weak stimulation of the olfactory nerve layer; however, focal stimulation of an axon bundle entering an individual glomerulus revealed that mitral cells receive monosynaptic afferent inputs. Although external tufted cells had a 4.1‐fold larger peak EPSC amplitude, integration of the evoked currents showed that the synaptic charge was 5‐fold larger in mitral cells, reflecting the prolonged response in mitral cells. Presynaptic afferents onto mitral and external tufted cells had similar quantal amplitude and release probability, suggesting that the larger peak EPSC in external tufted cells was the result of more synaptic contacts. The results of the present study indicate that the monosynaptic afferent input to mitral cells depends on the strength of odorant stimulation. The enhanced spiking that we observed in response to brief afferent input provides a mechanism for amplifying sensory information and contrasts with the transient response in external tufted cells. These parallel input paths may have discrete functions in processing olfactory sensory input. PMID:27377344
Raju, Dinesh V; Ahern, Todd H; Shah, Deep J; Wright, Terrence M; Standaert, David G; Hall, Randy A; Smith, Yoland
2008-04-01
Two cardinal features of Parkinson's disease (PD) pathophysiology are a loss of glutamatergic synapses paradoxically accompanied by an increased glutamatergic transmission to the striatum. The exact substrate of this increased glutamatergic drive remains unclear. The striatum receives glutamatergic inputs from the thalamus and the cerebral cortex. Using vesicular glutamate transporters (vGluTs) 1 and 2 as markers of the corticostriatal and thalamostriatal afferents, respectively, we examined changes in the synaptology and relative prevalence of striatal glutamatergic inputs in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys using electron microscopic immunoperoxidase and confocal immunofluorescence methods. Our findings demonstrate that the prevalence of vGluT1-containing terminals is significantly increased in the striatum of MPTP-treated monkeys (51.9 +/- 3.5% to 66.5 +/- 3.4% total glutamatergic boutons), without any significant change in the pattern of synaptic connectivity; more than 95% of vGluT1-immunolabeled terminals formed axo-spinous synapses in both conditions. In contrast, the prevalence of vGluT2-immunoreactive terminals did not change after MPTP treatment (21.7 +/- 1.3% vs. 21.6 +/- 1.2% total glutamatergic boutons). However, a substantial increase in the ratio of axo-spinous to axo-dendritic synapses formed by vGluT2-immunoreactive terminals was found in the pre-caudate and post-putamen striatal regions of MPTP-treated monkeys, suggesting a certain degree of synaptic reorganization of the thalamostriatal system in parkinsonism. About 20% of putative glutamatergic terminals did not show immunoreactivity in striatal tissue immunostained for both vGluT1 and vGluT2, suggesting the expression of another vGluT in these boutons. These findings provide striking evidence that suggests a differential degree of plasticity of the corticostriatal and thalamostriatal system in PD.
Offset-free rail-to-rail derandomizing peak detect-and-hold circuit
DeGeronimo, Gianluigi; O'Connor, Paul; Kandasamy, Anand
2003-01-01
A peak detect-and-hold circuit eliminates errors introduced by conventional amplifiers, such as common-mode rejection and input voltage offset. The circuit includes an amplifier, three switches, a transistor, and a capacitor. During a detect-and-hold phase, a hold voltage at a non-inverting in put terminal of the amplifier tracks an input voltage signal and when a peak is reached, the transistor is switched off, thereby storing a peak voltage in the capacitor. During a readout phase, the circuit functions as a unity gain buffer, in which the voltage stored in the capacitor is provided as an output voltage. The circuit is able to sense signals rail-to-rail and can readily be modified to sense positive, negative, or peak-to-peak voltages. Derandomization may be achieved by using a plurality of peak detect-and-hold circuits electrically connected in parallel.
Efficient Multiplexer FPGA Block Structures Based on G4FETs
NASA Technical Reports Server (NTRS)
Vatan, Farrokh; Fijany, Amir
2009-01-01
Generic structures have been conceived for multiplexer blocks to be implemented in field-programmable gate arrays (FPGAs) based on four-gate field-effect transistors (G(sup 4)FETs). This concept is a contribution to the continuing development of digital logic circuits based on G4FETs and serves as a further demonstration that logic circuits based on G(sup 4)FETs could be more efficient (in the sense that they could contain fewer transistors), relative to functionally equivalent logic circuits based on conventional transistors. Results in this line of development at earlier stages were summarized in two previous NASA Tech Briefs articles: "G(sup 4)FETs as Universal and Programmable Logic Gates" (NPO-41698), Vol. 31, No. 7 (July 2007), page 44, and "Efficient G4FET-Based Logic Circuits" (NPO-44407), Vol. 32, No. 1 ( January 2008), page 38 . As described in the first-mentioned previous article, a G4FET can be made to function as a three-input NOT-majority gate, which has been shown to be a universal and programmable logic gate. The universality and programmability could be exploited to design logic circuits containing fewer components than are required for conventional transistor-based circuits performing the same logic functions. The second-mentioned previous article reported results of a comparative study of NOT-majority-gate (G(sup 4)FET)-based logic-circuit designs and equivalent NOR- and NAND-gate-based designs utilizing conventional transistors. [NOT gates (inverters) were also included, as needed, in both the G(sup 4)FET- and the NOR- and NAND-based designs.] In most of the cases studied, fewer logic gates (and, hence, fewer transistors), were required in the G(sup 4)FET-based designs. There are two popular categories of FPGA block structures or architectures: one based on multiplexers, the other based on lookup tables. In standard multiplexer- based architectures, the basic building block is a tree-like configuration of multiplexers, with possibly a few additional logic gates such as ANDs or ORs. Interconnections are realized by means of programmable switches that may connect the input terminals of a block to output terminals of other blocks, may bridge together some of the inputs, or may connect some of the input terminals to signal sources representing constant logical levels 0 or 1. The left part of the figure depicts a four-to-one G(sup 4)FET-based multiplexer tree; the right part of the figure depicts a functionally equivalent four-to-one multiplexer based on conventional transistors. The G(sup 4)FET version would contains 54 transistors; the conventional version contains 70 transistors.
Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.
Chen, Mou; Wu, Qing-Xian; Cui, Rong-Xin
2013-03-01
In this paper, the terminal sliding mode tracking control is proposed for the uncertain single-input and single-output (SISO) nonlinear system with unknown external disturbance. For the unmeasured disturbance of nonlinear systems, terminal sliding mode disturbance observer is presented. The developed disturbance observer can guarantee the disturbance approximation error to converge to zero in the finite time. Based on the output of designed disturbance observer, the terminal sliding mode tracking control is presented for uncertain SISO nonlinear systems. Subsequently, terminal sliding mode tracking control is developed using disturbance observer technique for the uncertain SISO nonlinear system with control singularity and unknown non-symmetric input saturation. The effects of the control singularity and unknown input saturation are combined with the external disturbance which is approximated using the disturbance observer. Under the proposed terminal sliding mode tracking control techniques, the finite time convergence of all closed-loop signals are guaranteed via Lyapunov analysis. Numerical simulation results are given to illustrate the effectiveness of the proposed terminal sliding mode tracking control. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
The macaque midbrain reticular formation sends side-specific feedback to the superior colliculus.
Wang, Niping; Warren, Susan; May, Paul J
2010-04-01
The central mesencephalic reticular formation (cMRF) likely plays a role in gaze control, as cMRF neurons receive tectal input and provide a bilateral projection back to the superior colliculus (SC). We examined the important question of whether this feedback is excitatory or inhibitory. Biotinylated dextran amine (BDA) was injected into the cMRF of M. fascicularis monkeys to anterogradely label reticulotectal terminals and retrogradely label tectoreticular neurons. BDA labeled profiles in the ipsi- and contralateral intermediate gray layer (SGI) were examined electron microscopically. Postembedding GABA immunochemistry was used to identify putative inhibitory profiles. Nearly all (94.7%) of the ipsilateral BDA labeled terminals were GABA positive, but profiles postsynaptic to these labeled terminals were exclusively GABA negative. In addition, BDA labeled terminals were observed to contact BDA labeled dendrites, indicating the presence of a monosynaptic feedback loop connecting the cMRF and ipsilateral SC. In contrast, within the contralateral SGI, half of the BDA labeled terminals were GABA positive, while more than a third were GABA negative. All the postsynaptic profiles were GABA negative. These results indicate the cMRF provides inhibitory feedback to the ipsilateral side of the SC, but it has more complex effects on the contralateral side. The ipsilateral projection may help tune the "winner-take-all" mechanism that produces a unified saccade signal, while the contralateral projections may contribute to the coordination of activity between the two colliculi.
Central projections of the lateral line and eighth nerves in the bowfin, Amia calva.
McCormick, C A
1981-03-20
The first-order connections of the anterior and posterior lateral line nerves and of the eighth nerve were determined in the bowfin, Amia calva, using experimental degeneration and anterograde HRP transport techniques. The termination sites of these nerves define a dorsal lateralis cell column and a ventral octavus cell column. The anterior and posterior lateralis nerves distribute ipsilaterally to two medullary nuclei-nucleus medialis and nucleus caudalis. Nucleus medialis comprises the rostral two-thirds of the lateralis column and contains large, Purkinje-like cells dorsally and polygonal, granule, and fusiform cells ventrally. Nucleus caudalis is located posterior to nucleus medialis and consists of small, granule cells. Anterior lateralis fibers terminate ventrally to ventromedially in both nucleus medialis and nucleus caudalis. Posterior lateralis fibers terminate dorsally to dorsolaterally within these two nuclei. A sparse anterior lateralis input may also be present on the dendrites of one of the nuclei within the octavus cell column, nucleus magnocellularis. In contrast, the anterior and posterior rami of the eighth nerve each terminate within four medullary nuclei which comprise the octavus cell column: the anterior, magnocellular, descending, and posterior octavus nuclei. An eighth nerve projection to the medial reticular formation is also present. Some fibers of the lateralis and eighth nerves terminate within the ipsilateral eminentia granularis of the cerebellum. Lateralis fibers distribute to approximately the lateral half of this structure with posterior lateral line fibers terminating laterally and anterior lateral line fibers terminating medially. Eighth nerve fibers distribute to the medial half of the eminentia granularis.
A novel ultrasonic clutch using near-field acoustic levitation.
Chang, Kuo-Tsi
2004-10-01
This paper investigates design, fabrication and drive of an ultrasonic clutch with two transducers. For the two transducers, one serving as a driving element of the clutch is connected to a driving shaft via a coupling, and the other serving as a slave element of the clutch is connected to a slave shaft via another coupling. The principle of ultrasonic levitation is first expressed. Then, a series-resonant inverter is used to generate AC voltages at input terminals of each transducer, and a speed measuring system with optic sensors is used to find the relationship between rotational speed of the slave shaft and applied voltage of each transducer. Moreover, contact surfaces of the two transducers are coupled by the frictional force when both the two transducers are not energized, and separated using the ultrasonic levitation when at least one of the two transducers is energized at high voltages at resonance.
Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.
2000-01-01
A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.
Motion video compression system with neural network having winner-take-all function
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi (Inventor); Sheu, Bing J. (Inventor)
1997-01-01
A motion video data system includes a compression system, including an image compressor, an image decompressor correlative to the image compressor having an input connected to an output of the image compressor, a feedback summing node having one input connected to an output of the image decompressor, a picture memory having an input connected to an output of the feedback summing node, apparatus for comparing an image stored in the picture memory with a received input image and deducing therefrom pixels having differences between the stored image and the received image and for retrieving from the picture memory a partial image including the pixels only and applying the partial image to another input of the feedback summing node, whereby to produce at the output of the feedback summing node an updated decompressed image, a subtraction node having one input connected to received the received image and another input connected to receive the partial image so as to generate a difference image, the image compressor having an input connected to receive the difference image whereby to produce a compressed difference image at the output of the image compressor.
M/A-COM Linkabit Eastern Operations
1983-03-31
Lincoln Laboratories speech codec for use in multimedia system development. Communication equipment included 1200-bps dial-up modems and a set of...connected to the DCN for use in[7, Page 4 general word-processing and network-testing applications.Additional modems and video terminals have also been...line 0) can be connected to a second terminal, a printer, or a modem . The standard configuration assumes this line is connected to a terminal or
High frequency inductive lamp and power oscillator
Kirkpatrick, Douglas A.; Gitsevich, Aleksandr
2005-09-27
An oscillator includes an amplifier having an input and an output, a feedback network connected between the input of the amplifier and the output of the amplifier, the feedback network being configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and a tuning circuit connected to the input of the amplifier, wherein the tuning circuit is continuously variable and consists of solid state electrical components with no mechanically adjustable devices including a pair of diodes connected to each other at their respective cathodes with a control voltage connected at the junction of the diodes. Another oscillator includes an amplifier having an input and an output, a feedback network connected between the input of the amplifier and the output of the amplifier, the feedback network being configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and transmission lines connected to the input of the amplifier with an input pad and a perpendicular transmission line extending from the input pad and forming a leg of a resonant "T", and wherein the feedback network is coupled to the leg of the resonant "T".
Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate
Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian
2017-01-01
The central extended amygdala (CEA) has been conceptualized as a ‘macrosystem’ that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the ‘limbic-associative’ striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning. PMID:28220796
Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate.
Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian
2017-07-01
The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the 'limbic-associative' striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning.
46 CFR 525.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., warehouse or other terminal facilities in connection with a common carrier, or in connection with a common...; common carriers who perform port terminal services; and warehousemen who operate port terminal facilities... storage spaces, cold storage plants, cranes, grain elevators and/or bulk cargo loading and/or unloading...
Dual power, constant speed electric motor system
Kirschbaum, H.S.
1984-07-31
A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level. 6 figs.
Dual power, constant speed electric motor system
Kirschbaum, Herbert S.
1984-01-01
A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level.
The topology of connections between rat prefrontal and temporal cortices
Bedwell, Stacey A.; Billett, E. Ellen; Crofts, Jonathan J.; MacDonald, Danielle M.; Tinsley, Chris J.
2015-01-01
Understanding the structural organization of the prefrontal cortex (PFC) is an important step toward determining its functional organization. Here we investigated the organization of PFC using different neuronal tracers. We injected retrograde (Fluoro-Gold, 100 nl) and anterograde [Biotinylated dextran amine (BDA) or Fluoro-Ruby, 100 nl] tracers into sites within PFC subdivisions (prelimbic, ventral orbital, ventrolateral orbital, dorsolateral orbital) along a coronal axis within PFC. At each injection site one injection was made of the anterograde tracer and one injection was made of the retrograde tracer. The projection locations of retrogradely labeled neurons and anterogradely labeled axon terminals were then analyzed in the temporal cortex: area Te, entorhinal and perirhinal cortex. We found evidence for an ordering of both the anterograde (anterior-posterior, dorsal-ventral, and medial-lateral axes: p < 0.001) and retrograde (anterior-posterior, dorsal-ventral, and medial-lateral axes: p < 0.001) connections of PFC. We observed that anterograde and retrograde labeling in ipsilateral temporal cortex (i.e., PFC inputs and outputs) often occurred reciprocally (i.e., the same brain region, such as area 35d in perirhinal cortex, contained anterograde and retrograde labeling). However, often the same specific columnar temporal cortex regions contained only either labeling of retrograde or anterograde tracer, indicating that PFC inputs and outputs are frequently non-matched. PMID:26042005
ERIC Educational Resources Information Center
Stifle, Jack
A graphics terminal designed for use as a remote computer input/output terminal is described. Although the terminal is intended for use in teaching applications, it has several features which make it useful in many other computer terminal applications. These features include: a 10-inch square plasma display panel, permanent storage of information…
A map of terminal regulators of neuronal identity in Caenorhabditis elegans
2016-01-01
Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In‐depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron‐type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity‐defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the control of terminal identities, suggesting that these factors have ancient, phylogenetically conserved roles in controlling terminal neuronal differentiation in the nervous system. WIREs Dev Biol 2016, 5:474–498. doi: 10.1002/wdev.233 For further resources related to this article, please visit the WIREs website. PMID:27136279
Park, Kellie A; Ribic, Adema; Laage Gaupp, Fabian M; Coman, Daniel; Huang, Yuegao; Dulla, Chris G; Hyder, Fahmeed; Biederer, Thomas
2016-07-13
Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability. This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly. Second, the results demonstrate that a synaptogenic process that controls excitatory inputs to both pyramidal neurons and interneurons can balance excitation and inhibition. Specifically, the study reveals that hippocampal CA3 connectivity is modulated by the synapse-organizing adhesion protein SynCAM 1 and identifies a novel, SynCAM 1-dependent mechanism that controls excitatory inputs onto parvalbumin-positive interneurons. This enables SynCAM 1 to regulate feedforward inhibition and set network excitability. Further, we show that diffusion tensor imaging is sensitive to these cellular refinements affecting neuronal connectivity. Copyright © 2016 the authors 0270-6474/16/367465-12$15.00/0.
Low voltage to high voltage level shifter and related methods
NASA Technical Reports Server (NTRS)
Mentze, Erik J. (Inventor); Buck, Kevin M. (Inventor); Hess, Herbert L. (Inventor); Cox, David F. (Inventor)
2006-01-01
A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.
Lei, Wanlong; Deng, Yunping; Liu, Bingbing; Mu, Shuhua; Guley, Natalie M.; Wong, Ting; Reiner, Anton
2014-01-01
We examined thalamic input to striatum in rats using immunolabeling for the vesicular glutamate transporter (VGLUT2). Double immunofluorescence viewed with confocal laser scanning microscopy (CLSM) revealed that VGLUT2+ terminals are distinct from VGLUT1+ terminals. CLSM of Phaseolus vulgaris-leucoagglutinin (PHAL)-labeled cortical or thalamic terminals revealed that VGLUT2 is rare in corticostriatal terminals but nearly always present in thalamostriatal terminals. Electron microscopy revealed that VGLUT2+ terminals made up 39.4% of excitatory terminals in striatum (with VGLUT1+ corticostriatal terminals constituting the rest), and 66.8% of VGLUT2+ terminals synapsed on spines and the remainder on dendrites. VGLUT2+ axo-spinous terminals had a mean diameter of 0.624 lm, while VGLUT2+ axodendritic terminals a mean diameter of 0.698 µm. In tissue in which we simultaneously immunolabeled thalamostriatal terminals for VGLUT2 and striatal neurons for D1 (with about half of spines immunolabeled for D1), 54.6% of VGLUT2+ terminals targeted D1+ spines (i.e., direct pathway striatal neurons), and 37.3% of D1+ spines received VGLUT2+ synaptic contacts. By contrast, 45.4% of VGLUT2+ terminals targeted D1-negative spines (i.e., indirect pathway striatal neurons), and only 25.8% of D1-negative spines received VGLUT2+ synaptic contacts. Similarly, among VGLUT2+ axodendritic synaptic terminals, 59.1% contacted D1+ dendrites, and 40.9% contacted D1-negative dendrites. VGLUT2+ terminals on D1+ spines and dendrites tended to be slightly smaller than those on D1-negative spines and dendrites. Thus, thala-mostriatal terminals contact both direct and indirect pathway striatal neurons, with a slight preference for direct. These results are consistent with physiological studies indicating slightly different effects of thalamic input on the two types of striatal projection neurons. PMID:23047588
Lei, Wanlong; Deng, Yunping; Liu, Bingbing; Mu, Shuhua; Guley, Natalie M; Wong, Ting; Reiner, Anton
2013-04-15
We examined thalamic input to striatum in rats using immunolabeling for the vesicular glutamate transporter (VGLUT2). Double immunofluorescence viewed with confocal laser scanning microscopy (CLSM) revealed that VGLUT2+ terminals are distinct from VGLUT1+ terminals. CLSM of Phaseolus vulgaris-leucoagglutinin (PHAL)-labeled cortical or thalamic terminals revealed that VGLUT2 is rare in corticostriatal terminals but nearly always present in thalamostriatal terminals. Electron microscopy revealed that VGLUT2+ terminals made up 39.4% of excitatory terminals in striatum (with VGLUT1+ corticostriatal terminals constituting the rest), and 66.8% of VGLUT2+ terminals synapsed on spines and the remainder on dendrites. VGLUT2+ axospinous terminals had a mean diameter of 0.624 μm, while VGLUT2+ axodendritic terminals a mean diameter of 0.698 μm. In tissue in which we simultaneously immunolabeled thalamostriatal terminals for VGLUT2 and striatal neurons for D1 (with about half of spines immunolabeled for D1), 54.6% of VGLUT2+ terminals targeted D1+ spines (i.e., direct pathway striatal neurons), and 37.3% of D1+ spines received VGLUT2+ synaptic contacts. By contrast, 45.4% of VGLUT2+ terminals targeted D1-negative spines (i.e., indirect pathway striatal neurons), and only 25.8% of D1-negative spines received VGLUT2+ synaptic contacts. Similarly, among VGLUT2+ axodendritic synaptic terminals, 59.1% contacted D1+ dendrites, and 40.9% contacted D1-negative dendrites. VGLUT2+ terminals on D1+ spines and dendrites tended to be slightly smaller than those on D1-negative spines and dendrites. Thus, thalamostriatal terminals contact both direct and indirect pathway striatal neurons, with a slight preference for direct. These results are consistent with physiological studies indicating slightly different effects of thalamic input on the two types of striatal projection neurons. Copyright © 2012 Wiley Periodicals, Inc.
OFCC based voltage and transadmittance mode instrumentation amplifier
NASA Astrophysics Data System (ADS)
Nand, Deva; Pandey, Neeta; Pandey, Rajeshwari; Tripathi, Prateek; Gola, Prashant
2017-07-01
The operational floating current conveyor (OFCC) is a versatile active block due to the availability of both low and high input and output impedance terminals. This paper addresses the realization of OFCC based voltage and transadmittance mode instrumentation amplifiers (VMIA and TAM IA). It employs three OFCCs and seven resistors. The transadmittance mode operation can easily be obtained by simply connecting an OFCC based voltage to current converter at the output. The effect of non-idealities of OFCC, in particular finite transimpedance and tracking error, on system performance is also dealt with and corresponding mathematical expressions are derived. The functional verification is performed through SPICE simulation using CMOS based implementation of OFCC.
Ultrastructure of spines and associated terminals on brainstem neurons controlling auditory input
Brown, M. Christian; Lee, Daniel J.; Benson, Thane E.
2013-01-01
Spines are unique cellular appendages that isolate synaptic input to neurons and play a role in synaptic plasticity. Using the electron microscope, we studied spines and their associated synaptic terminals on three groups of brainstem neurons: tensor tympani motoneurons, stapedius motoneurons, and medial olivocochlear neurons, all of which exert reflexive control of processes in the auditory periphery. These spines are generally simple in shape; they are infrequent and found on the somata as well as the dendrites. Spines do not differ in volume among the three groups of neurons. In all cases, the spines are associated with a synaptic terminal that engulfs the spine rather than abuts its head. The positions of the synapses are variable, and some are found at a distance from the spine, suggesting that the isolation of synaptic input is of diminished importance for these spines. Each group of neurons receives three common types of synaptic terminals. The type of terminal associated with spines of the motoneurons contains pleomorphic vesicles, whereas the type associated with spines of olivocochlear neurons contains large round vesicles. Thus, spine-associated terminals in the motoneurons appear to be associated with inhibitory processes but in olivocochlear neurons they are associated with excitatory processes. PMID:23602963
Nakamura, Kazuhiro; Wu, Sheng-Xi; Fujiyama, Fumino; Okamoto, Keiko; Hioki, Hiroyuki; Kaneko, Takeshi
2004-03-01
To characterize glutamatergic axon terminals onto sympathetic preganglionic neurons (SPNs), we visualized immunohistochemically three vesicular glutamate transporters (VGLUTs) in the intermediolateral cell column (IML) of rat thoracic spinal cord. VGLUT2 and VGLUT3 immunoreactivities but not VGLUT1 immunoreactivity were distributed in the IML and found in terminals making asymmetric synapses and apposed to dendrites immunopositive for choline acetyltransferase, an SPN marker. VGLUT2 and VGLUT3 immunoreactivities were not co-localized with each other. A population of VGLUT2-immunoreactive but not VGLUT3-immunoreactive terminals were adrenergic or noradrenergic. Some of VGLUT3-immunoreactive but not VGLUT2-immunoreactive terminals contained serotonin. These results indicate at least two independent glutamatergic terminal populations, which include a distinct monoaminergic subpopulation, making excitatory inputs onto SPNs. Copyright 2004 Lippincott Williams & Wilkins
Speed control system for an access gate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzorgi, Fariborz M
2012-03-20
An access control apparatus for an access gate. The access gate typically has a rotator that is configured to rotate around a rotator axis at a first variable speed in a forward direction. The access control apparatus may include a transmission that typically has an input element that is operatively connected to the rotator. The input element is generally configured to rotate at an input speed that is proportional to the first variable speed. The transmission typically also has an output element that has an output speed that is higher than the input speed. The input element and the outputmore » element may rotate around a common transmission axis. A retardation mechanism may be employed. The retardation mechanism is typically configured to rotate around a retardation mechanism axis. Generally the retardation mechanism is operatively connected to the output element of the transmission and is configured to retard motion of the access gate in the forward direction when the first variable speed is above a control-limit speed. In many embodiments the transmission axis and the retardation mechanism axis are substantially co-axial. Some embodiments include a freewheel/catch mechanism that has an input connection that is operatively connected to the rotator. The input connection may be configured to engage an output connection when the rotator is rotated at the first variable speed in a forward direction and configured for substantially unrestricted rotation when the rotator is rotated in a reverse direction opposite the forward direction. The input element of the transmission is typically operatively connected to the output connection of the freewheel/catch mechanism.« less
Laramée, Marie-Eve; Smolders, Katrien; Hu, Tjing-Tjing; Bronchti, Gilles; Boire, Denis; Arckens, Lutgarde
2016-01-01
In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed.
Smolders, Katrien; Hu, Tjing-Tjing; Bronchti, Gilles; Boire, Denis; Arckens, Lutgarde
2016-01-01
In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed. PMID:27410964
NASA Astrophysics Data System (ADS)
Traversa, Fabio L.; Di Ventra, Massimiliano
2017-02-01
We introduce a class of digital machines, we name Digital Memcomputing Machines, (DMMs) able to solve a wide range of problems including Non-deterministic Polynomial (NP) ones with polynomial resources (in time, space, and energy). An abstract DMM with this power must satisfy a set of compatible mathematical constraints underlying its practical realization. We prove this by making a connection with the dynamical systems theory. This leads us to a set of physical constraints for poly-resource resolvability. Once the mathematical requirements have been assessed, we propose a practical scheme to solve the above class of problems based on the novel concept of self-organizing logic gates and circuits (SOLCs). These are logic gates and circuits able to accept input signals from any terminal, without distinction between conventional input and output terminals. They can solve boolean problems by self-organizing into their solution. They can be fabricated either with circuit elements with memory (such as memristors) and/or standard MOS technology. Using tools of functional analysis, we prove mathematically the following constraints for the poly-resource resolvability: (i) SOLCs possess a global attractor; (ii) their only equilibrium points are the solutions of the problems to solve; (iii) the system converges exponentially fast to the solutions; (iv) the equilibrium convergence rate scales at most polynomially with input size. We finally provide arguments that periodic orbits and strange attractors cannot coexist with equilibria. As examples, we show how to solve the prime factorization and the search version of the NP-complete subset-sum problem. Since DMMs map integers into integers, they are robust against noise and hence scalable. We finally discuss the implications of the DMM realization through SOLCs to the NP = P question related to constraints of poly-resources resolvability.
Cocas, Laura A.; Fernandez, Gloria; Barch, Mariya; Doll, Jason; Zamora Diaz, Ivan
2016-01-01
The mammalian cerebral cortex is a dense network composed of local, subcortical, and intercortical synaptic connections. As a result, mapping cell type-specific neuronal connectivity in the cerebral cortex in vivo has long been a challenge for neurobiologists. In particular, the development of excitatory and inhibitory interneuron presynaptic input has been hard to capture. We set out to analyze the development of this connectivity in the first postnatal month using a murine model. First, we surveyed the connectivity of one of the earliest populations of neurons in the brain, the Cajal-Retzius (CR) cells in the neocortex, which are known to be critical for cortical layer formation and are hypothesized to be important in the establishment of early cortical networks. We found that CR cells receive inputs from deeper-layer excitatory neurons and inhibitory interneurons in the first postnatal week. We also found that both excitatory pyramidal neurons and inhibitory interneurons received broad inputs in the first postnatal week, including inputs from CR cells. Expanding our analysis into the more mature brain, we assessed the inputs onto inhibitory interneurons and excitatory projection neurons, labeling neuronal progenitors with Cre drivers to study discrete populations of neurons in older cortex, and found that excitatory cortical and subcortical inputs are refined by the fourth week of development, whereas local inhibitory inputs increase during this postnatal period. Cell type-specific circuit mapping is specific, reliable, and effective, and can be used on molecularly defined subtypes to determine connectivity in the cortex. SIGNIFICANCE STATEMENT Mapping cortical connectivity in the developing mammalian brain has been an intractable problem, in part because it has not been possible to analyze connectivity with cell subtype precision. Our study systematically targets the presynaptic connections of discrete neuronal subtypes in both the mature and developing cerebral cortex. We analyzed the connections that Cajal-Retzius cells make and receive, and found that these cells receive inputs from deeper-layer excitatory neurons and inhibitory interneurons in the first postnatal week. We assessed the inputs onto inhibitory interneurons and excitatory projection neurons, the major two types of neurons in the cortex, and found that excitatory inputs are refined by the fourth week of development, whereas local inhibitory inputs increase during this postnatal period. PMID:26985044
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)
2010-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)
2011-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
NASA Technical Reports Server (NTRS)
Aoki, Ichiro (Inventor); Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor)
2013-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)
2008-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
Optimal degrees of synaptic connectivity
Litwin-Kumar, Ashok; Harris, Kameron Decker; Axel, Richard; Sompolinsky, Haim; Abbott, L. F.
2017-01-01
Summary Synaptic connectivity varies widely across neuronal types. Cerebellar granule cells receive five orders of magnitude fewer inputs than the Purkinje cells they innervate, and cerebellum-like circuits including the insect mushroom body also exhibit large divergences in connectivity. In contrast, the number of inputs per neuron in cerebral cortex is more uniform and large. We investigate how the dimension of a representation formed by a population of neurons depends on how many inputs they each receive and what this implies for learning associations. Our theory predicts that the dimensions of the cerebellar granule-cell and Drosophila Kenyon-cell representations are maximized at degrees of synaptic connectivity that match those observed anatomically, showing that sparse connectivity is sometimes superior to dense connectivity. When input synapses are subject to supervised plasticity, however, dense wiring becomes advantageous, suggesting that the type of plasticity exhibited by a set of synapses is a major determinant of connection density. PMID:28215558
Hydromechanical transmission with hydrodynamic drive
Orshansky, Jr., deceased, Elias; Weseloh, William E.
1979-01-01
This transmission has a first planetary gear assembly having first input means connected to an input shaft, first output means, and first reaction means, and a second planetary gear assembly having second input means connected to the first input means, second output means, and second reaction means connected directly to the first reaction means by a reaction shaft. First clutch means, when engaged, connect the first output means to an output shaft in a high driving range. A hydrodynamic drive is used; for example, a torque converter, which may or may not have a stationary case, has a pump connected to the second output means, a stator grounded by an overrunning clutch to the case, and a turbine connected to an output member, and may be used in a starting phase. Alternatively, a fluid coupling or other type of hydrodynamic drive may be used. Second clutch means, when engaged, for connecting the output member to the output shaft in a low driving range. A variable-displacement hydraulic unit is mechanically connected to the input shaft, and a fixed-displacement hydraulic unit is mechanically connected to the reaction shaft. The hydraulic units are hydraulically connected together so that when one operates as a pump the other acts as a motor, and vice versa. Both clutch means are connected to the output shaft through a forward-reverse shift arrangement. It is possible to lock out the torque converter after the starting phase is over.
Rotary high power transfer apparatus
NASA Technical Reports Server (NTRS)
Jacobson, Peter E. (Inventor); Porter, Ryan S. (Inventor)
1987-01-01
An apparatus for reducing terminal-to-terminal circuit resistance and enhancing heat transfer in a rotary power transfer apparatus of the roll ring type comprising a connecting thimble for attaching an external power cable to a cone shaped terminal which is attached to a tab integral to an outer ring. An inner ring having a spherical recess mates with the spherical end of a tie connector. A cone shaped terminal is fitted to a second connecting thimble for attaching a second external power cable.
Memristor-based programmable logic array (PLA) and analysis as Memristive networks.
Lee, Kwan-Hee; Lee, Sang-Jin; Kim, Seok-Man; Cho, Kyoungrok
2013-05-01
A Memristor theorized by Chua in 1971 has the potential to dramatically influence the way electronic circuits are designed. It is a two terminal device whose resistance state is based on the history of charge flow brought about as the result of the voltage being applied across its terminals and hence can be thought of as a special case of a reconfigurable resistor. Nanoscale devices using dense and regular fabrics such as Memristor cross-bar is promising new architecture for System-on-Chip (SoC) implementations in terms of not only the integration density that the technology can offer but also both improved performance and reduced power dissipation. Memristor has the capacity to switch between high and low resistance states in a cross-bar circuit configuration. The cross-bars are formed from an array of vertical conductive nano-wires cross a second array of horizontal conductive wires. Memristors are realized at the intersection of the two wires in the array through appropriate processing technology such that any particular wire in the vertical array can be connected to a wire in the horizontal array by switching the resistance of a particular intersection to a low state while other cross-points remain in a high resistance state. However the approach introduces a number of challenges. The lack of voltage gain prevents logic being cascaded and voltage level degradation affects robustness of the operation. Moreover the cross-bars introduce sneak current paths when two or more cross points are connected through the switched Memristor. In this paper, we propose Memristor-based programmable logic array (PLA) architecture and develop an analytical model to analyze the logic level on the memristive networks. The proposed PLA architecture has 12 inputs maximum and can be cascaded for more input variables with R(off)/R(on) ratio in the range from 55 to 160 of Memristors.
Development of a character, line and point display system. [for medical records
NASA Technical Reports Server (NTRS)
Owen, E. W.
1977-01-01
A compact graphics terminal for use as the input to a computerized medical records system is described. The principal mode of communication between the terminal and the records system is by checklists and menu selection. However, the terminal accepts short, handwritten messages as well as conventional alphanumeric input. The terminal consists of an electronic tablet, a display, a microcomputer controller, a character generator, and a refresh memory for the display. An Intel SBC 80/10 microcomputer controls the flow of information and a 16 kilobyte memory stores the point-by-point array of information to be displayed. A specially designed interface continuously generates the raster display without the intervention of the microcomputer.
High-frequency matrix converter with square wave input
Carr, Joseph Alexander; Balda, Juan Carlos
2015-03-31
A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.
HIGH FREQUENCY POWER TRANSMISSION LINE FOR CYCLOTRONS AND THE LIKE
Armstrong, W.J.
1954-04-20
High-frequency power transmission systems, particularly a stacked capacitance alternating power current transmission line wherein maximum utilization of the effective conductios skin of the line conductors is achieved while enabling a low impedance to be obtained are reported. The transmission line consists of a number of flat metal strips with interleaved dielectric strips. The metal dielectric strips are coiled spirally with the axis of the spiral extending along the length of the strips, and the alternating metal strips at the output end have outwardly extending aligned lugs which are directly strapped together and connected to the respective terminals on the load. At the input end of the transmission line, similarly, the alternate metal strips are directly strapped together and connected to an altereating current source. With the arrangement described each metal strip conducts on both sides, so that the metal strips are designed to have a thickness corresponding to twice the depth of the "skin effect" conducting lamina of each conductor at the source frequency.
Report on Investigations of Aviation Wires and Cables, Their Fastenings and Terminal Connections
NASA Technical Reports Server (NTRS)
Sunderlang, C C; Horn, H J; Green, D
1917-01-01
Report presents results that show that it is possible to furnish efficient terminal connections that would allow for repairs for aviation wires and cables and eliminate the use of acid solder and blow torch.
Robust and tunable circadian rhythms from differentially sensitive catalytic domains
Phong, Connie; Markson, Joseph S.; Wilhoite, Crystal M.; Rust, Michael J.
2013-01-01
Circadian clocks are ubiquitous biological oscillators that coordinate an organism’s behavior with the daily cycling of the external environment. To ensure synchronization with the environment, the period of the clock must be maintained near 24 h even as amplitude and phase are altered by input signaling. We show that, in a reconstituted circadian system from cyanobacteria, these conflicting requirements are satisfied by distinct functions for two domains of the central clock protein KaiC: the C-terminal autokinase domain integrates input signals through the ATP/ADP ratio, and the slow N-terminal ATPase acts as an input-independent timer. We find that phosphorylation in the C-terminal domain followed by an ATPase cycle in the N-terminal domain is required to form the inhibitory KaiB•KaiC complexes that drive the dynamics of the clock. We present a mathematical model in which this ATPase-mediated delay in negative feedback gives rise to a compensatory mechanism that allows a tunable phase and amplitude while ensuring a robust circadian period. PMID:23277568
Nanosecond monolithic CMOS readout cell
Souchkov, Vitali V.
2004-08-24
A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.
Rapid integration of young newborn dentate gyrus granule cells in the adult hippocampal circuitry.
Ide, Yoko; Fujiyama, Fumino; Okamoto-Furuta, Keiko; Tamamaki, Nobuaki; Kaneko, Takeshi; Hisatsune, Tatsuhiro
2008-12-01
Newborn dentate gyrus granule cells (DGCs) are integrated into the hippocampal circuitry and contribute to the cognitive functions of learning and memory. The dendritic maturation of newborn DGCs in adult mice occurs by the first 3-4 weeks, but DGCs seem to receive a variety of neural inputs at both their dendrites and soma even shortly after their birth. However, few studies on the axonal maturation of newborn DGCs have focused on synaptic structure. Here, we investigated the potentiality of output and input in newborn DGCs, especially in the early period after terminal mitosis. We labeled nestin-positive progenitor cells by injecting GFP Cre-reporter adenovirus into Nestin-Cre mice, enabling us to trace the development of progenitor cells by their GFP expression. In addition to GABAergic input from interneurons, we observed that the young DGCs received axosomatic input from the medial septum as early as postinfection day 7 (PID 7). To evaluate the axonal maturation of the newborn DGCs compared with mature DCGs, we performed confocal and electron microscopic analyses. We observed that newborn DGCs projected their mossy fibers to the CA3 region, forming small terminals on hilar or CA3 interneurons and large boutons on CA3 pyramidal cells. These terminals expressed vesicular glutamate transporter 1, indicating they were glutamatergic terminals. Intriguingly, the terminals at PID 7 had already formed asymmetric synapses, similar to those of mature DGCs. Together, our findings suggest that newborn DGCs may form excitatory synapses on both interneurons and CA3 pyramidal cells within 7 days of their terminal mitosis.
Compact Termination for Structural Soft-goods
NASA Technical Reports Server (NTRS)
Wilkes, Robert, Jr.
2013-01-01
Glass fiber is unique in its ability to withstand atomic oxygen and ultraviolet radiation in-space environments. However, glass fiber is also difficult to terminate by traditional methods without decreasing its strength significantly. Glass fiber products are especially sensitive to bend radius, and do not work very well with traditional 'sewn loop on pin' type connections. As with most composites, getting applied loads from a metallic structure into the webbing without stress concentrations is the key to a successful design. A potted end termination has been shown in some preliminary work to out-perform traditional termination methods. It was proposed to conduct a series of tensile tests on structural webbing or cord to determine the optimum potting geometry, and to then be able to estimate a weight and volume savings over traditional sewn-overa- pin connections. During the course of the investigation into potted end terminations for glass fiber webbing, a new and innovative connection was developed that has lower weight, reduced fabrication time, and superior thermal tolerance over the metallic end terminations that were to be optimized in the original proposal. This end termination essentially transitions the flexible glass fiber webbing into a rigid fiberglass termination, which can be bolted/fastened with traditional methods
Salimi, I; Friel, KM; Martin, JH
2008-01-01
Motor development depends on forming specific connections between the corticospinal tract (CST) and the spinal cord. Blocking CST activity in kittens during the critical period for establishing connections with spinal motor circuits results in permanent impairments in connectivity and function. The changes in connections are consistent with the hypothesis that the inactive tract is less competitive in developing spinal connections than the active tract. In this study we tested the competition hypothesis by determining if activating CST axons, after prior silencing during the critical period, abrogated development of aberrant corticospinal connections and motor impairments. In kittens, we inactivated motor cortex by muscimol infusion between postnatal weeks 5-7. We next electrically stimulated CST axons in the medullary pyramid 2.5 hours daily, between weeks 7-10. In controls (n=3), CST terminations were densest within the contralateral deeper, premotor, spinal layers. After prior inactivation (n=3), CST terminations were densest within the dorsal, somatic sensory, layers. There were more ipsilateral terminations from the active tract. During visually guided locomotion, there was a movement endpoint impairment. Stimulation after inactivation (n=6) resulted in significantly fewer terminations in the sensory layers and more in the premotor layers, and fewer ipsilateral connections from active cortex. Chronic stimulation reduced the current threshold for evoking contralateral movements by pyramidal stimulation, suggesting strengthening of connections. Importantly, stimulation significantly improved stepping accuracy. These findings show the importance of activity-dependent processes in specifying CST connections. They also provide a strategy for harnessing activity to rescue CST axons at risk of developing aberrant connections after CNS injury. PMID:18632946
The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys
Stepniewska, Iwona; Kaas, Jon H.
2015-01-01
The hand representation in primary motor cortex (M1) is instrumental to manual dexterity in primates. In Old World monkeys, rostral and caudal aspects of the hand representation are located in the precentral gyrus and the anterior bank of the central sulcus, respectively. We previously reported the organization of the cortico-cortical connections of the grasp zone in rostral M1. Here we describe the organization of thalamocortical connections that were labeled from the same tracer injections. Thalamocortical connections of a grasp zone in ventral premotor cortex (PMv) and the M1 orofacial representation are included for direct comparison. The M1 grasp zone was primarily connected with ventral lateral divisions of motor thalamus. The largest proportion of inputs originated in the posterior division (VLp) followed by the medial and the anterior divisions. Thalamic inputs to the M1 grasp zone originated in more lateral aspects of VLp as compared to the origins of thalamic inputs to the M1 orofacial representation. Inputs to M1 from thalamic divisions connected with cerebellum constituted three fold the density of inputs from divisions connected with basal ganglia, whereas the ratio of inputs was more balanced for the grasp zone in PMv. Privileged access of the cerebellothalamic pathway to the grasp zone in rostral M1 is consistent with the connection patterns previously reported for the precentral gyrus. Thus, cerebellar nuclei are likely more involved than basal ganglia nuclei with the contributions of rostral M1 to manual dexterity. PMID:26254903
The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys.
Gharbawie, Omar A; Stepniewska, Iwona; Kaas, Jon H
2016-07-01
The hand representation in primary motor cortex (M1) is instrumental to manual dexterity in primates. In Old World monkeys, rostral and caudal aspects of the hand representation are located in the precentral gyrus and the anterior bank of the central sulcus, respectively. We previously reported the organization of the cortico-cortical connections of the grasp zone in rostral M1. Here we describe the organization of thalamocortical connections that were labeled from the same tracer injections. Thalamocortical connections of a grasp zone in ventral premotor cortex (PMv) and the M1 orofacial representation are included for direct comparison. The M1 grasp zone was primarily connected with ventral lateral divisions of motor thalamus. The largest proportion of inputs originated in the posterior division (VLp) followed by the medial and the anterior divisions. Thalamic inputs to the M1 grasp zone originated in more lateral aspects of VLp as compared to the origins of thalamic inputs to the M1 orofacial representation. Inputs to M1 from thalamic divisions connected with cerebellum constituted three fold the density of inputs from divisions connected with basal ganglia, whereas the ratio of inputs was more balanced for the grasp zone in PMv. Privileged access of the cerebellothalamic pathway to the grasp zone in rostral M1 is consistent with the connection patterns previously reported for the precentral gyrus. Thus, cerebellar nuclei are likely more involved than basal ganglia nuclei with the contributions of rostral M1 to manual dexterity.
Direct connections assist neurons to detect correlation in small amplitude noises
Bolhasani, E.; Azizi, Y.; Valizadeh, A.
2013-01-01
We address a question on the effect of common stochastic inputs on the correlation of the spike trains of two neurons when they are coupled through direct connections. We show that the change in the correlation of small amplitude stochastic inputs can be better detected when the neurons are connected by direct excitatory couplings. Depending on whether intrinsic firing rate of the neurons is identical or slightly different, symmetric or asymmetric connections can increase the sensitivity of the system to the input correlation by changing the mean slope of the correlation transfer function over a given range of input correlation. In either case, there is also an optimum value for synaptic strength which maximizes the sensitivity of the system to the changes in input correlation. PMID:23966940
Power inverter with optical isolation
Duncan, Paul G.; Schroeder, John Alan
2005-12-06
An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.
Shaper design in CMOS for high dynamic range
De Geronimo, Gianluigi; Li, Shaorui
2015-06-30
An analog filter is presented that comprises a chain of filter stages, a feedback resistor for providing a negative feedback, and a feedback capacitor for providing a positive feedback. Each filter stage has an input node and an output node. The output node of a filter stage is connected to the input node of an immediately succeeding filter stage through a resistor. The feedback resistor has a first end connected to the output node of the last filter stage along the chain of filter stages, and a second end connected to the input node of a first preceding filter stage. The feedback capacitor has a first end connected to the output node of one of the chain of filter stages, and a second end connected to the input node of a second preceding filter stage.
Local area network with fault-checking, priorities, and redundant backup
NASA Technical Reports Server (NTRS)
Morales, Sergio (Inventor); Friedman, Gary L. (Inventor)
1989-01-01
This invention is a redundant error detecting and correcting local area networked computer system having a plurality of nodes each including a network connector board within the node for connecting to an interfacing transceiver operably attached to a network cable. There is a first network cable disposed along a path to interconnect the nodes. The first network cable includes a plurality of first interfacing transceivers attached thereto. A second network cable is disposed in parallel with the first cable and, in like manner, includes a plurality of second interfacing transceivers attached thereto. There are a plurality of three position switches each having a signal input, three outputs for individual selective connection to the input, and a control input for receiving signals designating which of the outputs is to be connected to the signal input. Each of the switches includes means for designating a response address for responding to addressed signals appearing at the control input and each of the switches further has its signal input connected to a respective one of the input/output lines from the nodes. Also, one of the three outputs is connected to a repective one of the plurality of first interfacing transceivers. There is master switch control means having an output connected to the control inputs of the plurality of three position switches and an input for receiving directive signals for outputting addressed switch position signals to the three position switches as well as monitor and control computer means having a pair of network connector boards therein connected to respective ones of one of the first interfacing transceivers and one of the second interfacing transceivers and an output connected to the input of the master switch means for monitoring the status of the networked computer system by sending messages to the nodes and receiving and verifying messages therefrom and for sending control signals to the master switch to cause the master switch to cause respective ones of the nodes to use a desired one of the first and second cables for transmitting and receiving messages and for disconnecting desired ones of the nodes from both cables.
Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior.
Felix-Ortiz, Ada C; Tye, Kay M
2014-01-08
Impairments in social interaction represent a core symptom of a number of psychiatric disease states, including autism, schizophrenia, depression, and anxiety. Although the amygdala has long been linked to social interaction, little is known about the functional role of connections between the amygdala and downstream regions in noncompetitive social behavior. In the present study, we used optogenetic and pharmacological tools in mice to study the role of projections from the basolateral complex of the amygdala (BLA) to the ventral hippocampus (vHPC) in two social interaction tests: the resident-juvenile-intruder home-cage test and the three chamber sociability test. BLA pyramidal neurons were transduced using adeno-associated viral vectors (AAV5) carrying either channelrhodopsin-2 (ChR2) or halorhodopsin (NpHR), under the control of the CaMKIIα promoter to allow for optical excitation or inhibition of amygdala axon terminals. Optical fibers were chronically implanted to selectively manipulate BLA terminals in the vHPC. NpHR-mediated inhibition of BLA-vHPC projections significantly increased social interaction in the resident-juvenile intruder home-cage test as shown by increased intruder exploration. In contrast, ChR2-mediated activation of BLA-vHPC projections significantly reduced social behaviors as shown in the resident-juvenile intruder procedure as seen by decreased time exploring the intruder and in the three chamber sociability test by decreased time spent in the social zone. These results indicate that BLA inputs to the vHPC are capable of modulating social behaviors in a bidirectional manner.
INSPECTION MEANS FOR INDUCTION MOTORS
Williams, A.W.
1959-03-10
an appartus is descripbe for inspcting electric motors and more expecially an appartus for detecting falty end rings inn suqirrel cage inductio motors while the motor is running. In its broua aspects, the mer would around ce of reference tedtor means also itons in the phase ition of the An electronic circuit for conversion of excess-3 binary coded serial decimal numbers to straight binary coded serial decimal numbers is reported. The converter of the invention in its basic form generally coded pulse words of a type having an algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance preceding a y algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance. A switching martix is coupled to said input circuit and is internally connected to produce serial straight binary coded pulse groups indicative of the excess-3 coded input. A stepping circuit is coupled to the switching matrix and to a synchronous counter having a plurality of x decimal digit and plurality of y decimal digit indicator terminals. The stepping circuit steps the counter in synchornism with the serial binary pulse group output from the switching matrix to successively produce pulses at corresponding ones of the x and y decimal digit indicator terminals. The combinations of straight binary coded pulse groups and corresponding decimal digit indicator signals so produced comprise a basic output suitable for application to a variety of output apparatus.
Omelchenko, Natalia; Sesack, Susan R.
2008-01-01
Cholinergic afferents to the ventral tegmental area (VTA) contribute substantially to the regulation of motivated behaviors and the rewarding properties of nicotine. These actions are believed to involve connections with dopamine (DA) neurons projecting to the nucleus accumbens (NAc). However, this direct synaptic link has never been investigated, nor is it known whether cholinergic inputs innervate other populations of DA and GABA neurons, including those projecting to the prefrontal cortex (PFC). We addressed these questions using electron microscopic analysis of retrograde tract-tracing and immunocytochemistry for the vesicular acetylcholine transporter (VAChT) and for tyrosine hydroxylase (TH) and GABA. In tissue labeled for TH, VAChT+ terminals frequently synapsed onto DA mesoaccumbens neurons but only seldom contacted DA mesoprefrontal cells. In tissue labeled for GABA, one third of VAChT+ terminals innervated GABA-labeled dendrites, including both mesoaccumbens and mesoprefrontal populations. VAChT+ synapses onto DA and mesoaccumbens neurons were more commonly of the asymmetric (presumed excitatory) morphological type, whereas VAChT+ synapses onto GABA cells were more frequently symmetric (presumed inhibitory or modulatory). These findings suggest that cholinergic inputs to the VTA mediate complex synaptic actions, with a major portion of this effect likely to involve an excitatory influence on DA mesoaccumbens neurons. As such, the results suggest that natural and drug rewards operating through cholinergic afferents to the VTA have a direct synaptic link to the mesoaccumbens DA neurons that modulate approach behaviors. PMID:16385486
9. Terminal connection of arch structural member to concrete abutment ...
9. Terminal connection of arch structural member to concrete abutment on east of south end of bridge. Slightly oblique detail view west-northwest (from beside bridge). 150 mm lens. - Gault Bridge, Spanning Deer Creek at South Pine Street, Nevada City, Nevada County, CA
Long period pseudo random number sequence generator
NASA Technical Reports Server (NTRS)
Wang, Charles C. (Inventor)
1989-01-01
A circuit for generating a sequence of pseudo random numbers, (A sub K). There is an exponentiator in GF(2 sup m) for the normal basis representation of elements in a finite field GF(2 sup m) each represented by m binary digits and having two inputs and an output from which the sequence (A sub K). Of pseudo random numbers is taken. One of the two inputs is connected to receive the outputs (E sub K) of maximal length shift register of n stages. There is a switch having a pair of inputs and an output. The switch outputs is connected to the other of the two inputs of the exponentiator. One of the switch inputs is connected for initially receiving a primitive element (A sub O) in GF(2 sup m). Finally, there is a delay circuit having an input and an output. The delay circuit output is connected to the other of the switch inputs and the delay circuit input is connected to the output of the exponentiator. Whereby after the exponentiator initially receives the primitive element (A sub O) in GF(2 sup m) through the switch, the switch can be switched to cause the exponentiator to receive as its input a delayed output A(K-1) from the exponentiator thereby generating (A sub K) continuously at the output of the exponentiator. The exponentiator in GF(2 sup m) is novel and comprises a cyclic-shift circuit; a Massey-Omura multiplier; and, a control logic circuit all operably connected together to perform the function U(sub i) = 92(sup i) (for n(sub i) = 1 or 1 (for n(subi) = 0).
Stochastic p -Bits for Invertible Logic
NASA Astrophysics Data System (ADS)
Camsari, Kerem Yunus; Faria, Rafatul; Sutton, Brian M.; Datta, Supriyo
2017-07-01
Conventional semiconductor-based logic and nanomagnet-based memory devices are built out of stable, deterministic units such as standard metal-oxide semiconductor transistors, or nanomagnets with energy barriers in excess of ≈40 - 60 kT . In this paper, we show that unstable, stochastic units, which we call "p -bits," can be interconnected to create robust correlations that implement precise Boolean functions with impressive accuracy, comparable to standard digital circuits. At the same time, they are invertible, a unique property that is absent in standard digital circuits. When operated in the direct mode, the input is clamped, and the network provides the correct output. In the inverted mode, the output is clamped, and the network fluctuates among all possible inputs that are consistent with that output. First, we present a detailed implementation of an invertible gate to bring out the key role of a single three-terminal transistorlike building block to enable the construction of correlated p -bit networks. The results for this specific, CMOS-assisted nanomagnet-based hardware implementation agree well with those from a universal model for p -bits, showing that p -bits need not be magnet based: any three-terminal tunable random bit generator should be suitable. We present a general algorithm for designing a Boltzmann machine (BM) with a symmetric connection matrix [J ] (Ji j=Jj i) that implements a given truth table with p -bits. The [J ] matrices are relatively sparse with a few unique weights for convenient hardware implementation. We then show how BM full adders can be interconnected in a partially directed manner (Ji j≠Jj i) to implement large logic operations such as 32-bit binary addition. Hundreds of stochastic p -bits get precisely correlated such that the correct answer out of 233 (≈8 ×1 09) possibilities can be extracted by looking at the statistical mode or majority vote of a number of time samples. With perfect directivity (Jj i=0 ) a small number of samples is enough, while for less directed connections more samples are needed, but even in the former case logical invertibility is largely preserved. This combination of digital accuracy and logical invertibility is enabled by the hybrid design that uses bidirectional BM units to construct circuits with partially directed interunit connections. We establish this key result with extensive examples including a 4-bit multiplier which in inverted mode functions as a factorizer.
30 CFR 7.64 - Technical requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... produce the required firing current is attained. (d) Firing switch. The switch used to initiate the... current is available to the blasting circuit. (e) Firing line terminals. The terminals used to connect the blasting circuit to the blasting unit shall— (1) Provide a secure, low-resistance connection to the...
30 CFR 7.64 - Technical requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... produce the required firing current is attained. (d) Firing switch. The switch used to initiate the... current is available to the blasting circuit. (e) Firing line terminals. The terminals used to connect the blasting circuit to the blasting unit shall— (1) Provide a secure, low-resistance connection to the...
Papoutsi, Athanasia; Sidiropoulou, Kyriaki; Poirazi, Panayiota
2014-07-01
Technological advances have unraveled the existence of small clusters of co-active neurons in the neocortex. The functional implications of these microcircuits are in large part unexplored. Using a heavily constrained biophysical model of a L5 PFC microcircuit, we recently showed that these structures act as tunable modules of persistent activity, the cellular correlate of working memory. Here, we investigate the mechanisms that underlie persistent activity emergence (ON) and termination (OFF) and search for the minimum network size required for expressing these states within physiological regimes. We show that (a) NMDA-mediated dendritic spikes gate the induction of persistent firing in the microcircuit. (b) The minimum network size required for persistent activity induction is inversely proportional to the synaptic drive of each excitatory neuron. (c) Relaxation of connectivity and synaptic delay constraints eliminates the gating effect of NMDA spikes, albeit at a cost of much larger networks. (d) Persistent activity termination by increased inhibition depends on the strength of the synaptic input and is negatively modulated by dADP. (e) Slow synaptic mechanisms and network activity contain predictive information regarding the ability of a given stimulus to turn ON and/or OFF persistent firing in the microcircuit model. Overall, this study zooms out from dendrites to cell assemblies and suggests a tight interaction between dendritic non-linearities and network properties (size/connectivity) that may facilitate the short-memory function of the PFC.
Linlor, W.I.; Kerns, Q.A.
1960-11-15
A system is given for detecting incremental changes in a transducer impedance terminating a transmission line. Principal novelty resides in the transducer impedance terminating the line in a mismatch and a pulse generator being provided to apply discrete pulses to the input end of the line. The amplitudes of the pulses reflected to the input end of the line from the mismatched transducer impedance are then observed as a very accurate measure of the instantaneous value of the latter.
NASA Technical Reports Server (NTRS)
Laue, H. H.; Clough, L. G. (Inventor)
1973-01-01
An electrodeless lamp circuit with a coil surrounding a krypton lamp is driven by an RF input source. A coil surrounding a mercury lamp is tapped across the connection of the input central to the krypton-lamp coil. Each coil is connected in parallel with separate capacitors which form resonant circuits at the input frequency.
Meter circuit for tuning RF amplifiers
NASA Technical Reports Server (NTRS)
Longthorne, J. E.
1973-01-01
Circuit computes and indicates efficiency of RF amplifier as inputs and other parameters are varied. Voltage drop across internal resistance of ammeter is amplified by operational amplifier and applied to one multiplier input. Other input is obtained through two resistors from positive terminal of power supply.
A Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2007-01-01
This document describes an algorithm for the generation of a four dimensional aircraft trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival Route (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. Wind data at each waypoint are also inputs into this algorithm. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint.
Harris, Scott H.; Johnson, Joel A.; Neiswanger, Jeffery R.; Twitchell, Kevin E.
2004-03-09
The present invention includes systems configured to distribute a telephone call, communication systems, communication methods and methods of routing a telephone call to a customer service representative. In one embodiment of the invention, a system configured to distribute a telephone call within a network includes a distributor adapted to connect with a telephone system, the distributor being configured to connect a telephone call using the telephone system and output the telephone call and associated data of the telephone call; and a plurality of customer service representative terminals connected with the distributor and a selected customer service representative terminal being configured to receive the telephone call and the associated data, the distributor and the selected customer service representative terminal being configured to synchronize, application of the telephone call and associated data from the distributor to the selected customer service representative terminal.
Formed photovoltaic module busbars
Rose, Douglas; Daroczi, Shan; Phu, Thomas
2015-11-10
A cell connection piece for a photovoltaic module is disclosed herein. The cell connection piece includes an interconnect bus, a plurality of bus tabs unitarily formed with the interconnect bus, and a terminal bus coupled with the interconnect bus. The plurality of bus tabs extend from the interconnect bus. The terminal bus includes a non-linear portion.
Inrush Current Suppression Circuit and Method for Controlling When a Load May Be Fully Energized
NASA Technical Reports Server (NTRS)
Schwerman, Paul (Inventor)
2017-01-01
A circuit and method for controlling when a load may be fully energized includes directing electrical current through a current limiting resistor that has a first terminal connected to a source terminal of a field effect transistor (FET), and a second terminal connected to a drain terminal of the FET. The gate voltage magnitude on a gate terminal of the FET is varied, whereby current flow through the FET is increased while current flow through the current limiting resistor is simultaneously decreased. A determination is made as to when the gate voltage magnitude on the gate terminal is equal to or exceeds a predetermined reference voltage magnitude, and the load is enabled to be fully energized when the gate voltage magnitude is equal to or exceeds the predetermined reference voltage magnitude.
Lee, L.Y.
1973-12-01
A readout system has been provided for reading out a radiation multidetector device with a reduced number of signal sensors. A radiation hodoscope, such as an array of scintillation counters, multiwire proportional counter array, or a set of multidetectors which do not receive signals simultaneously, is divided into equal numbered groups. A first group of signal terminals is connected to the equal numbered groups of detectors so that a signal from any one of the detectors of a group will be fed to one of the first group of terminals. A second group of signal terminals is connected to the detector groups so that a signal from a particular numbered detector of each of the detector groups is connected to one of the second group of terminals. Both groups of signal terminals are, in turn, coupled to signal sensors so that when a signal is simultaneously observed in one of the first group of terminals and one of the second group of tenniinals the specific detector detecting a radiation event is determined. The sensors are arranged in such a manner that a binary code is developed from their outputs which can be stored in a digital storage means according to the location of the event in the multidetector device. (Official Gazette)
Organization of projections from the raphe nuclei to the vestibular nuclei in rats
NASA Technical Reports Server (NTRS)
Halberstadt, A. L.; Balaban, C. D.
2003-01-01
Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that raphe-vestibular connections are organized to selectively modulate processing in regions of the vestibular nuclear complex that receive input from specific cerebellar zones. This represents a potential mechanism whereby motor activity and behavioral arousal could influence the activity of cerebellovestibular circuits.
Embedded parallel processing based ground control systems for small satellite telemetry
NASA Technical Reports Server (NTRS)
Forman, Michael L.; Hazra, Tushar K.; Troendly, Gregory M.; Nickum, William G.
1994-01-01
The use of networked terminals which utilize embedded processing techniques results in totally integrated, flexible, high speed, reliable, and scalable systems suitable for telemetry and data processing applications such as mission operations centers (MOC). Synergies of these terminals, coupled with the capability of terminal to receive incoming data, allow the viewing of any defined display by any terminal from the start of data acquisition. There is no single point of failure (other than with network input) such as exists with configurations where all input data goes through a single front end processor and then to a serial string of workstations. Missions dedicated to NASA's ozone measurements program utilize the methodologies which are discussed, and result in a multimission configuration of low cost, scalable hardware and software which can be run by one flight operations team with low risk.
Sasaki, Kosei; Jing, Jian; Due, Michael R; Weiss, Klaudiusz R
2008-02-20
Despite the importance of spike-timing regulation in network functioning, little is known about this regulation at the cellular level. In the Aplysia feeding network, we show that interneuron B65 regulates the timing of the spike initiation of phase-switch neurons B64 and cerebral-buccal interneuron-5/6 (CBI-5/6), and thereby determines the identity of the neuron that acts as a protraction terminator. Previous work showed that B64 begins to fire before the end of protraction phase and terminates protraction in CBI-2-elicited ingestive, but not in CBI-2-elicited egestive programs, thus indicating that the spike timing and phase-switching function of B64 depend on the type of the central pattern generator (CPG)-elicited response rather than on the input used to activate the CPG. Here, we find that CBI-5/6 is a protraction terminator in egestive programs elicited by the esophageal nerve (EN), but not by CBI-2, thus indicating that, in contrast to B64, the spike timing and protraction-terminating function of CBI-5/6 depends on the input to the CPG rather than the response type. Interestingly, B65 activity also depends on the input in that B65 is highly active in EN-elicited programs, but not in CBI-2-elicited programs independent of whether the programs are ingestive or egestive. Notably, during EN-elicited egestive programs, hyperpolarization of B65 delays the onset of CBI-5/6 firing, whereas in CBI-2-elicited ingestive programs, B65 stimulation simultaneously advances CBI-5/6 firing and delays B64 firing, thereby substituting CBI-5/6 for B64 as the protraction terminator. Thus, we identified a neural mechanism that, in an input-dependent manner, regulates spike timing and thereby the functional role of specific neurons.
Rausch, Annika; Zhang, Wei; Haak, Koen V; Mennes, Maarten; Hermans, Erno J; van Oort, Erik; van Wingen, Guido; Beckmann, Christian F; Buitelaar, Jan K; Groen, Wouter B
2016-01-01
Amygdala dysfunction is hypothesized to underlie the social deficits observed in autism spectrum disorders (ASD). However, the neurobiological basis of this hypothesis is underspecified because it is unknown whether ASD relates to abnormalities of the amygdaloid input or output nuclei. Here, we investigated the functional connectivity of the amygdaloid social-perceptual input nuclei and emotion-regulation output nuclei in ASD versus controls. We collected resting state functional magnetic resonance imaging (fMRI) data, tailored to provide optimal sensitivity in the amygdala as well as the neocortex, in 20 adolescents and young adults with ASD and 25 matched controls. We performed a regular correlation analysis between the entire amygdala (EA) and the whole brain and used a partial correlation analysis to investigate whole-brain functional connectivity uniquely related to each of the amygdaloid subregions. Between-group comparison of regular EA correlations showed significantly reduced connectivity in visuospatial and superior parietal areas in ASD compared to controls. Partial correlation analysis revealed that this effect was driven by the left superficial and right laterobasal input subregions, but not the centromedial output nuclei. These results indicate reduced connectivity of specifically the amygdaloid sensory input channels in ASD, suggesting that abnormal amygdalo-cortical connectivity can be traced down to the socio-perceptual pathways.
NASA Astrophysics Data System (ADS)
Peng, Wanli; Zhang, Yanchao; Yang, Zhimin; Chen, Jincan
2018-02-01
Three-terminal energy selective electron (ESE) devices consisting of three electronic reservoirs connected by two energy filters and an electronic conductor with negligible resistance may work as ESE refrigerators and amplifiers. They have three possible connective ways for the electronic conductor and six electronic transmission forms. The configuration of energy filters may be described by the different transmission functions such as the rectangular and Lorentz transmission functions. The ESE devices with three connective ways can be, respectively, regarded as three equivalent hybrid systems composed of an ESE heat engine and an ESE refrigerator/heat pump. With the help of the theory of the ESE devices operated between two electronic reservoirs, the coefficients of performance and cooling rates (heat-pumping rates) of hybrid systems are directly derived. The general performance characteristics of hybrid systems are revealed. The optimal regions of these devices are determined. The performances of the devices with three connective ways of the electronic conductor and two configurations of energy filters are compared in detail. The advantages and disadvantages of each of three-terminal ESE devices are expounded. The results obtained here may provide some guidance for the optimal design and operation of three-terminal ESE devices.
Airborne Satcom Terminal Research at NASA Glenn
NASA Technical Reports Server (NTRS)
Hoder, Doug; Zakrajsek, Robert
2002-01-01
NASA Glenn has constructed an airborne Ku-band satellite terminal, which provides wideband full-duplex ground-aircraft communications. The terminal makes use of novel electronically-steered phased array antennas and provides IP connectivity to and from the ground. The satcom terminal communications equipment may be easily changed whenever a new configuration is required, enhancing the terminal's versatility.
Perkins, Eddie; Warren, Susan; May, Paul J
2009-08-01
The superior colliculus (SC), which directs orienting movements of both the eyes and head, is reciprocally connected to the mesencephalic reticular formation (MRF), suggesting the latter is involved in gaze control. The MRF has been provisionally subdivided to include a rostral portion, which subserves vertical gaze, and a caudal portion, which subserves horizontal gaze. Both regions contain cells projecting downstream that may provide a conduit for tectal signals targeting the gaze control centers which direct head movements. We determined the distribution of cells targeting the cervical spinal cord and rostral medullary reticular formation (MdRF), and investigated whether these MRF neurons receive input from the SC by the use of dual tracer techniques in Macaca fascicularis monkeys. Either biotinylated dextran amine or Phaseolus vulgaris leucoagglutinin was injected into the SC. Wheat germ agglutinin conjugated horseradish peroxidase was placed into the ipsilateral cervical spinal cord or medial MdRF to retrogradely label MRF neurons. A small number of medially located cells in the rostral and caudal MRF were labeled following spinal cord injections, and greater numbers were labeled in the same region following MdRF injections. In both cases, anterogradely labeled tectoreticular terminals were observed in close association with retrogradely labeled neurons. These close associations between tectoreticular terminals and neurons with descending projections suggest the presence of a trans-MRF pathway that provides a conduit for tectal control over head orienting movements. The medial location of these reticulospinal and reticuloreticular neurons suggests this MRF region may be specialized for head movement control. (c) 2009 Wiley-Liss, Inc.
Lee, Taehee; Kim, Uhnoh
2012-04-01
In the mammalian somatic system, peripheral inputs from cutaneous and deep receptors ascend via different subcortical channels and terminate in largely separate regions of the primary somatosensory cortex (SI). How these inputs are processed in SI and then projected back to the subcortical relay centers is critical for understanding how SI may regulate somatic information processing in the subcortex. Although it is now relatively well understood how SI cutaneous areas project to the subcortical structures, little is known about the descending projections from SI areas processing deep somatic input. We examined this issue by using the rodent somatic system as a model. In rat SI, deep somatic input is processed mainly in the dysgranular zone (DSZ) enclosed by the cutaneous barrel subfields. By using biotinylated dextran amine (BDA) as anterograde tracer, we characterized the topography of corticostriatal and corticofugal projections arising in the DSZ. The DSZ projections terminate mainly in the lateral subregions of the striatum that are also known as the target of certain SI cutaneous areas. This suggests that SI processing of deep and cutaneous information may be integrated, to a certain degree, in this striatal region. By contrast, at both thalamic and prethalamic levels as far as the spinal cord, descending projections from DSZ terminate in areas largely distinguishable from those that receive input from SI cutaneous areas. These subcortical targets of DSZ include not only the sensory but also motor-related structures, suggesting that SI processing of deep input may engage in regulating somatic and motor information flow between the cortex and periphery. Copyright © 2011 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avramova, Maria; Blyth, Taylor S.; Salko, Robert K.
This document describes how to make a CTF input deck. A CTF input deck is organized into Card Groups and Cards. A Card Group is a collection of Cards. A Card is defined as a line of input. Each Card may contain multiple data. A Card is terminated by making a new line.
47 CFR 68.110 - Compatibility of the public switched telephone network and terminal equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... network and terminal equipment. 68.110 Section 68.110 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Conditions on Use of Terminal Equipment § 68.110 Compatibility of the public switched telephone network and...
47 CFR 68.110 - Compatibility of the public switched telephone network and terminal equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... network and terminal equipment. 68.110 Section 68.110 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Conditions on Use of Terminal Equipment § 68.110 Compatibility of the public switched telephone network and...
47 CFR 64.1401 - Expanded interconnection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... own equipment needed to terminate basic transmission facilities, including optical terminating... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission..., including optical terminating equipment and multiplexers, to be located within or upon the local exchange...
47 CFR 64.1401 - Expanded interconnection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... own equipment needed to terminate basic transmission facilities, including optical terminating... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission..., including optical terminating equipment and multiplexers, to be located within or upon the local exchange...
47 CFR 64.1401 - Expanded interconnection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... own equipment needed to terminate basic transmission facilities, including optical terminating... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission..., including optical terminating equipment and multiplexers, to be located within or upon the local exchange...
Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex
McGarry, Laura M.
2016-01-01
Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. SIGNIFICANCE STATEMENT The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared with nearby corticostriatal neurons. However, these inputs are even more powerful at parvalbumin and somatostatin expressing interneurons. BLA inputs thus activate two parallel inhibitory networks, whose contributions change during repetitive activity. Finally, connections from these interneurons are also more powerful at corticoamygdala neurons compared with corticostriatal neurons. Together, our results demonstrate how the BLA predominantly inhibits the PFC via a complex sequence involving multiple cell-type and input-specific connections. PMID:27605614
Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.
McGarry, Laura M; Carter, Adam G
2016-09-07
Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared with nearby corticostriatal neurons. However, these inputs are even more powerful at parvalbumin and somatostatin expressing interneurons. BLA inputs thus activate two parallel inhibitory networks, whose contributions change during repetitive activity. Finally, connections from these interneurons are also more powerful at corticoamygdala neurons compared with corticostriatal neurons. Together, our results demonstrate how the BLA predominantly inhibits the PFC via a complex sequence involving multiple cell-type and input-specific connections. Copyright © 2016 the authors 0270-6474/16/369391-16$15.00/0.
Advanced insulated gate bipolar transistor gate drive
Short, James Evans [Monongahela, PA; West, Shawn Michael [West Mifflin, PA; Fabean, Robert J [Donora, PA
2009-08-04
A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.
Full-wave receiver architecture for the homodyne motion sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haugen, Peter C.; Dallum, Gregory E.; Welsh, Patrick A.
A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting ofmore » a RF signal received at the receiver input, thereby enhancing receiver sensitivity.« less
Full-wave receiver architecture for the homodyne motion sensor
Haugen, Peter C; Dallum, Gregory E; Welsh, Patrick A; Romero, Carlos E
2013-11-19
A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.
Orshansky, Jr., deceased, Elias; Weseloh, William E.
1979-01-01
A power transmission having two planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the two sun gears, which are connected together. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output shaft through the first ring gear in a hydrostatic mode, the first ring gear being rigidly connected to the output shaft. The input shaft also is clutchable to either the carrier or the ring gear of the second planetary assembly. The output shaft is also clutchable to the carrier of the second planetary assembly when the input is clutched to the ring gear of the second planetary assembly, and is clutchable to the ring gear of the second planetary assembly when the input is clutched to the carrier thereof.
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G.
2003-01-01
Improvements in the efficiency and size of DC-DC converters have resulted from advances in components, primarily semiconductors, and improved topologies. One topology, which has shown very high potential in limited applications, is the Series Connected Boost Unit (SCBU), wherein a small DC-DC converter output is connected in series with the input bus to provide an output voltage equal to or greater than the input voltage. Since the DC-DC converter switches only a fraction of the power throughput, the overall system efficiency is very high. But this technique is limited to applications where the output is always greater than the input. The Series Connected Buck Boost Regulator (SCBBR) concept extends partial power processing technique used in the SCBU to operation when the desired output voltage is higher or lower than the input voltage, and the implementation described can even operate as a conventional buck converter to operate at very low output to input voltage ratios. This paper describes the operation and performance of an SCBBR configured as a bus voltage regulator providing 50 percent voltage regulation range, bus switching, and overload limiting, operating above 98 percent efficiency. The technique does not provide input-output isolation.
Gonchar, Yuri; Burkhalter, Andreas
2003-11-26
Processing of visual information is performed in different cortical areas that are interconnected by feedforward (FF) and feedback (FB) pathways. Although FF and FB inputs are excitatory, their influences on pyramidal neurons also depend on the outputs of GABAergic neurons, which receive FF and FB inputs. Rat visual cortex contains at least three different families of GABAergic neurons that express parvalbumin (PV), calretinin (CR), and somatostatin (SOM) (Gonchar and Burkhalter, 1997). To examine whether pathway-specific inhibition (Shao and Burkhalter, 1996) is attributable to distinct connections with GABAergic neurons, we traced FF and FB inputs to PV, CR, and SOM neurons in layers 1-2/3 of area 17 and the secondary lateromedial area in rat visual cortex. We found that in layer 2/3 maximally 2% of FF and FB inputs go to CR and SOM neurons. This contrasts with 12-13% of FF and FB inputs onto layer 2/3 PV neurons. Unlike inputs to layer 2/3, connections to layer 1, which contains CR but lacks SOM and PV somata, are pathway-specific: 21% of FB inputs go to CR neurons, whereas FF inputs to layer 1 and its CR neurons are absent. These findings suggest that FF and FB influences on layer 2/3 pyramidal neurons mainly involve disynaptic connections via PV neurons that control the spike outputs to axons and proximal dendrites. Unlike FF input, FB input in addition makes a disynaptic link via CR neurons, which may influence the excitability of distal pyramidal cell dendrites in layer 1.
46 CFR 525.3 - Availability of marine terminal operator schedules.
Code of Federal Regulations, 2013 CFR
2013-10-01
... that is made available to the public shall be available during normal business hours and in electronic... computer (PC) by: (1) Dial-up connection via public switched telephone networks (PSTN); or (2) The Internet... incoming calls, (ii) Smart terminal capability for VT-100 terminal or terminal emulation access, and (iii...
46 CFR 525.3 - Availability of marine terminal operator schedules.
Code of Federal Regulations, 2012 CFR
2012-10-01
... that is made available to the public shall be available during normal business hours and in electronic... computer (PC) by: (1) Dial-up connection via public switched telephone networks (PSTN); or (2) The Internet... incoming calls, (ii) Smart terminal capability for VT-100 terminal or terminal emulation access, and (iii...
46 CFR 525.3 - Availability of marine terminal operator schedules.
Code of Federal Regulations, 2014 CFR
2014-10-01
... that is made available to the public shall be available during normal business hours and in electronic... computer (PC) by: (1) Dial-up connection via public switched telephone networks (PSTN); or (2) The Internet... incoming calls, (ii) Smart terminal capability for VT-100 terminal or terminal emulation access, and (iii...
Telecommunications network optimization
NASA Technical Reports Server (NTRS)
Lee, J.
1979-01-01
Analysis discusses STACOM (state criminal justic communication) network topology program used to design and evaluate digital telecommunications networks STACOM employs ESAU-WILLIAMS technique to search for direct links between system terminations and regional switching center. Inputs include traffic data, terminal locations, and functional requirements.
McEwan, Thomas E.
1994-01-01
An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.
McEwan, Thomas E.
1996-01-01
An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.
Solid-state current transformer
NASA Technical Reports Server (NTRS)
Farnsworth, D. L. (Inventor)
1976-01-01
A signal transformation network which is uniquely characterized to exhibit a very low input impedance while maintaining a linear transfer characteristic when driven from a voltage source and when quiescently biased in the low microampere current range is described. In its simplest form, it consists of a tightly coupled two transistor network in which a common emitter input stage is interconnected directly with an emitter follower stage to provide virtually 100 percent negative feedback to the base input of the common emitter stage. Bias to the network is supplied via the common tie point of the common emitter stage collector terminal and the emitter follower base stage terminal by a regulated constant current source, and the output of the circuit is taken from the collector of the emitter follower stage.
Superconducting Cable Termination
Sinha, Uday K.; Tolbert, Jerry
2005-08-30
Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.
A Revised Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2010-01-01
This document describes an algorithm for the generation of a four dimensional trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. This version of the algorithm accommodates descent Mach values that are different from the cruise Mach values. Wind data at each waypoint are also inputs into this algorithm. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint.
Boucsein, Clemens; Nawrot, Martin P; Schnepel, Philipp; Aertsen, Ad
2011-01-01
Current concepts of cortical information processing and most cortical network models largely rest on the assumption that well-studied properties of local synaptic connectivity are sufficient to understand the generic properties of cortical networks. This view seems to be justified by the observation that the vertical connectivity within local volumes is strong, whereas horizontally, the connection probability between pairs of neurons drops sharply with distance. Recent neuroanatomical studies, however, have emphasized that a substantial fraction of synapses onto neocortical pyramidal neurons stems from cells outside the local volume. Here, we discuss recent findings on the signal integration from horizontal inputs, showing that they could serve as a substrate for reliable and temporally precise signal propagation. Quantification of connection probabilities and parameters of synaptic physiology as a function of lateral distance indicates that horizontal projections constitute a considerable fraction, if not the majority, of inputs from within the cortical network. Taking these non-local horizontal inputs into account may dramatically change our current view on cortical information processing.
Precision digital pulse phase generator
McEwan, T.E.
1996-10-08
A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.
Precision digital pulse phase generator
McEwan, Thomas E.
1996-01-01
A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.
Operation and Maintenance Manual, Ultrasonic Fish Deterrent System
1991-07-01
PAGES Fishery management--Instruments 61 Ultrsonic transducers 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY...compatible computer with a communications software package will be most convenient; however, any terminal will work. To begin operation, connect the...D. Next connect the communications cable (TC-4) between the RFPG and the terminal. An ONSET TC-4 cable must be used due to level shifting
Gabriele, Mark L.; Shahmoradian, Sarah H.; French, Christopher C.; Henkel, Craig K.we; McHaffie, John G.
2007-01-01
The central nucleus of the inferior colliculus (IC) is a laminated structure that receives multiple converging afferent projections. These projections terminate in a layered arrangement and are aligned with dendritic arbors of the predominant disc-shaped neurons, forming fibrodendritic laminae. Within this structural framework, inputs terminate in a precise manner, establishing a mosaic of partially overlapping domains that likely define functional compartments. Although several of these patterned inputs have been described in the adult, relatively little is known about their organization prior to hearing onset. The present study used the lipophilic carbocyanine dyes DiI and DiD to examine the ipsilateral and contralateral projections from the lateral superior olivary (LSO) nucleus to the IC in a developmental series of paraformaldehyde-fixed kitten tissue. By birth, the crossed and uncrossed projections had reached the IC and were distributed across the frequency axis of the central nucleus. At this earliest postnatal stage, projections already exhibited a characteristic banded arrangement similar to that described in the adult. The heaviest terminal fields of the two inputs were always complementary in nature, with the ipsilateral input appearing slightly denser. This early arrangement of interdigitating ipsilateral and contralateral LSO axonal bands that occupy adjacent sublayers supports the idea that the initial establishment of this highly organized mosaic of inputs that defines distinct synaptic domains within the IC occurs largely in the absence of auditory experience. Potential developmental mechanisms that may shape these highly ordered inputs prior to hearing onset are discussed. PMID:17850770
Khambhati, Ankit N.; Davis, Kathryn A.; Oommen, Brian S.; Chen, Stephanie H.; Lucas, Timothy H.; Litt, Brian; Bassett, Danielle S.
2015-01-01
The epileptic network is characterized by pathologic, seizure-generating ‘foci’ embedded in a web of structural and functional connections. Clinically, seizure foci are considered optimal targets for surgery. However, poor surgical outcome suggests a complex relationship between foci and the surrounding network that drives seizure dynamics. We developed a novel technique to objectively track seizure states from dynamic functional networks constructed from intracranial recordings. Each dynamical state captures unique patterns of network connections that indicate synchronized and desynchronized hubs of neural populations. Our approach suggests that seizures are generated when synchronous relationships near foci work in tandem with rapidly changing desynchronous relationships from the surrounding epileptic network. As seizures progress, topographical and geometrical changes in network connectivity strengthen and tighten synchronous connectivity near foci—a mechanism that may aid seizure termination. Collectively, our observations implicate distributed cortical structures in seizure generation, propagation and termination, and may have practical significance in determining which circuits to modulate with implantable devices. PMID:26680762
Does the magnetic expansion factor play a role in solar wind acceleration?
NASA Astrophysics Data System (ADS)
Wallace, S.; Arge, C. N.; Pihlstrom, Y.
2017-12-01
For the past 25+ years, the magnetic expansion factor (fs) has been a parameter used in the calculation of terminal solar wind speed (vsw) in the Wang-Sheeley-Arge (WSA) coronal and solar wind model. The magnetic expansion factor measures the rate of flux tube expansion in cross section between the photosphere out to 2.5 solar radii (i.e., source surface), and is inversely related to vsw (Wang & Sheeley, 1990). Since the discovery of this inverse relationship, the physical role that fs plays in solar wind acceleration has been debated. In this study, we investigate whether fs plays a causal role in determining terminal solar wind speed or merely serves as proxy. To do so, we study pseudostreamers, which occur when coronal holes of the same polarity are near enough to one another to limit field line expansion. Pseudostreamers are of particular interest because despite having low fs, spacecraft observations show that solar wind emerging from these regions have slow to intermediate speeds of 350-550 km/s (Wang et al., 2012). In this work, we develop a methodology to identify pseudostreamers that are magnetically connected to satellites using WSA output produced with ADAPT input maps. We utilize this methodology to obtain the spacecraft-observed solar wind speed from the exact parcel of solar wind that left the pseudostreamer. We then compare the pseudostreamer's magnetic expansion factor with the observed solar wind speed from multiple spacecraft (i.e., ACE, STEREO-A & B, Ulysses) magnetically connected to the region. We will use this methodology to identify several cases ( 20) where spacecraft are magnetically connected to pseudostreamers, and perform a statistical analysis to determine the correlation of fs within pseudostreamers and the terminal speed of the solar wind emerging from them. This work will help determine if fs plays a physical role in the speed of solar wind originating from regions that typically produce slow wind. This work compliments previous case studies of solar wind originating from pseudostreamers (Riley et al., 2015, Riley & Luhmann 2012) and will contribute to identifying the physical properties of solar wind from these regions. Future work will explore the role of fs in modulating the fast solar wind and will involve a similar analysis for cases where spacecraft are deep within coronal holes.
Wild, J M; Krützfeldt, N E O
2012-02-15
During singing in songbirds, the extent of beak opening, like the extent of mouth opening in human singers, is partially correlated with the fundamental frequency of the sounds emitted. Since song in songbirds is under the control of "the song system" (a collection of interconnected forebrain nuclei dedicated to the learning and production of song), it might be expected that beak movements during singing would also be controlled by this system. However, direct neural connections between the telencephalic output of the song system and beak muscle motor neurons in the brainstem are conspicuous by their absence, leaving unresolved the question of how beak movements are affected during singing. By using standard tract tracing methods, we sought to answer this question by defining beak premotor neurons and examining their afferent projections. In the caudal medulla, jaw premotor cell bodies were located adjacent to the terminal field of the output of the song system, into which many premotor neurons extended their dendrites. The premotor neurons also received a novel input from the trigeminal ganglion and an overlapping input from a lateral arcopallial component of a trigeminal sensorimotor circuit that traverses the forebrain. The ganglionic input in songbirds, which is not present in doves and pigeons that vocalize with a closed beak, may modulate the activity of beak premotor neurons in concert with the output of the song system. These inputs to jaw premotor neurons could, together, affect beak movements as a means of modulating filter properties of the upper vocal tract during singing. Copyright © 2011 Wiley-Liss, Inc.
Wild, J.M.; Krützfeldt, N.E.O.
2014-01-01
During singing in songbirds, the extent of beak opening, like the extent of mouth opening in human singers, is partially correlated with the fundamental frequency of the sounds emitted. Since song in songbirds is under the control of “the song system” (a collection of interconnected forebrain nuclei dedicated to the learning and production of song), it might be expected that beak movements during singing would also be controlled by this system. However, direct neural connections between the telencephalic output of the song system and beak muscle motor neurons in the brainstem are conspicuous by their absence, leaving unresolved the question of how beak movements are affected during singing. By using standard tract tracing methods, we sought to answer this question by defining beak premotor neurons and examining their afferent projections. In the caudal medulla, jaw premotor cell bodies were located adjacent to the terminal field of the output of the song system, into which many premotor neurons extended their dendrites. The premotor neurons also received a novel input from the trigeminal ganglion and an overlapping input from a lateral arcopallial component of a trigeminal sensorimotor circuit that traverses the forebrain. The ganglionic input in songbirds, which is not present in doves and pigeons that vocalize with a closed beak, may modulate the activity of beak premotor neurons in concert with the output of the song system. These inputs to jaw premotor neurons could, together, affect beak movements as a means of modulating filter properties of the upper vocal tract during singing. PMID:21858818
Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs.
Ledoux, Erwan; Brunel, Nicolas
2011-01-01
We investigate the dynamics of recurrent networks of excitatory (E) and inhibitory (I) neurons in the presence of time-dependent inputs. The dynamics is characterized by the network dynamical transfer function, i.e., how the population firing rate is modulated by sinusoidal inputs at arbitrary frequencies. Two types of networks are studied and compared: (i) a Wilson-Cowan type firing rate model; and (ii) a fully connected network of leaky integrate-and-fire (LIF) neurons, in a strong noise regime. We first characterize the region of stability of the "asynchronous state" (a state in which population activity is constant in time when external inputs are constant) in the space of parameters characterizing the connectivity of the network. We then systematically characterize the qualitative behaviors of the dynamical transfer function, as a function of the connectivity. We find that the transfer function can be either low-pass, or with a single or double resonance, depending on the connection strengths and synaptic time constants. Resonances appear when the system is close to Hopf bifurcations, that can be induced by two separate mechanisms: the I-I connectivity and the E-I connectivity. Double resonances can appear when excitatory delays are larger than inhibitory delays, due to the fact that two distinct instabilities exist with a finite gap between the corresponding frequencies. In networks of LIF neurons, changes in external inputs and external noise are shown to be able to change qualitatively the network transfer function. Firing rate models are shown to exhibit the same diversity of transfer functions as the LIF network, provided delays are present. They can also exhibit input-dependent changes of the transfer function, provided a suitable static non-linearity is incorporated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, Kenneth L.; Sturcken, Noah Andrew
Power controller includes an output terminal having an output voltage, at least one clock generator to generate a plurality of clock signals and a plurality of hardware phases. Each hardware phase is coupled to the at least one clock generator and the output terminal and includes a comparator. Each hardware phase is configured to receive a corresponding one of the plurality of clock signals and a reference voltage, combine the corresponding clock signal and the reference voltage to produce a reference input, generate a feedback voltage based on the output voltage, compare the reference input and the feedback voltage usingmore » the comparator and provide a comparator output to the output terminal, whereby the comparator output determines a duty cycle of the power controller. An integrated circuit including the power controller is also provided.« less
High-Voltage, Low-Power BNC Feedthrough Terminator
NASA Technical Reports Server (NTRS)
Bearden, Douglas
2012-01-01
This innovation is a high-voltage, lowpower BNC (Bayonet Neill-Concelman) feedthrough that enables the user to terminate an instrumentation cable properly while connected to a high voltage, without the use of a voltage divider. This feedthrough is low power, which will not load the source, and will properly terminate the instrumentation cable to the instrumentation, even if the cable impedance is not constant. The Space Shuttle Program had a requirement to measure voltage transients on the orbiter bus through the Ground Lightning Measurement System (GLMS). This measurement has a bandwidth requirement of 1 MHz. The GLMS voltage measurement is connected to the orbiter through a DC panel. The DC panel is connected to the bus through a nonuniform cable that is approximately 75 ft (approximately equal to 23 m) long. A 15-ft (approximately equal to 5-m), 50-ohm triaxial cable is connected between the DC panel and the digitizer. Based on calculations and simulations, cable resonances and reflections due to mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. A voltage divider at the DC panel, and terminating the 50-ohm cable properly, would eliminate this issue. Due to implementation issues, an alternative design was needed to terminate the cable properly without the use of a voltage divider. Analysis shows how the cable resonances and reflections due to the mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. After simulating a dampening circuit located at the digitizer, simulations were performed to show how the cable resonances were dampened and the accuracy was improved significantly. Test cables built to verify simulations were accurate. Since the dampening circuit is low power, it can be packaged in a BNC feedthrough.
McEwan, T.E.
1994-09-06
An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, [+-] UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 16 figs.
McEwan, T.E.
1996-06-04
An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, {+-}UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 21 figs.
Ma, Bai-Wei; Zhao, Xin-Cheng; Berg, Bente G.; Xie, Gui-Ying; Tang, Qing-Bo; Wang, Gui-Rong
2017-01-01
The oriental armyworm, Mythimna separata (Walker), is a polyphagous, migratory pest relying on olfactory cues to find mates, locate nectar, and guide long-distance flight behavior. In the present study, a combination of neuroanatomical techniques were utilized on this species, including backfills, confocal microscopy, and three-dimensional reconstructions, to trace the central projections of sensory neurons from the antenna and the labial pit organ, respectively. As previously shown, the axons of the labial sensory neurons project via the ipsilateral labial nerve and terminate in three main areas of the central nervous system: (1) the labial-palp pit organ glomerulus of each antennal lobe, (2) the gnathal ganglion, and (3) the prothoracic ganglion of the ventral nerve cord. Similarly, the antennal sensory axons project to multiple areas of the central nervous system. The ipsilateral antennal nerve targets mainly the antennal lobe, the antennal mechanosensory and motor center, and the prothoracic and mesothoracic ganglia. Specific staining experiments including dye application to each of the three antennal segments indicate that the antennal lobe receives input from flagellar olfactory neurons exclusively, while the antennal mechanosensory and motor center is innervated by mechanosensory neurons from the whole antenna, comprising the flagellum, pedicle, and scape. The terminals in the mechanosensory and motor center are organized in segregated zones relating to the origin of neurons. The flagellar mechanosensory axons target anterior zones, while the pedicular and scapal axons terminate in posterior zones. In the ventral nerve cord, the processes from the antennal sensory neurons terminate in the motor area of the thoracic ganglia, suggesting a close connection with motor neurons. Taken together, the numerous neuropils innervated by axons both from the antenna and labial palp indicate the multiple roles these sensory organs serve in insect behavior. PMID:29209176
Cell type-specific long-range connections of basal forebrain circuit.
Do, Johnny Phong; Xu, Min; Lee, Seung-Hee; Chang, Wei-Cheng; Zhang, Siyu; Chung, Shinjae; Yung, Tyler J; Fan, Jiang Lan; Miyamichi, Kazunari; Luo, Liqun; Dan, Yang
2016-09-19
The basal forebrain (BF) plays key roles in multiple brain functions, including sleep-wake regulation, attention, and learning/memory, but the long-range connections mediating these functions remain poorly characterized. Here we performed whole-brain mapping of both inputs and outputs of four BF cell types - cholinergic, glutamatergic, and parvalbumin-positive (PV+) and somatostatin-positive (SOM+) GABAergic neurons - in the mouse brain. Using rabies virus -mediated monosynaptic retrograde tracing to label the inputs and adeno-associated virus to trace axonal projections, we identified numerous brain areas connected to the BF. The inputs to different cell types were qualitatively similar, but the output projections showed marked differences. The connections to glutamatergic and SOM+ neurons were strongly reciprocal, while those to cholinergic and PV+ neurons were more unidirectional. These results reveal the long-range wiring diagram of the BF circuit with highly convergent inputs and divergent outputs and point to both functional commonality and specialization of different BF cell types.
Connections of cat auditory cortex: III. Corticocortical system.
Lee, Charles C; Winer, Jeffery A
2008-04-20
The mammalian auditory cortex (AC) is essential for computing the source and decoding the information contained in sound. Knowledge of AC corticocortical connections is modest other than in the primary auditory regions, nor is there an anatomical framework in the cat for understanding the patterns of connections among the many auditory areas. To address this issue we investigated cat AC connectivity in 13 auditory regions. Retrograde tracers were injected in the same area or in different areas to reveal the areal and laminar sources of convergent input to each region. Architectonic borders were established in Nissl and SMI-32 immunostained material. We assessed the topography, convergence, and divergence of the labeling. Intrinsic input constituted >50% of the projection cells in each area, and extrinsic inputs were strongest from functionally related areas. Each area received significant convergent ipsilateral input from several fields (5 to 8; mean 6). These varied in their laminar origin and projection density. Major extrinsic projections were preferentially from areas of the same functional type (tonotopic to tonotopic, nontonotopic to nontonotopic, limbic-related to limbic-related, multisensory-to-multisensory), while smaller projections link areas belonging to different groups. Branched projections between areas were <2% with deposits of two tracers in an area or in different areas. All extrinsic projections to each area were highly and equally topographic and clustered. Intrinsic input arose from all layers except layer I, and extrinsic input had unique, area-specific infragranular and supragranular origins. The many areal and laminar sources of input may contribute to the complexity of physiological responses in AC and suggest that many projections of modest size converge within each area rather than a simpler area-to-area serial or hierarchical pattern of corticocortical connectivity. (c) 2008 Wiley-Liss, Inc.
Bajo, Victoria M.; Nodal, Fernando R.; Bizley, Jennifer K.; King, Andrew J.
2010-01-01
Descending cortical inputs to the superior colliculus (SC) contribute to the unisensory response properties of the neurons found there and are critical for multisensory integration. However, little is known about the relative contribution of different auditory cortical areas to this projection or the distribution of their terminals in the SC. We characterized this projection in the ferret by injecting tracers in the SC and auditory cortex. Large pyramidal neurons were labeled in layer V of different parts of the ectosylvian gyrus after tracer injections in the SC. Those cells were most numerous in the anterior ectosylvian gyrus (AEG), and particularly in the anterior ventral field, which receives both auditory and visual inputs. Labeling was also found in the posterior ectosylvian gyrus (PEG), predominantly in the tonotopically organized posterior suprasylvian field. Profuse anterograde labeling was present in the SC following tracer injections at the site of acoustically responsive neurons in the AEG or PEG, with terminal fields being both more prominent and clustered for inputs originating from the AEG. Terminals from both cortical areas were located throughout the intermediate and deep layers, but were most concentrated in the posterior half of the SC, where peripheral stimulus locations are represented. No inputs were identified from primary auditory cortical areas, although some labeling was found in the surrounding sulci. Our findings suggest that higher level auditory cortical areas, including those involved in multisensory processing, may modulate SC function via their projections into its deeper layers. PMID:20640247
A simple, efficient resistance soldering apparatus
NASA Technical Reports Server (NTRS)
Vermillion, C. M.
1972-01-01
Multiple resistance soldering device for attaching electric leads to multiple terminal block connectors uses power source with one terminal connected to working probe, and other terminal attached to connector carrying common pins for lead insertion. Mating of male and female connectors solders each lead to individual cup pin.
NASA ground terminal communication equipment automated fault isolation expert systems
NASA Technical Reports Server (NTRS)
Tang, Y. K.; Wetzel, C. R.
1990-01-01
The prototype expert systems are described that diagnose the Distribution and Switching System I and II (DSS1 and DSS2), Statistical Multiplexers (SM), and Multiplexer and Demultiplexer systems (MDM) at the NASA Ground Terminal (NGT). A system level fault isolation expert system monitors the activities of a selected data stream, verifies that the fault exists in the NGT and identifies the faulty equipment. Equipment level fault isolation expert systems are invoked to isolate the fault to a Line Replaceable Unit (LRU) level. Input and sometimes output data stream activities for the equipment are available. The system level fault isolation expert system compares the equipment input and output status for a data stream and performs loopback tests (if necessary) to isolate the faulty equipment. The equipment level fault isolation system utilizes the process of elimination and/or the maintenance personnel's fault isolation experience stored in its knowledge base. The DSS1, DSS2 and SM fault isolation systems, using the knowledge of the current equipment configuration and the equipment circuitry issues a set of test connections according to the predefined rules. The faulty component or board can be identified by the expert system by analyzing the test results. The MDM fault isolation system correlates the failure symptoms with the faulty component based on maintenance personnel experience. The faulty component can be determined by knowing the failure symptoms. The DSS1, DSS2, SM, and MDM equipment simulators are implemented in PASCAL. The DSS1 fault isolation expert system was converted to C language from VP-Expert and integrated into the NGT automation software for offline switch diagnoses. Potentially, the NGT fault isolation algorithms can be used for the DSS1, SM, amd MDM located at Goddard Space Flight Center (GSFC).
Synchronization and long-time memory in neural networks with inhibitory hubs and synaptic plasticity
NASA Astrophysics Data System (ADS)
Bertolotti, Elena; Burioni, Raffaella; di Volo, Matteo; Vezzani, Alessandro
2017-01-01
We investigate the dynamical role of inhibitory and highly connected nodes (hub) in synchronization and input processing of leaky-integrate-and-fire neural networks with short term synaptic plasticity. We take advantage of a heterogeneous mean-field approximation to encode the role of network structure and we tune the fraction of inhibitory neurons fI and their connectivity level to investigate the cooperation between hub features and inhibition. We show that, depending on fI, highly connected inhibitory nodes strongly drive the synchronization properties of the overall network through dynamical transitions from synchronous to asynchronous regimes. Furthermore, a metastable regime with long memory of external inputs emerges for a specific fraction of hub inhibitory neurons, underlining the role of inhibition and connectivity also for input processing in neural networks.
47 CFR 80.959 - Radiotelephone transmitter.
Code of Federal Regulations, 2010 CFR
2010-10-01
... watts into 50 ohms nominal resistance when operated with its rated supply voltage. The transmitter must... capability of the transmitter, measurements of primary supply voltage and transmitter output power must be... voltage measured at the power input terminals to the transmitter terminated in a matching artificial load...
Photovoltaic system with improved AC connections and method of making same
Cioffi, Philip Michael; Todorovic, Maja Harfman; Herzog, Michael Scott; Korman, Charles Steven; Doherty, Donald M.; Johnson, Neil Anthony
2018-02-13
An alternating current (AC) harness for a photovoltaic (PV) system includes a wire assembly having a first end and a second end, the wire assembly having a plurality of lead wires, and at least one AC connection module positioned at a location along a length of the wire assembly between the first end and the second end. Further, the at least one AC connection module includes a first connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a first PV module of the PV system. The at least one AC connection module also includes a second connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a second PV module of the PV system.
Bipolar Cell-Photoreceptor Connectivity in the Zebrafish (Danio rerio) Retina
Li, Yong N.; Tsujimura, Taro; Kawamura, Shoji; Dowling, John E.
2013-01-01
Bipolar cells convey luminance, spatial and color information from photoreceptors to amacrine and ganglion cells. We studied the photoreceptor connectivity of 321 bipolar cells in the adult zebrafish retina. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was inserted into whole-mounted transgenic zebrafish retinas to label bipolar cells. The photoreceptors that connect to these DiI-labeled cells were identified by transgenic fluorescence or their positions relative to the fluorescent cones, as cones are arranged in a highly-ordered mosaic: rows of alternating blue- (B) and ultraviolet-sensitive (UV) single cones alternate with rows of red- (R) and green-sensitive (G) double cones. Rod terminals intersperse among cone terminals. As many as 18 connectivity subtypes were observed, 9 of which – G, GBUV, RG, RGB, RGBUV, RGRod, RGBRod, RGBUVRod and RRod bipolar cells – accounted for 96% of the population. Based on their axon terminal stratification, these bipolar cells could be further sub-divided into ON, OFF, and ON-OFF cells. The dendritic spread size, soma depth and size, and photoreceptor connections of the 308 bipolar cells within the 9 common connectivity subtypes were determined, and their dendritic tree morphologies and axonal stratification patterns compared. We found that bipolar cells with the same axonal stratification patterns could have heterogeneous photoreceptor connectivity whereas bipolar cells with the same dendritic tree morphology usually had the same photoreceptor connectivity, although their axons might stratify on different levels. PMID:22907678
UWB delay and multiply receiver
Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.
2013-09-10
An ultra-wideband (UWB) delay and multiply receiver is formed of a receive antenna; a variable gain attenuator connected to the receive antenna; a signal splitter connected to the variable gain attenuator; a multiplier having one input connected to an undelayed signal from the signal splitter and another input connected to a delayed signal from the signal splitter, the delay between the splitter signals being equal to the spacing between pulses from a transmitter whose pulses are being received by the receive antenna; a peak detection circuit connected to the output of the multiplier and connected to the variable gain attenuator to control the variable gain attenuator to maintain a constant amplitude output from the multiplier; and a digital output circuit connected to the output of the multiplier.
LIBRARY INFORMATION PROCESSING USING AN ON-LINE, REAL-TIME COMPUTER SYSTEM.
ERIC Educational Resources Information Center
HOLZBAUR, FREDERICK W.; FARRIS, EUGENE H.
DIRECT MAN-MACHINE COMMUNICATION IS NOW POSSIBLE THROUGH ON-LINE, REAL-TIME TYPEWRITER TERMINALS DIRECTLY CONNECTED TO COMPUTERS. THESE TERMINAL SYSTEMS PERMIT THE OPERATOR, WHETHER ORDER CLERK, CATALOGER, REFERENCE LIBRARIAN OR TYPIST, TO INTERACT WITH THE COMPUTER IN MANIPULATING DATA STORED WITHIN IT. THE IBM ADMINISTRATIVE TERMINAL SYSTEM…
Concept of modernization of input device of oil and gas separator
NASA Astrophysics Data System (ADS)
Feodorov, A. B.; Afanasov, V. I.; Miroshnikov, R. S.; Bogachev, V. V.
2017-10-01
The process of defoaming in oil production is discussed. This technology is important in oil and gas fields. Today, the technology of separating the gas fraction is based on chemical catalysis. The use of mechanical technologies improves the economics of the process. Modernization of the separator input device is based on the use of long thin tubes. The chosen length of the tubes is two orders of magnitude larger than the diameter. The separation problem is solved by creating a high centrifugal acceleration. The tubes of the input device are connected in parallel and divide the input stream into several arms. The separated fluid flows are directed tangentially into the working tubes to create a vortex motion. The number of tubes connected in parallel is calculated in accordance with the flow rate of the fluid. The connection of the working tubes to the supply line is made in the form of a flange. This connection allows carrying out maintenance without stopping the flow of fluid. An important feature of this device is its high potential for further modernization. It is concerned with the determination of the parameters of the tubes and the connection geometry in the construction of a single product.
Circuit for high resolution decoding of multi-anode microchannel array detectors
NASA Technical Reports Server (NTRS)
Kasle, David B. (Inventor)
1995-01-01
A circuit for high resolution decoding of multi-anode microchannel array detectors consisting of input registers accepting transient inputs from the anode array; anode encoding logic circuits connected to the input registers; midpoint pipeline registers connected to the anode encoding logic circuits; and pixel decoding logic circuits connected to the midpoint pipeline registers is described. A high resolution algorithm circuit operates in parallel with the pixel decoding logic circuit and computes a high resolution least significant bit to enhance the multianode microchannel array detector's spatial resolution by halving the pixel size and doubling the number of pixels in each axis of the anode array. A multiplexer is connected to the pixel decoding logic circuit and allows a user selectable pixel address output according to the actual multi-anode microchannel array detector anode array size. An output register concatenates the high resolution least significant bit onto the standard ten bit pixel address location to provide an eleven bit pixel address, and also stores the full eleven bit pixel address. A timing and control state machine is connected to the input registers, the anode encoding logic circuits, and the output register for managing the overall operation of the circuit.
An imaging system for PLIF/Mie measurements for a combusting flow
NASA Technical Reports Server (NTRS)
Wey, C. C.; Ghorashi, B.; Marek, C. J.; Wey, C.
1990-01-01
The equipment required to establish an imaging system can be divided into four parts: (1) the light source and beam shaping optics; (2) camera and recording; (3) image acquisition and processing; and (4) computer and output systems. A pulsed, Nd:YAG-pummped, frequency-doubled dye laser which can freeze motion in the flowfield is used for an illumination source. A set of lenses is used to form the laser beam into a sheet. The induced fluorescence is collected by an UV-enhanced lens and passes through an UV-enhanced microchannel plate intensifier which is optically coupled to a gated solid state CCD camera. The output of the camera is simultaneously displayed on a monitor and recorded on either a laser videodisc set of a Super VHS VCR. This videodisc set is controlled by a minicomputer via a connection to the RS-232C interface terminals. The imaging system is connected to the host computer by a bus repeater and can be multiplexed between four video input sources. Sample images from a planar shear layer experiment are presented to show the processing capability of the imaging system with the host computer.
30 CFR 18.49 - Connection boxes on machines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Connection boxes on machines. 18.49 Section 18... Design Requirements § 18.49 Connection boxes on machines. Connection boxes used to facilitate replacement of cables or machine components shall be explosion-proof. Portable-cable terminals on cable reels...
Shipboard fisheries management terminals
NASA Technical Reports Server (NTRS)
Nagler, R. G.; Sager, E. V.
1980-01-01
The needs of the National Marine Fisheries Service (NMGS), National Weather Service, and the U.S. Coast Guard for locational, biological, and environmental data were assessed. The fisheries conservation zones and the yellowfin tuna jurisdiction of the NMFS operates observer programs on foreign and domestic fishing vessels. Data input terminal and data transfer and processing technology are reviewed to establish available capability. A matrix of implementation options is generated to identify the benefits of each option, and preliminary cost estimates are made. Recommendations are made for incremental application of available off the shelf hardware to obtain improved performance and benefits within a well bounded cost. Terminal recommendations are made for three interdependent shipboard units emphasizing: (1) the determination of location and fishing activity; (2) hand held data inputting and formatting in the fishing work areas; and (3) data manipulation, merging, and editing.
Drivers of the primate thalamus
Rovó, Zita; Ulbert, István; Acsády, László
2012-01-01
The activity of thalamocortical neurons is largely determined by giant excitatory terminals, called drivers. These afferents may arise from neocortex or from subcortical centers; however their exact distribution, segregation or putative absence in given thalamic nuclei are unknown. To unravel the nucleus-specific composition of drivers, we mapped the entire macaque thalamus utilizing vesicular glutamate transporters 1 and 2 to label cortical and subcortical afferents, respectively. Large thalamic territories were innervated exclusively either by giant vGLUT2- or vGLUT1-positive boutons. Co-distribution of drivers with different origin was not abundant. In several thalamic regions, no giant terminals of any type could be detected at light microscopic level. Electron microscopic observation of these territories revealed either the complete absence of large multisynaptic excitatory terminals (basal ganglia-recipient nuclei) or the presence of both vGLUT1- and vGLUT2-positive terminals, which were significantly smaller than their giant counterparts (intralaminar nuclei, medial pulvinar). In the basal ganglia-recipient thalamus, giant inhibitory terminals replaced the excitatory driver inputs. The pulvinar and the mediodorsal nucleus displayed subnuclear heterogeneity in their driver assemblies. These results show that distinct thalamic territories can be under pure subcortical or cortical control; however there is significant variability in the composition of major excitatory inputs in several thalamic regions. Since thalamic information transfer depends on the origin and complexity of the excitatory inputs, this suggests that the computations performed by individual thalamic regions display considerable variability. Finally, the map of driver distribution may help to resolve the morphological basis of human diseases involving different parts of the thalamus. PMID:23223308
Chemical sensors are hybrid-input memristors
NASA Astrophysics Data System (ADS)
Sysoev, V. I.; Arkhipov, V. E.; Okotrub, A. V.; Pershin, Y. V.
2018-04-01
Memristors are two-terminal electronic devices whose resistance depends on the history of input signal (voltage or current). Here we demonstrate that the chemical gas sensors can be considered as memristors with a generalized (hybrid) input, namely, with the input consisting of the voltage, analyte concentrations and applied temperature. The concept of hybrid-input memristors is demonstrated experimentally using a single-walled carbon nanotubes chemical sensor. It is shown that with respect to the hybrid input, the sensor exhibits some features common with memristors such as the hysteretic input-output characteristics. This different perspective on chemical gas sensors may open new possibilities for smart sensor applications.
Bilateral Activity-Dependent Interactions in the Developing Corticospinal System
Friel, Kathleen M.; Martin, John H.
2009-01-01
Activity-dependent competition between the corticospinal (CS) systems in each hemisphere drives postnatal development of motor skills and stable CS tract connections with contralateral spinal motor circuits. Unilateral restriction of motor cortex (M1) activity during an early postnatal critical period impairs contralateral visually guided movements later in development and in maturity. Silenced M1 develops aberrant connections with the contralateral spinal cord whereas the initially active M1, in the other hemisphere, develops bilateral connections. In this study, we determined whether the aberrant pattern of CS tract terminations and motor impairments produced by early postnatal M1 activity restriction could be abrogated by reducing activity-dependent synaptic competition from the initially active M1 later in development. We first inactivated M1 unilaterally between postnatal weeks 5–7. We next inactivated M1 on the other side from weeks 7–11 (alternate inactivation), to reduce the competitive advantage that this side may have over the initially inactivated side. Alternate inactivation redirected aberrant contralateral CS tract terminations from the initially silenced M1 to their normal spinal territories and reduced the density of aberrant ipsilateral terminations from the initially active side. Normal movement endpoint control during visually guided locomotion was fully restored. This reorganization of CS terminals reveals an unsuspected late plasticity after the critical period for establishing the pattern of CS terminations in the spinal cord. Our findings show that robust bilateral interactions between the developing CS systems on each side are important for achieving balance between contralateral and ipsilateral CS tract connections and visuomotor control. PMID:17928450
Information-geometric measures as robust estimators of connection strengths and external inputs.
Tatsuno, Masami; Fellous, Jean-Marc; Amari, Shun-Ichi
2009-08-01
Information geometry has been suggested to provide a powerful tool for analyzing multineuronal spike trains. Among several advantages of this approach, a significant property is the close link between information-geometric measures and neural network architectures. Previous modeling studies established that the first- and second-order information-geometric measures corresponded to the number of external inputs and the connection strengths of the network, respectively. This relationship was, however, limited to a symmetrically connected network, and the number of neurons used in the parameter estimation of the log-linear model needed to be known. Recently, simulation studies of biophysical model neurons have suggested that information geometry can estimate the relative change of connection strengths and external inputs even with asymmetric connections. Inspired by these studies, we analytically investigated the link between the information-geometric measures and the neural network structure with asymmetrically connected networks of N neurons. We focused on the information-geometric measures of orders one and two, which can be derived from the two-neuron log-linear model, because unlike higher-order measures, they can be easily estimated experimentally. Considering the equilibrium state of a network of binary model neurons that obey stochastic dynamics, we analytically showed that the corrected first- and second-order information-geometric measures provided robust and consistent approximation of the external inputs and connection strengths, respectively. These results suggest that information-geometric measures provide useful insights into the neural network architecture and that they will contribute to the study of system-level neuroscience.
ERIC Educational Resources Information Center
Stifle, Jack
The PLATO IV computer-based instructional system consists of a large scale centrally located CDC 6400 computer and a large number of remote student terminals. This is a brief and general description of the proposed input/output hardware necessary to interface the student terminals with the computer's central processing unit (CPU) using available…
10 CFR 110.46 - Conduct resulting in termination of nuclear exports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... EQUIPMENT AND MATERIAL Review of License Applications § 110.46 Conduct resulting in termination of nuclear... technology to the sovereign control of a non-nuclear weapon state, except in connection with an international... 10 Energy 2 2010-01-01 2010-01-01 false Conduct resulting in termination of nuclear exports. 110...
10 CFR 110.46 - Conduct resulting in termination of nuclear exports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EQUIPMENT AND MATERIAL Review of License Applications § 110.46 Conduct resulting in termination of nuclear... technology to the sovereign control of a non-nuclear weapon state, except in connection with an international... 10 Energy 2 2011-01-01 2011-01-01 false Conduct resulting in termination of nuclear exports. 110...
47 CFR 76.806 - Pre-termination access to cable home wiring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Pre-termination access to cable home wiring. 76... access to cable home wiring. (a) Prior to termination of service, a customer may: install or provide for the installation of their own cable home wiring; or connect additional home wiring, splitters or other...
47 CFR 76.806 - Pre-termination access to cable home wiring.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Pre-termination access to cable home wiring. 76... access to cable home wiring. (a) Prior to termination of service, a customer may: install or provide for the installation of their own cable home wiring; or connect additional home wiring, splitters or other...
47 CFR 76.806 - Pre-termination access to cable home wiring.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Pre-termination access to cable home wiring. 76... access to cable home wiring. (a) Prior to termination of service, a customer may: install or provide for the installation of their own cable home wiring; or connect additional home wiring, splitters or other...
Method and apparatus for characterizing propagation delays of integrated circuit devices
NASA Technical Reports Server (NTRS)
Blaes, Brent R. (Inventor); Buehler, Martin G. (Inventor)
1987-01-01
Propagation delay of a signal through a channel is measured by cyclically generating a first step-wave signal for transmission through the channel to a two-input logic element and a second step-wave signal with a controlled delay to the second input terminal of the logic element. The logic element determines which signal is present first at its input terminals and stores a binary signal indicative of that determination for control of the delay of the second signal which is advanced or retarded for the next cycle until both the propagation delayed first step-wave signal and the control delayed step-wave signal are coincident. The propagation delay of the channel is then determined by measuring the time between the first and second step-wave signals out of the controlled step-wave signal generator.
The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks.
Landau, Itamar D; Egger, Robert; Dercksen, Vincent J; Oberlaender, Marcel; Sompolinsky, Haim
2016-12-07
Models of cortical dynamics often assume a homogeneous connectivity structure. However, we show that heterogeneous input connectivity can prevent the dynamic balance between excitation and inhibition, a hallmark of cortical dynamics, and yield unrealistically sparse and temporally regular firing. Anatomically based estimates of the connectivity of layer 4 (L4) rat barrel cortex and numerical simulations of this circuit indicate that the local network possesses substantial heterogeneity in input connectivity, sufficient to disrupt excitation-inhibition balance. We show that homeostatic plasticity in inhibitory synapses can align the functional connectivity to compensate for structural heterogeneity. Alternatively, spike-frequency adaptation can give rise to a novel state in which local firing rates adjust dynamically so that adaptation currents and synaptic inputs are balanced. This theory is supported by simulations of L4 barrel cortex during spontaneous and stimulus-evoked conditions. Our study shows how synaptic and cellular mechanisms yield fluctuation-driven dynamics despite structural heterogeneity in cortical circuits. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Method for electrostatic deposition of graphene on a substrate
NASA Technical Reports Server (NTRS)
Sumanasekera, Gamini (Inventor); Sidorov, Anton N. (Inventor); Ouseph, P. John (Inventor); Yazdanpanah, Mehdi M. (Inventor); Cohn, Robert W. (Inventor); Jalilian, Romaneh (Inventor)
2010-01-01
A method for electrostatic deposition of graphene on a substrate comprises the steps of securing a graphite sample to a first electrode; electrically connecting the first electrode to a positive terminal of a power source; electrically connecting a second electrode to a ground terminal of the power source; placing the substrate over the second electrode; and using the power source to apply a voltage, such that graphene is removed from the graphite sample and deposited on the substrate.
Diversity of Spine Synapses in Animals
Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.
2016-01-01
Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved. PMID:27230661
DOT National Transportation Integrated Search
2009-02-01
Just over 40 percent of U.S. passenger ferry terminals : offer connections to other scheduled public transportation : modes. That makes ferries less connected than intercity : rail, where 53 percent of stations have links with other : modes, but more...
Cohen, Yaniv; Wilson, Donald A.; Barkai, Edi
2015-01-01
Learning of a complex olfactory discrimination (OD) task results in acquisition of rule learning after prolonged training. Previously, we demonstrated enhanced synaptic connectivity between the piriform cortex (PC) and its ascending and descending inputs from the olfactory bulb (OB) and orbitofrontal cortex (OFC) following OD rule learning. Here, using recordings of evoked field postsynaptic potentials in behaving animals, we examined the dynamics by which these synaptic pathways are modified during rule acquisition. We show profound differences in synaptic connectivity modulation between the 2 input sources. During rule acquisition, the ascending synaptic connectivity from the OB to the anterior and posterior PC is simultaneously enhanced. Furthermore, post-training stimulation of the OB enhanced learning rate dramatically. In sharp contrast, the synaptic input in the descending pathway from the OFC was significantly reduced until training completion. Once rule learning was established, the strength of synaptic connectivity in the 2 pathways resumed its pretraining values. We suggest that acquisition of olfactory rule learning requires a transient enhancement of ascending inputs to the PC, synchronized with a parallel decrease in the descending inputs. This combined short-lived modulation enables the PC network to reorganize in a manner that enables it to first acquire and then maintain the rule. PMID:23960200
Miyazaki, Takaaki; Lin, Tzu-Yang; Ito, Kei; Lee, Chi-Hon; Stopfer, Mark
2016-01-01
Although the gustatory system provides animals with sensory cues important for food choice and other critical behaviors, little is known about neural circuitry immediately following gustatory sensory neurons (GSNs). Here, we identify and characterize a bilateral pair of gustatory second-order neurons in Drosophila. Previous studies identified GSNs that relay taste information to distinct subregions of the primary gustatory center (PGC) in the gnathal ganglia (GNG). To identify candidate gustatory second-order neurons (G2Ns) we screened ~5,000 GAL4 driver strains for lines that label neural fibers innervating the PGC. We then combined GRASP (GFP reconstitution across synaptic partners) with presynaptic labeling to visualize potential synaptic contacts between the dendrites of the candidate G2Ns and the axonal terminals of Gr5a-expressing GSNs, which are known to respond to sucrose. Results of the GRASP analysis, followed by a single cell analysis by FLPout recombination, revealed a pair of neurons that contact Gr5a axon terminals in both brain hemispheres, and send axonal arborizations to a distinct region outside the PGC but within the GNG. To characterize the input and output branches, respectively, we expressed fluorescence-tagged acetylcholine receptor subunit (Dα7) and active-zone marker (Brp) in the G2Ns. We found that G2N input sites overlaid GRASP-labeled synaptic contacts to Gr5a neurons, while presynaptic sites were broadly distributed throughout the neurons’ arborizations. GRASP analysis and further tests with the Syb-GRASP method suggested that the identified G2Ns receive synaptic inputs from Gr5a-expressing GSNs, but not Gr66a-expressing GSNs, which respond to caffeine. The identified G2Ns relay information from Gr5a-expressing GSNs to distinct regions in the GNG, and are distinct from other, recently identified gustatory projection neurons, which relay information about sugars to a brain region called the antennal mechanosensory and motor center (AMMC). Our findings suggest unexpected complexity for taste information processing in the first relay of the gustatory system. PMID:26004543
Miyazaki, Takaaki; Lin, Tzu-Yang; Ito, Kei; Lee, Chi-Hon; Stopfer, Mark
2015-01-01
Although the gustatory system provides animals with sensory cues important for food choice and other critical behaviors, little is known about neural circuitry immediately following gustatory sensory neurons (GSNs). Here, we identify and characterize a bilateral pair of gustatory second-order neurons (G2Ns) in Drosophila. Previous studies identified GSNs that relay taste information to distinct subregions of the primary gustatory center (PGC) in the gnathal ganglia (GNG). To identify candidate G2Ns, we screened ∼5,000 GAL4 driver strains for lines that label neural fibers innervating the PGC. We then combined GRASP (GFP reconstitution across synaptic partners) with presynaptic labeling to visualize potential synaptic contacts between the dendrites of the candidate G2Ns and the axonal terminals of Gr5a-expressing GSNs, which are known to respond to sucrose. Results of the GRASP analysis, followed by a single-cell analysis by FLP-out recombination, revealed a pair of neurons that contact Gr5a axon terminals in both brain hemispheres and send axonal arborizations to a distinct region outside the PGC but within the GNG. To characterize the input and output branches, respectively, we expressed fluorescence-tagged acetylcholine receptor subunit (Dα7) and active-zone marker (Brp) in the G2Ns. We found that G2N input sites overlaid GRASP-labeled synaptic contacts to Gr5a neurons, while presynaptic sites were broadly distributed throughout the neurons' arborizations. GRASP analysis and further tests with the Syb-GRASP method suggested that the identified G2Ns receive synaptic inputs from Gr5a-expressing GSNs, but not Gr66a-expressing GSNs, which respond to caffeine. The identified G2Ns relay information from Gr5a-expressing GSNs to distinct regions in the GNG, and are distinct from other, recently identified gustatory projection neurons, which relay information about sugars to a brain region called the antennal mechanosensory and motor center (AMMC). Our findings suggest unexpected complexity for taste information processing in the first relay of the gustatory system.
Improved Autoassociative Neural Networks
NASA Technical Reports Server (NTRS)
Hand, Charles
2003-01-01
Improved autoassociative neural networks, denoted nexi, have been proposed for use in controlling autonomous robots, including mobile exploratory robots of the biomorphic type. In comparison with conventional autoassociative neural networks, nexi would be more complex but more capable in that they could be trained to do more complex tasks. A nexus would use bit weights and simple arithmetic in a manner that would enable training and operation without a central processing unit, programs, weight registers, or large amounts of memory. Only a relatively small amount of memory (to hold the bit weights) and a simple logic application- specific integrated circuit would be needed. A description of autoassociative neural networks is prerequisite to a meaningful description of a nexus. An autoassociative network is a set of neurons that are completely connected in the sense that each neuron receives input from, and sends output to, all the other neurons. (In some instantiations, a neuron could also send output back to its own input terminal.) The state of a neuron is completely determined by the inner product of its inputs with weights associated with its input channel. Setting the weights sets the behavior of the network. The neurons of an autoassociative network are usually regarded as comprising a row or vector. Time is a quantized phenomenon for most autoassociative networks in the sense that time proceeds in discrete steps. At each time step, the row of neurons forms a pattern: some neurons are firing, some are not. Hence, the current state of an autoassociative network can be described with a single binary vector. As time goes by, the network changes the vector. Autoassociative networks move vectors over hyperspace landscapes of possibilities.
Activity-Induced Remodeling of Olfactory Bulb Microcircuits Revealed by Monosynaptic Tracing
Arenkiel, Benjamin R.; Hasegawa, Hiroshi; Yi, Jason J.; Larsen, Rylan S.; Wallace, Michael L.; Philpot, Benjamin D.; Wang, Fan; Ehlers, Michael D.
2011-01-01
The continued addition of new neurons to mature olfactory circuits represents a remarkable mode of cellular and structural brain plasticity. However, the anatomical configuration of newly established circuits, the types and numbers of neurons that form new synaptic connections, and the effect of sensory experience on synaptic connectivity in the olfactory bulb remain poorly understood. Using in vivo electroporation and monosynaptic tracing, we show that postnatal-born granule cells form synaptic connections with centrifugal inputs and mitral/tufted cells in the mouse olfactory bulb. In addition, newly born granule cells receive extensive input from local inhibitory short axon cells, a poorly understood cell population. The connectivity of short axon cells shows clustered organization, and their synaptic input onto newborn granule cells dramatically and selectively expands with odor stimulation. Our findings suggest that sensory experience promotes the synaptic integration of new neurons into cell type-specific olfactory circuits. PMID:22216277
NASA Technical Reports Server (NTRS)
Kleinberg, L. L. (Inventor)
1984-01-01
A bandpass amplifier employing a field effect transistor amplifier first stage is described with a resistive load either a.c. or directly coupled to the non-inverting input of an operational amplifier second stage which is loaded in a Wien Bridge configuration. The bandpass amplifier may be operated with a signal injected into the gate terminal of the field effect transistor and the signal output taken from the output terminal of the operational amplifier. The operational amplifier stage appears as an inductive reactance, capacitive reactance and negative resistance at the non-inverting input of the operational amplifier, all of which appear in parallel with the resistive load of the field effect transistor.
Fuel Cell/Electrochemical Cell Voltage Monitor
NASA Technical Reports Server (NTRS)
Vasquez, Arturo
2012-01-01
A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.
Hoppie, Lyle O.
1982-01-12
Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.
Oscillator or Amplifier With Wide Frequency Range
NASA Technical Reports Server (NTRS)
Kleinberg, L.; Sutton, J.
1987-01-01
Inductive and capacitive effects synthesized with feedback circuits. Oscillator/amplifier resistively tunable over wide frequency range. Feedback circuits containing operational amplifiers, resistors, and capacitors synthesize electrical effects of inductance and capacitance in parallel between input terminals. Synthetic inductance and capacitance, and, therefore, resonant frequency of input admittance, adjusted by changing potentiometer setting.
NASA Technical Reports Server (NTRS)
Denn, F. M.
1978-01-01
Geometric input plotting to the VORLAX computer program by means of an interactive remote terminal is reported. The software consists of a procedure file and two programs. The programs and procedure file are described and a sample execution is presented.
30 CFR 23.7 - Specific requirements for approval.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and the terminals and the connections thereto shall be so arranged and protected as to preclude meddling, tampering, or making other electrical connections with them. (e) Manufacturers shall furnish adequate instructions for the installation and connection of telephones and signal devices in order that...
30 CFR 23.7 - Specific requirements for approval.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., and the terminals and the connections thereto shall be so arranged and protected as to preclude meddling, tampering, or making other electrical connections with them. (e) Manufacturers shall furnish adequate instructions for the installation and connection of telephones and signal devices in order that...
NASA Technical Reports Server (NTRS)
Simons, Rainee N (Inventor); Chevalier, Christine T (Inventor); Wintucky, Edwin G (Inventor); Freeman, Jon C (Inventor)
2016-01-01
One or more embodiments of the present invention describe an apparatus and method to combine unequal powers. The apparatus includes a first input port, a second input port, and a combiner. The first input port is operably connected to a first power amplifier and is configured to receive a first power from the first power amplifier. The second input port is operably connected to a second power amplifier and is configured to receive a second power from the second power amplifier. The combiner is configured to simultaneously receive the first power from the first input port and the second power from the second input port. The combiner is also configured to combine the first power and second power to produce a maximized power. The first power and second power are unequal.
Bi-directional power control system for voltage converter
Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward
1999-01-01
A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.
Bi-directional power control system for voltage converter
Garrigan, N.R.; King, R.D.; Schwartz, J.E.
1999-05-11
A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals. 10 figs.
Capillary zone electrophoresis-mass spectrometer interface
D`Silva, A.
1996-08-06
A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.
Optical control system for high-voltage terminals
Bicek, John J.
1978-01-01
An optical control system for the control of devices in the terminal of an electrostatic accelerator includes a laser that is modulated by a series of preselected codes produced by an encoder. A photodiode receiver is placed in the laser beam at the high-voltage terminal of an electrostatic accelerator. A decoder connected to the photodiode decodes the signals to provide control impulses for a plurality of devices at the high voltage of the terminal.
Capillary zone electrophoresis-mass spectrometer interface
D'Silva, Arthur
1996-08-06
A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.
Sun, Yanjun; Nguyen, Amanda; Nguyen, Joseph; Le, Luc; Saur, Dieter; Choi, Jiwon; Callaway, Edward M.; Xu, Xiangmin
2014-01-01
Summary We applied a new Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to CA1 excitatory and inhibitory neuron types in mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, entorhinal cortex and the medial septum (MS), and unexpectedly also from the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons while inhibitory CA1 neurons receive a great majority of input from GABAergic MS neurons; both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons receive much stronger input than SOM+ neurons from CA3, entorhinal cortex and MS. Differential input from CA3 to specific CA1 cell types was also demonstrated functionally using laser scanning photostimulation and whole cell recordings. PMID:24656815
Resonant optical device with a microheater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentine, Anthony L.; DeRose, Christopher
2017-04-04
A resonant photonic device is provided. The device comprises an optical waveguiding element, such as an optical resonator, that includes a diode junction region, two signal terminals configured to apply a bias voltage across the junction region, and a heater laterally separated from the optical waveguiding element. A semiconductor electrical barrier element is juxtaposed to the heater. A metallic strip is electrically and thermally connected at one end to a signal terminal of the optical waveguiding element and thermally connected at another end to the barrier element.
Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann
2016-05-03
Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.
Valiela, Ivan; Elmstrom, Elizabeth; Lloret, Javier; Stone, Thomas; Camilli, Luis
2018-07-15
We review data from coastal Pacific Panama and other tropical coasts with two aims. First, we defined inputs and losses of nitrogen (N) mediating connectivity of watersheds, mangrove estuaries, and coastal sea. N entering watersheds-mainly via N fixation (79-86%)-was largely intercepted; N discharges to mangrove estuaries (3-6%), small compared to N inputs to watersheds, nonetheless significantly supplied N to mangrove estuaries. Inputs to mangrove estuaries (including watershed discharges, and marine inputs during flood tides) were matched by losses (mainly denitrification and export during ebb tides). Mangrove estuary subsidies of coastal marine food webs take place by export of forms of N [DON (62.5%), PN (9.1%), and litter N (12.9%)] that provide dissimilative and assimilative subsidies. N fixation, denitrification, and tidal exchanges were major processes, and DON was major form of N involved in connecting fluxes in and out of mangrove estuaries. Second, we assessed effects of watershed forest cover on connectivity. Decreased watershed forest cover lowered N inputs, interception, and discharge into receiving mangrove estuaries. These imprints of forest cover were erased during transit of N through estuaries, owing to internal N cycle transformations, and differences in relative area of watersheds and estuaries. Largest losses of N consisted of water transport of energy-rich compounds, particularly DON. N losses were similar in magnitude to N inputs from sea, calculated without considering contribution by intermittent coastal upwelling, and hence likely under-estimated. Pacific Panama mangrove estuaries are exposed to major inputs of N from land and sea, which emphasizes the high degree of bi-directional connectivity in these coupled ecosystems. Pacific Panama is still lightly affected by human or global changes. Increased deforestation can be expected, as well as changes in ENSO, which will surely raise watershed-derived loads of N, as well as significantly change marine N inputs affecting coastal coupled ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.
Rolland, Anne-Sophie; Karachi, Carine; Muriel, Marie-Paule; Hirsch, Etienne C; François, Chantal
2011-08-01
The locomotor area has recently emerged as a target for deep brain stimulation to lessen gait disturbances in advanced parkinsonian patients. An important step in choosing this target is to define anatomical limits of its 2 components, the pedunculopontine nucleus and the cuneiform nucleus, their connections with the basal ganglia, and their output descending pathway. Based on the hypothesis that pedunculopontine nucleus controls locomotion whereas cuneiform nucleus controls axial posture, we analyzed whether both nuclei receive inputs from the internal pallidum and substantia nigra using anterograde and retrograde tract tracing in monkeys. We also examined whether these nuclei convey descending projections to the reticulospinal pathway. Pallidal terminals were densely distributed and restricted to the pedunculopontine nucleus, whereas nigral terminals were diffusely observed in the whole extent of both the pedunculopontine nucleus and the cuneiform nucleus. Moreover, nigral terminals formed symmetric synapses with pedunculopontine nucleus and cuneiform nucleus dendrites. Retrograde tracing experiments confirmed these results because labeled cell bodies were observed in both the internal pallidum and substantia nigra after pedunculopontine nucleus injection, but only in the substantia nigra after cuneiform nucleus injection. Furthermore, anterograde tracing experiments revealed that the pedunculopontine nucleus and cuneiform nucleus project to large portions of the pontomedullary reticular formation. This is the first anatomical evidence that the internal pallidum and the substantia nigra control different parts of the brain stem and can modulate the descending reticulospinal pathway in primates. These findings support the functional hypothesis that the nigro-cuneiform nucleus pathway could control axial posture whereas the pallido-pedunculopontine nucleus pathway could modulate locomotion. Copyright © 2011 Movement Disorder Society.
Pseudo-Hall Effect in Graphite on Paper Based Four Terminal Devices for Stress Sensing Applications
NASA Astrophysics Data System (ADS)
Qamar, Afzaal; Sarwar, Tuba; Dinh, Toan; Foisal, A. R. M.; Phan, Hoang-Phuong; Viet Dao, Dzung
2017-04-01
A cost effective and easy to fabricate stress sensor based on pseudo-Hall effect in Graphite on Paper (GOP) has been presented in this article. The four terminal devices were developed by pencil drawing with hand on to the paper substrate. The stress was applied to the paper containing four terminal devices with the input current applied at two terminals and the offset voltage observed at other two terminals called pseudo-Hall effect. The GOP stress sensor showed significant response to the applied stress which was smooth and linear. These results showed that the pseudo-Hall effect in GOP based four terminal devices can be used for cost effective, flexible and easy to make stress, strain or force sensors.
Dougherty, Thomas J; Symanski, James S; Kuempers, Joerg A; Miles, Ronald C; Hansen, Scott A; Smith, Nels R; Taghikhani, Majid; Mrotek, Edward N; Andrew, Michael G
2014-01-21
A lithium battery for use in a vehicle includes a container, a plurality of positive terminals extending from a first end of the lithium battery, and a plurality of negative terminals extending from a second end of the lithium battery. The plurality of positive terminals are provided in a first configuration and the plurality of negative terminals are provided in a second configuration, the first configuration differing from the second configuration. A battery system for use in a vehicle may include a plurality of electrically connected lithium cells or batteries.
Jamison, David Kay
2016-04-12
A charge/discharge input is for respectively supplying charge to, or drawing charge from, an electrochemical cell. A transition modifying circuit is coupled between the charge/discharge input and a terminal of the electrochemical cell and includes at least one of an inductive constituent, a capacitive constituent and a resistive constituent selected to generate an adjusted transition rate on the terminal sufficient to reduce degradation of a charge capacity characteristic of the electrochemical cell. A method determines characteristics of the transition modifying circuit. A degradation characteristic of the electrochemical cell is analyzed relative to a transition rate of the charge/discharge input applied to the electrochemical cell. An adjusted transition rate is determined for a signal to be applied to the electrochemical cell that will reduce the degradation characteristic. At least one of an inductance, a capacitance, and a resistance is selected for the transition modifying circuit to achieve the adjusted transition rate.
Transient Response in a Dendritic Neuron Model for Current Injected at One Branch
Rinzel, John; Rall, Wilfrid
1974-01-01
Mathematical expressions are obtained for the response function corresponding to an instantaneous pulse of current injected to a single dendritic branch in a branched dendritic neuron model. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. The response function when used in a convolution formula enables one to compute the voltage transient at any specified point in the dendritic tree for an arbitrary current injection at a given input location. A particular numerical example, for a brief current injection at a branch terminal, illustrates the attenuation and delay characteristics of the depolarization peak as it spreads throughout the neuron model. In contrast to the severe attenuation of voltage transients from branch input sites to the soma, the fraction of total input charge actually delivered to the soma and other trees is calculated to be about one-half. This fraction is independent of the input time course. Other numerical examples, which compare a branch terminal input site with a soma input site, demonstrate that, for a given transient current injection, the peak depolarization is not proportional to the input resistance at the injection site and, for a given synaptic conductance transient, the effective synaptic driving potential can be significantly reduced, resulting in less synaptic current flow and charge, for a branch input site. Also, for the synaptic case, the two inputs are compared on the basis of the excitatory post-synaptic potential (EPSP) seen at the soma and the total charge delivered to the soma. PMID:4424185
The physical model for research of behavior of grouting mixtures
NASA Astrophysics Data System (ADS)
Hajovsky, Radovan; Pies, Martin; Lossmann, Jaroslav
2016-06-01
The paper deals with description of physical model designed for verification of behavior of grouting mixtures when applied below underground water level. Described physical model has been set up to determine propagation of grouting mixture in a given environment. Extension of grouting in this environment is based on measurement of humidity and temperature with the use of combined sensors located within preinstalled special measurement probes around grouting needle. Humidity was measured by combined capacity sensor DTH-1010, temperature was gathered by a NTC thermistor. Humidity sensors measured time when grouting mixture reached sensor location point. NTC thermistors measured temperature changes in time starting from initial of injection. This helped to develop 3D map showing the distribution of grouting mixture through the environment. Accomplishment of this particular measurement was carried out by a designed primary measurement module capable of connecting 4 humidity and temperature sensors. This module also takes care of converting these physical signals into unified analogue signals consequently brought to the input terminals of analogue input of programmable automation controller (PAC) WinPAC-8441. This controller ensures the measurement itself, archiving and visualization of all data. Detail description of a complex measurement system and evaluation in form of 3D animations and graphs is supposed to be in a full paper.
Feedforward inhibitory control of sensory information in higher-order thalamic nuclei.
Lavallée, Philippe; Urbain, Nadia; Dufresne, Caroline; Bokor, Hajnalka; Acsády, László; Deschênes, Martin
2005-08-17
Sensory stimuli evoke strong responses in thalamic relay cells, which ensure a faithful relay of information to the neocortex. However, relay cells of the posterior thalamic nuclear group in rodents, despite receiving significant trigeminal input, respond poorly to vibrissa deflection. Here we show that sensory transmission in this nucleus is impeded by fast feedforward inhibition mediated by GABAergic neurons of the zona incerta. Intracellular recordings of posterior group neurons revealed that the first synaptic event after whisker deflection is a prominent inhibition. Whisker-evoked EPSPs with fast rise time and longer onset latency are unveiled only after lesioning the zona incerta. Excitation survives barrel cortex lesion, demonstrating its peripheral origin. Electron microscopic data confirm that trigeminal axons make large synaptic terminals on the proximal dendrites of posterior group cells and on the somata of incertal neurons. Thus, the connectivity of the system allows an unusual situation in which inhibition precedes ascending excitation resulting in efficient shunting of the responses. The dominance of inhibition over excitation strongly suggests that the paralemniscal pathway is not designed to relay inputs triggered by passive whisker deflection. Instead, we propose that this pathway operates through disinhibition, and that the posterior group forwards to the cerebral cortex sensory information that is contingent on motor instructions.
Orshansky, Jr., deceased, Elias; Weseloh, William E.
1978-01-01
A power transmission having three simple planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the sun gears of the first two planetary assemblies, these two sun gears being connected together on a common shaft. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. The input shaft is also connected to drive the second ring gear and, furthermore is clutchable to the carrier of the third planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through the first ring gear in a hydrostatic mode. The carrier of the second planetary assembly drives the ring gear of the third planetary assembly, which is clutchable to the output shaft, and the sun gear of the third planetary assembly is mounted rigidly to the output shaft.
Application of VSC-HVDC with Shunt Connected SMES for Compensation of Power Fluctuation
NASA Astrophysics Data System (ADS)
Linn, Zarchi; Kakigano, Hiroaki; Miura, Yushi; Ise, Toshifumi
This paper describes the application of VSC-HVDC (High Voltage DC Transmission using Voltage Source Converter) with shunt connected SMES (Superconducting Magnetic Energy Storage) for compensation of power fluctuation caused by fluctuating power source such as photovoltaics and wind turbines. The objectives of this proposed system is to smooth out fluctuating power in one terminal side of HVDC in order to avoid causing power system instability and frequency deviation by absorbing or providing power according to the system requirement while another terminal side power is fluctuated. The shunt connected SMES charges and discharges the energy to and from the dc side and it compensates required power of fluctuation to obtain constant power flow in one terminal side of VSC-HVDC system. This system configuration has ability for power system stabilization in the case of power fluctuation from natural energy source. PSCAD/EMTDC simulation is used to evaluate the performance of applied system configuration and control method.
Voltage balanced multilevel voltage source converter system
Peng, Fang Zheng; Lai, Jih-Sheng
1997-01-01
A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.
Voltage balanced multilevel voltage source converter system
Peng, F.Z.; Lai, J.S.
1997-07-01
Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.
Wolf, Kristin L.; Noe, Gregory B.; Ahn, Changwoo
2013-01-01
Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots (n = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed.
49 CFR 229.89 - Jumpers; cable connections.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Cable and jumper connections between locomotive may not have any of the following conditions: (1) Broken or badly chafed insulation. (2) Broken plugs, receptacles or terminals. (3) Broken or protruding strands of wire. ...
49 CFR 229.89 - Jumpers; cable connections.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Cable and jumper connections between locomotive may not have any of the following conditions: (1) Broken or badly chafed insulation. (2) Broken plugs, receptacles or terminals. (3) Broken or protruding strands of wire. ...
49 CFR 229.89 - Jumpers; cable connections.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Cable and jumper connections between locomotive may not have any of the following conditions: (1) Broken or badly chafed insulation. (2) Broken plugs, receptacles or terminals. (3) Broken or protruding strands of wire. ...
49 CFR 229.89 - Jumpers; cable connections.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Cable and jumper connections between locomotive may not have any of the following conditions: (1) Broken or badly chafed insulation. (2) Broken plugs, receptacles or terminals. (3) Broken or protruding strands of wire. ...
36 CFR 14.25 - Documents which must accompany application.
Code of Federal Regulations, 2010 CFR
2010-07-01
... terminal points of the survey should be accurately connected by course and distance to the nearest corner... connection will be made to some prominent natural object or permanent monument, which can be readily... the witness monuments and the connecting courses and distances to the original corners should be shown...
16 CFR 1211.16 - UL marking requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... will be readily visible—after installation, in the case of a permanently connected appliance—with: (1... shall be included unless the full-load power factor is 80 percent or more, or, for a cord-connected... to identify the accessory intended to be connected to the terminals or connectors. The accessory...
Unifying cost and information in information-theoretic competitive learning.
Kamimura, Ryotaro
2005-01-01
In this paper, we introduce costs into the framework of information maximization and try to maximize the ratio of information to its associated cost. We have shown that competitive learning is realized by maximizing mutual information between input patterns and competitive units. One shortcoming of the method is that maximizing information does not necessarily produce representations faithful to input patterns. Information maximizing primarily focuses on some parts of input patterns that are used to distinguish between patterns. Therefore, we introduce the cost, which represents average distance between input patterns and connection weights. By minimizing the cost, final connection weights reflect input patterns well. We applied the method to a political data analysis, a voting attitude problem and a Wisconsin cancer problem. Experimental results confirmed that, when the cost was introduced, representations faithful to input patterns were obtained. In addition, improved generalization performance was obtained within a relatively short learning time.
Effects of amyloid-β plaque proximity on the axon initial segment of pyramidal cells.
León-Espinosa, Gonzalo; DeFelipe, Javier; Muñoz, Alberto
2012-01-01
The output of cortical pyramidal cells reflects the balance between excitatory inputs of cortical and subcortical origin, and inhibitory inputs from distinct populations of cortical GABAergic interneurons, each of which selectively innervate different domains of neuronal pyramidal cells (i.e., dendrites, soma and axon initial segment [AIS]). In Alzheimer's disease (AD), the presence of amyloid-β (Aβ) plaques alters the synaptic input to pyramidal cells in a number of ways. However, the effects of Aβ plaques on the AIS have still not been investigated to date. This neuronal domain is involved in input integration, as well as action potential initiation and propagation, and it exhibits Ca2+- and activity-dependent structural plasticity. The AIS is innervated by GABAergic axon terminals from chandelier cells, which are thought to exert a strong influence on pyramidal cell output. In the AβPP/PS1 transgenic mouse model of AD, we have investigated the effects of Aβ plaques on the morphological and neurochemical features of the AIS, including the cisternal organelle, using immunocytochemistry and confocal microscopy, as well as studying the innervation of the AIS by chandelier cell axon terminals. There is a strong reduction in GABAergic terminals that appose AIS membrane surfaces that are in contact with Aβ plaques, indicating altered inhibitory synapsis at the AIS. Thus, despite a lack of gross structural alterations in the AIS, this decrease in GABAergic innervation may deregulate AIS activity and contribute to the hyperactivity of neurons in contact with Aβ plaques.
Auto-Routable, Configurable, Daisy Chainable Data Acquisition System
NASA Technical Reports Server (NTRS)
Shuler, Robert L. (Inventor)
2005-01-01
A method and apparatus for an acquisition system includes a plurality of sensor input signal lines. At least one of the plurality of sensor input signal lines operatively connects to at least one of a plurality of amplifier circuits. At least one of the plurality of amplifier circuits operatively connects to at least one of a plurality of filter circuits.
Two Unipolar Terminal-Attractor-Based Associative Memories
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Wu, Chwan-Hwa
1995-01-01
Two unipolar mathematical models of electronic neural network functioning as terminal-attractor-based associative memory (TABAM) developed. Models comprise sets of equations describing interactions between time-varying inputs and outputs of neural-network memory, regarded as dynamical system. Simplifies design and operation of optoelectronic processor to implement TABAM performing associative recall of images. TABAM concept described in "Optoelectronic Terminal-Attractor-Based Associative Memory" (NPO-18790). Experimental optoelectronic apparatus that performed associative recall of binary images described in "Optoelectronic Inner-Product Neural Associative Memory" (NPO-18491).
Fanning, Alan W.; Olich, Eugene E.
1994-01-01
An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.
Experiments for Ka-band mobile applications: The ACTS mobile terminal
NASA Technical Reports Server (NTRS)
Estabrook, Polly; Dessouky, Khaled; Jedrey, Thomas
1990-01-01
To explore the potential of Ka-band to support mobile satellite services, the Jet Propulsion Laboratory (JPL) has initiated the design and development of a Ka-band land-mobile terminal to be used with the Advanced Communications Technology Satellite (ACTS). The planned experimental setup with ACTS is described. Brief functional descriptions of the mobile and fixed terminals are provided. The inputs required from the propagation community to support the design activities and the planned experiments are also discussed.
Accelerating Learning By Neural Networks
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Barhen, Jacob
1992-01-01
Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.
Circuits Protect Against Incorrect Power Connections
NASA Technical Reports Server (NTRS)
Delombard, Richard
1992-01-01
Simple circuits prevent application of incorrectly polarized or excessive voltages. Connected temporarily or permanently at power-connecting terminals. Devised to protect electrical and electronic equipment installed in spacecraft and subjected to variety of tests in different facilities prior to installation. Basic concept of protective circuits also applied easily to many kinds of electrical and electronic equipment that must be protected against incorrect power connections.
A Research Program in Computer Technology. Volume 1
1981-08-01
rigidity, sensor networks 10. command and control, digital voice communication, graphic input device for terminal, multimedia communications, portable...satellite channel in the internetwork environment; Distributed Sensor Networks - formulation of algorithms and communication protocols to support the...operation of geographically distributed sensors ; Personal Communicator - work intended to result in a demonstration-level portable terminal to test and
Held, Martina; Berz, Annuska; Hensgen, Ronja; Muenz, Thomas S; Scholl, Christina; Rössler, Wolfgang; Homberg, Uwe; Pfeiffer, Keram
2016-01-01
While the ability of honeybees to navigate relying on sky-compass information has been investigated in a large number of behavioral studies, the underlying neuronal system has so far received less attention. The sky-compass pathway has recently been described from its input region, the dorsal rim area (DRA) of the compound eye, to the anterior optic tubercle (AOTU). The aim of this study is to reveal the connection from the AOTU to the central complex (CX). For this purpose, we investigated the anatomy of large microglomerular synaptic complexes in the medial and lateral bulbs (MBUs/LBUs) of the lateral complex (LX). The synaptic complexes are formed by tubercle-lateral accessory lobe neuron 1 (TuLAL1) neurons of the AOTU and GABAergic tangential neurons of the central body's (CB) lower division (TL neurons). Both TuLAL1 and TL neurons strongly resemble neurons forming these complexes in other insect species. We further investigated the ultrastructure of these synaptic complexes using transmission electron microscopy. We found that single large presynaptic terminals of TuLAL1 neurons enclose many small profiles (SPs) of TL neurons. The synaptic connections between these neurons are established by two types of synapses: divergent dyads and divergent tetrads. Our data support the assumption that these complexes are a highly conserved feature in the insect brain and play an important role in reliable signal transmission within the sky-compass pathway.
Non-blocking crossbar permutation engine with constant routing latency
NASA Technical Reports Server (NTRS)
Monacos, Steve P. (Inventor)
1994-01-01
The invention is embodied in an N x N crossbar for routing packets from a set of N input ports to a set of N output ports, each packet having a header identifying one of the output ports as its destination, including a plurality of individual links which carry individual packets. Each link has a link input end and a link output end, a plurality of switches. Each of the switches has at least top and bottom switch inputs connected to a corresponding pair of the link output ends and top and bottom switch outputs connected to a corresponding pair of link input ends, whereby each switch is connected to four different links. Each of the switches has an exchange state which routes packets from the top and bottom switch inputs to the bottom and top switch outputs, respectively, and a bypass state which routes packets from the top and bottom switch inputs to the top and bottom switch outputs, respectively. A plurality of individual controller devices governing respective switches for sensing from a header of a packet at each switch input for the identity of the destination output port of the packet and selecting one of the exchange and bypass states in accordance with the identity of the destination output port and with the location of the corresponding switch relative to the destination output port.
Local and Long-Range Circuit Connections to Hilar Mossy Cells in the Dentate Gyrus
Sun, Yanjun; Grieco, Steven F.; Holmes, Todd C.
2017-01-01
Abstract Hilar mossy cells are the prominent glutamatergic cell type in the dentate hilus of the dentate gyrus (DG); they have been proposed to have critical roles in the DG network. To better understand how mossy cells contribute to DG function, we have applied new viral genetic and functional circuit mapping approaches to quantitatively map and compare local and long-range circuit connections of mossy cells and dentate granule cells in the mouse. The great majority of inputs to mossy cells consist of two parallel inputs from within the DG: an excitatory input pathway from dentate granule cells and an inhibitory input pathway from local DG inhibitory neurons. Mossy cells also receive a moderate degree of excitatory and inhibitory CA3 input from proximal CA3 subfields. Long range inputs to mossy cells are numerically sparse, and they are only identified readily from the medial septum and the septofimbrial nucleus. In comparison, dentate granule cells receive most of their inputs from the entorhinal cortex. The granule cells receive significant synaptic inputs from the hilus and the medial septum, and they also receive direct inputs from both distal and proximal CA3 subfields, which has been underdescribed in the existing literature. Our slice-based physiological mapping studies further supported the identified circuit connections of mossy cells and granule cells. Together, our data suggest that hilar mossy cells are major local circuit integrators and they exert modulation of the activity of dentate granule cells as well as the CA3 region through “back-projection” pathways. PMID:28451637
OIL—Output input language for data connectivity between geoscientific software applications
NASA Astrophysics Data System (ADS)
Amin Khan, Khalid; Akhter, Gulraiz; Ahmad, Zulfiqar
2010-05-01
Geoscientific computing has become so complex that no single software application can perform all the processing steps required to get the desired results. Thus for a given set of analyses, several specialized software applications are required, which must be interconnected for electronic flow of data. In this network of applications the outputs of one application become inputs of other applications. Each of these applications usually involve more than one data type and may have their own data formats, making them incompatible with other applications in terms of data connectivity. Consequently several data format conversion utilities are developed in-house to provide data connectivity between applications. Practically there is no end to this problem as each time a new application is added to the system, a set of new data conversion utilities need to be developed. This paper presents a flexible data format engine, programmable through a platform independent, interpreted language named; Output Input Language (OIL). Its unique architecture allows input and output formats to be defined independent of each other by two separate programs. Thus read and write for each format is coded only once and data connectivity link between two formats is established by a combination of their read and write programs. This results in fewer programs with no redundancy and maximum reuse, enabling rapid application development and easy maintenance of data connectivity links.
76 FR 2944 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
... equipment. Rehabilitate airfield guidance signs. Rehabilitate runway 16/34 (design only). Rehabilitate parallel and connecting taxiways (design only). Rehabilitate terminal building. Conduct wildlife hazard assessment. Terminal building expansion (design only). PFC administrative costs. Reconstruct west aircraft...
Scott, Brian H; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C
2017-11-01
In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory-related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ∼45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ∼25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1-5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory-related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs. © 2017 Wiley Periodicals, Inc.
Coates, Kaylynn E; Majot, Adam T; Zhang, Xiaonan; Michael, Cole T; Spitzer, Stacy L; Gaudry, Quentin; Dacks, Andrew M
2017-08-02
Modulatory neurons project widely throughout the brain, dynamically altering network processing based on an animal's physiological state. The connectivity of individual modulatory neurons can be complex, as they often receive input from a variety of sources and are diverse in their physiology, structure, and gene expression profiles. To establish basic principles about the connectivity of individual modulatory neurons, we examined a pair of identified neurons, the "contralaterally projecting, serotonin-immunoreactive deutocerebral neurons" (CSDns), within the olfactory system of Drosophila Specifically, we determined the neuronal classes providing synaptic input to the CSDns within the antennal lobe (AL), an olfactory network targeted by the CSDns, and the degree to which CSDn active zones are uniformly distributed across the AL. Using anatomical techniques, we found that the CSDns received glomerulus-specific input from olfactory receptor neurons (ORNs) and projection neurons (PNs), and networkwide input from local interneurons (LNs). Furthermore, we quantified the number of CSDn active zones in each glomerulus and found that CSDn output is not uniform, but rather heterogeneous, across glomeruli and stereotyped from animal to animal. Finally, we demonstrate that the CSDns synapse broadly onto LNs and PNs throughout the AL but do not synapse upon ORNs. Our results demonstrate that modulatory neurons do not necessarily provide purely top-down input but rather receive neuron class-specific input from the networks that they target, and that even a two cell modulatory network has highly heterogeneous, yet stereotyped, pattern of connectivity. SIGNIFICANCE STATEMENT Modulatory neurons often project broadly throughout the brain to alter processing based on physiological state. However, the connectivity of individual modulatory neurons to their target networks is not well understood, as modulatory neuron populations are heterogeneous in their physiology, morphology, and gene expression. In this study, we use a pair of identified serotonergic neurons within the Drosophila olfactory system as a model to establish a framework for modulatory neuron connectivity. We demonstrate that individual modulatory neurons can integrate neuron class-specific input from their target network, which is often nonreciprocal. Additionally, modulatory neuron output can be stereotyped, yet nonuniform, across network regions. Our results provide new insight into the synaptic relationships that underlie network function of modulatory neurons. Copyright © 2017 the authors 0270-6474/17/377318-14$15.00/0.
Reagor, David [Los Alamos, NM; Vasquez-Dominguez, Jose [Los Alamos, NM
2006-05-09
A method and apparatus for effective through-the-earth communication involves a signal input device connected to a transmitter operating at a predetermined frequency sufficiently low to effectively penetrate useful distances through-the earth, and having an analog to digital converter receiving the signal input and passing the signal input to a data compression circuit that is connected to an encoding processor, the encoding processor output being provided to a digital to analog converter. An amplifier receives the analog output from the digital to analog converter for amplifying said analog output and outputting said analog output to an antenna. A receiver having an antenna receives the analog output passes the analog signal to a band pass filter whose output is connected to an analog to digital converter that provides a digital signal to a decoding processor whose output is connected to an data decompressor, the data decompressor providing a decompressed digital signal to a digital to analog converter. An audio output device receives the analog output form the digital to analog converter for producing audible output.
Capacitance-level/density monitor for fluidized-bed combustor
Fasching, George E.; Utt, Carroll E.
1982-01-01
A multiple segment three-terminal type capacitance probe with segment selection, capacitance detection and compensation circuitry and read-out control for level/density measurements in a fluidized-bed vessel is provided. The probe is driven at a high excitation frequency of up to 50 kHz to sense quadrature (capacitive) current related to probe/vessel capacitance while being relatively insensitive to the resistance current component. Compensation circuitry is provided for generating a negative current of equal magnitude to cancel out only the resistive component current. Clock-operated control circuitry separately selects the probe segments in a predetermined order for detecting and storing this capacitance measurement. The selected segment acts as a guarded electrode and is connected to the read-out circuitry while all unselected segments are connected to the probe body, which together form the probe guard electrode. The selected probe segment capacitance component signal is directed to a corresponding segment channel sample and hold circuit dedicated to that segment to store the signal derived from that segment. This provides parallel outputs for display, computer input, etc., for the detected capacitance values. The rate of segment sampling may be varied to either monitor the dynamic density profile of the bed (high sampling rate) or monitor average bed characteristics (slower sampling rate).
A circuit for detection of interaural time differences in the nucleus laminaris of turtles.
Willis, Katie L; Carr, Catherine E
2017-11-15
The physiological hearing range of turtles is approximately 50-1000 Hz, as determined by cochlear microphonics ( Wever and Vernon, 1956a). These low frequencies can constrain sound localization, particularly in red-eared slider turtles, which are freshwater turtles with small heads and isolated middle ears. To determine if these turtles were sensitive to interaural time differences (ITDs), we investigated the connections and physiology of their auditory brainstem nuclei. Tract tracing experiments showed that cranial nerve VIII bifurcated to terminate in the first-order nucleus magnocellularis (NM) and nucleus angularis (NA), and the NM projected bilaterally to the nucleus laminaris (NL). As the NL received inputs from each side, we developed an isolated head preparation to examine responses to binaural auditory stimulation. Magnocellularis and laminaris units responded to frequencies from 100 to 600 Hz, and phase-locked reliably to the auditory stimulus. Responses from the NL were binaural, and sensitive to ITD. Measures of characteristic delay revealed best ITDs around ±200 μs, and NL neurons typically had characteristic phases close to 0, consistent with binaural excitation. Thus, turtles encode ITDs within their physiological range, and their auditory brainstem nuclei have similar connections and cell types to other reptiles. © 2017. Published by The Company of Biologists Ltd.
Regenerative braking device with rotationally mounted energy storage means
Hoppie, Lyle O.
1982-03-16
A regenerative braking device for an automotive vehicle includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (30) and an output shaft (32), clutches (50, 56) and brakes (52, 58) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. In a second embodiment the clutches and brakes are dispensed with and the variable ratio transmission is connected directly across the input and output shafts. In both embodiments the rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft rotates faster or relative to the output shaft and are torsionally relaxed to deliver energy to the vehicle when the output shaft rotates faster or relative to the input shaft.
Automatic control and detector for three-terminal resistance measurement
Fasching, George E.
1976-10-26
A device is provided for automatic control and detection in a three-terminal resistance measuring instrument. The invention is useful for the rapid measurement of the resistivity of various bulk material with a three-terminal electrode system. The device maintains the current through the sample at a fixed level while measuring the voltage across the sample to detect the sample resistance. The three-electrode system contacts the bulk material and the current through the sample is held constant by means of a control circuit connected to a first of the three electrodes and works in conjunction with a feedback controlled amplifier to null the voltage between the first electrode and a second electrode connected to the controlled amplifier output. An A.C. oscillator provides a source of sinusoidal reference voltage of the frequency at which the measurement is to be executed. Synchronous reference pulses for synchronous detectors in the control circuit and an output detector circuit are provided by a synchronous pulse generator. The output of the controlled amplifier circuit is sampled by an output detector circuit to develop at an output terminal thereof a D.C. voltage which is proportional to the sample resistance R. The sample resistance is that segment of the sample between the area of the first electrode and the third electrode, which is connected to ground potential.
78 FR 13463 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
..., December 12, 2012), currently requires repetitive inspections of electrical heat terminals on the left and... windshield with a windshield equipped with different electrical connections, which would terminate the.... * * * * * Issued in Renton, Washington, on February 15, 2013. Kalene C. Yanamura, Acting Manager, Transport...
NASA Astrophysics Data System (ADS)
Willis, A. E.; Gould, J. M.; Matheney, J. L.; Garrett, H.
1984-01-01
The object of the invention is to provide an improved converter for converting one direct current voltage to another. A plurality of phased square wave voltages are provided from a ring counter through amplifiers to a like plurality of output transformers. Each of these transformers has two windings, and S(1) winding and an S(2) winding. The S(1) windings are connected in series, then the S(2) windings are connected in series, and finally, the two sets of windings are connected in series. One of six SCRs is connected between each two series connected windings to a positive output terminal and one of diodes is connected between each set of two windings of a zero output terminal. By virtue of this configuration, a quite high average direct current voltage is obtained, which varies between full voltage and two-thirds full voltage rather than from full voltage to zero. Further, its variation, ripple frequency, is reduced to one-sixth of that present in a single phase system. Application to raising battery voltage for an ion propulsion system is mentioned.
Weber, A J; Stanford, L R
1994-05-15
It has long been known that a number of functionally different types of ganglion cells exist in the cat retina, and that each responds differently to visual stimulation. To determine whether the characteristic response properties of different retinal ganglion cell types might reflect differences in the number and distribution of their bipolar and amacrine cell inputs, we compared the percentages and distributions of the synaptic inputs from bipolar and amacrine cells to the entire dendritic arbors of physiologically characterized retinal X- and Y-cells. Sixty-two percent of the synaptic input to the Y-cell was from amacrine cell terminals, while the X-cells received approximately equal amounts of input from amacrine and bipolar cells. We found no significant difference in the distributions of bipolar or amacrine cell inputs to X- and Y-cells, or ON-center and OFF-center cells, either as a function of dendritic branch order or distance from the origin of the dendritic arbor. While, on the basis of these data, we cannot exclude the possibility that the difference in the proportion of bipolar and amacrine cell input contributes to the functional differences between X- and Y-cells, the magnitude of this difference, and the similarity in the distributions of the input from the two afferent cell types, suggest that mechanisms other than a simple predominance of input from amacrine or bipolar cells underlie the differences in their response properties. More likely, perhaps, is that the specific response features of X- and Y-cells originate in differences in the visual responses of the bipolar and amacrine cells that provide their input, or in the complex synaptic arrangements found among amacrine and bipolar cell terminals and the dendrites of specific types of retinal ganglion cells.
The series product for gaussian quantum input processes
NASA Astrophysics Data System (ADS)
Gough, John E.; James, Matthew R.
2017-02-01
We present a theory for connecting quantum Markov components into a network with quantum input processes in a Gaussian state (including thermal and squeezed). One would expect on physical grounds that the connection rules should be independent of the state of the input to the network. To compute statistical properties, we use a version of Wicks' theorem involving fictitious vacuum fields (Fock space based representation of the fields) and while this aids computation, and gives a rigorous formulation, the various representations need not be unitarily equivalent. In particular, a naive application of the connection rules would lead to the wrong answer. We establish the correct interconnection rules, and show that while the quantum stochastic differential equations of motion display explicitly the covariances (thermal and squeezing parameters) of the Gaussian input fields we introduce the Wick-Stratonovich form which leads to a way of writing these equations that does not depend on these covariances and so corresponds to the universal equations written in terms of formal quantum input processes. We show that a wholly consistent theory of quantum open systems in series can be developed in this way, and as required physically, is universal and in particular representation-free.
Early, Jack; Kaufman, Arthur; Stawsky, Alfred
1982-01-01
A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.
Radiation-hardened transistor and integrated circuit
Ma, Kwok K.
2007-11-20
A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.
Schmidt, Frank [Langenhagen, DE; Allais, Arnaud [Hannover, DE; Mirebeau, Pierre [Villebon sur Yvette, FR; Ganhungu, Francois [Vieux-Reng, FR; Lallouet, Nicolas [Saint Martin Boulogne, FR
2009-10-20
A terminal structure (2) for a superconducting cable (1) is described. It consists of a conductor (2a) and an insulator (2b) that surrounds the conductor (2a), wherein the superconducting cable (1) has a core with a superconducting conductor (5) and a layer of insulation that surrounds the conductor (5), and wherein the core is arranged in such a way that it can move longitudinally in a cryostat. The conductor (2a) of the terminal structure (2) is electrically connected with the superconducting conductor (5) or with a normal conductor (6) that is connected with the superconducting conductor (5) by means of a tubular part (7) made of an electrically conductive material, wherein the superconducting conductor (5) or the normal conductor (6) can slide in the part (7) in the direction of the superconductor.
NASA Astrophysics Data System (ADS)
Schnyder, Johann; Stetten, Elsa; Baudin, François; Pruski, Audrey M.; Martinez, Philippe
2017-08-01
The Congo deep-sea fan is directly connected to the Congo River by a unique submarine canyon. The Congo River delivers up to 2×1012gPOC/yr, a part of which is funnelled by the submarine canyon and feeds the deep-sea environments. The more distal part of the Congo deep-sea fan, the terminal lobe area, has a surface of 2500 km2 and is situated up to 800 km offshore at depths of 4750-5000 m. It is a remarkable place to study the fate and distribution of the organic matter transferred from the continent to the deep ocean via turbidity currents. Forty-two samples were analyzed from the terminal lobes, including sites from the active channel, one of its levees and an abandoned distal channel. Samples were collected using multitube cores and push-cores using a Victor 6000 ROV, which surveyed the dense chemosynthetic habitats that locally characterize the terminal lobes. Palynofacies reveal a remarkably well-preserved, dominantly terrestrial particulate organic matter assemblage, that has been transferred from the continent into the deep-sea by turbidity currents. Delicate plant structures, cuticle fragments and plant cellular material is often preserved, highlighting the efficiency of turbidity currents to transfer terrestrial organic matter to the sea-floor, where it is preserved. Moreover, the palynofacies data reveal a general sorting by density or buoyancy of the organic particles, as the turbulent currents escaped the active channel, feeding the levees and the more distal, abandoned channel area. Finally, in addition to aforementioned hydrodynamic factors controlling the organic matter accumulation, a secondary influence of chemosynthetic habitats on organic matter preservation is also apparent. Palynofacies is therefore a useful tool to record the distribution of organic matter in recent and ancient deep-sea fan environments, an important topic for both academic and petroleum studies.
Varadarajan, Prasanna Amur; Del Vecchio, Domitilla
2009-09-01
In this paper, we provide an in silico input-output characterization of a three-terminal transcriptional device employing polymerase per second (PoPS) as input and output. The device is assembled from well-characterized parts of the bacteriophage lambda switch transcriptional circuit. We draw the analogy between voltage and protein concentration and between current and PoPS to demonstrate that the characteristics of the three-terminal transcriptional device are qualitatively similar to those of a bipolar junction transistor (BJT). In particular, as it occurs in a BJT, the device can be tuned to operate either as a linear amplifier or as a switch. When the device operates as a linear amplifier, gains of twofolds can be obtained, which are considerably smaller than those obtained in a BJT (in which 100-fold amplification gains can be reached). This fact suggests that the parts extracted from natural transcriptional systems may be naturally designed mostly to process and store information as opposed to amplify signals.
47 CFR 68.108 - Incidence of harm.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Incidence of harm. 68.108 Section 68.108 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Conditions on Use of Terminal Equipment § 68.108 Incidence of...
Voltage dips at the terminals of wind power installations
NASA Astrophysics Data System (ADS)
Bollen, Math H. J.; Olguin, Gabriel; Martins, Marcia
2005-07-01
This article gives an overview of the kind of voltage dips that can be expected at the terminals of a wind power installation. The overview is based on the study of those dips at the terminals of industrial installations and provides a guideline for the testing of wind power installations against voltage dips. For voltage dips due to faults, a classification into different types is presented. Five types appear at the terminals of sensitive equipment and thus have to be included when testing the wind power installation against disturbances coming from the grid. A distinction is made between installations connected at transmission level and those connected at distribution level. For the latter the phase angle jump has to be considered. Dips due to other causes (motor, transformer and capacitor switching) are briefly discussed as well as the voltage recovery after a dip. Finally some thoughts are presented on the way in which voltage tolerance requirements should be part of the design process for wind power installations. Copyright
Making connections : intermodal links in the public transportation system
DOT National Transportation Integrated Search
2007-09-01
Since at least 1991, federal transportation policy has sought to encourage intermodal connections the links that allow passengers to switch from one mode of public transportation to another. The intermodal terminal is a key building block for dev...
Pulvinar thalamic nucleus allows for asynchronous spike propagation through the cortex
Cortes, Nelson; van Vreeswijk, Carl
2015-01-01
We create two multilayered feedforward networks composed of excitatory and inhibitory integrate-and-fire neurons in the balanced state to investigate the role of cortico-pulvino-cortical connections. The first network consists of ten feedforward levels where a Poisson spike train with varying firing rate is applied as an input in layer one. Although the balanced state partially avoids spike synchronization during the transmission, the average firing-rate in the last layer either decays or saturates depending on the feedforward pathway gain. The last layer activity is almost independent of the input even for a carefully chosen intermediate gain. Adding connections to the feedforward pathway by a nine areas Pulvinar structure improves the firing-rate propagation to become almost linear among layers. Incoming strong pulvinar spikes balance the low feedforward gain to have a unit input-output relation in the last layer. Pulvinar neurons evoke a bimodal activity depending on the magnitude input: synchronized spike bursts between 20 and 80 Hz and an asynchronous activity for very both low and high frequency inputs. In the first regime, spikes of last feedforward layer neurons are asynchronous with weak, low frequency, oscillations in the rate. Here, the uncorrelated incoming feedforward pathway washes out the synchronized thalamic bursts. In the second regime, spikes in the whole network are asynchronous. As the number of cortical layers increases, long-range pulvinar connections can link directly two or more cortical stages avoiding their either saturation or gradual activity falling. The Pulvinar acts as a shortcut that supplies the input-output firing-rate relationship of two separated cortical areas without changing the strength of connections in the feedforward pathway. PMID:26042026
Deshpande, Aditi; Bergami, Matteo; Ghanem, Alexander; Conzelmann, Karl-Klaus; Lepier, Alexandra; Götz, Magdalena; Berninger, Benedikt
2013-01-01
Identifying the connectome of adult-generated neurons is essential for understanding how the preexisting circuitry is refined by neurogenesis. Changes in the pattern of connectivity are likely to control the differentiation process of newly generated neurons and exert an important influence on their unique capacity to contribute to information processing. Using a monosynaptic rabies virus-based tracing technique, we studied the evolving presynaptic connectivity of adult-generated neurons in the dentate gyrus (DG) of the hippocampus and olfactory bulb (OB) during the first weeks of their life. In both neurogenic zones, adult-generated neurons first receive local connections from multiple types of GABAergic interneurons before long-range projections become established, such as those originating from cortical areas. Interestingly, despite fundamental similarities in the overall pattern of evolution of presynaptic connectivity, there were notable differences with regard to the development of cortical projections: although DG granule neuron input originating from the entorhinal cortex could be traced starting only from 3 to 5 wk on, newly generated neurons in the OB received input from the anterior olfactory nucleus and piriform cortex already by the second week. This early glutamatergic input onto newly generated interneurons in the OB was matched in time by the equally early innervations of DG granule neurons by glutamatergic mossy cells. The development of connectivity revealed by our study may suggest common principles for incorporating newly generated neurons into a preexisting circuit. PMID:23487772
Deng, Rongkang; Kao, Joseph P Y; Kanold, Patrick O
2017-05-09
GABAergic activity is important in neocortical development and plasticity. Because the maturation of GABAergic interneurons is regulated by neural activity, the source of excitatory inputs to GABAergic interneurons plays a key role in development. We show, by laser-scanning photostimulation, that layer 4 and layer 5 GABAergic interneurons in the auditory cortex in neonatal mice (
DISTRIBUTED AMPLIFIER INCORPORATING FEEDBACK
Bell, P.R. Jr.
1958-10-21
An improved distributed amplifier system employing feedback for stabilization is presented. In accordance with the disclosed invention, a signal to be amplified is applled to one end of a suitable terminated grid transmission line. At intervals along the transmission line, the signal is fed to stable, resistance-capacitance coupled amplifiers incorporating feedback loops therein. The output current from each amplifier is passed through an additional tube to minimize the electrostatic capacitance between the tube elements of the last stage of the amplifier, and fed to appropriate points on an output transmission line, similar to the grid line, but terminated at the opposite (input) end. The output taken from the unterminated end of the plate transmission line is proportional to the input voltage impressed upon the grid line.
Ilinsky, I A; Ambardekar, A V; Kultas-Ilinsky, K
1999-07-05
Projections to the motor-related thalamic nuclei from the anterior pole of the reticular thalamic nucleus (NRT) were studied after injections of biotinylated dextran amine and wheat germ agglutinin conjugated horseradish peroxidase at light and electron microscopic levels, respectively. Each injection resulted in anterograde labeling in the three subdivisions of the ventral anterior nucleus (pars parvicellularis, VApc; pars densicellularis, VAdc; and pars magnocellularis, VAmc) and in the ventral lateral nucleus (VL). NRT fibers had beaded shapes and coursed in a posterior direction giving rise to relatively diffuse terminal plexuses. The average size of the beads (0.7 microm2) and their density per 100 microm of fiber length (23.7-25.7) were similar between the nuclei studied. At the electron microscopic level, anterogradely labeled boutons displayed positive immunoreactivity for gamma-aminobutyric acid (GABA), contained pleomorphic synaptic vesicles, and formed relatively long (approximately 0.4 microm) symmetric synaptic contacts. Usually, a single terminal formed synapses on more than one postsynaptic structure. Synaptic contacts were on projection and local circuit neurons and targeted mainly their distal dendrites. In the VAmc, synapses on local circuit neurons composed 48% of the total sample, in the VAdc/VApc and in the VL the proportion was higher, 65% and 62%, respectively. The results suggest that the input from the anterior pole of the monkey reticular nucleus to the motor-related thalamic nuclei is organized differently from what is known on the organization of connections of NRT with sensory thalamic nuclei in other species in that the terminal fields of individual fibers are diffuse rather than focal and that at least 50% of synapses are established on GABAergic local circuit neurons.
Tan, Lianjiang; Liu, Yazhi; Li, Xiaowei; Wu, Xin-Yan; Gong, Bing; Shen, Yu-Mei; Shao, Zhifeng
2016-02-11
An acid-cleavable linker based on a dimethylketal moiety was synthesized and used to connect a nucleotide with a fluorophore to produce a 3'-OH unblocked nucleotide analogue as an excellent reversible terminator for DNA sequencing by synthesis.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Definitions. 69.703 Section 69.703... Pricing Flexibility § 69.703 Definitions. For purposes of this subpart: (a) Channel terminations. (1) A channel termination between an IXC POP and a serving wire center is a dedicated channel connecting an IXC...
2005 NDIA Combat Vehicles Conference. Volume 1. Wednesday
2005-09-22
supporting arms under armor (FO/FAC) helpful • Mobile Data Automated Communications Terminal (MDACT) • Useful if connectivity can be maintained • Consider...other uses • Ability to coordinate supporting arms under armor (FO/FAC) helpful • Mobile Data Automated Communications Terminal (MDACT) • Useful if
ERIC Educational Resources Information Center
Nickerson, Gord
1991-01-01
Describes the use and applications of the communications program Telenet for remote log-in, a basic interactive resource sharing service that enables users to connect to any machine on the Internet and conduct a session. The Virtual Terminal--the central component of Telenet--is also described, as well as problems with terminals, services…
NASA Technical Reports Server (NTRS)
Adams, W. A.; Reinhardt, V. S. (Inventor)
1983-01-01
An electrical RF signal amplifier for providing high temperature stability and RF isolation and comprised of an integrated circuit voltage regulator, a single transistor, and an integrated circuit operational amplifier mounted on a circuit board such that passive circuit elements are located on side of the circuit board while the active circuit elements are located on the other side is described. The active circuit elements are embedded in a common heat sink so that a common temperature reference is provided for changes in ambient temperature. The single transistor and operational amplifier are connected together to form a feedback amplifier powered from the voltage regulator with transistor implementing primarily the desired signal gain while the operational amplifier implements signal isolation. Further RF isolation is provided by the voltage regulator which inhibits cross-talk from other like amplifiers powered from a common power supply. Input and output terminals consisting of coaxial connectors are located on the sides of a housing in which all the circuit components and heat sink are located.
Posterior parietal cortex contains a command apparatus for hand movements.
Rathelot, Jean-Alban; Dum, Richard P; Strick, Peter L
2017-04-18
Mountcastle and colleagues proposed that the posterior parietal cortex contains a "command apparatus" for the operation of the hand in immediate extrapersonal space [Mountcastle et al. (1975) J Neurophysiol 38(4):871-908]. Here we provide three lines of converging evidence that a lateral region within area 5 has corticospinal neurons that are directly linked to the control of hand movements. First, electrical stimulation in a lateral region of area 5 evokes finger and wrist movements. Second, corticospinal neurons in the same region of area 5 terminate at spinal locations that contain last-order interneurons that innervate hand motoneurons. Third, this lateral region of area 5 contains many neurons that make disynaptic connections with hand motoneurons. The disynaptic input to motoneurons from this portion of area 5 is as direct and prominent as that from any of the premotor areas in the frontal lobe. Thus, our results establish that a region within area 5 contains a motor area with corticospinal neurons that could function as a command apparatus for operation of the hand.
A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics
NASA Astrophysics Data System (ADS)
Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas
2017-04-01
Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.
Hayakawa, T; Takanaga, A; Maeda, S; Ito, H; Seki, M
2000-11-01
The cricothyroid (CT) and the posterior cricoarytenoid (PCA) muscles in the larynx are activated by the laryngeal motoneurons located within the nucleus ambiguus; these motoneurons receive the laryngeal sensory information from the nucleus tractus solitarii (NTS) during respiration and swallowing. We investigated whether the neurons in the NTS projected directly to the laryngeal motoneurons, and what is the synaptic organization of their nerve terminals on the laryngeal motoneurons using the electron microscope. When wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) was injected into the NTS after cholera toxin subunit B-conjugated HRP (CT-HRP) was injected into the CT muscle or the PCA muscle, the anterogradely WGA-HRP-labeled terminals from the NTS were found to directly contact the retrogradely CT-HRP-labeled dendrites and soma of both the CT and the PCA motoneurons. The labeled NTS terminals comprised about 4% of the axosomatic terminals in a section through the CT motoneurons, and about 9% on both the small (PCA-A) and the large (PCA-B) PCA motoneurons. The number of labeled axosomatic terminals containing round vesicles and making asymmetric synaptic contacts (Gray's type I) was almost equal to that of the labeled terminals containing pleomorphic vesicles and making symmetric synaptic contacts (Gray's type II) on the CT motoneurons. The labeled axosomatic terminals were mostly Gray's type II on the PCA-A motoneurons, while the majority of them were Gray's type I on the PCA-B motoneurons. These results indicate that the laryngeal CT and PCA motoneurons receive a few direct excitatory and inhibitory inputs from the neurons in the NTS.
Four-gate transistor analog multiplier circuit
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad M. (Inventor); Blalock, Benjamin (Inventor); Cristoloveanu, Sorin (Inventor); Chen, Suheng (Inventor); Akarvardar, Kerem (Inventor)
2011-01-01
A differential output analog multiplier circuit utilizing four G.sup.4-FETs, each source connected to a current source. The four G.sup.4-FETs may be grouped into two pairs of two G.sup.4-FETs each, where one pair has its drains connected to a load, and the other par has its drains connected to another load. The differential output voltage is taken at the two loads. In one embodiment, for each G.sup.4-FET, the first and second junction gates are each connected together, where a first input voltage is applied to the front gates of each pair, and a second input voltage is applied to the first junction gates of each pair. Other embodiments are described and claimed.
Overload protection circuit for output driver
Stewart, Roger G.
1982-05-11
A protection circuit for preventing excessive power dissipation in an output transistor whose conduction path is connected between a power terminal and an output terminal. The protection circuit includes means for sensing the application of a turn on signal to the output transistor and the voltage at the output terminal. When the turn on signal is maintained for a period of time greater than a given period without the voltage at the output terminal reaching a predetermined value, the protection circuit decreases the turn on signal to, and the current conduction through, the output transistor.
NASA Astrophysics Data System (ADS)
Sano, Kimikazu; Nagatani, Munehiko; Mutoh, Miwa; Murata, Koichi
This paper is a report on a high ESD breakdown-voltage InP HBT transimpedance amplifier IC for optical video distribution systems. To make ESD breakdown-voltage higher, we designed ESD protection circuits integrated in the TIA IC using base-collector/base-emitter diodes of InP HBTs and resistors. These components for ESD protection circuits have already existed in the employed InP HBT IC process, so no process modifications were needed. Furthermore, to meet requirements for use in optical video distribution systems, we studied circuit design techniques to obtain a good input-output linearity and a low-noise characteristic. Fabricated InP HBT TIA IC exhibited high human-body-model ESD breakdown voltages (±1000V for power supply terminals, ±200V for high-speed input/output terminals), good input-output linearity (less than 2.9-% duty-cycle-distortion), and low noise characteristic (10.7pA/√Hz averaged input-referred noise current density) with a -3-dB-down higher frequency of 6.9GHz. To the best of our knowledge, this paper is the first literature describing InP ICs with high ESD-breakdown voltages.
Connecting to HPC VPN | High-Performance Computing | NREL
and password will match your NREL network account login/password. From OS X or Linux, open a terminal finalized. Open a Remote Desktop connection using server name WINHPC02 (this is the login node). Mac Mac
Foundational Terminal Operations HITL: Experimental Design Slides
NASA Technical Reports Server (NTRS)
Rorie, Robert Conrad
2017-01-01
The UAS (Unmanned Aircraft Systems) in the NAS (National Airspace System) project is conducting its first investigation of UAS operations in the terminal environment. A workshop is being held to get input from key stakeholders on the experimental design and scenario development occuring for this simulation, which intends to begin data collection in September 2017. These slides cover the proposed design and methodolgy for the experiment.
Optical terminal requirements for aeronautical multi-hop networks
NASA Astrophysics Data System (ADS)
Karras, Kimon; Marinos, Dimitris; Kouros, Pavlos
2008-08-01
High speed free space optical data links are currently finding limited use in military aircraft; however the technology is slowly starting to diffuse to civilian applications, where they could be used to provide a high bandwidth connection. However there are several issues that have to be resolved before the technology is ready for deployment. An important part of these are physical layer issues which deal with the ability to transmit and receive the optical signal reliably, as well as mechanical issues which focus on the construction of high performance, small and lightweight terminals for the optical transceiver. The later in conjunction with the cost of such a terminal create a significant limitation on the number of such equipment that any aircraft might carry on board. This paper attempts to evaluate how various such parameters affect the capability of an aircraft to take part in and help form a mesh network. The study was conducted by modeling the aircraft into a custom built SystemC based simulator tool and evaluating the connectivity achieved for varying several parameters, such as the pointing and acquisition time of the terminal and the number of terminals on board.
Another expert system rule inference based on DNA molecule logic gates
NASA Astrophysics Data System (ADS)
WÄ siewicz, Piotr
2013-10-01
With the help of silicon industry microfluidic processors were invented utilizing nano membrane valves, pumps and microreactors. These so called lab-on-a-chips combined together with molecular computing create molecular-systems-ona- chips. This work presents a new approach to implementation of molecular inference systems. It requires the unique representation of signals by DNA molecules. The main part of this work includes the concept of logic gates based on typical genetic engineering reactions. The presented method allows for constructing logic gates with many inputs and for executing them at the same quantity of elementary operations, regardless of a number of input signals. Every microreactor of the lab-on-a-chip performs one unique operation on input molecules and can be connected by dataflow output-input connections to other ones.
DIRECT COUPLED PROGRESSIVE STAGE PULSE COUNTER APPARATUS
Kaufman, W.M.
1962-08-14
A progressive electrical pulse counter circuit was designed for the counting of a chain of input pulses of random width and/or frequency. The circuit employs an odd and even pulse input line alternately connected to a series of directly connected bistable counting stages. Each bistable stage has two d-c operative states which stage, when in its rnrtial state, prevents the next succeeding stage from changing its condition when the latter stage is pulsed. Since only altennate stages are pulsed for each incoming pulse, only one stage will change its state for each input pulse thereby providing prog essive stage by stage counting. (AEC)
The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex
Bajo, Victoria M; Leach, Nicholas D; Cordery, Patricia M; Nodal, Fernando R; King, Andrew J
2014-01-01
Cholinergic inputs to the auditory cortex can modulate sensory processing and regulate stimulus-specific plasticity according to the behavioural state of the subject. In order to understand how acetylcholine achieves this, it is essential to elucidate the circuitry by which cholinergic inputs influence the cortex. In this study, we described the distribution of cholinergic neurons in the basal forebrain and their inputs to the auditory cortex of the ferret, a species used increasingly in studies of auditory learning and plasticity. Cholinergic neurons in the basal forebrain, visualized by choline acetyltransferase and p75 neurotrophin receptor immunocytochemistry, were distributed through the medial septum, diagonal band of Broca, and nucleus basalis magnocellularis. Epipial tracer deposits and injections of the immunotoxin ME20.4-SAP (monoclonal antibody specific for the p75 neurotrophin receptor conjugated to saporin) in the auditory cortex showed that cholinergic inputs originate almost exclusively in the ipsilateral nucleus basalis. Moreover, tracer injections in the nucleus basalis revealed a pattern of labelled fibres and terminal fields that resembled acetylcholinesterase fibre staining in the auditory cortex, with the heaviest labelling in layers II/III and in the infragranular layers. Labelled fibres with small en-passant varicosities and simple terminal swellings were observed throughout all auditory cortical regions. The widespread distribution of cholinergic inputs from the nucleus basalis to both primary and higher level areas of the auditory cortex suggests that acetylcholine is likely to be involved in modulating many aspects of auditory processing. PMID:24945075
Superconducting cable connections and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
van der Laan, Daniel Cornelis
2017-09-05
Superconducting cable connector structures include a terminal body (or other structure) onto which the tapes from the superconducting cable extend. The terminal body (or other structure) has a diameter that is sufficiently larger than the diameter of the former of the superconducting cable, so that the tapes spread out over the outer surface of the terminal body. As a result, gaps are formed between tapes on the terminal body (or other structure). Those gaps are filled with solder (or other suitable flowable conductive material), to provide a current path of relatively high conductivity in the radial direction. Other connector structuresmore » omit the terminal body.« less
45 CFR 1210.3-7 - Inquiry by Hearing Examiner.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early... unless it is waived by the Volunteer. If the Examiner determines that the termination does not involve... the Examiner to have a direct connection with it. If requested by the Volunteer, the Examiner must...
45 CFR 1210.3-7 - Inquiry by Hearing Examiner.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early... unless it is waived by the Volunteer. If the Examiner determines that the termination does not involve... the Examiner to have a direct connection with it. If requested by the Volunteer, the Examiner must...
45 CFR 1210.3-7 - Inquiry by Hearing Examiner.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early... unless it is waived by the Volunteer. If the Examiner determines that the termination does not involve... the Examiner to have a direct connection with it. If requested by the Volunteer, the Examiner must...
45 CFR 1210.3-7 - Inquiry by Hearing Examiner.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early... unless it is waived by the Volunteer. If the Examiner determines that the termination does not involve... the Examiner to have a direct connection with it. If requested by the Volunteer, the Examiner must...
Digital Data Transmission Via CATV.
ERIC Educational Resources Information Center
Stifle, Jack; And Others
A low cost communications network has been designed for use in the PLATO IV computer-assisted instruction system. Over 1,000 remote computer graphic terminals each requiring a 1200 bps channel are to be connected to one centrally located computer. Digital data are distributed to these terminals using standard commercial cable television (CATV)…
47 CFR 68.354 - Numbering and labeling requirements for terminal equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... no competitive advantage for any entity or segment of the industry. (e) FCC numbering and labeling...) COMMON CARRIER SERVICES (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK Conditions.... Customs Service to carry out their functions, and for consumers to easily identify the responsible party...
Transmission with a first-stage hydrostatic mode and two hydromechanical stages
Orshansky, Jr., deceased, Elias; Weseloh, William E.
1981-01-01
A power transmission having two planetary assemblies, each having at least one carrier with planet gears, at least one sun gear, and at least one ring gear. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the sun gear or gears of the first planetary assembly. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gear. The input shaft is also connected directly to a sun gear of the second planetary assembly and is further connectable by a clutch to a carrier of the first planetary assembly. Another clutch enables connecting the carrier of the first planetary assembly to a ring gear of the second planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through a ring gear of the first planetary assembly in a hydrostatic mode. The carrier of the second planetary assembly is connected in rigid driving relationship to that first ring gear, and in all ranges these two elements transmit the drive to the output shaft.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... DEPARTMENT OF AGRICULTURE National Institute of Food and Agriculture Solicitation of Input From... Food and Agriculture, USDA. ACTION: Notice of public meeting and request for stakeholder input. SUMMARY... held by conference call (audio) and internet (visual only). Connection details for those meetings will...
Distinct roles of the cortical layers of area V1 in figure-ground segregation.
Self, Matthew W; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R
2013-11-04
What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward, horizontal, and feedback processes at different time points. These different connection types have different patterns of laminar terminations in V1 and can therefore be distinguished with laminar recordings. We found that the visual response started 40 ms after stimulus presentation in layers 4 and 6, which are targets of feedforward connections from the lateral geniculate nucleus and distribute activity to the other layers. Boundary detection started shortly after the visual response. In this phase, boundaries of the figure induced synaptic currents and stronger neuronal responses in upper layer 4 and the superficial layers ~70 ms after stimulus onset, consistent with the hypothesis that they are detected by horizontal connections. In the next phase, ~30 ms later, synaptic inputs arrived in layers 1, 2, and 5 that receive feedback from higher visual areas, which caused the filling in of the representation of the entire figure with enhanced neuronal activity. The present results reveal unique contributions of the different cortical layers to the formation of a visual percept. This new blueprint of laminar processing may generalize to other tasks and to other areas of the cerebral cortex, where the layers are likely to have roles similar to those in area V1. Copyright © 2013 Elsevier Ltd. All rights reserved.
Efficient transformer for electromagnetic waves
Miller, R.B.
A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.
NASA Technical Reports Server (NTRS)
Hamlet, J. F. (Inventor)
1974-01-01
A stable excitation supply for measurement transducers is described. It consists of a single-transistor oscillator with a coil connected to the collector and a capacitor connected from the collector to the emitter. The output of the oscillator is rectified and the rectified signal acts as one input to a differential amplifier; the other input being a reference potential. The output of the amplifier is connected at a point between the emitter of the transistor and ground. When the rectified signal is greater than the reference signal, the differential amplifier produces a signal of polarity to reduce bias current and, consequently, amplification.
Omelchenko, N; Sesack, S R
2007-05-25
Dopamine and GABA neurons in the ventral tegmental area project to the nucleus accumbens and prefrontal cortex and modulate locomotor and reward behaviors as well as cognitive and affective processes. Both midbrain cell types receive synapses from glutamate afferents that provide an essential control of behaviorally-linked activity patterns, although the sources of glutamate inputs have not yet been completely characterized. We used antibodies against the vesicular glutamate transporter subtypes 1 and 2 (VGlut1 and VGlut2) to investigate the morphology and synaptic organization of axons containing these proteins as putative markers of glutamate afferents from cortical versus subcortical sites, respectively, in rats. We also characterized the ventral tegmental area cell populations receiving VGlut1+ or VGlut2+ synapses according to their transmitter phenotype (dopamine or GABA) and major projection target (nucleus accumbens or prefrontal cortex). By light and electron microscopic examination, VGlut2+ as opposed to VGlut1+ axon terminals were more numerous, had a larger average size, synapsed more proximally, and were more likely to form convergent synapses onto the same target. Both axon types formed predominantly asymmetric synapses, although VGlut2+ terminals more often formed synapses with symmetric morphology. No absolute selectivity was observed for VGlut1+ or VGlut2+ axons to target any particular cell population. However, the synapses onto mesoaccumbens neurons more often involved VGlut2+ terminals, whereas mesoprefrontal neurons received relatively equal synaptic inputs from VGlut1+ and VGlut2+ profiles. The distinct morphological features of VGlut1 and VGlut2 positive axons suggest that glutamate inputs from presumed cortical and subcortical sources, respectively, differ in the nature and intensity of their physiological actions on midbrain neurons. More specifically, our findings imply that subcortical glutamate inputs to the ventral tegmental area expressing VGlut2 predominate over cortical sources of excitation expressing VGlut1 and are more likely to drive the behaviorally-linked bursts in dopamine cells that signal future expectancy or attentional shifting.
Cabral, A R; Cole, L A; Walz, D A; Castor, C W
1987-12-01
Connective tissue activating peptide-V (CTAP-V) is a single-chain, mesenchymal cell-derived anionic protein with large and small molecular forms (Mr of 28,000 and 16,000, respectively), as defined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proteins have similar specific activities with respect to stimulation of hyaluronic acid and DNA formation in human synovial fibroblast cultures. S-carboxymethylation or removal of sialic acid residues did not modify CTAP-V biologic activity. Rabbit antibodies raised separately against each of the purified CTAP-V proteins reacted, on immunodiffusion and on Western blot, with each antigen and neutralized mitogenic activity. The amino-terminal amino acid sequence of the CTAP-V proteins, determined by 2 laboratories, confirmed their structural similarities. The amino-terminal sequence through 37 residues was demonstrated for the smaller protein. The first 10 residues of CTAP-V (28 kd) were identical to the N-terminal decapeptide of CTAP-V (16 kd). The C-terminal sequence, determined by carboxypeptidase Y digestion, was the same for both CTAP-V molecular species. The 2 CTAP-V peptides had similar amino acid compositions, whether residues were expressed as a percent of the total or were normalized to mannose. Reduction of native CTAP-V protein released sulfhydryl groups in a protein:disulfide ratio of 1:2; this suggests that CTAP-V contains 2 intramolecular disulfide bonds. Clearly, CTAP-V is a glycoprotein. The carbohydrate content of CTAP-V (16 kd) and CTAP-V (28 kd) is 27% and 25%, respectively. CTAP-V may have significance in relation to autocrine mechanisms for growth regulation of connective tissue cells and other cell types.
Real-time interactive simulation: using touch panels, graphics tablets, and video-terminal keyboards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1983-01-01
A Simulation Laboratory utilizing only digital computers for interactive computing must rely on CRT based graphics devices for output devices, and keyboards, graphics tablets, and touch panels, etc., for input devices. The devices all work well, with the combination of a CRT with a touch panel mounted on it as the most flexible combination of input/output devices for interactive simulation.
Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks
Capurro, Alberto; Baroni, Fabiano; Olsson, Shannon B.; Kuebler, Linda S.; Karout, Salah; Hansson, Bill S.; Pearce, Timothy C.
2012-01-01
Neural responses to odor blends often exhibit non-linear interactions to blend components. The first olfactory processing center in insects, the antennal lobe (AL), exhibits a complex network connectivity. We attempt to determine if non-linear blend interactions can arise purely as a function of the AL network connectivity itself, without necessitating additional factors such as competitive ligand binding at the periphery or intrinsic cellular properties. To assess this, we compared blend interactions among responses from single neurons recorded intracellularly in the AL of the moth Manduca sexta with those generated using a population-based computational model constructed from the morphologically based connectivity pattern of projection neurons (PNs) and local interneurons (LNs) with randomized connection probabilities from which we excluded detailed intrinsic neuronal properties. The model accurately predicted most of the proportions of blend interaction types observed in the physiological data. Our simulations also indicate that input from LNs is important in establishing both the type of blend interaction and the nature of the neuronal response (excitation or inhibition) exhibited by AL neurons. For LNs, the only input that significantly impacted the blend interaction type was received from other LNs, while for PNs the input from olfactory sensory neurons and other PNs contributed agonistically with the LN input to shape the AL output. Our results demonstrate that non-linear blend interactions can be a natural consequence of AL connectivity, and highlight the importance of lateral inhibition as a key feature of blend coding to be addressed in future experimental and computational studies. PMID:22529799
Electronic scanning pressure measuring system and transducer package
NASA Technical Reports Server (NTRS)
Coe, C. F. (Inventor); Parra, G. T.
1984-01-01
An electronic scanning pressure system that includes a plurality of pressure transducers is examined. A means obtains an electrical signal indicative of a pressure measurement from each of the plurality of pressure transducers. A multiplexing means is connected for selectivity supplying inputs from the plurality of pressure transducers to the signal obtaining means. A data bus connects the plurality of pressure transducers to the multiplexing means. A latch circuit is connected to supply control inputs to the multiplexing means. An address bus is connected to supply an address signal of a selected one of the plurality of pressure transducers to the latch circuit. In operation, each of the pressure transducers is successively scanned by the multiplexing means in response to address signals supplied on the address bus to the latch circuit.
NASA Technical Reports Server (NTRS)
Lee, R. D. (Inventor)
1979-01-01
The combination of a "C" mode scan electronics in a portable, battery powered biomedical ultrasonoscope having "A" and "M" mode scan electronics, the latter including a clock generator for generating clock pulses, a cathode ray tube having X, Y and Z axis inputs, a sweep generator connected between the clock generator and the X axis input of the cathode ray tube for generating a cathode ray sweep signal synchronized by the clock pulses, and a receiver adapted to be connected to the Z axis input of the cathode ray tube. The "C" mode scan electronics comprises a plurality of transducer elements arranged in a row and adapted to be positioned on the skin of the patient's body for converting a pulsed electrical signal to a pulsed ultrasonic signal, radiating the ultrasonic signal into the patient's body, picking up the echoes reflected from interfaces in the patient's body and converting the echoes to electrical signals; a plurality of transmitters, each transmitter being coupled to a respective transducer for transmitting a pulsed electrical signal thereto and for transmitting the converted electrical echo signals directly to the receiver, a sequencer connected between the clock generator and the plurality of transmitters and responsive to the clock pulses for firing the transmitters in cyclic order; and a staircase voltage generator connected between the clock generator and the Y axis input of the cathode ray tube for generating a staircase voltage having steps synchronized by the clock pulses.
Toward a More Efficient Implementation of Antifibrillation Pacing
Wilson, Dan; Moehlis, Jeff
2016-01-01
We devise a methodology to determine an optimal pattern of inputs to synchronize firing patterns of cardiac cells which only requires the ability to measure action potential durations in individual cells. In numerical bidomain simulations, the resulting synchronizing inputs are shown to terminate spiral waves with a higher probability than comparable inputs that do not synchronize the cells as strongly. These results suggest that designing stimuli which promote synchronization in cardiac tissue could improve the success rate of defibrillation, and point towards novel strategies for optimizing antifibrillation pacing. PMID:27391010
Logically Speaking: Evidence for Item-Based Acquisition of the Connectives and & or
ERIC Educational Resources Information Center
Morris, Bradley J.
2008-01-01
Why is it that young children use connectives correctly in conversation, yet frequently err when asked to use the same connectives in formal reasoning? One possibility is that connective acquisition is item-based in which usage rules are induced from natural language input. This possibility was evaluated by examining the correspondence between the…
Orshansky, Jr. deceased, Elias; Weseloh, William E.
1978-01-01
A power transmission having three planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the three sun gears, all of which are connected together. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. The input shaft also drives the carrier of the third planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through the first ring gear in a hydrostatic mode. The carrier of the third planetary assembly drives the ring gear of the second planetary assembly, and a first clutching means connects the second carrier with the output in a second range, the brake for grounding the first carrier then being released. A second clutching means enables the third ring gear to drive the output shaft in a third range.
Transmission with a first-stage hydrostatic mode and two hydromechanical stages
Orshansky, Jr., deceased, Elias; Weseloh, William E.
1979-01-01
A power transmission having two planetary assemblies, each having at least one carrier with planet gears, at least one sun gear, and at least one ring gear. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the sun gear or gears of the first planetary assembly. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gear. The input shaft is also connectable by a first clutch to a carrier of the first planetary assembly and by a second clutch to a sun gear of the second planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through a ring gear of the first planetary assembly in a hydrostatic mode. The carrier of the second planetary assembly being connected in driving relationship to that ring gear, and in all ranges these two elements transmit the drive to the output shaft.
Variable frequency microprocessor clock generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branson, C.N.
A microprocessor-based system is described comprising: a digital central microprocessor provided with a clock input and having a rate of operation determined by the frequency of a clock signal input thereto; memory means operably coupled to the central microprocessor for storing programs respectively including a plurality of instructions and addressable by the central microprocessor; peripheral device operably connected to the central microprocessor, the first peripheral device being addressable by the central microprocessor for control thereby; a system clock generator for generating a digital reference clock signal having a reference frequency rate; and frequency rate reduction circuit means connected between themore » clock generator and the clock input of the central microprocessor for selectively dividing the reference clock signal to generate a microprocessor clock signal as an input to the central microprocessor for clocking the central microprocessor.« less
26 CFR 1.148-4A - Yield on an issue of bonds.
Code of Federal Regulations, 2013 CFR
2013-04-01
... are determined as of the date the parties enter into the contract. (ii) Anticipatory hedges—(A) In... close (terminate) an anticipatory hedge of that bond do not prevent the hedge from satisfying the... received by the issuer in connection with the issuance of the hedged bonds to terminate an anticipatory...
26 CFR 1.148-4A - Yield on an issue of bonds.
Code of Federal Regulations, 2011 CFR
2011-04-01
... are determined as of the date the parties enter into the contract. (ii) Anticipatory hedges—(A) In... close (terminate) an anticipatory hedge of that bond do not prevent the hedge from satisfying the... received by the issuer in connection with the issuance of the hedged bonds to terminate an anticipatory...
26 CFR 1.148-4A - Yield on an issue of bonds.
Code of Federal Regulations, 2010 CFR
2010-04-01
... are determined as of the date the parties enter into the contract. (ii) Anticipatory hedges—(A) In... close (terminate) an anticipatory hedge of that bond do not prevent the hedge from satisfying the... received by the issuer in connection with the issuance of the hedged bonds to terminate an anticipatory...
26 CFR 1.148-4A - Yield on an issue of bonds.
Code of Federal Regulations, 2012 CFR
2012-04-01
... are determined as of the date the parties enter into the contract. (ii) Anticipatory hedges—(A) In... close (terminate) an anticipatory hedge of that bond do not prevent the hedge from satisfying the... received by the issuer in connection with the issuance of the hedged bonds to terminate an anticipatory...
26 CFR 1.148-4A - Yield on an issue of bonds.
Code of Federal Regulations, 2014 CFR
2014-04-01
... are determined as of the date the parties enter into the contract. (ii) Anticipatory hedges—(A) In... close (terminate) an anticipatory hedge of that bond do not prevent the hedge from satisfying the... received by the issuer in connection with the issuance of the hedged bonds to terminate an anticipatory...
Fuel cell generator energy dissipator
Veyo, Stephen Emery; Dederer, Jeffrey Todd; Gordon, John Thomas; Shockling, Larry Anthony
2000-01-01
An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-12
... acquisition of an easement to construct, operate, and maintain the natural gas transmission pipeline...-diameter natural gas transmission pipeline in Plaquemines Parish, Louisiana. The LNG terminal would be... port. The planned transmission pipeline would connect the terminal to existing natural gas...
Temporal Phenomena in the Korean Conjunctive Constructions
ERIC Educational Resources Information Center
Kim, Dongmin
2015-01-01
The goal of this study is to characterize the temporal phenomena in the Korean conjunctive constructions. These constructions consist of three components: a verbal stem, a clause medial temporal suffix, and a clause terminal suffix. This study focuses on both the temporality of the terminal connective suffixes and the grammatical meanings of the…
30 CFR 250.1007 - What to include in applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... coordinates of key points; and the location of other pipelines that will be connected to or crossed by the proposed pipeline(s). The initial and terminal points of the pipeline and any continuation into State jurisdiction shall be accurately located even if the pipeline is to have an onshore terminal point. A plat(s...
77 FR 41041 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-12
... terminal ``A'' of the electrically heated flight deck window 1. This AD requires repetitive inspections for damage of the electrical connections at terminal ``A'' of the left and right flight deck window 1, and corrective actions if necessary. This AD also allows for replacing a flight deck window 1 with a new improved...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... interconnect pipelines to four existing offshore pipelines (Dauphin Natural Gas Pipeline, Williams Natural Gas Pipeline, Destin Natural Gas Pipeline, and Viosca Knoll Gathering System [VKGS] Gas Pipeline) that connect to the onshore natural gas transmission pipeline system. Natural gas would be delivered to customers...
Structural and functional connectivity as a driver of hillslope erosion following disturbance
USDA-ARS?s Scientific Manuscript database
Hydrologic response to rainfall input on fragmented or burnt hillslopes is strongly influenced by the ensuing connectivity of runoff and erosion processes. Yet, cross-scale process connectivity is seldom evaluated in field studies due scale limitations in experimental design. This study quantified...
ELECTRICAL PULSE COUNTER APPARATUS
Kaufman, W.M.; Jeeves, T.A.
1962-09-01
A progressive electrical pulse counter circuit rs designed for the counting of a chain of input pulses. The circuit employs a series of direct connected bistable counting stages simultaneously pulsed by each input pulse and a delay means connected between each of the stages. Each bistable stage has two d-c operative states, which stage, when in its initial state, prevents the next succeeding stage from changing its condition when the latter stage is pulsed. Since the delay circuits between the stages prevents the immediate decay of the d-c state of each stage when the stages are pulsed, only one stage will change its state for each input pulse, thereby providing progressive stage-by-stage counting. (AEC)
Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge
NASA Astrophysics Data System (ADS)
Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu
2018-03-01
The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.
Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.
Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu
2018-03-01
The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.
Fuel dissipater for pressurized fuel cell generators
Basel, Richard A.; King, John E.
2003-11-04
An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.
Two-terminal monolithic InP-based tandem solar cells with tunneling intercell ohmic connections
NASA Technical Reports Server (NTRS)
Shen, C. C.; Chang, P. T.; Emery, K. A.
1991-01-01
A monolithic two-terminal InP/InGaAsP tandem solar cell was successfully fabricated. This tandem solar cell consists of a p/n InP homojunction top subcell and a 0.95 eV p/n InGaAsP homojunction bottom subcell. A patterned 0.95 eV n(+)/p(+) InGaAsP tunnel diode was employed as an intercell ohmic connection. The solar cell structure was prepared by two-step liquid phase epitaxial growth. Under one sun, AM1.5 global illumination, the best tandem cell delivered a conversion efficiency of 14.8 pct.
Feedforward Inhibition Allows Input Summation to Vary in Recurrent Cortical Networks
2018-01-01
Abstract Brain computations depend on how neurons transform inputs to spike outputs. Here, to understand input-output transformations in cortical networks, we recorded spiking responses from visual cortex (V1) of awake mice of either sex while pairing sensory stimuli with optogenetic perturbation of excitatory and parvalbumin-positive inhibitory neurons. We found that V1 neurons’ average responses were primarily additive (linear). We used a recurrent cortical network model to determine whether these data, as well as past observations of nonlinearity, could be described by a common circuit architecture. Simulations showed that cortical input-output transformations can be changed from linear to sublinear with moderate (∼20%) strengthening of connections between inhibitory neurons, but this change away from linear scaling depends on the presence of feedforward inhibition. Simulating a variety of recurrent connection strengths showed that, compared with when input arrives only to excitatory neurons, networks produce a wider range of output spiking responses in the presence of feedforward inhibition. PMID:29682603
Homeostatic plasticity shapes cell-type-specific wiring in the retina
Tien, Nai-Wen; Soto, Florentina; Kerschensteiner, Daniel
2017-01-01
SUMMARY Convergent input from different presynaptic partners shapes the responses of postsynaptic neurons. Whether developing postsynaptic neurons establish connections with each presynaptic partner independently, or balance inputs to attain specific responses is unclear. Retinal ganglion cells (RGCs) receive convergent input from bipolar cell types with different contrast responses and temporal tuning. Here, using optogenetic activation and pharmacogenetic silencing, we found that type 6 bipolar cells (B6) dominate excitatory input to ONα-RGCs. We generated mice in which B6 cells were selectively removed from developing circuits (B6-DTA). In B6-DTA mice, ONα-RGCs adjusted connectivity with other bipolar cells in a cell-type-specific manner. They recruited new partners, increased synapses with some existing partners, and maintained constant input from others. Patch clamp recordings revealed that anatomical rewiring precisely preserved contrast- and temporal frequency response functions of ONα-RGCs, indicating that homeostatic plasticity shapes cell-type-specific wiring in the developing retina to stabilize visual information sent to the brain. PMID:28457596
Dynamic light scattering homodyne probe
NASA Technical Reports Server (NTRS)
Meyer, William V. (Inventor); Cannell, David S. (Inventor); Smart, Anthony E. (Inventor)
2002-01-01
An optical probe for analyzing a sample illuminated by a laser includes an input optical fiber operably connectable to the laser where the input optical fiber has an entrance end and an exit end. The probe also includes a first beam splitter where the first beam splitter is adapted to transmit an alignment portion of a light beam from the input fiber exit end and to reflect a homodyning portion of the light beam from the input fiber. The probe also includes a lens between the input fiber exit end and the first beam splitter and a first and a second output optical fiber, each having an entrance end and an exit end, each exit end being operably connectable to respective optical detectors. The probe also includes a second beam splitter which is adapted to reflect at least a portion of the reflected homodyning portion into the output fiber entrance ends and to transmit light from the laser scattered by the sample into the entrance ends.
Terminal iterative learning control based station stop control of a train
NASA Astrophysics Data System (ADS)
Hou, Zhongsheng; Wang, Yi; Yin, Chenkun; Tang, Tao
2011-07-01
The terminal iterative learning control (TILC) method is introduced for the first time into the field of train station stop control and three TILC-based algorithms are proposed in this study. The TILC-based train station stop control approach utilises the terminal stop position error in previous braking process to update the current control profile. The initial braking position, or the braking force, or their combination is chosen as the control input, and corresponding learning law is developed. The terminal stop position error of each algorithm is guaranteed to converge to a small region related with the initial offset of braking position with rigorous analysis. The validity of the proposed algorithms is verified by illustrative numerical examples.
Martinez-Marcos, Alino; Ubeda-Bañon, Isabel; Lanuza, Enrique; Halpern, Mimi
2005-01-01
The olfactostriatum, a portion of the striatal complex of snakes, is the major tertiary vomeronasal structure in the ophidian brain, receiving substantial afferents from the nucleus sphericus, the primary target of accessory olfactory bulb efferents. In the present study, we have characterized the olfactostriatum of garter snakes (Thamnophis sirtalis) on the basis of chemoarchitecture (distribution of serotonin, neuropeptide Y and tyrosine hydroxylase) and hodology (afferent connections). The olfactostriatum is densely immunoreactive for serotonin and neuropeptide Y and shows moderate-to-weak immunoreactivity for tyrosine hydroxylase. In addition to afferents from the nucleus sphericus, the olfactostriatum receives inputs from the dorsal and lateral cortices, nucleus of the accessory olfactory tract, external and dorsolateral amygdalae, dorsomedial thalamic nucleus, ventral tegmental area and raphe nuclei. Double labeling experiments demonstrated that the distribution of serotonin and neuropeptide Y in this area almost completely overlaps the terminal field of projections from the nucleus sphericus. Also, serotonergic and dopaminergic innervation of the olfactostriatum likely arise, respectively, from the raphe nuclei and the ventral tegmental area, whereas local circuit neurons originate the neuropeptide Y immunoreactivity. These results indicate that the olfactostriatum of snakes could be a portion of the nucleus accumbens, with features characteristic of the accumbens shell, devoted to processing vomeronasal information. Comparative data suggest that a similar structure is present in the ventral striatum of amphibians and mammals.
NASA Astrophysics Data System (ADS)
Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei
2014-04-01
Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.
Connections of the juxtaventromedial region of the lateral hypothalamic area in the male rat
Hahn, Joel D.; Swanson, Larry W.
2015-01-01
Evolutionary conservation of the hypothalamus attests to its critical role in the control of fundamental behaviors. However, our knowledge of hypothalamic connections is incomplete, particularly for the lateral hypothalamic area (LHA). Here we present the results of neuronal pathway-tracing experiments to investigate connections of the LHA juxtaventromedial region, which is parceled into dorsal (LHAjvd) and ventral (LHAjvv) zones. Phaseolus vulgaris leucoagglutinin (PHAL, for outputs) and cholera toxin B subunit (CTB, for inputs) coinjections were targeted stereotaxically to the LHAjvd/v. Results: LHAjvd/v connections overlapped highly but not uniformly. Major joint outputs included: Bed nuc. stria terminalis (BST), interfascicular nuc. (BSTif) and BST anteromedial area, rostral lateral septal (LSr)- and ventromedial hypothalamic (VMH) nuc., and periaqueductal gray. Prominent joint LHAjvd/v input sources included: BSTif, BST principal nuc., LSr, VMH, anterior hypothalamic-, ventral premammillary-, and medial amygdalar nuc., and hippocampal formation (HPF) field CA1. However, LHAjvd HPF retrograde labeling was markedly more abundant than from the LHAjvv; in the LSr this was reversed. Furthermore, robust LHAjvv (but not LHAjvd) targets included posterior- and basomedial amygdalar nuc., whereas the midbrain reticular nuc. received a dense input from the LHAjvd alone. Our analyses indicate the existence of about 500 LHAjvd and LHAjvv connections with about 200 distinct regions of the cerebral cortex, cerebral nuclei, and cerebrospinal trunk. Several highly LHAjvd/v-connected regions have a prominent role in reproductive behavior. These findings contrast with those from our previous pathway-tracing studies of other LHA medial and perifornical tier regions, with different connectional behavioral relations. The emerging picture is of a highly differentiated LHA with extensive and far-reaching connections that point to a role as a central coordinator of behavioral control. PMID:26074786
The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex.
Bajo, Victoria M; Leach, Nicholas D; Cordery, Patricia M; Nodal, Fernando R; King, Andrew J
2014-09-01
Cholinergic inputs to the auditory cortex can modulate sensory processing and regulate stimulus-specific plasticity according to the behavioural state of the subject. In order to understand how acetylcholine achieves this, it is essential to elucidate the circuitry by which cholinergic inputs influence the cortex. In this study, we described the distribution of cholinergic neurons in the basal forebrain and their inputs to the auditory cortex of the ferret, a species used increasingly in studies of auditory learning and plasticity. Cholinergic neurons in the basal forebrain, visualized by choline acetyltransferase and p75 neurotrophin receptor immunocytochemistry, were distributed through the medial septum, diagonal band of Broca, and nucleus basalis magnocellularis. Epipial tracer deposits and injections of the immunotoxin ME20.4-SAP (monoclonal antibody specific for the p75 neurotrophin receptor conjugated to saporin) in the auditory cortex showed that cholinergic inputs originate almost exclusively in the ipsilateral nucleus basalis. Moreover, tracer injections in the nucleus basalis revealed a pattern of labelled fibres and terminal fields that resembled acetylcholinesterase fibre staining in the auditory cortex, with the heaviest labelling in layers II/III and in the infragranular layers. Labelled fibres with small en-passant varicosities and simple terminal swellings were observed throughout all auditory cortical regions. The widespread distribution of cholinergic inputs from the nucleus basalis to both primary and higher level areas of the auditory cortex suggests that acetylcholine is likely to be involved in modulating many aspects of auditory processing. © 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Shrestha, Sony Shakya; Bannatyne, B Anne; Jankowska, Elzbieta; Hammar, Ingela; Nilsson, Elin; Maxwell, David J
2012-01-01
The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity. PMID:22371473
Shrestha, Sony Shakya; Bannatyne, B Anne; Jankowska, Elzbieta; Hammar, Ingela; Nilsson, Elin; Maxwell, David J
2012-04-01
The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity.
Characterization of structural connections for multicomponent systems
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Huckelbridge, Arthur A.
1988-01-01
This study explores combining Component Mode Synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection stiffness and damping properties are computed in terms of physical parameters so that the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model.
Computation and Validation of the Dynamic Response Index (DRI)
2013-08-06
matplotlib plotting library. • Executed from command line. • Allows several optional arguments. • Runs on Windows, Linux, UNIX, and Mac OS X. 10... vs . Time: Triangular pulse input data with given time duration and peak acceleration: Time (s) EARTH Code: Motivation • Error Assessment of...public release • ARC provided electrothermal battery model example: • Test vs . simulation data for terminal voltage. • EARTH input parameters
Integrated Projectile Systems Synthesis Model (IPSSM)
1976-08-01
Lethal area effectiveness Batch mode I terior ballistics Trajectory calculations Weapon system modeling ""TRACT (Cenetsmae an revers elds It ecesuy and...Ballistics (AR) 29 E. Terminal Effectiveness Calculations (LA) 31 F. 6-D Trajectory (TR) 32 G. Recoil Mechanism Design (RM) 33 H. Sabot Design (SD) 33 I...Exterior Ballistics Program (AR) 79 Key Variable Input D2 Exterior Ballistics Program (AR) 89 List of Tables E Terminal Effectiveness Program (LA) 93
Low Power, High Voltage Power Supply with Fast Rise/Fall Time
NASA Technical Reports Server (NTRS)
Bearden, Douglas B. (Inventor)
2007-01-01
A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.
Low power, high voltage power supply with fast rise/fall time
NASA Technical Reports Server (NTRS)
Bearden, Douglas B. (Inventor)
2007-01-01
A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.
NASA Technical Reports Server (NTRS)
Hall, A. Daniel (Inventor); Davies, Francis J. (Inventor)
2007-01-01
Method and system are disclosed for determining individual string resistance in a network of strings when the current through a parallel connected string is unknown and when the voltage across a series connected string is unknown. The method/system of the invention involves connecting one or more frequency-varying impedance components with known electrical characteristics to each string and applying a frequency-varying input signal to the network of strings. The frequency-varying impedance components may be one or more capacitors, inductors, or both, and are selected so that each string is uniquely identifiable in the output signal resulting from the frequency-varying input signal. Numerical methods, such as non-linear regression, may then be used to resolve the resistance associated with each string.
Connectivity in the human brain dissociates entropy and complexity of auditory inputs.
Nastase, Samuel A; Iacovella, Vittorio; Davis, Ben; Hasson, Uri
2015-03-01
Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. Copyright © 2014. Published by Elsevier Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-03
... safety-related batteries would remain operable if all the inter-cell and terminal connections were at the... new acceptance criteria for total battery connection resistance to ensure that the safety-related batteries can perform their specified safety function. Basis for proposed no significant hazards...
47 CFR 11.42 - Participation by communications common carriers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... may, without charge, connect: (1) An originating source from the nearest service area to a selected... Emergency Action Termination, the common carriers shall disconnect the originating source and the... charge, connect an originating source from the nearest exchange to a selected Test Center and then to any...
The energy balance of the nighttime thermosphere
NASA Technical Reports Server (NTRS)
Glenar, D. A.
1977-01-01
The discrepancy between the input from the day hemisphere and the observed loss rates is discussed in terms of ion-neutral processes and gravity wave inputs. There has been considerable speculation as to the energy balance of the thermosphere and in particular about the fraction of the total energy input supplied by ultraviolet radiation. The problem is considerably simplified by considering the energy balance of the nighttime hemisphere alone. Sunrise and sunset vapor trail measurements provide data on the wind systems at the terminator boundary, and temperature measurements provide information on the vertical energy conduction. North-south winds from high latitude vapor trail measurements provide a measure of the energy input from auroral processes.
Method Accelerates Training Of Some Neural Networks
NASA Technical Reports Server (NTRS)
Shelton, Robert O.
1992-01-01
Three-layer networks trained faster provided two conditions are satisfied: numbers of neurons in layers are such that majority of work done in synaptic connections between input and hidden layers, and number of neurons in input layer at least as great as number of training pairs of input and output vectors. Based on modified version of back-propagation method.
26 CFR 1.401-6 - Termination of a qualified plan.
Code of Federal Regulations, 2012 CFR
2012-04-01
... particular case. For example, a plan is terminated when, in connection with the winding up of the employer's... cost at any time (which includes the unfunded prior normal cost and unfunded interest on any unfunded cost) does not exceed the unfunded past service cost as of the date of establishment of the plan, plus...
26 CFR 1.401-6 - Termination of a qualified plan.
Code of Federal Regulations, 2011 CFR
2011-04-01
... particular case. For example, a plan is terminated when, in connection with the winding up of the employer's... cost at any time (which includes the unfunded prior normal cost and unfunded interest on any unfunded cost) does not exceed the unfunded past service cost as of the date of establishment of the plan, plus...
26 CFR 1.401-6 - Termination of a qualified plan.
Code of Federal Regulations, 2014 CFR
2014-04-01
... particular case. For example, a plan is terminated when, in connection with the winding up of the employer's... cost at any time (which includes the unfunded prior normal cost and unfunded interest on any unfunded cost) does not exceed the unfunded past service cost as of the date of establishment of the plan, plus...
26 CFR 1.401-6 - Termination of a qualified plan.
Code of Federal Regulations, 2013 CFR
2013-04-01
... particular case. For example, a plan is terminated when, in connection with the winding up of the employer's... cost at any time (which includes the unfunded prior normal cost and unfunded interest on any unfunded cost) does not exceed the unfunded past service cost as of the date of establishment of the plan, plus...
VORTAB - A data-tablet method of developing input data for the VORLAX program
NASA Technical Reports Server (NTRS)
Denn, F. M.
1979-01-01
A method of developing an input data file for use in the aerodynamic analysis of a complete airplane with the VORLAX computer program is described. The hardware consists of an interactive graphics terminal equipped with a graphics tablet. Software includes graphics routines from the Tektronix PLOT 10 package as well as the VORTAB program described. The user determines the size and location of each of the major panels for the aircraft before using the program. Data is entered both from the terminal keyboard and the graphics tablet. The size of the resulting data file is dependent on the complexity of the model and can vary from ten to several hundred card images. After the data are entered, two programs READB and PLOTB, are executed which plot the configuration allowing visual inspection of the model.
Therapeutic use of botulinum toxin in migraine: mechanisms of action
Ramachandran, Roshni; Yaksh, Tony L
2014-01-01
Migraine pain represents sensations arising from the activation of trigeminal afferents, which innervate the meningeal vasculature and project to the trigeminal nucleus caudalis (TNC). Pain secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the TNC. Such viscerosomatic convergence accounts for referral of migraine pain arising from meningeal afferents to particular extracranial dermatomes. Botulinum toxins (BoNTs) delivered into extracranial dermatomes are effective in and approved for treating chronic migraine pain. Aside from their well-described effect upon motor endplates, BoNTs are also taken up in local afferent nerve terminals where they cleave soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, and prevent local terminal release. However, a local extracranial effect of BoNT cannot account for allthe effects of BoNT upon migraine. We now know that peripherally delivered BoNTs are taken up in sensory afferents and transported to cleave SNARE proteins in the ganglion and TNC, prevent evoked afferent release and downstream activation. Such effects upon somatic input (as from the face) likewise would not alone account for block of input from converging meningeal afferents. This current work suggests that BoNTs may undergo transcytosis to cleave SNAREs in second-order neurons or in adjacent afferent terminals. Finally, while SNAREs mediate exocytotic release, they are also involved in transport of channels and receptors involved in facilitated pain states. The role of such post-synaptic effects of BoNT action in migraine remains to be determined. PMID:24819339
Vesicular Glutamate Transporters: Spatio-Temporal Plasticity following Hearing Loss
Fyk-Kolodziej, Bozena; Shimano, Takashi; Gong, Tzy-Wen; Holt, Avril Genene
2011-01-01
An immunocytochemical comparison of vGluT1 and vGluT3 in the cochlear nucleus (CN) of deafened versus normal hearing rats showed the first example of vGluT3 immunostaining in the dorsal and ventral CN and revealed temporal and spatial changes in vGluT1 localization in the CN after cochlear injury. In normal hearing rats vGluT1 immunostaining was restricted to terminals on CN neurons while vGluT3 immunolabeled the somata of the neurons. This changed in the VCN three days following deafness, where vGluT1 immunostaining was no longer seen in large auditory nerve terminals but was instead found in somata of VCN neurons. In the DCN, while vGluT1 labeling of terminals decreased, there was no labeling of neuronal somata. Therefore, loss of peripheral excitatory input results in co-localization of vGluT1 and vGluT3 in VCN neuronal somata. Postsynaptic glutamatergic neurons can use retrograde signaling to control their presynaptic inputs and these results suggest vGluTs could play a role in regulating retrograde signaling in the CN under different conditions of excitatory input. Changes in vGluT gene expression in CN neurons were found three weeks following deafness using qRT-PCR with significant increases in vGluT1 gene expression in both ventral and dorsal CN while vGluT3 gene expression decreased in VCN but increased in DCN. PMID:21211553
Sensory Innervation of the Nonspecialized Connective Tissues in the Low Back of the Rat
Corey, Sarah M.; Vizzard, Margaret A.; Badger, Gary J.; Langevin, Helene M.
2011-01-01
Chronic musculoskeletal pain, including low back pain, is a worldwide debilitating condition; however, the mechanisms that underlie its development remain poorly understood. Pathological neuroplastic changes in the sensory innervation of connective tissue may contribute to the development of nonspecific chronic low back pain. Progress in understanding such potentially important abnormalities is hampered by limited knowledge of connective tissue's normal sensory innervation. The goal of this study was to evaluate and quantify the sensory nerve fibers terminating within the nonspecialized connective tissues in the low back of the rat. With 3-dimensional reconstructions of thick (30–80 μm) tissue sections we have for the first time conclusively identified sensory nerve fiber terminations within the collagen matrix of connective tissue in the low back. Using dye labeling techniques with Fast Blue, presumptive dorsal root ganglia cells that innervate the low back were identified. Of the Fast Blue-labeled cells, 60–88% also expressed calcitonin gene-related peptide (CGRP) immunoreactivity. Based on the immunolabeling with CGRP and the approximate size of these nerve fibers (≤2 μm) we hypothesize that they are Aδ or C fibers and thus may play a role in the development of chronic pain. PMID:21411968
Kerr, Robert R; Burkitt, Anthony N; Thomas, Doreen A; Gilson, Matthieu; Grayden, David B
2013-01-01
Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.
Kerr, Robert R.; Burkitt, Anthony N.; Thomas, Doreen A.; Gilson, Matthieu; Grayden, David B.
2013-01-01
Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem. PMID:23408878
Felice, Carmelo J; Madrid, Rossana E; Valentinuzzi, Max E
2005-03-29
In Impedance Microbiology, the time during which the measuring equipment is connected to the bipolar cells is rather long, usually between 6 to 24 hrs for microorganisms with duplication times in the order of less than one hour and concentrations ranging from 10(1) to 10(7) [CFU/ml]. Under these conditions, the electrode-electrolyte interface impedance may show a slow drift of about 2%/hr. By and large, growth curves superimposed on such drift do not stabilize, are less reproducible, and keep on distorting all over the measurement of the temporal reactive or resistive records due to interface changes, in turn originated in bacterial activity. This problem has been found when growth curves were obtained by means of impedance analyzers or with impedance bridges using different types of operational amplifiers. Suspecting that the input circuitry was the culprit of the deleterious effect, we used for that matter (a) ultra-low bias current amplifiers, (b) isolating relays for the selection of cells, and (c) a shorter connection time, so that the relays were maintained opened after the readings, to bring down such spurious drift to a negligible value. Bacterial growth curves were obtained in order to test their quality. It was demonstrated that the drift decreases ten fold when the circuit remained connected to the cell for a short time between measurements, so that the distortion became truly negligible. Improvement due to better-input amplifiers was not as good as by reducing the connection time. Moreover, temperature effects were insignificant with a regulation of +/- 0.2 [ degrees C]. Frequency did not influence either. The drift originated either at the dc input bias offset current (Ios) of the integrated circuits, or in discrete transistors connected directly to the electrodes immersed in the cells, depending on the particular circuit arrangement. Reduction of the connection time was the best countermeasure.
Felice, Carmelo J; Madrid, Rossana E; Valentinuzzi, Max E
2005-01-01
Background In Impedance Microbiology, the time during which the measuring equipment is connected to the bipolar cells is rather long, usually between 6 to 24 hrs for microorganisms with duplication times in the order of less than one hour and concentrations ranging from 101 to 107 [CFU/ml]. Under these conditions, the electrode-electrolyte interface impedance may show a slow drift of about 2%/hr. By and large, growth curves superimposed on such drift do not stabilize, are less reproducible, and keep on distorting all over the measurement of the temporal reactive or resistive records due to interface changes, in turn originated in bacterial activity. This problem has been found when growth curves were obtained by means of impedance analyzers or with impedance bridges using different types of operational amplifiers. Methods Suspecting that the input circuitry was the culprit of the deleterious effect, we used for that matter (a) ultra-low bias current amplifiers, (b) isolating relays for the selection of cells, and (c) a shorter connection time, so that the relays were maintained opened after the readings, to bring down such spurious drift to a negligible value. Bacterial growth curves were obtained in order to test their quality. Results It was demonstrated that the drift decreases ten fold when the circuit remained connected to the cell for a short time between measurements, so that the distortion became truly negligible. Improvement due to better-input amplifiers was not as good as by reducing the connection time. Moreover, temperature effects were insignificant with a regulation of ± 0.2 [°C]. Frequency did not influence either. Conclusion The drift originated either at the dc input bias offset current (Ios) of the integrated circuits, or in discrete transistors connected directly to the electrodes immersed in the cells, depending on the particular circuit arrangement. Reduction of the connection time was the best countermeasure. PMID:15796776
Kwon, Osung; Feng, Linqing; Druckmann, Shaul; Kim, Jinhyun
2018-05-30
Neural circuits, governed by a complex interplay between excitatory and inhibitory neurons, are the substrate for information processing, and the organization of synaptic connectivity in neural network is an important determinant of circuit function. Here, we analyzed the fine structure of connectivity in hippocampal CA1 excitatory and inhibitory neurons innervated by Schaffer collaterals (SCs) using mGRASP in male mice. Our previous study revealed spatially structured synaptic connectivity between CA3 and CA1 pyramidal cells (PCs). Surprisingly, parvalbumin-positive interneurons (PVs) showed a significantly more random pattern spatial structure. Notably, application of Peters' rule for synapse prediction by random overlap between axons and dendrites enhanced structured connectivity in PCs, but, by contrast, made the connectivity pattern in PVs more random. In addition, PCs in a deep sublayer of striatum pyramidale appeared more highly structured than PCs in superficial layers, and little or no sublayer specificity was found in PVs. Our results show that CA1 excitatory PCs and inhibitory PVs innervated by the same SC inputs follow different connectivity rules. The different organizations of fine scale structured connectivity in hippocampal excitatory and inhibitory neurons provide important insights into the development and functions of neural networks. SIGNIFICANCE STATEMENT Understanding how neural circuits generate behavior is one of the central goals of neuroscience. An important component of this endeavor is the mapping of fine-scale connection patterns that underlie, and help us infer, signal processing in the brain. Here, using our recently developed synapse detection technology (mGRASP and neuTube), we provide detailed profiles of synaptic connectivity in excitatory (CA1 pyramidal) and inhibitory (CA1 parvalbumin-positive) neurons innervated by the same presynaptic inputs (CA3 Schaffer collaterals). Our results reveal that these two types of CA1 neurons follow different connectivity patterns. Our new evidence for differently structured connectivity at a fine scale in hippocampal excitatory and inhibitory neurons provides a better understanding of hippocampal networks and will guide theoretical and experimental studies. Copyright © 2018 the authors 0270-6474/18/385140-13$15.00/0.
Farahmandi, C. J.; Dispennette, J. M.; Blank, E.; Kolb, A. C.
1999-05-25
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH[sub 3]CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.
Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.
2002-09-17
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.
Farahmandi, C Joseph [San Diego, CA; Dispennette, John M [Oceanside, CA; Blank, Edward [San Diego, CA; Kolb, Alan C [Rancho Santa Fe, CA
1999-05-25
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.
Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.
1999-01-19
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.
Farahmandi, C.J.; Dispennette, J.M.; Blank, E.; Kolb, A.C.
1999-01-19
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH{sub 3}CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward
A method of making a double layer capacitior includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodesmore » are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two arts of the capacitor case are conductive and function as the capacitor terminals.« less
Crawford, LaTasha K; Craige, Caryne P; Beck, Sheryl G
2011-12-01
Characterization of glutamatergic input to dorsal raphe (DR) serotonin (5-HT) neurons is crucial for understanding how the glutamate and 5-HT systems interact in psychiatric disorders. Markers of glutamatergic terminals, vGlut1, 2 and 3, reflect inputs from specific forebrain and midbrain regions. Punctate staining of vGlut2 was homogeneous throughout the mouse DR whereas vGlut1 and vGlut3 puncta were less dense in the lateral wing (lwDR) compared with the ventromedial (vmDR) subregion. The distribution of glutamate terminals was consistent with the lower miniature excitatory postsynaptic current frequency found in the lwDR; however, it was not predictive of glutamatergic synaptic input with local activity intact, as spontaneous excitatory postsynaptic current (sEPSC) frequency was higher in the lwDR. We examined the morphology of recorded cells to determine if variations in dendrite structure contributed to differences in synaptic input. Although lwDR neurons had longer, more complex dendrites than vmDR neurons, glutamatergic input was not correlated with dendrite length in the lwDR, suggesting that dendrite length did not contribute to subregional differences in sEPSC frequency. Overall, glutamatergic input in the DR was the result of selective innervation of subpopulations of 5-HT neurons and was rooted in the topography of DR neurons and the activity of glutamate neurons located within the midbrain slice. Increased glutamatergic input to lwDR cells potentially synergizes with previously reported increased intrinsic excitability of lwDR cells to increase 5-HT output in lwDR target regions. Because the vmDR and lwDR are involved in unique circuits, subregional differences in glutamate modulation may result in diverse effects on 5-HT output in stress-related psychopathology. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
2011-07-25
testing, the EFTR must be keyed with the same key used to encrypt the Enhanced Flight Termination Systems ( EFTS ) message. To ensure identical keys...required to verify the proper state. e. Procedure. (1) Pull up EFTS graphic user interface (GUI) (Figure 3). (2) Click “Receiver Power On...commanded mode steady state input currents will not exceed their specified values. TOP 05-2-543 25 July 2011 19 Figure 3. EFTS GUIa
A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds
Goldberg, Jesse H.
2012-01-01
The pallido-recipient thalamus transmits information from the basal ganglia (BG) to the cortex and plays a critical role motor initiation and learning. Thalamic activity is strongly inhibited by pallidal inputs from the BG, but the role of non-pallidal inputs, such as excitatory inputs from cortex, is unclear. We have recorded simultaneously from presynaptic pallidal axon terminals and postsynaptic thalamocortical neurons in a BG-recipient thalamic nucleus necessary for vocal variability and learning in zebra finches. We found that song-locked rate modulations in the thalamus could not be explained by pallidal inputs alone, and persisted following pallidal lesion. Instead, thalamic activity was likely driven by inputs from a motor ‘cortical’ nucleus also necessary for singing. These findings suggest a role for cortical inputs to the pallido-recipient thalamus in driving premotor signals important for exploratory behavior and learning. PMID:22327474
Method of assembling an electric power
Rinehart, Lawrence E [Lake Oswego, OR; Romero, Guillermo L [Phoenix, AZ
2007-05-03
A method of assembling and providing an electric power apparatus. The method uses a heat resistant housing having a structure adapted to accommodate and retain a power circuit card and also including a bracket adapted to accommodate and constrain a rigid conductive member. A power circuit card having an electrical terminal is placed into the housing and a rigid conductive member into the bracket. The rigid conductive member is flow soldered to the electrical terminal, thereby exposing the heat resistant housing to heat and creating a solder bond. Finally, the rigid conductive member is affirmatively connected to the housing. The bracket constrains the rigid conductive member so that the act of affirmatively connecting does not weaken the solder bond.
Modular thought in the circuit analysis
NASA Astrophysics Data System (ADS)
Wang, Feng
2018-04-01
Applied to solve the problem of modular thought, provides a whole for simplification's method, the complex problems have become of, and the study of circuit is similar to the above problems: the complex connection between components, make the whole circuit topic solution seems to be more complex, and actually components the connection between the have rules to follow, this article mainly tells the story of study on the application of the circuit modular thought. First of all, this paper introduces the definition of two-terminal network and the concept of two-terminal network equivalent conversion, then summarizes the common source resistance hybrid network modular approach, containing controlled source network modular processing method, lists the common module, typical examples analysis.
Ripple gate drive circuit for fast operation of series connected IGBTs
Rockot, Joseph H.; Murray, Thomas W.; Bass, Kevin C.
2005-09-20
A ripple gate drive circuit includes a plurality of transistors having their power terminals connected in series across an electrical potential. A plurality of control circuits, each associated with one of the transistors, is provided. Each control circuit is responsive to a control signal and an optical signal received from at least one other control circuit for controlling the conduction of electrical current through the power terminals of the associated transistor. The control circuits are responsive to a first state of the control circuit for causing each transistor in series to turn on sequentially and responsive to a second state of the control signal for causing each transistor in series to turn off sequentially.
Connectivity strategies for higher-order neural networks applied to pattern recognition
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Reid, Max B.
1990-01-01
Different strategies for non-fully connected HONNs (higher-order neural networks) are discussed, showing that by using such strategies an input field of 128 x 128 pixels can be attained while still achieving in-plane rotation and translation-invariant recognition. These techniques allow HONNs to be used with the larger input scenes required for practical pattern-recognition applications. The number of interconnections that must be stored has been reduced by a factor of approximately 200,000 in a T/C case and about 2000 in a Space Shuttle/F-18 case by using regional connectivity. Third-order networks have been simulated using several connection strategies. The method found to work best is regional connectivity. The main advantages of this strategy are the following: (1) it considers features of various scales within the image and thus gets a better sample of what the image looks like; (2) it is invariant to shape-preserving geometric transformations, such as translation and rotation; (3) the connections are predetermined so that no extra computations are necessary during run time; and (4) it does not require any extra storage for recording which connections were formed.
High speed high dynamic range high accuracy measurement system
Deibele, Craig E.; Curry, Douglas E.; Dickson, Richard W.; Xie, Zaipeng
2016-11-29
A measuring system includes an input that emulates a bandpass filter with no signal reflections. A directional coupler connected to the input passes the filtered input to electrically isolated measuring circuits. Each of the measuring circuits includes an amplifier that amplifies the signal through logarithmic functions. The output of the measuring system is an accurate high dynamic range measurement.
Genesis of interictal spikes in the CA1: a computational investigation
Ratnadurai-Giridharan, Shivakeshavan; Stefanescu, Roxana A.; Khargonekar, Pramod P.; Carney, Paul R.; Talathi, Sachin S.
2014-01-01
Interictal spikes (IISs) are spontaneous high amplitude, short time duration <400 ms events often observed in electroencephalographs (EEG) of epileptic patients. In vitro analysis of resected mesial temporal lobe tissue from patients with refractory temporal lobe epilepsy has revealed the presence of IIS in the CA1 subfield. In this paper, we develop a biophysically relevant network model of the CA1 subfield and investigate how changes in the network properties influence the susceptibility of CA1 to exhibit an IIS. We present a novel template based approach to identify conditions under which synchronization of paroxysmal depolarization shift (PDS) events evoked in CA1 pyramidal (Py) cells can trigger an IIS. The results from this analysis are used to identify the synaptic parameters of a minimal network model that is capable of generating PDS in response to afferent synaptic input. The minimal network model parameters are then incorporated into a detailed network model of the CA1 subfield in order to address the following questions: (1) How does the formation of an IIS in the CA1 depend on the degree of sprouting (recurrent connections) between the CA1 Py cells and the fraction of CA3 Shaffer collateral (SC) connections onto the CA1 Py cells? and (2) Is synchronous afferent input from the SC essential for the CA1 to exhibit IIS? Our results suggest that the CA1 subfield with low recurrent connectivity (absence of sprouting), mimicking the topology of a normal brain, has a very low probability of producing an IIS except when a large fraction of CA1 neurons (>80%) receives a barrage of quasi-synchronous afferent input (input occurring within a temporal window of ≤24 ms) via the SC. However, as we increase the recurrent connectivity of the CA1 (Psprout > 40); mimicking sprouting in a pathological CA1 network, the CA1 can exhibit IIS even in the absence of a barrage of quasi-synchronous afferents from the SC (input occurring within temporal window >80 ms) and a low fraction of CA1 Py cells (≈30%) receiving SC input. Furthermore, we find that in the presence of Poisson distributed random input via SC, the CA1 network is able to generate spontaneous periodic IISs (≈3 Hz) for high degrees of recurrent Py connectivity (Psprout > 70). We investigate the conditions necessary for this phenomenon and find that spontaneous IISs closely depend on the degree of the network's intrinsic excitability. PMID:24478636
Genesis of interictal spikes in the CA1: a computational investigation.
Ratnadurai-Giridharan, Shivakeshavan; Stefanescu, Roxana A; Khargonekar, Pramod P; Carney, Paul R; Talathi, Sachin S
2014-01-01
Interictal spikes (IISs) are spontaneous high amplitude, short time duration <400 ms events often observed in electroencephalographs (EEG) of epileptic patients. In vitro analysis of resected mesial temporal lobe tissue from patients with refractory temporal lobe epilepsy has revealed the presence of IIS in the CA1 subfield. In this paper, we develop a biophysically relevant network model of the CA1 subfield and investigate how changes in the network properties influence the susceptibility of CA1 to exhibit an IIS. We present a novel template based approach to identify conditions under which synchronization of paroxysmal depolarization shift (PDS) events evoked in CA1 pyramidal (Py) cells can trigger an IIS. The results from this analysis are used to identify the synaptic parameters of a minimal network model that is capable of generating PDS in response to afferent synaptic input. The minimal network model parameters are then incorporated into a detailed network model of the CA1 subfield in order to address the following questions: (1) How does the formation of an IIS in the CA1 depend on the degree of sprouting (recurrent connections) between the CA1 Py cells and the fraction of CA3 Shaffer collateral (SC) connections onto the CA1 Py cells? and (2) Is synchronous afferent input from the SC essential for the CA1 to exhibit IIS? Our results suggest that the CA1 subfield with low recurrent connectivity (absence of sprouting), mimicking the topology of a normal brain, has a very low probability of producing an IIS except when a large fraction of CA1 neurons (>80%) receives a barrage of quasi-synchronous afferent input (input occurring within a temporal window of ≤24 ms) via the SC. However, as we increase the recurrent connectivity of the CA1 (P sprout > 40); mimicking sprouting in a pathological CA1 network, the CA1 can exhibit IIS even in the absence of a barrage of quasi-synchronous afferents from the SC (input occurring within temporal window >80 ms) and a low fraction of CA1 Py cells (≈30%) receiving SC input. Furthermore, we find that in the presence of Poisson distributed random input via SC, the CA1 network is able to generate spontaneous periodic IISs (≈3 Hz) for high degrees of recurrent Py connectivity (P sprout > 70). We investigate the conditions necessary for this phenomenon and find that spontaneous IISs closely depend on the degree of the network's intrinsic excitability.
Anatomical connections of the functionally-defined “face patches” in the macaque monkey
Saleem, Kadharbatcha S.
2017-01-01
The neural circuits underlying face recognition provide a model for understanding visual object representation, social cognition, and hierarchical information processing. A fundamental piece of information lacking to date is the detailed anatomical connections of the face patches. Here, we injected retrograde tracers into four different face patches (PL, ML, AL, AM) to characterize their anatomical connectivity. We found that the patches are strongly and specifically connected to each other, and individual patches receive inputs from extrastriate cortex, the medial temporal lobe, and three subcortical structures (the pulvinar, claustrum, and amygdala). Inputs from prefrontal cortex were surprisingly weak. Patches were densely interconnected to one another in both feedforward and feedback directions, inconsistent with a serial hierarchy. These results provide the first direct anatomical evidence that the face patches constitute a highly specialized system, and suggest that subcortical regions may play a vital role in routing face-related information to subsequent processing stages. PMID:27263973
Method of evaluating, expanding, and collapsing connectivity regions within dynamic systems
Bailey, David A [Schenectady, NY
2004-11-16
An automated process defines and maintains connectivity regions within a dynamic network. The automated process requires an initial input of a network component around which a connectivity region will be defined. The process automatically and autonomously generates a region around the initial input, stores the region's definition, and monitors the network for a change. Upon detecting a change in the network, the effect is evaluated, and if necessary the regions are adjusted and redefined to accommodate the change. Only those regions of the network affected by the change will be updated. This process eliminates the need for an operator to manually evaluate connectivity regions within a network. Since the automated process maintains the network, the reliance on an operator is minimized; thus, reducing the potential for operator error. This combination of region maintenance and reduced operator reliance, results in a reduction of overall error.
ARC length control for plasma welding
NASA Technical Reports Server (NTRS)
Iceland, William F. (Inventor)
1988-01-01
A control system to be used with a plasma arc welding apparatus is disclosed. The plasma arc welding apparatus includes a plasma arc power supply, a contactor, and an electrode assembly for moving the electrode relative to a work piece. The electrode assembly is raised or lowered by a drive motor. The present apparatus includes a plasma arc adapter connected across the power supply to measure the voltage across the plasma arc. The plasma arc adapter forms a dc output signal input to a differential amplifier. A second input is defined by an adjustable resistor connected to a dc voltage supply to permit operator control. The differential amplifier forms an output difference signal provided to an adder circuit. The adder circuit then connects with a power amplifier which forms the driving signal for the motor. In addition, the motor connects to a tachometor which forms a feedback signal delivered to the adder to provide damping, therby avoiding servo loop overshoot.
Yang, Sunggu; Govindaiah, Gubbi; Lee, Sang-Hun; Yang, Sungchil; Cox, Charles L
2017-01-01
Thalamocortical neurons in the dorsal lateral geniculate nucleus (dLGN) transfer visual information from retina to primary visual cortex. This information is modulated by inhibitory input arising from local interneurons and thalamic reticular nucleus (TRN) neurons, leading to alterations of receptive field properties of thalamocortical neurons. Local GABAergic interneurons provide two distinct synaptic outputs: axonal (F1 terminals) and dendritic (F2 terminals) onto dLGN thalamocortical neurons. By contrast, TRN neurons provide only axonal output (F1 terminals) onto dLGN thalamocortical neurons. It is unclear if GABAA receptor-mediated currents originating from F1 and F2 terminals have different characteristics. In the present study, we examined multiple characteristics (rise time, slope, halfwidth and decay τ) of GABAA receptor-mediated miniature inhibitory postsynaptic synaptic currents (mIPSCs) originating from F1 and F2 terminals. The mIPSCs arising from F2 terminals showed slower kinetics relative to those from F1 terminals. Such differential kinetics of GABAAR-mediated responses could be an important role in temporal coding of visual signals.
Associative memory model with spontaneous neural activity
NASA Astrophysics Data System (ADS)
Kurikawa, Tomoki; Kaneko, Kunihiko
2012-05-01
We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.
Control and optimization system
Xinsheng, Lou
2013-02-12
A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Hughes, Douglas A.
2006-08-01
A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.
Hughes, Douglas A.
2007-09-25
A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false What assistance must carriers provide to passengers with a disability in moving within the terminal? 382.91 Section 382.91 Aeronautics and Space... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Boarding, Deplaning, and Connecting Assistance § 382.91...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false What assistance must carriers provide to passengers with a disability in moving within the terminal? 382.91 Section 382.91 Aeronautics and Space... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Boarding, Deplaning, and Connecting Assistance § 382.91...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false What assistance must carriers provide to passengers with a disability in moving within the terminal? 382.91 Section 382.91 Aeronautics and Space... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Boarding, Deplaning, and Connecting Assistance § 382.91...
NASA Astrophysics Data System (ADS)
Salas, Y. J.; Vera-Monroy, S. P.; Mejia-Camacho, A.; Rivera, W.
2017-12-01
In Colombia, energy companies neglect the distribution that represents the main and most valuable process, presenting shortcomings in prevention and forecasting programs, using contractors who perform corrective maintenance of the components without guaranteeing the quality and performance of the materials. Within the process, the terminals determine the effective connection between the voltage line and the transformer, which have faults that are evidenced by the thermal deterioration of the material. In this work, a diagnosis of the thermal performance of these components was carried out and it was correlated with the microstructure, observing variations of the working temperature, with a thermography camera, for three types of terminals, which were classified by X-ray fluorescence in brass Z20, Z40 and Z60, and for two types of connection, copper and aluminium. The microstructure results showed that copper is the conductor that degrades the terminals faster, evidencing cracking of the material; on the other hand, the Z40 brass was the most stable with the lowest temperature variation regardless of the conductor diameter; however, in all cases the behaviour of higher temperature to lower calibre is satisfied.
Inexpensive, Low Power, Open-Source Data Logging hardware development
NASA Astrophysics Data System (ADS)
Sandell, C. T.; Schulz, B.; Wickert, A. D.
2017-12-01
Over the past six years, we have developed a suite of open-source, low-cost, and lightweight data loggers for scientific research. These loggers employ the popular and easy-to-use Arduino programming environment, but consist of custom hardware optimized for field research. They may be connected to a broad and expanding range of off-the-shelf sensors, with software support built in directly to the "ALog" library. Three main models exist: The ALog (for Autonomous or Arduino Logger) is the extreme low-power model for years-long deployments with only primary AA or D batteries. The ALog shield is a stripped-down ALog that nests with a standard Arduino board for prototyping or education. The TLog (for Telemetering Logger) contains an embedded radio with 500 m range and a GPS for communications and precision timekeeping. This enables meshed networks of loggers that can send their data back to an internet-connected "home base" logger for near-real-time field data retrieval. All boards feature feature a high-precision clock, full size SD card slot for high-volume data storage, large screw terminals to connect sensors, interrupts, SPI and I2C communication capability, and 3.3V/5V power outputs. The ALog and TLog have fourteen 16-bit analog inputs with a precision voltage reference for precise analog measurements. Their components are rated -40 to +85 degrees C, and they have been tested in harsh field conditions. These low-cost and open-source data loggers have enabled our research group to collect field data across North and South America on a limited budget, support student projects, and build toward better future scientific data systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arges, Christopher G.; Kambe, Yu; Dolejsi, Moshe
Block copolymer electrolytes (BCEs) represent an attractive choice as solid-state ionic conductors for electrochemical technologies used in energy storage and conversion, water treatment, sensors, and data storage and processing. Unlocking the maximum ionic conductivity of BCEs requires an intimate understanding as to how the microphase separated structure influences transport properties. However, elucidating such knowledge remains elusive due to the challenging task of precisely engineering BCEs with a defined structure in bulk materials. In this work, we examined BCEs in a thin film format because it was amenable to attaining BCEs with a desired nanostructure. Specifically, we systematically investigated anion-conducting BCEsmore » with different degrees of connectivity of the ionic domains. For the first time, we demonstrate that increasing terminal defects in the ionic domain from 1 terminal defect per mu m(2) to 20 terminal defects per mu m(2) ( a relatively small amount of defects) decreased ionic conductivity by 67% compared to the maximum value attained. Conversely, maximizing ionic domain connectivity increased the ionic conductivity by two-fold over a non-ordered BCE film. These experiments highlight that microphase separation alone was insufficient for ameliorating ionic conductivity in BCEs. Rather, microphase separation coupled with complete ionic domain connectivity realized BCEs with significantly enhanced ionic conductivity.« less
Silicon controlled rectifier polyphase bridge inverter commutated with gate-turn-off thyristor
NASA Technical Reports Server (NTRS)
Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)
1986-01-01
A polyphase SCR inverter (10) having N switching poles, each comprised of two SCR switches (1A, 1B; 2A, 2B . . . NA, NB) and two diodes (D1B; D1B; D2A, D2B . . . DNA, DNB) in series opposition with saturable reactors (L1A, L1B; L2A, L2B . . . LNA, LNB) connecting the junctions between the SCR switches and diodes to an output terminal (1, 2 . . . 3) is commutated with only one GTO thyristor (16) connected between the common negative terminal of a dc source and a tap of a series inductor (14) connected to the positive terminal of the dc source. A clamp winding (22) and diode (24) are provided, as is a snubber (18) which may have its capacitance (c) sized for maximum load current divided into a plurality of capacitors (C.sub.1, C.sub.2 . . . C.sub.N), each in series with an SCR switch S.sub.1, S.sub.2 . . . S.sub.N). The total capacitance may be selected by activating selected switches as a function of load current. A resistor 28 and SCR switch 26 shunt reverse current when the load acts as a generator, such as a motor while braking.
A PWM Controller of a Full Bridge Single-Phase Synchronous Inverter for Micro-Grid System
NASA Astrophysics Data System (ADS)
Rahman, Tawfikur; Motakabber, S. M. A.; Ibrahimy, M. I.; Raghib, Aliza ‘Aini Binti Md Ralib@ Md
2017-12-01
Nowadays, microgrid system technology is becoming popular for small area power management systems. It is essential to be less harmonic-distortion and high efficiency of the inverter for microgrid applications. Pulse width modulation (PWM) controller is a conventional switching control technique which is suitable to use in the microgrid connected power inverter system. The control method and algorithm of this technique are challenging, and different approaches are required to avoid the complexity for a customized solution of the microgrid application. This paper proposes a comparative analysis of different controller and their operational methods. A PWM controller is used to reduce the ripple voltage noise while a continuous current mode provides a small output ripple which gives steady-state error as zero on fundamental and cutoff frequency. To reduce the ripple current, higher frequency harmonic distortion, switching loss and phase noise, LC low pass filter is used on either side of input and output terminals. The proposed inverter is designed by MATLAB 2016a simulation software. A balanced load resistance (RL = 20.5 Ω) of star configuration and a dual input DC voltage of ± 35V are considered. In this design, the circuit parameters, the fundamental frequency of 50 Hz, the PWM duty cycle of 95%, the cutoff frequency of the switching controller of 33 kHz are considered. The inverter in this paper exhibits THD of 0.44% and overall efficiency approximately of 98%. The proposed inverter is expected to be suitable for microgrid applications.
Connectivity in the human brain dissociates entropy and complexity of auditory inputs☆
Nastase, Samuel A.; Iacovella, Vittorio; Davis, Ben; Hasson, Uri
2015-01-01
Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. PMID:25536493
Splice connector with internal heat transfer jacket
Silva, Frank A.; Mayer, Robert W.
1977-01-01
A heat transfer jacket is placed over the terminal portions of the conductors of a pair of high voltage cables which are connected in a splice connection wherein a housing surrounds the connected conductor portions, the heat transfer jacket extending longitudinally between the confronting ends of a pair of adaptor sleeves placed upon the insulation of the cables to engage and locate the adaptor sleeves relative to one another, and laterally between the conductors and the housing to provide a path of relatively high thermal conductivity between the connected conductor portions and the housing.
Ludowise, Michael J.
1986-01-01
A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.
Nakagawa, Yumiko; Sawada, Sachiko; Tomiyama, Takashi; Ueda, Yuki; Fujii, Kou; Takeshita, Kiyotaka; Kobayashi, Mitsuru; Isono, Osamu
2014-12-01
Electronic medical records(EMR)for home visits were introduced in October 2013 at our institution in order to ensure smooth cooperation between the hospital and clinic by sharing the details of a patient's medical record. A system was developed for remote desktop connections to the EMR terminal server(virtual server)with the use of an SSL-VPN. Mobile terminals and mobile printers were used. Four months after the start of this system, a survey was conducted for 41 home care professionals and other staff(physicians, nurses, and office staff). Home care staff indicated that they had problems with the system, including bad connections and operating conditions, and difficulties responding to problems when they arose. Other staff indicated that they were able to acquire patient information faster than with paper-based records. Future issues include improvements to the user-friendliness of the terminals and improved responses to problems when they occur.
Chang, Kuo-Tsai
2007-01-01
This paper investigates electrical transient characteristics of a Rosen-type piezoelectric transformer (PT), including maximum voltages, time constants, energy losses and average powers, and their improvements immediately after turning OFF. A parallel resistor connected to both input terminals of the PT is needed to improve the transient characteristics. An equivalent circuit for the PT is first given. Then, an open-circuit voltage, involving a direct current (DC) component and an alternating current (AC) component, and its related energy losses are derived from the equivalent circuit with initial conditions. Moreover, an AC power control system, including a DC-to-AC resonant inverter, a control switch and electronic instruments, is constructed to determine the electrical characteristics of the OFF transient state. Furthermore, the effects of the parallel resistor on the transient characteristics at different parallel resistances are measured. The advantages of adding the parallel resistor also are discussed. From the measured results, the DC time constant is greatly decreased from 9 to 0.04 ms by a 10 k(omega) parallel resistance under open output.
Transfer characteristics of the hair cell's afferent synapse
NASA Astrophysics Data System (ADS)
Keen, Erica C.; Hudspeth, A. J.
2006-04-01
The sense of hearing depends on fast, finely graded neurotransmission at the ribbon synapses connecting hair cells to afferent nerve fibers. The processing that occurs at this first chemical synapse in the auditory pathway determines the quality and extent of the information conveyed to the central nervous system. Knowledge of the synapse's input-output function is therefore essential for understanding how auditory stimuli are encoded. To investigate the transfer function at the hair cell's synapse, we developed a preparation of the bullfrog's amphibian papilla. In the portion of this receptor organ representing stimuli of 400-800 Hz, each afferent nerve fiber forms several synaptic terminals onto one to three hair cells. By performing simultaneous voltage-clamp recordings from presynaptic hair cells and postsynaptic afferent fibers, we established that the rate of evoked vesicle release, as determined from the average postsynaptic current, depends linearly on the amplitude of the presynaptic Ca2+ current. This result implies that, for receptor potentials in the physiological range, the hair cell's synapse transmits information with high fidelity. auditory system | exocytosis | glutamate | ribbon synapse | synaptic vesicle
Position-sensitive proportional counter with low-resistance metal-wire anode
Kopp, Manfred K.
1980-01-01
A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rembold, Randy Kai; Hart, Darren M.; Harris, James Mark
Sandia National Laboratories has tested, evaluated and reported on the Geotech Smart24 data acquisition system with active Fortezza crypto card data signing and authentication in SAND2008-. One test, Input Terminated Noise, allows us to characterize the self-noise of the Smart24 system. By computing the power spectral density (PSD) of the input terminated noise time series data set and correcting for the instrument response of different seismometers, the resulting spectrum can be compared to the USGS new low noise model (NLNM) of Peterson (1996), and determine the ability of the matched system of seismometer and Smart24 to be quiet enough formore » any general deployment location. Four seismometer models were evaluated: the Streckeisen STS2-Low and High Gain, Guralp CMG3T and Geotech GS13 models. Each has a unique pass-band as defined by the frequency band of the instrument corrected noise spectrum that falls below the new low-noise model.« less
Device, system and method for a sensing electrical circuit
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
2009-01-01
The invention relates to a driven ground electrical circuit. A driven ground is a current-measuring ground termination to an electrical circuit with the current measured as a vector with amplification. The driven ground module may include an electric potential source V.sub.S driving an electric current through an impedance (load Z) to a driven ground. Voltage from the source V.sub.S excites the minus terminal of an operational amplifier inside the driven ground which, in turn, may react by generating an equal and opposite voltage to drive the net potential to approximately zero (effectively ground). A driven ground may also be a means of passing information via the current passing through one grounded circuit to another electronic circuit as input. It may ground one circuit, amplify the information carried in its current and pass this information on as input to the next circuit.
Parallel line analysis: multifunctional software for the biomedical sciences
NASA Technical Reports Server (NTRS)
Swank, P. R.; Lewis, M. L.; Damron, K. L.; Morrison, D. R.
1990-01-01
An easy to use, interactive FORTRAN program for analyzing the results of parallel line assays is described. The program is menu driven and consists of five major components: data entry, data editing, manual analysis, manual plotting, and automatic analysis and plotting. Data can be entered from the terminal or from previously created data files. The data editing portion of the program is used to inspect and modify data and to statistically identify outliers. The manual analysis component is used to test the assumptions necessary for parallel line assays using analysis of covariance techniques and to determine potency ratios with confidence limits. The manual plotting component provides a graphic display of the data on the terminal screen or on a standard line printer. The automatic portion runs through multiple analyses without operator input. Data may be saved in a special file to expedite input at a future time.
A multi-channel isolated power supply in non-equipotential circuit
NASA Astrophysics Data System (ADS)
Li, Xiang; Zhao, Bo-Wen; Zhang, Yan-Chi; Xie, Da
2018-04-01
A multi-channel isolation power supply is designed for the problems of different MOSFET or IGBT in the non-equipotential circuit in this paper. It mainly includes the square wave generation circuit, the high-frequency transformer and the three-terminal stabilized circuit. The first part is used to generate the 24V square wave, and as the input of the magnetic ring transformer. In the second part, the magnetic ring transformer consists of one input and three outputs to realize multi-channel isolation output. The third part can output different potential and realize non-equal potential function through the three-terminal stabilized chip. In addition, the multi-channel isolation power source proposed in this paper is Small size, high reliability and low price, and it is convenient for power electronic switches that operate on multiple different potentials. Therefore, the research on power supply of power electronic circuit has practical significance.
NASA Technical Reports Server (NTRS)
Murphree, H. I.
1979-01-01
A user's manual is provided for program PARACH, a FORTRAN digital computer program operational on the Univac 1108. A description of the program and operating instructions for it are included. Program PARACH is used to study the interaction dynamics of a parachute and its payload during terminal descent. Operating instructions, required input data, program options and limitations, and output data are described. Subroutines used in this program are also listed and explained.
Capillary pumped loop body heat exchanger
NASA Technical Reports Server (NTRS)
Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)
1998-01-01
A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.
Distributed multisensory integration in a recurrent network model through supervised learning
NASA Astrophysics Data System (ADS)
Wang, He; Wong, K. Y. Michael
Sensory integration between different modalities has been extensively studied. It is suggested that the brain integrates signals from different modalities in a Bayesian optimal way. However, how the Bayesian rule is implemented in a neural network remains under debate. In this work we propose a biologically plausible recurrent network model, which can perform Bayesian multisensory integration after trained by supervised learning. Our model is composed of two modules, each for one modality. We assume that each module is a recurrent network, whose activity represents the posterior distribution of each stimulus. The feedforward input on each module is the likelihood of each modality. Two modules are integrated through cross-links, which are feedforward connections from the other modality, and reciprocal connections, which are recurrent connections between different modules. By stochastic gradient descent, we successfully trained the feedforward and recurrent coupling matrices simultaneously, both of which resembles the Mexican-hat. We also find that there are more than one set of coupling matrices that can approximate the Bayesian theorem well. Specifically, reciprocal connections and cross-links will compensate each other if one of them is removed. Even though trained with two inputs, the network's performance with only one input is in good accordance with what is predicted by the Bayesian theorem.
Efficient Distribution of Triggered Synchronous Block Diagrams
2011-10-21
corresponding FFP processes, from P to P ′. The sizes of the queues are as in [23]. In particular, if M is not Moore, a queue of size 1 suffices; ifM is Moore...computer systems. Real-Time Systems, 14(3):219–250, 1998. [23] S . Tripakis, C. Pinello, A . Benveniste, A . Sangiovanni-Vincent, P. Caspi, and M . Di...of connections: a data connection connects some output port of a block M to some input port of another block M ′; a trigger connection connects some
Retinal input to efferent target amacrine cells in the avian retina
Lindstrom, Sarah H.; Azizi, Nason; Weller, Cynthia; Wilson, Martin
2012-01-01
The bird visual system includes a substantial projection, of unknown function, from a midbrain nucleus to the contralateral retina. Every centrifugal, or efferent, neuron originating in the midbrain nucleus makes synaptic contact with the soma of a single, unique amacrine cell, the target cell (TC). By labeling efferent neurons in the midbrain we have been able to identify their terminals in retinal slices and make patch clamp recordings from TCs. TCs generate Na+ based action potentials triggered by spontaneous EPSPs originating from multiple classes of presynaptic neurons. Exogenously applied glutamate elicited inward currents having the mixed pharmacology of NMDA, kainate and inward rectifying AMPA receptors. Exogenously applied GABA elicited currents entirely suppressed by GABAzine, and therefore mediated by GABAA receptors. Immunohistochemistry showed the vesicular glutamate transporter, vGluT2, to be present in the characteristic synaptic boutons of efferent terminals, whereas the GABA synthetic enzyme, GAD, was present in much smaller processes of intrinsic retinal neurons. Extracellular recording showed that exogenously applied GABA was directly excitatory to TCs and, consistent with this, NKCC, the Cl− transporter often associated with excitatory GABAergic synapses, was identified in TCs by antibody staining. The presence of excitatory retinal input to TCs implies that TCs are not merely slaves to their midbrain input; instead, their output reflects local retinal activity and descending input from the midbrain. PMID:20650017
Görbitz, Carl Henrik; Yadav, Vitthal N
2013-09-01
The title dipeptide, better known as L-norvalyl-L-phenylalanine {systematic name: (S)-2-[(S)-2-aminopentanamido]-3-phenylpropanoic acid dihydrate}, C14H20N2O3·2H2O, has a nonproteinogenic N-terminal residue. In the solid state, it takes on a molecular conformation typical for one of the three classes of nanoporous dipeptides, but like two related compounds with a hydrophobic N-terminal residue and a C-terminal L-phenylalanine, it fails to form channels or pores. Instead, the crystal structure is divided into distinct hydrophobic and hydrophilic layers, the latter encompassing cocrystallized water molecules connecting the charged N- and C-terminal groups.
Tablet PC as a mobil PACS terminal using wireless LAN
NASA Astrophysics Data System (ADS)
Tsao, Bo-Shen; Ching, Yu-Tai; Lee, Wen-Jeng; Chen, Shyh-Jye; Chang, Chia-Hung; Chen, Chien-Jung; Yen, York; Lee, Yuan-Ten
2003-05-01
A PACS mobile terminal has applications in ward round, emergency room and remote teleradiology consultation. Personal Digital Assistants (PDAs) have the highest mobility and are used for many medical applications. However, their roles are limited in the field of radiology due to small screen size. In this study, we built a wireless PACS terminal using a hand-held tablet-PC. A tablet PC (X-pilot, LEO systems, Taiwan) running the WinCE operating systems was used as our mobile PACS terminal. This device is equipped with 800×600 resolution 10.4 inch TFT monitor. The network connection between the tablet PC and the server was linked via wireless LAN (IEEE 802.11b).
Cooled electrical terminal assembly and device incorporating same
Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.
2006-08-22
A terminal structure provides interfacing with power electronics circuitry and external circuitry. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the terminal structure and the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Cooled electrical terminal assembly and device incorporating same
Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.
2005-05-24
A terminal structure provides interfacing with power electronics circuitry and external circuitry. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the terminal structure and the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
... Connection With the EC-Beef Hormones Dispute AGENCY: Office of the United States Trade Representative. ACTION... Hormones dispute. In January 2009, the Trade Representative announced a determination to modify the list of...) in the EC-Beef Hormones dispute. The MOU provides for the EU to make phased increases in market...
NASA Astrophysics Data System (ADS)
Wang, Zhao; Knights, Andrew P.
2017-02-01
We describe a direct experimental method to determine the effective driving voltage (Vpp) applied to a silicon photonic modulator possessing an impedance mismatch between the unterminated capacitive load and input source. This method thus permits subsequent estimation of the power consumption of an imperfectly terminated device as well as a deduction of load impedance for optimization of termination design. The capacitive load in this paper is a silicon micro-ring modulator with an integrated p-n junction acting as a phase shifter. The RF reflection under high-speed drive is directly determined from observation of the eye-diagram following measurement of the power transfer function for various junction bias.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... trade or business—(1) General rule. A foreign corporation shall not be subject to the branch profits tax... term U.S. assets of the terminated U.S. trade or business shall mean all the money and other property.... trade or business and to the effectively connected earnings and profits of the foreign corporation...
Code of Federal Regulations, 2014 CFR
2014-04-01
.... trade or business—(1) General rule. A foreign corporation shall not be subject to the branch profits tax... term U.S. assets of the terminated U.S. trade or business shall mean all the money and other property.... trade or business and to the effectively connected earnings and profits of the foreign corporation...
TMS communications hardware. Volume 2: Bus interface unit
NASA Technical Reports Server (NTRS)
Brown, J. S.; Hopkins, G. T.
1979-01-01
A prototype coaxial cable bus communication system used in the Trend Monitoring System to interconnect intelligent graphics terminals to a host minicomputer is described. The terminals and host are connected to the bus through a microprocessor-based RF modem termed a Bus Interface Unit (BIU). The BIU hardware and the Carrier Sense Multiple Access Listen-While-Talk protocol used on the network are described.
Sim, Shuyin; Antolin, Salome; Lin, Chia-Wei; Lin, Ying-Xi
2013-01-01
Electrical activity regulates the manner in which neurons mature and form connections to each other. However, it remains unclear whether increased single-cell activity is sufficient to alter the development of synaptic connectivity of that neuron or whether a global increase in circuit activity is necessary. To address this question, we genetically increased neuronal excitability of in vivo individual adult-born neurons in the mouse dentate gyrus via expression of a voltage-gated bacterial sodium channel. We observed that increasing the excitability of new neurons in an otherwise unperturbed circuit leads to changes in both their input and axonal synapses. Furthermore, the activity-dependent transcription factor Npas4 is necessary for the changes in the input synapses of these neurons, but it is not involved in changes to their axonal synapses. Our results reveal that an increase in cell-intrinsic activity during maturation is sufficient to alter the synaptic connectivity of a neuron with the hippocampal circuit and that Npas4 is required for activity-dependent changes in input synapses. PMID:23637184
NASA Astrophysics Data System (ADS)
Passmore, P.; Zimakov, L.; Rozhkov, M.
The 3rd Generation Seismic Recorder, Model 130-01, has been designed to be easier to use - more compact, lighter in weight, lower power, and requires less maintenance than other recorders. Not only is the hardware optimized for field deployments, soft- ware tools as well have been specially developed to support both field and base station operation. The 130's case is a clamshell design, inherently waterproof, with easy access to all user features on the top of the unit. The 130 has 6 input/output connectors, an LCD display, and a removable lid on top of the case. There are two Channel input connectors on a 6-channel unit (only one on a 3-channel unit), a Terminal connector for setup and control, a Net connector combining Ethernet and Serial PPP for network access, a 12 VDC Power connector, and a GPS receiver connector. The LCD display allows the user to monitor the status of various sub systems within the 130 without having a terminal device attached. For storing large amounts of data the IBM MicrodriveTM is offered. User setup, control and status monitoring is done either with a Personal Digital Assistant (PDA) (Palm OS compatible) using our Palm Field Controller (PFC) software or from a PC/workstation using our REF TEK Network Controller (RNC) GUI interface. StarBand VSAT is the premier two-way, always-on, high-speed satellite Internet ser- vice. StarBand means high-speed Internet without the constraints and congestion of land-based cable or telephone networks. StarBand uses a single satellite dish antenna for receiving and for sending dataUno telephone connection is needed. The hardware ° cost is much less than standard VSAT equipment with double or single hop transmis- sion. REF TEK protocol (RTP) provides end-to-end error-correcting data transmission and command/control. StarBandSs low cost VSAT provides two-way, always-on, high speed satellite Internet data availability. REF TEK and StarBand create the most ad- vanced real-time seismological data acquisition system. 1 Results of data transmission and availability is discussed. 2
NASA Astrophysics Data System (ADS)
Yan, Xiaodong; Tian, He; Xie, Yujun; Kostelec, Andrew; Zhao, Huan; Cha, Judy J.; Tice, Jesse; Wang, Han
Modulatory input-dependent plasticity is a well-known type of hetero-synaptic response where the release of neuromodulators can alter the efficacy of neurotransmission in a nearby chemical synapse. Solid-state devices that can mimic such phenomenon are desirable for enhancing the functionality and reconfigurability of neuromorphic electronics. In this work, we demonstrated a tunable artificial synaptic device concept based on the properties of graphene and tin oxide that can mimic the modulatory input-dependent plasticity. By using graphene as the contact electrode, a third electrode terminal can be used to modulate the conductive filament formation in the vertical tin oxide based resistive memory device. The resulting synaptic characteristics of this device, in terms of the profile of synaptic weight change and the spike-timing-dependent-plasticity, is tunable with the bias at the modulating terminal. Furthermore, the synaptic response can be reconfigured between excitatory and inhibitory modes by this modulating bias. The operation mechanism of the device is studied with combined experimental and theoretical analysis. The device is attractive for application in neuromorphic electronics. This work is supported by ARO and NG-ION2 at USC.
An artificial neural network model for periodic trajectory generation
NASA Astrophysics Data System (ADS)
Shankar, S.; Gander, R. E.; Wood, H. C.
A neural network model based on biological systems was developed for potential robotic application. The model consists of three interconnected layers of artificial neurons or units: an input layer subdivided into state and plan units, an output layer, and a hidden layer between the two outer layers which serves to implement nonlinear mappings between the input and output activation vectors. Weighted connections are created between the three layers, and learning is effected by modifying these weights. Feedback connections between the output and the input state serve to make the network operate as a finite state machine. The activation vector of the plan units of the input layer emulates the supraspinal commands in biological central pattern generators in that different plan activation vectors correspond to different sequences or trajectories being recalled, even with different frequencies. Three trajectories were chosen for implementation, and learning was accomplished in 10,000 trials. The fault tolerant behavior, adaptiveness, and phase maintenance of the implemented network are discussed.
Programmable electronic synthesized capacitance
NASA Technical Reports Server (NTRS)
Kleinberg, Leonard L. (Inventor)
1987-01-01
A predetermined and variable synthesized capacitance which may be incorporated into the resonant portion of an electronic oscillator for the purpose of tuning the oscillator comprises a programmable operational amplifier circuit. The operational amplifier circuit has its output connected to its inverting input, in a follower configuration, by a network which is low impedance at the operational frequency of the circuit. The output of the operational amplifier is also connected to the noninverting input by a capacitor. The noninverting input appears as a synthesized capacitance which may be varied with a variation in gain-bandwidth product of the operational amplifier circuit. The gain-bandwidth product may, in turn, be varied with a variation in input set current with a digital to analog converter whose output is varied with a command word. The output impedance of the circuit may also be varied by the output set current. This circuit may provide very small ranges in oscillator frequency with relatively large control voltages unaffected by noise.
Estimation of effective connectivity via data-driven neural modeling
Freestone, Dean R.; Karoly, Philippa J.; Nešić, Dragan; Aram, Parham; Cook, Mark J.; Grayden, David B.
2014-01-01
This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used to track the mechanisms involved in seizure initiation and termination. PMID:25506315
Terminator assembly for a floating structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, H.; Hall, J.E.
1987-10-20
A terminator assembly is described for use in mooring a floating surface to the floor of a body of water. The floating structure has has an upper support and a lower support, comprising: a hawsepipe extending downwardly from adjacent the upper support and supported by the lower support, a tension member extending downwardly from adjacent the upper support through the hawsepipe and the lower support. The tension member has a lower end adapted for connection to the floor of the body of water. Locking means connected to an upper portion of the tension member for maintaining the tension member inmore » tension by acting upon an upper portion of the hawsepipe without transferring primary tension load forces to the upper support.« less
Effects of microgravity on vestibular development and function in rats: genetics and environment
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Fritzsch, B.; Alberts, J. R.; Bruce, L. L.
2000-01-01
Our anatomical and behavioral studies of embryonic rats that developed in microgravity suggest that the vestibular sensory system, like the visual system, has genetically mediated processes of development that establish crude connections between the periphery and the brain. Environmental stimuli also regulate connection formation including terminal branch formation and fine-tuning of synaptic contacts. Axons of vestibular sensory neurons from gravistatic as well as linear acceleration receptors reach their targets in both microgravity and normal gravity, suggesting that this is a genetically regulated component of development. However, microgravity exposure delays the development of terminal branches and synapses in gravistatic but not linear acceleration-sensitive neurons and also produces behavioral changes. These latter changes reflect environmentally controlled processes of development.
Hayakawa, T; Zheng, J Q; Seki, M; Yajima, Y
1998-04-13
During the pharyngeal phase of the swallowing reflex, the nucleus of the solitary tract (NTS) receives peripheral inputs from the pharynx by means of the glossopharyngeal ganglion and is the location of premotor neurons for the pharyngeal (PH) motoneurons. The semicompact formation of the nucleus ambiguus (AmS) is composed of small and medium-sized neurons that do not project to the pharynx, and large PH motoneurons. We investigated whether the neurons in the NTS projected directly to the PH motoneurons or to the other kinds of neurons in the AmS by using the electron microscope. When wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) was injected into the NTS after cholera toxin subunit B-conjugated HRP (CT-HRP) injections into the pharyngeal muscles of male Sprague-Dawley rats, many nerve terminals anterogradely labeled with WGA-HRP were found to contact PH motoneurons retrogradely labeled with CT-HRP. Most of the labeled axodendritic terminals (63%) contained pleomorphic vesicles with symmetric synaptic contacts (Gray's type II), and the remaining ones contained round vesicles with asymmetric synaptic contacts (Gray's type I). About 14% of the axosomatic terminals on PH motoneuron in a sectional plane were anterogradely labeled, and about 70% of the labeled axosomatic terminals were Gray's type II. Observations of serial ultrathin sections revealed that both the small and the medium-sized neurons received only a few labeled axosomatic terminals that were exclusively Gray's type I. These results indicate that the NTS neurons may send mainly inhibitory as well as a few excitatory inputs directly to the PH motoneurons in the AmS.
Adaptive voting computer system
NASA Technical Reports Server (NTRS)
Koczela, L. J.; Wilgus, D. S. (Inventor)
1974-01-01
A computer system is reported that uses adaptive voting to tolerate failures and operates in a fail-operational, fail-safe manner. Each of four computers is individually connected to one of four external input/output (I/O) busses which interface with external subsystems. Each computer is connected to receive input data and commands from the other three computers and to furnish output data commands to the other three computers. An adaptive control apparatus including a voter-comparator-switch (VCS) is provided for each computer to receive signals from each of the computers and permits adaptive voting among the computers to permit the fail-operational, fail-safe operation.
Anderson, Thomas T.; Roop, Conard J.; Schmidt, Kenneth J.; Brewer, John
1986-01-01
An induction voidmeter for detecting voids in a conductive fluid may comprise: a four arm bridge circuit having two adjustable circuit elements connected as opposite arms of said bridge circuit, an input branch, and an output branch; two induction coils, bifilarly wound together, connected as the remaining two opposing arms of said bridge circuit and positioned such that the conductive fluid passes through said coils; applying an AC excitation signal to said input branch; and detecting the output signal generated in response to said excitation signal across said output branch. The induction coils may be located outside or inside a non-magnetic pipe containing the conductive fluid.
CTF Preprocessor User's Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avramova, Maria; Salko, Robert K.
2016-05-26
This document describes how a user should go about using the CTF pre- processor tool to create an input deck for modeling rod-bundle geometry in CTF. The tool was designed to generate input decks in a quick and less error-prone manner for CTF. The pre-processor is a completely independent utility, written in Fortran, that takes a reduced amount of input from the user. The information that the user must supply is basic information on bundle geometry, such as rod pitch, clad thickness, and axial location of spacer grids--the pre-processor takes this basic information and determines channel placement and connection informationmore » to be written to the input deck, which is the most time-consuming and error-prone segment of creating a deck. Creation of the model is also more intuitive, as the user can specify assembly and water-tube placement using visual maps instead of having to place them by determining channel/channel and rod/channel connections. As an example of the benefit of the pre-processor, a quarter-core model that contains 500,000 scalar-mesh cells was read into CTF from an input deck containing 200,000 lines of data. This 200,000 line input deck was produced automatically from a set of pre-processor decks that contained only 300 lines of data.« less
Craig, A.D. (Bud)
2014-01-01
Prior anterograde tracing work identified somatotopically organized lamina I trigemino- and spino-thalamic terminations in a cytoarchitectonically distinct portion of posterolateral thalamus of the macaque monkey, named the posterior part of the ventral medial nucleus (VMpo; Craig, 2004b). Microelectrode recordings from clusters of selectively thermoreceptive or nociceptive neurons were used to guide precise micro-injections of various tracers in VMpo. A prior report (Craig and Zhang, 2006) described retrograde tracing results, which confirmed the selective lamina I input to VMpo and the antero-posterior (head to foot) topography. The present report describes the results of micro-injections of anterograde tracers placed at different levels in VMpo, based on the antero-posterior topographic organization of selectively nociceptive units and clusters over nearly the entire extent of VMpo. Each injection produced dense, patchy terminal labeling in a single coherent field within a distinct granular cortical area centered in the fundus of the superior limiting sulcus. The terminations were distributed with a consistent antero-posterior topography over the posterior half of the superior limiting sulcus. These observations demonstrate a specific VMpo projection area in dorsal posterior insular cortex that provides the basis for a somatotopic representation of selectively nociceptive lamina I spinothalamic activity. These results also identify the VMpo terminal area as the posterior half of interoceptive cortex; the anterior half receives input from the vagal-responsive and gustatory neurons in the basal part of the ventral medial nucleus (VMb). PMID:23853108
VAX-11 Programs for Computing Available Potential Energy from CTD Data.
1981-08-01
the plots can be plotted as many times as desired. The use of the translators is described at the end of section 3. The multiple branch structure of...are listed later in this section, and short * versions of them may be obtained on the terminal any time the program prompts the user for branch number...input, by typing 0/. Within each branch there may be options which are accessible by varying parameters input by the user at the time the branch
Master/Programmable-Slave Computer
NASA Technical Reports Server (NTRS)
Smaistrla, David; Hall, William A.
1990-01-01
Unique modular computer features compactness, low power, mass storage of data, multiprocessing, and choice of various input/output modes. Master processor communicates with user via usual keyboard and video display terminal. Coordinates operations of as many as 24 slave processors, each dedicated to different experiment. Each slave circuit card includes slave microprocessor and assortment of input/output circuits for communication with external equipment, with master processor, and with other slave processors. Adaptable to industrial process control with selectable degrees of automatic control, automatic and/or manual monitoring, and manual intervention.
Thermochemical cycle analysis using linked CECS72 and HYDRGN computer programs
NASA Technical Reports Server (NTRS)
Donovan, L. F.
1977-01-01
A combined thermochemical cycle analysis computer program was designed. Input to the combined program is the same as input to the thermochemical cycle analysis program except that the extent of the reactions need not be specified. The combined program is designed to be run interactively from a computer time-sharing terminal. This mode of operation allows correction or modification of the cycle to take place during cycle analysis. A group of 13 thermochemical cycles was used to test the combined program.
Transcending binary logic by gating three coupled quantum dots.
Klein, Michael; Rogge, S; Remacle, F; Levine, R D
2007-09-01
Physical considerations supported by numerical solution of the quantum dynamics including electron repulsion show that three weakly coupled quantum dots can robustly execute a complete set of logic gates for computing using three valued inputs and outputs. Input is coded as gating (up, unchanged, or down) of the terminal dots. A nanosecond time scale switching of the gate voltage requires careful numerical propagation of the dynamics. Readout is the charge (0, 1, or 2 electrons) on the central dot.
Rozov, A; Burnashev, N; Sakmann, B; Neher, E
2001-01-01
In connections formed by nerve terminals of layer 2/3 pyramidal cells onto bitufted interneurones in young (postnatal day (P)14–15) rat somatosensory cortex, the efficacy and reliability of synaptic transmission were low. At these connections release was facilitated by paired-pulse stimulation (at 10 Hz). In connections formed by terminals of layer 2/3 pyramids with multipolar interneurones efficacy and reliability were high and release was depressed by paired-pulse stimulation. In both types of terminal, however, the voltage-dependent Ca2+ channels that controlled transmitter release were predominantly of the P/Q- and N-subtypes. The relationship between unitary EPSP amplitude and extracellular calcium concentration ([Ca2+]o) was steeper for facilitating than for depressing terminals. Fits to a Hill equation with nH= 4 indicated that the apparent KD of the Ca2+ sensor for vesicle release was two- to threefold lower in depressing terminals than in facilitating ones. Intracellular loading of pyramidal neurones with the fast and slowly acting Ca2+ buffers BAPTA and EGTA differentially reduced transmitter release in these two types of terminal. Unitary EPSPs evoked by pyramidal cell stimulation in bitufted cells were reduced by presynaptic BAPTA and EGTA with half-effective concentrations of ∼0.1 and ∼1 mm, respectively. Unitary EPSPs evoked in multipolar cells were reduced to one-half of control at higher concentrations of presynaptic BAPTA and EGTA (∼0.5 and ∼7 mm, respectively). Frequency-dependent facilitation of EPSPs in bitufted cells was abolished by EGTA at concentrations of > 0.2 mm, suggesting that accumulation of free Ca2+ is essential for facilitation in the terminals contacting bitufted cells. In contrast, facilitation was unaffected or even slightly increased in the terminals loaded with BAPTA in the concentration range 0.02–0.5 mm. This is attributed to partial saturation of exogenously added BAPTA. However, BAPTA at concentrations > 1 mm also abolished facilitation. Frequency-dependent depression of EPSPs in multipolar cells was not significantly reduced by EGTA. With BAPTA, the depression decreased at concentrations > 0.5 mm, concomitant with a reduction in amplitude of the first EPSP in a train. An analysis is presented that interprets the effects of EGTA and BAPTA on synaptic efficacy and its short-term modification during paired-pulse stimulation in terms of changes in [Ca2+] at the release site ([Ca2+]RS) and that infers the affinity of the Ca2+ sensor from the dependence of unitary EPSPs on [Ca2+]o. The results suggest that the target cell-specific difference in release from the terminals on bitufted or multipolar cells can be explained by a longer diffusional distance between Ca2+ channels and release sites and/or lower Ca2+ channels density in the terminals that contact bitufted cells. This would lead to a lower [Ca2+] at release sites and would also explain the higher apparent KD of the Ca2+ sensor in facilitating terminals. PMID:11251060
NASA Technical Reports Server (NTRS)
Pepin, Gerard R.
1992-01-01
The Interim Service Integrated Service Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Development for Advanced Satellite Designs describes the development of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into Time Division Multiple Access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the RS-499 interface for satellite uplink. The same ISTA converts in the opposite direction the RS-499 to U-interface data with a simple switch setting.
NASA Technical Reports Server (NTRS)
Pepin, Gerard R.
1992-01-01
The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Design for Advanced Satellite Designs describes the design of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into time division multiple access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the V.35 interface for satellite uplink. The same ISTA converts in the opposite direction the V.35 to U-interface data with a simple switch setting.
Method and apparatus for varying accelerator beam output energy
Young, Lloyd M.
1998-01-01
A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.
Williams, Shayna M.; Nast, Alexis; Coleman, Melissa J.
2012-01-01
Birdsong is a learned behavior that is controlled by a group of identified nuclei, known collectively as the song system. The cortical nucleus HVC (used as a proper name) is a focal point of many investigations as it is necessary for song production, song learning, and receives selective auditory information. HVC receives input from several sources including the cortical area MMAN (medial magnocellular nucleus of the nidopallium). The MMAN to HVC connection is particularly interesting as it provides potential sensorimotor feedback to HVC. To begin to understand the role of this connection, we investigated the physiological relation between MMAN and HVC activity with simultaneous multiunit extracellular recordings from these two nuclei in urethane anesthetized zebra finches. As previously reported, we found similar timing in spontaneous bursts of activity in MMAN and HVC. Like HVC, MMAN responds to auditory playback of the bird's own song (BOS), but had little response to reversed BOS or conspecific song. Stimulation of MMAN resulted in evoked activity in HVC, indicating functional excitation from MMAN to HVC. However, inactivation of MMAN resulted in no consistent change in auditory responses in HVC. Taken together, these results indicate that MMAN provides functional excitatory input to HVC but does not provide significant auditory input to HVC in anesthetized animals. We hypothesize that MMAN may play a role in motor reinforcement or coordination, or may provide modulatory input to the song system about the internal state of the animal as it receives input from the hypothalamus. PMID:22384172
Magnetic tunnel junction based spintronic logic devices
NASA Astrophysics Data System (ADS)
Lyle, Andrew Paul
The International Technology Roadmap for Semiconductors (ITRS) predicts that complimentary metal oxide semiconductor (CMOS) based technologies will hit their last generation on or near the 16 nm node, which we expect to reach by the year 2025. Thus future advances in computational power will not be realized from ever-shrinking device sizes, but rather by 'outside the box' designs and new physics, including molecular or DNA based computation, organics, magnonics, or spintronic. This dissertation investigates magnetic logic devices for post-CMOS computation. Three different architectures were studied, each relying on a different magnetic mechanism to compute logic functions. Each design has it benefits and challenges that must be overcome. This dissertation focuses on pushing each design from the drawing board to a realistic logic technology. The first logic architecture is based on electrically connected magnetic tunnel junctions (MTJs) that allow direct communication between elements without intermediate sensing amplifiers. Two and three input logic gates, which consist of two and three MTJs connected in parallel, respectively were fabricated and are compared. The direct communication is realized by electrically connecting the output in series with the input and applying voltage across the series connections. The logic gates rely on the fact that a change in resistance at the input modulates the voltage that is needed to supply the critical current for spin transfer torque switching the output. The change in resistance at the input resulted in a voltage margin of 50--200 mV and 250--300 mV for the closest input states for the three and two input designs, respectively. The two input logic gate realizes the AND, NAND, NOR, and OR logic functions. The three input logic function realizes the Majority, AND, NAND, NOR, and OR logic operations. The second logic architecture utilizes magnetostatically coupled nanomagnets to compute logic functions, which is the basis of Magnetic Quantum Cellular Automata (MQCA). MQCA has the potential to be thousands of times more energy efficient than CMOS technology. While interesting, these systems are academic unless they can be interfaced into current technologies. This dissertation pushed past a major hurdle by experimentally demonstrating a spintronic input/output (I/O) interface for the magnetostatically coupled nanomagnets by incorporating MTJs. This spintronic interface allows individual nanomagnets to be programmed using spin transfer torque and read using magneto resistance structure. Additionally the spintronic interface allows statistical data on the reliability of the magnetic coupling utilized for data propagation to be easily measured. The integration of spintronics and MQCA for an electrical interface to achieve a magnetic logic device with low power creates a competitive post-CMOS logic device. The final logic architecture that was studied used MTJs to compute logic functions and magnetic domain walls to communicate between gates. Simulations were used to optimize the design of this architecture. Spin transfer torque was used to compute logic function at each MTJ gate and was used to drive the domain walls. The design demonstrated that multiple nanochannels could be connected to each MTJ to realize fan-out from the logic gates. As a result this logic scheme eliminates the need for intermediate reads and conversions to pass information from one logic gate to another.
SULFATE-REDUCING BACTERIA IN THE SEAGRASS RHIZOSPHERE
Seagrasses are rooted in anoxic sediments that support high levels of microbial activity including utilization of sulfate as a terminal electron acceptor which is reduced to sulfide. Sulfate reduction in seagrass bed sediments is stimulated by input of organic carbon through the ...
Prevention and Treatment of Noise-Induced Tinnitus. Revision
2013-07-01
CTBP2 immunolabeling) for their loss following noise. Sub-Task 1c: Assessment of Auditory Nerve ( VGLUT1 immunolabel) terminals on neurons in Ventral...and Dorsal Cochlear Nucleus (VCN, DCN) for their loss following noise. Sub-Task 1d: Assessment of VGLUT2 , VAT & VGAT immunolabeled terminals in VCN...significant reduction in connections compared to animals without noise exposure. Sub-Task 1c: Assessment of Auditory Nerve ( VGLUT1 immunolabel
ULTRA-STABILIZED D. C. AMPLIFIER
Hartwig, E.C.; Kuenning, R.W.; Acker, R.C.
1959-02-17
An improved circuit is described for stabilizing the drift and minimizing the noise and hum level of d-c amplifiers so that the output voltage will be zero when the input is zero. In its detailed aspects, the disclosed circuit incorporates a d-c amplifier having a signal input, a second input, and an output circuit coupled back to the first input of the amplifier through inverse feedback means. An electronically driven chopper having a pair of fixed contacts and a moveable contact alternately connects the two inputs of a difference amplifier to the signal input. The A. E. error signal produced in the difference amplifier is amplified, rectified, and applied to the second input of the amplifier as the d-c stabilizing voltage.
Planar photovoltaic solar concentrator module
Chiang, Clement J.
1992-01-01
A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.
Planar photovoltaic solar concentrator module
Chiang, C.J.
1992-12-01
A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.
NASA Astrophysics Data System (ADS)
Sævik, P. N.; Nixon, C. W.
2017-11-01
We demonstrate how topology-based measures of connectivity can be used to improve analytical estimates of effective permeability in 2-D fracture networks, which is one of the key parameters necessary for fluid flow simulations at the reservoir scale. Existing methods in this field usually compute fracture connectivity using the average fracture length. This approach is valid for ideally shaped, randomly distributed fractures, but is not immediately applicable to natural fracture networks. In particular, natural networks tend to be more connected than randomly positioned fractures of comparable lengths, since natural fractures often terminate in each other. The proposed topological connectivity measure is based on the number of intersections and fracture terminations per sampling area, which for statistically stationary networks can be obtained directly from limited outcrop exposures. To evaluate the method, numerical permeability upscaling was performed on a large number of synthetic and natural fracture networks, with varying topology and geometry. The proposed method was seen to provide much more reliable permeability estimates than the length-based approach, across a wide range of fracture patterns. We summarize our results in a single, explicit formula for the effective permeability.
Macleish, K.G.
1958-02-11
ABS>This patent presents a method for locating a ground in a d-c circult having a number of parallel branches connected across a d-c source or generator. The complete method comprises the steps of locating the ground with reference to the mildpoint of the parallel branches by connecting a potentiometer across the terminals of the circuit and connecting the slider of the potentiometer to ground through a current indicating instrument, adjusting the slider to right or left of the mildpoint so as to cause the instrument to indicate zero, connecting the terminal of the network which is farthest from the ground as thus indicated by the potentiometer to ground through a condenser, impressing a ripple voltage on the circuit, and then measuring the ripple voltage at the midpoint of each parallel branch to find the branch in which is the lowest value of ripple voltage, and then measuring the distribution of the ripple voltage along this branch to determine the point at which the ripple voltage drops off to zero or substantially zero due to the existence of a ground. The invention has particular application where a circuit ground is present which will disappear if the normal circuit voltage is removed.
Hundeshagen, G; Szameit, K; Thieme, H; Finkensieper, M; Angelov, D N; Guntinas-Lichius, O; Irintchev, A
2013-09-17
Crush injuries of peripheral nerves typically lead to axonotmesis, axonal damage without disruption of connective tissue sheaths. Generally, human patients and experimental animals recover well after axonotmesis and the favorable outcome has been attributed to precise axonal reinnervation of the original peripheral targets. Here we assessed functionally and morphologically the long-term consequences of facial nerve axonotmesis in rats. Expectedly, we found that 5 months after crush or cryogenic nerve lesion, the numbers of motoneurons with regenerated axons and their projection pattern into the main branches of the facial nerve were similar to those in control animals suggesting precise target reinnervation. Unexpectedly, however, we found that functional recovery, estimated by vibrissal motion analysis, was incomplete at 2 months after injury and did not improve thereafter. The maximum amplitude of whisking remained substantially, by more than 30% lower than control values even 5 months after axonotmesis. Morphological analyses showed that the facial motoneurons ipsilateral to injury were innervated by lower numbers of glutamatergic terminals (-15%) and cholinergic perisomatic boutons (-26%) compared with the contralateral non-injured motoneurons. The structural deficits were correlated with functional performance of individual animals and associated with microgliosis in the facial nucleus but not with polyinnervation of muscle fibers. These results support the idea that restricted CNS plasticity and insufficient afferent inputs to motoneurons may substantially contribute to functional deficits after facial nerve injuries, possibly including pathologic conditions in humans like axonotmesis in idiopathic facial nerve (Bell's) palsy. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo
2015-01-01
Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389